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1 INTRODUCTION

2 METHODOLOGY

In potential field methods, we must isolate the target anomalous density distribution prior to modeling

and inversion. In our case, the target is the relief of the real Moho undulating around a reference

Moho. We do this by removing all other effects from the gravity observations. The first correction is to

remove the scalar gravity of an ellipsoidal reference Earth (the Normal Earth), hereafter denoted as γ.

This effect is calculated on the same point P where the gravity observation was made (Fig 1a-b). γ(P )

is calculated using the closed-form solution presented by Li & Götze (2001). The difference between

the observed gravity at point P (g(P )) and Normal gravity at the same point is known as the gravity

disturbance,

δ(P ) = g(P )− γ(P ). (1)

The disturbance contains only the gravitational effects of density distributions that are anomalous

with respect to the Normal Earth (see Fig. 1c). This includes all masses above the surface of the

ellipsoid (the topography), the mass deficiency of the oceans, the mass deficiency of sedimentary

basins, crustal sources (e.g., igneous intrusions, lateral density changes, etc), heterogeneities below
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Figure 1. Sketch of the stages in gravity data correction and the discretization of the anomalous Moho relief

using tesseroids. (a) The Earth and the measured gravity at point P (g(P )). (b) The Normal Earth and the calcu-

lated normal gravity at point P (γ(P )). zref is the depth of the Normal Earth Moho. (c) The gravity disturbance

(δ(P )) and the corresponding density anomalies after removal of the normal gravity: topography, oceans, crustal

heterogeneities, and the anomalous Moho. (d) The Bouguer disturbance (δbg(P )) after topographic correction

and the remaining density anomalies. (e) All density anomalies save the anomalous Moho are assumed to have

been removed before inversion. (f) The discretization of the anomalous Moho in tesseroids. Grey tesseroids will

have a negative density contrast while red tesseroids will have a positive one.

the upper mantle, and the effect of the difference between the real Moho topography and the Moho of

the Normal Earth.

In order to invert for the anomalous Moho relief, we must first isolate its gravitational attraction.

Thus, all other effects must be either removed or assumed negligible. Here, we will remove the effect

of the topography and oceans in order to obtain the full Bouguer disturbance (Fig 1d),

δbg(P ) = δ(P )− gtopo(P ). (2)

We will remove the effect of sedimentary basins but assume that the effects of other crustal and mantle

sources are negligible. Thus, the only effect left will be that of the anomalous Moho relief (Fig 1e).

The gravitational attraction of the topography, oceans, and basins are calculated in a spherical Earth

approximation by forward modeling using tesseroids (Fig. 2). The tesseroid effects are calculated

numerically using Gauss-Legendre Quadrature (GLQ) integration (Asgharzadeh et al. 2007). The ac-

curacy of the GLQ integration is improved by the adaptive discretization scheme of Uieda et al. (2016).
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Figure 2. Sketch of a tesseroid (spherical prism) in a geocentric coordinate system (X, Y, Z). Observations are

made at point P with respect to it’s local North-oriented coordinate system (x, y, z). After Uieda (2015).

2.1 Parametrization

We parameterize the forward problem by discretizing the anomalous Moho into a grid of Mlon ×

Mlat = M juxtaposed tesseroids (Fig 1f). The true (real Earth) Moho varies in depth with respect to

the Moho of the Normal Earth. Hereafter we will refer to the depth of the Normal Earth Moho as zref

(see Fig. 1b). In cases where the true Moho is above zref , the top of the kth tesseroid is the Moho

depth zk, the bottom is zref , and the density-contrast (∆ρ) is positive (red tesseroids in Fig 1f). If

the Moho is below zref , the top of the tesseroid is zref , the bottom is zk, and ∆ρ is negative (grey

tesseroids in Fig 1f).

Considering that the absolute value of the density-contrasts of the tesseroids is a fixed parame-

ter, the predicted gravity anomaly of the Moho is a non-linear function of the parameters zk, k =

1, . . . ,M ,

di = fi(p), (3)

in which di is the ith element of the N -dimensional predicted data vector d, p is the M -dimensional

parameter vector containing the M Moho depths (zk), and fi is the ith non-linear function that maps

the parameters onto the data. The functions fi are the radial component of the gravitational attraction

of the tesseroid Moho model.
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2.2 Inverse problem

We wish to estimate the parameter vector p from a set of observed gravity anomaly data do. The

least-squares estimate is the one that minimizes the data-misfit function

φ(p) = [do − d(p)]T [do − d(p)]. (4)

Function φ(p) is non-linear with respect to p. Thus, we can determine its minimum using gradient-

based iterative optimization methods like Gauss-Newton or Steepest Descent. Such methods start from

an initial estimate p0 and iteratively update the estimate until a minimum is reached.

For the Gauss-Newton method, the update at the kth iteration, ∆p = pk+1 − pk, is the solution

of the linear system

Hk∆p = −∇φk, (5)

in which∇φk and Hk are, respectively, the gradient vector and the Hessian matrix of φ(p).

The Steepest Descent method uses only the gradient direction to update the initial estimate (Kelley

1987). The update at the kth iteration is achieved by equating the Hessian in Eq. 5 to the identity

matrix,

∆p = −∇φk. (6)

Thus, it does not require the computation and storage of the Hessian matrix nor the solution of linear

systems. However, the Steepest Descent method has poor convergence when the current solution is

close to the minimum of the goal function (Kelley 1987).

The gradient vector and the Gauss-Newton approximation of the Hessian matrix of φ(p) are,

respectively,

∇φk = −2AT [do − d(pk)], (7)

and

Hk ≈ 2ATA, (8)

in which A is the Jacobian or sensitivity matrix,

Aij =
∂fi
∂pj

(pk). (9)
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2.3 Regularization

Non-linear inversions for the relief of an interface (like the Moho) are ill-posed and require additional

constraints in the form of regularization (Silva et al. 2001). A common approach is to use the first-

order Tikhonov regularization to impose smoothness on the solution. The cost function for smoothness

regularization is given by

θ(p) = pTRTRp, (10)

where R is an L × M finite-difference matrix representing the L first-order differences between

adjacent tesseroids.

The solution p̂ to the regularized inverse problem is the one that minimizes the goal function

Γ(p) = φ(p) + µθ(p), (11)

in which µ is the regularization parameter that controls the balance between fitting the observed data

and obeying the smoothness constraint.

The goal function Γ(p) is also non-linear with respect to p and can be minimized using the Gauss-

Newton or Steepest Descent methods. The gradient vector and Hessian matrix of the goal function are,

respectively,

∇Γk = −2AT [do − d(pk)] + 2µRTRpk, (12)

and

Hk = 2ATA + 2µRTR. (13)

The parameter updates for the regularized Gauss-Newton and Steepest Descent methods, respectively,

then become

[
ATA + µRTR

]
∆p = AT [do − d(pk)]− µRTRpk, (14)

and

∆p = AT [do − d(pk)]− µRTRpk, (15)

Producing the regularized solution using the above equations is computationally costly because of

two main factors: (1) the evaluation and storage of the dense N ×M Jacobian matrix A and (2) the
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solution of the resulting M ×M equation system (not required for Steepest Descent). In practice, the

derivatives in the Jacobian (Eq. 9) are often calculated through a first-order finite-difference approxi-

mation. Thus, evaluating A requires 2×M ×N forward modeling operations for each iteration of the

gradient descent algorithm. These computations are performed for each iteration of the optimization.

2.4 Bott’s method

Bott (1960) developed an efficient method to determined the basement relief of a sedimentary basin

from gravity observations. The method requires data on a regular grid of Nx×Ny = N observations.

The basement relief is then discretized into an equal grid of Mx ×My = M elements with Mx = Nx

and My = Ny. Bott’s iterative method starts with an initial estimate of the basement relief p0 equal to

the null vector and updates the estimate using the formula

∆p =
do − d(pk)

2πG∆ρ
, (16)

in which G is the gravitational constant and ∆ρ is the basin density contrast. The iterative process

stops when the inversion residuals r = do − d(pk) fall below the assumed noise level of the data.

Silva et al. (2014) showed that Bott’s method can be formulated as a special case of the Gauss-

Newton method (Eq. 5) by setting the Jacobian matrix (Eq. 9) to

A = 2πG∆ρI, (17)

in which I is the identity matrix. In this framework, Bott’s method uses a Bouguer plate approximation

of the gravitational effect of the relief, di = 2πG∆ρzi. The derivative of di with respect to the param-

eter zi is 2πG∆ρ, thus linearizing the Jacobian matrix. However, the non-linearity of the predicted

data d(pk) is preserved.

We propose that Bott’s method can also be formulated as a special case of the Steepest Descent

method (Eq. 6) by setting the Jacobian matrix to

A =
1

4πG∆ρ
I. (18)

In practice, both formulations lead to Eq. 16. One of the advantages of Bott’s method over the tra-

ditional Gauss-Newton or Steepest Descent is eliminating the computation and storage of the dense

Jacobian matrix A. Furthermore, Bott’s method also does not require the solution of equation sys-

tems. However, a disadvantage of Bott’s method is that it suffers from instability (Silva et al. 2014). A

common approach to counter this issue is to apply a smoothing filter after the inversion to the unstable

estimate, as in Silva et al. (2014).
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2.5 Regularized Bott’s method in spherical coordinates

We propose a regularized version of Bott’s method to invert for the relief of the anomalous Moho in

spherical coordinates. Our formulation maintains the regularized solutions for Gauss-Newton (Eq. 14)

and Steepest Descent (Eq. 15) but replaces the full Jacobian matrix with the Bouguer plate approxi-

mations (respectively, Eq. 17 and 18). This linearizes the Jacobian matrix and reduces it to a sparse

diagonal matrix, thus eliminating the cost of computing and storing A. Matrix arithmetic operations

can be performed efficiently by taking advantage of the sparse nature of matrices A and R. The same

is true for solving the equation system in the Gauss-Newton method (Eq. 14). However, the computa-

tional cost of forward modeling is still present. Particularly, forward modeling using tesseroids is more

computationally intensive than using right-rectangular prisms because of the numerical integration and

adaptive discretization. Benchmarks suggest that forward modeling accounts for approximately 99%

of the computation time for a Gauss-Newton inversion (see supplementary material). Hence, this for- Check
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mulation allows us to retain the efficiency of Bott’s method while stabilizing the solution through the

well established formalism of Tikhonov regularization.

2.6 Estimating the regularization parameter

The regularization parameter µ controls how much smoothness is applied to the inversion result. An

optimal value of µwill stabilize and smooth the solution while not compromising the fit to the observed

data. Two widely used methods to estimate an optimal µ are the L-curve criterion and cross-validation

(Hansen 1992). Here, we will adopt the hold-out method of cross-validation (Kim 2009). The hold-out Not the
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method consists of splitting the observed data set into two independent parts: a training set do
inv and a

testing set do
test. The training set is used in the inversion while the testing set is kept back and used to

judge the quality of the chosen value of µ. For a value of the regularization parameter µk, the training

set is inverted using µk to obtain an estimate p̂k. This estimate is used to calculate predicted data on

the same points as the testing set via forward modeling (dk
test = f(p̂k)). The metric chosen to evaluate

µk is the mean square error (MSE) of the misfit between the observed and predicted testing data sets,

MSEk =
‖do

test − dk
test‖2

Ntest
, (19)

in which Ntest is the number of data in the testing set. The optimal value of µ will be the one that

minimizes the MSE, i.e. the one that best predicts the testing data. We emphasize that the inversion is

performed only on the training data set.

The algorithm for the hold-out cross-validation is summarized as follows:

(i) Divide the observed data into the training (do
inv) and testing (do

test) sets.
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Figure 3. Sketch of a data grid separated into the training (white dots with black outlines) and testing (black

dots) data sets. The training data set is still displayed on a regular grid but with twice the grid spacing of the

original data grid.

(ii) For each µk ∈ [µ1, µ2, . . . , µNµ ]:

(a) Estimate p̂k by inverting the training set do
inv.

(b) Use p̂k to calculate the predicted testing set dk
test.

(c) Calculate the mean square error MSEk using Eq. 19.

(iii) The final solution is the p̂k corresponding to the smallest MSEk.

The separation of the training and testing data sets is commonly done by taking random samples

from the full data set. However, we cannot perform the separation in this way because Bott’s method

requires data on a regular grid as well as having model elements directly below each data point. Thus,

we take as our training set the points from the observed data grid that fall on a similar grid but with

twice the grid spacing (white dots with black outlines in Fig. 3). All other points from the original

data grid make up the testing data set (black dots in Fig. 3). This separation will lead to a testing data

set with more points than the training data set. A way to balance this loss of data in the inversion is

to generate a data grid with half of the desired grid spacing, either through interpolation or from a

spherical harmonic model.

2.7 Estimating zref and ∆ρ

The depth of the Normal Earth Moho (zref ) and the density-contrast of the anomalous Moho (∆ρ)

are other hyper-parameters of the inversion. That is, their value influences the final solution but they

are not estimated during the inversion. Both hyper-parameters cannot be determined from the gravity

data alone. Estimating zref and ∆ρ requires information that is independent of the gravity data, such
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as knowledge of the parameters at certain points. This information can be used in a manner similar

to the cross-validation described in the previous section. In this study, we use point estimates of the

Moho depth to determine the optimal values of zref and ∆ρ. These points will generally come from

seismologic studies, like receiver functions, surface wave dispersion, and deep refraction experiments.

Let zos be a vector of Ns known Moho depths. We use the mean square error (MSE) as a measure

of how well a given inversion output p̂k fits the know depths. The optimal values of zref and ∆ρ are

the ones that best fit the independent known Moho depths (i.e., produce the smallest MSE). However,

the points do not necessarily coincide with the model elements of the inversion. Before computing the

MSE, we interpolate p̂k on the known points to obtain the predicted depths zks . The MSE is defined as

MSE =
‖zos − zks‖2

Ns
. (20)

The algorithm for estimating zref and ∆ρ is:

(i) For each combination of zref,l ∈ [zref,1, zref,2, . . . , zref,Nz ] and ∆ρm ∈ [∆ρ1,∆ρ2, . . . ,∆ρNρ ]:

(a) Perform the inversion on the training data set do
inv using zref,l, ∆ρm, and the previously esti-

mated value of µ. The inversion output is the vector p̂l,m.

(b) Interpolate p̂l,m on the known points to obtain the predicted depths zl,ms .

(c) Calculate the MSE between zos and zl,ms using Eq. 20.

(ii) The final solution is the p̂l,m corresponding to the smallest MSE.

A similar approach was used by Martins et al. (2010) to estimate the parameters defining the

density-contrast variation with depth of a sedimentary basin. van der Meijde et al. (2013) also had a

similar methodology for dealing with the hyper-parameters, though in a less formalized way.

2.8 Software implementation

The inversion method proposed here is implemented in the Python programming language. The soft-

ware is freely available under the terms of the BSD 3-clause open-source software license. Our

implementation relies on the open-source libraries scipy and numpy (Jones et al. 2001, http://

scipy.org) for array-based computations, matplotlib (Hunter 2007, http://matplotlib.org) and

seaborn (Waskom et al. 2015, http://stanford.edu/~mwaskom/software/seaborn) for plots

and maps, and Fatiando a Terra (Uieda et al. 2013, http://www.fatiando.org) for geophysics

specific tasks, particularly for forward modeling using tesseroids. We use the scipy.sparse package for

sparse matrix arithmetic and linear algebra.

The computational experiments (e.g., data processing, synthetic tests, real data application) were

http://scipy.org
http://scipy.org
http://matplotlib.org
http://stanford.edu/~mwaskom/software/seaborn
http://www.fatiando.org
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Figure 4. A simple Moho model made of tesseroids for synthetic data application. (a) The Moho depth of the

model in kilometers. The model transitions from a deep Moho in the right to a shallow Moho in left, simulating

the transition between a continental and an oceanic Moho. Each pixel in the pseudo-color image corresponds to

a tesseroid of the model. (b) Noise-corrupted synthetic gravity data generated from the model shown in (a).

performed in Jupyter (formerly IPython) notebooks (Pérez & Granger 2007, http://jupyter.

org/). The notebook files combine the source code used to run the experiments, the results and figures

generated by the code, and rich text to explain and document the analysis.

All source code, data, and Jupyter notebooks used here can be found at the online repository

https://github.com/pinga-lab/paper-moho-inversion-tesseroids. An archived version

is also available at http://dx.doi.org/DOI (made available upon publication). The repository also

contains instructions for installing the necessary software and reproducing all results presented here.

3 APPLICATION TO SYNTHETIC DATA FROM A SIMPLE MODEL

Bla bla bla.

4 APPLICATION TO SYNTHETIC DATA FROM THE CRUST1.0 MODEL

Bla bla bla.

http://jupyter.org/
http://jupyter.org/
https://github.com/pinga-lab/paper-moho-inversion-tesseroids
http://dx.doi.org/DOI


11

(a)

40°W 202W 02 202E 402E

202N

402N

602N

Estimated Moho depth (km) (b)

40°W 202W 02 202E 402E

Difference from true model (km) (c)

40°W 202W 02 202E 402E

Residuals (mGal)

16 24 32 40 48 41.8 −1.2 −0.6 0.0 0.6 1.2 1.8 −8 −4 0 4 8 12

415 410 45 0 5 10 15

Residuals (mGal)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
re

q.
en

c0

(d)

mean = 0.02
    std = 3.63

Resid.als

10­6 10­5 10­4 10­3 10­2 10­1

Reg.lari1ati(n )arameter

101

102

103

104
M

ea
n 

S
q.

ar
e 

E
rr

(r
 (

m
G

al
3)

(e) Cr(ss­validati(n c.rve

Minim.m

0 1 2 3 4 5 6 ² 8

Iterati(n

104

105

106

10²

108

109

G
(a

l f
.n

ct
i(

n

(f) C(nvergence

Figure 5. Results from the inversion of the simple synthetic data. (a) The estimated Moho depth. (b) The

difference between the true model depths and the estimated depths. (c) The inversion residuals (observed data

minus the data predicted by the estimate). (d) Histogram of the residuals. Also shown are the calculated mean

and standard deviation (std) of the residuals. Note that the data were contaminated with normally distributed

pseudo-random noise with zero mean and 5 mGal standard deviation. (e) Cross-validation curve used to de-

termine the optimal regularization parameter (Eq. 11). The minimum Mean Square Error (Eq. 19) is found at

µ = 0.00046 (red triangle). (f) Goal function value (Eq. 11) per Gauss-Newton iteration showing the conver-

gence of the gradient descent.

5 APPLICATION TO THE SOUTH AMERICAN MOHO

5.1 Gravity and seismic data

The gravitational effect of the topography is removed using the ETOPO1 digital terrain model (Amante

& Eakins 2009, http://dx.doi.org/10.7289/V5C8276M). The effect of sedimentary basins is re-

moved using the CRUST1.0 model (Laske et al. 2013, http://igppweb.ucsd.edu/~gabi/rem.

html). Lateral variations in density along the Moho cannot be properly accounted for in regions where

information coverage is sparse and readily accessible models are not available, like in the South Amer-

ican and African continents. For the purposes of this study, we will assume that all other crustal sources

and lateral variations in density are negligible.

5.2 Inversion results

Bla bla bla.

http://dx.doi.org/10.7289/V5C8276M
http://igppweb.ucsd.edu/~gabi/rem.html
http://igppweb.ucsd.edu/~gabi/rem.html


12

(a)

75)W 60)W 45)W

50)S

35)S

20)S

5)S

10)N

CRUST1.0 Moho depth (km) (b)

75)W 60)W 45)W

Synthetic gravity anomaly (mGal) (c)

75)W 60)W 45)W

Synthetic seismic data (km)

16 24 32 40 48 56 64 −300 −150 0 150 300 10 20 30 40 50 60 70

Figure 6. Synthetic data of a model derived from CRUST1.0. The model is made of tesseroids with an constant

density-contrast of ∆ρ = 350 kg/m3 and assuming a reference level of zref = 30 km. (a) The Moho depth

of the model in kilometers. Each pixel in the pseudo-color image corresponds to a tesseroid of the model. (b)

Noise-corrupted synthetic gravity data generated from the model. (c) Synthetic seismic data simulating point

estimates of Moho depth. The point estimates were obtained by interpolating the Moho depth in (a).

6 CONCLUSIONS

Meh.
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Figure 7. Inversion results from the CRUST1.0 synthetic data. (a) The estimated Moho depth. (b) The inversion

residuals (observed minus predicted data). (c) Histogram of the residuals shown in (b). (d) Cross-validation

curve used to determine the regularization parameter (Eq. 11). The minimum Mean Square Error (Eq. 19) is

found at µ = 0.0001 (red triangle). (e) difference between the CRUST1.0 model depths (Fig. 6a) and the

estimated depths. (f) Difference between the synthetic seismic observations (Fig. 6c) and the estimated depths.

(g) Histogram of the differences shown in (f). (h) Cross-validation results used to determine the reference level

(zref ) and the density-contrast (∆ρ). The colored contours represent the Mean Square Error (Eq. 20) in km2.

The minimum (red triangle) is found at zref = 30 km and ∆ρ = 350 kg/m3.
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Figure 10. Inversion results for the South American Moho. (a) The estimated Moho depth of South America.
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Figure 11. Residuals for the South American Moho inversion. The residuals are the observed data in Fig. 9a

minus the data predicted by the estimate in Fig. 10a. Shown as (a) a map and (b) a histogram with the calculated

mean and standard deviation. (c) The value of the goal function (Eq. 11) per Gauss-Newton iteration showing

the convergence of the algorithm. Note that the y-axis is in logarithmic scale.
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Figure 12. Cross-validation results for the South American Moho inversion. (a) Cross-validation to determine

the regularization parameter µ (Eq. 11). The minimum Mean Square Error (Eq. 19), shown as a red triangle,

corresponds to µ = 10−10. (b) Cross-validation to determine the reference level (zref ) and the density-contrast

(∆ρ). The colored contours represent the Mean Square Error (Eq. 20). The minimum (red triangle) is found at

zref = 35 km and ∆ρ = 400 kg/m3.
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