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SUMMARY
Estimating the relief of the Moho from gravity data is a computationally intensive non-linear
inverse problem. What is more, the modeling must take the Earths curvature into account when
the study area is of regional scale or greater. We present a regularized non-linear gravity inver-
sion method that has a low computational footprint and employs a spherical Earth approxima-
tion. To achieve this, we combine the highly efficient Bott’s method with smoothness regular-
ization and a discretization of the anomalous Moho into tesseroids (spherical prisms). The com-
putational efficiency of our method is attained by harnessing the fact that all matrices involved
are sparse. The inversion results are controlled by three hyper-parameters: the regularization
parameter, the anomalous Moho density-contrast, and the reference Moho depth. We estimate
the regularization parameter using the method of hold-out cross-validation. Additionally, we
estimate the density-contrast and the reference depth using knowledge of the Moho depth at
certain points. We apply the proposed method to estimate the Moho depth for the South Amer-
ican continent using satellite gravity data and seismological data. The final Moho model is
in accordance with previous gravity-derived models and seismological data. The misfit to the
gravity and seismological data is worse in the Andes and best in oceanic areas, central Brazil
and Patagonia, and along the Atlantic coast. Similarly to previous results, the model suggests a
thinner crust of 30-35 km under the Andean foreland basins. Discrepancies with the seismolog-
ical data are greatest in the Guiana shield, the central Solimões and Amazon basins, the Paraná
basin, and the Borborema province. These differences suggest the existence of crustal or mantle
density anomalies that were unaccounted for during gravity data processing.
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1 INTRODUCTION

The Mohorovičić discontinuity (or Moho) that marks the transition
from the crust to the mantle, is studied almost exclusively through
indirect geophysical methods. The two main methods used to es-
timate the depth of the Moho are seismology, with both natural
and controlled sources, and gravimetry. With the advent of satel-
lite gravimetry missions like GRACE and GOCE, gravity derived
crustal models can be produced in regional or global scales (e.g.
Reguzzoni et al. 2013; van der Meijde et al. 2013, 2015). New
spherical harmonic gravity models that use these satellite observa-
tion, like GOCO5S (Mayer-Guerr et al. 2015), provide almost ho-
mogeneous data coverage in difficult to access regions traditionally
poor in terrestrial data. An example is South America, where seis-
mologic and terrestrial gravity data are traditionally concentrated
around large urban centers and coastal areas.

Estimating Moho depth from gravity data is a non-linear in-
verse problem. One can generalize this problem to estimating the
relief of an interface, such as the basement of a sedimentary basin
or the relief of the anomalous Moho. Several methods have been
developed over the years to solve this inverse problem, for example

Bott (1960); Barbosa et al. (1999a,b); Barnes & Barraud (2012);
Leão et al. (1996); Martins et al. (2010, 2011); Oldenburg (1974);
Reguzzoni et al. (2013); Santos et al. (2015); Silva et al. (2006,
2014), to name a few. Solving the inverse problem is computation-
ally demanding because it requires the construction of large dense
matrices and the solution of large linear systems. As a result, some
authors search for ways to increase the computational efficiency of
this class of inverse problem. Bott (1960) proposed a method based
on iteratively applying corrections to a starting estimate based on
the inversion residuals. The algorithm is fast because it bypasses the
construction and solution of linear systems and only involves for-
ward modeling. Oldenburg (1974) showed that the fast FFT-based
forward modeling of Parker (1973) could be rearranged to estimate
the relief. Barnes & Barraud (2012) use a form of adaptive dis-
cretization to compute the Jacobian, or sensitivity, matrix. For each
data point, the discretization will be progressively coarser the fur-
ther way from the point. This reduces the matrix and, consequently,
the linear systems to a sparse form that can be solved efficiently.
Recently, Silva et al. (2014) extended and generalized the original
method of Bott (1960) and Santos et al. (2015) used this extension
to estimate a basement relief with sharp boundaries.

Most non-linear gravity inversion methods discretize the re-
lief of the interface into juxtaposed right-rectangular prisms with
a known density contrast. The inverse problem is then to estimate
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the thickness of each prism from the gravity data. The use of rect-
angular prisms implies a planar Earth approximation and may not
be adequate for continental and global scale studies. In such cases,
a spherical Earth approximation is preferred. Wieczorek & Phillips
(1998) developed a spherical harmonic equivalent of the Parker-
Oldenburg FFT algorithm and applied it to estimate the crustal
structure of the Moon. Reguzzoni et al. (2013) use a spherical ap-
proximation to estimate the global Moho relief from GOCE satel-
lite gravity data. Conversely, one could adapt one of the methods
developed for right-rectangular prisms to use tesseroids (spherical
prisms) instead. One of the difficulties of this approach is that the
forward problem for a tesseroid must be solved numerically. Two
alternatives proposed in the literature to the numerical solution are
Taylor series expansion (Heck & Seitz 2007; Grombein et al. 2013)
and the Gauss-Legendre Quadrature (Asgharzadeh et al. 2007).
Numerical experiments by Wild-Pfeiffer (2008) suggest that the
Gauss-Legendre Quadrature (GLQ) offers superior results. How-
ever, the GLQ suffers from numerical instability when the com-
putation point is close to the tesseroid (Asgharzadeh et al. 2007).
To overcome the numerical instability, Li et al. (2011) proposed an
adaptive discretization algorithm which was later improved upon
by Uieda et al. (2016).

In any gravity inversion for the relief of an interface, two
hyper-parameters control the inversion results: the density-contrast
between the two mediums and the reference level around which
the interface undulates. The reference level is the depth of the Nor-
mal Earth Moho in the case of the anomalous Moho. For regu-
larized inversions, an additional hyper-parameter is the regulariza-
tion parameter that balances data-misfit and regularization. The two
most commonly used methods for estimating the regularization pa-
rameter are the L-curve criterion and Generalized Cross Validation
(GCV). Farquharson & Oldenburg (2004) provide for a thorough
comparison of both methods. Estimating the density-contrast in a
sedimentary basin context has been tackled by Silva et al. (2006)
and Martins et al. (2010) when the basement depth is known at a
few points. To the authors knowledge no attempt has been made to
estimate the reference level.

We present a non-linear gravity inversion to estimate the Moho
depth in a spherical Earth approximation. Our method is based on
the Silva et al. (2014) Gauss-Newton formulation of the method of
Bott (1960). We use tesseroids to discretize the anomalous Moho
and the adaptive discretization algorithm of Uieda et al. (2016) for
the forward modeling. The stability of the inversion is achieved
through smoothness regularization. In order to maintain the com-
putational efficiency of Bott’s method, we exploit the sparse na-
ture of all matrices involved in the computations. We employ a
variant of GCV known as hold-out cross-validation (Kim 2009)
to estimate the regularization parameter. Additionally, we estimate
the density-contrast and reference level simultaneously in a sec-
ond cross-validation. Similarly to Silva et al. (2006) and Martins
et al. (2010), this cross-validation procedure uses knowledge of
the Moho depth at certain points. Finally, we apply the proposed
method to estimate the Moho depth for South America using grav-
ity data from the GOCO5S model (Mayer-Guerr et al. 2015) and
the seismological data of Assumpção et al. (2013).

2 METHODOLOGY

In potential field methods, we must isolate the target anomalous
density distribution prior to modeling and inversion. In our case,
the target is the relief of the real Moho undulating around a refer-

ence Moho. We do this by removing all other effects from the grav-
ity observations. The first correction is to remove the scalar gravity
of an ellipsoidal reference Earth (the Normal Earth), hereafter de-
noted as γ. This effect is calculated on the same point P where the
gravity observation was made (Fig 1a-b). γ(P ) is calculated using
the closed-form solution presented by Li & Götze (2001). The dif-
ference between the observed gravity at point P (g(P )) and Normal
gravity at the same point is known as the gravity disturbance,

δ(P ) = g(P )− γ(P ). (1)

The disturbance contains only the gravitational effects of den-
sity distributions that are anomalous with respect to the Normal
Earth (see Fig. 1c). This includes all masses above the surface of
the ellipsoid (the topography), the mass deficiency of the oceans,
the mass deficiency of sedimentary basins, crustal sources (e.g., ig-
neous intrusions, lateral density changes, etc), heterogeneities be-
low the upper mantle, and the effect of the difference between the
real Moho topography and the Moho of the Normal Earth.

In order to invert for the anomalous Moho relief, we must
first isolate its gravitational attraction. Thus, all other effects must
be either removed or assumed negligible. Here, we will remove
the effect of the topography and oceans in order to obtain the full
Bouguer disturbance (Fig 1d),

δbg(P ) = δ(P )− gtopo(P ). (2)

We will remove the effect of sedimentary basins but assume that the
effects of other crustal and mantle sources are negligible. Thus, the
only effect left will be that of the anomalous Moho relief (Fig 1e).
The gravitational attraction of the topography, oceans, and basins
are calculated in a spherical Earth approximation by forward mod-
eling using tesseroids (Fig. 2). The tesseroid effects are calculated
numerically using Gauss-Legendre Quadrature (GLQ) integration
(Asgharzadeh et al. 2007). The accuracy of the GLQ integration
is improved by the adaptive discretization scheme of Uieda et al.
(2016).

2.1 Parametrization

We parameterize the forward problem by discretizing the anoma-
lous Moho into a grid of Mlon ×Mlat = M juxtaposed tesseroids
(Fig 1f). The true (real Earth) Moho varies in depth with respect to
the Moho of the Normal Earth. Hereafter we will refer to the depth
of the Normal Earth Moho as zref (see Fig. 1b). In cases where the
true Moho is above zref , the top of the kth tesseroid is the Moho
depth zk, the bottom is zref , and the density-contrast (∆ρ) is pos-
itive (red tesseroids in Fig 1f). If the Moho is below zref , the top
of the tesseroid is zref , the bottom is zk, and ∆ρ is negative (grey
tesseroids in Fig 1f).

Considering that the absolute value of the density-contrasts of
the tesseroids is a fixed parameter, the predicted gravity anomaly
of the Moho is a non-linear function of the parameters zk, k =
1, . . . ,M ,

di = fi(p), (3)

in which di is the ith element of the N -dimensional predicted data
vector d, p is the M -dimensional parameter vector containing the
M Moho depths (zk), and fi is the ith non-linear function that maps
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Figure 1. Sketch of the stages in gravity data correction and the discretiza-
tion of the anomalous Moho relief using tesseroids. (a) The Earth and the
measured gravity at point P (g(P )). (b) The Normal Earth and the calcu-
lated normal gravity at point P (γ(P )). zref is the depth of the Normal
Earth Moho. (c) The gravity disturbance (δ(P )) and the corresponding den-
sity anomalies after removal of the normal gravity: topography, oceans,
crustal heterogeneities, and the anomalous Moho. (d) The Bouguer dis-
turbance (δbg(P )) after topographic correction and the remaining density
anomalies. (e) All density anomalies save the anomalous Moho are assumed
to have been removed before inversion. (f) The discretization of the anoma-
lous Moho in tesseroids. Grey tesseroids will have a negative density con-
trast while red tesseroids will have a positive one.

the parameters onto the data. The functions fi are the radial com-
ponent of the gravitational attraction of the tesseroid Moho model.

2.2 Inverse problem

We wish to estimate the parameter vector p from a set of observed
gravity anomaly data do. The least-squares estimate is the one that
minimizes the data-misfit function

Figure 2. Sketch of a tesseroid (spherical prism) in a geocentric coordinate
system (X, Y, Z). Observations are made at point P with respect to it’s local
North-oriented coordinate system (x, y, z). After Uieda (2015).

φ(p) = [do − d(p)]T [do − d(p)]. (4)

Function φ(p) is non-linear with respect to p. Thus, we can
determine its minimum using gradient-based iterative optimization
methods like Gauss-Newton or Steepest Descent. Such methods
start from an initial estimate p0 and iteratively update the estimate
until a minimum is reached.

For the Gauss-Newton method, the update at the kth iteration,
∆p = pk+1 − pk, is the solution of the linear system

Hk∆p = −∇φk, (5)

in which∇φk and Hk are, respectively, the gradient vector and the
Hessian matrix of φ(p).

The Steepest Descent method uses only the gradient direction
to update the initial estimate (Kelley 1987). The update at the kth
iteration is achieved by equating the Hessian in Eq. 5 to the identity
matrix,

∆p = −∇φk. (6)

Thus, it does not require the computation and storage of the Hessian
matrix nor the solution of linear systems. However, the Steepest
Descent method has poor convergence when the current solution is
close to the minimum of the goal function (Kelley 1987).

The gradient vector and the Gauss-Newton approximation of
the Hessian matrix of φ(p) are, respectively,

∇φk = −2AT [do − d(pk)], (7)

and

Hk ≈ 2ATA, (8)

in which A is the Jacobian or sensitivity matrix,

Aij =
∂fi
∂pj

(pk). (9)

2.3 Regularization

Non-linear inversions for the relief of an interface (like the Moho)
are ill-posed and require additional constraints in the form of
regularization (?). A common approach is to use the first-order
Tikhonov regularization to impose smoothness on the solution. The
cost function for smoothness regularization is given by

θ(p) = pTRTRp, (10)

where R is an L ×M finite-difference matrix representing the L
first-order differences between adjacent tesseroids.

The solution p̂ to the regularized inverse problem is the one
that minimizes the goal function

Γ(p) = φ(p) + µθ(p), (11)

in which µ is the regularization parameter that controls the balance
between fitting the observed data and obeying the smoothness con-
straint.

The goal function Γ(p) is also non-linear with respect to p
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and can be minimized using the Gauss-Newton or Steepest Descent
methods. The gradient vector and Hessian matrix of the goal func-
tion are, respectively,

∇Γk = −2AT [do − d(pk)] + 2µRTRpk, (12)

and

Hk = 2ATA + 2µRTR. (13)

The parameter updates for the regularized Gauss-Newton and
Steepest Descent methods, respectively, then become

[
ATA + µRTR

]
∆p = AT [do − d(pk)]− µRTRpk, (14)

and

∆p = AT [do − d(pk)]− µRTRpk, (15)

Producing the regularized solution using the above equations
is computationally costly because of two main factors: (1) the eval-
uation and storage of the dense N ×M Jacobian matrix A and (2)
the solution of the resulting M ×M equation system (not required
for Steepest Descent). In practice, the derivatives in the Jacobian
(Eq. 9) are often calculated through a first-order finite-difference
approximation. Thus, evaluating A requires 2 ×M × N forward
modeling operations for each iteration of the gradient descent algo-
rithm. These computations are performed for each iteration of the
optimization.

2.4 Bott’s method

Bott (1960) developed an efficient method to determined the base-
ment relief of a sedimentary basin from gravity observations. The
method requires data on a regular grid of Nx ×Ny = N observa-
tions. The basement relief is then discretized into an equal grid of
Mx ×My = M elements with Mx = Nx and My = Ny . Bott’s
iterative method starts with an initial estimate of the basement re-
lief p0 equal to the null vector and updates the estimate using the
formula

∆p =
do − d(pk)

2πG∆ρ
, (16)

in whichG is the gravitational constant and ∆ρ is the basin density
contrast. The iterative process stops when the inversion residuals
r = do − d(pk) fall below the assumed noise level of the data.

Silva et al. (2014) showed that Bott’s method can be formu-
lated as a special case of the Gauss-Newton method (Eq. 5) by set-
ting the Jacobian matrix (Eq. 9) to

A = 2πG∆ρI, (17)

in which I is the identity matrix. In this framework, Bott’s method
uses a Bouguer plate approximation of the gravitational effect of
the relief, di = 2πG∆ρzi. The derivative of di with respect to the
parameter zi is 2πG∆ρ, thus linearizing the Jacobian matrix. How-
ever, the non-linearity of the predicted data d(pk) is preserved.

We propose that Bott’s method can also be formulated as a
special case of the Steepest Descent method (Eq. 6) by setting the
Jacobian matrix to

A =
1

4πG∆ρ
I. (18)

In practice, both formulations lead to Eq. 16. One of the advan-
tages of Bott’s method over the traditional Gauss-Newton or Steep-
est Descent is eliminating the computation and storage of the dense
Jacobian matrix A. Furthermore, Bott’s method also does not re-
quire the solution of equation systems. However, a disadvantage of
Bott’s method is that it suffers from instability (Silva et al. 2014).
A common approach to counter this issue is to apply a smoothing
filter after the inversion to the unstable estimate, as in Silva et al.
(2014).

2.5 Regularized Bott’s method in spherical coordinates

We propose a regularized version of Bott’s method to invert for
the relief of the anomalous Moho in spherical coordinates. To
adapt Bott’s method to spherical coordinates, we replace the right-
rectangular prisms in the forward modeling (d(pk) in Eq. 16) with
tesseroids. The tesseroid forward modeling uses the adaptive dis-
cretization algorithm of Uieda et al. (2016) to achieve accurate re-
sults. Furthermore, our formulation maintains the regularized so-
lution for the Gauss-Newton method (Eq. 14) but replaces the full
Jacobian matrix with the Bouguer plate approximation (Eq. 17).
This linearizes the Jacobian matrix and reduces it to a sparse diag-
onal matrix, thus eliminating the cost of computing and storing A.
Matrix arithmetic operations can be performed efficiently by taking
advantage of the sparse nature of matrices A and R (respectively,
Eq. 17 and 10). The same is true for solving the equation system
in the Gauss-Newton method (Eq. 14). However, the computational
cost of forward modeling is still present. Particularly, forward mod-
eling using tesseroids is more computationally intensive than using
right-rectangular prisms because of the numerical integration and
adaptive discretization (Uieda et al. 2016). Our benchmarks sug-
gest that sparse matrix multiplications and solving the sparse linear
system in Eq. 14 account for less than 0.1% of the computation
time of a single inversion (see section 3.1 and Table 1). Hence, by
employing the use of sparse matrices, our formulation retains the
efficiency of Bott’s method while stabilizing the solution through
the well established formalism of Tikhonov regularization.

2.6 Estimating the regularization parameter

The regularization parameter µ controls how much smoothness is
applied to the inversion result. An optimal value of µ will stabi-
lize and smooth the solution while not compromising the fit to the
observed data. Two widely used methods to estimate an optimal µ
are the L-curve criterion and cross-validation (Hansen 1992). Here,
we will adopt the hold-out method of cross-validation (Kim 2009).
The hold-out method consists of splitting the observed data set into
two independent parts: a training set doinv and a testing set dotest.
The training set is used in the inversion while the testing set is kept
back and used to judge the quality of the chosen value of µ. For a
value of the regularization parameter µk, the training set is inverted
using µk to obtain an estimate p̂k. This estimate is used to calcu-
late predicted data on the same points as the testing set via forward
modeling (dktest = f(p̂k)). The metric chosen to evaluate µk is the
mean square error (MSE) of the misfit between the observed and
predicted testing data sets,
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Figure 3. Sketch of a data grid separated into the training (white dots with
black outlines) and testing (black dots) data sets. The training data set is still
displayed on a regular grid but with twice the grid spacing of the original
data grid.

MSEk =
‖dotest − dktest‖2

Ntest
, (19)

in which Ntest is the number of data in the testing set. The optimal
value of µ will be the one that minimizes the MSE, i.e. the one that
best predicts the testing data. We emphasize that the inversion is
performed only on the training data set.

The algorithm for the hold-out cross-validation is summarized
as follows:

(i) Divide the observed data into the training (doinv) and testing
(dotest) sets.

(ii) For each µk ∈ [µ1, µ2, . . . , µNµ ]:

(a) Estimate p̂k by inverting the training set doinv .
(b) Use p̂k to calculate the predicted testing set dktest.
(c) Calculate the mean square error MSEk using Eq. 19.

(iii) The final solution is the p̂k corresponding to the smallest
MSEk.

The separation of the training and testing data sets is com-
monly done by taking random samples from the full data set. How-
ever, we cannot perform the separation in this way because Bott’s
method requires data on a regular grid as well as having model ele-
ments directly below each data point. Thus, we take as our training
set the points from the observed data grid that fall on a similar grid
but with twice the grid spacing (white dots with black outlines in
Fig. 3). All other points from the original data grid make up the
testing data set (black dots in Fig. 3). This separation will lead to a
testing data set with more points than the training data set. A way
to balance this loss of data in the inversion is to generate a data grid
with half of the desired grid spacing, either through interpolation
or from a spherical harmonic model.

2.7 Estimating zref and ∆ρ

The depth of the Normal Earth Moho (zref ) and the density-
contrast of the anomalous Moho (∆ρ) are other hyper-parameters
of the inversion. That is, their value influences the final solution but
they are not estimated during the inversion. Both hyper-parameters

cannot be determined from the gravity data alone. Estimating zref
and ∆ρ requires information that is independent of the gravity data,
such as knowledge of the parameters at certain points. This infor-
mation can be used in a manner similar to the cross-validation de-
scribed in the previous section. In this study, we use point estimates
of the Moho depth to determine the optimal values of zref and ∆ρ.
These points will generally come from seismologic studies, like re-
ceiver functions, surface wave dispersion, and deep refraction ex-
periments.

Let zos be a vector of Ns known Moho depths. We use the
mean square error (MSE) as a measure of how well a given inver-
sion output p̂k fits the know depths. The optimal values of zref and
∆ρ are the ones that best fit the independent known Moho depths
(i.e., produce the smallest MSE). However, the points do not nec-
essarily coincide with the model elements of the inversion. Before
computing the MSE, we interpolate p̂k on the known points to ob-
tain the predicted depths zks . The MSE is defined as

MSE =
‖zos − zks‖2

Ns
. (20)

The algorithm for estimating zref and ∆ρ is:

(i) For every combination of zref,l ∈
[zref,1, zref,2, . . . , zref,Nz ] and ∆ρm ∈ [∆ρ1,∆ρ2, . . . ,∆ρNρ ]:

(a) Perform the inversion on the training data set doinv using
zref,l, ∆ρm, and the previously estimated value of µ. The in-
version output is the vector p̂l,m.

(b) Interpolate p̂l,m on the known points to obtain the predicted
depths zl,ms .

(c) Calculate the MSE between zos and zl,ms using Eq. 20.

(ii) The final solution is the p̂l,m corresponding to the smallest
MSE.

A similar approach was used by Silva et al. (2006) and Mar-
tins et al. (2010) to estimate the parameters defining the density-
contrast variation with depth of a sedimentary basin. van der Mei-
jde et al. (2013) also had a similar methodology for dealing with
the hyper-parameters, though in a less formalized way.

2.8 Software implementation

The inversion method proposed here is implemented in the Python
programming language. The software is freely available under the
terms of the BSD 3-clause open-source software license. Our im-
plementation relies on the open-source libraries scipy and numpy
(Jones et al. 2001, http://scipy.org) for array-based com-
putations, matplotlib (Hunter 2007, http://matplotlib.org)
and seaborn (Waskom et al. 2015, http://stanford.edu/

~mwaskom/software/seaborn) for plots and maps, and Fatiando
a Terra (Uieda et al. 2013, http://www.fatiando.org) for
geophysics specific tasks, particularly for forward modeling us-
ing tesseroids. We use the scipy.sparse package for sparse matrix
arithmetic and linear algebra. The sparse linear system in Eq. 14
is solved using the conjugate gradient method implemented in
scipy.sparse.

The computational experiments (e.g., data processing, syn-
thetic tests, real data application) were performed in Jupyter (for-
merly IPython) notebooks (Pérez & Granger 2007, http://

jupyter.org/). The notebook files combine the source code used
to run the experiments, the results and figures generated by the
code, and rich text to explain and document the analysis.

http://scipy.org
http://matplotlib.org
http://stanford.edu/~mwaskom/software/seaborn
http://stanford.edu/~mwaskom/software/seaborn
http://www.fatiando.org
http://jupyter.org/
http://jupyter.org/
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Figure 4. A simple Moho model made of tesseroids for synthetic data ap-
plication. (a) The Moho depth of the model in kilometers. The model tran-
sitions from a deep Moho in the right to a shallow Moho in left, simulating
the transition between a continental and an oceanic Moho. Each pixel in
the pseudo-color image corresponds to a tesseroid of the model. (b) Noise-
corrupted synthetic gravity data generated from the model shown in (a).

All source code, Jupyter notebooks, data, and results
can be found at the online repository https://github.com/

pinga-lab/paper-moho-inversion-tesseroids. The repos-
itory also contains instructions for replicating all results presented
here. An archived version of this repository is also available at
http://dx.doi.org/... (Note to reviewers: the archived ver-
sion will be uploaded upon publication).

3 APPLICATION TO SYNTHETIC DATA

We test and illustrate the proposed inversion method by applying
it to two noise-corrupted synthetic data sets. The first data set is
generated by a simple Moho model simulating the transition from
a thicker continental crust to a thinner oceanic crust. This appli-
cation uses cross-validation to estimate the regularizing parame-
ter (µ) while assuming that the anomalous Moho density-contrast
(∆ρ) and the Normal Earth Moho depth (zref ) are known quanti-
ties. This first test is simplified in order to investigate solely the ef-
ficiency of the inversion and the cross-validation procedure to esti-
mate µ. The second data set is generated by a more complex model
derived from the South American portion of the global CRUST1.0
model (Laske et al. 2013). This application uses cross-validation to
estimate all three hyper-parameters: µ, ∆ρ, and zref . The model
and corresponding synthetic data are meant to simulate with more
fidelity the real data application.

3.1 Simple model

We simulate the transition from a continental-type Moho to an
oceanic-type Moho using a model composed of Mlat ×Mlon =
40 × 50 grid of juxtaposed tesseroids (a total of M = 2000
model elements). The anomalous Moho density-contrast is ∆ρ =
400 kg/m3 and the Normal Earth Moho depth is zref = 30 km.
Fig. 4a shows the model Moho depths, where each pixel in the
pseudo-color image corresponds to a tesseroid of the model.

The synthetic data were forward modeled on a regular grid of
Nlat × Nlon = 79 × 99 points (a total of N = 7821 observa-
tions) at a constant height of 50 km. The data were contaminated
with pseudo-random noise sampled from a normal distribution with
zero mean and 5 mGal standard deviation. Fig. 4b shows the noise-
corrupted full synthetic data set. The data grid spacing is half the
grid spacing of the tesseroid model so that, when separating the
training and testing data sets (Fig. 3), the training data set points
will fall directly above each model element.

We separated the synthetic data into training and testing data
sets following Fig. 3. The training data set is a regular grid of
Nlat×Nlon = 40×50 points (a total ofNtrain = 2000). The test-
ing data set is composed of Ntest = 5821 observations. We used
cross-validation to estimate an optimal regularization parameter (µ)
from a set ofNµ = 16 values equally spaced on a logarithmic scale
between 10−6 and 10−1. We ran our regularized inversion on the
training data set for each value of µ, obtaining 16 Moho depth es-
timates. For all inversions, the initial Moho depth estimate used to
start the Gauss-Newton optimization was set to 60 km depth for
all inversion parameters. Furthermore, zref and ∆ρ are set to their
respective true values. Finally, we computed the mean square error
(MSE, Eq. 19) for each estimate and chose as the final estimated
Moho model the one that minimizes the MSE.

Fig. 5 summarizes the inversion results. Fig. 5a shows the final
estimated Moho depth after cross-validation. The recovered model
is smooth, indicating that the cross-validation procedure was ef-
fective in estimating an optimal regularization parameter. Fig. 5b
shows difference between the true Moho depth (Fig. 4a) and the es-
timated Moho depth. The differences appear to be semi-randomly
distributed with a maximum coinciding with a short-wavelength
feature in the true model. The maximum and minimum differences
are approximately 2.19 and -2.13 km, respectively. Fig. 5c shows
inversion residuals (difference between the observed and predicted
data), in mGal. The largest residual (in absolute value) coincides
with the largest difference between the true model and the esti-
mate. The inversion residuals are normally distributed, as shown
in Fig. 5d, with 0.02 mGal mean and a standard deviation of 3.63
mGal. The cross-validation curve in Fig. 5e shows a clear mini-
mum MSE at µ = 0.00046 (indicated by the red triangle). Fig. 5f
shows the convergence of the Gauss-Newton optimization in eight
iterations.

We also investigated the computation time spent in each sec-
tion of the inversion process using a source code profiler. The pro-
filer measures how much time is spent inside each function during
the execution of a program. We ran the profiler on a single inver-
sion of the training data set using the estimated regularization pa-
rameter. We tracked the total time spent inside each of the three
functions that represent the largest computational bottlenecks of
the inversion: solving the linear system in Eq. 14 using the conju-
gate gradient method, performing the dot products required to com-
pute the Hessian matrix (Eq. 13) and the gradient vector (Eq. 12),
and forward modeling to calculate the predicted data (Eq. 3). The
profiling results presented in Table 1 show that the time spent on

https://github.com/pinga-lab/paper-moho-inversion-tesseroids
https://github.com/pinga-lab/paper-moho-inversion-tesseroids
http://dx.doi.org/...
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Figure 5. Results from the inversion of the simple synthetic data. (a) The estimated Moho depth. (b) The difference between the true model depths and the
estimated depths. (c) The inversion residuals (observed data minus the data predicted by the estimate). (d) Histogram of the residuals. Also shown are the
calculated mean and standard deviation (std) of the residuals. Note that the data were contaminated with normally distributed pseudo-random noise with zero
mean and 5 mGal standard deviation. (e) Cross-validation curve used to determine the optimal regularization parameter (Eq. 11). Both axis are in logarithmic
scale. The minimum Mean Square Error (Eq. 19) is found at µ = 0.00046 (red triangle). (f) Goal function value (Eq. 11) per Gauss-Newton iteration showing
the convergence of the gradient descent. The y-axis is in logarithmic scale.

Table 1. Total time spent on each function during a single inversion of
simple synthetic data. The inversion was performed on a laptop computer
with a Intel(R) Core(TM) i7-3612QM CPU @ 2.10GHz processor. The total
time for the inversion was 42.133 seconds.

Function description Time Percentage of total time

Sparse conjugate gradient 0.021 s 0.050%
Sparse dot product 0.007 s 0.017%
Tesseroid forward modeling 42.059 s 99.824%

forward modeling accounts for approximately 99.8% of the total
computation time.

3.2 Model based on CRUST1.0

In this test, we simulate the anomalous Moho of South Amer-
ica using Moho depth information extracted from the CRUST1.0
model (Laske et al. 2013). We construct a tesseroid model with
Mlat × Mlon = 80 × 60 juxtaposed elements, 4800 in total,
using the Moho depths shown in Fig. 6a. In our model, the Nor-
mal Earth Moho is zref = 30 km and the density-contrast is
∆ρ = 350 kg/m3. We produce the synthetic data at a constant
height of 50 km and on a regular grid ofNlat×Nlon = 159×119
points (a total of 18921 observations). We contaminate the syn-
thetic data with normally distributed pseudo-random noise with
zero mean and 5 mGal standard deviation (Fig. 6b).

The cross-validation procedure to determine ∆ρ and zref
requires knowledge of the Moho depth at certain points (zos in
Eq. 20), usually from seismic experiments. Thus, we must also
generate synthetic seismic data about the Moho depth. We produce

such data by interpolating the Moho depth shown in Fig. 6a on the
same geographic coordinates as the 937 points from the Assumpção
et al. (2013) data set. The resulting synthetic seismic data is shown
in Fig. 6c.

We perform the cross-validation procedures in two parts. First,
we run the cross-validation to estimate an optimal regularization
parameter (µ). The starting estimate for all inversions is 60 km
depth for all model parameters. For this cross-validation, we keep
zref and ∆ρ fixed to 20 km and 500 kg/m3, respectively. Our
investigations suggest that the outcome of this round of cross-
validation does not depend on the particular values of zref and ∆ρ
used. Second, we use the estimated µ to run the cross-validation
to estimate zref and ∆ρ, thus obtaining the final estimated Moho
depths. Fig. 7 summarizes the results from both cross-validation
runs and the final inversion results.

For the first cross-validation, we separate the synthetic data
(Fig. 3) into a training set with twice the grid spacing of the original
data (Nlat ×Nlon = 80× 60) and a testing set with 14,121 obser-
vations. We run the inversion for 16 different values of µ equally
spaced in a logarithmic scale between 10−7 and 10−2. For each of
the 16 estimates we compute the MSE (Eq. 19), shown in Fig. 7a as
function of µ. The optimal regularization parameter that minimizes
the MSE is µ = 10−4 (indicated by the red triangle).

In the second cross-validation, we use the estimated value of µ
in all inversions. We test seven values of zref from 20 to 35 km with
2.5 km intervals and seven values of ∆ρ from 200 to 500 kg/m3

with 50 kg/m3 intervals. We run the inversion for every combina-
tion of zref and ∆ρ, totaling 49 inversions. Finally, we calculate
the Mean Square Error (Eq. 20) for each of the 49 estimates and
choose the values of zref and ∆ρ that minimize the MSE. Fig. 7b
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Figure 6. Synthetic data of a model derived from CRUST1.0. The model is made of tesseroids with an constant density-contrast of ∆ρ = 350 kg/m3 and
assuming a reference level of zref = 30 km. (a) The Moho depth of the model in kilometers. Each pixel in the pseudo-color image corresponds to a tesseroid
of the model. (b) Noise-corrupted synthetic gravity data generated from the model. (c) Synthetic seismic data simulating point estimates of Moho depth. The
point estimates were obtained by interpolating the Moho depth in (a).

shows a colored-contour map of the MSE with a minimum (marked
by the red triangle) at zref = 30 km and ∆ρ = 350 kg/m3.

Fig. 7c shows the final solution after both cross-validation pro-
cedures. The recovered model is smooth, indicating that the cross-
validation procedure was effective in estimating an optimal regu-
larization parameter. Fig. 7d shows the difference between the true
Moho depths (Fig. 6a) and the estimated depths. The maximum
and minimum differences are, respectively, 9.8 and -8.2 km. The
largest absolute differences are located along the central and north-
ern Andes, where there is a sharp increase in the true Moho depth
(Fig. 6a). Positive differences (indicating a too shallow estimate)
appear along the central portion of the Andes, flanked by regions
of negative differences (indicating a too deep estimate) on the conti-
nental and Pacific sides. Figs. 7e and g show the inversion residuals
(difference between the observed and predicted data). The inversion
residuals appear normally distributed, with 0.03 mGal mean and a
standard deviation of 4.10 mGal. The residuals follow a similar,
though reversed, pattern to the differences shown in Fig. 7d. The
largest residuals (in absolute value) are along the Andes, with the
central portion being dominated by negative residuals and flanked
by positive residuals on both sides. Figs. 7f and h show the differ-
ences between the synthetic seismic data (Fig. 6c) and the estimated
Moho depths. Once more, the largest differences are concentrated
along the Andes, particularly in the central Andes and near Ecuador
and Colombia. The differences are smaller along the Atlantic coast
of South America, with notable larger differences in a few points
of northeastern Brazil and along the Amazon river. In general, large
residuals are associated with sharp increases in Moho depth.

4 APPLICATION TO THE SOUTH AMERICAN MOHO

We apply the inversion method proposed here to invert for the
Moho depth of the South American continent. We follow the ap-
plication of van der Meijde et al. (2013) but with some differences,
mainly using a different data set and performing all modeling in
spherical coordinates using tesseroids. The data are corrected of
the effects of topography and sedimentary basins. Crust and mantle
heterogeneities cannot be properly accounted for in regions where
information coverage is sparse and readily accessible models are
not available, like in South America and Africa. Hence, for the pur-
poses of this study, we will assume to be negligible all other crustal
and mantle sources, including lateral variations in density along the
Moho.

4.1 Gravity and seismic data

The raw gravity data are generated from the satellite only spher-
ical harmonic model GOCO5S Mayer-Guerr et al. (2015). The
GOCO5S model combines data from 15 satellites, including the
complete mission data from the GOCE satellite. The data were
downloaded from the International Centre for Global Earth Mod-
els (ICGEM) web-service (Barthelmes & Köhler 2012, http:

//icgem.gfz-potsdam.de/ICGEM/)) in the form of the com-
plete gravity field on a regular grid with 0.2◦ grid spacing at el-
lipsoidal height 50 km. We calculate the gravity disturbance (δ(P )
in Eq. 1) by subtracting from the raw data the normal gravity of
the WGS84 reference ellipsoid (γ(P )) using the formula of Li &
Götze (2001). Fig. 8a show the calculated gravity disturbance of
South America.

We remove the gravitational effect of the topography from
the gravity disturbance by modeling the ETOPO1 digital terrain
model (Amante & Eakins 2009, http://dx.doi.org/10.7289/

http://icgem.gfz-potsdam.de/ICGEM/
http://icgem.gfz-potsdam.de/ICGEM/
http://dx.doi.org/10.7289/V5C8276M
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Figure 7. Inversion results from the CRUST1.0 synthetic data. (a) Cross-validation curve used to determine the regularization parameter (Eq. 11). The
minimum Mean Square Error (Eq. 19) is found at µ = 0.0001 (red triangle). (b) Cross-validation results used to determine the reference level (zref ) and the
density-contrast (∆ρ). The colored contours represent the Mean Square Error (Eq. 20) in km2. The minimum (red triangle) is found at zref = 30 km and
∆ρ = 350 kg/m3. (c) The estimated Moho depth. (d) Difference between the CRUST1.0 model depths (Fig. 6a) and the estimated depths. (e) Histogram of
the inversion residuals (observed minus predicted data). (f) Histogram of the differences between the synthetic seismic observations (Fig. 6c) and the estimated
depths. (g) The inversion residuals. (h) Difference between the seismic and the estimated depths.

V5C8276M) using tesseroids (Fig. 8b). We used the standard den-
sities of 2670 kg/m3 for continents and −1630 kg/m3 for the
oceans. Fig. 8c shows the calculated gravitational attraction of the
topographic masses at 50 km height. Fig. 8d shows the Bouguer
disturbance (Eq. 2) obtained after subtracting the topographic ef-
fect from the gravity disturbance.

The effect of sedimentary basins is removed using tesseroid
models of the three sedimentary layers present in the CRUST1.0

model (Laske et al. 2013, http://igppweb.ucsd.edu/~gabi/

rem.html). Each sedimentary layer model includes the density
of each 1◦ × 1◦ model cell. Figs. 8e-g show the thickness of
the upper, middle, and lower sedimentary layers, respectively. The
density-contrasts of the tesseroid model is obtained by subtract-
ing 2670 kg/m3 from the density of each model element. Fig. 8h
shows the combined gravitational attraction of the sedimentary
basin tesseroid model. We subtract the total effect of sediments

http://dx.doi.org/10.7289/V5C8276M
http://dx.doi.org/10.7289/V5C8276M
http://dx.doi.org/10.7289/V5C8276M
http://igppweb.ucsd.edu/~gabi/rem.html
http://igppweb.ucsd.edu/~gabi/rem.html
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Figure 8. Gravity data for South America and the models used in the data corrections. (a) The gravity disturbance (Eq. 1) calculated from the raw gravity
data. (b) Topography from ETOPO1. (c) Gravitational attraction of the topography calculated at the observation height using tesseroids. (d) The Bouguer
disturbance (Eq. 2) obtained by subtracting (c) from (a). The upper (e), middle (f), and lower (g) sediment layer thicknesses from the CRUST1.0 model. (h)
The total gravitational attraction of the sediment layers shown in (e), (f), and (g), calculated using tesseroids.

from the Bouguer disturbance in Fig. 8d to obtain the sediment-
free Bouguer disturbance (Fig. 9a), which will be used as input for
the inversion.

The seismic point estimates of Moho depth used in the cross-
validation procedure are from the data set of Assumpção et al.
(2013). The 937 data points in this data set are shown in Fig. 9b.

4.2 Inversion and cross-validation

As in the CRUST1.0 synthetic data test (section 3.2), we perform
the cross-validation in two parts. First, we run the cross-validation
to estimate an optimal regularization parameter (µ). The starting
estimate for all inversions is 60 km depth for all model parameters.
For this cross-validation, we keep zref and ∆ρ fixed to 20 km and
500 kg/m3, respectively. Second, we use the estimated µ to run the
cross-validation to estimate zref and ∆ρ, thus obtaining the final
estimated Moho depth model.

We split the sediment-free gravity data into the training and
testing data sets. The training data set is a regular grid with 0.4◦

grid spacing (twice the spacing of the original data grid) andNlat×

Nlon = 201 × 151 grid points, a total of 30,351 observations.
The remaining 90,350 points compose the testing data set. We test
16 values of the regularization parameter (µ) equally spaced on
a logarithmic scale between 10−10 and 10−2. Fig. 10a shows the
Mean Square Error (MSE) as a function of µ. The minimum MSE
is found at µ = 10−10, the lowest value of µ tested, suggesting that
little or no regularization is required.

We proceed with the second cross-validation using µ = 10−10

in all inversions. We test all combinations of seven values of zref ,
from 20 to 35 km with 2.5 km intervals, and seven values of ∆ρ,
from 200 to 500 kg/m3 with 50 kg/m3 intervals. Fig. 10b shows
a map of the MSE with respect to the Assumpção et al. (2013) data
set. The MSE has a well defined minimum, indicated by the red
triangle, at zref = 35 km and ∆ρ = 400 kg/m3.

4.3 Moho model for South America

The final Moho depth model for South America is shown as a
pseudo-color map in Fig. 11a. The model is available in the on-
line repository that accompanies this contribution (see section 2.8).
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Figure 9. Input data for the South American Moho inversion. (a) Sediment-free Bouguer disturbance for South America. Obtained by subtracting the total
sediment gravitational effect (Fig. 8h) from the Bouguer disturbance (Fig. 8d). (b) Seismological Moho depth estimates from Assumpção et al. (2013).

Each model element is a 0.4◦ × 0.4◦ tesseroid, represented by the
pixels in the pseudo-color map.

Our model differs significantly from CRUST1.0 (Fig. 6a) but
contains most of the large-scale features present in the GMSA12
gravity-derived model of van der Meijde et al. (2013). The deep-
est Moho is along the central Andes, reaching depths upward of 70
km. The oceanic areas present the shallowest Moho, ranging ap-
proximately from 7.5 to 20 km. The Brazilian and Guiana shields
have a deeper Moho (greater than 35 km), with the deepest portion
in the area of the São Francisco craton. The Moho is shallower than
35 km along the western Amazon and Andean foreland regions, as
well as along the Amazon river.

Fig. 11b shows the inversion residuals (observed minus pre-
dicted data) and Fig. 11c shows the differences between the
seismic-derived depths of Assumpção et al. (2013) (Fig. 9b) and
the depths in our model. The differences range from approximately
-23 to 23 km and have a mean of 1.18 km and a standard deviation
of 6.84 km. The residuals and differences from seismic are small-
est in the oceanic areas, southern Patagonia, and the eastern coast
of the continent. The largest residuals are located along the Andes
and correlate with the deepest Moho depths. These large residuals
follow a pattern of a negative value in the center flanked by positive
values to the East and West. This same pattern is observed in the
CRUST1.0 synthetic test results (Fig. 7), suggesting that this is a
byproduct of the inversion method, not the data. Likewise, larger

residuals also appear to be associated with sharp variations in the
estimated Moho depth. Along the Andes, large differences with
seismic data are correlated with the large inversion residuals. Con-
versely, this correlation is absent from the large differences seen
in points around Venezuela. In the Borborema province, northeast-
ern Brazil, our model slightly overestimates the Moho depth. On
the other hand, our model underestimates the depths in the Ama-
zon region and the Paraná basin. Particularly in the Amazon basin,
where our model predicts a Moho depth of approximately 30 km,
the residuals and the differences with the seismic data are larger
than in the Paraná basin.

5 CONCLUSIONS

We have developed a computationally efficient gravity inversion
method in spherical coordinates. Our method extends the Gauss-
Newton formulation of Bott’s method (Silva et al. 2014) to use
tesseroids as model elements and smoothness regularization. We
retain the computational efficiency of Bott’s method by taking ad-
vantage of the sparse nature of all matrices involved. We employ
two cross-validation techniques to estimate the hyper-parameters
of the inversion: the regularization parameter, the Moho density-
contrast, and the Normal Earth Moho depth.

The test on simple synthetic data shows that our inversion
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Figure 10. Cross-validation results for the South American Moho in-
version. (a) Cross-validation to determine the regularization parameter µ
(Eq. 11). The minimum Mean Square Error (Eq. 19), shown as a red tri-
angle, corresponds to µ = 10−10. (b) Cross-validation to determine the
reference level (zref ) and the density-contrast (∆ρ). The colored contours
represent the Mean Square Error (Eq. 20). The minimum (red triangle) is
found at zref = 35 km and ∆ρ = 400 kg/m3.

method is able to recover a smooth Moho relief with a homo-
geneous density-contrast. The inversion was not able to fully re-
cover the shortest wavelength feature in the model, possibly due
to the smoothness constraints which tends to soften high-frequency
(sharp) variations. The cross-validation Mean Square Error curve in
Fig. 5e has a well-defined minimum, indicating a value of the reg-
ularization parameter (µ) whose corresponding estimate best pre-
dicts data that were not included in the inversion. Using this value
of µ in the inversion leads to a smooth Moho relief and acceptable
data misfit.

The source code profiling results presented in Table 1 con-
firm the efficiency of the proposed method. When using sparse
matrices, solving linear systems and performing matrix multiplica-
tions together account for a mere 0.067% of the total computation
time required for a single inversion. The majority of the computa-
tion time (99.824%) is spent on forward modeling. Thus, we are
able to retain the high computational efficiency of Bott’s method
while using a classic Tikhonov regularization formulation. This ap-
proach could, in theory, be extended to other types of regularization
(e.g., Total Variation) and misfit functions (e.g., re-weighted least
squares) already available in the literature. For example, the Total
Variation approach used by Martins et al. (2011) could potentially
be implemented in a more straight forward manner than done by
Santos et al. (2015).

The more complex synthetic data test based on CRUST1.0
(Fig. 7) shows that the cross-validation using pointwise Moho
depth information is able to correctly estimate the density-contrast
(∆ρ) and Normal Earth Moho depth (zref ). This test indicates
that the inversion neither correctly estimates Moho depth nor ade-
quately fits the gravity and pointwise data when sharp variations in

Moho depth occur. This phenomenon is particularly strong in the
region below the Andes. A likely explanation is that the smooth-
ness regularization is intrinsically unable to produce sharp varia-
tions in Moho depth. These effects might be mitigated with the use
of sharpness-inducing regularization, like Total Variation (Martins
et al. 2011), Cauchy norm regularization (Sacchi & Ulrych 1996;
Pilkington 2008), or an adaptive mixed smoothness-sharpness reg-
ularization (Sun & Li 2014).

We applied the method proposed here to estimate the Moho
depth for South America. Our Moho depth model is in accordance
with previous results by van der Meijde et al. (2013). The model fits
well the gravity and seismic data in all oceanic regions, the central
portion of the Andean foreland, Patagonia, and coastal and cen-
tral parts of Brazil. However, the model is unable to fit the gravity
and seismic data in places with sharp variations in Moho depth,
particularly below the Andes. This might indicate the improper
use of smoothness regularization, as suggested by the CRUST1.0
synthetic data test, or the presence of crustal or mantle density
anomalies that were unaccounted for during the data corrections.
In the coastal region of Venezuela, along the central Amazon and
Solimões basins, and in the Paraná basin, the model is able to fit the
gravity data but differs significantly from the seismic data. Mariani
et al. (2013) and Nunn & Aires (1988) explain these discrepan-
cies in the Paraná and Amazon basins, respectively, as high density
rocks in the lower crust. In general, differences between a gravity
and a seismically derived Moho model may indicate the presence
of crustal or mantle density anomalies that were unaccounted for in
the data processing. Such locations warrant further detailed inves-
tigation.
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