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SUMMARY

Estimating the relief of the Moho from gravity data is a computationally intensive non-

linear inverse problem. What is more, the modeling must take the Earths curvature into

account when the study area is of regional scale or greater. We present a regularized non-

linear gravity inversion method that has a low computational footprint and employs a

spherical Earth approximation. To achieve this, we combine the highly efficient Bott’s

method with smoothness regularization and a discretization of the anomalous Moho into

tesseroids (spherical prisms). The computational efficiency of our method is attained by

harnessing the fact that all matrices involved are sparse. The inversion results are con-

trolled by three hyper-parameters: the regularization parameter, the anomalous Moho

density-contrast, and the reference Moho depth. We estimate the regularization param-

eter using the method of hold-out cross-validation. Additionally, we estimate the density-

contrast and the reference depth using knowledge of the Moho depth at certain points.

We apply the proposed method to estimate the Moho depth for the South American con-

tinent using satellite gravity data and seismological data. The final Moho model is in

accordance with previous gravity-derived models and seismological data. The misfit to

the gravity and seismological data is worse in the Andes and best in oceanic areas, cen-

tral Brazil and Patagonia, and along the Atlantic coast. Similarly to previous results, the
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model suggests a thinner crust of 30-35 km under the Andean foreland basins. Discrep-

ancies with the seismological data are greatest in the Guiana shield, the central Solimões

and Amazon basins, the Paraná basin, and the Borborema province. These differences

suggest the existence of crustal or mantle density anomalies that were unaccounted for

during gravity data processing.
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1 INTRODUCTION

The Mohorovičić discontinuity (or Moho) that marks the transition from the crust to the mantle, is

studied almost exclusively through indirect geophysical methods. The two main methods used to esti-

mate the depth of the Moho are seismology, with both natural and controlled sources, and gravimetry.

With the advent of satellite gravimetry missions like GRACE and GOCE, gravity derived crustal

models can be produced in regional or global scales (e.g. Reguzzoni et al. 2013; van der Meijde

et al. 2013, 2015). New spherical harmonic gravity models that use these satellite observation, like

GOCO5S (Mayer-Guerr et al. 2015), provide almost homogeneous data coverage in difficult to access

regions traditionally poor in terrestrial data. An example is South America, where seismologic and

terrestrial gravity data are traditionally concentrated around large urban centers and coastal areas.

Estimating Moho depth from gravity data is a non-linear inverse problem. One can generalize

this problem to estimating the relief of an interface, such as the basement of a sedimentary basin

or the relief of the anomalous Moho. Several methods have been developed over the years to solve

this inverse problem, for example Bott (1960); Barbosa et al. (1999a,b); Barnes & Barraud (2012);

Leão et al. (1996); Martins et al. (2010, 2011); Oldenburg (1974); Reguzzoni et al. (2013); Santos

et al. (2015); Silva et al. (2006, 2014), to name a few. Solving the inverse problem is computationally

demanding because it requires the construction of large dense matrices and the solution of large linear

systems. As a result, some authors search for ways to increase the computational efficiency of this

class of inverse problem. Bott (1960) proposed a method based on iteratively applying corrections

to a starting estimate based on the inversion residuals. The algorithm is fast because it bypasses the

construction and solution of linear systems and only involves forward modeling. Oldenburg (1974)

showed that the fast FFT-based forward modeling of Parker (1973) could be rearranged to estimate

the relief. Barnes & Barraud (2012) use a form of adaptive discretization to compute the Jacobian, or

sensitivity, matrix. For each data point, the discretization will be progressively coarser the further way

from the point. This reduces the matrix and, consequently, the linear systems to a sparse form that

can be solved efficiently. Recently, Silva et al. (2014) extended and generalized the original method
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of Bott (1960) and Santos et al. (2015) used this extension to estimate a basement relief with sharp

boundaries.

Most non-linear gravity inversion methods discretize the relief of the interface into juxtaposed

right-rectangular prisms with a known density contrast. The inverse problem is then to estimate the

thickness of each prism from the gravity data. The use of rectangular prisms implies a planar Earth

approximation and may not be adequate for continental and global scale studies. In such cases, a spher-

ical Earth approximation is preferred. Wieczorek & Phillips (1998) developed a spherical harmonic

equivalent of the Parker-Oldenburg FFT algorithm and applied it to estimate the crustal structure of

the Moon. Reguzzoni et al. (2013) use a spherical approximation to estimate the global Moho relief

from GOCE satellite gravity data. Conversely, one could adapt one of the methods developed for right-

rectangular prisms to use tesseroids (spherical prisms) instead. One of the difficulties of this approach

is that the forward problem for a tesseroid must be solved numerically. Two alternatives proposed in

the literature to the numerical solution are Taylor series expansion (Heck & Seitz 2007; Grombein

et al. 2013) and the Gauss-Legendre Quadrature (Asgharzadeh et al. 2007). Numerical experiments by

Wild-Pfeiffer (2008) suggest that the Gauss-Legendre Quadrature (GLQ) offers superior results. How-

ever, the GLQ suffers from numerical instability when the computation point is close to the tesseroid

(Asgharzadeh et al. 2007). To overcome the numerical instability, Li et al. (2011) proposed an adaptive

discretization algorithm which was later improved upon by Uieda et al. (2016).

In any gravity inversion for the relief of an interface, two hyper-parameters control the inversion

results: the density-contrast between the two mediums and the reference level around which the inter-

face undulates. The reference level is the depth of the Normal Earth Moho in the case of the anomalous

Moho. For regularized inversions, an additional hyper-parameter is the regularization parameter that

balances data-misfit and regularization. The two most commonly used methods for estimating the reg-

ularization parameter are the L-curve criterion and Generalized Cross Validation (GCV). Farquharson

& Oldenburg (2004) provide for a thorough comparison of both methods. Estimating the density-

contrast in a sedimentary basin context has been tackled by Silva et al. (2006) and Martins et al.

(2010) when the basement depth is known at a few points. To the authors knowledge no attempt has

been made to estimate the reference level.

We present a non-linear gravity inversion to estimate the Moho depth in a spherical Earth approx-

imation. Our method is based on the Silva et al. (2014) Gauss-Newton formulation of the method

of Bott (1960). We use tesseroids to discretize the anomalous Moho and the adaptive discretization

algorithm of Uieda et al. (2016) for the forward modeling. The stability of the inversion is achieved

through smoothness regularization. In order to maintain the computational efficiency of Bott’s method,

we exploit the sparse nature of all matrices involved in the computations. We employ a variant of GCV
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known as hold-out cross-validation (Kim 2009) to estimate the regularization parameter. Additionally,

we estimate the density-contrast and reference level simultaneously in a second cross-validation. Sim-

ilarly to Silva et al. (2006) and Martins et al. (2010), this cross-validation procedure uses knowledge

of the Moho depth at certain points. Finally, we apply the proposed method to estimate the Moho

depth for South America using gravity data from the GOCO5S model (Mayer-Guerr et al. 2015) and

the seismological data of Assumpção et al. (2013).

2 METHODOLOGY

In potential field methods, we must isolate the target anomalous density distribution prior to modeling

and inversion. In our case, the target is the relief of the real Moho undulating around a reference

Moho. We do this by removing all other effects from the gravity observations. The first correction is to

remove the scalar gravity of an ellipsoidal reference Earth (the Normal Earth), hereafter denoted as γ.

This effect is calculated on the same point P where the gravity observation was made (Fig 1a-b). γ(P )

is calculated using the closed-form solution presented by Li & Götze (2001). The difference between

the observed gravity at point P (g(P )) and Normal gravity at the same point is known as the gravity

disturbance,

δ(P ) = g(P )− γ(P ). (1)

The disturbance contains only the gravitational effects of density distributions that are anomalous

with respect to the Normal Earth (see Fig. 1c). This includes all masses above the surface of the

ellipsoid (the topography), the mass deficiency of the oceans, the mass deficiency of sedimentary

basins, crustal sources (e.g., igneous intrusions, lateral density changes, etc), heterogeneities below

the upper mantle, and the effect of the difference between the real Moho topography and the Moho of

the Normal Earth.

In order to invert for the anomalous Moho relief, we must first isolate its gravitational attraction.

Thus, all other effects must be either removed or assumed negligible. Here, we will remove the effect

of the topography and oceans in order to obtain the full Bouguer disturbance (Fig 1d),

δbg(P ) = δ(P )− gtopo(P ). (2)

We will remove the effect of sedimentary basins but assume that the effects of other crustal and mantle

sources are negligible. Thus, the only effect left will be that of the anomalous Moho relief (Fig 1e).

The gravitational attraction of the topography, oceans, and basins are calculated in a spherical Earth

approximation by forward modeling using tesseroids (Fig. 2). The tesseroid effects are calculated
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Figure 1. Sketch of the stages in gravity data correction and the discretization of the anomalous Moho relief

using tesseroids. (a) The Earth and the measured gravity at point P (g(P )). (b) The Normal Earth and the calcu-

lated normal gravity at point P (γ(P )). zref is the depth of the Normal Earth Moho. (c) The gravity disturbance

(δ(P )) and the corresponding density anomalies after removal of the normal gravity: topography, oceans, crustal

heterogeneities, and the anomalous Moho. (d) The Bouguer disturbance (δbg(P )) after topographic correction

and the remaining density anomalies. (e) All density anomalies save the anomalous Moho are assumed to have

been removed before inversion. (f) The discretization of the anomalous Moho in tesseroids. Grey tesseroids will

have a negative density contrast while red tesseroids will have a positive one.

numerically using Gauss-Legendre Quadrature (GLQ) integration (Asgharzadeh et al. 2007). The ac-

curacy of the GLQ integration is improved by the adaptive discretization scheme of Uieda et al. (2016).

2.1 Parametrization

We parameterize the forward problem by discretizing the anomalous Moho into a grid of Mlon ×

Mlat = M juxtaposed tesseroids (Fig 1f). The true (real Earth) Moho varies in depth with respect to

the Moho of the Normal Earth. Hereafter we will refer to the depth of the Normal Earth Moho as zref

(see Fig. 1b). In cases where the true Moho is above zref , the top of the kth tesseroid is the Moho

depth zk, the bottom is zref , and the density-contrast (∆ρ) is positive (red tesseroids in Fig 1f). If

the Moho is below zref , the top of the tesseroid is zref , the bottom is zk, and ∆ρ is negative (grey

tesseroids in Fig 1f).

Considering that the absolute value of the density-contrasts of the tesseroids is a fixed parame-

ter, the predicted gravity anomaly of the Moho is a non-linear function of the parameters zk, k =

1, . . . ,M ,
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Figure 2. Sketch of a tesseroid (spherical prism) in a geocentric coordinate system (X, Y, Z). Observations are

made at point P with respect to it’s local North-oriented coordinate system (x, y, z). After Uieda (2015).

di = fi(p), (3)

in which di is the ith element of the N -dimensional predicted data vector d, p is the M -dimensional

parameter vector containing the M Moho depths (zk), and fi is the ith non-linear function that maps

the parameters onto the data. The functions fi are the radial component of the gravitational attraction

of the tesseroid Moho model.

2.2 Inverse problem

We wish to estimate the parameter vector p from a set of observed gravity anomaly data do. The

least-squares estimate is the one that minimizes the data-misfit function

φ(p) = [do − d(p)]T [do − d(p)]. (4)

Function φ(p) is non-linear with respect to p. Thus, we can determine its minimum using gradient-

based iterative optimization methods like Gauss-Newton or Steepest Descent. Such methods start from

an initial estimate p0 and iteratively update the estimate until a minimum is reached.

For the Gauss-Newton method, the update at the kth iteration, ∆p = pk+1 − pk, is the solution

of the linear system

Hk∆p = −∇φk, (5)
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in which∇φk and Hk are, respectively, the gradient vector and the Hessian matrix of φ(p).

The Steepest Descent method uses only the gradient direction to update the initial estimate (Kelley

1987). The update at the kth iteration is achieved by equating the Hessian in Eq. 5 to the identity

matrix,

∆p = −∇φk. (6)

Thus, it does not require the computation and storage of the Hessian matrix nor the solution of linear

systems. However, the Steepest Descent method has poor convergence when the current solution is

close to the minimum of the goal function (Kelley 1987).

The gradient vector and the Gauss-Newton approximation of the Hessian matrix of φ(p) are,

respectively,

∇φk = −2AT [do − d(pk)], (7)

and

Hk ≈ 2ATA, (8)

in which A is the Jacobian or sensitivity matrix,

Aij =
∂fi
∂pj

(pk). (9)

2.3 Regularization

Non-linear inversions for the relief of an interface (like the Moho) are ill-posed and require additional

constraints in the form of regularization (?). A common approach is to use the first-order Tikhonov

regularization to impose smoothness on the solution. The cost function for smoothness regularization

is given by

θ(p) = pTRTRp, (10)

where R is an L × M finite-difference matrix representing the L first-order differences between

adjacent tesseroids.

The solution p̂ to the regularized inverse problem is the one that minimizes the goal function

Γ(p) = φ(p) + µθ(p), (11)



8

in which µ is the regularization parameter that controls the balance between fitting the observed data

and obeying the smoothness constraint.

The goal function Γ(p) is also non-linear with respect to p and can be minimized using the Gauss-

Newton or Steepest Descent methods. The gradient vector and Hessian matrix of the goal function are,

respectively,

∇Γk = −2AT [do − d(pk)] + 2µRTRpk, (12)

and

Hk = 2ATA + 2µRTR. (13)

The parameter updates for the regularized Gauss-Newton and Steepest Descent methods, respectively,

then become

[
ATA + µRTR

]
∆p = AT [do − d(pk)]− µRTRpk, (14)

and

∆p = AT [do − d(pk)]− µRTRpk, (15)

Producing the regularized solution using the above equations is computationally costly because of

two main factors: (1) the evaluation and storage of the dense N ×M Jacobian matrix A and (2) the

solution of the resulting M ×M equation system (not required for Steepest Descent). In practice, the

derivatives in the Jacobian (Eq. 9) are often calculated through a first-order finite-difference approxi-

mation. Thus, evaluating A requires 2×M ×N forward modeling operations for each iteration of the

gradient descent algorithm. These computations are performed for each iteration of the optimization.

2.4 Bott’s method

Bott (1960) developed an efficient method to determined the basement relief of a sedimentary basin

from gravity observations. The method requires data on a regular grid of Nx×Ny = N observations.

The basement relief is then discretized into an equal grid of Mx ×My = M elements with Mx = Nx

and My = Ny. Bott’s iterative method starts with an initial estimate of the basement relief p0 equal to

the null vector and updates the estimate using the formula

∆p =
do − d(pk)

2πG∆ρ
, (16)
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in which G is the gravitational constant and ∆ρ is the basin density contrast. The iterative process

stops when the inversion residuals r = do − d(pk) fall below the assumed noise level of the data.

Silva et al. (2014) showed that Bott’s method can be formulated as a special case of the Gauss-

Newton method (Eq. 5) by setting the Jacobian matrix (Eq. 9) to

A = 2πG∆ρI, (17)

in which I is the identity matrix. In this framework, Bott’s method uses a Bouguer plate approximation

of the gravitational effect of the relief, di = 2πG∆ρzi. The derivative of di with respect to the param-

eter zi is 2πG∆ρ, thus linearizing the Jacobian matrix. However, the non-linearity of the predicted

data d(pk) is preserved.

We propose that Bott’s method can also be formulated as a special case of the Steepest Descent

method (Eq. 6) by setting the Jacobian matrix to

A =
1

4πG∆ρ
I. (18)

In practice, both formulations lead to Eq. 16. One of the advantages of Bott’s method over the tra-

ditional Gauss-Newton or Steepest Descent is eliminating the computation and storage of the dense

Jacobian matrix A. Furthermore, Bott’s method also does not require the solution of equation sys-

tems. However, a disadvantage of Bott’s method is that it suffers from instability (Silva et al. 2014). A

common approach to counter this issue is to apply a smoothing filter after the inversion to the unstable

estimate, as in Silva et al. (2014).

2.5 Regularized Bott’s method in spherical coordinates

We propose a regularized version of Bott’s method to invert for the relief of the anomalous Moho in

spherical coordinates. To adapt Bott’s method to spherical coordinates, we replace the right-rectangular

prisms in the forward modeling (d(pk) in Eq. 16) with tesseroids. The tesseroid forward modeling uses

the adaptive discretization algorithm of Uieda et al. (2016) to achieve accurate results. Furthermore,

our formulation maintains the regularized solution for the Gauss-Newton method (Eq. 14) but replaces

the full Jacobian matrix with the Bouguer plate approximation (Eq. 17). This linearizes the Jacobian

matrix and reduces it to a sparse diagonal matrix, thus eliminating the cost of computing and storing

A. Matrix arithmetic operations can be performed efficiently by taking advantage of the sparse nature

of matrices A and R (respectively, Eq. 17 and 10). The same is true for solving the equation system

in the Gauss-Newton method (Eq. 14). However, the computational cost of forward modeling is still

present. Particularly, forward modeling using tesseroids is more computationally intensive than using
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Figure 3. Sketch of a data grid separated into the training (white dots with black outlines) and testing (black

dots) data sets. The training data set is still displayed on a regular grid but with twice the grid spacing of the

original data grid.

right-rectangular prisms because of the numerical integration and adaptive discretization (Uieda et al.

2016). Our benchmarks suggest that sparse matrix multiplications and solving the sparse linear sys-

tem in Eq. 14 account for less than 0.1% of the computation time of a single inversion (see section 3.1

and Table 1). Hence, by employing the use of sparse matrices, our formulation retains the efficiency

of Bott’s method while stabilizing the solution through the well established formalism of Tikhonov

regularization.

2.6 Estimating the regularization parameter

The regularization parameter µ controls how much smoothness is applied to the inversion result. An

optimal value of µwill stabilize and smooth the solution while not compromising the fit to the observed

data. Two widely used methods to estimate an optimal µ are the L-curve criterion and cross-validation

(Hansen 1992). Here, we will adopt the hold-out method of cross-validation (Kim 2009). The hold-out

method consists of splitting the observed data set into two independent parts: a training set doinv and a

testing set dotest. The training set is used in the inversion while the testing set is kept back and used to

judge the quality of the chosen value of µ. For a value of the regularization parameter µk, the training

set is inverted using µk to obtain an estimate p̂k. This estimate is used to calculate predicted data on

the same points as the testing set via forward modeling (dktest = f(p̂k)). The metric chosen to evaluate

µk is the mean square error (MSE) of the misfit between the observed and predicted testing data sets,

MSEk =
‖dotest − dktest‖2

Ntest
, (19)
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in which Ntest is the number of data in the testing set. The optimal value of µ will be the one that

minimizes the MSE, i.e. the one that best predicts the testing data. We emphasize that the inversion is

performed only on the training data set.

The algorithm for the hold-out cross-validation is summarized as follows:

(i) Divide the observed data into the training (doinv) and testing (dotest) sets.

(ii) For each µk ∈ [µ1, µ2, . . . , µNµ ]:

(a) Estimate p̂k by inverting the training set doinv.

(b) Use p̂k to calculate the predicted testing set dktest.

(c) Calculate the mean square error MSEk using Eq. 19.

(iii) The final solution is the p̂k corresponding to the smallest MSEk.

The separation of the training and testing data sets is commonly done by taking random samples

from the full data set. However, we cannot perform the separation in this way because Bott’s method

requires data on a regular grid as well as having model elements directly below each data point. Thus,

we take as our training set the points from the observed data grid that fall on a similar grid but with

twice the grid spacing (white dots with black outlines in Fig. 3). All other points from the original

data grid make up the testing data set (black dots in Fig. 3). This separation will lead to a testing data

set with more points than the training data set. A way to balance this loss of data in the inversion is

to generate a data grid with half of the desired grid spacing, either through interpolation or from a

spherical harmonic model.

2.7 Estimating zref and ∆ρ

The depth of the Normal Earth Moho (zref ) and the density-contrast of the anomalous Moho (∆ρ)

are other hyper-parameters of the inversion. That is, their value influences the final solution but they

are not estimated during the inversion. Both hyper-parameters cannot be determined from the gravity

data alone. Estimating zref and ∆ρ requires information that is independent of the gravity data, such

as knowledge of the parameters at certain points. This information can be used in a manner similar

to the cross-validation described in the previous section. In this study, we use point estimates of the

Moho depth to determine the optimal values of zref and ∆ρ. These points will generally come from

seismologic studies, like receiver functions, surface wave dispersion, and deep refraction experiments.

Let zos be a vector of Ns known Moho depths. We use the mean square error (MSE) as a measure

of how well a given inversion output p̂k fits the know depths. The optimal values of zref and ∆ρ are

the ones that best fit the independent known Moho depths (i.e., produce the smallest MSE). However,
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the points do not necessarily coincide with the model elements of the inversion. Before computing the

MSE, we interpolate p̂k on the known points to obtain the predicted depths zks . The MSE is defined as

MSE =
‖zos − zks‖2

Ns
. (20)

The algorithm for estimating zref and ∆ρ is:

(i) For every combination of zref,l ∈ [zref,1, zref,2, . . . , zref,Nz ] and ∆ρm ∈ [∆ρ1,∆ρ2, . . . ,∆ρNρ ]:

(a) Perform the inversion on the training data set doinv using zref,l, ∆ρm, and the previously esti-

mated value of µ. The inversion output is the vector p̂l,m.

(b) Interpolate p̂l,m on the known points to obtain the predicted depths zl,ms .

(c) Calculate the MSE between zos and zl,ms using Eq. 20.

(ii) The final solution is the p̂l,m corresponding to the smallest MSE.

A similar approach was used by Silva et al. (2006) and Martins et al. (2010) to estimate the

parameters defining the density-contrast variation with depth of a sedimentary basin. van der Meijde

et al. (2013) also had a similar methodology for dealing with the hyper-parameters, though in a less

formalized way.

2.8 Software implementation

The inversion method proposed here is implemented in the Python programming language. The soft-

ware is freely available under the terms of the BSD 3-clause open-source software license. Our

implementation relies on the open-source libraries scipy and numpy (Jones et al. 2001, http://

scipy.org) for array-based computations, matplotlib (Hunter 2007, http://matplotlib.org)

and seaborn (Waskom et al. 2015, http://stanford.edu/~mwaskom/software/seaborn) for

plots and maps, and Fatiando a Terra (Uieda et al. 2013, http://www.fatiando.org) for geo-

physics specific tasks, particularly for forward modeling using tesseroids. We use the scipy.sparse

package for sparse matrix arithmetic and linear algebra. The sparse linear system in Eq. 14 is solved

using the conjugate gradient method implemented in scipy.sparse.

The computational experiments (e.g., data processing, synthetic tests, real data application) were

performed in Jupyter (formerly IPython) notebooks (Pérez & Granger 2007, http://jupyter.

org/). The notebook files combine the source code used to run the experiments, the results and figures

generated by the code, and rich text to explain and document the analysis.

All source code, Jupyter notebooks, data, and results can be found at the online repository https:

//github.com/pinga-lab/paper-moho-inversion-tesseroids. The repository also contains

http://scipy.org
http://scipy.org
http://matplotlib.org
http://stanford.edu/~mwaskom/software/seaborn
http://www.fatiando.org
http://jupyter.org/
http://jupyter.org/
https://github.com/pinga-lab/paper-moho-inversion-tesseroids
https://github.com/pinga-lab/paper-moho-inversion-tesseroids
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instructions for replicating all results presented here. An archived version of this repository is also

available at http://dx.doi.org/... (Note to reviewers: the archived version will be uploaded

upon publication).

3 APPLICATION TO SYNTHETIC DATA

We test and illustrate the proposed inversion method by applying it to two noise-corrupted synthetic

data sets. The first data set is generated by a simple Moho model simulating the transition from a

thicker continental crust to a thinner oceanic crust. This application uses cross-validation to estimate

the regularizing parameter (µ) while assuming that the anomalous Moho density-contrast (∆ρ) and

the Normal Earth Moho depth (zref ) are known quantities. This first test is simplified in order to

investigate solely the efficiency of the inversion and the cross-validation procedure to estimate µ. The

second data set is generated by a more complex model derived from the South American portion of

the global CRUST1.0 model (Laske et al. 2013). This application uses cross-validation to estimate all

three hyper-parameters: µ, ∆ρ, and zref . The model and corresponding synthetic data are meant to

simulate with more fidelity the real data application.

3.1 Simple model

We simulate the transition from a continental-type Moho to an oceanic-type Moho using a model

composed of Mlat × Mlon = 40 × 50 grid of juxtaposed tesseroids (a total of M = 2000 model

elements). The anomalous Moho density-contrast is ∆ρ = 400 kg/m3 and the Normal Earth Moho

depth is zref = 30 km. Fig. 4a shows the model Moho depths, where each pixel in the pseudo-color

image corresponds to a tesseroid of the model.

The synthetic data were forward modeled on a regular grid ofNlat×Nlon = 79×99 points (a total

of N = 7821 observations) at a constant height of 50 km. The data were contaminated with pseudo-

random noise sampled from a normal distribution with zero mean and 5 mGal standard deviation.

Fig. 4b shows the noise-corrupted full synthetic data set. The data grid spacing is half the grid spacing

of the tesseroid model so that, when separating the training and testing data sets (Fig. 3), the training

data set points will fall directly above each model element.

We separated the synthetic data into training and testing data sets following Fig. 3. The training

data set is a regular grid of Nlat × Nlon = 40 × 50 points (a total of Ntrain = 2000). The testing

data set is composed of Ntest = 5821 observations. We used cross-validation to estimate an optimal

regularization parameter (µ) from a set of Nµ = 16 values equally spaced on a logarithmic scale

between 10−6 and 10−1. We ran our regularized inversion on the training data set for each value of µ,

http://dx.doi.org/...
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Figure 4. A simple Moho model made of tesseroids for synthetic data application. (a) The Moho depth of the

model in kilometers. The model transitions from a deep Moho in the right to a shallow Moho in left, simulating

the transition between a continental and an oceanic Moho. Each pixel in the pseudo-color image corresponds to

a tesseroid of the model. (b) Noise-corrupted synthetic gravity data generated from the model shown in (a).

obtaining 16 Moho depth estimates. For all inversions, the initial Moho depth estimate used to start

the Gauss-Newton optimization was set to 60 km depth for all inversion parameters. Furthermore,

zref and ∆ρ are set to their respective true values. Finally, we computed the mean square error (MSE,

Eq. 19) for each estimate and chose as the final estimated Moho model the one that minimizes the

MSE.

Fig. 5 summarizes the inversion results. Fig. 5a shows the final estimated Moho depth after cross-

validation. The recovered model is smooth, indicating that the cross-validation procedure was ef-

fective in estimating an optimal regularization parameter. Fig. 5b shows difference between the true

Moho depth (Fig. 4a) and the estimated Moho depth. The differences appear to be semi-randomly dis-

tributed with a maximum coinciding with a short-wavelength feature in the true model. The maximum

and minimum differences are approximately 2.19 and -2.13 km, respectively. Fig. 5c shows inversion

residuals (difference between the observed and predicted data), in mGal. The largest residual (in abso-

lute value) coincides with the largest difference between the true model and the estimate. The inversion

residuals are normally distributed, as shown in Fig. 5d, with 0.02 mGal mean and a standard deviation

of 3.63 mGal. The cross-validation curve in Fig. 5e shows a clear minimum MSE at µ = 0.00046
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Figure 5. Results from the inversion of the simple synthetic data. (a) The estimated Moho depth. (b) The

difference between the true model depths and the estimated depths. (c) The inversion residuals (observed data

minus the data predicted by the estimate). (d) Histogram of the residuals. Also shown are the calculated mean

and standard deviation (std) of the residuals. Note that the data were contaminated with normally distributed

pseudo-random noise with zero mean and 5 mGal standard deviation. (e) Cross-validation curve used to de-

termine the optimal regularization parameter (Eq. 11). Both axis are in logarithmic scale. The minimum Mean

Square Error (Eq. 19) is found at µ = 0.00046 (red triangle). (f) Goal function value (Eq. 11) per Gauss-Newton

iteration showing the convergence of the gradient descent. The y-axis is in logarithmic scale.

(indicated by the red triangle). Fig. 5f shows the convergence of the Gauss-Newton optimization in

eight iterations.

We also investigated the computation time spent in each section of the inversion process using a

source code profiler. The profiler measures how much time is spent inside each function during the

execution of a program. We ran the profiler on a single inversion of the training data set using the

estimated regularization parameter. We tracked the total time spent inside each of the three functions

that represent the largest computational bottlenecks of the inversion: solving the linear system in Eq. 14

using the conjugate gradient method, performing the dot products required to compute the Hessian

matrix (Eq. 13) and the gradient vector (Eq. 12), and forward modeling to calculate the predicted

data (Eq. 3). The profiling results presented in Table 1 show that the time spent on forward modeling

accounts for approximately 99.8% of the total computation time.
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Table 1. Total time spent on each function during a single inversion of simple synthetic data. The inversion was

performed on a laptop computer with a Intel(R) Core(TM) i7-3612QM CPU @ 2.10GHz processor. The total

time for the inversion was 42.133 seconds.

Function description Time Percentage of total time

Sparse conjugate gradient 0.021 s 0.050%

Sparse dot product 0.007 s 0.017%

Tesseroid forward modeling 42.059 s 99.824%

3.2 Model based on CRUST1.0

In this test, we simulate the anomalous Moho of South America using Moho depth information ex-

tracted from the CRUST1.0 model (Laske et al. 2013). We construct a tesseroid model with Mlat ×

Mlon = 80 × 60 juxtaposed elements, 4800 in total, using the Moho depths shown in Fig. 6a. In

our model, the Normal Earth Moho is zref = 30 km and the density-contrast is ∆ρ = 350 kg/m3.

We produce the synthetic data at a constant height of 50 km and on a regular grid of Nlat × Nlon =

159 × 119 points (a total of 18921 observations). We contaminate the synthetic data with normally

distributed pseudo-random noise with zero mean and 5 mGal standard deviation (Fig. 6b).
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50)S

35)S

20)S

5)S

10)N

CRUST1.0 Moho depth (km) (b)

75)W 60)W 45)W

Synthetic gravity anomaly (mGal) (c)

75)W 60)W 45)W

Synthetic seismic data (km)

16 24 32 40 48 56 64 −300 −150 0 150 300 10 20 30 40 50 60 70

Figure 6. Synthetic data of a model derived from CRUST1.0. The model is made of tesseroids with an constant

density-contrast of ∆ρ = 350 kg/m3 and assuming a reference level of zref = 30 km. (a) The Moho depth

of the model in kilometers. Each pixel in the pseudo-color image corresponds to a tesseroid of the model. (b)

Noise-corrupted synthetic gravity data generated from the model. (c) Synthetic seismic data simulating point

estimates of Moho depth. The point estimates were obtained by interpolating the Moho depth in (a).
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Figure 7. Inversion results from the CRUST1.0 synthetic data. (a) Cross-validation curve used to determine

the regularization parameter (Eq. 11). The minimum Mean Square Error (Eq. 19) is found at µ = 0.0001 (red

triangle). (b) Cross-validation results used to determine the reference level (zref ) and the density-contrast (∆ρ).

The colored contours represent the Mean Square Error (Eq. 20) in km2. The minimum (red triangle) is found

at zref = 30 km and ∆ρ = 350 kg/m3. (c) The estimated Moho depth. (d) Difference between the CRUST1.0

model depths (Fig. 6a) and the estimated depths. (e) Histogram of the inversion residuals (observed minus

predicted data). (f) Histogram of the differences between the synthetic seismic observations (Fig. 6c) and the

estimated depths. (g) The inversion residuals. (h) Difference between the seismic and the estimated depths.
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The cross-validation procedure to determine ∆ρ and zref requires knowledge of the Moho depth at

certain points (zos in Eq. 20), usually from seismic experiments. Thus, we must also generate synthetic

seismic data about the Moho depth. We produce such data by interpolating the Moho depth shown in

Fig. 6a on the same geographic coordinates as the 937 points from the Assumpção et al. (2013) data

set. The resulting synthetic seismic data is shown in Fig. 6c.

We perform the cross-validation procedures in two parts. First, we run the cross-validation to

estimate an optimal regularization parameter (µ). The starting estimate for all inversions is 60 km

depth for all model parameters. For this cross-validation, we keep zref and ∆ρ fixed to 20 km and

500 kg/m3, respectively. Our investigations suggest that the outcome of this round of cross-validation

does not depend on the particular values of zref and ∆ρ used. Second, we use the estimated µ to run

the cross-validation to estimate zref and ∆ρ, thus obtaining the final estimated Moho depths. Fig. 7

summarizes the results from both cross-validation runs and the final inversion results.

For the first cross-validation, we separate the synthetic data (Fig. 3) into a training set with twice

the grid spacing of the original data (Nlat×Nlon = 80×60) and a testing set with 14,121 observations.

We run the inversion for 16 different values of µ equally spaced in a logarithmic scale between 10−7

and 10−2. For each of the 16 estimates we compute the MSE (Eq. 19), shown in Fig. 7a as function

of µ. The optimal regularization parameter that minimizes the MSE is µ = 10−4 (indicated by the red

triangle).

In the second cross-validation, we use the estimated value of µ in all inversions. We test seven

values of zref from 20 to 35 km with 2.5 km intervals and seven values of ∆ρ from 200 to 500 kg/m3

with 50 kg/m3 intervals. We run the inversion for every combination of zref and ∆ρ, totaling 49

inversions. Finally, we calculate the Mean Square Error (Eq. 20) for each of the 49 estimates and

choose the values of zref and ∆ρ that minimize the MSE. Fig. 7b shows a colored-contour map of the

MSE with a minimum (marked by the red triangle) at zref = 30 km and ∆ρ = 350 kg/m3.

Fig. 7c shows the final solution after both cross-validation procedures. The recovered model is

smooth, indicating that the cross-validation procedure was effective in estimating an optimal regu-

larization parameter. Fig. 7d shows the difference between the true Moho depths (Fig. 6a) and the

estimated depths. The maximum and minimum differences are, respectively, 9.8 and -8.2 km. The

largest absolute differences are located along the central and northern Andes, where there is a sharp

increase in the true Moho depth (Fig. 6a). Positive differences (indicating a too shallow estimate) ap-

pear along the central portion of the Andes, flanked by regions of negative differences (indicating a

too deep estimate) on the continental and Pacific sides. Figs. 7e and g show the inversion residuals

(difference between the observed and predicted data). The inversion residuals appear normally dis-

tributed, with 0.03 mGal mean and a standard deviation of 4.10 mGal. The residuals follow a similar,
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though reversed, pattern to the differences shown in Fig. 7d. The largest residuals (in absolute value)

are along the Andes, with the central portion being dominated by negative residuals and flanked by

positive residuals on both sides. Figs. 7f and h show the differences between the synthetic seismic

data (Fig. 6c) and the estimated Moho depths. Once more, the largest differences are concentrated

along the Andes, particularly in the central Andes and near Ecuador and Colombia. The differences

are smaller along the Atlantic coast of South America, with notable larger differences in a few points

of northeastern Brazil and along the Amazon river. In general, large residuals are associated with sharp

increases in Moho depth.

4 APPLICATION TO THE SOUTH AMERICAN MOHO

We apply the inversion method proposed here to invert for the Moho depth of the South American con-

tinent. We follow the application of van der Meijde et al. (2013) but with some differences, mainly us-

ing a different data set and performing all modeling in spherical coordinates using tesseroids. The data

are corrected of the effects of topography and sedimentary basins. Crust and mantle heterogeneities

cannot be properly accounted for in regions where information coverage is sparse and readily accessi-

ble models are not available, like in South America and Africa. Hence, for the purposes of this study,

we will assume to be negligible all other crustal and mantle sources, including lateral variations in

density along the Moho.

4.1 Gravity and seismic data

The raw gravity data are generated from the satellite only spherical harmonic model GOCO5S Mayer-

Guerr et al. (2015). The GOCO5S model combines data from 15 satellites, including the complete mis-

sion data from the GOCE satellite. The data were downloaded from the International Centre for Global

Earth Models (ICGEM) web-service (Barthelmes & Köhler 2012, http://icgem.gfz-potsdam.

de/ICGEM/)) in the form of the complete gravity field on a regular grid with 0.2◦ grid spacing at

ellipsoidal height 50 km. We calculate the gravity disturbance (δ(P ) in Eq. 1) by subtracting from the

raw data the normal gravity of the WGS84 reference ellipsoid (γ(P )) using the formula of Li & Götze

(2001). Fig. 8a show the calculated gravity disturbance of South America.

We remove the gravitational effect of the topography from the gravity disturbance by model-

ing the ETOPO1 digital terrain model (Amante & Eakins 2009, http://dx.doi.org/10.7289/

V5C8276M) using tesseroids (Fig. 8b). We used the standard densities of 2670 kg/m3 for continents

and −1630 kg/m3 for the oceans. Fig. 8c shows the calculated gravitational attraction of the to-

http://icgem.gfz-potsdam.de/ICGEM/
http://icgem.gfz-potsdam.de/ICGEM/
http://dx.doi.org/10.7289/V5C8276M
http://dx.doi.org/10.7289/V5C8276M
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Figure 8. Gravity data for South America and the models used in the data corrections. (a) The gravity distur-

bance (Eq. 1) calculated from the raw gravity data. (b) Topography from ETOPO1. (c) Gravitational attraction

of the topography calculated at the observation height using tesseroids. (d) The Bouguer disturbance (Eq. 2)

obtained by subtracting (c) from (a). The upper (e), middle (f), and lower (g) sediment layer thicknesses from

the CRUST1.0 model. (h) The total gravitational attraction of the sediment layers shown in (e), (f), and (g),

calculated using tesseroids.

pographic masses at 50 km height. Fig. 8d shows the Bouguer disturbance (Eq. 2) obtained after

subtracting the topographic effect from the gravity disturbance.

The effect of sedimentary basins is removed using tesseroid models of the three sedimentary

layers present in the CRUST1.0 model (Laske et al. 2013, http://igppweb.ucsd.edu/~gabi/

rem.html). Each sedimentary layer model includes the density of each 1◦× 1◦ model cell. Figs. 8e-g

show the thickness of the upper, middle, and lower sedimentary layers, respectively. The density-

contrasts of the tesseroid model is obtained by subtracting 2670 kg/m3 from the density of each

model element. Fig. 8h shows the combined gravitational attraction of the sedimentary basin tesseroid

http://igppweb.ucsd.edu/~gabi/rem.html
http://igppweb.ucsd.edu/~gabi/rem.html
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Figure 9. Input data for the South American Moho inversion. (a) Sediment-free Bouguer disturbance for South

America. Obtained by subtracting the total sediment gravitational effect (Fig. 8h) from the Bouguer disturbance

(Fig. 8d). (b) Seismological Moho depth estimates from Assumpção et al. (2013).

model. We subtract the total effect of sediments from the Bouguer disturbance in Fig. 8d to obtain the

sediment-free Bouguer disturbance (Fig. 9a), which will be used as input for the inversion.

The seismic point estimates of Moho depth used in the cross-validation procedure are from the

data set of Assumpção et al. (2013). The 937 data points in this data set are shown in Fig. 9b.

4.2 Inversion and cross-validation

As in the CRUST1.0 synthetic data test (section 3.2), we perform the cross-validation in two parts.

First, we run the cross-validation to estimate an optimal regularization parameter (µ). The starting

estimate for all inversions is 60 km depth for all model parameters. For this cross-validation, we keep

zref and ∆ρ fixed to 20 km and 500 kg/m3, respectively. Second, we use the estimated µ to run the

cross-validation to estimate zref and ∆ρ, thus obtaining the final estimated Moho depth model.

We split the sediment-free gravity data into the training and testing data sets. The training data set

is a regular grid with 0.4◦ grid spacing (twice the spacing of the original data grid) and Nlat×Nlon =
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Figure 10. Cross-validation results for the South American Moho inversion. (a) Cross-validation to determine

the regularization parameter µ (Eq. 11). The minimum Mean Square Error (Eq. 19), shown as a red triangle,

corresponds to µ = 10−10. (b) Cross-validation to determine the reference level (zref ) and the density-contrast

(∆ρ). The colored contours represent the Mean Square Error (Eq. 20). The minimum (red triangle) is found at

zref = 35 km and ∆ρ = 400 kg/m3.

201 × 151 grid points, a total of 30,351 observations. The remaining 90,350 points compose the

testing data set. We test 16 values of the regularization parameter (µ) equally spaced on a logarithmic

scale between 10−10 and 10−2. Fig. 10a shows the Mean Square Error (MSE) as a function of µ.

The minimum MSE is found at µ = 10−10, the lowest value of µ tested, suggesting that little or no

regularization is required.

We proceed with the second cross-validation using µ = 10−10 in all inversions. We test all combi-

nations of seven values of zref , from 20 to 35 km with 2.5 km intervals, and seven values of ∆ρ, from

200 to 500 kg/m3 with 50 kg/m3 intervals. Fig. 10b shows a map of the MSE with respect to the

Assumpção et al. (2013) data set. The MSE has a well defined minimum, indicated by the red triangle,

at zref = 35 km and ∆ρ = 400 kg/m3.

4.3 Moho model for South America

The final Moho depth model for South America is shown as a pseudo-color map in Fig. 11a. The

model is available in the online repository that accompanies this contribution (see section 2.8). Each

model element is a 0.4◦ × 0.4◦ tesseroid, represented by the pixels in the pseudo-color map.
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Figure 11. Inversion results for the South American Moho. (a) The estimated Moho depth of South America.

The solid light grey line is the 35 km Moho depth contour. (b) Inversion residuals (observed data in Fig. 9a

minus the data predicted by the estimate (a)). (c) Differences between the seismological depths of Assumpção

et al. (2013) and our gravity-derived estimate shown in (a). The inset in (c) shows a histogram of the differences

along with their calculated mean and standard deviation (std).

Our model differs significantly from CRUST1.0 (Fig. 6a) but contains most of the large-scale

features present in the GMSA12 gravity-derived model of van der Meijde et al. (2013). The deepest

Moho is along the central Andes, reaching depths upward of 70 km. The oceanic areas present the

shallowest Moho, ranging approximately from 7.5 to 20 km. The Brazilian and Guiana shields have a

deeper Moho (greater than 35 km), with the deepest portion in the area of the São Francisco craton.

The Moho is shallower than 35 km along the western Amazon and Andean foreland regions, as well

as along the Amazon river.
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Fig. 11b shows the inversion residuals (observed minus predicted data) and Fig. 11c shows the

differences between the seismic-derived depths of Assumpção et al. (2013) (Fig. 9b) and the depths

in our model. The differences range from approximately -23 to 23 km and have a mean of 1.18 km

and a standard deviation of 6.84 km. The residuals and differences from seismic are smallest in the

oceanic areas, southern Patagonia, and the eastern coast of the continent. The largest residuals are

located along the Andes and correlate with the deepest Moho depths. These large residuals follow a

pattern of a negative value in the center flanked by positive values to the East and West. This same

pattern is observed in the CRUST1.0 synthetic test results (Fig. 7), suggesting that this is a byprod-

uct of the inversion method, not the data. Likewise, larger residuals also appear to be associated with

sharp variations in the estimated Moho depth. Along the Andes, large differences with seismic data are

correlated with the large inversion residuals. Conversely, this correlation is absent from the large dif-

ferences seen in points around Venezuela. In the Borborema province, northeastern Brazil, our model

slightly overestimates the Moho depth. On the other hand, our model underestimates the depths in the

Amazon region and the Paraná basin. Particularly in the Amazon basin, where our model predicts a

Moho depth of approximately 30 km, the residuals and the differences with the seismic data are larger

than in the Paraná basin.

5 CONCLUSIONS

We have developed a computationally efficient gravity inversion method in spherical coordinates. Our

method extends the Gauss-Newton formulation of Bott’s method (Silva et al. 2014) to use tesseroids

as model elements and smoothness regularization. We retain the computational efficiency of Bott’s

method by taking advantage of the sparse nature of all matrices involved. We employ two cross-

validation techniques to estimate the hyper-parameters of the inversion: the regularization parameter,

the Moho density-contrast, and the Normal Earth Moho depth.

The test on simple synthetic data shows that our inversion method is able to recover a smooth

Moho relief with a homogeneous density-contrast. The inversion was not able to fully recover the

shortest wavelength feature in the model, possibly due to the smoothness constraints which tends to

soften high-frequency (sharp) variations. The cross-validation Mean Square Error curve in Fig. 5e has

a well-defined minimum, indicating a value of the regularization parameter (µ) whose corresponding

estimate best predicts data that were not included in the inversion. Using this value of µ in the inversion

leads to a smooth Moho relief and acceptable data misfit.

The source code profiling results presented in Table 1 confirm the efficiency of the proposed

method. When using sparse matrices, solving linear systems and performing matrix multiplications

together account for a mere 0.067% of the total computation time required for a single inversion.



25

The majority of the computation time (99.824%) is spent on forward modeling. Thus, we are able to

retain the high computational efficiency of Bott’s method while using a classic Tikhonov regularization

formulation. This approach could, in theory, be extended to other types of regularization (e.g., Total

Variation) and misfit functions (e.g., re-weighted least squares) already available in the literature. For

example, the Total Variation approach used by Martins et al. (2011) could potentially be implemented

in a more straight forward manner than done by Santos et al. (2015).

The more complex synthetic data test based on CRUST1.0 (Fig. 7) shows that the cross-validation

using pointwise Moho depth information is able to correctly estimate the density-contrast (∆ρ) and

Normal Earth Moho depth (zref ). This test indicates that the inversion neither correctly estimates

Moho depth nor adequately fits the gravity and pointwise data when sharp variations in Moho depth

occur. This phenomenon is particularly strong in the region below the Andes. A likely explanation is

that the smoothness regularization is intrinsically unable to produce sharp variations in Moho depth.

These effects might be mitigated with the use of sharpness-inducing regularization, like Total Variation

(Martins et al. 2011), Cauchy norm regularization (Sacchi & Ulrych 1996; Pilkington 2008), or an

adaptive mixed smoothness-sharpness regularization (Sun & Li 2014).

We applied the method proposed here to estimate the Moho depth for South America. Our Moho

depth model is in accordance with previous results by van der Meijde et al. (2013). The model fits

well the gravity and seismic data in all oceanic regions, the central portion of the Andean foreland,

Patagonia, and coastal and central parts of Brazil. However, the model is unable to fit the gravity and

seismic data in places with sharp variations in Moho depth, particularly below the Andes. This might

indicate the improper use of smoothness regularization, as suggested by the CRUST1.0 synthetic data

test, or the presence of crustal or mantle density anomalies that were unaccounted for during the data

corrections. In the coastal region of Venezuela, along the central Amazon and Solimões basins, and

in the Paraná basin, the model is able to fit the gravity data but differs significantly from the seismic

data. Mariani et al. (2013) and Nunn & Aires (1988) explain these discrepancies in the Paraná and

Amazon basins, respectively, as high density rocks in the lower crust. In general, differences between

a gravity and a seismically derived Moho model may indicate the presence of crustal or mantle density

anomalies that were unaccounted for in the data processing. Such locations warrant further detailed

investigation.
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