
Euler deconvolution of potential field data
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In this tutorial we’ll talk about a widely used method of interpretation for potential-field data called Eu-
ler deconvolution. Our goal is to demonstrate its usefulness and, most importantly, call attention to some
pitfalls encountered in the interpretation of the results. The code and synthetic data required to repro-
duce our results and figures can be found in the accompanying IPython notebooks (ipython.org/notebook)
at dx.doi.org/10.6084/m9.figshare.923450 or github.com/pinga-lab/paper-tle-euler-tutorial. The note-
books also expand the analysis presented here. We encourage you to download the data and try it on your
software of choice. For this tutorial we’ll use the implementation in the open-source Python package Fa-
tiando a Terra (fatiando.org).

Brief overview

Euler deconvolution was first developed by Thompson (1982) and later extended by Reid et al. (1990).
Since then, it has been adapted and improved upon by Keating (1998), Mushayandebvu et al. (2004), and
many others. This popularity is largely due to its great simplicity of implementation and use, making it the
tool of choice for a quick initial interpretation.

In many cases, maps of gravity and magnetic data (and transformations thereof) provide good constraints
on the horizontal location of an anomaly source. Euler deconvolution adds an extra dimension to the in-
terpretation. It estimates a set of (x, y, z) points that, ideally, fall inside the source of the anomaly. Euler
deconvolution requires the x-, y-, and z-derivatives of the data and a parameter called the structural index
(SI). The SI is an integer number that is related to the homogeneity of the potential field and varies for
different fields and source types (Stavrev and Reid, 2007). For example, in the case of total field magnetic
anomaly data, a sphere is represented by an SI of 3, whereas a dike is represented by an SI of 1. There are
methods that can estimate the SI and we refer the reader to Barbosa et al. (1999) and Melo et al. (2013) for
more information.

An example with synthetic data

The best way to fully grasp the usefulness and limitations of any geophysical method is to apply it in a
controlled setting using synthetic data. To make things more interesting, we’ll apply the Euler deconvolution
on data generated by a model that differs slightly from ideal sources (Figure 1).

First, we need to calculate the 3 directional derivatives of the data. For gridded data, this can be done with
the Fourier transform using module fourier from Fatiando a Terra. Assuming that the data has been
loaded into Numpy arrays x, y, z with the respective x-, y-, z-coordinates of each data point and the array
data with our magnetic data (see the accompanying notebook):

from fatiando.gravmag import fourier
from fatiando import utils
# Need data in SI units
data_si = utils.nt2si(data)
# shape = (ny, nx) number of points in y and x
dx = fourier.derivx(x, y, data_si, shape)
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dy = fourier.derivy(x, y, data_si, shape)
dz = fourier.derivz(x, y, data_si, shape)

Now that we have calculated the derivatives, we have to create a solver to run the deconvolution. Fatiando
provides the Classic solver which uses the whole dataset to estimate a single point (source location). The
usual strategy for multiple sources, introduced by Reid et al. (1990), is to use a moving window over the
data. A point is estimated for each window using the data that fall inside it, producing a large number of
solutions. The challenge then becomes separating the good solutions from the spurious ones. FitzGerald et
al. (2004) provide an overview of different selection criteria. Fatiando provides the MovingWindow solver
that can run a given Euler solver on a moving window (see the accompanying notebook for more details on
the selection criterion used):

from fatiando.gravmag.euler import Classic, MovingWindow
classic = Classic(x, y, z, data_si, dx, dy, dz, struct_index)
solver = MovingWindow(classic, windows=(50, 50), size=(1000, 1000))
solver.fit()

Calling solver.fit() runs the deconvolution using the specified 50 × 50 windows of size 1 km. The
estimated points are stored in the solver.estimate variable.

For comparison, we ran the deconvolution using various different combinations of structural index and
window size. Figure 2 shows scatter plots of the solutions (the typical way Euler solutions are presented).
Notice how changing the window size influences the spread of the solutions and can affect our interpretation.
For example, for a 1 km window and structural index 3, we cannot tell apart the two model bodies in the
left. Furthermore, increasing the structural index will increase the depths of the solutions.

We can view these solutions in 3D using the Fatiando module myv, a wrapper for the Mayavi visualization
software (code.enthought.com/projects/mayavi):

from fatiando.vis import myv
myv.figure()
myv.points(solver.estimate_)
myv.axes(myv.outline(model_bounds))
myv.show()

This will create something similar to Figure 3. Notice that the Euler solutions do fall approximately inside
the sources. However, it is curious how the solutions make arch-like structures that have no relation to the
actual forms of the sources. In fact, Silva et al. (2001) have shown that Euler solutions are biased and that
the bias depends on the moving-window scheme and selection criterion used.

Last few words of caution

We repeat here for emphasis: Euler deconvolution solutions do not represent the three-dimensional outline
of the sources. They indicate, at most, an approximate source location. It is crucial to remember that Euler
solutions are subject to non-uniqueness and bias just like any other geophysical inverse problem. Tests using
synthetic data are indispensable to assert the plausibility of our interpretations.

Corresponding author: leouieda@gmail.com
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Figure 1: Our model (a) and synthetic total field anomaly data (b). The model simulates a dike (blue), a sill
(green), and an intrusive body (red). The data is corrupted with 5 nT pseudo-random Gaussian noise.
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Figure 2: Euler deconvolution solutions for varying structural index (SI) and moving window size.
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Figure 3: 3D view of the Euler deconvolution solutions (black dots) for a moving window of 3 km and
structural index 3.
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