Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 40 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…

// Copyright 2018 PingCAP, Inc. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// you may not use this file except in compliance with the License. | |
// You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, software | |
// distributed under the License is distributed on an "AS IS" BASIS, | |
// See the License for the specific language governing permissions and | |
// limitations under the License. | |
package core | |
import ( | |
"math" | |
"sort" | |
"github.com/pingcap/parser/ast" | |
"github.com/pingcap/tidb/expression" | |
) | |
type joinReorderGreedySolver struct { | |
*baseSingleGroupJoinOrderSolver | |
eqEdges []*expression.ScalarFunction | |
} | |
// solve reorders the join nodes in the group based on a greedy algorithm. | |
// | |
// For each node having a join equal condition with the current join tree in | |
// the group, calculate the cumulative join cost of that node and the join | |
// tree, choose the node with the smallest cumulative cost to join with the | |
// current join tree. | |
// | |
// cumulative join cost = CumCount(lhs) + CumCount(rhs) + RowCount(join) | |
// For base node, its CumCount equals to the sum of the count of its subtree. | |
// See baseNodeCumCost for more details. | |
// TODO: this formula can be changed to real physical cost in future. | |
// | |
// For the nodes and join trees which don't have a join equal condition to | |
// connect them, we make a bushy join tree to do the cartesian joins finally. | |
func (s *joinReorderGreedySolver) solve(joinNodePlans []LogicalPlan) (LogicalPlan, error) { | |
for _, node := range joinNodePlans { | |
_, err := node.recursiveDeriveStats() | |
if err != nil { | |
return nil, err | |
} | |
s.curJoinGroup = append(s.curJoinGroup, &jrNode{ | |
p: node, | |
cumCost: s.baseNodeCumCost(node), | |
}) | |
} | |
sort.SliceStable(s.curJoinGroup, func(i, j int) bool { | |
return s.curJoinGroup[i].cumCost < s.curJoinGroup[j].cumCost | |
}) | |
var cartesianGroup []LogicalPlan | |
for len(s.curJoinGroup) > 0 { | |
newNode, err := s.constructConnectedJoinTree() | |
if err != nil { | |
return nil, err | |
} | |
cartesianGroup = append(cartesianGroup, newNode.p) | |
} | |
return s.makeBushyJoin(cartesianGroup), nil | |
} | |
func (s *joinReorderGreedySolver) constructConnectedJoinTree() (*jrNode, error) { | |
curJoinTree := s.curJoinGroup[0] | |
s.curJoinGroup = s.curJoinGroup[1:] | |
for { | |
bestCost := math.MaxFloat64 | |
bestIdx := -1 | |
var finalRemainOthers []expression.Expression | |
var bestJoin LogicalPlan | |
for i, node := range s.curJoinGroup { | |
newJoin, remainOthers := s.checkConnectionAndMakeJoin(curJoinTree.p, node.p) | |
if newJoin == nil { | |
continue | |
} | |
_, err := newJoin.recursiveDeriveStats() | |
if err != nil { | |
return nil, err | |
} | |
curCost := s.calcJoinCumCost(newJoin, curJoinTree, node) | |
if bestCost > curCost { | |
bestCost = curCost | |
bestJoin = newJoin | |
bestIdx = i | |
finalRemainOthers = remainOthers | |
} | |
} | |
// If we could find more join node, meaning that the sub connected graph have been totally explored. | |
if bestJoin == nil { | |
break | |
} | |
curJoinTree = &jrNode{ | |
p: bestJoin, | |
cumCost: bestCost, | |
} | |
s.curJoinGroup = append(s.curJoinGroup[:bestIdx], s.curJoinGroup[bestIdx+1:]...) | |
s.otherConds = finalRemainOthers | |
} | |
return curJoinTree, nil | |
} | |
func (s *joinReorderGreedySolver) checkConnectionAndMakeJoin(leftNode, rightNode LogicalPlan) (LogicalPlan, []expression.Expression) { | |
var usedEdges []*expression.ScalarFunction | |
remainOtherConds := make([]expression.Expression, len(s.otherConds)) | |
copy(remainOtherConds, s.otherConds) | |
for _, edge := range s.eqEdges { | |
lCol := edge.GetArgs()[0].(*expression.Column) | |
rCol := edge.GetArgs()[1].(*expression.Column) | |
if leftNode.Schema().Contains(lCol) && rightNode.Schema().Contains(rCol) { | |
usedEdges = append(usedEdges, edge) | |
} else if rightNode.Schema().Contains(lCol) && leftNode.Schema().Contains(rCol) { | |
newSf := expression.NewFunctionInternal(s.ctx, ast.EQ, edge.GetType(), rCol, lCol).(*expression.ScalarFunction) | |
usedEdges = append(usedEdges, newSf) | |
} | |
} | |
if len(usedEdges) == 0 { | |
return nil, nil | |
} | |
var otherConds []expression.Expression | |
mergedSchema := expression.MergeSchema(leftNode.Schema(), rightNode.Schema()) | |
remainOtherConds, otherConds = expression.FilterOutInPlace(remainOtherConds, func(expr expression.Expression) bool { | |
return expression.ExprFromSchema(expr, mergedSchema) | |
}) | |
return s.newJoinWithEdges(leftNode, rightNode, usedEdges, otherConds), remainOtherConds | |
} |