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Abstract
Multithreaded programming is notoriously difficult to get right. A
key problem is non-determinism, which complicates debugging,
testing, and reproducing errors. One way to simplify multithrea-
ded programming is to enforce deterministic execution, but cur-
rent deterministic systems for C/C++ are incomplete or impractical.
These systems require program modification, do not ensure deter-
minism in the presence of data races, do not work with general-
purpose multithreaded programs, or run up to 8.4× slower than
pthreads.

This paper presents DTHREADS, an efficient deterministic mul-
tithreading system for unmodified C/C++ applications that replaces
the pthreads library. DTHREADS enforces determinism in the
face of data races and deadlocks. DTHREADS works by explod-
ing multithreaded applications into multiple processes, with pri-
vate, copy-on-write mappings to shared memory. It uses standard
virtual memory protection to track writes, and deterministically or-
ders updates by each thread. By separating updates from differ-
ent threads, DTHREADS has the additional benefit of eliminating
false sharing. Experimental results show that DTHREADS substan-
tially outperforms a state-of-the-art deterministic runtime system,
and for a majority of the benchmarks evaluated here, matches and
occasionally exceeds the performance of pthreads.

1. Introduction
The advent of multicore architectures has increased the demand
for multithreaded programs, but writing them remains painful. It is
notoriously far more challenging to write concurrent programs than
sequential ones because of the wide range of concurrency errors,
including deadlocks and race conditions [16, 20, 21]. Because
thread interleavings are non-deterministic, different runs of the
same multithreaded program can unexpectedly produce different
results. These “Heisenbugs” greatly complicate debugging, and
eliminating them requires extensive testing to account for possible
thread interleavings [2, 11].

Instead of testing, one promising alternative approach is to at-
tack the problem of concurrency bugs by eliminating its source:
non-determinism. A fully deterministic multithreaded system would

prevent Heisenbugs by ensuring that executions of the same pro-
gram with the same inputs always yield the same results, even in the
face of race conditions in the code. Such a system would not only
dramatically simplify debugging of concurrent programs [13] and
reduce testing overhead, but would also enable a number of other
applications. For example, a deterministic multithreaded system
would greatly simplify record and replay for multithreaded pro-
grams by eliminating the need to track memory operations [14, 19],
and it would enable the execution of multiple replicas of multithrea-
ded applications for fault tolerance [4, 7, 10, 23].

Several recent software-only proposals aim at providing deter-
ministic multithreading for C/C++ programs, but these suffer from
a variety of disadvantages. Kendo ensures determinism of synchro-
nization operations with low overhead, but does not guarantee de-
terminism in the presence of data races [22]. Grace prevents all
concurrency errors but is limited to fork-join programs. Although
it can be efficient, it often requires code modifications to avoid
large runtime overheads [6]. CoreDet, a compiler and runtime sys-
tem, enforces deterministic execution for arbitrary multithreaded
C/C++ programs [3]. However, it exhibits prohibitively high over-
head, running up to 8.4× slower than pthreads (see Section 6)
and generates thread interleavings at arbitrary points in the code,
complicating program debugging and testing.

Contributions
This paper presents DTHREADS, a deterministic multithreading
(DMT) runtime system with the following features:

• DTHREADS guarantees deterministic execution of multithrea-
ded programs even in the presence of data races. Given the same
sequence of inputs or OS events, a program using DTHREADS
always produces the same output.

• DTHREADS is straightforward to deploy: it replaces the pthreads
library, requiring no recompilation or code changes.

• DTHREADS is robust to changes in inputs, architectures, and
code, enabling printf debugging of concurrent programs.

• DTHREADS eliminates cache-line false sharing, a notorious
performance problem for multithreaded applications.

• DTHREADS is efficient. It nearly matches or even exceeds the
performance of pthreads for the majority of the benchmarks
examined here.

DTHREADS works by exploding multithreaded applications into
multiple processes, with private, copy-on-write mappings to shared
memory. It uses standard virtual memory protection to track writes,
and deterministically orders updates by each thread. By separating
updates from different threads, DTHREADS has the additional ben-
efit of eliminating false sharing.

Our key insight is counterintuitive: the runtime costs and ben-
efits of DTHREADS’ mechanisms (processes, protection faults,
copying and diffing, and false sharing elimination) balance out, for



the majority of applications we evaluate here, the costs and benefits
of pthreads (threads, no protection faults, and false sharing).

By committing changes only when needed, DTHREADS amor-
tizes most of its costs. For example, because it only uses virtual
memory protection to track the first write to a page, DTHREADS
amortizes the cost of a fault over the length of a transaction.

DTHREADS provides deterministic execution while performing
as well as or even better than pthreads for the majority of appli-
cations examined here, including much of the PARSEC benchmark
suite (designed to be representative of next-generation shared-me-
mory programs for chip-multiprocessors). DTHREADS isn’t suit-
able for all applications: DTHREADS intercepts communication us-
ing the pthreads API, so programs using ad-hoc synchroniza-
tion will not work with DTHREADS. Other application character-
istics make it impossible for DTHREADS to amortize the costs of
isolation and synchronization, resulting in poor performance. De-
spite these and other limitations, which we discuss in-depth in Sec-
tion 7.2, DTHREADS still outperforms the previous state-of-the-art
deterministic system by between 14% and 11.2× when evaluated
using 14 parallel benchmarks.

DTHREADS marks a significant advance over the state of the
art in deployability and performance, and provides promising evi-
dence that fully deterministic multithreaded programming may be
practical.

2. Related Work
The area of deterministic multithreading has seen considerable
recent activity. Due to space limitations, we focus here on software-
only, non language-based approaches.

Grace prevents a wide range of concurrency errors, including
deadlocks, race conditions, ordering and atomicity violations by
imposing sequential semantics on threads with speculative ex-
ecution [6]. DTHREADS borrows Grace’s threads-as-processes
paradigm to provide memory isolation, but differs from Grace in
terms of semantics, generality, and performance.

Because it provides the effect of a serial execution of all threads,
one by one, Grace rules out all interthread communication, in-
cluding updates to shared memory, condition variables, and bar-
riers. Grace supports only a restricted class of multithreaded pro-
grams: fork-join programs (limited to thread create and join). Un-
like Grace, DTHREADS can run most general-purpose multithrea-
ded programs while guaranteeing deterministic execution.

DTHREADS enables far higher performance than Grace for sev-
eral reasons: It deterministically resolves conflicts, while Grace
must rollback and re-execute threads that update any shared pages
(requiring code modifications to avoid serialization); DTHREADS
prevents false sharing while Grace exacerbates it; and DTHREADS
imposes no overhead on reads.

CoreDet is a compiler and runtime system that represents the
current state-of-the-art in deterministic, general-purpose software
multithreading [3]. It uses alternating parallel and serial phases,
and a token-based global ordering that we adapt for DTHREADS.
Like DTHREADS, CoreDet guarantees deterministic execution in
the presence of races, but with different mechanisms that impose
a far higher cost: on average 3.5× slower and as much as 11.2×
slower than DTHREADS (see Section 6). The CoreDet compiler
instruments all reads and writes to memory that it cannot prove
by static analysis to be thread-local. CoreDet also serializes all
external library calls, except for specific variants provided by the
CoreDet runtime.

CoreDet and DTHREADS also differ semantically. DTHREADS
only allows interleavings at synchronization points, but CoreDet
relies on the count of instructions retired to form quanta. This ap-
proach makes it impossible to understand a program’s behavior by
examining the source code—the only way to know what a program
does in CoreDet (or dOS and Kendo, which rely on the same mech-

anism) is to execute it on the target machine. This instruction-based
commit schedule is also brittle: even small changes to the input
or program can cause a program to behave differently, effectively
ruling out printf debugging. DTHREADS uses synchronization
operations as boundaries for transactions, so changing the code or
input does not affect the schedule as long as the sequence of syn-
chronization operations remains unchanged. We call this more sta-
ble form of determinism robust determinism.

dOS [4] is an extension to CoreDet that uses the same deter-
ministic scheduling framework. dOS provides deterministic pro-
cess groups (DPGs), which eliminate all internal non-determinism
and control external non-determinism by recording and replaying
interactions across DPG boundaries. dOS is orthogonal and com-
plementary to DTHREADS, and in principle, the two could be com-
bined.

Determinator is a microkernel-based operating system that en-
forces system-wide determinism [1]. Processes on Determinator
run in isolation, and are able to communicate only at explicit syn-
chronization points. For programs that use condition variables, De-
terminator emulates a legacy thread API with quantum-based de-
terminism similar to CoreDet. This legacy support suffers from the
same performance and robustness problems as CoreDet.

Like Determinator, DTHREADS isolates threads by running
them in separate processes, but natively supports all pthreads
communication primitives. DTHREADS is a drop-in replacement
for pthreads that needs no special operating system support.

Finally, some recent proposals provide limited determinism.
Kendo guarantees a deterministic order of lock acquisitions on
commodity hardware (“weak determinism”); Kendo only enforces
full (“strong”) determinism for race-free programs [22]. TERN [15]
uses code instrumentation to memoize safe thread schedules for
applications, and uses these memoized schedules for future runs on
the same input. Unlike these systems, DTHREADS guarantees full
determinism even in the presence of races.

3. DTHREADS Overview
We begin our discussion of how DTHREADS works with an exam-
ple execution of a simple, racy multithreaded program, and explain
at a high level how DTHREADS enforces deterministic execution.

Figure 1 shows a simple multithreaded program that, because of
data races, non-deterministically produces the outputs “1,0,” “0,1”
and “1,1.” With pthreads, the order in which these modifications
occur can change from run to run, resulting in non-deterministic
output.

With DTHREADS, however, this program always produces the
same output, (“1,1”), which corresponds to exactly one possible
thread interleaving. DTHREADS ensures determinism using the fol-
lowing key approaches, illustrated in Figure 2:

Isolated memory access: In DTHREADS, threads are imple-
mented using separate processes with private and shared views of
memory, an idea introduced by Grace [6]. Because processes have
separate address spaces, they are a convenient mechanism to iso-
late memory accesses between threads. DTHREADS uses this isola-
tion to control the visibility of updates to shared memory, so each
“thread” operates independently until it reaches a synchronization
point (see below). Section 4.1 discusses the implementation of this
mechanism in depth.

Deterministic memory commit: Multithreaded programs of-
ten use shared memory for communication, so DTHREADS must
propagate one thread’s writes to all other threads. To ensure deter-
ministic execution, these updates must be applied at deterministic
times, and in a deterministic order.

DTHREADS updates shared state in sequence at synchroniza-
tion points. These points include thread creation and exit; mutex
lock and unlock; condition variable wait and signal; posix sigwait
and signal; and barrier waits. Between synchronization points, all



int a = b = 0;
main() {

pthread_create(&p1, NULL, t1, NULL);
pthread_create(&p2, NULL, t2, NULL);
pthread_join(&p1, NULL);
pthread_join(&p2, NULL);
printf ("%d,%d\n", a, b);

}

void * t1 (void *) {
if (b == 0) {

a = 1;
}
return NULL;

}

void * t2 (void *) {
if (a == 0) {

b = 1;
}
return NULL;

}

Figure 1. A simple multithreaded program with data races on a and b. With pthreads, the output is non-deterministic, but DTHREADS
guarantees the same output on every execution.

code effectively executes within an atomic transaction. This com-
bination of memory isolation between synchronization points with
a deterministic commit protocol guarantees deterministic execution
even in the presence of data races.

Deterministic synchronization: DTHREADS supports the full
array of pthreads synchronization primitives. Because current
operating systems make no guarantees about the order in which
threads will acquire locks, wake from condition variables, or pass
through barriers, DTHREADS re-implements these primitives to
guarantee a deterministic ordering. Details on the DTHREADS im-
plementations of these primitives are given in Section 4.3.

Twinning and diffing: Before committing updates, DTHREADS
first compares each modified page to a “twin” (copy) of the origi-
nal shared page, and then writes only the modified bytes (diffs) into
shared state (see Section 5 for optimizations that avoid copying and
diffing). This algorithm is adapted from the distributed shared me-
mory systems TreadMarks and Munin [12, 17]. The order in which
threads write their updates to shared state is enforced by a single
global token passed from thread to thread; see Section 4.2 for full
details.

Fixing the data race example
Returning to the example program in Figure 1, we can now see
how DTHREADS’ memory isolation and a deterministic commit
order ensure deterministic output. DTHREADS effectively isolates
each thread from each other until it completes, and then orders
updates by thread creation time using a deterministic last-writer-
wins protocol.

At the start of execution, thread 1 and thread 2 have the same
view of shared state, with a = 0 and b = 0. Because changes by
one thread to the value of a or b will not be made visible to the
other until thread exit, both threads’ checks on line 2 will be true.
Thread 1 sets the value of a to 1, and thread 2 sets the value of b to
1. These threads then commit their updates to shared state and exit,
with thread 1 always committing before thread 2. The main thread
then has an updated view of shared memory, and prints “1, 1” on
every execution.

This determinism not only enables record-and-replay and repli-
cated execution, but also effectively converts Heisenbugs into
“Bohr” bugs, making them reproducible. In addition, DTHREADS
optionally reports any conflicting updates due to racy writes, fur-
ther simplifying debugging.

4. DTHREADS Architecture
This section describes DTHREADS’ key algorithms—memory iso-
lation, deterministic (diff-based) memory commit, deterministic
synchronization, and deterministic memory allocation—as well as
other implementation details.

4.1 Isolated Memory Access
To achieve deterministic memory access, DTHREADS isolates me-
mory accesses among different threads between commit points, and
commits the updates of each thread deterministically.

DTHREADS achieves cross-thread memory isolation by re-
placing threads with processes. In a multithreaded program run-
ning with pthreads, threads share all memory except for the
stack. Changes to memory immediately become visible to all
other threads. Threads share the same file descriptors, sockets,
device handles, and windows. By contrast, because DTHREADS
runs threads in separate processes, it must manage these shared
resources explicitly.
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Figure 2. An overview of DTHREADS execution.

4.1.1 Thread Creation
DTHREADS replaces the pthread_create() function with the
clone system call provided by Linux. To create processes that
have disjoint address spaces but share the same file descriptor table,
DTHREADS uses the CLONE_FILES flag. DTHREADS shims the
getpid() function to return a single, globally-shared identifier.

4.1.2 Deterministic Thread Index
POSIX does not guarantee deterministic process or thread identi-
fiers; that is, the value of a process id or thread id is not determin-
istic. To avoid exposing this non-determinism to threads running
as processes, DTHREADS shims pthread_self() to return an
internal thread index. The internal thread index is managed using a
single global variable that is incremented on thread creation. This
unique thread index is also used to manage per-thread heaps and as
an offset into an array of thread entries.

4.1.3 Shared Memory
To create the illusion of different threads sharing the same address
space, DTHREADS uses memory mapped files to share memory
across processes (globals and the heap, but not the stack; see Sec-
tion 7).

DTHREADS creates two different mappings for both the heap
and the globals. One is a shared mapping, which is used to hold
shared state. The other is a private, copy-on-write (COW) per-
process mapping that each process works on directly. Private map-
pings are linked to the shared mapping through a single fixed-size



memory-mapped file. Reads initially go directly to the shared map-
ping, but after the first write operation, both reads and writes are
entirely private.

Memory allocations from the shared heap use a scalable per-
thread heap organization loosely based on Hoard [5] and built
using HeapLayers [8]. DTHREADS divides the heap into a fixed
number of sub-heaps (currently 16). Each thread uses a hash of its
deterministic thread index to find the appropriate sub-heap.

4.2 Deterministic Memory Commit
Figure 3 illustrates the progression of parallel and serial phases.
To guarantee determinism, DTHREADS isolates memory accesses
in the parallel phase. These accesses work on private copies of
memory; that is, updates are not shared between threads during the
parallel phase. When a synchronization point is reached, updates
are applied (and made visible) in a deterministic order. This section
describes the mechanism used to alternate between parallel and
serial execution phases and guarantee deterministic commit order,
and the details of commits to shared memory.

4.2.1 Fence and Token
The boundary between the parallel and serial phases is the internal
fence. We implement this fence with a custom barrier, because the
standard pthreads barrier does not support a dynamic thread
count (see Section 4.3).

Threads wait at the internal fence until all threads from the
previous fence have departed. Waiting threads must block until the
departure phase. If the thread is the last to enter the fence, it initiates
the departure phase and wakes all waiting threads. As threads leave
the fence, they decrement the waiting thread count. The last thread
to leave sets the fence to the arrival phase and wakes any waiting
threads.

To reduce overhead, whenever the number of running threads is
less than or equal to the number of cores, waiting threads block
by spinning rather than by invoking relatively expensive cross-
process pthreads mutexes. When the number of threads exceeds
the number of cores, DTHREADS falls back to using pthreads
mutexes.

A key mechanism used by DTHREADS is its global token. To
guarantee determinism, each thread must wait for the token before
it can communicate with other threads. The token is a shared
pointer that points to the next runnable thread entry. Since the token
is unique in the entire system, waiting for the token guarantees a
global order for all operations in the serial phase.

DTHREADS uses two internal subroutines to manage tokens.
The waitToken function first waits at the internal fence and then
waits to acquire the global token before entering serial mode. The
putToken function passes the token to the next waiting thread.

Thread 2

Thread 1

Thread 3

Parallel Phase Serial Phase

Time

Transaction 
Start Commit Token 

PassingSync

Figure 3. An overview of DTHREADS phases. Program execution
with DTHREADS alternates between parallel and serial phases.

To guarantee determinism (see Figure 3), threads leaving the
parallel phase must wait at the internal fence before they can enter
into the serial phase (by calling waitToken). Note that it is
crucial that threads wait at the fence even for a thread which is
guaranteed to obtain the token next, since one thread’s commits
can affect another threads’ behavior if there is no fence.

4.2.2 Commit Protocol
Figure 2 shows the steps taken by DTHREADS to capture modifi-
cations to shared state and expose them in a deterministic order. At
the beginning of the parallel phase, threads have a read-only map-
ping for all shared pages. If a thread writes to a shared page during
the parallel phase, this write is trapped and re-issued on a private
copy of the shared page. Reads go directly to shared memory and
are not trapped. In the serial phase, threads commit their updates
one at a time. The first thread to commit to a page can directly copy
its private copy to the shared state, but subsequent commits must
copy only the modified bytes. DTHREADS computes diffs from a
twin page, an unmodified copy of the shared page created at the
beginning of the serial phase. At the end of the serial phase, private
copies are released and these addresses are restored to read-only
mappings of the shared memory.

At the start of every transaction (that is, right after a syn-
chronization point), DTHREADS starts by write-protecting all
previously-written pages. The old working copies of these pages
are then discarded, and mappings are then updated to reference the
shared state.

Just before every synchronization point, DTHREADS first waits
for the global token (see below), and then commits all changes from
the current transaction to the shared pages in order. DTHREADS
maintains one “twin” page (a snapshot of the original) for every
modified page with more than one writer. If the version number of
the private copy matches the shared page, then the current thread
must be the first thread to commit. In this case, the working copy
can be copied directly to the shared state. If the version numbers do
not match, then another thread has already committed changes to
the page and a diff-based commit must be used.

Once changes have been committed, the number of writers to
the page is decremented and the shared page’s version number is
incremented. If there are no writers left to commit, the twin page is
freed.

4.3 Deterministic Synchronization
DTHREADS enforces determinism for the full range of synchro-
nization operations in the pthreads API, including locks, condi-
tion variables, barriers and various flavors of thread exit.

4.3.1 Locks
DTHREADS uses a single global token to guarantee ordering and
atomicity during the serial phase. When acquiring a lock, threads
must first wait for the global token. Once a thread has the token
it can attempt to acquire the lock. If the lock is currently held, the
thread must pass the token and wait until the next serial phase to
acquire the lock. It is possible for a program run with DTHREADS
to deadlock, but only for programs that can also deadlock with
pthreads.

Lock acquisition proceeds as follows. First, DTHREADS checks
to see if the current thread is already holding any locks. If not, the
thread first waits for the token, commits changes to shared state by
calling atomicEnd, and begins a new atomic section. Finally, the
thread increments the number of locks it is currently holding. The
lock count ensures that a thread does not pass the token on until it
has released all of the locks it acquired in the serial phase.

pthread_mutex_unlock’s implementation is similar. First,
the thread decrements its lock count. If no more locks are held,
any local modifications are committed to shared state, the token



is passed, and a new atomic section is started. Finally, the thread
waits on the internal fence until the start of the next round’s parallel
phase. If other locks are still held, the lock count is just decreased
and the running thread continues execution with the global token.

4.3.2 Condition Variables
Guaranteeing determinism for condition variables is more complex
than for mutexes because the operating system does not guarantee
that processes will wake up in the order they waited for a condition
variable.

When a thread calls pthread_cond_wait, it first acquires
the token and commits local modifications. It then removes itself
from the token queue, because threads waiting on a condition vari-
able do not participate in the serial phase until they are awakened.
The thread decrements the live thread count (used for the fence
between parallel and serial phases), adds itself to the condition
variable’s queue, and passes the token. While threads are wait-
ing on DTHREADS condition variables, they are suspended on a
pthreads condition variable. When a thread is awakened (sig-
nalled), it busy-waits on the token before beginning the next trans-
action. Threads must acquire the token before proceeding because
the condition variable wait function must be called within a mutex’s
critical section.

In the DTHREADS implementation of pthread_cond_signal,
the calling thread first waits for the token, and then commits any
local modifications. If no threads are waiting on the condition vari-
able, this function returns immediately. Otherwise, the first thread
in the condition variable queue is moved to the head of the token
queue and the live thread count is incremented. This thread is then
marked as ready and woken up from the real condition variable,
and the calling thread begins another transaction.

To impose an order on signal wakeup, DTHREADS signals ac-
tually call pthread_cond_broadcast to wake all waiting
threads, but then marks only the logically next one as ready. The
threads not marked as ready will wait on the condition variable
again.

4.3.3 Barriers
As with condition variables, DTHREADS must ensure that threads
waiting on a barrier do not disrupt token passing among running
threads. DTHREADS removes threads entering into the barrier from
the token queue and places them on the corresponding barrier
queue.

In pthread_barrier_wait, the calling thread first waits
for the token to commit any local modifications. If the current
thread is the last to enter the barrier, then DTHREADS moves the
entire list of threads on the barrier queue to the token queue, in-
creases the live thread count, and passes the token to the first thread
in the barrier queue. Otherwise, DTHREADS removes the current
thread from the token queue, places it on the barrier queue, and
releases token. Finally, the thread waits on the actual pthreads
barrier.

4.3.4 Thread Creation and Exit
To guarantee determinism, thread creation and exit are performed
in the serial phase. Newly-created threads are added to the token
queue immediately after the parent thread. Creating a thread does
not release the token; this approach allows a single thread to quickly
create multiple child threads without having to wait for a new serial
phase for each child thread.

When creating a thread, the parent first waits for the token. It
then creates a new process with shared file descriptors but a distinct
address space using the clone system call. The newly created
child obtains the global thread index, places itself in the token
queue, and notifies the parent that the child has registered itself
in the active list. The child thread then waits for the next parallel
phase before proceeding.

Similarly, DTHREADS’ pthread_exit first waits for the to-
ken and then commits any local modifications to memory. It then
removes itself from the token queue and decreases the number of
threads required to proceed to the next phase. Finally, the thread
passes its token to the next thread in the token queue and exits.

4.3.5 Thread Cancellation
DTHREADS implements thread cancellation in the serial phase. A
thread can only invoke pthread_cancel while holding the to-
ken. If the thread being cancelled is waiting on a condition variable
or barrier, it is removed from the queue. Finally, to cancel the cor-
responding thread, DTHREADS kills the target process with a call
to kill(tid, SIGKILL).

4.4 Deterministic Memory Allocation
Programs sometimes rely on the addresses of objects returned by
the memory allocator intentionally (for example, by hashing ob-
jects based on their addresses), or accidentally. A program with a
memory error like a buffer overflow will yield different results for
different memory layouts.

This reliance on memory addresses can undermine other efforts
to provide determinism. For example, CoreDet is unable to fully
enforce determinism because it relies on the Hoard scalable me-
mory allocator [5]. Hoard was not designed to provide determin-
ism and several of its mechanisms, thread id based hashing and
non-deterministic assignment of memory to threads, lead to non-
deterministic execution in CoreDet for the canneal benchmark.

To preserve determinism in the face of intentional or inadver-
tent reliance on memory addresses, we designed the DTHREADS
memory allocator to be fully deterministic. DTHREADS assigns
subheaps to each thread based on its thread index (determinis-
tically assigned; see Section 4.1.2). In addition to guaranteeing
the same mapping of threads to subheaps on repeated executions,
DTHREADS allocates superblocks (large chunks of memory) de-
terministically by acquiring a lock (and the global token) on each
superblock allocation. Thus, threads always use the same subheaps,
and these subheaps always contain the same superblocks on each
execution. The remainder of the memory allocator is entirely de-
terministic. The superblocks themselves are allocated via mmap:
while DTHREADS could use a fixed address mapping for the heap,
we currently simply disable ASLR to provide deterministic mmap
calls. If a program does not use the absolute address of any heap ob-
ject, DTHREADS can guarantee determinism even with ASLR en-
abled. Hash functions and lock-free algorithms frequently use ab-
solute addresses, and any deterministic multithreading system must
disable ASLR to provide deterministic results for these cases.

4.5 OS Support
DTHREADS provides shims for a number of system calls both for
correctness and determinism (although it does not enforce deter-
ministic arrival of I/O events; see Section 7).

System calls that write to or read from buffers on the heap
(such as read and write) will fail if the buffers contain pro-
tected pages. DTHREADS intercepts these calls and touches each
page passed in as an argument to trigger the copy-on-write opera-
tion before issuing the real system call. DTHREADS conservatively
marks all of these pages as modified so that any updates made by
the system will be committed properly.

DTHREADS also intercepts other system calls that affect pro-
gram execution. For example, when a thread calls sigwait,
DTHREADS behaves much like it does for condition variables. It
removes the calling thread from the token queue before issuing
the system call, and after being awakened the thread must re-insert
itself into the token queue and wait for the token before proceeding.
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Figure 4. Normalized execution time with respect to pthreads (lower is better). For 9 of the 14 benchmarks, DTHREADS runs nearly as
fast or faster than pthreads, while providing deterministic behavior.

5. Optimizations
DTHREADS employs a number of optimizations that improve its
performance.

Lazy commit: DTHREADS reduces copying overhead and the
time spent in the serial phase by lazily committing pages. When
only one thread has ever modified a page, DTHREADS considers
that thread to be the page’s owner. An owned page is committed
to shared state only when another thread attempts to read or write
this page, or when the owning thread attempts to modify it in
a later phase. DTHREADS tracks reads with page protection and
signals the owning thread to commit pages on demand. To reduce
the number of read faults, pages holding global variables (which
we expect to be shared) and any pages in the heap that have ever
had multiple writers are all considered unowned and are not read-
protected.

Lazy twin creation and diff elimination: To further reduce
copying and memory overhead, a twin page is only created when
a page has multiple writers during the same transaction. In the
commit phase, a single writer can directly copy its working copy
to shared state without performing a diff. DTHREADS does this
by comparing the local version number to the global page version
number for each dirtied page. At commit time, DTHREADS directly
copies its working copy for each page whenever its local version
number equals its global version number. This optimization saves
the cost of a twin page allocation, a page copy, and a diff in the
common case where just one thread is the sole writer of a page.

Single-threaded execution: Whenever only one thread is run-
ning, DTHREADS stops using memory protection and treats certain
synchronization operations (locks and barriers) as no-ops. In ad-
dition, when all other threads are waiting on condition variables,
DTHREADS does not commit local changes to the shared mapping
or discard private dirty pages. Updates are only committed when
the thread issues a signal or broadcast call, which wakes up at least
one thread and thus requires that all updates be committed.

Lock ownership: DTHREADS uses lock ownership to avoid
unnecessary waiting when threads are using distinct locks. Initially,
all locks are unowned. Any thread that attempts to acquire a lock
that it does not own must wait until the serial phase to do so.
If multiple threads attempt to acquire the same lock, this lock is
marked as shared. If only one thread attempts to acquire the lock,
this thread takes ownership of the lock and can acquire and release
it during the parallel phase.

Lock ownership can result in starvation if one thread continues
to re-acquire an owned lock without entering the serial phase. To
avoid this, each lock has a maximum number of times it can be
acquired during a parallel phase before a serial phase is required.

Parallelization: DTHREADS attempts to expose as much par-
allelism as possible in the runtime system itself. One optimiza-
tion takes place at the start of trasactions, where DTHREADS per-
forms a variety of cleanup tasks. These include releasing private
page frames, and resetting pages to read-only mode by calling the
madvise and mprotect system calls. If all this cleanup work
is done simultaneously for all threads in the beginning of parallel
phase (Figure 3), this can hurt performance for some benchmarks.

Since these operations do not affect other the behavior of other
threads, most of this work can be parallelized with other threads’
commit operations without holding the global token. With this
optimization, the token is passed to the next thread as soon as
possible, saving time in the serial phase. Before passing the token,
any local copies of pages that have been modified by other threads
must be discarded, and the shared read-only mapping is restored.
This ensures all threads have a complete image of this page which
later transactions may refer to. In the actual implementation, this
cleanup occurs at the end of each transaction.

6. Evaluation
We perform our evaluation on an Intel Core 2 dual-processor CPU
system equipped with 16GB of RAM. Each processor is a 4-core
64-bit Xeon running at 2.33GHZ with a 4MB L2 cache. The operat-
ing system is CentOS 5.5 (unmodified), running with Linux kernel
version 2.6.18-194.17.1.el5. The glibc version is 2.5. Benchmarks
were built as 32-bit executables with version 2.6 of the LLVM com-
piler.

6.1 Methodology
We evaluate the performance and scalability of DTHREADS versus
CoreDet and pthreads across the PARSEC [9] and Phoenix [24]
benchmark suites. We do not include results for bodytrack,
fluidanimate, x.264, facesim, vips, and raytrace
benchmarks from PARSEC, since they do not currently work with
DTHREADS (note that many of these also do not work for CoreDet).

In order to compare performance directly against CoreDet,
which relies on the LLVM infrastructure [18], all benchmarks
are compiled with the LLVM compiler at the “-O3” optimization
level [18]. Each benchmark is executed ten times on a quiescent
machine. To reduce the effect of outliers, the lowest and highest
execution times for each benchmark are discarded, so each result is
the average of the remaining eight runs.

Tuning CoreDet: The performance of CoreDet [3] is extremely
sensitive to three parameters: the granularity for the ownership ta-
ble (in bytes), the quantum size (in number of instructions retired),
and the choice between full and reduced serial mode. We performed
an extensive search of the parameter space to find the one that
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Figure 5. Speedup with four and eight cores relative to two cores (higher is better). DTHREADS generally scales nearly as well or better
than pthreads and almost always as well or better than CoreDet. CoreDet was unable to run dedup with two cores and ferret with
four cores, so some scalability numbers are missing.

yielded the lowest average normalized runtimes (using six possible
granularities and eight possible quanta for each benchmark), and
found that the best settings on our system were 64-byte granularity
and a quantum size of 100,000 instructions, in full serial mode.

Unsupported Benchmarks: We were unable to evaluate
DTHREADS on seven of the PARSEC benchmarks: vips and
raytrace would not build as 32-bit executables; bodytrack,
facesim, and x264 depend on sharing of stack variables;
fluidanimate uses ad-hoc synchronization, so it will not run
without modifications; and freqmine does not use pthreads.

For all scalability experiments, we logically disable CPUs using
Linux’s CPU hotplug mechanism, which allows us to disable or
enable individual CPUs by writing “0” (or “1”) to a special pseudo-
file (/sys/devices/system/cpu/cpuN/online).

6.2 Determinism
We first experimentally verify DTHREADS’ ability to ensure de-
terminism by executing the racey determinism tester [22]. This
stress test is extremely sensitive to memory-level non-determinism.
DTHREADS reports the same results for 2,000 runs. We also com-
pared the schedules and outputs of all benchmarks used to ensure
that every execution is identical.

6.3 Performance
We next compare the performance of DTHREADS to CoreDet and
pthreads. Figure 4 presents these results graphically (normal-
ized to pthreads).

DTHREADS outperforms CoreDet on 12 out of 14 benchmarks
(between 14% and 11.2× faster); for 8 benchmarks, DTHREADS
matches or outperforms pthreads. DTHREADS results in good
performance for several reasons:

• Process invocation is only slightly more expensive than thread
creation. This is because both rely on the clone system call.
Copy-on-write semantics allow process creation without expen-
sive copying.

• Context switches between processes are more expensive than
for threads because of the required TLB shootdown. The num-
ber of context switches was minimized by running on a quies-
cent system with the number of threads matched to the number
of cores whenever possible.

• DTHREADS incurs no read overhead and very low write over-
head (one page fault per written page), but commits are expen-
sive. Most of our benchmarks (and many real applications) re-
sult in small, infrequent commits.

• DTHREADS isolates updates in separate processes, which can
improve performance by eliminating false sharing. Because
threads actually execute in different address spaces, there is no
coherence traffice between synchronization points.

By eliminating catastrophic false sharing, DTHREADS dramat-
ically improves the performance of the linear_regression
benchmark, running 7× faster than pthreads and 11.2× faster
than CoreDet. The string_match benchmark exhibits a sim-
ilar, if less dramatic, false sharing problem: with DTHREADS, it
runs almost 40% faster than pthreads and 9.2× faster than
CoreDet. Two benchmarks also run faster with DTHREADS than
with pthreads (histogram, 2× and swaptions, 5%; re-
spectively 8.5× and 8.9× faster than with CoreDet). We believe
but have not yet verified that the reason is false sharing.

For some benchmarks, DTHREADS incurs modest overhead. For
example, unlike most benchmarks examined here, which create
long-lived threads, the kmeans benchmark creates and destroys
over 1,000 threads over the course of one run. While Linux pro-
cesses are relatively lightweight, creating and tearing down a pro-
cess is still more expensive than the same operation for threads,
accounting for a 5% performance degradation of DTHREADS over
pthreads (though it runs 4.9× faster than CoreDet).

DTHREADS runs substantially slower than pthreads for 4 of
the 14 benchmarks examined here. The ferret benchmark re-
lies on an external library to analyze image files during the first
stage in its pipelined execution model; this library makes intensive
(and in the case of DTHREADS, unnecessary) use of locks. Lock ac-
quisition and release in DTHREADS imposes higher overhead than
ordinary pthreads mutex operations. More importantly in this
case, the intensive use of locks in one stage forces DTHREADS to
effectively serialize the other stages in the pipeline, which must
repeatedly wait on these locks to enforce a deterministic lock ac-
quisition order. The other three benchmarks (canneal, dedup,
and reverse_index) modify a large number of pages. With
DTHREADS, each page modification triggers a segmentation vio-
lation, a system call to change memory protection, the creation of
a private copy of the page, and a subsequent copy into the shared
space on commit. We note that CoreDet also substantially degrades
performance for these benchmarks, so much of this slowdown may
be inherent to any deterministic runtime system.

6.4 Scalability
To measure the scalability cost of running DTHREADS, we ran
our benchmark suite (excluding canneal) on the same machine
with eight cores, four corse, and just two cores enabled. Whenever
possible without source code modifications, the number of threads



was matched to the number of CPUs enabled. We have found
that DTHREADS scales at least as well as pthreads for 9 of 13
benchmarks, and scales as well or better than CoreDet for all but
one benchmark where DTHREADS outperforms CoreDet by 3.5×.
Detailed results of this experiment are presented in Figure 5 and
discussed below.

The canneal benchmark was excluded from the scalabil-
ity experiment because it matches the workload to the number
of threads, making the comparison between different numbers of
threads invalid. DTHREADS hurts scalability relative to pthreads
for the kmeans, word_count, dedup, and streamcluster
benchmarks, although only marginally in most cases. In all of these
cases, DTHREADS scales better than CoreDet.

DTHREADS is able to match the scalability of pthreads for
three benchmarks: matrix_multiply, pca, and blackscholes.
With DTHREADS, scalability actually improves over pthreads
for 6 out of 13 benchmarks. This is because DTHREADS prevents
false sharing, avoiding unnecessary cache invalidations that nor-
mally hurt scalability.

6.5 Performance Analysis
6.5.1 Benchmark Characteristics
The data presented in Table 1 are obtained from the executions
running on all 8 cores. Column 2 shows the percentage of time
spent in the serial phase. In DTHREADS, all memory commits and
actual synchronization operations are performed in the serial phase.
The percentage of time spent in the serial phase thus can affect
performance and scalability. Applications with higher overhead in
DTHREADS often spend a higher percentage of time in the serial
phase, primarily because they modify a large number of pages that
are committed during that phase.

Column 3 shows the number of transactions in each application
and Column 4 provides the average length of each transaction (ms).
Every synchronization operation, including locks, condition vari-
ables, barriers, and thread exits demarcate transaction boundaries in
DTHREADS. For example, reverse_index, dedup, ferret
and streamcluster perform numerous transactions whose ex-
ecution time is less than 1ms, imposing a performance penalty for
these applications. Benchmarks with longer (or fewer) transactions
run almost the same speed as or faster than pthreads, including
histogram or pca. In DTHREADS, longer transactions amortize
the overhead of memory protection and copying.

Column 5 provides more detail on the costs associated with me-
mory updates (the number and total volume of dirtied pages). From
the table, it becomes clear why canneal (the most notable outlier)
runs much slower with DTHREADS than with pthreads. This
benchmark updates over 3 million pages, leading to the creation of
private copies, protection faults, and commits to the shared mem-
ory space. Copying alone is quite expensive: we found that copying
one gigabyte of memory takes approximately 0.8 seconds when us-
ing memcpy, so for canneal, copying overhead alone accounts
for at least 20 seconds of time spent in DTHREADS (out of a total
execution time of 39 seconds).

Conclusion: For the few benchmarks that perform large num-
bers of short-lived transactions, modify a large number of pages
per-transaction, or both, DTHREADS can result in substantial over-
head. Most benchmarks examined here run fewer, longer-running
transactions with a modest number of modified pages. For these
applications, overhead is amortized. With the side-effect of elimi-
nating false sharing, DTHREADS can sometimes even outperform
pthreads.

6.5.2 Performance Impact Analysis
To understand the performance impact of DTHREADS, we re-ran
the benchmark suite on two individual components of DTHREADS:
deterministic synchronization and memory protection.

Serial Transactions Dirtied
Benchmark (% time) Count Time (ms) Pages
histogram 0 23 15.47 29
kmeans 0 3929 3.82 9466
linear_reg. 0 24 23.92 17
matrix_mult. 0 24 841.2 3945
pca 0 48 443 11471
reverseindex 17% 61009 1.04 451876
string_match 0 24 82 41
word_count 1% 90 26.5 5261
blackscholes 0 24 386.9 991
canneal 26.4% 1062 43 3606413
dedup 31% 45689 0.1 356589
ferret 12.3% 11282 1.49 147027
streamcluster 18.4% 130001 0.04 131992
swaptions 0 24 163 867

Table 1. Benchmark characteristics.

Sync-only: This configuration enforces only a deterministic
synchronization order. Threads have direct access to shared me-
mory with no isolation. Overhead from this component is largely
due to load imbalance from the deterministic scheduler.

Prot-only: This configuration runs threads in isolation, with
commits at synchronization points. The synchronization and com-
mit order is not controlled by DTHREADS. This configuration elim-
inates false sharing, but also introduces isolation and commit over-
head. The lazy twin creation and single-threaded execution opti-
mizations are disabled here because they are unsafe without deter-
ministic synchronization.

The results of this experiment are presented in Figure 6 and
discussed below.

• The reverse_index, dedup, and ferret benchmarks
show significant load imbalance with the sync-only configura-
tion. Additionally, these benchmarks have high overhead from
the prot-only configuration because of a large number of trans-
actions.

• Both string_match and histogram run faster with the
sync-only configuration. The reason for this is not obvious, but
may be due to the per-thread allocator.

• Memory isolation in the prot-only configuration eliminates
false sharing, which resulted in speedups for histogram,
linear_regression, and swaptions.

• Normally, the performance of DTHREADS is not better than the
prot-only configuration. However, both ferret and canneal
run faster with deterministic synchronization enabled. Both
benchmarks benefit from optimizations described in Section 5
that are only safe with deterministic synchronization enabled.
ferret benefits from the single threaded execution optimiza-
tion, and canneal sees performance gains due to the shared
twin page optimization.

7. Discussion
All DMT systems must impose an order on updates to shared me-
mory and synchronization operations. The mechanism used to iso-
late updates affects the limitations and performance of the system.
DTHREADS represents a new point in the design space for DMT
systems with some inherent advantages and limitations which we
discuss below.

7.1 Design Tradeoffs
CoreDet and DTHREADS both use a combination of parallel and
serial phases to execute programs deterministically. These two sys-
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Figure 6. Normalized execution time with respect to pthreads (lower is better) for three configurations. The sync-only and prot-only
configurations are described in Section 6.5.2.

tems take different approaches to isolation during parallel execu-
tion, as well as the transitions between phases:

Memory isolation: CoreDet orders updates to shared memory
by instrumenting all memory accesses that could reference shared
data. Synchronization operations and updates to shared memory
must be performed in a serial phase. This approach results in high
instrumentation overhead during parallel execution, but incurs no
additional overhead when exposing updates to shared state.

DTHREADS takes an alternate approach: updates to shared state
proceed at full speed, but are isolated using hardware-supported
virtual memory. When a serial phase is reached, these updates must
be exposed in a deterministic order with the twinning and diffing
method described in Section 4.2.2.

A pleasant side-effect of this approach is the elimination of false
sharing. Because threads work in separate address spaces, there
is no need to keep caches coherent between threads during the
parallel phase. For some programs this results in a performance
improvement as large as 7× when compared to pthreads.

Phases: CoreDet uses a quantum-based scheduler to execute the
serial phase. After the specified number of instructions is executed,
the scheduler transitions to the serial phase. This approach bounds
the waiting time for any threads that are blocked until a serial phase.
One drawback of this approach is that transitions to the serial phase
do not correspond to static program points. Any code changes (and
most inputs) will result in a new, previously-untested schedule.

Transitions between phases are static in DTHREADS. Any syn-
chronization operation will result in a transition to a serial phase,
and parallel execution will resume once all threads have executed
their critical sections. This makes DTHREADS susceptible to delays
due to load imbalance between threads but results in more robust
determinism. With DTHREADS, only the order of synchronization
operations affects the schedule. For most programs this means that
different inputs, and even many code changes, will not change the
schedule produced by DTHREADS.

7.2 Limitations
External non-determinism: DTHREADS provides only internal
determinism. It does not guarantee determinism when a program’s
behavior depends on external events, such as system time or the
arrival order of network packets. The dOS framework is a proposed
OS mechanism that provides system-level determinism [4]. dOS
provides Deterministic Process Groups and a deterministic replay
shim for external events, but uses CoreDet to make each individual
process deterministic. DTHREADS could be used instead CoreDet
within the dOS system, which would add support for controlling
external non-determinism.

Unsupported programs: DTHREADS supports programs that
use the pthreads library, but does not support programs that
bypass it by rolling their own ad hoc synchronization operations.
While ad hoc synchronization is common, it is also a notorious
source of bugs; Xiong et al. show that 22–67% of the uses of ad hoc
synchronization lead to bugs or severe performance issues [25].

DTHREADS does not write-share the stack across threads, so
any updates to stack variables are only locally visible. While shar-
ing of stack variables is supported by pthreads, this practice
is error-prone and relatively uncommon. Support for shared stack
variables could be added to DTHREADS by handling stack memory
like the heap and globals, but this would require additional opti-
mizations to avoid poor performance in the common case where
stack memory is unshared.

Memory consumption: DTHREADS creates private, per-process
copies of modified pages between commits. Because of this, it can
increase a program’s memory footprint by the number of modified
pages between synchronization operations. This increased footprint
does not pose a problem in practice, both because the number of
modified pages is generally far smaller than the number of pages
read, and because it is transitory: all private pages are relinquished
to the operating system (via madvise) at the end of every commit.

Memory consistency: DTHREADS provides a form of release
consistency for parallel programs, where updates are exposed at
static program points. CoreDet’s DMP-B mode also uses release
consistency, but the update points depend on when the quantum
counter reaches zero. To the best of our knowledge, DTHREADS
cannot produce an output that is not possible with pthreads,
although for some cases it will result in unexpected output. When
run with DTHREADS, the example in Figure 1 will always produce
the output “1,1.” This ouptut is also possible with pthreads,
but is much less likely (occurring in just 0.01% of one million
runs) than “1,0” (99.43%) or “0,1” (0.56%). Of course, the same
unexpected output will be produced on every run with DTHREADS,
making it easier for developers to track down the source of the
problem than with pthreads.

8. Conclusion
DTHREADS is a deterministic replacement for the pthreads li-
brary that supports general-purpose multithreaded applications. It
is straightforward to deploy: DTHREADS resuires no source code,
and operates on commodity hardware. By converting threads into
processes, DTHREADS leverages process isolation and virtual me-
mory protection to track and isolate concurrent memory updates
with low overhead. Changes are committed deterministically at nat-
ural synchronization points in the code, rather than at boundaries
based on hardware performance counters. DTHREADS not only en-



sures full internal determinism—eliminating data races as well as
deadlocks—but does so in a way that is portable and easy to un-
derstand. Its software architecture prevents false sharing, a noto-
rious performance problem for multithreaded applications running
on multiple, cache-coherent processors. The combination of these
approaches enables DTHREADS to match or even exceed the per-
formance of pthreads for the majority of the benchmarks ex-
amined here, making DTHREADS a safe and efficient alternative to
pthreads for many applications.
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