Guide to open-source debugging
ATMega328

This guide explains how to use avarice, avr-gdb and avrdude on Fedora 31 to do
some basic debugging using debugWIRE protocol.

Used hardware

* JTAG debugger MKII-CN (EUR 74)
* 10pin to 6pin AVR ISP adapter
* Arduino Uno with ATMega328

MKII is the only debugger that seems to be supported by open-source software. Atmel released
details about the MKII protocol in application note AVR069: AVRISP mKkII Communication Protocol.
The original MKII is not produced anymore and is out of stock. However a Chinese company called
Mcuzone has developed a product called MKII-CN that claims to be 100% compatible to the original
Atmel MKIL. It costs about EUR 74 in 2020 via Aliexpress.

Please be aware when buying the USB AVR JTAGICE MKII-CN that there are various programmers
and JTAG dongles available that will not work for debugging most AVR micro controllers.

* Programmers exists that use the MKII protocol, these programmers will usually sell for around
EUR 20 and have AVRISP mKkII AVR ISP mk2 in the description. These programmers can only
program using ISP protocol and cannot do debugging.

* JTAG ICE programmers exist that cost around EUR 10. Most of these programmers will list a
small number of AVR devices in their product description that are supported. These are all older
AVR’s that have JTAG support. ATmega 16/32/128 and such. It probably won’t work on Linux.

The USB AVR JTAGICE MKII-CN or MKII-CN in short supports both JTAG and debugWIRE protocol on
older and newer AVR’s. So it is the best option to get debugging on a wide range of devices.

Used software

e Fedora 31

AVaRICE version 2.13, Jul 24 2019

avr-gdb 8.1-4

e avrdude version 6.3

Arduino IDE 1.8.13

Barry de Graaff, B.Eng. 1

Preparing Arduino Uno board

For the Atmel ATmega328 datasheet: When designing a system where debugWIRE will be used, the
following observations must be made for correct operation:

 Pull-up resistors on the dW/(RESET) line must not be smaller than 10kQ. The pull-up resistor is
not required for debugWIRE functionality
* Connecting the RESET pin directly to VCC will not work.
* Capacitors connected to the RESET pin must be disconnected when using debugWire.
* All external reset sources must be disconnected.
This means for stable operation a number of components need to be removed from the Arduino

Uno board. After removing these components you will no longer be able to use the DTR line on the
serial port to do a reset.

w 433V SCL re. Y

TMN NCP1117ST80T3G T
DC2.1MMX % i 33V SDA T Bx1F-HE8S
f [T 2 GND 5V +5V 2
GND GND GND
:] 3 Lte ci cs
: ‘ Taruasv 1000 Imcm
GND GND GNO GND | 9 - 0 re) l p __6'_“0_ 1.5
|| Hol | Hof | =«
\ O O
o
' | ==l
5V l
/ ICSP vy —
— Mo =])
< 20 O
‘ 1 DO | I !
o] { 10x1E48.5
X
1 —_— 1
3 9\; SCL
GND — O | SDA
LME206-3.3 N3 T =] % e
oA (B62K) " T B e
3 2 ATmega328 (TQFP) I SCK ‘*06
| 17 i wso | 50|13
el 5 1 RESET (SCK)PBS [~/ | e e G
| \(;OnI - - - 100n ’ (MISO) PB4 o l__.s.so,.s__. _,3.0 1"
= - —t1, L S I B]
oo GND % 21 \‘I S XA SS)PB2 |50 1501
Tisame Ll 1M (0SC1)PB1 : i D
| 7 g 12108 M=
v w5V A e XTALY {ICP) PBO 1OH
! c1 cs
1 20 ooz Bx1F-HES
=t D'f." Il T AREF el iz
— | 100n —— AVce == 1 Olas
o 211 ono (ADCS) PCS |-28__ADS/SCL 550 as
$220108 (ADGA) POA |27 AD4/SDA | 250 s
(a1818) Vee (ADC3)PC3 |28 AD3 I — 35) a2
6N (ADC2)PC2 |25 AD2 [26| as
(ADC1)PC1 ;; '*3; D I
Al -
(ADCO)PCD s
aree k i por Loz Bx1F-HBS
o2 {AING) PDS | 10106 L35,
3 9 105 1 7,
0 {T1)PDS 5 Ol
snop (T0)PD4 |2 104 | Dy P
- (NTHPD3 |__103 | | S
o (NTOjPD2 |-32102 1 B
(rxpj Po1 |-31__101 1 35|5
(Rxp) g 20100 2ol
Ofo
-
1oL
(*) DIGITAL P

Remove C8, R13 and unnumbered diode.

2 Electronic Engineering

SCL SDA 5V GND

3.3V 3.3V GND GND -

Remove C8, R13 and unnumbered diode.

With all components still on the board, you will be able to program the debugWIRE enable fuse
(DWEN), but then you probably end up with a board that cannot connect via debugWIRE. And since
enable debugWIRE will disable ISP programming, you may no longer have a way to program your
board. Initially I used an oscilloscope in component tester mode to find out what components are
connected to the reset line. But in case you have no such option you will have to find the correct
schematics for your board.

Installing software

dnf install avarice avr-gdb avr-gcc ardui no avrdude

I have set up my system so I can run all these commands from my normal user account, but in case
you have issues, sudo it.

Connecting Arduino Uno to MKII-CN using
debugWIRE

You have 2 options to connect the Arduino Uno to the MKII-CN. Option one is using the so called
squid cable that comes with the MKII-CN (or the original MKII if you are lucky enough to have one).

Barry de Graaff, B.Eng. 3

The debugWIRE interface only requires RESET, VCC, and GND. These pins can be found on the 6pin
ISP header.

Arduino Squid Cable color

GND white
VCC purple
RESET green

MISO
SCK
nRESET

ISP header pinouts and squid cable

The VCC line is NOT used to supply power. It is used by the JTAG debugger to measure the operating
voltage of the Arduino. This is why it is referred to as VTref in Atmel documentation. This means
you also need to connect power to the Arduino Uno. Easiest way is to just plug-in the usb cable to
the Arduino and use that for power.

On my board the RESET pin on the ISP header is on the side closest to the center of the board.

The other option to make the connection is using a 10-pin to 6-pin ISP converter and the ISP to JTAG
converter. The latter one uses 10 pin connectors and comes with the MKII-CN.

4 Electronic Engineering

b —ad

“BND TODO ===
=1 RST THS ==

o SCK
—MISO TOI =
NC

~T=¥HOSI TCK ==~

Connection using adapter boards

You may notice a piece of duct tape on the back of my MKII-CN covering a db9 and power jack. This
is because a sticker on the MKII-CN says in Chinese one should not use these connectors. I just
covered these up in case I forget.

Do not program any lock bits if using debugWIRE. This will brick your Arduino.

Barry de Graaff, B.Eng.

Create a basic example for debugging

The Arduino IDE does not support debugging and the ATMega328 does not support hardware
breakpoints. This means the easiest way to have breakpoints is adding them to your C code using
an inline assembly instruction like this:

asm(" break");

To test this breakpoint we use the Blink example in Arduino IDE and add a variable x that we
increment in a loop:

int x = 0;

/1 the setup function runs once when you press reset or power the board

voi d setup() {
/1 initialize digital pin LED BU LTIN as an out put.
pi nMode(LED_BUI LTI N, OUTPUT) ;
X++;

}

/1 the loop function runs over and over again forever

void loop() {
digital Wite(LED BU LTIN, H GH); /1 turn the LED on (HIGH is the voltage |evel)

del ay(1000); /1l wait for a second
digital Wite(LED BU LTIN, LOW; /1 turn the LED off by neking the voltage LOW
del ay(1000); /1l wait for a second
X++;
if (x == 10)
{
asn(" break");
}

}

To start debugging you will need the compiled .hex file and the .elf file. Which you can get by doing
verify/compile in the Arduino IDE and then look for the paths in the compiler output. In this case the
files can be found at /tmp/arduino_build_809345/Blink.ino.elf and
/tmp/arduino_build_809345/Blink.ino.hex.

6 Electronic Engineering

File Edit Sketch Tools Help

Blink
1 int x = 0; ~
5

3 // the setup function runs once when you press reset or power the board
48void setupl) {

> // initialize digital pin LED_BUILTIN as an output.

pinMode (LED_BUILTIN, OUTPUT);

X+

3}

1'i" // the loop function runs over and over again forever

llEvoid loop() {

12 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

13 delay(1000) ; // wait for a second
digitalWrite(LED BUILTIN, LOW); // turn the LED off by making the voltage LOW
Lay(1000) ; // walt for a sescond
if (x == 108)
{
asm{"break");
}

o Uno on /de

Example of compile output in Arduino IDE.

Start debugging

To keep things simple I copied the .hex and .elf file to my home folder and renamed them main.hex
and main.elf. Flash main.hex and enable the debugWIRE fusebit (DWEN) using avrdude on the
command prompt like this:

/usr/ bin/ avrdude -C/ etc/avrdude. conf -cjtag2i sp -patnmega328p -Pusb -V -Ufl ash: w. mai n. hex -U
hf use: w. 0x99: m

Barry de Graaff, B.Eng. 7

RSTDISBLY 7 External Reset Disable 1 (unprogrammed)

DWEN 6 debugWIRE Enable 1 (unprogrammed)

SPIEN(2) 5 Enable Serial Program and Data 0 (programmed, SPI programming
Downloading enabled)

WDTON®) 4 Watchdog Timer Always On 1 (unprogrammed)

EESAVE 3 EEPROM memory is preserved through | 1 (unprogrammed), EEPROM not
the Chip Erase reserved

BOOTSZ1 2 Select Boot Size 0 (programmed)#)

(see Boot Loader Parameters)

BOOTSZ0 1 Select Boot Size 0 (programmed)4
(see Boot Loader Parameters)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Description of Fuse High Byte from Atmel datasheet.

In this example I used 0x99 for the Fuse High Byte. In binary form this is 10011001. Which means
use all Atmel defaults and enable DWEN. Please note that this will remove and disable the
bootloader. You can flash it back using Arduino IDE in the last step if you want.

NOW YOU HAVE TO REMOVE THE POWER FROM THE ARDUINO AND RE-APPLY POWER. This will
put your device in debugWIRE mode.

To start the debugger use the following command:
avarice -j usb -w -P atnega328p :4242

Open a new terminal and connect to the debugger:
avr-gdb nmain. el f

You should now be in the gdb prompt. Here you can use the following command to connect:
target renote | ocal host: 4242

The blinking led is a nice indicator of when the AVR is halted by the debugger. It halts when you
connect the debugger. To make the program run, use the cont i nue command in gdb.

Useful GDB commands

CTRL+C will halt the AVR

continue will resume the AVR

8 Electronic Engineering

command description

print x shows value of x
set variablex=1 sets value of x
whatis x show type of x

Special case, if an assembly breakpoint is reached you have to use the following command to
resume AVR program execution:

set $pc += 2
conti nue

Untested, you can also call functions using GDB like so:

call send_string("Test of UART")

Going back to normal mode

This is kind of a trick that avrdude has, you can attempt to write a hex file like this:
/usr/ bin/avrdude -Cletc/avrdude. conf -cjtag2isp -patnega328p -Pusb -V -Ufl ash: w. mai n. hex
The response from avrdude will be something like this:

avrdude: jtagnkl| _setparm(): bad response to set paraneter conmand: RSP_FAI LED

avrdude: jtagnkl| _getsync(): ISP activation failed, trying debugWre

avrdude: Target prepared for ISP, signed off.

avrdude: Now retrying w thout power-cycling the target.

avrdude: jtagnkl| _setparm(): bad response to set paraneter conmand: RSP_FAI LED

avrdude: jtagnkl| _getsync(): ISP activation failed, trying debugWre

avrdude: jtagnkl| _setparnm(): bad response to set paraneter conmand: RSP_DEBUGW RE_SYNC FAI LED
avrdude: failed to sync with the JTAGICE nkll in ISP npde

avrdude done. Thank you.

As you can see the programming failed, but avrdude did instruct the AVR to temporary disable
debugWIRE as shown by Target prepared for ISP. You can now open the Arduino IDE and program
the bootloader or another program and power cycle the board. This will resume normal operation.

If you power cycle the board without programming anything, debugWIRE will re-enable.

References:

* http://winavr.sourceforge.net/AVR-GDB_and_AVaRICE_Guide.pdf

* JTAGICE mKII user guide: https://onlinedocs.microchip.com/pr/GUID-73C92233-8EC5-497C-92C3-

Barry de Graaff, B.Eng. 9

http://winavr.sourceforge.net/AVR-GDB_and_AVaRICE_Guide.pdf
https://onlinedocs.microchip.com/pr/GUID-73C92233-8EC5-497C-92C3-D52ED257761E-en-US-1/index.html?GUID-5580C285-5789-4BC7-ACD1-229832FC4487

D52ED257761E-en-US-1/index.html?GUID-5580C285-5789-4BC7-ACD1-229832FC4487

DebugWIRE how-to https://gist.github.com/mattvenn/930590aabbb46beba6a9306312d3e620

JTAGICE how-to https://christophe.vg/technology/JTAGICE_mKII

* Using dragon for debugWIRE https://blag.pseudoberries.com/post/16374999524/avr-debugwire-
on-linux

ATmega328p datasheet https://ww1l.microchip.com/downloads/en/DeviceDoc/Atmel-7810-
Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

Public Domain notice and disclaimer

The author has placed this work in the Public Domain, thereby relinquishing all copyrights.
Everyone is free to use, modify, republish, sell or give away this work without prior consent from
anybody.

This documentation is provided on an " "as is" basis, without warranty of any kind. Use at your own
risk! Under no circumstances shall the author(s) or contributor(s) be liable for damages resulting
directly or indirectly from the use or non-use of this documentation.

10 Electronic Engineering

https://onlinedocs.microchip.com/pr/GUID-73C92233-8EC5-497C-92C3-D52ED257761E-en-US-1/index.html?GUID-5580C285-5789-4BC7-ACD1-229832FC4487
https://gist.github.com/mattvenn/930590aabbb46beba6a9306312d3e620
https://christophe.vg/technology/JTAGICE_mkII
https://blag.pseudoberries.com/post/16374999524/avr-debugwire-on-linux
https://blag.pseudoberries.com/post/16374999524/avr-debugwire-on-linux
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

	Guide to open-source debugging ATMega328
	Used hardware
	Used software
	Preparing Arduino Uno board
	Installing software
	Connecting Arduino Uno to MKII-CN using debugWIRE
	Create a basic example for debugging
	Start debugging
	Useful GDB commands
	Going back to normal mode
	References:
	Public Domain notice and disclaimer

