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The subgenus Phyllodia (genus Pteronotus) comprises 9 species ranging from the western coast of Mexico to
central Brazil, including Greater and Lesser Antilles. Two of them, Pteronotus rubiginosus and Pteronotus sp. 1,
form an endemic South American clade within Phyllodia and are reported in sympatry for several localities in
Guyana, Suriname, French Guiana, and northern Brazil. We herein performed a comprehensive investigation to
fully characterize the cranial variation and genetic intraspecific structuring within this clade. We also integrated
genetic, morphological, and acoustic evidence to formally describe the species previously reported as Pteronotus
sp. 1. Specimens of P. rubiginosus occurring in sympatry with the new species have a more distinctive cranial
phenotype than those from allopatric areas, suggesting character displacement as a potential force promoting
divergence by decreasing resource competition or reproductive interactions between them. Although the 2 species
are sympatric in several localities, the divergence in their echolocation calls also may be promoting resource
partitioning at the microhabitat level, with P. rubiginosus foraging in less cluttered areas and the new species
restricted to more cluttered areas.

O subgénero Phyllodia (género Pteronotus) compreende 9 espécies que ocorrem desde a costa oeste do México
até o Brasil central, incluindo Pequenas e Grandes Antilhas. Duas dessas espécies, Pteronotus rubiginosus e
Pteronotus sp. 1, compdem um clado endémico da América do Sul em Phyllodia e sdo reportadas em simpatria
para diversas localidades na Guiana, Suriname, Guiana Francesa e norte do Brasil. No presente estudo nds
realizamos uma investiga¢ao aprofundada para melhor caracterizar a variagdo craniana e estrutura¢do genética
intraespecifica dentro do clado. Nds também integramos evidéncias moleculares, morfoldgicas e actsticas para
descrever formalmente a espécie previamente reportada como Pteronotus sp. 1. Espécimes de P. rubiginosus
que ocorrem em simpatria com a espécies nova possuem um fenétipo craniano mais diferenciado que aqueles
de areas alopdtricas, sugerindo deslocamento de cardter como uma forca potencial promovendo divergéncia
para diminuicdo da competi¢do por recursos ou interacdes reprodutivas entre eles. Embora as duas espécies
sejam simpdtricas em vdrias localidades, a divergéncia em seus chamados de ecolocaliza¢@o também pode estar
promovendo particdo de recursos em uma escala de microhabitat, com P. rubiginosus forrageando em dareas
menos fechadas e a espécie nova restrita a dreas mais fechadas.
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The genus Pteronotus inhabits the Neotropical region, from
western Mexico to central and northeastern Brazil and the

feed primarily on insects, including a high proportion of beetles
(Coleoptera) in their diet, but also on other insects in the orders
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Caribbean (Patton and Gardner 2008; Rocha et al. 2011;
Pavan and Marroig 2017). Species of Pteronotus are small-
to medium-sized bats, ranging from 5 to 25 g (Mancina et al.
2012; Emrich et al. 2014; Lépez-Baucells et al. 2017). They

Lepidoptera, Diptera, Orthoptera, Hymenoptera, Hemiptera,
and Odonata (Mancina 2005; Rolfe and Kurta 2012). These
bats occupy several distinct habitats along their geographic
range, from open areas and dry deciduous forests to evergreen
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humid forests, from sea level up to 3,000 m (Herd 1983; Patton
and Gardner 2008). Some of their external morphological char-
acters include large and plate-like lower lips, short bristle-like
hairs surrounding the mouth, and funnel-shaped ears with distal
pinna lanceolate; the fur is short, fine, and dense, with hairs
highly varying in color from reddish or orange to dark brown,
depending on the individual’s molt progress (Smith 1972;
Simmons and Conway 2001).

The genus diversity traditionally included 6 extant species
(Smith 1972; Simmons and Conway 2001), assigned to 3 sub-
genera: Pteronotus, including P. davyi Gray, 1838 and P. gym-
nonotus (Wagner, 1843); Chilonycteris, including P. macleayi
(Gray, 1839), P. personatus (Wagner, 1843), and P. quadridens
(Gundlach, 1840); and Phyllodia, with the sole species P. par-
nellii (Gray, 1843). Several investigations in the last years,
however, suggested cryptic diversity in the genus (Lewis-Oritt
et al. 2001; Davalos 2006; Borisenko et al. 2008; Gutiérrez and
Molinari 2008), particularly in the P. parnellii species com-
plex (subgenus Phyllodia), which is represented by multiple
evolutionary lineages (Clare et al. 2011, 2013; Thoisy et al.
2014). In a recent study, Pavan and Marroig (2016) employed
molecular and morphometric evidence to address a new phylo-
genetic hypothesis for the genus (Supplementary Data SD1).
According to this study, Pteronotus comprises 16 extant spe-
cies. Many taxa previously presumed to be species widely
distributed across the continent actually represent species com-
plexes replaced parapatrically or allopatrically by each other
(see table S11 of Pavan and Marroig 2016; fig. S1 of Pavan
and Marroig 2017). In this context, the subgenus Phyllodia,
traditionally including only Pteronotus parnellii as its single
living species (with a variable number of subspecies, accord-
ingly to different authors—see Smith 1972 and Patton and
Gardner 2008), is, therefore, composed of 9 distinct species;
8 of them have valid and available names, namely P. parnellii
(sensu stricto), P. pusillus (G. M. Allen, 1917), P. portoricensis
(Miller, 1902), P. mexicanus (Miller, 1902), P. mesoamericanus
(Smith, 1972), P. fuscus (J. A. Allen, 1911), P. paraguanensis
(Linares and Ojasti, 1974), and P. rubiginosus (Wagner, 1843).
One of the lineages in this complex of cryptic species does not
have an available name and was referred as Pteronotus sp. 1
sensu Pavan and Marroig (2016), and Pteronotus sp. 3 sensu
Clare et al. (2013).

South America is, therefore, inhabited by 4 species of the
subgenus Phyllodia: P. paraguanensis, P. fuscus, P. rubigi-
nosus, and Pteronotus sp. 1 (see Pavan and Marroig 2016).
P. paraguanensis is found only in the Peninsula de Paraguana,
on the western coast of Venezuela; this taxon was recognized
as a valid species based on morphometric data (Gutiérrez and
Molinari 2008) and its phylogenetic position is still unknown.
P. fuscus is known to occur in some islands in the Lesser
Antilles, Colombia, Venezuela, and 3 localities in the highlands
of northwestern Guyana; this species is more closely related to
the Phyllodia species distributed in Central America (P. meso-
americanus and P. mexicanus) than to the South American
species (Supplementary Data SD1; clade 4-B of Pavan and
Marroig 2016). The other 2 species from South America are

P. rubiginosus, widely distributed in the Amazon and the
Brazilian Cerrado biomes, and Pteronotus sp. 1, which has been
found in Guyana, Suriname, French Guiana (hereafter referred
to as the Guianas), and the Brazilian Amazon. These 2 species
comprise an exclusively South American clade within Phyllodia
(Supplementary Data SD1; clade 4-C of Pavan and Marroig
2016) and are reported in sympatry for several localities, being
molecularly and acoustically discernible (Clare et al. 2013;
Thoisy et al. 2014; Pavan and Marroig 2016; Lépez-Baucells
et al. 2017). Previous studies also suggested that these species
might exhibit differences in cranial and dental measurements
(Thoisy et al. 2014; Lopez-Baucells et al. 2017), although the
morphometric dataset analyzed in the mentioned studies was
small, both in sample size and geographic coverage.

Therefore, a more comprehensive investigation to charac-
terize the phenotypic variation of the 2 species of the subgenus
Phyllodia that occur in sympatry in Guianas and Brazil is still
pending, as there is consistent molecular and acoustic evidence
in the literature suggesting they represent independent lineages.
This is an important topic to be addressed because the lack of
knowledge on the morphological variation, i.e., how to differen-
tiate these 2 species, is precluding researchers from acknowledg-
ing the real diversity of the genus Pteronotus in this geographic
area and correctly identifying museum vouchers. Herein, we use
highly complementary molecular and morphological datasets
through most of the species range to investigate more thoroughly
the populational structuring and the phenotypic divergence pat-
terns between the 2 species of the South American clade of the
subgenus Phyllodia, Pteronotus sp. 1, and P. rubiginosus. As a
result, we formally describe the unnamed species of Pteronotus
(Pteronotus sp. 1 sensu Pavan and Marroig 2016; Pteronotus
sp. 3 sensu Clare et al. 2013) and redefine the taxonomic limits
of P. rubiginosus, integrating the mitochondrial DNA (mtDNA),
morphological, and bioacoustic markers here presented as well
as those previously reported in the literature (Thoisy et al. 2014;
Pavan and Marroig 2016; Lopez-Baucells et al. 2017).

MATERIALS AND METHODS

Sampling.—Our molecular dataset corresponded to a frag-
ment of 651 bp of the cytochrome oxidase I (COI) mitochon-
drial gene. It included sequences of 157 individuals belonging
to the lineages of P. rubiginosus and Pteronotus sp. 1 previ-
ously published by Clare et al. (2013), Thoisy et al. (2014),
Pavan and Marroig (2016), and Lépez-Baucells et al. (2017)
and available at GenBank and the Barcode of Life Data System
(BOLD) (Appendix I). In addition, 11 specimens from 2 locali-
ties in Amazonas, Brazil, and 1 locality from Potaro-Siparuni,
Guyana, were sequenced and added to this dataset, totaling 168
individuals. These new sequences are available at GenBank
under the accession numbers MHO017827-MHO017837. The
molecular dataset included 102 individuals also included in the
morphological investigation (Appendix I).

For the morphological investigation, we examined 184
vouchers of common mustached bats sampled across the geo-
graphic range of this clade in South America, including 36
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localities in the Guianas and Brazilian Amazon, where the 2
lineages were reported to occur in sympatry, and 12 localities
in the Cerrado and southern Amazon of Brazil, where only
populations of P. rubiginosus have been recorded (Fig. 1; see
also Pavan and Marroig 2016). We also examined 15 specimens
of P. fuscus, including the holotype and 3 individuals previ-
ously sequenced, to provide some morphological comparisons
with Pteronotus sp. 1 and P. rubiginosus (see below, in the
“Systematics” section). The specimens included in the pres-
ent study are housed in the following institutions: Museu de
Zoologia da Universidade de Sao Paulo (MZUSP), Laboratério
de Mamiferos da Escola Superior de Agricultura “Luiz de
Queiroz,” Universidade de Sao Paulo (LMUSP), Instituto de
Pesquisas Cientificas e Tecnolégicas do Estado do Amapa
(IEPA), Instituto Nacional de Pesquisas da Amazonia (INPA),
Museu Paraense Emilio Goeldi (MPEG), American Museum of
Natural History (AMNH), Royal Ontario Museum (ROM), and
Musée d’Histoire Naturelle — Geneve (MHNG). The complete
list of examined specimens is described in Appendix II.

To gather additional evidence for delimiting species more
properly, we incorporated the bioacoustic information pro-
vided by Thoisy et al. (2014) and Lépez-Baucells et al. (2017)
for 40 specimens that we analyzed in our molecular and mor-
phological investigation. Therefore, although we have not col-
lected new acoustic data for the present study, some important
findings of these 2 previous studies are reported in the results.
Appendix I presents the correspondence between the molecular,

morphometric, and bioacoustics datasets and the GenBank
accession numbers of all sequences included in the molecular
analysis.

Molecular data.—Total genomic DNA was extracted from
ethanol-preserved tissues using the Qiagen DNeasy Blood and
Tissue Kit (Qiagen, Inc., Germantown, Maryland). The ampli-
fication and sequencing of the COI region was performed
adopting the same primers and conditions described previ-
ously (Clare et al. 2007; Borisenko et al. 2008). Sequences
were assembled and checked for quality using Geneious v.9.1
(Biomatters, Ltd., Auckland, New Zealand) and aligned with
the sequences already available from GenBank using MEGA7
(Tamura et al. 2013). Molecular diversity indices for both spe-
cies and estimates of genetic differentiation between them
were calculated by MEGA7 and DnaSP v5 (Librado and Rozas
2009). We estimated the relationships among observed hap-
lotypes using the median-joining network algorithm (Bandelt
et al. 1999) by Network 5.0 (fluxus-engineering.com). We
used haplotype network results to identify fixed polymorphic
sites between the species and to show intraspecific population
structuring.

Morphological data.—Morphological data were collected
from adults only, i.e., those having fused epiphyses of pha-
langes and metacarpals (Smith 1972). External and osteo-
logical characters were analyzed inter- and intraspecifically.
Qualitatively, we studied facial structures, fur color, differ-
ences in foramina sizes, and variation in teeth morphology. We
follow Simmons and Conway (2001) in assigning homology
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Sampling localities of the common mustached bat (Pteronotus cf. rubiginosus) included in the present study.
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for the premolars and D4valos et al. (2014) in the terminology
of the dental structures evaluated in this study. Quantitatively,
craniodental and mandibular measurements were recorded to
the nearest 0.01 mm using digital calipers. Standard external
measurements (forearm length [FL] and tibia length [TL]) are
data collected in the field and were not used in the morphomet-
ric analysis. Nine linear measurements were taken from skulls
and mandibles, 7 of them follow Velazco and Patterson (2014)
and Nogueira et al. (2012), whereas the other 2 express the par-
ticular variation observed between these species of Pteronotus
(Supplementary Data SD2). The measurements are:

Palatal width.—Distance across the palate, taken between
the lingual margins of the alveoli of P3 at their contact with
the canines.

Palatal length.—Measured from the anteriormost edge of
palate bone, between the inner incisors, to its posteriormost
margin, at the mesopterygoid fossa.

Greatest length of skull—From the posteriormost point on
the supraoccipital bone to the anteriormost point on the pre-
maxilla (excludes incisors).

Interorbital breadth.—The least breadth across the postor-
bital constriction.

Braincase breadth.—The greatest breadth of the globular part
of the braincase, excluding mastoid and paroccipital processes.

Rostral width at M2 (M2-M2).—The greatest width of the
rostrum measured across the labial margins of the alveoli of M2.

Maxillary toothrow length.—The distance from the anterior-
most surface of the upper canine to the posteriormost surface
of the crown of M3.

Mandibular length.—Greatest length of the dentary, from its
anteriormost point (excluding the incisors) to the its posterior-
most point at the angular process.

Mandibular toothrow length.—Distance from the anterior-
most surface of the lower canine to the posteriormost surface
of m3.

To better understand the morphological variation within this
clade, we initially included in these comparisons only those
specimens with molecular or bioacoustic information available
to support their corresponding species assignment. Localities
from Guyana (GUY), Suriname (SUR), French Guiana (FGU),
and from the Brazilian states of Amazonas (BRA-AM), and
Amapd (BRA-AP) were treated as the overlapping area between
species (Fig. 1) because these areas have reports of sympatric
occurrence (Clare et al. 2013; Thoisy et al. 2014; Pavan and
Marroig 2016; Lopez-Baucells et al. 2017). On the other hand,
localities from the Brazilian states of Mato Grosso (BRA-MT),
Pard (BRA-PA), Piaui (BRA-PI), and Rond6nia (BRA-RO)
were considered of exclusive occurrence of P. rubiginosus
(Pavan and Marroig 2016; Fig. 1).

Statistical analysis.—We firstly performed a principal
component analysis (PCA) to evaluate which morphological
variables most contributed to the variation of each axis and,
consequently, which were more informative to discriminate
populations and species. This information allowed us to per-
form a comprehensive investigation in the complete morpho-
logical dataset (i.e., those specimens without molecular or

acoustic information). To better understand how the cranial
variables responded to geographic variation and differences
between sexes as well as to the interaction between these
2 factors, we performed multivariate analyses of variance
(MANOVA) in the complete distribution of each species. We
additionally implemented MANOVA in different subsets of
each species dataset to further investigate the sexual variation
observed. For P. rubiginosus, we tested differences between
sexes within one of the allopatric and sympatric populations
with the largest samplings (BRA-MT and FGU, respectively)
as well as for the total sampling of allopatric and sympatric
regions. For Pteronotus sp. 1, tests were made for the largest
population (FGU) and the Guianas as a whole. Divergence in
variable means between sympatric and allopatric populations
of P. rubiginosus was also tested using univariate analysis of
variance (ANOVA). Discriminant function analysis (DFA) was
then used to compare species across their ranges and to explore
potential factors affecting the group morphometric variation,
such as geographic overlap and sexual dimorphism. The PCA
and MANOVA were conducted in the R software environment
(R Development Core Team 2013; functions prcomp and Im,
respectively). The library ggbiplot was used for the PCA graph.
The ANOVA and DFA were run with SYSTAT 11.

RESuLTS

Molecular variation and population structuring.—The frag-
ment of COI gene analyzed showed 80 variable positions, 29
singletons and 51 potentially parsimony informative sites, with
44 distinct haplotypes within the data. In accordance with phy-
logenetic data presented by previous studies (Clare et al. 2013;
Thoisy et al. 2014; Pavan and Marroig 2016), the haplotype
network inferred for the COI dataset presents 2 haplotype
groups (clusters), corresponding to P. rubiginosus (n = 114)
and Pteronotus sp. 1 (n = 54; Fig. 2). The K2P nucleotide di-
vergence between them is 5.3%. As mentioned previously and
highlighted in Figure 2, these 2 clusters are not entirely dis-
tinguishable by geography: there are individuals inhabiting the
same or nearby localities in Guyana, Suriname, French Guiana,
and northern Brazil harboring highly divergent haplotypes, al-
though Brazilian samples from MT, RO, PA, and PI are only
recovered clustered in one of the haplogroups. A minimum of
20 fixed nucleotide mutations was found setting apart these 2
clusters of haplotypes. In addition, 41 sites are polymorphic
across sequences of P. rubiginosus but are monomorphic within
Pteronotus sp. 1 while 22 sites show the opposite variation be-
tween the 2 species.

It is also possible to notice intraspecific structuring for both
species (1.9% for P. rubiginosus and 0.9% for Pteronotus
sp. 1). Most of the P. rubiginosus specimens (n = 72; 63%)
harbor the same haplotype (HAP1) while 1-4 individuals
compose the other 31 haplotypes found for this species. For
Pteronotus sp. 1, we could find 2 haplotypes at higher frequen-
cies (HAP2 = 27 [54%] and HAP3 = 10 [18%]) and 10 hap-
lotypes at lower frequencies within the sampling. Molecular
diversity indices and neutrality tests estimated for both species
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Pteronotus sp. 1

Haplotype network showing the geographic variation and intraspecific diversity in the COI fragment for the 2 South American sym-

patric species of common mustached bats (subgenus Phyllodia). Each haplotype found in our molecular dataset is labeled with a number. The
haplotypes belonging to each cluster (representing the 2 species) differ in at least 20 mutational steps among them. Geographic samples within

both species are identified by distinct colors according to the labels.

Table 1.—Molecular diversity indices and neutrality tests estimated
for the COI region in both species. We excluded from the estimates 3
specimens with incomplete sequences and 2 specimens with uncertain
assignment to species. Diversity indices presented below (Nei 1987):
h = number of haplotypes; S = number of segregating sites; Hd = hap-
lotype (gene) diversity; Pi = nucleotide diversity. Neutrality tests (sig-
nificant values highlighted in bold): Tajima’s D (Tajima 1989) and
Fu’s Fs (Fu 1997).

Species n  h  Diversity indexes Neutrality tests
S Hd Pi D Fs

Pteronotus rubiginosus 112 32 39 0.587 0.0018 -2.623 -43.280

Pteronotus sp. 1 51 12 22 0.686 0.0067 —-0.355 —0.023

are presented in Table 1. We found a higher genetic diversity
for the COI region in Pteronotus sp. 1, whereas P. rubiginosus
seems to have gone through demographic expansion recently.

Morphometrics.—The morphometric dataset included 8
cranial measurements from 146 specimens. Table 2 describes
sample sizes and mean values for selected external and cra-
nial variables. Mean values of all cranial measurements dif-
fered among the 3 groups defined for morphometric analysis:
Pteronotus sp. 1, P. rubiginosus — sympatric, and P. rubigi-
nosus — allopatric; the range of values for most of these mea-
surements, however, overlap. The result of the PCA allowed a
general overview of the specimens belonging to the 2 distinct
lineages in the morphospace (Fig. 3). The 1st principal compo-
nent (PC1) explains ca. 86% of the total variation observed in
the dataset and corresponds to size, being positively related to
all 8 cranial variables; the 2nd principal component (PC2) is
basically a contrast between the 2 width measurements of the
cranial vault (interorbital breadth [IB] and braincase breadth
[BB]) and the remaining variables, representing 4.7% of the
total variation.

The PCA plot shows specimens from the same collecting
localities but assigned to the distinct species in different areas
of the morphospace, highlighting the dissimilarity between
them. There is a general trend of size increase for both species
in the northern part of their ranges (Guyana and Suriname).
Specimens of P. rubiginosus from the allopatric (southernmost)
region of the distribution (Fig. 3, populations numbered 6-9)

exhibit the smallest sizes for the species and are recovered in
the overlapping area of the morphometric space.

The MANOVA results suggest the presence of geographic
and sexual variation for both species, but no interaction
between these 2 factors (Table 3). As a general pattern, we
could not observe significant differences between sexes within
any of the tested populations, but we did find differences at
wider geographic scales. Thus, DFA was performed for the
complete dataset but also for females and males separately.
Geographic variation within P. rubiginosus was also explored
through ANOVA, which compared the populations in sympatry
with Pteronotus sp. 1 with those in allopatry, revealing that the
8 variables are statistically different, with individuals in sym-
patric populations being larger on average (Supplementary
Data SD3).

The DFA showed very high classification rates of specimens
into the categories (species) regardless which dataset was ana-
lyzed: only females, only males, or females and males com-
bined (Supplementary Data SD4). Therefore, we herein explore
the results of the DFA performed for the complete data. More
than 90% of specimens were assigned to the correct category
for both species, and values described for original and jack-
knifed matrices are very close, highlighting the robustness of
the discriminant function (DF) in differentiating the species
(Klekca 1980; Pavan and Marroig 2016). Every misclassi-
fied specimen of P. rubiginosus, i.e., specimens belonging to
P. rubiginosus but assigned to Pteronotus sp. 1 by their canoni-
cal scores, are from localities not overlapping with the range
of the new species (allopatric populations of PI, MT, and RO
in Brazil). When the range of DF values for each species is
sorted by the different populations and modes of distribution
(sympatric or allopatric), for localities of sympatry, species
exhibit clear distinctive sizes, with P. rubiginosus exhibiting
most of the size variation throughout its distribution (Fig. 4).
Finally, males exhibited slightly larger values in the variable
means than did females in both species, but there is no evident
tendency in the DF values when both sexes are compared (data
not shown).

Morphology.—We performed a careful and detailed compar-
ative study on the skull morphology of specimens belonging
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Table 2.—Measurements (mm) of the 2 external and 8 cranial variables collected from specimens of Pteronotus cf. rubiginosus according to
the classification and mode of distribution established for morphometric analyses. For external measurements, mean values and sample sizes are
presented. For cranial variables, samples sizes by sex (F = females; M = males; U = undetermined) and mean values (minimum—maximum range).
BB = braincase breadth; GLS = greatest length of skull; IB = interorbital breadth; MdL = mandibular length; MdTL = mandibular toothrow length;
MxTL = maxillary toothrow length; PL = palatal length; PW = palatal width.

Measurement Pteronotus rubiginosus Pteronotus sp. 1
Allopatric Sympatric

Forearm length, mean () 62.8 (24) 64.9 (18) 61.6 (28)
Tibial length, mean (n) 25.5(24) 26.2 (08) 24.4 (19)
n (cranial data) 38 49 60

18F, 17M, 03U 24 F 24 M, 01 U 35F 23M, 02U
PW 4.28 (3.87-4.58) 4.49 (4.12-4.77) 4.20 (3.83-4.57)
PL 10.16 (9.76-10.51) 10.59 (10.06-11.20) 9.90 (9.53-10.42)
GLS 22.24 (21.4-23.11) 23.00 (22.24-23.64) 21.79 (21.11-22.59)
1B 4.39 (3.92-4.60) 4.51 (4.19-4.82) 4.60 (4.04-5.15)
BB 10.82 (10.32-11.40) 11.07 (10.13-11.45) 10.78 (10.08-11.30)
MxTL 9.67 (9.34-10) 10.09 (9.72-10.43) 9.43 (9.10-9.71)
MdL 17.04 (16.34-17.76) 17.73 (17.00-18.40) 16.73 (15.95-17.37)
MdTL 10.33 (9.96-10.70) 10.73 (10.35-11.14) 10.05 (9.55-10.40)

[-] Pteronotus sp. 1

[-] Pteronotus rubiginosus

- Pteronotus sp. 1

% P. rubiginosus ALLOPATRIC

| P rubiginosus SYMPATRIC

o
L

Geographic areas:

1-GUY
2-SUR
3-FGU

4 - BRA-AP
5 - BRA-AM
6 - BRA-PA
7 - BRA-PI
8 - BRA-MT
9 - BRA-RO

PC2 (4.7% explained var.)

-1 0 1 2
PC1 (86.5% explained var.)

Fig. 3.—Principal component analysis displaying the cranial morphometric variation in the 2 sympatric species of the South American clade of
Phyllodia (Clade 4C, Supplementary Data SD1). The correlation of the cranial variables with the 2 first principal components (PCs) is displayed
in the center of the plot. The PC1 and PC2 correspond to 86.5% and 4.7% of the total variation, respectively. Higher values in PC1 represent larger
cranial sizes while values in PC2 show variation in cranial breadth contrasted to the overall size. Numbers indicate the geographic location of
individuals, whereas polygons delimit the area of each of these groups in the morphometric space.

Table 3.—Results of multivariate analysis of variance (MANOVA) performed in the complete dataset of each species (all) as well as in more
restricted geographic regions within them. The P-values are provided in the rows, with significant values highlighted in bold. BRA-MT = Brazilian
state of Mato Grosso; FGU = French Guiana.

Factor tested Pteronotus rubiginosus Pteronotus sp. 1

All Allopatric Sympatric BRA-MT FGU All Guianas
Sex 2.96 x 10~ 0.01 0.05 0.40 0.39 0.04 0.02
Geography 3.71x 107 0.01 0.18 3.65 x 10 0.39

to the 2 species. At first, evaluation was conducted among
specimens sampled in the same or nearby localities to avoid
a possible geographic bias. Further, groups of specimens were
compared along the species ranges, allowing the definition of

some potential informative characters to be compared between
the species. We contrasted the information we had about
individual identification based on previous molecular results
(COI and cytochrome b [Cytb] mitochondrial genes) with
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Fig. 4—Range of the discriminant function (DF) values for the 2 species according to their geographic position or populations (left) and their
mode of distribution (right). Notice the difference between the mean DF values in the populations of Pteronotus rubiginosus from the sympatric
area of occurrence with Pteronotus sp. 1 (samples 1-5) and the populations from the allopatric area (samples 6-9).

the morphological data we obtained studying the specimens.
We found a high correspondence between the mitochondrial
clades and distinct patterns of skull morphology. The clade
of P. rubiginosus, in general, is composed of specimens with
larger skulls, with longer rostrum and palate, and proportion-
ally smaller IB when compared to the skull of Pteronotus sp. 1.
In addition, skulls of P. rubiginosus are characterized by a large
pair of foramina in the pterygoid canal, which are noticeably
smaller in the new species. Some morphometric traits are also
useful for differentiating between the 2 species, especially the
length of the maxillary toothrow (see “Systematics” section
below). This set of morphological characters varies geographi-
cally, being more variable in P. rubiginosus than in Pteronotus
sp. 1. For example, both species tend to have larger skulls in
the northern part of their distributions (Guyana and Suriname).
Furthermore, individuals of P. rubiginosus vary not only in skull
size, but in the robustness of the rostrum across the geographic
range. Populations from the southern part of the distribution
(Fig. 1: allopatric area) exhibit smaller skulls with more deli-
cate rostra. Some specimens of P. rubiginosus from the Guiana
Shield, on the other hand, have rostra with relatively wider IB,
resembling the profile of Pteronotus sp. 1; these specimens are
noticeably large, however, and can be easily distinguished from
Pteronotus sp. 1 occurring across this range based on skull
length (Supplementary Data SDS).

The only exceptions to the pattern mentioned above were 2
specimens (MPEG 41678 and AMNH 269115) whose mito-
chondrial haplotypes assign them to one of the lineages while the
morphological characters strongly suggest that they may belong
to the other. Because a 3rd source of evidence (acoustics) was not
available for these individuals, we opted for not assigning them
to any of the species when investigations requiring a priori clas-
sification of the data were performed; further discussion of these
specimens will be done in the following sections. We also evalu-
ated the variation of facial structures, fur length, and color, but

we found them to be uninformative for species differentiation.

Acoustic data.—Previous studies demonstrate that the 2 lin-
eages included in this South American clade of Phyllodia repre-
sent 2 distinct phonic groups, which are easily discernible with
no intermediate frequency values between them (Thoisy et al.
2014; Lopez-Baucells et al. 2017). Individuals of P. rubigino-
sus emit constant frequency (CF) calls around 53 kHz in French
Guiana and 55 kHz in the central Amazon, whereas Pteronotus
sp. 1 uses CF calls between 59 and 60 kHz in the same locali-
ties. Therefore, acoustic evidence suggests that there is a con-
sistent difference of 5-7 kHz in the echolocation calls emitted
by individuals belonging to these 2 species, even at different
sites, with no overlap in the peak frequency range between
them (see fig. 1 of Lopez-Baucells et al. 2017). These data also
point to some level of geographical variation within each spe-
cies although such variation does not compromise the ability
of identifying acoustically between these 2 species in the field
(Lopez-Baucells et al. 2017). The range of values of the fre-
quency of maximum energy (FME) in P. rubiginosus seems
larger than that observed for Pteronotus sp. 1.

SYSTEMATICS

Family Mormoopidae Saussure, 1860
Genus Pteronotus Gray, 1838

Pteronotus alitonus sp. nov.
Chilonycteris rubiginosa [rubiginosa]: Rehn, 1904:200; part.
Chilonycteris rubiginosa rubiginosa: Husson, 1962:74; part.

Pteronotus  [Phyllodial  parnellii  rubiginosus:  Smith,
1972:75; part.
Pteronotus  parnellii: Honacki, Kinman and Koeppl,

1982:150; part
Pteronotus sp. 3: Clare et al., 2013:14.
Pteronotus sp. 1: Pavan and Marroig, 2016:190.
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Holotype.—An adult male (INPA 6942; Fig. 5), preserved
in alcohol with the skull removed and cleaned, deposited at the
collection of the INPA, Amazonas, Brazil. It was collected on
6 September 2014 by Ricardo Rocha (field number PP02) at
the Biological Dynamics of Forest Fragments Project (BDFFP)
area, 80 km north of Manaus, Brazil (2°20°S, 60°6"W, elevation
of 30125 m). Body, skull, and mandible are in good condition.
Tissue is preserved in ethanol and frozen at INPA under the
same ID. Sequence of the mitochondrial gene COI is available
under the GenBank accession number MHO17835.

Paratypes.—MZUSP 35505, 35523; IEPA 417, 1847,
INPA 6947; ROM 98128, 106659, 117545; MHNG 1978.077,
1978.082; AMNH 267851.

Other material.—The complete list of 82 specimens of
P. alitonus analyzed in this study is described in Appendix II.

Distribution.—The new species of Pteronotus is known
from several localities in the pristine forests of Guyana,
Suriname, French Guiana, and the Brazilian Amazon (Fig. 1;
Appendix II).

Etymology.—The specific epithet, alitonus, is composed of
the Latin words alius (= different, changed) and fonus (sound,
tone), in reference to the distinct echolocation call emitted by
this species in comparison to P. rubiginosus.

Nomenclatural statement.—A Life Science Identifier
(LSID) number was obtained for the new species
Pteronotus  alitonus:  urn:lsid:zoobank.org:act:4B22D88F-

77BA-4021-B031-B54B946DC52D.

Historical background.—In the synonymy presented above
(only with Ist use of the names), we tentatively listed authors
that implicitly included in their concepts of Chilonycteris
rubiginosa or P. parnellii, populations from northern Brazil
and the Guianas, which could be assigned to the new species
here described. The 2 latter synonyms represent not binomial
(and more formal) entries, but refer to specimens whose asso-
ciation to this new species is clear and explicit. Several studies
have been published in recent years evidencing the existence
of 2 sympatric lineages of common mustached bats in the
Amazonian region. Each of these studies has focused on spe-
cific questions about the group, but also provided additional

sources of information to guide the present study. Based on
information from 3 loci, Clare et al. (2013) described the exist-
ence of 4 distinct lineages in the continental range of the spe-
cies formerly known as P. parnellii: 1 in Central America and
3 in South America. Two of these South American lineages,
called Pteronotus sp. 3 and Pteronotus sp. 4, were found in
sympatry in Guyana and Suriname. Clare et al. (2013) also
described information from acoustics and morphometrics
related to the geographic areas of occurrence of these lineages.
Thoisy et al. (2014) showed that the 2 sympatric lineages of
the P. parnellii complex found by Clare et al. (2013) in Guyana
and Suriname were acoustically discernible and increased their
ranges to French Guiana and northern Brazil. Thoisy et al.
(2014) provided molecular and morphometric evidence indi-
cating that one of these lineages (Pteronotus sp. 4) corresponds
to P. parnellii rubiginosus, the taxon already known for that
area. Later, Pavan and Marroig (2016) provided a new phylo-
genetic hypothesis and an updated taxonomic arrangement for
the genus Pteronotus. Pavan and Marroig (2016) corroborated
the existence of 8 distinct lineages within the P. parnellii com-
plex (subgenus Phyllodia), 1 in Mexico, 1 in Central America,
3 in South America, and 3 in the Caribbean, linking them to
the available names in the group (as subspecies and species
names) and showing that one of the sympatric lineages from
South America (Pteronotus sp. 1—sensu Pavan and Marroig
2016; Pteronotus sp. 3—sensu Clare et al. 2013) has no name
available. Pavan and Marroig (2017) published a dated phy-
logeny for the genus Pteronotus based on the same molecular
data published by Pavan and Marroig (2016). They discussed
the historical processes related to the origin and diversification
events within the group. Lépez-Baucells et al. (2017) reported
the existence of geographic variation in the echolocation calls
of these 2 sympatric species of Pteronotus from South America.
The study by Lépez-Baucells et al. (2017) is complementary to
Thoisy et al. (2014) because it showed that, despite the exist-
ence of intraspecific variation, both species are acoustically dis-
cernible, i.e., the differences are consistent across geography.
They also provided additional information on the distribution
of the unnamed lineage of Pteronotus in Central Amazon. We

Fig. 5.—Dorsal, ventral, and lateral views of the skull and ventral and lateral views of the mandible of the holotype of Pteronotus alitonus sp. nov.
(INPA 6942). Scale bar = 5 mm. INPA = Instituto Nacional de Pesquisas da Amazodnia.
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hypothesize that the Pteronotus sp. 3 (sensu Clare et al. 2013)
and Pteronotus sp. 1 (sensu Pavan and Marroig 2016), as well
as the specimens studied by Thoisy et al. (2014) and Loépez-
Baucells et al. (2017), can be confidently recognized as the
same biological entity. We advocate this as we included part of
their datasets in the present appraisal and carefully compared
the results.

Diagnosis.—Pteronotus alitonus is diagnosed as a distinct
species by several independent characters including acoustic,
molecular, and morphological data, allowing its recognition in
the field, laboratory, and in scientific collections. This species
can be easily identified in the field by its echolocation calls
emitted between 59 and 60 KHz. P. alitonus has also been
molecularly characterized, forming a cohesive mitochondrial
clade diverging around 5% from its sister group, the species
P. rubiginosus; the polymorphic sites between P. alitonus
and P. rubiginosus COI haplotypes are described in Fig. 6.
Cranially, P. alitonus can be distinguished by a unique com-
bination of traits. It has a shorter rostrum, with nasals wider
between the frontal and maxillary sutures, more convergent
and slightly upturned at the distal part. The maxillary toothrow
length (MxTL) is smaller than 9.7 mm and the IB/palatal length
(PL) ratio is usually higher than 0.45. The foramina in the pter-
ygoid canal vary from small to indistinct. The tips of upper
outer incisors reach half or more of the height of upper inner
incisors; they may be separated from the canines by a small gap
(particularly noticeable in ventral view of the skull).

Echolocation description.—Pteronotus alitonus has duty
cycle signals consisting of a short upward frequency-modulated
(FM) initial component, followed by a long CF component and
a short downward FM terminal component (CF-FM signal;
Supplementary Data SD6). The signal has few or no harmonics
and, when present, the 2nd harmonic is the most intense. The
echolocation calls have an average FME of 59.2 kHz (58.4—
61.5 kHz) and signal duration of 24.8 ms (7.0—40.0 ms), with
great overlap between the localities recorded.

Morphological description and comparisons.—Pteronotus
alitonus is a medium-sized species of mustached bat, weight-
ing between 20 and 26 g; the FL varies from 58.8 to 64.5 mm,
and the TL varies from 21.7 to 26.4 mm (L6pez-Baucells
et al. 2017; this study), usually overlapping with P. rubigino-
sus (body mass = 23-35 g; FL = 60.2-66.6 mm; TL = 22.9-
27 mm). P. alitonus resembles the remaining species of the
subgenus Phyllodia in external morphological characters, such

as the shape of the labio-nasal plate, nostrils, tragus, size of pin-
nae, and patterns of dorsal and ventral fur color (Smith 1972;
Simmons and Conway 2001). The pelage is dense and short
(ca. 6 mm), varying from light brown and pale brown to red-
dish. The rostral tubercle, a dermal projection present in the
proximal part of the rostrum, above the nostrils (Smith 1972;
character 89 of Simmons and Conway 2001), is wide and flat-
tened, similar to a triangle in shape. The form of this structure
in some individuals from Guyana (MZUSP 35518-35528) sug-
gests that it somehow reflects the shape of nasal bones and, as
such, it seems to be wider and more swollen in P. alitonus when
compared to P. rubiginosus (Supplementary Data SD7); never-
theless, a more detailed study on the variation of this character
is necessary.

The skull of P. alitonus has a robust rostrum and a large and
rounded braincase, as wide as half of the total length of the
skull. Although similar to P. rubiginosus, it is smaller (Table 2,
Fig. 7A) and exhibits a set of features that, in a combined analy-
sis, is diagnostic for this new taxon. The nasal bones form a
markedly concave area in the rostrum at the suture of the maxil-
lary and frontal bones. Nasals also taper anteriorly, being wider
in their proximal part, close to the maxillary-frontal suture, and
narrower and slightly upturned in their anterior part, in the suture
with pre-maxillary bones. Comparatively, the nasals in P. rubig-
inosus are more parallel and flattened throughout their extension
(Fig. 7A, Supplementary Data SDS5). The skull of P. alitonus
exhibits a rectangular palate that differs from P. rubiginosus for
being shortened in its distal portion (from premolars to incisors).
The PL in P. alitonus rarely exceeds 10.2 mm (4 out of the 60
specimens analyzed [7%]) and the MxTL is less than 9.7 mm.
P. rubiginosus, on the other hand, exhibits a longer rostrum: the
PL equals or is larger than 10.3 mm and the MxTL is more than
9.8 mm for specimens in sympatry with P. alitonus. In addition,
the interorbital region of P. alitonus is wider than in P. rubigi-
nosus, the later exhibiting a more pronounced constriction
(Table 2). Consequently, the estimated ratio between the IB and
the PL (IB/PL) is higher in P. alitonus (mean = 0.46 = 0.0184)
than in P. rubiginosus (mean = 0.43 £+ 0.0148). Most of the
specimens of P. alitonus (88%) show the IB/PL ratio equal or
greater than 0.45, whereas 83% of the P. rubiginosus speci-
mens have ratios equal or below 0.44. The BB in P. rubiginosus
(10.13-11.45 mm) is very similar to that of P. alitonus (10.08—
11.30 mm) but seems proportionally smaller because of the
larger sizes exhibited by P. rubiginosus. Ventrally, the pterygoid
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Fig. 6.—Single nucleotide polymorphisms (SNPs) among observed haplotypes of Pteronotus rubiginosus and P. alitonus sp. nov. in the 651 bp
fragment of COI gene analyzed. Four haplotypes of each species (P. rubiginosus: HAP1, 14, 16, 32; P. alitonus: HAP2, 3, 11, 12) are shown. Fixed
SNPs between the most frequent haplotype of each species (HAP1 x HAP2) are highlighted in bold.
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Fig. 7.—Comparison of the cranial morphology between Pteronotus rubiginosus (MHNG 1978.083) and P. alitonus sp. nov. (MHNG 1978.082)
from Grotte Mathilde, French Guiana. A) Dorsal and ventral views of the skull of P. rubiginosus (left) and P. alitonus (right); B) frontal view of
the skull, contrasting the sizes of the internal (I1) and external (I2) incisors in the 2 species; C) ventral view of 1st half of the palate, highlighting
the form outlined by the incisors and the gap between 12 and canines in P. alitonus; D) ventral view of the basicranial region, with arrows indi-
cating the foramina in the pterygoid canal with different sizes in the 2 species. Scale bar in top right of A =5 mm. MHNG = Musée d’Histoire

Naturelle — Geneve.

canal has a pair of foramina varying from almost indistinct per-
forations to small pits (less than 1/3 of the foramen ovale) in
the new species; alternatively, P. rubiginosus specimens exhibit
a large pair of foramina, as large as half of the diameter of the
foramen ovale (Fig. 7D).

The dental formula is the same as for all other mormoopids,
12/2 ¢ 1/1 p 2/3 m 3/3 = 34. The inner (or central) upper inci-
sors (I1) are bilobed and usually have less than twice the height
of the outer (or lateral) incisors (I2); the I1 are proportionally
larger in P. rubiginosus than in P. alitonus, with more than
twice the height of 12 (Fig. 7B). Ventrally, this character is also
noticeable, with the margins of the incisors usually forming a
continuous arc in P. alitonus, while the margins of the incisors
are steeply uneven in P. rubiginosus (Fig. 7C), with the cen-
tral ones forwardly projected. A small gap separating the outer
upper incisors from the canines is sometimes present in P. ali-
tonus (e.g., INPA 6942, MHNG 1978.082, AMNH 267851,
ROM 106659) and is absent in all specimens of P. rubigino-
sus. The labial cingulum and the entire labial margin of the
Ist upper premolar (P3 in homology—sensu Simmons and

Conway 2001) in P. alitonus exhibits a concave and rounded
profile (C-shaped), with deeper notches on the molar toothrow
between the canine and the P3 and between the P4 and P3; by
contrast, the labial cingulum of the P3 of P. rubiginosus exhib-
its a less concave, more open profile, with much less noticeable
notches between P3 and the adjacent teeth. Moreover, the gen-
eral shape of the P3 is usually different between species, being
more rounded and narrow buccolabially in P. alifonus and more
elongated and long buccolabially in P. rubiginosus. The inner
lower incisors are trilobed and larger than the outer bilobed
incisors in both species but for some individuals of P. alitonus,
il and i2 crowns are not in contact. The 1st and 3rd lower pre-
molars (p2 and p4) are large and have well-developed labial
cingulids; in both species, the p3 is peg-like and compressed
between the lingual edges of p2 and p4, although in P. rubigi-
nosus it is usually larger than in P, alitonus.

Additional comparisons.—We examined the cranial mor-
phology of specimens of the geographically contiguous species
P. fuscus and compared them with specimens of P. rubigino-
sus and P. alitonus from Guyana to provide a few insights on
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their differentiation. P. fuscus has its easternmost distribution in
the highlands of northwestern Guyana (Clare et al. 2013), near
the border with Venezuela, whereas P. rubiginosus and P. ali-
tonus extend northward to central and southeastern Guyana
(Fig. 1). So far, these 3 species have not been recorded at the
same locality and, therefore, P. fuscus is considered to have
a parapatric distribution relative to P. rubiginosus and P. ali-
tonus. In general, specimens of P. fuscus have a skull shape
more similar to P. rubiginosus, but size more similar to P. ali-
tonus (Supplementary Data SD8). Comparatively, the skull of
P. fuscus has a narrow and delicate rostrum; the nasal bones
are parallel and flat. P. fuscus can be easily differentiated from
P. rubiginosus based on the smaller size (greatest length of
skull [GLS] =21.4 mm + 0.36; MXxTL = 9.33 mm + 0.2). When
compared to P. alitonus, specimens of P. fuscus have notice-
ably narrower rostra, which are not slightly upturned in their
anterior most part as for P. alitonus. The maxillary bones are
less inflated in their suture with nasals; morphometrically, this
feature is noticed by the greatest width across the molars (M2-
M2), generally < 8.0 mm in P. fuscus, and > 8.18 mm in P. ali-
tonus from Guyana.

Natural history.—Little is known about the biology or
behavior of this new species, but our data suggest that it forages
preferentially in highly cluttered forested areas as there are no
reports on the species occurrence in more open areas such as
savannas or karstic regions in the Amazon.

Remarks.—As a consequence of the description of P. ali-
tonus, P. rubiginosus needs to be redefined. In the present
study, we described several morphological features that allow
the identification of P. rubiginosus, including quantitative and
qualitative characters (see previous section; see also Table 2
and Fig. 7). P. rubiginosus is found in the Amazon and Cerrado
biomes of South America. The occurrence of this species has
been confirmed by molecular data for Guyana, Suriname,
French Guiana, northern and central Brazil (and states of
Maranhao and Piaui in northeastern Brazil), and Bolivia (Pavan
and Marroig 2016; A. C. Pavan, pers. obs.). There are also
records of Pteronotus cf. rubiginosus in the Amazonian regions
of Peru, Colombia, and Venezuela but the status of these popu-
lations need to be reviewed.

DiscussION

Our comparative study evaluated the existence of an unnamed
evolutionary lineage of Pteronotus (Pteronotus sp. 1—sensu
Pavan and Marroig 2016; Pteronotus sp. 3—sensu Clare et al.
2013) occurring in sympatry with P. rubiginosus in several
localities in the Guianas and Brazilian Amazon (Clare et al.
2013; Thoisy et al. 2014; Pavan and Marroig 2016; Lopez-
Baucells et al. 2017). Using cranial, genetic, and acoustic data,
we corroborate the hypothesis of a new species of Pteronotus
and formally describe P. alitonus.

These 2 species, P. rubiginosus and P. alitonus, diverge in
genetic and acoustic traits throughout their geographic ranges.
Despite their external similarity, we herein provided skull di-
agnostic traits that will be useful for future identification of

material in collections. We also provided some insights on their
evolution and ecology, which are essential for the adequate di-
agnosis of the new species.

Genetic divergence and population structuring.—The
COI haplotype network reconstruction recovers both species,
P. rubiginosus and P. alitonus, as cohesive clusters, but with
intraspecific structuring. Molecular diversity indexes (Table 1)
point to a higher genetic diversity in P. alitonus compared to
P. rubiginosus. In P. alitonus, the 2 most frequent haplotypes
(HAP2 and HAP3) differ in 9 mutated positions from each
other, with 3 intermediary haplotypes (median vectors) inferred
by the analysis (Fig. 2). No spatial correlation seems to exist,
however, for the distribution of these haplotypes; both are
widespread across the species geographic range. P. rubigino-
sus exhibits 1 central haplotype (HAP1), surrounded by several
related haplotypes at low frequency and showing little differ-
ence among them. This pattern suggests these low-frequency
haplotypes originated recently and agrees with a scenario of
recent demographic expansion (Wakeley 2004; Ferreri et al.
2011). This premise is confirmed by the significant values of
neutrality tests found for P. rubiginosus (Table 1). A more diver-
gent haplotype occurs in P. rubiginosus (HAP32), represented
by 2 specimens near the border of Maranhdo and Piauf states,
northeastern Brazil, but unfortunately these specimens were
not available for the morphological analyses. Alternatively, we
examined other individuals from Piaui, Brazil (Appendix II),
and these specimens are unequivocally assigned to P. rubigi-
nosus, although exhibiting the smallest average sizes of our
P. rubiginosus sampling.

Morphological variation and character displacement.—
We corroborate previous studies (Thoisy et al. 2014; Lopez-
Baucells et al. 2017), showing that specimens of P. rubiginosus
have larger skulls than specimens of P. alitonus where these
species occur in sympatry. In addition, we present some cranial
characters useful to distinguish between these 2 lineages, the
most consistent being the foramina in the pterygoid canal. This
structure exhibits distinct states (Fig. 7D): in P. rubiginosus,
81 out of the 87 specimens (93%) have a relatively large pair
of foramina, averaging from 1/3 to 1/2 of the diameter of the
foramen ovale; whereas in P. alitonus, approximately one-half
of specimens (31 of 60) exhibit a small-sized pair of foramina
(less than 1/3 of the diameter of foramen ovale) and the other
half (29 of 60) exhibit foramina that are barely perceptible as
perforations in the pterygoid region. We also found that the 2
species are more easily distinguishable by the ratio of PL to IB:
individuals of P. rubiginosus usually have longer palates but
proportionally narrower constrictions than P. alitonus.

Quantitatively, the 2 species also markedly differ in 2 mea-
surements related to the rostrum, i.e., the length of palate and
maxillary toothrow. The difference in these characters, however,
is more conspicuous in sympatry. Individuals of P. rubiginosus
are larger in areas where the species range overlaps with P. ali-
tonus. Therefore, the morphological variation of specimens of
P. rubiginosus from the allopatric area (Brazilian samples of
PA, PI, MT, and RO) seems to slightly blur this clear sepa-
ration, since they exhibit smaller sizes and more polymorphic
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cranial characters. The DF1 values in the different populations
(Fig. 4) clearly outline such a distinctive pattern. Also, most
of the individuals displaying small pairs of foramina or higher
IB/PL ratios (0.45) are found in the allopatric distribution of
P. rubiginosus. Our results suggest that specimens of P. rubig-
inosus occurring in sympatry with P. alitonus are more dis-
similar than those occurring in allopatry, at least concerning the
cranial phenotype.

The difference in morphology of P. rubiginosus in sympatry
and allopatry with P. alitonus agrees with character displace-
ment theory, which hypothesizes that phenotypic differences
between species are enhanced where they occur together, to
minimize or avoid resource competition or reproductive inter-
actions between them (Pfenning and Pfennig 2009). Character
displacement is believed to be a ubiquitous phenomenon
in nature, although difficult to test in the face of alternative
hypothesis explaining divergence on closely related sympatric
species (sensu Losos 2000; Pfennig and Pfennig 2009). This
competitively mediated divergence can finalize a process of
allopatric speciation (Pfennig and Pfennig 2010). Several crite-
ria have been proposed to test the strength of a particular adapt-
ive hypothesis, including that phenotypic divergence: 1) must
be nonrandom, 2) has to show a genetic basis, and 3) should
reflect differences in resource use (Schluter and McPhail 1992;
Losos 2000). Testing for all premises is beyond the scope of
the present study. Our ANOVA results, however, do reveal a
significant morphological divergence between sympatric and
allopatric populations of P. rubiginosus for all cranial char-
acters (Supplementary Data SD3). Alternatively, half of the
characters are different when allopatric populations are tested
among themselves, and no significant differences are found in
the variable means among the sympatric populations (data not
shown). This finding seems to meet the 1st criteria, that dif-
ferences are nonrandom. It also suggests a higher phenotypic
variation within the more widespread species P. rubiginosus,
especially in its allopatric range with P. alitonus, a factor that
is expected to be present in species undergoing character dis-
placement (Pfennig and Pfennig 2009). P. alitonus, on the other
hand, is more conservative in its size throughout its known
(smaller) range. In addition, geographic variation in the echo-
location calls has also been reported for these 2 species (Lopez-
Baucells et al. 2017). It is possible that the variation in the calls
of P. rubiginosus is even greater in its allopatric area of occur-
rence. However, more evidence is needed in the southernmost
region of the P. rubiginosus distribution to test this hypothesis.

Echolocation calls and foraging behavior—Both P. rubigi-
nosus and P. alitonus find prey using high-duty cycle signals
that consist of a long CF component followed by a short down-
ward FM terminal component. Long CF-FM signals are asso-
ciated with Doppler shift compensation and are used by bats
that search for prey in narrow spaces (Schnitzler and Denzinger
2011; Denzinger and Schnitzler 2013). Pulse duration is similar
in the 2 species but the FME always differ by 5-7 kHz between
them (Lopez-Baucells et al. 2017). There is a clear relationship
between call frequency and the size of prey that insectivorous
bats can detect. While bats calling at higher frequencies are

expected to catch smaller insects with more efficiency, those
emitting at lower frequencies will target larger insects more
successfully (Jones 1997; Kingston et al. 2001). However, it
has been discussed that small differences in the call frequencies
such as the one described between P. rubiginosus and P. alito-
nus are not sufficient to significantly influence target specific-
ity, and thus cannot promote resource partitioning associated
with prey size (Jones and Barlow 2004; Kingston et al. 2001;
Clare et al. 2013).

Alternatively, the hypothesis of competitive exclusion
between these 2 species, as suggested by the cranial pheno-
typic traits, may be taking place spatially instead of acting
on prey-size selection. Accordingly, the 2 species may search
similarly for their targets, but exploit distinct microhabitats
in their sympatric area of occurrence. Because P. rubiginosus
emits calls at lower frequencies, its foraging strategy might be
more associated with less cluttered environments, while the
higher frequencies of P. alitonus increase the target detection
in more cluttered areas. For example, P. rubiginosus crosses
open areas between islands created by the Balbina hydroelec-
tric dam, while P. alitonus is restricted to the continuous forest
(Ponzio 2017). Also, some Amazonian localities characterized
by more open and karstic landscapes (e.g., eastern Pard, Brazil)
as well as the Cerrado of Brazil, a savanna-like environment,
are areas where only P. rubiginosus occurs. This pattern seems
to be more related to some specific requirement of P. alitonus
than an actual preference of P. rubiginosus since the latter also
forages in cluttered areas when not in sympatry with P. alitonus
(De Oliveira et al. 2015; Ponzio 2017). Based on this obser-
vation, we hypothesize that P. rubiginosus may be exploiting
more open habitats within the Amazon Region, such as the
Amazonian savannas, whereas P. alitonus is mostly restricted
to more cluttered microhabitats while searching for food.

Finally, distinctive patterns of microspatial segregation of
these 2 species might be related to the molecular results that
we observed. The lower nucleotide diversity and the large num-
ber of individuals sharing 1 single haplotype in P. rubiginosus
may be a consequence of its high dispersal capability and, con-
sequently, the higher gene flow among the populations. P. ali-
tonus seems to exhibit a smaller geographic range and shows
a greater intraspecific structuring that may reflect its foraging
behavior associated with highly cluttered areas and limitations
to cross open landscapes.

Inconsistencies  between morphology and molecu-
lar data.—Two specimens included in our analysis presented
disparities regarding molecular and morphological data.
MPEG 41678 (Itaituba, Brazil) has a mitochondrial haplotype
of P. rubiginosus; its phenotype, however, resembles P. ali-
tonus, being small (FL = 58.9 mm; GLS = 21.2 mm) and
exhibiting diagnostic cranial characters such as small ptery-
goid foramina, PL = 9.71 mm and high IB/PL ratio (0.47).
AMNH 269115 (Cayenne, French Guiana), on the other hand,
had a haplotype of P. alitonus while its cranial features mostly
agree with P. rubiginosus (GLS = 23.5 mm; PL = 10.71 mm;
IB/PL ratio = 0.44; large pterygoid foramina). Three distinct
interpretations of these results are possible: 1) the defined
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cranial morphological characters are not completely consis-
tent for species differentiation, exhibiting polymorphic states
for some individuals of the distinct species; 2) the mtDNA
exhibits some level of incomplete lineage sorting between
the species; and 3) there is ongoing gene flow between the
species due to secondary contact, leading to introgression of
mtDNA from one species to the other. We cannot assert which
of these scenarios is the most likely without a deeper inves-
tigation including more molecular markers, preferably from
independent systems.

Regarding the Ist assumption, our data show that there is
variation for some of the cranial traits, including overlapping in
some quantitative markers: these 2 specimens could represent
outliers of our dataset, exhibiting the extreme of the variation
expressed by the species molecularly delimited. On the other
side, incomplete lineage sorting and interspecific gene flow
(with introgression) are frequently described phenomena for
recently diverged species (Degnan and Rosenberg 2009; Petit
and Excoffier 2009). An event of introgression has been already
reported in the genus Pteronotus (Pavan and Marroig 2016).
One specimen of P. gymnonotus was found to have the mtDNA
of P. fulvus, and these species diverged earlier than P. alitonus
and P. rubiginosus (see Pavan and Marroig 2017). Therefore,
introgression could be the cause of the inconsistency described
above. These 2 specimens were collected in the sympatric area
of occurrence of P. rubiginosus and P. alitonus but in oppo-
site sides of this range (Cayenne = north of the sympatry zone;
Itaituba = south of the sympatry zone), which means that, if
introgression has caused this pattern, 2 independent events are
necessary to explain the finding. In addition, the direction of
the introgression would have to be different in the 2 events.
Still, these phenomena do not preclude divergence in the rest
of the genome, particularly if we assume that mtDNA is evolv-
ing under neutrality and, therefore, not related to the speciation
process (Feder et al. 2013). Alternatively, specific cranial traits
might be susceptible to evolutionary constraints due to highly
specialized functions of the skull (Cheverud 1982; Santana and
Lofgren 2013), such as the echolocation in high-duty cycle
echolocating bats, and may be more tightly related to factors
leading to reproductive isolation (Kingston et al. 2001; Clare
et al. 2013). Based on this, we tentatively suggest that the
disparity is being caused by conflicting information from the
mtDNA, and we opted for identifying these specimens accord-
ing to their phenotypes (Appendix I).

The case described above is an excellent example of how
multiple sources of evidence are important for assigning indi-
viduals to species with confidence. Several studies have shown
that bioacoustic data is a useful tool for the identification of
bat species (Barataud et al. 2013; Thoisy et al. 2014; Lépez-
Baucells et al. 2016), and in the case of the subgenus Phyllodia
it may be essential to understand the contact areas between
species and aspects of their biology. In some cases, only mor-
phological information is available for taxonomic studies, such
as for fossils and highly endangered or extremely rare species.
Nevertheless, in all other cases, an integrative approach should
be attempted.
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SUPPLEMENTARY DATA

Supplementary data are available at Journal of Mammalogy
online.

Supplementary Data SD1.—Phylogenetic hypothesis pro-
posed for the genus Pteronotus according to Pavan and Marroig
(2016). The phylogeny represents a species tree estimated from
6 molecular markers, depicting the relationships among major
clades according to the multispecies coalescent approach (see
Pavan and Marroig 2016 for more details).

Supplementary Data SD2.—The 9 cranial and mandibular mea-
surements taken in the present study: palatal width (PW), palatal
length (PL), greatest length of skull (GLS), interorbital breadth
(IB), braincase breadth (BB), greatest width of rostrum measured
across the labial margins of the alveoli of M2 (M2-M2), maxil-
lary toothrow length (MxTL), mandibular length (MaL.), and man-
dibular toothrow length (MaTL). The M2-M2 measurement was
taken from a few specimens for the comparative morphology de-
scription (systematic account) and, therefore, was not included in
the morphometric analysis. Scale bar = 0.5 cm. Drawings of skull
by Ivan Akirov and taken from Gutiérrez and Molinari (2008).
Supplementary Data SD3.—Average measurements in allo-
patric (ALLO, n = 38) and sympatric (SYM, n = 49) popu-
lations of Pteronotus rubiginosus and result of analysis of
variance (ANOVA) between them.

Supplementary Data SD4.—Classification matrix of the dis-
criminant function analysis (DFA) performed with all speci-
mens of both species compared to the classification rates of the
DFA performed with only females (F) or males (M).
Supplementary Data SD5.—Comparison between the new
species Pteronotus alitonus sp. nov. (ROM117576, left) and
P. rubiginosus (ROM 117608, right) from Suriname (Blanche
Marie Vallen, Sipaliwini), showing the difference in the size
and shape of the nasal bones.
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Supplementary Data SD6.—Comparison between the echolo-
cation signals emitted by Pteronotus rubiginosus and P. alito-
nus sp. nov. The specimens were recorded on the islands of the
Balbina Hydroelectric Reservoir (BHR), a man-made reservoir
within the Uatuma River basin of central Brazilian Amazonia
(1°01"-1°55’S; 60°29-59°28"W). These recordings were only
used to illustrate the sonograms and were not part of the analy-
ses since no bat was captured.

Supplementary Data SD7.—Comparison between the rostral
pad (arrows) of Pteronotus rubiginosus (MZUSP 35519, left)
and P. alitonus sp. nov. (MZUSP 35523, right). Both specimens
are from Amaila Falls, Potaro-Siparuni, Guyana.
Supplementary Data SD8.—Comparison of the cranial mor-
phology among the 3 species of Phyllodia distributed in the
Guiana Shield. Pteronotus rubiginosus (ROM 98127, left) and
P. alitonus sp. nov. (ROM 98128, middle) occur sympatrically
in the Guianas and Brazilian Amazon, whereas Pteronotus fus-
cus (ROM 100871, right) is found in the highlands of north-
western Guyana and in Venezuela.
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APPENDIX 1

Specimens included in the molecular, morphometric, and
acoustic datasets.

A = acoustic dataset; COI = sequence of the cytochrome oxi-
dase I gene; FN = field number; GN = GenBank number;
M = morphometric dataset; S = sex; VN = voucher number.
AMNH = American Museum of Natural History;
IEPA = Instituto de Pesquisas Cientificas e Tecnoldgicas do
Estado do Amapd; INPA = Instituto Nacional de Pesquisas
da Amazdnia; LM-ESALQ = Laboratorio de Mamiferos-
ESALQ; MHNG = Musée d’Histoire Naturelle — Geneve;
MPEG = Museu Paraense Emilio Goeldi; MZUSP = Museu de
Zoologia da Universidade de Sao Paulo; ROM = Royal Ontario
Museum; TTU =Texas Tech University; UEMA = Universidade
Estadual do Maranhdo; UFMG = Universidade Federal de
Minas Gerais.

BRA-AM = Brazilian state of Amazonas; BRA-AP = Brazilian
state of Amapd; BRA-MT = Brazilian state of Mato Grosso;
BRA-PA = Brazilian state of Para ; BRA-PI = Brazilian state of
Piaui ; BRA-RO = Brazilian state of Rondonia ; FGU = French
Guiana; GUY = Guyana; SUR = Suriname.

X = type of data included for the specimen.
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ApPENDIX 11

List of specimens examined. This list refers to all speci-
mens included in the morphological study regard-
less if they were included or not in the morphometric
analysis. AMNH = American Museum of Natural History;
IEPA = Instituto de Pesquisas Cientificas e Tecnoldgicas do
Estado do Amapd; INPA = Instituto Nacional de Pesquisas da
Amazo6nia; MHNG = Musée d’Histoire Naturelle — Geneve;
MPEG = Museu Paraense Emilio Goeldi; MZUSP = Museu de
Zoologia da Universidade de Sao Paulo; ROM = Royal Ontario
Museum.

Pteronotus alitonus sp. nov. (n = 8§2).—BRAZIL:—Amapa: Rio
Cupixi, Reserva de Iratapuru, Pedra Branca do Amapari, 0.58N
52.32W (IEPA 380, 415, 417); Parque Nacional Montanhas
do Tumucumaque, Rio Anoteie, Oiapoque, 3.22N 52.02W
(IEPA 456); Rio Jari, Laranjal do Jari, 0.62S 51.52W (IEPA
1833, 1843, 1847, 1853, 1893). Amazonas: Caverna Maroaga
Km 6 - Usina Hidrelétrica Balbina, Manaus, 2.04S 59.95W
(INPA 332, 339, 343, 345, 351, 358, 359, 361); Estrada S-2,
Usina Hidrelétrica Balbina, margem direita do rio Uatuma,
Manaus, 1.94S 59.48W (INPA 515, 529, 888, 964B); Igarapé
Caititu, margem direita do rio Uatuma, 20 Km da foz, 2.61S
58.15W (INPA 1361, 1362, 1363, 1365); Reserva Bioldgica
do Cuieiros, Base de Apoio ZF-2, Manaus, 2.59S 60.21W
(INPA 2ZFI103, 2ZFII110); Manaus, 80 km N, 2.41S 59.88W
(INPA 6942, 6945, 6947, 6948, 6949, 6950, 6952, 6954). Para:
Itaituba, 6.05S 56.30W (MPEG 41678, MZUSP 35503, 35504,
35505). FRENCH GUIANA:—Cayenne: Sinnamary, Paracou,
5.38N 52.95W (AMNH 267851, 267405, 267406). Régina:
Grotte Mathilde, 4.52N 52.12W (MHNG 1972.051, 1978.077,
1978.078, 1978.081, 1978.082, 1978.085, 1978. 086, 1978.087,
1978.089, 1980.094). Roura: Cacao, 4.57N 52.45W (MHNG
1983.043, 1983.058, 1983.069); Trésor Natural Preservation,
4.62N 52.28W (MHNG 1972.052). Saint Elie: La Trinité,
5.02N 53.66W (MHNG 1980.093). GUYANA:-East Berbice-
Corentyne: Mango Landing, Corentyne River, 5.17N 57.3W
(ROM 100427). Potaro-Siparuni: Amaila Falls, 5.52N 59.26W
(MZUSP 35518, 35520, 35521, 35522, 35523, 35524, 35525,
35526, 35527, 35529); Iwokrama Reserve, 25 km SSW of
Kurupukari, 4.47N 58.78W (ROM 104705). Upper Demerara-
Berbice: Kurupukari, East Bank, Essequibo River, 4.67N
58.68W (ROM 98128); Tropenbos, 20 km SSE of Mabura Hill,
5.15N 58.7W (ROM 103374). Upper Takutu-Upper Essequibo:
Chodikar River, 55 km SW of Gunn’s Strip, 1.37N 58.77W
(ROM 106585); Gunn’s Strip, 1.65N 58.63W (ROM 106776); 5
km SE of Surama, 4.1N 59.05W (ROM 102973); Kamoa River,
50 km SWW of Gunn’s Strip, 1.54N 58.85W (ROM 106659).
SURINAME:-Sipaliwini: Iconja Landing, Sipaliwini River,
1.99N 56.09W (ROM 120275, 120294); Kutari River Camp,
2.18N 56.79W (ROM 120589); Sipaliwini River Camp, 2.29N
56.61W (ROM 120631, 120645); Blanche Marie Vallen, 4.76N
56.88W (ROM 117576); Bakhuis, Area 8 Recon Fly Camp,
4.45N 56.86W (ROM 117545).

Pteronotus rubiginosus (n = 102).—BRAZIL:—Amapi: Rio
Cupixi, Reserva de Iratapuru, Pedra Branca do Amapari,
0.58N 52.32W (IEPA 418, 428); Parque Nacional Montanhas
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do Tumucumaque, Rio Anoteie, Oiapoque, 3.22N 52.02W
(IEPA 476); Parque Nacional Montanhas do Tumucumaque,
Rio Mutum, Calgoene, 1.39N 51.93W (IEPA 525, 533, 550,
554); Fazenda Aricari/BR156, km 147, Tartarugalzinho, 0.95N
51.25W (IEPA 722, 748, 758, 760). Amazonas: Caverna
Maroaga Km 6 - Usina Hidrelétrica Balbina, Manaus, 2.04S
59.95W (INPA 333, 353); Manaus, 80 km N, 2.41S 59.88W
(INPA 6941, 6943, 6944, 6946, 6951, 6955); Paca-Mirim,
margem direita Rio Abacaxis, 4.59S 58.22W (LM-ABXS58);
Reserva Bioldgica do Cuieiros, Base de Apoio ZF-2, Manaus,
2.59S, 60.21W (INPA 2ZFII15). Mato Grosso: Cuiaba, 15.72S
55.77W (35151, 35152); Jangada, 15.27S 55.22W (MZUSP
35147, 35148, 35149, 35150); Pontes Larcerda, 15.2S 59.37W
(MZUSP 29504); Ribeirdozinho, 16.49S 52.7W (MZUSP
35514, 35515); Rondondpolis, 16.25S 54.15W (MZUSP
35513); Sdo Vicente, 15.82S 55.4W (MZUSP 35153, 35154,
35155); Serra das Araras, 15.48S 57.19W (MZUSP 35702,
35703, 35704, 35705, 35706, 35707). Para: Floresta Nacional
Tapirapé-Aquiri, Maraba, 5.78S 50.54W (MPEG 388009,
38828, MZUSP 35506, 35507, 35508, 35509, 35510, 35512).
Piaui: Estacdo Ecolégica Urugui-Una, Bom Jesus, 8.83S
44.17W (MZUSP 30035, 30120, 30142, 30155, 30210, 30226).
Rondo6nia: Rio Madeira, margem esquerda, médulo Ilha das
Pedras, Porto Velho, 9.16S 64.63W (INPA 6085, 6093, 6100,
IF26); Rio Madeira, médulo Jirau margem direita, Porto Velho,
9.16S 64.71W (INPA JRDA27); Rio Jaci-Parana, Porto velho
- margem direita do rio madeira, 9.45S 64.37W (INPA 6116,
6120, 6129, JCDF35); Usina Hidrelétrica Jirau, 9.44S 64.82W
(MZUSP 35511, 35516, 35517); Vilhena, 12.72S 60.26W

(MZUSP 35699, 35700, 35701). FRENCH GUIANA:-
Cayenne: Sinnamary, Paracou, 5.38N 52.95W (AMNH
267283, 267284, 267285, 267286, 267288, 269115). Régina:
Grotte Mathilde, 4.52N 52.12W (MHNG 1978.076, 1978.079,
1978.080, 1978.083, 1978.084, 1978.088). Roura: Cacao,
4.57N 52.45W (MHNG1983.064, 1983.065, 1979.073); Trésor
Natural Preservation, 4.62N 52.28W (MHNG 1972.050).
GUYANA:-East _ Berbice-Corentyne: ~Mango Landing,
Corentyne River, 5.17N 57.3W (ROM 100391, 100397).
Potaro-Siparuni: Amaila Falls, 5.52N 59.26W (MZUSP 35519,
35528). Upper Demerara-Berbice: Kurupukari, East Bank,
Essequibo River, 4.67N 58.68W (ROM 98127); Tropenbos, 20
km SSE of Mabura Hill, 5.15N 58.7W (ROM 103375, 103420).
Upper Takutu-Upper Essequibo: Annai, 3.95N 59.13W (ROM
97963, 97964); Chodikar River, 55 km SW of Gunn’s Strip,
1.37N 58.77W (ROM 106575); 5 km SE of Surama, 4.1N
59.05W (ROM 102991); Karanambo, 3.75N 59.3W (ROM
97957). SURINAME:-Sipaliwini: Sipaliwini Village, 2.03N
56.12W (ROM 120408); Blanche Marie Vallen, 4.76N 56.88W
(ROM 117608, 117654); Bakhuis, transect 13, 4.55N 57.06W
(ROM 117282); Bakhuis, Transect 14, 4.58N 57.05W (ROM
117338).

Pteronotus  fuscus (n = 15).—GUYANA:-Barima-Waini:
Baramita, Old World, 7.36N 60.48W (ROM 100871, 100948,
101046). VENEZUELA:—Aragua: Rancho Grande, 10.37N
67.68W (AMNH 144842, 144845); Carabobo: San Esteban,
10.43N 68.02W (AMNH 31565, 31566, 31568, 31569, 31570,
31571, 31576); Las Quigas, 10.40N 68.00W (AMNH 31561,
31563, 31564).
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