Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
bin
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Semantic spaces module

This is a python module that allows to compute semantic metrics based on distributional semantics models.

For example, to find words that are semantically similar to the word 'brain':

from semspaces.space import SemanticSpace

space = SemanticSpace.from_csv('space.w2v.gz')

space.most_similar(['brain'])

{'brain': [(u'brain', 0.0),
  (u'brains', 0.34469844325620635),
  (u'cerebrum', 0.4426992023455152),
  (u'cerebellum', 0.4483798859566903),
  (u'cortical', 0.469348588934828),
  (u'brainstem', 0.4791188497952641),
  (u'cortex', 0.479544888313173),
  (u'ganglion', 0.49717579235842546),
  (u'thalamus', 0.5030885466349713),
  (u'thalamic', 0.5059524199702277)]}

The module wraps dense and sparse matrix implementations to provide convenience methods for computing semantic statistics as well as easy input and output of the data.

Installation

pip install -r requirements.txt
python setup.py install

Semantic spaces

You can download a set of validated semantic spaces for English and Dutch here (see Mandera, Keuleers, & Brysbaert, in press).

Contribute

Authors

The tool was developed at Center for Reading Research, Ghent University by Paweł Mandera.

License

The project is licensed under the Apache License 2.0.

References

Mandera, P., Keuleers, E., & Brysbaert, M. (in press). Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language.

About

Semantic spaces in python

Resources

License

Releases

No releases published

Packages

No packages published

Languages