
Un
offi
cia
l D
raf
tProcess Management Interface

for Exascale (PMIx) Standard

Version 5.0 (Draft)
Created on August 9, 2022

This document describes the Process Management Interface for Exascale (PMIx) Standard, version
5.0 (Draft).

Comments: Please provide comments on the PMIx Standard by filing issues on the document
repository https://github.com/pmix/pmix-standard/issues or by sending them to the PMIx
Community mailing list at https://groups.google.com/forum/#!forum/pmix. Comments should
include the version of the PMIx standard you are commenting about, and the page, section, and line
numbers that you are referencing. Please note that messages sent to the mailing list from an
unsubscribed e-mail address will be ignored.

Copyright © 2018-2020 PMIx Administrative Steering Committee (ASC).
Permission to copy without fee all or part of this material is granted, provided the PMIx ASC
copyright notice and the title of this document appear, and notice is given that copying is by
permission of PMIx ASC.

https://github.com/pmix/pmix-standard/issues
https://groups.google.com/forum/#!forum/pmix

Un
offi
cia
l D
raf
t

This page intentionally left blank

Un
offi
cia
l D
raf
tContents

1. Introduction 1
1.1. Background . 1
1.2. PMIx Architecture Overview . 1
1.3. Portability of Functionality . 3

1.3.1. Attributes in PMIx . 3
1.3.2. PMIx Roles . 5

2. PMIx Terms and Conventions 7
2.1. Notational Conventions . 9
2.2. Semantics . 11
2.3. Naming Conventions . 11
2.4. Procedure Conventions . 11

3. Data Structures and Types 13
3.1. Constants . 14

3.1.1. PMIx Return Status Constants . 15
3.1.1.1. User-Defined Error and Event Constants 17

3.2. Data Types . 17
3.2.1. Key Structure . 17

3.2.1.1. Key support macros . 18
3.2.2. Namespace Structure . 19

3.2.2.1. Namespace support macros . 19
3.2.3. Rank Structure . 20

3.2.3.1. Rank support macros . 21
3.2.4. Process Structure . 21

3.2.4.1. Process structure support macros 22
3.2.5. Process State Structure . 26
3.2.6. Process Information Structure . 27

3.2.6.1. Process information structure support macros 27

i

Un
offi
cia
l D
raf
t

3.2.7. Job State Structure . 29
3.2.8. Value Structure . 29

3.2.8.1. Value structure support . 30
3.2.9. Info Structure . 34

3.2.9.1. Info structure support macros 34
3.2.9.2. Info structure list macros . 37

3.2.10. Info Type Directives . 40
3.2.10.1. Info Directive support macros 41

3.2.11. Environmental Variable Structure . 43
3.2.11.1. Environmental variable support macros 43

3.2.12. Byte Object Type . 45
3.2.12.1. Byte object support macros . 45

3.2.13. Data Array Structure . 47
3.2.13.1. Data array support macros . 47

3.2.14. Argument Array Macros . 49
3.2.15. Set Environment Variable . 53

3.3. Generalized Data Types Used for Packing/Unpacking 53
3.4. General Callback Functions . 56

3.4.1. Release Callback Function . 56
3.4.2. Lookup Callback Function . 56
3.4.3. Op Callback Function . 57
3.4.4. Value Callback Function . 57
3.4.5. Info Callback Function . 58
3.4.6. Handler registration callback function 58

3.5. PMIx Datatype Value String Representations . 59

4. Client Initialization and Finalization 63
4.1. PMIx_Initialized . 63
4.2. PMIx_Get_version . 64
4.3. PMIx_Init . 64

4.3.1. Initialization events . 67
4.3.2. Initialization attributes . 67

4.3.2.1. Connection attributes . 67
4.3.2.2. Programming model attributes 68

ii PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

4.4. PMIx_Finalize . 69
4.4.1. Finalize attributes . 69

4.5. PMIx_Progress . 69

5. Data Access and Sharing 71
5.1. Non-reserved keys . 73
5.2. Posting Key/Value Pairs . 74

5.2.1. PMIx_Put . 74
5.2.1.1. Scope of Put Data . 75

5.2.2. PMIx_Store_internal . 76
5.2.3. PMIx_Commit . 76

5.3. Retrieval rules for non-reserved keys . 77
5.4. PMIx_Get . 78

5.4.1. PMIx_Get_nb . 81
5.4.2. Retrieval attributes . 84

6. Reserved Keys 86
6.1. Data realms . 86

6.1.1. Session realm attributes . 87
6.1.2. Job realm attributes . 89
6.1.3. Application realm attributes . 91
6.1.4. Process realm attributes . 92
6.1.5. Node realm keys . 94

6.2. Retrieval rules for reserved keys . 95
6.2.1. Accessing information: examples . 96

6.2.1.1. Session-level information . 96
6.2.1.2. Job-level information . 97
6.2.1.3. Application-level information 98
6.2.1.4. Process-level information . 99
6.2.1.5. Node-level information . 99

7. Query Operations 100
7.1. PMIx_Query_info . 100

7.1.1. Query Structure . 101
7.1.2. PMIx_Query_info . 101

Contents iii

Un
offi
cia
l D
raf
t

7.1.3. PMIx_Query_info_nb . 106
7.1.4. Query keys . 110
7.1.5. Query attributes . 112

7.1.5.1. Query structure support macros 113
7.2. PMIx_Resolve_peers . 115

7.2.1. PMIx_Resolve_nodes . 116
7.3. Using Get vs Query . 117
7.4. Accessing attribute support information . 118

8. Synchronization 120
8.1. PMIx_Fence . 120
8.2. PMIx_Fence_nb . 122

8.2.1. Fence-related attributes . 124

9. Publish/Lookup Operations 126
9.1. PMIx_Publish . 126
9.2. PMIx_Publish_nb . 128
9.3. Publish-specific constants . 130
9.4. Publish-specific attributes . 130
9.5. Publish-Lookup Datatypes . 130

9.5.1. Range of Published Data . 131
9.5.2. Data Persistence Structure . 131
9.5.3. Lookup Related Data Structures . 132

9.6. PMIx_Lookup . 132
9.7. PMIx_Lookup_nb . 134

9.7.0.1. Lookup data structure support macros 136
9.8. Retrieval rules for published data . 139
9.9. PMIx_Unpublish . 139
9.10. PMIx_Unpublish_nb . 141

10.Event Notification 143
10.1. Notification and Management . 143

10.1.1. Events versus status constants . 145
10.1.2. PMIx_Register_event_handler 145
10.1.3. Event registration constants . 148

iv PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

10.1.4. System events . 149
10.1.5. Event handler registration and notification attributes 149

10.1.5.1. Fault tolerance event attributes 150
10.1.5.2. Hybrid programming event attributes 150

10.1.6. Notification Function . 151
10.1.7. PMIx_Deregister_event_handler 152
10.1.8. PMIx_Notify_event . 153
10.1.9. Notification Handler Completion Callback Function 157

10.1.9.1. Completion Callback Function Status Codes 157

11.Data Packing and Unpacking 158
11.1. Data Buffer Type . 158
11.2. Support Macros . 159
11.3. General Routines . 161

11.3.1. PMIx_Data_pack . 161
11.3.2. PMIx_Data_unpack . 162
11.3.3. PMIx_Data_copy . 164
11.3.4. PMIx_Data_print . 165
11.3.5. PMIx_Data_copy_payload . 165
11.3.6. PMIx_Data_load . 166
11.3.7. PMIx_Data_unload . 167
11.3.8. PMIx_Data_compress . 168
11.3.9. PMIx_Data_decompress . 169
11.3.10. PMIx_Data_embed . 170

12.Process Management 171
12.1. Abort . 171

12.1.1. PMIx_Abort . 171
12.2. Process Creation . 172

12.2.1. PMIx_Spawn . 173
12.2.2. PMIx_Spawn_nb . 178
12.2.3. Spawn-specific constants . 184
12.2.4. Spawn attributes . 185

Contents v

Un
offi
cia
l D
raf
t

12.2.5. Application Structure . 189
12.2.5.1. App structure support macros 189
12.2.5.2. Spawn Callback Function . 191

12.3. Connecting and Disconnecting Processes . 192
12.3.1. PMIx_Connect . 192
12.3.2. PMIx_Connect_nb . 194
12.3.3. PMIx_Disconnect . 196
12.3.4. PMIx_Disconnect_nb . 198

12.4. Process Locality . 200
12.4.1. PMIx_Load_topology . 200
12.4.2. PMIx_Get_relative_locality 201

12.4.2.1. Topology description . 201
12.4.2.2. Topology support macros . 202
12.4.2.3. Relative locality of two processes 203
12.4.2.4. Locality keys . 203

12.4.3. PMIx_Parse_cpuset_string . 203
12.4.4. PMIx_Get_cpuset . 204

12.4.4.1. Binding envelope . 205
12.4.5. PMIx_Compute_distances . 205
12.4.6. PMIx_Compute_distances_nb 206
12.4.7. Device Distance Callback Function . 207
12.4.8. Device type . 208
12.4.9. Device Distance Structure . 208
12.4.10. Device distance support macros . 209
12.4.11. Device distance attributes . 211

13.Job Management and Reporting 212
13.1. Allocation Requests . 212

13.1.1. PMIx_Allocation_request . 212
13.1.2. PMIx_Allocation_request_nb 215
13.1.3. Job Allocation attributes . 218
13.1.4. Job Allocation Directives . 220

13.2. Job Control . 220
13.2.1. PMIx_Job_control . 221

vi PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

13.2.2. PMIx_Job_control_nb . 223
13.2.3. Job control constants . 226
13.2.4. Job control events . 226
13.2.5. Job control attributes . 227

13.3. Process and Job Monitoring . 228
13.3.1. PMIx_Process_monitor . 228
13.3.2. PMIx_Process_monitor_nb . 230
13.3.3. PMIx_Heartbeat . 232
13.3.4. Monitoring events . 233
13.3.5. Monitoring attributes . 233

13.4. Logging . 234
13.4.1. PMIx_Log . 234
13.4.2. PMIx_Log_nb . 237
13.4.3. Log attributes . 240

14.Process Sets and Groups 242
14.1. Process Sets . 242

14.1.1. Process Set Constants . 243
14.1.2. Process Set Attributes . 244

14.2. Process Groups . 244
14.2.1. Relation to the host environment . 244
14.2.2. Construction procedure . 245
14.2.3. Destruct procedure . 246
14.2.4. Process Group Events . 246
14.2.5. Process Group Attributes . 247
14.2.6. PMIx_Group_construct . 249
14.2.7. PMIx_Group_construct_nb . 252
14.2.8. PMIx_Group_destruct . 255
14.2.9. PMIx_Group_destruct_nb . 256
14.2.10. PMIx_Group_invite . 258
14.2.11. PMIx_Group_invite_nb . 261
14.2.12. PMIx_Group_join . 263
14.2.13. PMIx_Group_join_nb . 265

14.2.13.1.Group accept/decline directives 267

Contents vii

Un
offi
cia
l D
raf
t

14.2.14. PMIx_Group_leave . 267
14.2.15. PMIx_Group_leave_nb . 268

15.Fabric Support Definitions 270
15.1. Fabric Support Events . 273
15.2. Fabric Support Datatypes . 273

15.2.1. Fabric Endpoint Structure . 273
15.2.2. Fabric endpoint support macros . 274
15.2.3. Fabric Coordinate Structure . 275
15.2.4. Fabric coordinate support macros . 276
15.2.5. Fabric Geometry Structure . 277
15.2.6. Fabric geometry support macros . 277
15.2.7. Fabric Coordinate Views . 279
15.2.8. Fabric Link State . 279
15.2.9. Fabric Operation Constants . 280
15.2.10. Fabric registration structure . 280

15.2.10.1.Static initializer for the fabric structure 283
15.2.10.2.Initialize the fabric structure . 283

15.3. Fabric Support Attributes . 284
15.4. Fabric Support Functions . 287

15.4.1. PMIx_Fabric_register . 287
15.4.2. PMIx_Fabric_register_nb . 289
15.4.3. PMIx_Fabric_update . 290
15.4.4. PMIx_Fabric_update_nb . 291
15.4.5. PMIx_Fabric_deregister . 291
15.4.6. PMIx_Fabric_deregister_nb 292

16.Security 293
16.1. Obtaining Credentials . 293

16.1.1. PMIx_Get_credential . 294
16.1.2. PMIx_Get_credential_nb . 295
16.1.3. Credential Attributes . 296

16.2. Validating Credentials . 297
16.2.1. PMIx_Validate_credential . 297

viii PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

16.2.2. PMIx_Validate_credential_nb 298

17.Server-Specific Interfaces 301
17.1. Server Initialization and Finalization . 301

17.1.1. PMIx_server_init . 301
17.1.2. PMIx_server_finalize . 305
17.1.3. Server Initialization Attributes . 306

17.2. Server Support Functions . 307
17.2.1. PMIx_generate_regex . 307
17.2.2. PMIx_generate_ppn . 308
17.2.3. PMIx_server_register_nspace 309

17.2.3.1. Namespace registration attributes 319
17.2.3.2. Assembling the registration information 320

17.2.4. PMIx_server_deregister_nspace 328
17.2.5. PMIx_server_register_resources 330
17.2.6. PMIx_server_deregister_resources 331
17.2.7. PMIx_server_register_client 332
17.2.8. PMIx_server_deregister_client 333
17.2.9. PMIx_server_setup_fork . 334
17.2.10. PMIx_server_dmodex_request 334

17.2.10.1.Server Direct Modex Response Callback Function 336
17.2.11. PMIx_server_setup_application 336

17.2.11.1.Server Setup Application Callback Function 340
17.2.11.2.Server Setup Application Attributes 340

17.2.12. PMIx_Register_attributes . 341
17.2.12.1.Attribute registration constants 342
17.2.12.2.Attribute registration structure 342
17.2.12.3.Attribute registration structure descriptive attributes 343
17.2.12.4.Attribute registration structure support macros 343

17.2.13. PMIx_server_setup_local_support 345
17.2.14. PMIx_server_IOF_deliver . 347
17.2.15. PMIx_server_collect_inventory 348
17.2.16. PMIx_server_deliver_inventory 349
17.2.17. PMIx_server_generate_locality_string 350

Contents ix

Un
offi
cia
l D
raf
t

17.2.18. PMIx_server_generate_cpuset_string 351
17.2.18.1.Cpuset Structure . 352
17.2.18.2.Cpuset support macros . 352

17.2.19. PMIx_server_define_process_set 353
17.2.20. PMIx_server_delete_process_set 354

17.3. Server Function Pointers . 355
17.3.1. pmix_server_module_tModule 355
17.3.2. pmix_server_client_connected_fn_t 357
17.3.3. pmix_server_client_connected2_fn_t 358
17.3.4. pmix_server_client_finalized_fn_t 359
17.3.5. pmix_server_abort_fn_t . 360
17.3.6. pmix_server_fencenb_fn_t . 362

17.3.6.1. Modex Callback Function . 365
17.3.7. pmix_server_dmodex_req_fn_t 365

17.3.7.1. Dmodex attributes . 367
17.3.8. pmix_server_publish_fn_t . 367
17.3.9. pmix_server_lookup_fn_t . 369
17.3.10. pmix_server_unpublish_fn_t 372
17.3.11. pmix_server_spawn_fn_t . 374

17.3.11.1.Server spawn attributes . 379
17.3.12. pmix_server_connect_fn_t . 379
17.3.13. pmix_server_disconnect_fn_t 381
17.3.14. pmix_server_register_events_fn_t 384
17.3.15. pmix_server_deregister_events_fn_t 385
17.3.16. pmix_server_notify_event_fn_t 387
17.3.17. pmix_server_listener_fn_t 388

17.3.17.1.PMIx Client Connection Callback Function 389
17.3.18. pmix_server_query_fn_t . 390
17.3.19. pmix_server_tool_connection_fn_t 392

17.3.19.1.Tool connection attributes . 395
17.3.19.2.PMIx Tool Connection Callback Function 395

17.3.20. pmix_server_log_fn_t . 395
17.3.21. pmix_server_alloc_fn_t . 397

x PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

17.3.22. pmix_server_job_control_fn_t 400
17.3.23. pmix_server_monitor_fn_t . 403
17.3.24. pmix_server_get_cred_fn_t 406

17.3.24.1.Credential callback function . 407
17.3.25. pmix_server_validate_cred_fn_t 408
17.3.26. Credential validation callback function 410
17.3.27. pmix_server_iof_fn_t . 411

17.3.27.1.IOF delivery function . 414
17.3.28. pmix_server_stdin_fn_t . 415
17.3.29. pmix_server_grp_fn_t . 416

17.3.29.1.Group Operation Constants . 419
17.3.30. pmix_server_fabric_fn_t . 419

18.Tools and Debuggers 422
18.1. Connection Mechanisms . 422

18.1.1. Rendezvousing with a local server . 425
18.1.2. Connecting to a remote server . 426
18.1.3. Attaching to running jobs . 427
18.1.4. Tool initialization attributes . 427
18.1.5. Tool initialization environmental variables 428
18.1.6. Tool connection attributes . 428

18.2. Launching Applications with Tools . 429
18.2.1. Direct launch . 429
18.2.2. Indirect launch . 435

18.2.2.1. Initiator-based command line parsing 435
18.2.2.2. Intermediate Launcher (IL)-based command line parsing 438

18.2.3. Tool spawn-related attributes . 439
18.2.4. Tool rendezvous-related events . 440

18.3. IO Forwarding . 441
18.3.1. Forwarding stdout/stderr . 441
18.3.2. Forwarding stdin . 444
18.3.3. IO Forwarding Channels . 445
18.3.4. IO Forwarding constants . 445
18.3.5. IO Forwarding attributes . 446

Contents xi

Un
offi
cia
l D
raf
t

18.4. Debugger Support . 447
18.4.1. Co-Location of Debugger Daemons . 450
18.4.2. Co-Spawn of Debugger Daemons . 451
18.4.3. Debugger Agents . 452
18.4.4. Tracking the job lifecycle . 453

18.4.4.1. Job lifecycle events . 454
18.4.4.2. Job lifecycle attributes . 455

18.4.5. Debugger-related constants . 455
18.4.6. Debugger attributes . 456

18.5. Tool-Specific APIs . 457
18.5.1. PMIx_tool_init . 458
18.5.2. PMIx_tool_finalize . 460
18.5.3. PMIx_tool_disconnect . 461
18.5.4. PMIx_tool_attach_to_server 462
18.5.5. PMIx_tool_get_servers . 463
18.5.6. PMIx_tool_set_server . 464
18.5.7. PMIx_IOF_pull . 465
18.5.8. PMIx_IOF_deregister . 467
18.5.9. PMIx_IOF_push . 468

19.Storage Support Definitions 471
19.1. Storage support constants . 471
19.2. Storage support attributes . 473

A. Python Bindings 475
A.1. Design Considerations . 475

A.1.1. Error Codes vs Python Exceptions . 475
A.1.2. Representation of Structured Data . 475

A.2. Datatype Definitions . 476
A.2.1. Example . 482

A.3. Callback Function Definitions . 483
A.3.1. IOF Delivery Function . 483
A.3.2. Event Handler . 483

xii PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.3.3. Server Module Functions . 484
A.3.3.1. Client Connected . 484
A.3.3.2. Client Finalized . 485
A.3.3.3. Client Aborted . 485
A.3.3.4. Fence . 486
A.3.3.5. Direct Modex . 487
A.3.3.6. Publish . 487
A.3.3.7. Lookup . 488
A.3.3.8. Unpublish . 488
A.3.3.9. Spawn . 489
A.3.3.10. Connect . 489
A.3.3.11. Disconnect . 490
A.3.3.12. Register Events . 490
A.3.3.13. Deregister Events . 491
A.3.3.14. Notify Event . 491
A.3.3.15. Query . 491
A.3.3.16. Tool Connected . 492
A.3.3.17. Log . 492
A.3.3.18. Allocate Resources . 493
A.3.3.19. Job Control . 493
A.3.3.20. Monitor . 494
A.3.3.21. Get Credential . 494
A.3.3.22. Validate Credential . 495
A.3.3.23. IO Forward . 495
A.3.3.24. IO Push . 496
A.3.3.25. Group Operations . 496
A.3.3.26. Fabric Operations . 497

A.4. PMIxClient . 498
A.4.1. Client.init . 498
A.4.2. Client.initialized . 498
A.4.3. Client.get_version . 499
A.4.4. Client.finalize . 499
A.4.5. Client.abort . 499

Contents xiii

Un
offi
cia
l D
raf
t

A.4.6. Client.store_internal . 500
A.4.7. Client.put . 500
A.4.8. Client.commit . 501
A.4.9. Client.fence . 501
A.4.10. Client.get . 502
A.4.11. Client.publish . 502
A.4.12. Client.lookup . 503
A.4.13. Client.unpublish . 503
A.4.14. Client.spawn . 504
A.4.15. Client.connect . 504
A.4.16. Client.disconnect . 505
A.4.17. Client.resolve_peers . 505
A.4.18. Client.resolve_nodes . 506
A.4.19. Client.query . 506
A.4.20. Client.log . 507
A.4.21. Client.allocation_request . 507
A.4.22. Client.job_ctrl . 508
A.4.23. Client.monitor . 508
A.4.24. Client.get_credential . 509
A.4.25. Client.validate_credential . 509
A.4.26. Client.group_construct . 510
A.4.27. Client.group_invite . 510
A.4.28. Client.group_join . 511
A.4.29. Client.group_leave . 512
A.4.30. Client.group_destruct . 512
A.4.31. Client.register_event_handler . 512
A.4.32. Client.deregister_event_handler . 513
A.4.33. Client.notify_event . 513
A.4.34. Client.fabric_register . 514
A.4.35. Client.fabric_update . 514
A.4.36. Client.fabric_deregister . 515
A.4.37. Client.load_topology . 515
A.4.38. Client.get_relative_locality . 516

xiv PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.4.39. Client.get_cpuset . 516
A.4.40. Client.parse_cpuset_string . 516
A.4.41. Client.compute_distances . 517
A.4.42. Client.error_string . 517
A.4.43. Client.proc_state_string . 518
A.4.44. Client.scope_string . 518
A.4.45. Client.persistence_string . 519
A.4.46. Client.data_range_string . 519
A.4.47. Client.info_directives_string . 519
A.4.48. Client.data_type_string . 520
A.4.49. Client.alloc_directive_string . 520
A.4.50. Client.iof_channel_string . 521
A.4.51. Client.job_state_string . 521
A.4.52. Client.get_attribute_string . 521
A.4.53. Client.get_attribute_name . 522
A.4.54. Client.link_state_string . 522
A.4.55. Client.device_type_string . 523
A.4.56. Client.progress . 523

A.5. PMIxServer . 523
A.5.1. Server.init . 523
A.5.2. Server.finalize . 524
A.5.3. Server.generate_regex . 524
A.5.4. Server.generate_ppn . 525
A.5.5. Server.generate_locality_string . 525
A.5.6. Server.generate_cpuset_string . 526
A.5.7. Server.register_nspace . 526
A.5.8. Server.deregister_nspace . 527
A.5.9. Server.register_resources . 527
A.5.10. Server.deregister_resources . 528
A.5.11. Server.register_client . 528
A.5.12. Server.deregister_client . 529
A.5.13. Server.setup_fork . 529
A.5.14. Server.dmodex_request . 529

Contents xv

Un
offi
cia
l D
raf
t

A.5.15. Server.setup_application . 530
A.5.16. Server.register_attributes . 530
A.5.17. Server.setup_local_support . 531
A.5.18. Server.iof_deliver . 531
A.5.19. Server.collect_inventory . 532
A.5.20. Server.deliver_inventory . 532
A.5.21. Server.define_process_set . 533
A.5.22. Server.delete_process_set . 533
A.5.23. Server.register_resources . 534
A.5.24. Server.deregister_resources . 534

A.6. PMIxTool . 535
A.6.1. Tool.init . 535
A.6.2. Tool.finalize . 535
A.6.3. Tool.disconnect . 535
A.6.4. Tool.attach_to_server . 536
A.6.5. Tool.get_servers . 536
A.6.6. Tool.set_server . 537
A.6.7. Tool.iof_pull . 537
A.6.8. Tool.iof_deregister . 538
A.6.9. Tool.iof_push . 538

A.7. Example Usage . 539
A.7.1. Python Client . 539
A.7.2. Python Server . 541

B. Use-Cases 545
B.1. Business Card Exchange for Process-to-Process Wire-up 545

B.1.1. Use Case Summary . 545
B.1.2. Use Case Details . 546

B.2. Debugging . 549
B.2.1. Terminology . 549

B.2.1.1. Tools vs Debuggers . 549
B.2.1.2. Parallel Launching Methods . 550
B.2.1.3. Process Synchronization . 550
B.2.1.4. Process Acquisition . 550

xvi PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

B.2.2. Use Case Details . 550
B.2.2.1. Direct-Launch Debugger Tool 550
B.2.2.2. Indirect-Launch Debugger Tool 555
B.2.2.3. Attaching to a Running Job . 561
B.2.2.4. Tool Interaction with RM . 564
B.2.2.5. Environmental Parameter Directives for Applications and Launchers566

B.3. Hybrid Applications . 567
B.3.1. Use Case Summary . 567
B.3.2. Use Case Details . 567

B.3.2.1. Identifying Active Parallel Runtime Systems 567
B.3.2.2. Coordinating at Runtime . 569
B.3.2.3. Coordinating at Runtime with Multiple Event Handlers 571

B.4. MPI Sessions . 574
B.4.1. Use Case Summary . 574
B.4.2. Use Case Details . 575

B.5. Cross-Version Compatibility . 577
B.5.1. Use Case Summary . 577
B.5.2. Use Case Details . 577

C. Revision History 581
C.1. Version 1.0: June 12, 2015 . 581
C.2. Version 2.0: Sept. 2018 . 582

C.2.1. Removed/Modified Application Programming Interfaces (APIs) 582
C.2.2. Deprecated constants . 582
C.2.3. Deprecated attributes . 583

C.3. Version 2.1: Dec. 2018 . 583
C.4. Version 2.2: Jan 2019 . 584
C.5. Version 3.0: Dec. 2018 . 584

C.5.1. Removed constants . 585
C.5.2. Deprecated attributes . 585
C.5.3. Removed attributes . 585

C.6. Version 3.1: Jan. 2019 . 586
C.7. Version 3.2: Oct. 2020 . 586

C.7.1. Deprecated constants . 587

Contents xvii

Un
offi
cia
l D
raf
t

C.7.2. Deprecated attributes . 588
C.8. Version 4.0: Dec. 2020 . 589

C.8.1. Added Constants . 591
C.8.2. Added Attributes . 594
C.8.3. Added Environmental Variables . 607
C.8.4. Added Macros . 607
C.8.5. Deprecated APIs . 608
C.8.6. Deprecated constants . 608
C.8.7. Removed constants . 608
C.8.8. Deprecated attributes . 609
C.8.9. Removed attributes . 610

C.9. Version 4.1: TBD . 611
C.9.1. Removed constants . 611
C.9.2. Added Functions (Provisional) . 611
C.9.3. Added Data Structures (Provisional) . 612
C.9.4. Added Macros (Provisional) . 612
C.9.5. Added Constants (Provisional) . 612
C.9.6. Added Attributes (Provisional) . 613

C.10. Version 4.2: TBD . 614
C.10.1. Deprecated constants . 614
C.10.2. Deprecated attributes . 614
C.10.3. Deprecated macros . 615
C.10.4. Added Functions (Provisional) . 615
C.10.5. Added Macros (Provisional) . 615
C.10.6. Added Constants (Provisional) . 616
C.10.7. Added Attributes (Provisional) . 616

D. Acknowledgements 619
D.1. Version 4.0 . 619
D.2. Version 3.0 . 620
D.3. Version 2.0 . 621
D.4. Version 1.0 . 622

Bibliography 624

xviii PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Index 625

Index of APIs 627

Index of Support Macros 635

Index of Data Structures 640

Index of Constants 642

Index of Environmental Variables 652

Index of Attributes 653

Contents xix

Un
offi
cia
l D
raf
t

CHAPTER 1

Introduction

Process Management Interface - Exascale (PMIx) is an application programming interface standard1
that provides libraries and programming models with portable and well-defined access to commonly2
needed services in distributed and parallel computing systems. A typical example of such a service3
is the portable and scalable exchange of network addresses to establish communication channels4
between the processes of a parallel application or service. As such, PMIx gives distributed system5
software providers a better understanding of how programming models and libraries can interface6
with and use system-level services. As a standard, PMIx provides APIs that allow for portable7
access to these varied system software services and the functionalities they offer. Although these8
services can be defined and implemented directly by the system software components providing9
them, the community represented by the ASC feels that the development of a shared standard better10
serves the community. As a result, PMIx enables programming languages and libraries to focus on11
their core competencies without having to provide their own system-level services.12

1.1 Background13

The Process Management Interface (PMI) has been used for quite some time as a means of14
exchanging wireup information needed for inter-process communication. Two versions (PMI-1 and15
PMI-2 [2]) have been released as part of the MPICH effort, with PMI-2 demonstrating better16
scaling properties than its PMI-1 predecessor.17

PMI-1 and PMI-2 can be implemented using PMIx though PMIx is not a strict superset of either.18
Since its introduction, PMIx has expanded on earlier PMI efforts by providing an extended version19
of the PMI APIs which provide necessary functionality for launching and managing parallel20
applications and tools at scale.21

The increase in adoption has motivated the creation of this document to formally specify the22
intended behavior of the PMIx APIs.23

More information about the PMIx standard and affiliated projects can be found at the PMIx web24
site: https://pmix.org25

1.2 PMIx Architecture Overview26

The presentation of the PMIx APIs within this document makes some basic assumptions about how27
these APIs are used and implemented. These assumptions are generally made only to simplify the28
presentation and explain PMIx with the expectation that most readers have similar concepts on how29

1

https://pmix.org

Un
offi
cia
l D
raf
t

computing systems are organized today. However, ultimately this document should only be1
assumed to define a set of APIs.2

A concept that is fundamental to PMIx is that a PMIx implementation might operate primarily as a3
messenger, and not a doer — i.e., a PMIx implementation might rely heavily or fully on other4
software components to provide functionality [1]. Since a PMIx implementation might only deliver5
requests and responses to other software components, the API calls include ways to provide6
arbitrary information to the backend components that actually implement the functionality. Also,7
because PMIx implementations generally rely heavily on other system software, a PMIx8
implementation might not be able to guarantee that a feature is available on all platforms the9
implementation supports. These aspects are discussed in detail in the remainder of this chapter.10

RM

PMIx
Client

FS

Fabric

RAS

APP

Orchestration
Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

Job
Script

System
Management Stack

Tool Support

Figure 1.1.: PMIx-SMS Interactions

Fig. 1.1 shows a typical PMIx implementation in which the application is built against a PMIx11
client library that contains the client-side APIs, attribute definitions, and communication support12
for interacting with the local PMIx server. PMIx clients are processes which are started through the13
PMIx infrastructure, either by the PMIx implementation directly or through a System Management14
Software stack (SMS) component, and have registered as clients. A PMIx client is created in such a15
way that the PMIx client library will be have sufficient information available to authenticate with16
the PMIx server. The PMIx server will have sufficient knowledge about the process which it17
created, either directly or through other SMS, to authenticate the process and provide information18
the process requests such as its identity and the identity of its peers.19

As clients invoke PMIx APIs, it is possible that some client requests can be handled at the client20
level. Other requests might require communication with the local PMIx server, which subsequently21
might request services from the host SMS (represented here by a Resource Manager (RM)22
daemon). The interaction between the PMIx server and SMS are achieved using callback functions23
registered during server initialization. The host SMS can indicate its lack of support for any24

2 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

operation by simply providing a NULL for the associated callback function, or can create a function1
entry that returns not supported when called.2

Recognizing the burden this places on SMS vendors, the PMIx community has included interfaces3
by which the host SMS (containing the local PMIx service instance) can request support from local4
SMS elements via the PMIx API. Once the SMS has transferred the request to an appropriate5
location, a PMIx server interface can be used to pass the request between SMS subsystems. For6
example, a request for network traffic statistics can utilize the PMIx networking abstractions to7
retrieve the information from the Fabric Manager. This reduces the portability and interoperability8
issues between the individual subsystems by transferring the burden of defining the interoperable9
interfaces from the SMS subsystems to the PMIx community, which continues to work with those10
providers to develop the necessary support.11

Fig. 1.1 shows how tools can interact with the PMIx architecture. Tools, whether standalone or12
embedded in job scripts, are an exception to the normal client registration process. A process can13
register as a tool, provided the PMIx client library has adequate rendezvous information to connect14
to the appropriate PMIx server (either hosted on the local machine or on a remote machine). This15
allows processes which were not created by the PMIx infrastructure to request access to PMIx16
functionality.17

1.3 Portability of Functionality18

It is difficult to define a portable API that will provide access to the many and varied features19
underlying the operations for which PMIx provides access. For example, the options and features20
provided to request the creation of new processes varied dramatically between different systems21
existing at the time PMIx was introduced. Many RMs provide rich interfaces to specify the22
resources assigned to processes. As a result, PMIx is faced with the challenge of attempting to meet23
the seamingly conflicting goals of creating an API which allows access to these diverse features24
while being portable across a wide range of existing software environments. In addition, the25
functionalities required by different clients vary greatly. Producing a PMIx implementation which26
can provide the needs of all possible clients on all of its target systems could be so burdensome as27
to discourage PMIx implementations.28

To help address this issue, the PMIx APIs are designed to allow resource managers and other29
system management stack components to decide on support of a particular function and allow client30
applications to query and adjust to the level of support available. PMIx clients should be written to31
account for the possibility that a PMIx API might return an error code indicating that the call is not32
supported. The PMIx community continues to look at ways to assist SMS implementers in their33
decisions on what functionality to support by highlighting functions and attributes that are critical34
to basic application execution (e.g., PMIx_Get) for certain classes of applications.35

1.3.1 Attributes in PMIx36

An area where differences between support on different systems can be challenging is regarding the37
attributes that provide information to the client process and/or control the behavior of a PMIx API.38

CHAPTER 1. INTRODUCTION 3

Un
offi
cia
l D
raf
t

Most PMIx API calls can accept additional information or attributes specified in the form of1
key/value pairs. These attributes provide information to the PMIx implementation that influence the2
behavior of the API call. In addition to API calls being optional, support for the individual3
attributes of an API call can vary between systems or implementations.4

An application can adapt to the attribute support on a particular system in one of two ways. PMIx5
provides an API to enable an application to query the attributes supported by a particular API (See6
7.4). Through this API, the PMIx implementation can provide detailed information about the7
attributes supported on a system for each API call queried. Alternatively, the application can mark8
attributes as required using a flag within the pmix_info_t (See 3.2.9). If the required attribute is9
not available on the system or the desired value for the attribute is not available, the call will return10
the error code for not supported.11

For example, the PMIX_TIMEOUT attribute can be used to specify the time (in seconds) before the12
requested operation should time out. The intent of this attribute is to allow the client to avoid13
“hanging” in a request that takes longer than the client wishes to wait, or may never return (e.g., a14
PMIx_Fence that a blocked participant never enters).15

The application can query the attribute support for PMIx_Fence and search whether16
PMIX_TIMEOUT is listed as a supported attribute. The application can also set the required flag in17
the pmix_info_t for that attribute when making the PMIx_Fence call. This will return an18
error if this attribute is not supported. If the required flag is not set, the library and SMS host are19
allowed to treat the attribute as optional, ignoring it if support is not available.20

It is therefore critical that users and application implementers:21

a) consider whether or not a given attribute is required, marking it accordingly; and22
b) check the return status on all PMIx function calls to ensure support was present and that the23

request was accepted. Note that for non-blocking APIs, a return of PMIX_SUCCESS only24
indicates that the request had no obvious errors and is being processed – the eventual callback25
will return the status of the requested operation itself.26

PMIx clients (e.g., tools, parallel programming libraries) may find that they depend only on a small27
subset of interfaces and attributes to work correctly. PMIx clients are strongly advised to define a28
document itemizing the PMIx interfaces and associated attributes that are required for correct29
operation, and are optional but recommended for full functionality. The PMIx standard cannot30
define this list for all given PMIx clients, but such a list is valuable to RMs desiring to support these31
clients.32

A PMIx implementation may be able to support only a subset of the PMIx API and attributes on a33
particular system due to either its own limitations or limitations of the SMS with which it34
interfaces. A PMIx implemenation may also provide additional attributes beyond those defined35
herein in order to allow applications to access the full features of the underlying SMS. PMIx36
implementations are strongly advised to document the PMIx interfaces and associated attributes37
they support, with any annotations about behavior limitations. The PMIx standard cannot define38
this support for implementations, but such documentation is valuable to PMIx clients desiring to39
support a broad range of systems.40

4 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

While a PMIx library implementer, or an SMS component server, may choose to support a1
particular PMIx API, they are not required to support every attribute that might apply to it. This2
would pose a significant barrier to entry for an implementer as there can be a broad range of3
applicable attributes to a given API, at least some of which may rarely be used.4

Note that an environment that does not include support for a particular attribute/API pair is not5
“incomplete” or of lower quality than one that does include that support. Vendors must decide6
where to invest their time based on the needs of their target markets, and it is perfectly reasonable7
for them to perform cost/benefit decisions when considering what functions and attributes to8
support.9

Attributes in this document are organized according to their primary usage, either grouped with a10
specific API or included in an appropriate functional chapter. Attributes in the PMIx Standard all11
start with "PMIX" in their name, and many include a functional description as part of their name12
(e.g., the use of "PMIX_FABRIC_" at the beginning of fabric-specific attributes). The PMIx13
Standard also defines an attribute that can be used to indicate that an attribute variable has not yet14
been set:15

PMIX_ATTR_UNDEF "pmix.undef" (NULL)16
A default attribute name signifying that the attribute field of a PMIx structure (e.g., a17
pmix_info_t) has not yet been defined.18

1.3.2 PMIx Roles19

The role of a PMIx process in the PMIx universe is grouped into one of three categories based on20
how it operates in the PMIx environment namely as a client, server, or tool. As a result, there are21
three corresponding groupings of APIs each with their own initialization and finalization functions.22
If a process initializes as either a server or a tool that process may also access all of the client APIs.23

A process operating as a client is connected to the PMIx server instance within an RM when the24
client calls the client PMIx initialization routine. The client is typically started directly or indirectly25
(for example, by an intermediate script) by that RM. Additionally, a client may be started directly26
by the user and then connect to an RM which is typically referred to as a singleton launch. A27
process operating as a server is responsible for starting client processes and coordinating with other28
server and tool processes in the same PMIx universe. Often processes operating as a server are part29
of the Resource Manager (RM) infrastructure. A process operating as a tool is started30
independently (e.g., via fork/exec) or by the RM and will connect to a PMIx server to interact with31
the processes in the PMIx universe. An example of a tool process is a parallel debugger that will32
connect to the server to assist with attaching to a set of client processes.33

PMIx serves as a conduit between processes acting in these three different roles. As such, an API is34
often described by how it interacts with processes operating in other roles in the PMIx universe.35

CHAPTER 1. INTRODUCTION 5

Un
offi
cia
l D
raf
t

Advice to PMIx library implementers

A PMIx implementation may support all or a subset of the API role groupings defined in the1
standard. A common nomenclature is defined here to aid in identifying levels of conformance of an2
implementation.3

Note that it would not make sense for an implementation to exclude the client interfaces from their4
implementation since they are also used by the server and tool roles. Therefore the client interfaces5
represent the minimal set of required functionality for PMIx compliance.6

A PMIx implementation that supports only the client APIs is said to be client-role PMIx standard7
compliant. Similarly, a PMIx implementation that only supports the client and tool APIs is said to8
be client-role and tool-role PMIx standard compliant. Finally, a PMIx implementation that only9
supports the client and server APIs is said to be client-role and server-role PMIx standard10
compliant.11

A PMIx implementation that supports all three sets of the API role groupings is said to be12
client-role, server-role, and tool-role PMIx standard compliant. These client-role,server-role, and13
tool-role PMIx standard compliant implementations have the advantage of being able to support a14
broad set of PMIx consumers in the different roles.15

6 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 2

PMIx Terms and Conventions

In this chapter we describe some common terms and conventions used throughout this document.1
The PMIx Standard has adopted the widespread use of key-value attributes to add flexibility to the2
functionality expressed in the APIs. Accordingly, the ASC has chosen to require that the definition3
of each standard API include the passing of an array of attributes. These provide a means of4
customizing the behavior of the API as future needs emerge without having to alter or create new5
variants of it. In addition, attributes provide a mechanism by which researchers can easily explore6
new approaches to a given operation without having to modify the API itself.7

In an effort to maintain long-term backward compatibility, PMIx does not include large numbers of8
APIs that each focus on a narrow scope of functionality, but instead relies on the definition of fewer9
generic APIs that include arrays of key-value attributes for “tuning” the function’s behavior. Thus,10
modifications to the PMIx standard primarily consist of the definition of new attributes along with a11
description of the APIs to which they relate and the expected behavior when used with those APIs.12

The following terminology is used throughout this document:13

• session refers to a set of resources assigned by the WorkLoad Manager (WLM) that has been14
reserved for one or more users. A session is identified by a session ID that is unique within the15
scope of the governing WLMs. Historically, High Performance Computing (HPC) sessions have16
consisted of a static allocation of resources - i.e., a block of resources assigned to a user in17
response to a specific request and managed as a unified collection. However, this is changing in18
response to the growing use of dynamic programming models that require on-the-fly allocation19
and release of system resources. Accordingly, the term session in this document refers to a20
potentially dynamic entity, perhaps comprised of resources accumulated as a result of multiple21
allocation requests that are managed as a single unit by the WLM.22

• job refers to a set of one or more applications executed as a single invocation by the user within a23
session with a unique identifier, the job ID, assigned by the RM or launcher. For example, the24
command line “mpiexec -n 1 app1 : -n 2 app2” generates a single Multiple Program Multiple25
Data (MPMD) job containing two applications. A user may execute multiple jobs within a given26
session, either sequentially or concurrently.27

• namespace refers to a character string value assigned by the RM to a job. All applications28
executed as part of that job share the same namespace. The namespace assigned to each job must29
be unique within the scope of the governing RM and often is implemented as a string30
representation of the numerical emphJob ID. The namespace and job terms will be used31
interchangeably throughout the document.32

7

Un
offi
cia
l D
raf
t

• application represents a set of identical, but not necessarily unique, execution contexts within a1
job.2

• process is assumed for ease of presentation to be an operating system process, also commonly3
referred to as a heavyweight process. A process is often comprised of multiple lightweight4
threads, commonly known as simply threads. However, it is not the intent of the PMIx Standard5
to restrict the term process to a particular concept or implementation.6

• client refers to a process that was registered with the PMIx server prior to being started, and7
connects to that PMIx server via PMIx_Init using its assigned namespace and rank with the8
information required to connect to that server being provided to the process at time of start of9
execution.10

• tool refers to a process that may or may not have been registered with the PMIx server prior to11
being started and intializes using PMIx_tool_init.12

• clone refers to a process that was directly started by a PMIx client (e.g., using fork/exec) and calls13
PMIx_Init, thus connecting to its local PMIx server using the same namespace and rank as its14
parent process.15

• rank refers to the numerical location (starting from zero) of a process within the defined scope.16
Thus, job rank is the rank of a process within its job and is synonymous with its unqualified17
rank, while application rank is the rank of that process within its application.18

• peer refers to another process within the same job.19

• workflow refers to an orchestrated execution plan typically involving multiple jobs carried out20
under the control of a workflow manager. An example workflow might first execute a21
computational job to generate the flow of liquid through a complex cavity, followed by a22
visualization job that takes the output of the first job as its input to produce an image output.23

• scheduler refers to the component of the SMS responsible for scheduling of resource allocations.24
This is also generally referred to as the system workflow manager - for the purposes of this25
document, the WLM acronym will be used interchangeably to refer to the scheduler.26

• resource manager is used in a generic sense to represent the subsystem that will host the PMIx27
server library. This could be a vendor-supplied resource manager or a third-party agent such as a28
programming model’s runtime library.29

• host environment is used interchangeably with resource manager to refer to the process hosting30
the PMIx server library.31

• node refers to a single operating system instance. Note that this may encompass one or more32
physical objects.33

• package refers to a single object that is either soldered or connected to a printed circuit board via34
a mechanical socket. Packages may contain multiple chips that include (but are not limited to)35
processing units, memory, and peripheral interfaces.36

8 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• processing unit, or PU, is the electronic circuitry within a computer that executes instructions.1
Depending upon architecture and configuration settings, it may consist of a single hardware2
thread or multiple hardware threads collectively organized as a core.3

• fabric is used in a generic sense to refer to the networks within the system regardless of speed or4
protocol. Any use of the term network in the document should be considered interchangeable5
with fabric.6

• fabric device (or fabric devices) refers to an operating system fabric interface, which may be7
physical or virtual. Any use of the term Network Interface Card (NIC) in the document should be8
considered interchangeable with fabric device.9

• fabric plane refers to a collection of fabric devices in a common logical or physical10
configuration. Fabric planes are often implemented in HPC clusters as separate overlay or11
physical networks controlled by a dedicated fabric manager.12

• attribute refers to a key-value pair comprised of a string key (represented by a pmix_key_t13
structure) and an associated value containing a PMIx data type (e.g., boolean, integer, or a more14
complex PMIx structure). Attributes are used both as directives when passed as qualifiers to15
APIs (e.g., in a pmix_info_t array), and to identify the contents of information (e.g., to16
specify that the contents of the corresponding pmix_value_t in a pmix_info_t represent17
the PMIX_UNIV_SIZE).18

• key refers to the string component of a defined attribute. The PMIx Standard will often refer to19
passing of a key to an API (e.g., to the PMIx_Query_info or PMIx_Get APIs) as a means of20
identifying requested information. In this context, the data type specified in the attribute’s21
definition indicates the data type the caller should expect to receive in return. Note that not all22
attributes can be used as keys as some have specific uses solely as API qualifiers.23

• instant on refers to a PMIx concept defined as: "All information required for setup and24
communication (including the address vector of endpoints for every process) is available to each25
process at start of execution"26

The following sections provide an overview of the conventions used throughout the PMIx Standard27
document.28

2.1 Notational Conventions29

Some sections of this document describe programming language specific examples or APIs. Text30
that applies only to programs for which the base language is C is shown as follows:31

CHAPTER 2. PMIX TERMS AND CONVENTIONS 9

Un
offi
cia
l D
raf
t

C
C specific text...1

int foo = 42;2

C

Some text is for information only, and is not part of the normative specification. These take several3
forms, described in their examples below:4

Note: General text...5

Rationale

Throughout this document, the rationale for the design choices made in the interface specification is6
set off in this section. Some readers may wish to skip these sections, while readers interested in7
interface design may want to read them carefully.8

Advice to users

Throughout this document, material aimed at users and that illustrates usage is set off in this9
section. Some readers may wish to skip these sections, while readers interested in programming10
with the PMIx API may want to read them carefully.11

Advice to PMIx library implementers

Throughout this document, material that is primarily commentary to PMIx library implementers is12
set off in this section. Some readers may wish to skip these sections, while readers interested in13
PMIx implementations may want to read them carefully.14

Advice to PMIx server hosts

Throughout this document, material that is primarily commentary aimed at host environments (e.g.,15
RMs and RunTime Environments (RTEs)) providing support for the PMIx server library is set off in16
this section. Some readers may wish to skip these sections, while readers interested in integrating17
PMIx servers into their environment may want to read them carefully.18

Attributes added in this version of the standard are shown in magenta to distinguish them from19
those defined in prior versions, which are shown in black. Deprecated attributes are shown in green20
and may be removed in a future version of the standard.21

10 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

2.2 Semantics1

The following terms will be taken to mean:2

• shall, must and will indicate that the specified behavior is required of all conforming3
implementations4

• should and may indicate behaviors that a complete implementation would include, but are not5
required of all conforming implementations6

2.3 Naming Conventions7

The PMIx standard has adopted the following conventions:8

• PMIx constants and attributes are prefixed with "PMIX_".9

• Structures and type definitions are prefixed with "pmix_".10

• The string representation of attributes are prefixed with "pmix".11

• Underscores are used to separate words in a function or variable name.12

• Lowercase letters are used in PMIx client APIs except for the PMIx prefix (noted below) and the13
first letter of the word following it. For example, PMIx_Get_version.14

• PMIx server and tool APIs are all lower case letters following the prefix - e.g.,15
PMIx_server_register_nspace.16

• The PMIx_ prefix is used to denote functions.17

• The pmix_ prefix is used to denote function pointer and type definitions.18

Users shall not use the "PMIX_", "PMIx_", or "pmix_" prefixes for symbols in their code so as19
to avoid symbol conflicts with PMIx implementations.20

2.4 Procedure Conventions21

While the current APIs are based on the C programming language, it is not the intent of the PMIx22
Standard to preclude the use of other languages. Accordingly, the procedure specifications in the23
PMIx Standard are written in a language-independent syntax with the arguments marked as IN,24
OUT, or INOUT. The meanings of these are:25

• IN: The call may use the input value but does not update the argument from the perspective of26
the caller at any time during the calls execution,27

• OUT: The call may update the argument but does not use its input value28

• INOUT: The call may both use and update the argument.29

CHAPTER 2. PMIX TERMS AND CONVENTIONS 11

Un
offi
cia
l D
raf
t

Many PMIx interfaces, particularly nonblocking interfaces, use a (void*) callback data object1
passed to the function that is then passed to the associated callback. On the client side, the callback2
data object is an opaque, client-provided context that the client can pass to a non-blocking call.3
When the nonblocking call completes, the callback data object is passed back to the client without4
modification by the PMIx library, thus allowing the client to associate a context with that callback.5
This is useful if there are many outstanding nonblocking calls.6

A similar model is used for the server module functions (see 17.3.1). In this case, the PMIx library7
is making an upcall into its host via the PMIx server module callback function and passing a8
specific callback function pointer and callback data object. The PMIx library expects the host to9
call the cbfunc with the necessary arguments and pass back the original callback data obect upon10
completing the operation. This gives the server-side PMIx library the ability to associate a context11
with the call back (since multiple operations may be outstanding). The host has no visibility into12
the contents of the callback data object object, nor is permitted to alter it in any way.13

12 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 3

Data Structures and Types

This chapter defines PMIx standard data structures (along with macros for convenient use), types,1
and constants. These apply to all consumers of the PMIx interface. Where necessary for2
clarification, the description of, for example, an attribute may be copied from this chapter into a3
section where it is used.4

A PMIx implementation may define additional attributes beyond those specified in this document.5

Advice to PMIx library implementers

Structures, types, and macros in the PMIx Standard are defined in terms of the C-programming6
language. Implementers wishing to support other languages should provide the equivalent7
definitions in a language-appropriate manner.8

If a PMIx implementation chooses to define additional attributes they should avoid using the9
"PMIX" prefix in their name or starting the attribute string with a "pmix" prefix. This helps the10
end user distinguish between what is defined by the PMIx standard and what is specific to that11
PMIx implementation, and avoids potential conflicts with attributes defined by the Standard.12

Advice to users

Use of increment/decrement operations on indices inside PMIx macros is discouraged due to13
unpredictable behavior as the index may be cited more than once in the macro. The PMIx standard14
only governs the existence and syntax of macros - it does not specify their implementation.15

Users are also advised to use the macros and APIs for creating, loading, and releasing PMIx16
structures to avoid potential issues with release of memory. For example, pointing a17
pmix_envar_t element at a static string variable and then using PMIX_ENVAR_DESTRUCT to18
clear it would generate an error as the static string had not been allocated.19

13

Un
offi
cia
l D
raf
t

3.1 Constants1

PMIx defines a few values that are used throughout the standard to set the size of fixed arrays or as2
a means of identifying values with special meaning. The community makes every attempt to3
minimize the number of such definitions. The constants defined in this section may be used before4
calling any PMIx library initialization routine. Additional constants associated with specific data5
structures or types are defined in the section describing that data structure or type.6

PMIX_MAX_NSLEN Maximum namespace string length as an integer.7

Advice to PMIx library implementers

PMIX_MAX_NSLEN should have a minimum value of 63 characters. Namespace arrays in PMIx8
defined structures must reserve a space of size PMIX_MAX_NSLEN+1 to allow room for the NULL9
terminator10

PMIX_MAX_KEYLEN Maximum key string length as an integer.11

Advice to PMIx library implementers

PMIX_MAX_KEYLEN should have a minimum value of 63 characters. Key arrays in PMIx defined12
structures must reserve a space of size PMIX_MAX_KEYLEN+1 to allow room for the NULL13
terminator14

PMIX_APP_WILDCARD UINT32_MAX A value to indicate that the user wants the data for15
the given key from every application that posted that key, or that the given value applies to all16
applications within the given namespace.17

14 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

3.1.1 PMIx Return Status Constants1

The pmix_status_t type is an int compatible value for return status values. PMIx return2
values other than PMIX_SUCCESS are required to always be negative. The return status value for a3
successful operation is PMIX_SUCCESS, which must have an integer value of 0:4

PMIX_SUCCESS 0 Success.5

Advice to PMIx library implementers

A PMIx implementation must define all of the return status constants defined in the PMIx standard,6
even if the implementation will never return the specific value to the caller.7

Advice to users

Other than PMIX_SUCCESS (which is required to be zero), the integer value of any PMIx error8
constant is left to the PMIx library implementer with the constraint that it be negative and greater9
magnitude (i.e. of larger absolute value) than PMIX_EXTERNAL_ERR_BASE. Thus, users are10
advised to always refer to constants by name, and not by a specific implementation’s integer value,11
for portability between implementations and compatibility across library versions.12

The presentation of each API in this document includes a list of return status constants which are13
either specific to that API or are expected to be returned by the API in normal use.14

In addition, the following are general constants covering a variety of possible reasons an15
implementation of an API may return a constant other than one of the constants presented with the16
API. Although implementations can define and return additional error constants, implementations17
are encouraged to return one of the return constants listed with the API or in the list presented here18
to encourage portability across implementations.19

PMIX_ERROR -1 General Error.20
PMIX_ERR_EXISTS -11 The requested operation would overwrite an existing value -21

typically returned when an operation would overwrite an existing file or directory.22
PMIX_ERR_EXISTS_OUTSIDE_SCOPE -62 The requested key exists, but was posted in a23

scope (see Section 5.2.1.1) that does not include the requester24
PMIX_ERR_INVALID_CRED -12 Invalid security credentials.25
PMIX_ERR_WOULD_BLOCK -15 Operation would block.26
PMIX_ERR_UNKNOWN_DATA_TYPE -16 The data type specified in an input to the PMIx27

library is not recognized by the implementation.28
PMIX_ERR_TYPE_MISMATCH -18 The data type found in an object does not match the29

expected data type as specified in the API call - e.g., a request to unpack a PMIX_BOOL value30
from a buffer that does not contain a value of that type in the current unpack location.31

PMIX_ERR_UNPACK_INADEQUATE_SPACE -19 Inadequate space to unpack data - the32
number of values in the buffer exceeds the specified number to unpack.33

CHAPTER 3. DATA STRUCTURES AND TYPES 15

Un
offi
cia
l D
raf
t

PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER -50 Unpacking past the end of the1
provided buffer - the number of values in the buffer is less than the specified number to2
unpack, or a request was made to unpack a buffer beyond the buffer’s end.3

PMIX_ERR_UNPACK_FAILURE -20 The unpack operation failed for an unspecified reason.4
PMIX_ERR_PACK_FAILURE -21 The pack operation failed for an unspecified reason.5
PMIX_ERR_NO_PERMISSIONS -23 The user lacks permissions to execute the specified6

operation.7
PMIX_ERR_TIMEOUT -24 Either a user-specified or system-internal timeout expired.8
PMIX_ERR_UNREACH -25 The specified target server or client process is not reachable -9

i.e., a suitable connection either has not been or can not be made.10
PMIX_ERR_BAD_PARAM -27 One or more incorrect parameters (e.g., passing an attribute11

with a value of the wrong type), or multiple parameters containing conflicting directives (e.g.,12
multiple instances of the same attribute with different values, or different attributes specifying13
conflicting behaviors), were passed to a PMIx API.14

PMIX_ERR_EMPTY -60 An array or list was given that has no members in it - i.e., the object15
is empty.16

PMIX_ERR_RESOURCE_BUSY -28 Resource busy - typically seen when an attempt to17
establish a connection to another process (e.g., a PMIx server) cannot be made due to a18
communication failure.19

PMIX_ERR_OUT_OF_RESOURCE -29 Resource exhausted.20
PMIX_ERR_INIT -31 The requested operation requires that the PMIx library be initialized21

prior to being called.22
PMIX_ERR_NOMEM -32 Out of memory.23
PMIX_ERR_NOT_FOUND -46 The requested information was not found.24
PMIX_ERR_NOT_SUPPORTED -47 The requested operation is not supported by either the25

PMIx implementation or the host environment.26
PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED -59 The requested operation is supported27

by the PMIx implementation and (if applicable) the host environment. However, at least one28
supplied parameter was given an unsupported value, and the operation cannot therefore be29
executed as requested.30

PMIX_ERR_COMM_FAILURE -49 Communication failure - a message failed to be sent or31
received, but the connection remains intact.32

PMIX_ERR_LOST_CONNECTION -61 Lost connection between server and client or tool.33
PMIX_ERR_INVALID_OPERATION -158 The requested operation is supported by the34

implementation and host environment, but fails to meet a requirement (e.g., requesting to35
disconnect from processes without first connecting to them, inclusion of conflicting36
directives, or a request to perform an operation that conflicts with an ongoing one).37

PMIX_OPERATION_IN_PROGRESS -156 A requested operation is already in progress -38
the duplicate request shall therefore be ignored.39

PMIX_OPERATION_SUCCEEDED -157 The requested operation was performed atomically40
- no callback function will be executed.41

16 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_ERR_PARTIAL_SUCCESS -52 The operation is considered successful but not all1
elements of the operation were concluded (e.g., some members of a group construct operation2
chose not to participate).3

3.1.1.1 User-Defined Error and Event Constants4

PMIx establishes a boundary for constants defined in the PMIx standard. Negative values larger5
(i.e., more negative) than this (and any positive values greater than zero) are guaranteed not to6
conflict with PMIx values.7

PMIX_EXTERNAL_ERR_BASE A starting point for user-level defined error and event8
constants. Negative values that are more negative than the defined constant are guaranteed not9
to conflict with PMIx values. Definitions should always be based on the10
PMIX_EXTERNAL_ERR_BASE constant and not a specific value as the value of the constant11
may change.12

3.2 Data Types13

This section defines various data types used by the PMIx APIs. The version of the standard in14
which a particular data type was introduced is shown in the margin.15

3.2.1 Key Structure16

The pmix_key_t structure is a statically defined character array of length17
PMIX_MAX_KEYLEN+1, thus supporting keys of maximum length PMIX_MAX_KEYLEN while18
preserving space for a mandatory NULL terminator.19

PMIx v2.0 C
typedef char pmix_key_t[PMIX_MAX_KEYLEN+1];20

C

Characters in the key must be standard alphanumeric values supported by common utilities such as21
strcmp.22

Advice to users

References to keys in PMIx v1 were defined simply as an array of characters of size23
PMIX_MAX_KEYLEN+1. The pmix_key_t type definition was introduced in version 2 of the24
standard. The two definitions are code-compatible and thus do not represent a break in backward25
compatibility.26

Passing a pmix_key_t value to the standard sizeof utility can result in compiler warnings of27
incorrect returned value. Users are advised to avoid using sizeof(pmix_key_t) and instead rely on28
the PMIX_MAX_KEYLEN constant.29

CHAPTER 3. DATA STRUCTURES AND TYPES 17

Un
offi
cia
l D
raf
t

3.2.1.1 Key support macros1

The following macros are provided for convenience when working with PMIx keys.2

Check key macro3
Compare the key in a pmix_info_t to a given value.4

PMIx v3.0 C
PMIX_CHECK_KEY(a, b)5

C

IN a6
Pointer to the structure whose key is to be checked (pointer to pmix_info_t)7

IN b8
String value to be compared against (char*)9

Returns true if the key matches the given value10

Check reserved key macro11
Check if the given key is a PMIx reserved key as described in Chapter 6.12

PMIx v4.0 C
PMIX_CHECK_RESERVED_KEY(a)13

C

IN a14
String value to be checked (char*)15

Returns true if the key is reserved by the Standard.16

Load key macro17
Load a key into a pmix_info_t.18

PMIx v4.0 C
PMIX_LOAD_KEY(a, b)19

C

IN a20
Pointer to the structure whose key is to be loaded (pointer to pmix_info_t)21

IN b22
String value to be loaded (char*)23

No return value.24

18 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

3.2.2 Namespace Structure1

The pmix_nspace_t structure is a statically defined character array of length2
PMIX_MAX_NSLEN+1, thus supporting namespaces of maximum length PMIX_MAX_NSLEN3
while preserving space for a mandatory NULL terminator.4

C
typedef char pmix_nspace_t[PMIX_MAX_NSLEN+1];5

C

Characters in the namespace must be standard alphanumeric values supported by common utilities6
such as strcmp.7

Advice to users

References to namespace values in PMIx v1 were defined simply as an array of characters of size8
PMIX_MAX_NSLEN+1. The pmix_nspace_t type definition was introduced in version 2 of the9
standard. The two definitions are code-compatible and thus do not represent a break in backward10
compatibility.11

Passing a pmix_nspace_t value to the standard sizeof utility can result in compiler warnings of12
incorrect returned value. Users are advised to avoid using sizeof(pmix_nspace_t) and instead rely13
on the PMIX_MAX_NSLEN constant.14

3.2.2.1 Namespace support macros15

The following macros are provided for convenience when working with PMIx namespace16
structures.17

Check namespace macro18
Compare the string in a pmix_nspace_t to a given value.19

PMIx v3.0 C
PMIX_CHECK_NSPACE(a, b)20

C

IN a21
Pointer to the structure whose value is to be checked (pointer to pmix_nspace_t)22

IN b23
String value to be compared against (char*)24

Returns true if the namespace matches the given value25

CHAPTER 3. DATA STRUCTURES AND TYPES 19

Un
offi
cia
l D
raf
t

Check invalid namespace macro1
Check if the provided pmix_nspace_t is invalid.2

C
PMIX_NSPACE_INVALID(a)3

C

IN a4
Pointer to the structure whose value is to be checked (pointer to pmix_nspace_t)5

Returns true if the namespace is invalid (i.e., starts with a NULL resulting in a zero-length string6
value)7

Load namespace macro8
Load a namespace into a pmix_nspace_t.9

PMIx v4.0 C
PMIX_LOAD_NSPACE(a, b)10

C

IN a11
Pointer to the target structure (pointer to pmix_nspace_t)12

IN b13
String value to be loaded - if NULL is given, then the target structure will be initialized to14
zero’s (char*)15

No return value.16

3.2.3 Rank Structure17

The pmix_rank_t structure is a uint32_t type for rank values.18
PMIx v1.0 C

typedef uint32_t pmix_rank_t;19

C

The following constants can be used to set a variable of the type pmix_rank_t. All definitions20
were introduced in version 1 of the standard unless otherwise marked. Valid rank values start at21
zero.22

PMIX_RANK_UNDEF UINT32_MAX A value to request job-level data where the information23
itself is not associated with any specific rank, or when passing a pmix_proc_t identifier to24
an operation that only references the namespace field of that structure.25

PMIX_RANK_WILDCARD UINT32_MAX-1 A value to indicate that the user wants the data26
for the given key from every rank that posted that key.27

PMIX_RANK_LOCAL_NODE UINT32_MAX-2 Special rank value used to define groups of28
ranks. This constant defines the group of all ranks on a local node.29

20 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_RANK_LOCAL_PEERS UINT32_MAX-4 Special rank value used to define groups of1
ranks. This constant defines the group of all ranks on a local node within the same namespace2
as the current process.3

PMIX_RANK_INVALID UINT32_MAX-3 An invalid rank value.4
PMIX_RANK_VALID UINT32_MAX-50 Define an upper boundary for valid rank values.5

3.2.3.1 Rank support macros6

The following macros are provided for convenience when working with PMIx ranks.7

Check rank macro8
Check two ranks for equality, taking into account wildcard values9

PMIx v4.0 C
PMIX_CHECK_RANK(a, b)10

C

IN a11
Rank to be checked (pmix_rank_t)12

IN b13
Rank to be checked (pmix_rank_t)14

Returns true if the ranks are equal, or at least one of the ranks is PMIX_RANK_WILDCARD15

Check rank is valid macro16
Check if the given rank is a valid value17

Provisional
v4.1

C
PMIX_RANK_IS_VALID(a)18

C

IN a19
Rank to be checked (pmix_rank_t)20

Returns true if the given rank is valid (i.e., less than PMIX_RANK_VALID)21

3.2.4 Process Structure22

The pmix_proc_t structure is used to identify a single process in the PMIx universe. It contains23
a reference to the namespace and the pmix_rank_t within that namespace.24

PMIx v1.0 C
typedef struct pmix_proc {25

pmix_nspace_t nspace;26
pmix_rank_t rank;27

} pmix_proc_t;28

C

CHAPTER 3. DATA STRUCTURES AND TYPES 21

Un
offi
cia
l D
raf
t

3.2.4.1 Process structure support macros1

The following macros are provided to support the pmix_proc_t structure.2

Static initializer for the proc structure3 Provisional Provide a static initializer for the pmix_proc_t fields.4
PMIx v4.2 C

PMIX_PROC_STATIC_INIT5

C

Initialize the proc structure6
Initialize the pmix_proc_t fields.7

PMIx v1.0 C
PMIX_PROC_CONSTRUCT(m)8

C

IN m9
Pointer to the structure to be initialized (pointer to pmix_proc_t)10

Destruct the proc structure11
Destruct the pmix_proc_t fields.12

C
PMIX_PROC_DESTRUCT(m)13

C

IN m14
Pointer to the structure to be destructed (pointer to pmix_proc_t)15

There is nothing to release here as the fields in pmix_proc_t are either a statically-declared array16
(the namespace) or a single value (the rank). However, the macro is provided for symmetry in the17
code and for future-proofing should some allocated field be included some day.18

Create a proc array19
Allocate and initialize an array of pmix_proc_t structures.20

PMIx v1.0 C
PMIX_PROC_CREATE(m, n)21

C

INOUT m22
Address where the pointer to the array of pmix_proc_t structures shall be stored (handle)23

IN n24
Number of structures to be allocated (size_t)25

22 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Free a proc structure1
Release a pmix_proc_t structure.2

C
PMIX_PROC_RELEASE(m)3

C

IN m4
Pointer to a pmix_proc_t structure (handle)5

Free a proc array6
Release an array of pmix_proc_t structures.7

PMIx v1.0 C
PMIX_PROC_FREE(m, n)8

C

IN m9
Pointer to the array of pmix_proc_t structures (handle)10

IN n11
Number of structures in the array (size_t)12

Load a proc structure13
Load values into a pmix_proc_t.14

PMIx v2.0 C
PMIX_PROC_LOAD(m, n, r)15

C

IN m16
Pointer to the structure to be loaded (pointer to pmix_proc_t)17

IN n18
Namespace to be loaded (pmix_nspace_t)19

IN r20
Rank to be assigned (pmix_rank_t)21

No return value. Deprecated in favor of PMIX_LOAD_PROCID22

CHAPTER 3. DATA STRUCTURES AND TYPES 23

Un
offi
cia
l D
raf
t

Compare identifiers1
Compare two pmix_proc_t identifiers.2

C
PMIX_CHECK_PROCID(a, b)3

C

IN a4
Pointer to a structure whose ID is to be compared (pointer to pmix_proc_t)5

IN b6
Pointer to a structure whose ID is to be compared (pointer to pmix_proc_t)7

Returns true if the two structures contain matching namespaces and:8

• the ranks are the same value9

• one of the ranks is PMIX_RANK_WILDCARD10

Check if a process identifier is valid11
Check for invalid namespace or rank value12

Provisional
v4.1

C
PMIX_PROCID_INVALID(a)13

C

IN a14
Pointer to a structure whose ID is to be checked (pointer to pmix_proc_t)15

Returns true if the process identifier contains either an empty (i.e., invalid) nspace field or a rank16
field of PMIX_RANK_INVALID17

Load a procID structure18
Load values into a pmix_proc_t.19

PMIx v4.0 C
PMIX_LOAD_PROCID(m, n, r)20

C

IN m21
Pointer to the structure to be loaded (pointer to pmix_proc_t)22

IN n23
Namespace to be loaded (pmix_nspace_t)24

IN r25
Rank to be assigned (pmix_rank_t)26

24 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Transfer a procID structure1
Transfer contents of one pmix_proc_t value to another pmix_proc_t.2

C
PMIX_PROCID_XFER(d, s)3

C

IN d4
Pointer to the target structure (pointer to pmix_proc_t)5

IN s6
Pointer to the source structure (pointer to pmix_proc_t)7

Construct a multi-cluster namespace8
Construct a multi-cluster identifier containing a cluster ID and a namespace.9

PMIx v4.0 C
PMIX_MULTICLUSTER_NSPACE_CONSTRUCT(m, n, r)10

C

IN m11
pmix_nspace_t structure that will contain the multi-cluster identifier (pmix_nspace_t)12

IN n13
Cluster identifier (char*)14

IN n15
Namespace to be loaded (pmix_nspace_t)16

Combined length of the cluster identifier and namespace must be less than PMIX_MAX_NSLEN-2.17

Parse a multi-cluster namespace18
Parse a multi-cluster identifier into its cluster ID and namespace parts.19

PMIx v4.0 C
PMIX_MULTICLUSTER_NSPACE_PARSE(m, n, r)20

C

IN m21
pmix_nspace_t structure containing the multi-cluster identifier (pointer to22
pmix_nspace_t)23

IN n24
Location where the cluster ID is to be stored (pmix_nspace_t)25

IN n26
Location where the namespace is to be stored (pmix_nspace_t)27

CHAPTER 3. DATA STRUCTURES AND TYPES 25

Un
offi
cia
l D
raf
t

3.2.5 Process State Structure1

The pmix_proc_state_t structure is a uint8_t type for process state values. The following2
constants can be used to set a variable of the type pmix_proc_state_t.3

Advice to users

The fine-grained nature of the following constants may exceed the ability of an RM to provide4
updated process state values during the process lifetime. This is particularly true of states for5
short-lived processes.6

PMIX_PROC_STATE_UNDEF 0 Undefined process state.7
PMIX_PROC_STATE_PREPPED 1 Process is ready to be launched.8
PMIX_PROC_STATE_LAUNCH_UNDERWAY 2 Process launch is underway.9
PMIX_PROC_STATE_RESTART 3 Process is ready for restart.10
PMIX_PROC_STATE_TERMINATE 4 Process is marked for termination.11
PMIX_PROC_STATE_RUNNING 5 Process has been locally fork’ed by the RM.12
PMIX_PROC_STATE_CONNECTED 6 Process has connected to PMIx server.13
PMIX_PROC_STATE_UNTERMINATED Define a “boundary” between the terminated states14

and PMIX_PROC_STATE_CONNECTED so users can easily and quickly determine if a15
process is still running or not. Any value less than this constant means that the process has not16
terminated.17

PMIX_PROC_STATE_TERMINATED Process has terminated and is no longer running.18
PMIX_PROC_STATE_ERROR Define a boundary so users can easily and quickly determine if19

a process abnormally terminated. Any value above this constant means that the process has20
terminated abnormally.21

PMIX_PROC_STATE_KILLED_BY_CMD 51 Process was killed by a command.22
PMIX_PROC_STATE_ABORTED 52 Process was aborted by a call to PMIx_Abort.23
PMIX_PROC_STATE_FAILED_TO_START 53 Process failed to start.24
PMIX_PROC_STATE_ABORTED_BY_SIG 54 Process aborted by a signal.25
PMIX_PROC_STATE_TERM_WO_SYNC 55 Process exited without calling26

PMIx_Finalize.27
PMIX_PROC_STATE_COMM_FAILED 56 Process communication has failed.28
PMIX_PROC_STATE_SENSOR_BOUND_EXCEEDED 57 Process exceeded a specified29

sensor limit.30
PMIX_PROC_STATE_CALLED_ABORT 58 Process called PMIx_Abort.31
PMIX_PROC_STATE_HEARTBEAT_FAILED 59 Frocess failed to send heartbeat within32

specified time limit.33
PMIX_PROC_STATE_MIGRATING 60 Process failed and is waiting for resources before34

restarting.35
PMIX_PROC_STATE_CANNOT_RESTART 61 Process failed and cannot be restarted.36
PMIX_PROC_STATE_TERM_NON_ZERO 62 Process exited with a non-zero status.37
PMIX_PROC_STATE_FAILED_TO_LAUNCH 63 Unable to launch process.38

26 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

3.2.6 Process Information Structure1

The pmix_proc_info_t structure defines a set of information about a specific process2
including it’s name, location, and state.3

PMIx v2.0 C
typedef struct pmix_proc_info {4

/** Process structure */5
pmix_proc_t proc;6
/** Hostname where process resides */7
char *hostname;8
/** Name of the executable */9
char *executable_name;10
/** Process ID on the host */11
pid_t pid;12
/** Exit code of the process. Default: 0 */13
int exit_code;14
/** Current state of the process */15
pmix_proc_state_t state;16

} pmix_proc_info_t;17

C

3.2.6.1 Process information structure support macros18

The following macros are provided to support the pmix_proc_info_t structure.19

Static initializer for the proc info structure20 Provisional Provide a static initializer for the pmix_proc_info_t fields.21
PMIx v4.2 C

PMIX_PROC_INFO_STATIC_INIT22

C

Initialize the process information structure23
Initialize the pmix_proc_info_t fields.24

PMIx v2.0 C
PMIX_PROC_INFO_CONSTRUCT(m)25

C

IN m26
Pointer to the structure to be initialized (pointer to pmix_proc_info_t)27

CHAPTER 3. DATA STRUCTURES AND TYPES 27

Un
offi
cia
l D
raf
t

Destruct the process information structure1
Destruct the pmix_proc_info_t fields.2

C
PMIX_PROC_INFO_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_proc_info_t)5

Create a process information array6
Allocate and initialize a pmix_proc_info_t array.7

PMIx v2.0 C
PMIX_PROC_INFO_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_proc_info_t structures shall be stored10
(handle)11

IN n12
Number of structures to be allocated (size_t)13

Free a process information structure14
Release a pmix_proc_info_t structure.15

PMIx v2.0 C
PMIX_PROC_INFO_RELEASE(m)16

C

IN m17
Pointer to a pmix_proc_info_t structure (handle)18

Free a process information array19
Release an array of pmix_proc_info_t structures.20

PMIx v2.0 C
PMIX_PROC_INFO_FREE(m, n)21

C

IN m22
Pointer to the array of pmix_proc_info_t structures (handle)23

IN n24
Number of structures in the array (size_t)25

28 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

3.2.7 Job State Structure1

The pmix_job_state_t structure is a uint8_t type for job state values. The following2
constants can be used to set a variable of the type pmix_job_state_t.3

Advice to users

The fine-grained nature of the following constants may exceed the ability of an RM to provide4
updated job state values during the job lifetime. This is particularly true for short-lived jobs.5

PMIX_JOB_STATE_UNDEF 0 Undefined job state.6
PMIX_JOB_STATE_AWAITING_ALLOC 1 Job is waiting for resources to be allocated to it.7
PMIX_JOB_STATE_LAUNCH_UNDERWAY 2 Job launch is underway.8
PMIX_JOB_STATE_RUNNING 3 All processes in the job have been spawned and are9

executing.10
PMIX_JOB_STATE_SUSPENDED 4 All processes in the job have been suspended.11
PMIX_JOB_STATE_CONNECTED 5 All processes in the job have connected to their PMIx12

server.13
PMIX_JOB_STATE_UNTERMINATED Define a “boundary” between the terminated states14

and PMIX_JOB_STATE_TERMINATED so users can easily and quickly determine if a job is15
still running or not. Any value less than this constant means that the job has not terminated.16

PMIX_JOB_STATE_TERMINATED All processes in the job have terminated and are no17
longer running - typically will be accompanied by the job exit status in response to a query.18

PMIX_JOB_STATE_TERMINATED_WITH_ERROR Define a boundary so users can easily19
and quickly determine if a job abnormally terminated - typically will be accompanied by a20
job-related error code in response to a query Any value above this constant means that the job21
terminated abnormally.22

3.2.8 Value Structure23

The pmix_value_t structure is used to represent the value passed to PMIx_Put and retrieved24
by PMIx_Get, as well as many of the other PMIx functions.25

A collection of values may be specified under a single key by passing a pmix_value_t26
containing an array of type pmix_data_array_t, with each array element containing its own27
object. All members shown below were introduced in version 1 of the standard unless otherwise28
marked.29

PMIx v1.0

CHAPTER 3. DATA STRUCTURES AND TYPES 29

Un
offi
cia
l D
raf
t

C
typedef struct pmix_value {1

pmix_data_type_t type;2
union {3

bool flag;4
uint8_t byte;5
char *string;6
size_t size;7
pid_t pid;8
int integer;9
int8_t int8;10
int16_t int16;11
int32_t int32;12
int64_t int64;13
unsigned int uint;14
uint8_t uint8;15
uint16_t uint16;16
uint32_t uint32;17
uint64_t uint64;18
float fval;19
double dval;20
struct timeval tv;21
time_t time; // version 2.022
pmix_status_t status; // version 2.023
pmix_rank_t rank; // version 2.024
pmix_proc_t *proc; // version 2.025
pmix_byte_object_t bo;26
pmix_persistence_t persist; // version 2.027
pmix_scope_t scope; // version 2.028
pmix_data_range_t range; // version 2.029
pmix_proc_state_t state; // version 2.030
pmix_proc_info_t *pinfo; // version 2.031
pmix_data_array_t *darray; // version 2.032
void *ptr; // version 2.033
pmix_alloc_directive_t adir; // version 2.034

} data;35
} pmix_value_t;36

C

3.2.8.1 Value structure support37

The following macros and APIs are provided to support the pmix_value_t structure.38

30 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Static initializer for the value structure1
Provide a static initializer for the pmix_value_t fields.2

C
PMIX_VALUE_STATIC_INIT3

C

Initialize the value structure4
Initialize the pmix_value_t fields.5

PMIx v1.0 C
PMIX_VALUE_CONSTRUCT(m)6

C

IN m7
Pointer to the structure to be initialized (pointer to pmix_value_t)8

Destruct the value structure9
Destruct the pmix_value_t fields.10

PMIx v1.0 C
PMIX_VALUE_DESTRUCT(m)11

C

IN m12
Pointer to the structure to be destructed (pointer to pmix_value_t)13

Create a value array14
Allocate and initialize an array of pmix_value_t structures.15

PMIx v1.0 C
PMIX_VALUE_CREATE(m, n)16

C

INOUT m17
Address where the pointer to the array of pmix_value_t structures shall be stored (handle)18

IN n19
Number of structures to be allocated (size_t)20

Free a value structure21
Release a pmix_value_t structure.22

PMIx v4.0 C
PMIX_VALUE_RELEASE(m)23

C

IN m24
Pointer to a pmix_value_t structure (handle)25

CHAPTER 3. DATA STRUCTURES AND TYPES 31

Un
offi
cia
l D
raf
t

Free a value array1
Release an array of pmix_value_t structures.2

PMIx v1.0 C
PMIX_VALUE_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_value_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Load a value structure8
Summary9
Load data into a pmix_value_t structure.10

Format11 PMIx v4.2 C
pmix_status_t12
PMIx_Value_load(pmix_value_t *val,13

const void *data,14
pmix_data_type_t type);15

C

IN val16
The pmix_value_t into which the data is to be loaded (pointer to pmix_value_t)17

IN data18
Pointer to the data value to be loaded (handle)19

IN type20
Type of the provided data value (pmix_data_type_t)21

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.22

Description23
Copy the provided data into the pmix_value_t. Any data stored in the source value can be24
modified or free’d without affecting the copied data once the function has completed.25

Unload a value structure26
Summary27
Unload data from a pmix_value_t structure.28

32 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Value_unload(pmix_value_t *val,3

void **data,4
size_t *sz);5

C

IN val6
The pmix_value_t from which the data is to be unloaded (pointer to pmix_value_t)7

INOUT data8
Pointer to the location where the data value is to be returned (handle)9

INOUT sz10
Pointer to return the size of the unloaded value (handle)11

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.12

Description13
Return a copy of the data in the pmix_value_t. The source value can be modified or free’d14
without affecting the copied data once the function has completed.15

Advice to users

Memory will be allocated and the pointer to that data will be in the data argument - the source16
pmix_value_t will not be altered. The user is responsible for releasing the returned data.17

Transfer data between value structures18
Summary19
Transfer the data value between two pmix_value_t structures.20

Format21 PMIx v4.2 C
pmix_status_t22
PMIx_Value_xfer(pmix_value_t *dest,23

const pmix_value_t *src);24

C

IN dest25
Pointer to the pmix_value_t destination (handle)26

IN src27
Pointer to the pmix_value_t source (handle)28

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.29

CHAPTER 3. DATA STRUCTURES AND TYPES 33

Un
offi
cia
l D
raf
t

Description1
Copy the data in the source pmix_value_t into the destination pmix_value_t. The source2
value can be modified or free’d without affecting the copied data once the function has completed.3

Retrieve a numerical value from a value struct4
Retrieve a numerical value from a pmix_value_t structure.5

PMIx v3.0 C
PMIX_VALUE_GET_NUMBER(s, m, n, t)6

C

OUT s7
Status code for the request (pmix_status_t)8

IN m9
Pointer to thepmix_value_t structure (handle)10

OUT n11
Variable to be set to the value (match expected type)12

IN t13
Type of number expected in m (pmix_data_type_t)14

Sets the provided variable equal to the numerical value contained in the given pmix_value_t,15
returning success if the data type of the value matches the expected type and16
PMIX_ERR_BAD_PARAM if it doesn’t17

3.2.9 Info Structure18

The pmix_info_t structure defines a key/value pair with associated directive. All fields were19
defined in version 1.0 unless otherwise marked.20

PMIx v1.0 C
typedef struct pmix_info_t {21

pmix_key_t key;22
pmix_info_directives_t flags; // version 2.023
pmix_value_t value;24

} pmix_info_t;25

C

3.2.9.1 Info structure support macros26

The following macros are provided to support the pmix_info_t structure.27

34 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Static initializer for the info structure1
Provide a static initializer for the pmix_info_t fields.2

C
PMIX_INFO_STATIC_INIT3

C

Initialize the info structure4
Initialize the pmix_info_t fields.5

PMIx v1.0 C
PMIX_INFO_CONSTRUCT(m)6

C

IN m7
Pointer to the structure to be initialized (pointer to pmix_info_t)8

Destruct the info structure9
Destruct the pmix_info_t fields.10

PMIx v1.0 C
PMIX_INFO_DESTRUCT(m)11

C

IN m12
Pointer to the structure to be destructed (pointer to pmix_info_t)13

Create an info array14
Allocate and initialize an array of info structures.15

PMIx v1.0 C
PMIX_INFO_CREATE(m, n)16

C

INOUT m17
Address where the pointer to the array of pmix_info_t structures shall be stored (handle)18

IN n19
Number of structures to be allocated (size_t)20

CHAPTER 3. DATA STRUCTURES AND TYPES 35

Un
offi
cia
l D
raf
t

Free an info array1
Release an array of pmix_info_t structures.2

C
PMIX_INFO_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_info_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Load key and value data into a info struct8
Summary9
Load data into a pmix_info_t structure.10

Format11 PMIx v4.2 C
pmix_status_t12
PMIx_Info_load(pmix_info_t *info,13

const char* key,14
const void *data,15
pmix_data_type_t type);16

C

IN info17
The pmix_info_t into which the data is to be loaded (handle)18

IN key19
Pointer to the key to be loaded (handle)20

IN data21
Pointer to the data value to be loaded (handle)22

IN type23
Type of the provided data value (pmix_data_type_t)24

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.25

Description26
Copy the provided data into the pmix_info_t. Any data stored in the source parameters can be27
modified or free’d without affecting the copied data once the function has completed.28

Copy data between info structures29
Summary30
Copy all data between two pmix_info_t structures.31

36 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Info_xfer(pmix_info_t *dest,3

pmix_info_t *src);4

C

IN dest5
The pmix_info_t into which the data is to be copied (handle)6

IN src7
The pmix_info_t from which the data is to be copied (handle)8

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.9

Description10
Copy the data in the source pmix_info_t into the destination. Any data stored in the source11
structure can be modified or free’d without affecting the copied data once the function has12
completed.13

Test a boolean info struct14
A special macro for checking if a boolean pmix_info_t is true.15

PMIx v2.0 C
PMIX_INFO_TRUE(m)16

C

IN m17
Pointer to a pmix_info_t structure (handle)18

A pmix_info_t structure is considered to be of type PMIX_BOOL and value true if:19

• the structure reports a type of PMIX_UNDEF, or20
• the structure reports a type of PMIX_BOOL and the data flag is true21

3.2.9.2 Info structure list macros22

Constructing an array of pmix_info_t is a fairly common operation. The following macros are23
provided to simplify this construction.24

Start a list of pmix_info_t structures25
Summary26
Initialize a list of pmix_info_t structures. The actual list is opaque to the caller and is27
implementation-dependent.28

CHAPTER 3. DATA STRUCTURES AND TYPES 37

Un
offi
cia
l D
raf
t

Format1 C
void*2
PMIx_Info_list_start(void);3

C

Description4
Note that the returned pointer will be initialized to an opaque structure whose elements are5
implementation-dependent. The caller must not modify or dereference the object.6

Add a pmix_info_t structure to a list7
Summary8
Add a pmix_info_t structure containing the specified value to the provided list.9

Format10 PMIx v4.2 C
pmix_status_t11
PMIx_Info_list_add(void *ptr,12

const char *key,13
const void *value,14
pmix_data_type_t type);15

C

IN ptr16
A void* pointer initialized via PMIx_Info_list_start (handle)17

IN key18
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length19
(handle)20

IN value21
Pointer to the data value to be loaded (handle)22

IN type23
Type of the provided data value (pmix_data_type_t)24

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.25

Description26
Copy the provided key and data into a pmix_info_t on the list. The key and any data stored in27
the source value can be modified or free’d without affecting the copied data once the function has28
completed.29

Transfer a pmix_info_t structure to a list30
Summary31
Transfer the information in a pmix_info_t structure to a structure on the provided list.32

38 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Info_list_xfer(void *ptr,3

const pmix_info_t *src);4

C

IN ptr5
A void* pointer initialized via PMIx_Info_list_start (handle)6

IN src7
Pointer to the source pmix_info_t (pointer to pmix_info_t)8

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.9

Description10
All data (including key, value, and directives) will be copied into a destination pmix_info_t on11
the list. The source pmix_info_t may be free’d without affecting the copied data once the12
function has completed.13

Convert a pmix_info_t list to an array14
Summary15
Transfer the information in the provided pmix_info_t list to a pmix_data_array_t array16

Format17 PMIx v4.2 C
pmix_status_t18
PMIx_Info_list_convert(void *ptr,19

pmix_data_array_t *par);20

C

IN ptr21
A void* pointer initialized via PMIx_Info_list_start (handle)22

IN par23
Pointer to an instantiated pmix_data_array_t structure where the pmix_info_t array24
is to be stored (pointer to pmix_data_array_t)25

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.26

Description27
Information collected in the provided list of pmix_info_t will be transferred to a28
pmix_data_array_t containing pmix_info_t structures.29

Release a pmix_info_t list30
Summary31
Release the provided pmix_info_t list32

CHAPTER 3. DATA STRUCTURES AND TYPES 39

Un
offi
cia
l D
raf
t

Format1 C
void2
PMIx_Info_list_release(void *ptr);3

C

IN ptr4
A void* pointer initialized via PMIx_Info_list_start (handle)5

Description6
Information contained in the pmix_info_t on the list shall be released in addition to whatever7
backing storage the implementation may have allocated to support construction of the list.8

3.2.10 Info Type Directives9

PMIx v2.0 The pmix_info_directives_t structure is a uint32_t type that defines the behavior of10
command directives via pmix_info_t arrays. By default, the values in the pmix_info_t11
array passed to a PMIx are optional.12

Advice to users

A PMIx implementation or PMIx-enabled RM may ignore any pmix_info_t value passed to a13
PMIx API that it does not support or does not recognize if it is not explicitly marked as14
PMIX_INFO_REQD. This is because the values specified default to optional, meaning they can be15
ignored in such circumstances. This may lead to unexpected behavior when porting between16
environments or PMIx implementations if the user is relying on the behavior specified by the17
pmix_info_t value. Users relying on the behavior defined by the pmix_info_t are advised to18
set the PMIX_INFO_REQD flag using the PMIX_INFO_REQUIRED macro.19

Advice to PMIx library implementers

The top 16-bits of the pmix_info_directives_t are reserved for internal use by PMIx20
library implementers - the PMIx standard will not specify their intent, leaving them for customized21
use by implementers. Implementers are advised to use the provided PMIX_INFO_IS_REQUIRED22
macro for testing this flag, and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to23
the caller if the required behavior is not supported.24

40 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The following constants were introduced in version 2.0 (unless otherwise marked) and can be used1
to set a variable of the type pmix_info_directives_t.2

PMIX_INFO_REQD 0x00000001 The behavior defined in the pmix_info_t array is3
required, and not optional. This is a bit-mask value.4

PMIX_INFO_REQD_PROCESSED 0x00000004 Mark that this required attribute has been5
processed. A required attribute can be handled at any level - the PMIx client library might6
take care of it, or it may be resolved by the PMIx server library, or it may pass up to the host7
environment for handling. If a level does not recognize or support the required attribute, it is8
required to pass it upwards to give the next level an opportunity to process it. Thus, the host9
environment (or the server library if the host does not support the given operation) must know10
if a lower level has handled the requirement so it can return a11
PMIX_ERR_NOT_SUPPORTED error status if the host itself cannot meet the request. Upon12
processing the request, the level must therefore mark the attribute with this directive to alert13
any subsequent levels that the requirement has been met.14

PMIX_INFO_ARRAY_END 0x00000002 Mark that this pmix_info_t struct is at the end15
of an array created by the PMIX_INFO_CREATE macro. This is a bit-mask value.16

PMIX_INFO_DIR_RESERVED 0xffff0000 A bit-mask identifying the bits reserved for17
internal use by implementers - these currently are set as 0xffff0000.18

Advice to PMIx server hosts

Host environments are advised to use the provided PMIX_INFO_IS_REQUIRED macro for19
testing this flag and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to the caller if20
the required behavior is not supported.21

3.2.10.1 Info Directive support macros22

The following macros are provided to support the setting and testing of pmix_info_t directives.23

Mark an info structure as required24
Set the PMIX_INFO_REQD flag in a pmix_info_t structure.25

PMIx v2.0 C
PMIX_INFO_REQUIRED(info);26

C

IN info27
Pointer to the pmix_info_t (pointer to pmix_info_t)28

This macro simplifies the setting of the PMIX_INFO_REQD flag in pmix_info_t structures.29

CHAPTER 3. DATA STRUCTURES AND TYPES 41

Un
offi
cia
l D
raf
t

Mark an info structure as optional1
Unsets the PMIX_INFO_REQD flag in a pmix_info_t structure.2

C
PMIX_INFO_OPTIONAL(info);3

C

IN info4
Pointer to the pmix_info_t (pointer to pmix_info_t)5

This macro simplifies marking a pmix_info_t structure as optional.6

Test an info structure for required directive7
Test the PMIX_INFO_REQD flag in a pmix_info_t structure, returning true if the flag is set.8

PMIx v2.0 C
PMIX_INFO_IS_REQUIRED(info);9

C

IN info10
Pointer to the pmix_info_t (pointer to pmix_info_t)11

This macro simplifies the testing of the required flag in pmix_info_t structures.12

Test an info structure for optional directive13
Test a pmix_info_t structure, returning true if the structure is optional.14

PMIx v2.0 C
PMIX_INFO_IS_OPTIONAL(info);15

C

IN info16
Pointer to the pmix_info_t (pointer to pmix_info_t)17

Test the PMIX_INFO_REQD flag in a pmix_info_t structure, returning true if the flag is not18
set.19

Mark a required attribute as processed20
Mark that a required pmix_info_t structure has been processed.21

PMIx v4.0 C
PMIX_INFO_PROCESSED(info);22

C

IN info23
Pointer to the pmix_info_t (pointer to pmix_info_t)24

Set the PMIX_INFO_REQD_PROCESSED flag in a pmix_info_t structure indicating that is25
has been processed.26

42 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Test if a required attribute has been processed1
Test that a required pmix_info_t structure has been processed.2

PMIx v4.0 C
PMIX_INFO_WAS_PROCESSED(info);3

C

IN info4
Pointer to the pmix_info_t (pointer to pmix_info_t)5

Test the PMIX_INFO_REQD_PROCESSED flag in a pmix_info_t structure.6

Test an info structure for end of array directive7
Test a pmix_info_t structure, returning true if the structure is at the end of an array created by8
the PMIX_INFO_CREATE macro.9

PMIx v2.2 C
PMIX_INFO_IS_END(info);10

C

IN info11
Pointer to the pmix_info_t (pointer to pmix_info_t)12

This macro simplifies the testing of the end-of-array flag in pmix_info_t structures.13

3.2.11 Environmental Variable Structure14

PMIx v3.0 Define a structure for specifying environment variable modifications. Standard environment15
variables (e.g., PATH, LD_LIBRARY_PATH, and LD_PRELOAD) take multiple arguments16
separated by delimiters. Unfortunately, the delimiters depend upon the variable itself - some use17
semi-colons, some colons, etc. Thus, the operation requires not only the name of the variable to be18
modified and the value to be inserted, but also the separator to be used when composing the19
aggregate value.20

C
typedef struct {21

char *envar;22
char *value;23
char separator;24

} pmix_envar_t;25

C

3.2.11.1 Environmental variable support macros26

The following macros are provided to support the pmix_envar_t structure.27

CHAPTER 3. DATA STRUCTURES AND TYPES 43

Un
offi
cia
l D
raf
t

Static initializer for the envar structure1
Provide a static initializer for the pmix_envar_t fields.2

C
PMIX_ENVAR_STATIC_INIT3

C

Initialize the envar structure4
Initialize the pmix_envar_t fields.5

PMIx v3.0 C
PMIX_ENVAR_CONSTRUCT(m)6

C

IN m7
Pointer to the structure to be initialized (pointer to pmix_envar_t)8

Destruct the envar structure9
Clear the pmix_envar_t fields.10

PMIx v3.0 C
PMIX_ENVAR_DESTRUCT(m)11

C

IN m12
Pointer to the structure to be destructed (pointer to pmix_envar_t)13

Create an envar array14
Allocate and initialize an array of pmix_envar_t structures.15

PMIx v3.0 C
PMIX_ENVAR_CREATE(m, n)16

C

INOUT m17
Address where the pointer to the array of pmix_envar_t structures shall be stored (handle)18

IN n19
Number of structures to be allocated (size_t)20

44 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Free an envar array1
Release an array of pmix_envar_t structures.2

C
PMIX_ENVAR_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_envar_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Load an envar structure8
Load values into a pmix_envar_t.9

PMIx v2.0 C
PMIX_ENVAR_LOAD(m, e, v, s)10

C

IN m11
Pointer to the structure to be loaded (pointer to pmix_envar_t)12

IN e13
Environmental variable name (char*)14

IN v15
Value of variable (char*)16

IN v17
Separator character (char)18

3.2.12 Byte Object Type19

The pmix_byte_object_t structure describes a raw byte sequence.20
PMIx v1.0 C

typedef struct pmix_byte_object {21
char *bytes;22
size_t size;23

} pmix_byte_object_t;24

C

3.2.12.1 Byte object support macros25

The following macros support the pmix_byte_object_t structure.26

CHAPTER 3. DATA STRUCTURES AND TYPES 45

Un
offi
cia
l D
raf
t

Static initializer for the byte object structure1
Provide a static initializer for the pmix_byte_object_t fields.2

C
PMIX_BYTE_OBJECT_STATIC_INIT3

C

Initialize the byte object structure4
Initialize the pmix_byte_object_t fields.5

PMIx v2.0 C
PMIX_BYTE_OBJECT_CONSTRUCT(m)6

C

IN m7
Pointer to the structure to be initialized (pointer to pmix_byte_object_t)8

Destruct the byte object structure9
Clear the pmix_byte_object_t fields.10

PMIx v2.0 C
PMIX_BYTE_OBJECT_DESTRUCT(m)11

C

IN m12
Pointer to the structure to be destructed (pointer to pmix_byte_object_t)13

Create a byte object structure14
Allocate and intitialize an array of pmix_byte_object_t structures.15

PMIx v2.0 C
PMIX_BYTE_OBJECT_CREATE(m, n)16

C

INOUT m17
Address where the pointer to the array of pmix_byte_object_t structures shall be stored18
(handle)19

IN n20
Number of structures to be allocated (size_t)21

46 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Free a byte object array1
Release an array of pmix_byte_object_t structures.2

C
PMIX_BYTE_OBJECT_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_byte_object_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Load a byte object structure8
Load values into a pmix_byte_object_t.9

PMIx v2.0 C
PMIX_BYTE_OBJECT_LOAD(b, d, s)10

C

IN b11
Pointer to the structure to be loaded (pointer to pmix_byte_object_t)12

IN d13
Pointer to the data to be loaded (char*)14

IN s15
Number of bytes in the data array (size_t)16

3.2.13 Data Array Structure17

The pmix_data_array_t structure defines an array data structure.18
PMIx v2.0 C

typedef struct pmix_data_array {19
pmix_data_type_t type;20
size_t size;21
void *array;22

} pmix_data_array_t;23

C

3.2.13.1 Data array support macros24

The following macros support the pmix_data_array_t structure.25

CHAPTER 3. DATA STRUCTURES AND TYPES 47

Un
offi
cia
l D
raf
t

Static initializer for the data array structure1
Provide a static initializer for the pmix_data_array_t fields.2

C
PMIX_DATA_ARRAY_STATIC_INIT3

C

Initialize a data array structure4
Initialize the pmix_data_array_t fields, allocating memory for the array of the indicated type.5

PMIx v2.2 C
PMIX_DATA_ARRAY_CONSTRUCT(m, n, t)6

C

IN m7
Pointer to the structure to be initialized (pointer to pmix_data_array_t)8

IN n9
Number of elements in the array (size_t)10

IN t11
PMIx data type of the array elements (pmix_data_type_t)12

Destruct a data array structure13
Destruct the pmix_data_array_t, releasing the memory in the array.14

PMIx v2.2 C
PMIX_DATA_ARRAY_DESTRUCT(m)15

C

IN m16
Pointer to the structure to be destructed (pointer to pmix_data_array_t)17

Create a data array structure18
Allocate memory for the pmix_data_array_t object itself, and then allocate memory for the19
array of the indicated type.20

PMIx v2.2 C
PMIX_DATA_ARRAY_CREATE(m, n, t)21

C

INOUT m22
Variable to be set to the address of the structure (pointer to pmix_data_array_t)23

IN n24
Number of elements in the array (size_t)25

IN t26
PMIx data type of the array elements (pmix_data_type_t)27

48 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Free a data array structure1
Release the memory in the array, and then release the pmix_data_array_t object itself.2

C
PMIX_DATA_ARRAY_FREE(m)3

C

IN m4
Pointer to the structure to be released (pointer to pmix_data_array_t)5

3.2.14 Argument Array Macros6

The following macros support the construction and release of NULL-terminated argv arrays of7
strings.8

Argument array extension9
Append a string to a NULL-terminated, argv-style array of strings.10

C
PMIX_ARGV_APPEND(r, a, b);11

C

OUT r12
Status code indicating success or failure of the operation (pmix_status_t)13

INOUT a14
Argument list (pointer to NULL-terminated array of strings)15

IN b16
Argument to append to the list (string)17

This function helps the caller build the argv portion of pmix_app_t structure, arrays of keys for18
querying, or other places where argv-style string arrays are required.19

Advice to users

The provided argument is copied into the destination array - thus, the source string can be free’d20
without affecting the array once the macro has completed.21

CHAPTER 3. DATA STRUCTURES AND TYPES 49

Un
offi
cia
l D
raf
t

Argument array prepend1
Prepend a string to a NULL-terminated, argv-style array of strings.2

C
PMIX_ARGV_PREPEND(r, a, b);3

C

OUT r4
Status code indicating success or failure of the operation (pmix_status_t)5

INOUT a6
Argument list (pointer to NULL-terminated array of strings)7

IN b8
Argument to append to the list (string)9

This function helps the caller build the argv portion of pmix_app_t structure, arrays of keys for10
querying, or other places where argv-style string arrays are required.11

Advice to users

The provided argument is copied into the destination array - thus, the source string can be free’d12
without affecting the array once the macro has completed.13

Argument array extension - unique14
Append a string to a NULL-terminated, argv-style array of strings, but only if the provided15
argument doesn’t already exist somewhere in the array.16

C
PMIX_ARGV_APPEND_UNIQUE(r, a, b);17

C

OUT r18
Status code indicating success or failure of the operation (pmix_status_t)19

INOUT a20
Argument list (pointer to NULL-terminated array of strings)21

IN b22
Argument to append to the list (string)23

This function helps the caller build the argv portion of pmix_app_t structure, arrays of keys for24
querying, or other places where argv-style string arrays are required.25

Advice to users

The provided argument is copied into the destination array - thus, the source string can be free’d26
without affecting the array once the macro has completed.27

50 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Argument array release1
Free an argv-style array and all of the strings that it contains.2

C
PMIX_ARGV_FREE(a);3

C

IN a4
Argument list (pointer to NULL-terminated array of strings)5

This function releases the array and all of the strings it contains.6

Argument array split7
Split a string into a NULL-terminated argv array.8

C
PMIX_ARGV_SPLIT(a, b, c);9

C

OUT a10
Resulting argv-style array (char**)11

IN b12
String to be split (char*)13

IN c14
Delimiter character (char)15

Split an input string into a NULL-terminated argv array. Do not include empty strings in the16
resulting array.17

Advice to users

All strings are inserted into the argv array by value; the newly-allocated array makes no references18
to the src_string argument (i.e., it can be freed after calling this function without invalidating the19
output argv array)20

CHAPTER 3. DATA STRUCTURES AND TYPES 51

Un
offi
cia
l D
raf
t

Argument array join1
Join all the elements of an argv array into a single newly-allocated string.2

C
PMIX_ARGV_JOIN(a, b, c);3

C

OUT a4
Resulting string (char*)5

IN b6
Argv-style array to be joined (char**)7

IN c8
Delimiter character (char)9

Join all the elements of an argv array into a single newly-allocated string.10

Argument array count11
Return the length of a NULL-terminated argv array.12

C
PMIX_ARGV_COUNT(r, a);13

C

OUT r14
Number of strings in the array (integer)15

IN a16
Argv-style array (char**)17

Count the number of elements in an argv array18

Argument array copy19
Copy an argv array, including copying all of its strings.20

C
PMIX_ARGV_COPY(a, b);21

C

OUT a22
New argv-style array (char**)23

IN b24
Argv-style array (char**)25

Copy an argv array, including copying all of its strings.26

52 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

3.2.15 Set Environment Variable1

Summary2
Set an environment variable in a NULL-terminated, env-style array.3

C
PMIX_SETENV(r, name, value, env);4

C

OUT r5
Status code indicating success or failure of the operation (pmix_status_t)6

IN name7
Argument name (string)8

IN value9
Argument value (string)10

INOUT env11
Environment array to update (pointer to array of strings)12

Description13
Similar to setenv from the C API, this allows the caller to set an environment variable in the14
specified env array, which could then be passed to the pmix_app_t structure or any other15
destination.16

Advice to users

The provided name and value are copied into the destination environment array - thus, the source17
strings can be free’d without affecting the array once the macro has completed.18

3.3 Generalized Data Types Used for Packing/Unpacking19

The pmix_data_type_t structure is a uint16_t type for identifying the data type for20
packing/unpacking purposes. New data type values introduced in this version of the Standard are21
shown in magenta.22

Advice to PMIx library implementers

The following constants can be used to set a variable of the type pmix_data_type_t. Data23
types in the PMIx Standard are defined in terms of the C-programming language. Implementers24
wishing to support other languages should provide the equivalent definitions in a25
language-appropriate manner. Additionally, a PMIx implementation may choose to add additional26
types.27

CHAPTER 3. DATA STRUCTURES AND TYPES 53

Un
offi
cia
l D
raf
t

PMIX_UNDEF 0 Undefined.1
PMIX_BOOL 1 Boolean (converted to/from native true/false) (bool).2
PMIX_BYTE 2 A byte of data (uint8_t).3
PMIX_STRING 3 NULL terminated string (char*).4
PMIX_SIZE 4 Size size_t.5
PMIX_PID 5 Operating Process IDentifier (PID) (pid_t).6
PMIX_INT 6 Integer (int).7
PMIX_INT8 7 8-byte integer (int8_t).8
PMIX_INT16 8 16-byte integer (int16_t).9
PMIX_INT32 9 32-byte integer (int32_t).10
PMIX_INT64 10 64-byte integer (int64_t).11
PMIX_UINT 11 Unsigned integer (unsigned int).12
PMIX_UINT8 12 Unsigned 8-byte integer (uint8_t).13
PMIX_UINT16 13 Unsigned 16-byte integer (uint16_t).14
PMIX_UINT32 14 Unsigned 32-byte integer (uint32_t).15
PMIX_UINT64 15 Unsigned 64-byte integer (uint64_t).16
PMIX_FLOAT 16 Float (float).17
PMIX_DOUBLE 17 Double (double).18
PMIX_TIMEVAL 18 Time value (struct timeval).19
PMIX_TIME 19 Time (time_t).20
PMIX_STATUS 20 Status code pmix_status_t.21
PMIX_VALUE 21 Value (pmix_value_t).22
PMIX_PROC 22 Process (pmix_proc_t).23
PMIX_APP 23 Application context.24
PMIX_INFO 24 Info object.25
PMIX_PDATA 25 Pointer to data.26
PMIX_BYTE_OBJECT 27 Byte object (pmix_byte_object_t).27
PMIX_KVAL 28 Key/value pair.28
PMIX_PERSIST 30 Persistance (pmix_persistence_t).29
PMIX_POINTER 31 Pointer to an object (void*).30
PMIX_SCOPE 32 Scope (pmix_scope_t).31
PMIX_DATA_RANGE 33 Range for data (pmix_data_range_t).32
PMIX_COMMAND 34 PMIx command code (used internally).33
PMIX_INFO_DIRECTIVES 35 Directives flag for pmix_info_t34

(pmix_info_directives_t).35
PMIX_DATA_TYPE 36 Data type code (pmix_data_type_t).36
PMIX_PROC_STATE 37 Process state (pmix_proc_state_t).37
PMIX_PROC_INFO 38 Process information (pmix_proc_info_t).38
PMIX_DATA_ARRAY 39 Data array (pmix_data_array_t).39
PMIX_PROC_RANK 40 Process rank (pmix_rank_t).40
PMIX_PROC_NSPACE 60 Process namespace (pmix_nspace_t). %41

54 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_QUERY 41 Query structure (pmix_query_t).1
PMIX_COMPRESSED_STRING 42 String compressed with zlib (char*).2
PMIX_COMPRESSED_BYTE_OBJECTProvisional 59 Byte object whose bytes have been compressed3

with zlib (pmix_byte_object_t).4
PMIX_ALLOC_DIRECTIVE 43 Allocation directive (pmix_alloc_directive_t).5
PMIX_IOF_CHANNEL 45 Input/output forwarding channel (pmix_iof_channel_t).6
PMIX_ENVAR 46 Environmental variable structure (pmix_envar_t).7
PMIX_COORD 47 Structure containing fabric coordinates (pmix_coord_t).8
PMIX_REGATTR 48 Structure supporting attribute registrations (pmix_regattr_t).9
PMIX_REGEX 49 Regular expressions - can be a valid NULL-terminated string or an10

arbitrary array of bytes.11
PMIX_JOB_STATE 50 Job state (pmix_job_state_t).12
PMIX_LINK_STATE 51 Link state (pmix_link_state_t).13
PMIX_PROC_CPUSET 52 Structure containing the binding bitmap of a process14

(pmix_cpuset_t).15
PMIX_GEOMETRY 53 Geometry structure containing the fabric coordinates of a specified16

device.(pmix_geometry_t).17
PMIX_DEVICE_DIST 54 Structure containing the minimum and maximum relative distance18

from the caller to a given fabric device. (pmix_device_distance_t).19
PMIX_ENDPOINT 55 Structure containing an assigned endpoint for a given fabric device.20

(pmix_endpoint_t).21
PMIX_TOPO 56 Structure containing the topology for a given node. (pmix_topology_t).22
PMIX_DEVTYPE 57 Bitmask containing the types of devices being referenced.23

(pmix_device_type_t).24
PMIX_LOCTYPE 58 Bitmask describing the relative location of another process.25

(pmix_locality_t).26
PMIX_STOR_MEDIUM 66 Bitmask specifying different types of storage mediums.27

(pmix_storage_medium_t).28
PMIX_STOR_ACCESS 67 Bitmask specifying different levels of storage accessibility (i.e,.29

from where a storage system may be accessed). (pmix_storage_accessibility_t).30
PMIX_STOR_PERSIST 68 Bitmask specifying different levels of persistence for a particular31

storage system. (pmix_storage_persistence_t).32
PMIX_STOR_ACCESS_TYPE 69 Bitmask specifying different storage system access types.33

(pmix_storage_access_type_t).34
PMIX_DATA_TYPE_MAX A starting point for implementer-specific data types. Values above35

this are guaranteed not to conflict with PMIx values. Definitions should always be based on36
the PMIX_DATA_TYPE_MAX constant and not a specific value as the value of the constant37
may change.38

CHAPTER 3. DATA STRUCTURES AND TYPES 55

Un
offi
cia
l D
raf
t

3.4 General Callback Functions1

PMIx provides blocking and nonblocking versions of most APIs. In the nonblocking versions, a2
callback is activated upon completion of the the operation. This section describes many of those3
callbacks.4

3.4.1 Release Callback Function5

Summary6
The pmix_release_cbfunc_t is used by the pmix_modex_cbfunc_t and7
pmix_info_cbfunc_t operations to indicate that the callback data may be reclaimed/freed by8
the caller.9

Format10 PMIx v1.0 C
typedef void (*pmix_release_cbfunc_t)11

(void *cbdata);12

C
INOUT cbdata13

Callback data passed to original API call (memory reference)14

Description15
Since the data is “owned” by the host server, provide a callback function to notify the host server16
that we are done with the data so it can be released.17

3.4.2 Lookup Callback Function18

Summary19
The pmix_lookup_cbfunc_t is used by PMIx_Lookup_nb to return data.20

PMIx v1.0 C
typedef void (*pmix_lookup_cbfunc_t)21

(pmix_status_t status,22
pmix_pdata_t data[], size_t ndata,23
void *cbdata);24

C
IN status25

Status associated with the operation (handle)26
IN data27

Array of data returned (pmix_pdata_t)28
IN ndata29

Number of elements in the data array (size_t)30
IN cbdata31

Callback data passed to original API call (memory reference)32

56 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
A callback function for calls to PMIx_Lookup_nb. The function will be called upon completion2
of the PMIx_Lookup_nb API with the status indicating the success or failure of the request. Any3
retrieved data will be returned in an array of pmix_pdata_t structs. The namespace and rank of4
the process that provided each data element is also returned.5

Note that the pmix_pdata_t structures will be released upon return from the callback function,6
so the receiver must copy/protect the data prior to returning if it needs to be retained.7

3.4.3 Op Callback Function8

Summary9
The pmix_op_cbfunc_t is used by operations that simply return a status.10

PMIx v1.0 C
typedef void (*pmix_op_cbfunc_t)11

(pmix_status_t status, void *cbdata);12

C

IN status13
Status associated with the operation (handle)14

IN cbdata15
Callback data passed to original API call (memory reference)16

Description17
Used by a wide range of PMIx API’s including PMIx_Fence_nb,18
pmix_server_client_connected2_fn_t, PMIx_server_register_nspace. This19
callback function is used to return a status to an often nonblocking operation.20

3.4.4 Value Callback Function21

Summary22
The pmix_value_cbfunc_t is used by PMIx_Get_nb to return data.23

PMIx v1.0 C
typedef void (*pmix_value_cbfunc_t)24

(pmix_status_t status,25
pmix_value_t *kv, void *cbdata);26

C

IN status27
Status associated with the operation (handle)28

IN kv29
Key/value pair representing the data (pmix_value_t)30

IN cbdata31
Callback data passed to original API call (memory reference)32

CHAPTER 3. DATA STRUCTURES AND TYPES 57

Un
offi
cia
l D
raf
t

Description1
A callback function for calls to PMIx_Get_nb. The status indicates if the requested data was2
found or not. A pointer to the pmix_value_t structure containing the found data is returned.3
The pointer will be NULL if the requested data was not found.4

3.4.5 Info Callback Function5

Summary6
The pmix_info_cbfunc_t is a general information callback used by various APIs.7

PMIx v2.0 C
typedef void (*pmix_info_cbfunc_t)8

(pmix_status_t status,9
pmix_info_t info[], size_t ninfo,10
void *cbdata,11
pmix_release_cbfunc_t release_fn,12
void *release_cbdata);13

C

IN status14
Status associated with the operation (pmix_status_t)15

IN info16
Array of pmix_info_t returned by the operation (pointer)17

IN ninfo18
Number of elements in the info array (size_t)19

IN cbdata20
Callback data passed to original API call (memory reference)21

IN release_fn22
Function to be called when done with the info data (function pointer)23

IN release_cbdata24
Callback data to be passed to release_fn (memory reference)25

Description26
The status indicates if requested data was found or not. An array of pmix_info_t will contain27
the key/value pairs.28

3.4.6 Handler registration callback function29

Summary30
Callback function for calls to register handlers, e.g., event notification and IOF requests.31

58 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
typedef void (*pmix_hdlr_reg_cbfunc_t)2

(pmix_status_t status,3
size_t refid,4
void *cbdata);5

C

IN status6
PMIX_SUCCESS or an appropriate error constant (pmix_status_t)7

IN refid8
reference identifier assigned to the handler by PMIx, used to deregister the handler (size_t)9

IN cbdata10
object provided to the registration call (pointer)11

Description12
Callback function for calls to register handlers, e.g., event notification and IOF requests.13

3.5 PMIx Datatype Value String Representations14

Provide a string representation for several types of values. Note that the provided string is statically15
defined and must NOT be free’d.16

Summary17
String representation of a pmix_status_t.18

PMIx v1.0 C
const char*19
PMIx_Error_string(pmix_status_t status);20

C

Summary21
String representation of a pmix_proc_state_t.22

PMIx v2.0 C
const char*23
PMIx_Proc_state_string(pmix_proc_state_t state);24

C

CHAPTER 3. DATA STRUCTURES AND TYPES 59

Un
offi
cia
l D
raf
t

Summary1
String representation of a pmix_scope_t.2

C
const char*3
PMIx_Scope_string(pmix_scope_t scope);4

C

Summary5
String representation of a pmix_persistence_t.6

PMIx v2.0 C
const char*7
PMIx_Persistence_string(pmix_persistence_t persist);8

C

Summary9
String representation of a pmix_data_range_t.10

PMIx v2.0 C
const char*11
PMIx_Data_range_string(pmix_data_range_t range);12

C

Summary13
String representation of a pmix_info_directives_t.14

PMIx v2.0 C
const char*15
PMIx_Info_directives_string(pmix_info_directives_t directives);16

C

Summary17
String representation of a pmix_data_type_t.18

PMIx v2.0 C
const char*19
PMIx_Data_type_string(pmix_data_type_t type);20

C

60 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Summary1
String representation of a pmix_alloc_directive_t.2

C
const char*3
PMIx_Alloc_directive_string(pmix_alloc_directive_t directive);4

C

Summary5
String representation of a pmix_iof_channel_t.6

PMIx v3.0 C
const char*7
PMIx_IOF_channel_string(pmix_iof_channel_t channel);8

C

Summary9
String representation of a pmix_job_state_t.10

PMIx v4.0 C
const char*11
PMIx_Job_state_string(pmix_job_state_t state);12

C

Summary13
String representation of a PMIx attribute.14

PMIx v4.0 C
const char*15
PMIx_Get_attribute_string(char *attributename);16

C

Summary17
Return the PMIx attribute name corresponding to the given attribute string.18

PMIx v4.0 C
const char*19
PMIx_Get_attribute_name(char *attributestring);20

C

CHAPTER 3. DATA STRUCTURES AND TYPES 61

Un
offi
cia
l D
raf
t

Summary1
String representation of a pmix_link_state_t.2

C
const char*3
PMIx_Link_state_string(pmix_link_state_t state);4

C

Summary5
String representation of a pmix_device_type_t.6

PMIx v4.0 C
const char*7
PMIx_Device_type_string(pmix_device_type_t type);8

C

62 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 4

Client Initialization and Finalization

The PMIx library is required to be initialized and finalized around the usage of most PMIx1
functions or macros. The APIs that may be used outside of the initialized and finalized region are2
noted. All other APIs must be used inside this region.3

There are three sets of initialization and finalization functions depending upon the role of the4
process in the PMIx Standard - those associated with the PMIx client are defined in this chapter.5
Similar functions corresponding to the roles of server and tool are defined in Chapters 17 and 18,6
respectively.7

Note that a process can only call one of the initialization/finalization functional pairs from the set of8
three - e.g., a process that calls the client initialization function cannot also call the tool or server9
initialization functions, and must call the corresponding client finalization function. Regardless of10
the role assumed by the process, all processes have access to the client APIs. Thus, the server and11
tool roles can be considered supersets of the PMIx client.12

4.1 PMIx_Initialized13

Summary14
Determine if the PMIx library has been initialized. This function may be used outside of the15
initialized and finalized region, and is usable by servers and tools in addition to clients.16

Format17 PMIx v1.0 C
int PMIx_Initialized(void)18

C

A value of 1 (true) will be returned if the PMIx library has been initialized, and 0 (false) otherwise.19

Rationale

The return value is an integer for historical reasons as that was the signature of prior PMI libraries.20

Description21
Check to see if the PMIx library has been initialized using any of the init functions: PMIx_Init,22
PMIx_server_init, or PMIx_tool_init.23

63

Un
offi
cia
l D
raf
t

4.2 PMIx_Get_version1

Summary2
Get the PMIx version information. This function may be used outside of the initialized and3
finalized region, and is usable by servers and tools in addition to clients.4

Format5 PMIx v1.0 C
const char* PMIx_Get_version(void)6

C

Description7
Get the PMIx version string. Note that the provided string is statically defined and must not be8
free’d.9

4.3 PMIx_Init10

Summary11
Initialize the PMIx client library12

Format13 PMIx v1.2 C
pmix_status_t14
PMIx_Init(pmix_proc_t *proc,15

pmix_info_t info[], size_t ninfo)16

C

INOUT proc17
proc structure (handle)18

IN info19
Array of pmix_info_t structures (array of handles)20

IN ninfo21
Number of elements in the info array (size_t)22

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.23

64 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:1

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)2
Disable legacy UNIX socket (usock) support. If the library supports Unix socket3
connections, this attribute may be supported for disabling it.4

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)5
POSIX mode_t (9 bits valid). If the library supports socket connections, this attribute may6
be supported for setting the socket mode.7

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)8
Use only one rendezvous socket, letting priorities and/or environment parameters select the9
active transport. If the library supports multiple methods for clients to connect to servers,10
this attribute may be supported for disabling all but one of them.11

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)12
If provided, directs that the TCP Uniform Resource Identifier (URI) be reported and indicates13
the desired method of reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library14
supports TCP socket connections, this attribute may be supported for reporting the URI.15

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)16
Comma-delimited list of devices and/or Classless Inter-Domain Routing (CIDR) notation to17
include when establishing the TCP connection. If the library supports TCP socket18
connections, this attribute may be supported for specifying the interfaces to be used.19

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)20
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the21
TCP connection. If the library supports TCP socket connections, this attribute may be22
supported for specifying the interfaces that are not to be used.23

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)24
The IPv4 port to be used.. If the library supports IPV4 connections, this attribute may be25
supported for specifying the port to be used.26

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)27
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be28
supported for specifying the port to be used.29

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)30
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,31
this attribute may be supported for disabling it.32

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)33
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,34
this attribute may be supported for disabling it.35

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)36

CHAPTER 4. CLIENT INITIALIZATION AND FINALIZATION 65

Un
offi
cia
l D
raf
t

The host shall progress the PMIx library via calls to PMIx_Progress1

PMIX_EVENT_BASE "pmix.evbase" (void*)2
Pointer to an event_base to use in place of the internal progress thread. All PMIx library3
events are to be assigned to the provided event base. The event base must be compatible with4
the event library used by the PMIx implementation - e.g., either both the host and PMIx5
library must use libevent, or both must use libev. Cross-matches are unlikely to work and6
should be avoided - it is the responsibility of the host to ensure that the PMIx7
implementation supports (and was built with) the appropriate event library.8

If provided, the following attributes are used by the event notification system for inter-library9
coordination:10

PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)11
Programming model being initialized (e.g., “MPI” or “OpenMP”).12

PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)13
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).14

PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)15
Programming model version string (e.g., “2.1.1”).16

PMIX_THREADING_MODEL "pmix.threads" (char*)17
Threading model used (e.g., “pthreads”).18

PMIX_MODEL_NUM_THREADS "pmix.mdl.nthrds" (uint64_t)19
Number of active threads being used by the model.20

PMIX_MODEL_NUM_CPUS "pmix.mdl.ncpu" (uint64_t)21
Number of cpus being used by the model.22

PMIX_MODEL_CPU_TYPE "pmix.mdl.cputype" (char*)23
Granularity - “hwthread”, “core”, etc.24

PMIX_MODEL_AFFINITY_POLICY "pmix.mdl.tap" (char*)25
Thread affinity policy - e.g.: "master" (thread co-located with master thread), "close" (thread26
located on cpu close to master thread), "spread" (threads load-balanced across available27
cpus).28

66 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Initialize the PMIx client, returning the process identifier assigned to this client’s application in the2
provided pmix_proc_t struct. Passing a value of NULL for this parameter is allowed if the user3
wishes solely to initialize the PMIx system and does not require return of the identifier at that time.4

When called, the PMIx client shall check for the required connection information of the local PMIx5
server and establish the connection. If the information is not found, or the server connection fails,6
then an appropriate error constant shall be returned.7

If successful, the function shall return PMIX_SUCCESS and fill the proc structure (if provided)8
with the server-assigned namespace and rank of the process within the application. In addition, all9
startup information provided by the resource manager shall be made available to the client process10
via subsequent calls to PMIx_Get.11

The PMIx client library shall be reference counted, and so multiple calls to PMIx_Init are12
allowed by the standard. Thus, one way for an application process to obtain its namespace and rank13
is to simply call PMIx_Init with a non-NULL proc parameter. Note that each call to14
PMIx_Init must be balanced with a call to PMIx_Finalize to maintain the reference count.15

Each call to PMIx_Init may contain an array of pmix_info_t structures passing directives to16
the PMIx client library as per the above attributes.17

Multiple calls to PMIx_Init shall not include conflicting directives. The PMIx_Init function18
will return an error when directives that conflict with prior directives are encountered.19

4.3.1 Initialization events20

The following events are typically associated with calls to PMIx_Init:21

PMIX_MODEL_DECLARED -147 Model declared.22
PMIX_MODEL_RESOURCES -151 Resource usage by a programming model has changed.23
PMIX_OPENMP_PARALLEL_ENTERED -152 An OpenMP parallel code region has been24

entered.25
PMIX_OPENMP_PARALLEL_EXITED -153 An OpenMP parallel code region has26

completed.27

4.3.2 Initialization attributes28

The following attributes influence the behavior of PMIx_Init.29

4.3.2.1 Connection attributes30

These attributes are used to describe a TCP socket for rendezvous with the local RM by passing31
them into the relevant initialization API - thus, they are not typically accessed via the PMIx_Get32
API.33

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)34

CHAPTER 4. CLIENT INITIALIZATION AND FINALIZATION 67

Un
offi
cia
l D
raf
t

If provided, directs that the TCP URI be reported and indicates the desired method of1
reporting: ’-’ for stdout, ’+’ for stderr, or filename.2

PMIX_TCP_URI "pmix.tcp.uri" (char*)3
The URI of the PMIx server to connect to, or a file name containing it in the form of4
file:<name of file containing it>.5

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)6
Comma-delimited list of devices and/or CIDR notation to include when establishing the7
TCP connection.8

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)9
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the10
TCP connection.11

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)12
The IPv4 port to be used..13

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)14
The IPv6 port to be used.15

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)16
Set to true to disable IPv4 family of addresses.17

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)18
Set to true to disable IPv6 family of addresses.19

4.3.2.2 Programming model attributes20

These attributes are associated with programming models.21

PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)22
Programming model being initialized (e.g., “MPI” or “OpenMP”).23

PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)24
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).25

PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)26
Programming model version string (e.g., “2.1.1”).27

PMIX_THREADING_MODEL "pmix.threads" (char*)28
Threading model used (e.g., “pthreads”).29

PMIX_MODEL_NUM_THREADS "pmix.mdl.nthrds" (uint64_t)30
Number of active threads being used by the model.31

PMIX_MODEL_NUM_CPUS "pmix.mdl.ncpu" (uint64_t)32
Number of cpus being used by the model.33

PMIX_MODEL_CPU_TYPE "pmix.mdl.cputype" (char*)34
Granularity - “hwthread”, “core”, etc.35

PMIX_MODEL_PHASE_NAME "pmix.mdl.phase" (char*)36
User-assigned name for a phase in the application execution (e.g., “cfd reduction”).37

PMIX_MODEL_PHASE_TYPE "pmix.mdl.ptype" (char*)38
Type of phase being executed (e.g., “matrix multiply”).39

PMIX_MODEL_AFFINITY_POLICY "pmix.mdl.tap" (char*)40
Thread affinity policy - e.g.: "master" (thread co-located with master thread), "close" (thread41
located on cpu close to master thread), "spread" (threads load-balanced across available42
cpus).43

68 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

4.4 PMIx_Finalize1

Summary2
Finalize the PMIx client library.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Finalize(const pmix_info_t info[], size_t ninfo)6

C

IN info7
Array of pmix_info_t structures (array of handles)8

IN ninfo9
Number of elements in the info array (size_t)10

Returns PMIX_SUCCESS or a negative value indicating the error.11

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:12

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)13
Execute a blocking fence operation before executing the specified operation.14
PMIx_Finalize does not include an internal barrier operation by default. This attribute15
directs PMIx_Finalize to execute a barrier as part of the finalize operation.16

Description17
Decrement the PMIx client library reference count. When the reference count reaches zero, the18
library will finalize the PMIx client, closing the connection with the local PMIx server and19
releasing all internally allocated memory.20

4.4.1 Finalize attributes21

The following attribute influences the behavior of PMIx_Finalize.22

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)23
Execute a blocking fence operation before executing the specified operation.24
PMIx_Finalize does not include an internal barrier operation by default. This attribute25
directs PMIx_Finalize to execute a barrier as part of the finalize operation.26

4.5 PMIx_Progress27

Summary28
Progress the PMIx library.29

CHAPTER 4. CLIENT INITIALIZATION AND FINALIZATION 69

Un
offi
cia
l D
raf
t

Format1 C
void2
PMIx_Progress(void)3

C

Description4
Progress the PMIx library. Note that special care must be taken to avoid deadlocking in PMIx5
callback functions and APIs.6

70 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 5

Data Access and Sharing

In PMIx key-value pairs are the primary way that information is shared between processes in the1
PMIx universe. A key-value pair consists of a string key and a value data structure which includes2
the type of the value’s data. Each key is unique within the context or domain in which it exists. The3
context or domain of a key in PMIx is called a data realm. This chapter describes how key-value4
pairs are made available and accessed by clients.5

A key-value pair has a scope defined by its data realm. PMIx defines data realms for sessions, jobs,6
applications, nodes, processes and a special realm for publish/lookup information. These are7
explained more fully in chapters 6 and 9.8

The source or provider of key-value pairs can be the host environment or a PMIx client. The host9
environment can provide key-values pairs in any realm except for the publish/lookup realm. PMIx10
clients can only provide key-values pairs within their own process realm and the publish/lookup11
realm. The value of a key is not necessarily static and can be modified by the original provider of12
the key.13

PMIx classifies keys as either reserved or non-reserved. Only keys provided by a host environment14
or PMIx implementation can begin with "pmix" and are called reserved keys. Host environments15
and PMIx implementations must only provide keys that begin with "pmix" to avoid conflicts with16
keys that are provided by clients. Reserved keys are documented in Chapter 6. Each standardized17
reserved key has an associated macro that is documented along with its description. Likewise18
clients can only provide keys that do not begin with "pmix" to avoid conflicting with keys19
provided by the host environment or PMIx implementation. The string representation and the20
macro are equivalent methods to refer to a key. Throughout this document, the macro is used rather21
than its string value to refer to reserved keys. Clients cannot create reserved keys, nor can they22
modify the value of reserved keys. The way reserved keys are accessed by clients is different than23
for non-reserved keys as explained in Chapter 6.24

Host environments are not required to provide all keys that are documented in the standard.25
However, when providing keys that are documented, they must adhere to the behavior defined by26
the standard for reserved keys. An implementation cannot provide a reserved key that behaves27
differently than what is in the standard. Implementations are encouraged to standardize any28
non-standardized, reserved keys that they provide to avoid conflicting with other implementations29
or efforts to standardize the same key.30

Host environments are permitted to provide non-reserved keys and non-standardized reserved keys.31
However there are important caveats to providing either of these categories of keys that are32
explained in Section 5.1 and Chapter 6. Host environments should avoid providing reserved keys33

71

Un
offi
cia
l D
raf
t

which are not standardized. If the reserved key is later standardized to behave in a way that is1
different from the behavior provided by the host environment, the host environment will not be2
compliant with the PMIx standard.3

Reserved keys are set by the host environment and are made available at client initialization. Each4
key is associated with a data realm and the retrieval API call will indicate the realm being queried.5
Reserved keys are used to access information about a client’s execution context. After initialization,6
the client can access reserved keys using the PMIx_Get API. Common information that a client7
may access includes, but is not limited to, the name of the host it is executing on, the number of8
peer processes in its namespace, the number of peer processes in its application, and its job rank.9

Non-reserved keys are provided by clients. A call to PMIx_Put will result in a key-value being10
associated with the calling client within its process data realm. There is no mechanism to retract a11
key-value that has been made available by a client through PMIx_Put. The key can be assigned a12
new value, but cannot be removed entirely. Although key values can originate from different13
sources, they are always retrieved using the PMIx_Get and PMIx_Get_nb API.14

The publish/lookup data realm is accessed through a separate set of APIs. PMIx_Put cannot add15
or modify key-values within the publish/lookup realm and PMIx_Lookup cannot access16
key-values outside the publish/lookup realm. This data realm is described in detail is chapter 9.17
Although PMIx_Publish and PMIx_Lookup are analogous to PMIx_Put and PMIx_Get in18
that both pairs of APIs provide functionality for exposing and retreiving key-values, the semantics19
vary significantly. For example, PMIx_Lookup includes the ability to wait until a key is defined20
before returning. PMIx_Publish can restrict the scope of who can access data to its own21
namespace, the host environment, the session it is executing in, all processes or even custom22
scopes, while PMIx_Put can restrict the scope of who can access data to the node it is executing23
on, remote nodes, all nodes or only itself. The publish/lookup data realm is useful for advertising24
information that is not necessarily specific to one process to other processes in the PMIx universe.25
The process accessing this information does not need to know the identity of the process that26
provided the data.27

PMIx does not provide a mechanism to asynchronously notify a process about the availability of28
key-value information once it is made available by another process. However, the nonblocking29
accessor interfaces (e.g., PMIx_Get_nb, PMIx_Lookup_nb) may provide a degree of30
asynchronous notification on information availability.31

Process related key-value exchanges allow a PMIx process to share information specific to itself,32
and access information specific to one or more processes in the PMIx universe. These interactions33
occur within the process data realm. The ’put/commit/get’ exchange pattern is often used to34
exchange process related information. Optionally, a ’put/commit/fence/get’ exchange pattern adds35
the ’fence’ synchronization (and possible collective exchange) for applications that desire it.36
Commonly, these exchange patterns are used in a business card exchange (a.k.a. modex exchange)37
where one PMIx client shares its connectivity information, then other PMIx clients access that38
information to establish a connection with that client. In some environments that support39
“instant-on” all connectivity information for PMIx clients is stored in the job-level information at40
process creation time and is accessible to the clients without the need to perform any additional41

72 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

key-value exchange.1

Keys can exist in multiple data realms, possibly with different values. PMIx clients can access2
available information associated with any of the data realms. For example, a client can access the3
number of nodes (PMIX_NUM_NODES) used by a session, job, or application. Rather than having4
three different attributes, a single attribute is used but with the data realm context of the query5
specified as additional attributes. Examples of these access patterns are presented in Section 6.2.1.6

PMIx clients can share key-value pairs associated with themselves by using the PMIx_Put7
function. The PMIx_Put function automatically associates the key-value pair with the calling8
process, thus making it specific to that process. A client may call PMIx_Put as many times as9
necessary and the data is not available to other processes until explicitly committed. A client must10
call PMIx_Commit to make accessible all key-value pairs previously put by this process to all11
other processes in the PMIx universe. This put and commit pattern provides implementors the12
opportunity to make individual PMIx_Put calls efficient local operations, and then make the13
whole set of key-value pairs accessible in a single step.14

PMIx clients can access the key-value pairs associated with any process data realm in the PMIx15
universe (including the calling process) by passing the specific process name of the target process16
to the PMIx_Get and PMIx_Get_nb functions. The PMIx server local to the calling process will17
retrieve that key-value pair from the PMIx server associated with the target process. Clients can18
also access session, job, application, node, and namespace level information by using the19
PMIx_Get and PMIx_Get_nb functions as shown in Section 6.2.1. The completion semantics20
for PMIx_Get and PMIx_Get_nb differ depending on the type of key and its availability. See21
Sections 5.3 and 6.2. For example, if a non-reserved key is not available, the PMIx_Get or22
PMIx_Get_nb call will not complete, by default, until that key-value pair becomes available.23

5.1 Non-reserved keys24

Non-reserved keys are keys whose string representation begin with a prefix other than "pmix".25
Such keys are defined by a client when information needs to be exchanged between processes, for26
example, where connection information is required and the host environment does not support the27
instant on option or where the host environment does not provide a required piece of data. Other28
than the prefix, there are no restrictions on the use or content of non-reserved keys.29

PMIx provides support for two methods of exchanging non-reserved keys:30

• Global, collective exchange of the information prior to retrieval. This is accomplished by31
executing a barrier operation that includes collection and exchange of the data provided by each32
process such that each process has access to the full set of data from all participants once the33
operation has completed. PMIx provides the PMIx_Fence function (or its non-blocking34
equivalent) for this purpose, accompanied by the PMIX_COLLECT_DATA qualifier.35

• Direct, on-demand retrieval of the information. No barrier or global exchange is conducted in36
this case. Instead, information is retrieved from the host where that process is executing upon37
request - i.e., a call to PMIx_Get results in a data exchange with the PMIx server on the remote38

CHAPTER 5. DATA ACCESS AND SHARING 73

Un
offi
cia
l D
raf
t

host. Various caching strategies may be employed by the host environment and/or PMIx1
implementation to reduce the number of retrievals. Note that this method requires that the host2
environment both know the location of the posting process and support direct information3
retrieval.4

Both of the above methods are based on retrieval from a specific process - i.e., the proc argument to5
PMIx_Get must include both the namespace and the rank of the process that posted the6
information. However, in some cases, non-reserved keys are provided on a globally unique basis7
and the retrieving process has no knowledge of the identity of the process posting the key. This is8
typically found in legacy applications (where the originating process identifier is often embedded in9
the key itself) and in unstructured applications that lack rank-related behavior. In these cases, the10
key remains associated with the namespace of the process that posted it, but is retrieved by use of11
the PMIX_RANK_UNDEF rank. In addition, the keys must be globally exchanged prior to retrieval12
as there is no way for the host to otherwise locate the source for the information.13

Note that the retrieval rules for non-reserved keys (detailed in Section 5.3) differ significantly from14
those used for reserved keys.15

5.2 Posting Key/Value Pairs16

PMIx clients can post non-reserved key-value pairs associated with themselves by using17
PMIx_Put. Alternatively, PMIx clients can cache both reserved and non-reserved key-value pairs18
accessible only by the caller via the PMIx_Store_internal API.19

5.2.1 PMIx_Put20

Summary21
Stage a key/value pair in prepartion for being made accessible to processes.22

Format23 PMIx v1.0 C
pmix_status_t24
PMIx_Put(pmix_scope_t scope,25

const pmix_key_t key,26
pmix_value_t *val);27

C

IN scope28
Distribution scope of the provided value (handle)29

IN key30
key (pmix_key_t)31

IN value32
Reference to a pmix_value_t structure (handle)33

74 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:1

• PMIX_ERR_BAD_PARAM indicating a reserved key is provided in the key argument.2

If none of the above return codes are appropriate, then an implementation must return either a3
general PMIx error code or an implementation defined error code as described in Section 3.1.1.4

Description5
Post a key-value pair for distribution. Depending upon the PMIx implementation, the posted value6
may be locally cached in the client’s PMIx library until PMIx_Commit is called.7

The provided scope determines the ability of other processes to access the posted data, as defined in8
Section 5.2.1.1 on page 75. Specific implementations may support different scope values, but all9
implementations must support at least PMIX_GLOBAL.10

The pmix_value_t structure supports both string and binary values. PMIx implementations are11
required to support heterogeneous environments by properly converting binary values between host12
architectures, and will copy the provided value into internal memory prior to returning from13
PMIx_Put.14

Advice to users

Note that keys starting with a string of “pmix” must not be used in calls to PMIx_Put. Thus,15
applications should never use a defined “PMIX” attribute as the key in a call to PMIx_Put.16

5.2.1.1 Scope of Put Data17
PMIx v1.0 The pmix_scope_t structure is a uint8_t type that defines the availability of data passed to18

PMIx_Put. The following constants can be used to set a variable of the type pmix_scope_t.19
All definitions were introduced in version 1 of the standard unless otherwise marked.20

Specific implementations may support different scope values, but all implementations must support21
at least PMIX_GLOBAL. If a specified scope value is not supported, then the PMIx_Put call must22
return PMIX_ERR_NOT_SUPPORTED.23

PMIX_SCOPE_UNDEF 0 Undefined scope.24
PMIX_LOCAL 1 The data is intended only for other application processes on the same node.25

Data marked in this way will not be included in data packages sent to remote requesters - i.e.,26
it is only available to processes on the local node.27

PMIX_REMOTE 2 The data is intended solely for applications processes on remote nodes.28
Data marked in this way will not be shared with other processes on the same node - i.e., it is29
only available to processes on remote nodes.30

PMIX_GLOBAL 3 The data is to be shared with all other requesting processes, regardless of31
location.PMIx v2.032

PMIX_INTERNAL 4 The data is intended solely for this process and is not shared with other33
processes.34

CHAPTER 5. DATA ACCESS AND SHARING 75

Un
offi
cia
l D
raf
t

5.2.2 PMIx_Store_internal1

Summary2
Store some data locally for retrieval by other areas of the process.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Store_internal(const pmix_proc_t *proc,6

const pmix_key_t key,7
pmix_value_t *val);8

C

IN proc9
process reference (handle)10

IN key11
key to retrieve (string)12

IN val13
Value to store (handle)14

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:15

• PMIX_ERR_BAD_PARAM indicating a reserved key is provided in the key argument.16

If none of the above return codes are appropriate, then an implementation must return either a17
general PMIx error code or an implementation defined error code as described in Section 3.1.1.18

Description19
Store some data locally for retrieval by other areas of the process. This is data that has only internal20
scope - it will never be posted externally. Typically used to cache data obtained by means outside of21
PMIx so that it can be accessed by various areas of the process.22

5.2.3 PMIx_Commit23

Summary24
Make available to other processes all key-value pairs previously staged via PMIx_Put.25

Format26 PMIx v1.0 C
pmix_status_t PMIx_Commit(void);27

C

Returns PMIX_SUCCESS or a negative value indicating the error.28

76 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
PMIx implementations may choose to locally cache non-reserved keys prior to submitting them for2
distribution. PMIx_Commit initiates the operation of making available previously staged3
key-value pairs to other processes. Depending on the implementation, this may involve transmitting4
the entire collection of data posted by the process to a server. PMIx_Commit is an asynchronous5
operation that will immediately return to the caller while the data is staged in the background.6

Advice to users

Users are advised to always include the call to PMIx_Commit in case the local implementation7
requires it. Note that posted data will not necessarily be circulated during PMIx_Commit.8
Availability of the data by other processes upon completion of PMIx_Commit therefore still relies9
upon the exchange mechanisms described at the beginning of this chapter.10

5.3 Retrieval rules for non-reserved keys11

Since non-reserved keys cannot, by definition, have been provided by the host environment, their12
retrieval follows significantly different rules than those defined for reserved keys (as detailed in13
Section 6). PMIx_Get for a non-reserved key will obey the following precedence search:14

1. If the PMIX_GET_REFRESH_CACHE attribute is given, then the request is first forwarded to15
the local PMIx server which will then update the client’s cache. Note that this may not,16
depending upon implementation details, result in any action.17

2. Check the local PMIx client cache for the requested key - if not found and either the18
PMIX_OPTIONAL or PMIX_GET_REFRESH_CACHE attribute was given, the search will stop19
at this point and return the PMIX_ERR_NOT_FOUND status.20

3. Request the information from the local PMIx server. The server will check its cache for the21
specified key. If the value still isn’t found and the PMIX_IMMEDIATE attribute was given, then22
the library shall return the PMIX_ERR_NOT_FOUND error constant to the requester. Otherwise,23
the PMIx server library will take one of the following actions:24

• If the target process has a rank of PMIX_RANK_UNDEF, then this indicates that the key being25
requested is globally unique and not associated with a specific process. In this case, the server26
shall hold the request until either the data appears at the server or, if given, the27
PMIX_TIMEOUT is reached. In the latter case, the server will return the28
PMIX_ERR_TIMEOUT status. Note that the server may, depending on PMIx implementation,29
never respond if the caller failed to specify a PMIX_TIMEOUT and the requested key fails to30
arrive at the server.31

CHAPTER 5. DATA ACCESS AND SHARING 77

Un
offi
cia
l D
raf
t

• If the target process is local (i.e., attached to the same PMIx server), then the server will hold1
the request until either the target process provides the data or, if given, the PMIX_TIMEOUT2
is reached. In the latter case, the server will return the PMIX_ERR_TIMEOUT status. Note3
that data which is posted via PMIx_Put but not staged with PMIx_Commit may, depending4
upon implementation, never appear at the server.5

• If the target process is remote (i.e., not attached to the same PMIx server), the server will6
either:7

– If the host has provided the pmix_server_dmodex_req_fn_t module function8
interface, then the server shall pass the request to its host for servicing. The host is9
responsible for determining the location of the target process and passing the request to the10
PMIx server at that location.11

When the remote data request is received, the target PMIx server will check its cache for12
the specified key. If the key is not present, the request shall be held until either the target13
process provides the data or, if given, the PMIX_TIMEOUT is reached. In the latter case,14
the server will return the PMIX_ERR_TIMEOUT status. The host shall convey the result15
back to the originating PMIx server, which will reply to the requesting client with the result16
of the request when the host provides it.17

Note that the target server may, depending on PMIx implementation, never respond if the18
caller failed to specify a PMIX_TIMEOUT and the target process fails to post the requested19
key.20

– if the host does not support the pmix_server_dmodex_req_fn_t interface, then the21
server will immediately respond to the client with the PMIX_ERR_NOT_FOUND status22

Advice to PMIx library implementers

While there is no requirement that all PMIx implementations follow the client-server paradigm23
used in the above description, implementers are required to provide behaviors consistent with the24
described search pattern.25

Advice to users

Users are advised to always specify the PMIX_TIMEOUT value when retrieving non-reserved keys26
to avoid potential deadlocks should the specified key not become available.27

5.4 PMIx_Get28

Summary29
Retrieve a key/value pair from the client’s namespace.30

78 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,3

const pmix_info_t info[], size_t ninfo,4
pmix_value_t **val);5

C

IN proc6
Process identifier - a NULL value may be used in place of the caller’s ID (handle)7

IN key8
Key to retrieve (pmix_key_t)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

OUT val14
value (handle)15

A successful return indicates that the requested data has been returned in the manner requested16
(.e.g., in a provided static memory location).17

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:18

• PMIX_ERR_BAD_PARAM A bad parameter was passed to the function call - e.g., the request19
included the PMIX_GET_STATIC_VALUES directive, but the provided storage location was20
NULL21

• PMIX_ERR_EXISTS_OUTSIDE_SCOPE The requested key exists, but was posted in a scope22
(see Section 5.2.1.1) that does not include the requester.23

• PMIX_ERR_NOT_FOUND The requested data was not available.24

If none of the above return codes are appropriate, then an implementation must return either a25
general PMIx error code or an implementation defined error code as described in Section 3.1.1.26

Required Attributes

The following attributes are required to be supported by all PMIx libraries:27

PMIX_OPTIONAL "pmix.optional" (bool)28
Look only in the client’s local data store for the requested value - do not request data from29
the PMIx server if not found.30

PMIX_IMMEDIATE "pmix.immediate" (bool)31
Specified operation should immediately return an error from the PMIx server if the requested32
data cannot be found - do not request it from the host RM.33

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)34

CHAPTER 5. DATA ACCESS AND SHARING 79

Un
offi
cia
l D
raf
t

Scope of the data to be searched in a PMIx_Get call.1

PMIX_SESSION_INFO "pmix.ssn.info" (bool)2
Return information regarding the session realm of the target process.3

PMIX_JOB_INFO "pmix.job.info" (bool)4
Return information regarding the job realm corresponding to the namespace in the target5
process’ identifier.6

PMIX_APP_INFO "pmix.app.info" (bool)7
Return information regarding the application realm to which the target process belongs - the8
namespace of the target process serves to identify the job containing the target application. If9
information about an application other than the one containing the target process is desired,10
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired11
target application. This is useful in cases where there are multiple applications and the12
mapping of processes to applications is unclear.13

PMIX_NODE_INFO "pmix.node.info" (bool)14
Return information from the node realm regarding the node upon which the specified15
process is executing. If information about a node other than the one containing the specified16
process is desired, then the attribute array must also contain either the PMIX_NODEID or17
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting18
information about a specific node even if the identity of processes running on that node are19
not known.20

PMIX_GET_STATIC_VALUES "pmix.get.static" (bool)21
Request that the data be returned in the provided storage location. The caller is responsible22
for destructing the pmix_value_t using the PMIX_VALUE_DESTRUCT macro when23
done.24

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)25
Request that any pointers in the returned value point directly to values in the key-value store.26
The user must not release any returned data pointers.27

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)28
When retrieving data for a remote process, refresh the existing local data cache for the29
process in case new values have been put and committed by the process since the last refresh.30
Local process information is assumed to be automatically updated upon posting by the31
process. A NULL key will cause all values associated with the process to be refreshed -32
otherwise, only the indicated key will be updated. A process rank of33
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic34
environments. The user is responsible for subsequently updating refreshed values they may35
have cached in their own local memory.36

80 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Retrieve information for the specified key associated with the process identified in the given7
pmix_proc_t. See Chapters 6 and 5.1 for details on rules governing retrieval of information.8
Information will be returned according to provided directives:9

• In the absence of any directive, the returned pmix_value_t shall be an allocated memory10
object. The caller is responsible for releasing the object when done.11

• If PMIX_GET_POINTER_VALUES is given, then the function shall return a pointer to a12
pmix_value_t in the PMIx library’s memory that contains the requested information.13

• If PMIX_GET_STATIC_VALUES is given, then the function shall return the information in the14
provided pmix_value_t pointer. In this case, the caller must provide storage for the structure15
and pass the pointer to that storage in the val parameter. If the implementation cannot return a16
static value, then the call to PMIx_Get must return the PMIX_ERR_NOT_SUPPORTED status.17

Retrieve information for the specified key associated with the process identified in the given18
pmix_proc_t. See Chapters 6 and 5.1 for details on rules governing retrieval of information.19
Information will be returned according to provided directives:20

• In the absence of any directive, the returned pmix_value_t shall be an allocated memory21
object. The caller is responsible for releasing the object when done.22

• If PMIX_GET_POINTER_VALUES is given, then the function shall return a pointer to a23
pmix_value_t in the PMIx library’s memory that contains the requested information.24

• If PMIX_GET_STATIC_VALUES is given, then the function shall return the information in the25
provided pmix_value_t pointer. In this case, the caller must provide storage for the structure26
and pass the pointer to that storage in the val parameter.27

This is a blocking operation - the caller will block until the retrieval rules of Section 6.2 or 5.3 are28
met.29

The info array is used to pass user directives regarding the get operation.30

5.4.1 PMIx_Get_nb31

Summary32
Nonblocking PMIx_Get operation.33

CHAPTER 5. DATA ACCESS AND SHARING 81

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Get_nb(const pmix_proc_t *proc, const char key[],3

const pmix_info_t info[], size_t ninfo,4
pmix_value_cbfunc_t cbfunc, void *cbdata);5

C

IN proc6
Process identifier - a NULL value may be used in place of the caller’s ID (handle)7

IN key8
Key to retrieve (string)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

A successful return indicates that the request is being processed and the result will be returned in18
the provided cbfunc. Note that the library must not invoke the callback function prior to returning19
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.20

If executed, the status returned in the provided callback function will be one of the following21
constants:22

• PMIX_SUCCESS The requested data has been returned.23

• PMIX_ERR_EXISTS_OUTSIDE_SCOPE The requested key exists, but was posted in a scope24
(see Section 5.2.1.1) that does not include the requester.25

• PMIX_ERR_NOT_FOUND The requested data was not available.26

• a non-zero PMIx error constant indicating a reason for the request’s failure.27

Required Attributes

The following attributes are required to be supported by all PMIx libraries:28

PMIX_OPTIONAL "pmix.optional" (bool)29
Look only in the client’s local data store for the requested value - do not request data from30
the PMIx server if not found.31

PMIX_IMMEDIATE "pmix.immediate" (bool)32
Specified operation should immediately return an error from the PMIx server if the requested33
data cannot be found - do not request it from the host RM.34

82 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)1
Scope of the data to be searched in a PMIx_Get call.2

PMIX_SESSION_INFO "pmix.ssn.info" (bool)3
Return information regarding the session realm of the target process.4

PMIX_JOB_INFO "pmix.job.info" (bool)5
Return information regarding the job realm corresponding to the namespace in the target6
process’ identifier.7

PMIX_APP_INFO "pmix.app.info" (bool)8
Return information regarding the application realm to which the target process belongs - the9
namespace of the target process serves to identify the job containing the target application. If10
information about an application other than the one containing the target process is desired,11
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired12
target application. This is useful in cases where there are multiple applications and the13
mapping of processes to applications is unclear.14

PMIX_NODE_INFO "pmix.node.info" (bool)15
Return information from the node realm regarding the node upon which the specified16
process is executing. If information about a node other than the one containing the specified17
process is desired, then the attribute array must also contain either the PMIX_NODEID or18
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting19
information about a specific node even if the identity of processes running on that node are20
not known.21

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)22
Request that any pointers in the returned value point directly to values in the key-value store.23
The user must not release any returned data pointers.24

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)25
When retrieving data for a remote process, refresh the existing local data cache for the26
process in case new values have been put and committed by the process since the last refresh.27
Local process information is assumed to be automatically updated upon posting by the28
process. A NULL key will cause all values associated with the process to be refreshed -29
otherwise, only the indicated key will be updated. A process rank of30
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic31
environments. The user is responsible for subsequently updating refreshed values they may32
have cached in their own local memory.33

34

The following attributes are required for host environments that support this operation:35

PMIX_WAIT "pmix.wait" (int)36
Caller requests that the PMIx server wait until at least the specified number of values are37
found (a value of zero indicates all and is the default).38

CHAPTER 5. DATA ACCESS AND SHARING 83

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
The callback function will be executed once the retrieval rules of Chapters 6 or 5.3 are met. See7
PMIx_Get for a full description. Note that the non-blocking form of this function cannot support8
the PMIX_GET_STATIC_VALUES attribute as the user cannot pass in the required pointer to9
storage for the result.10

5.4.2 Retrieval attributes11

The following attributes are defined for use by retrieval APIs:12

PMIX_OPTIONAL "pmix.optional" (bool)13
Look only in the client’s local data store for the requested value - do not request data from14
the PMIx server if not found.15

PMIX_IMMEDIATE "pmix.immediate" (bool)16
Specified operation should immediately return an error from the PMIx server if the requested17
data cannot be found - do not request it from the host RM.18

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)19
Request that any pointers in the returned value point directly to values in the key-value store.20
The user must not release any returned data pointers.21

PMIX_GET_STATIC_VALUES "pmix.get.static" (bool)22
Request that the data be returned in the provided storage location. The caller is responsible23
for destructing the pmix_value_t using the PMIX_VALUE_DESTRUCT macro when24
done.25

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)26
When retrieving data for a remote process, refresh the existing local data cache for the27
process in case new values have been put and committed by the process since the last refresh.28
Local process information is assumed to be automatically updated upon posting by the29
process. A NULL key will cause all values associated with the process to be refreshed -30
otherwise, only the indicated key will be updated. A process rank of31
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic32
environments. The user is responsible for subsequently updating refreshed values they may33
have cached in their own local memory.34

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)35

84 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Scope of the data to be searched in a PMIx_Get call.1
PMIX_TIMEOUT "pmix.timeout" (int)2

Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

PMIX_WAIT "pmix.wait" (int)6
Caller requests that the PMIx server wait until at least the specified number of values are7
found (a value of zero indicates all and is the default).8

CHAPTER 5. DATA ACCESS AND SHARING 85

Un
offi
cia
l D
raf
t

CHAPTER 6

Reserved Keys

Reserved keys are keys whose string representation begin with a prefix of "pmix". By definition,1
reserved keys are provided by the host environment and the PMIx server, and are required to be2
available at client start of execution. PMIx clients and tools are therefore prohibited from posting3
reserved keys.4

Host environments may opt to define non-standardized reserved keys. All reserved keys, whether5
standardized or non-standardized, follow the same retrieval rules. Users are advised to check both6
the local PMIx implementation and host environment documentation for a list of any7
non-standardized reserved keys they must avoid, and to learn of any non-standard keys that may8
require special handling.9

6.1 Data realms10

PMIx information spans a wide range of sources. In some cases, there are multiple overlapping11
sources for the same type of data - e.g., the session, job, and application can each provide12
information on the number of nodes involved in their respective area. In order to resolve the13
ambiguity, a data realm is used to identify the scope to which the referenced data applies. Thus, a14
reference to an attribute that isn’t specific to a realm (e.g., the PMIX_NUM_NODES attribute) must15
be accompanied by a corresponding attribute identifying the realm to which the request pertains if16
it differs from the default.17

PMIx defines five data realms to resolve the ambiguities, as captured in the following attributes18
used in PMIx_Get for retrieving information from each of the realms:19

PMIX_SESSION_INFO "pmix.ssn.info" (bool)20
Return information regarding the session realm of the target process.21

PMIX_JOB_INFO "pmix.job.info" (bool)22
Return information regarding the job realm corresponding to the namespace in the target23
process’ identifier.24

PMIX_APP_INFO "pmix.app.info" (bool)25
Return information regarding the application realm to which the target process belongs - the26
namespace of the target process serves to identify the job containing the target application. If27
information about an application other than the one containing the target process is desired,28
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired29
target application. This is useful in cases where there are multiple applications and the30
mapping of processes to applications is unclear.31

86

Un
offi
cia
l D
raf
t

PMIX_PROC_INFO "pmix.proc.info" (bool)1
Return information regarding the target process. This attribute is technically not required as2
the PMIx_Get API specifically identifies the target process in its parameters. However, it is3
included here for completeness.4

PMIX_NODE_INFO "pmix.node.info" (bool)5
Return information from the node realm regarding the node upon which the specified6
process is executing. If information about a node other than the one containing the specified7
process is desired, then the attribute array must also contain either the PMIX_NODEID or8
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting9
information about a specific node even if the identity of processes running on that node are10
not known.11

Advice to users

If information about a session other than the one containing the requesting process is desired, then12
the attribute array must contain a PMIX_SESSION_ID attribute identifying the desired target13
session. This is required as many environments only guarantee unique namespaces within a14
session, and not across sessions.15

Determining the target within a realm varies between realms and is explained in detail in the realm16
descriptions below. Note that several attributes can be either queried as a key or set as an attribute17
to specify the target within a realm. The attributes PMIX_SESSION_ID, PMIX_NSPACE and18
PMIX_APPNUM can be used in both ways.19

6.1.1 Session realm attributes20

If information about a session other than the one containing the requesting process is desired, then21
the info array passed to PMIx_Get must contain a PMIX_SESSION_ID attribute identifying the22
desired target session. This is required as many environments only guarantee unique namespaces23
within a session, and not across sessions.24

Note that the proc argument of PMIx_Get is ignored when referencing session-related25
information.26

The following keys, by default, request session-level information. They will return information27
about the caller’s session unless a PMIX_SESSION_ID attribute is specified in the info array28
passed to PMIx_Get:29

PMIX_CLUSTER_ID "pmix.clid" (char*)30
A string name for the cluster this allocation is on.31

PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)32
Maximum number of process that can be simultaneously executing in a session. Note that33
this attribute is equivalent to the PMIX_MAX_PROCS attribute for the session realm - it is34
included in the PMIx Standard for historical reasons.35

PMIX_TMPDIR "pmix.tmpdir" (char*)36

CHAPTER 6. RESERVED KEYS 87

Un
offi
cia
l D
raf
t

Full path to the top-level temporary directory assigned to the session.1
PMIX_TDIR_RMCLEAN "pmix.tdir.rmclean" (bool)2

The Resource Manager will remove any directories or files it creates in PMIX_TMPDIR.3
PMIX_HOSTNAME_KEEP_FQDN "pmix.fqdn" (bool)4

Fully Qualified Domain Names (FQDNs) are being retained by the PMIx library.5
PMIX_RM_NAME "pmix.rm.name" (char*)6

String name of the RM.7
PMIX_RM_VERSION "pmix.rm.version" (char*)8

RM version string.9

The following session-related keys default to the realms described in their descriptions but can be10
retrieved from the session realm by setting the PMIX_SESSION_INFO attribute in the info array11
passed to PMIx_Get:12

PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)13
Comma-delimited list or regular expression of all nodes in the specified realm regardless of14
whether or not they currently host processes. Defaults to the job realm.15

PMIX_NUM_ALLOCATED_NODES "pmix.num.anodes" (uint32_t)16
Number of nodes in the specified realm regardless of whether or not they currently host17
processes. Defaults to the job realm.18

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)19
Maximum number of processes that can be simultaneously executed in the specified realm.20
Typically, this is a constraint imposed by a scheduler or by user settings in a hostfile or other21
resource description. Defaults to the job realm.22

PMIX_NODE_LIST "pmix.nlist" (char*)23
Comma-delimited list of nodes currently hosting processes in the specified realm. Defaults24
to the job realm.25

PMIX_NUM_SLOTS "pmix.num.slots" (uint32_t)26
Maximum number of processes that can simultaneously be executing in the specified realm.27
Note that this attribute is the equivalent to PMIX_MAX_PROCS - it is included in the PMIx28
Standard for historical reasons. Defaults to the job realm.29

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)30
Number of nodes currently hosting processes in the specified realm. Defaults to the job31
realm.32

PMIX_NODE_MAP "pmix.nmap" (char*)33
Regular expression of nodes currently hosting processes in the specified realm - see 17.2.3.234
for an explanation of its generation. Defaults to the job realm.35

PMIX_NODE_MAP_RAW "pmix.nmap.raw" (char*)36
Comma-delimited list of nodes containing procs within the specified realm. Defaults to the37
job realm.38

PMIX_PROC_MAP "pmix.pmap" (char*)39
Regular expression describing processes on each node in the specified realm - see 17.2.3.240
for an explanation of its generation. Defaults to the job realm.41

PMIX_PROC_MAP_RAW "pmix.pmap.raw" (char*)42

88 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Semi-colon delimited list of strings, each string containing a comma-delimited list of ranks1
on the corresponding node within the specified realm. Defaults to the job realm.2

PMIX_ANL_MAP "pmix.anlmap" (char*)3
Process map equivalent to PMIX_PROC_MAP expressed in Argonne National Laboratory’s4
PMI-1/PMI-2 notation. Defaults to the job realm.5

6.1.2 Job realm attributes6

Job-related information can be retrieved by requesting a key which defaults to the job realm or by7
including the PMIX_JOB_INFO attribute in the info array passed to PMIx_Get. For job-related8
keys the target job is specified by setting the namespace of the target job in the proc argument and9
specifying a rank of PMIX_RANK_WILDCARD in the proc argument passed to PMIx_Get.10

If information is requested about a namespace in a session other than the one containing the11
requesting process, then the info array must contain a PMIX_SESSION_ID attribute identifying12
the desired target session. This is required as many environments only guarantee unique13
namespaces within a session, and not across sessions.14

The following keys, by default, request job-level information: They will return information about15
the job indicated in proc:16

PMIX_JOBID "pmix.jobid" (char*)17
Job identifier assigned by the scheduler to the specified job - may be identical to the18
namespace, but is often a numerical value expressed as a string (e.g., "12345.3").19

PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)20
Starting global rank of the specified job. The returned value is the same as the value of21
PMIX_GLOBAL_RANK of rank 0 of the specified job.22

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)23
Maximum number of processes that can be simultaneously executed in the specified realm.24
Typically, this is a constraint imposed by a scheduler or by user settings in a hostfile or other25
resource description. Defaults to the job realm. In this context, this is the maximum number26
of processes that can be simultaneously executed in the specified job, which may be a subset27
of the number allocated to the overall session.28

PMIX_NUM_SLOTS "pmix.num.slots" (uint32_t)29
Maximum number of processes that can simultaneously be executing in the specified realm.30
Note that this attribute is the equivalent to PMIX_MAX_PROCS - it is included in the PMIx31
Standard for historical reasons. Defaults to the job realm. In this context, this is the32
maximum number of process that can be simultaneously executing within the specified job,33
which may be a subset of the number allocated to the overall session. Jobs may reserve a34
subset of their assigned maximum processes for dynamic operations such as PMIx_Spawn.35

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)36
Number of nodes currently hosting processes in the specified realm. Defaults to the job37
realm. In this context, this is the number of nodes currently hosting processes in the38
specified job, which may be a subset of the nodes allocated to the overall session. Jobs may39

CHAPTER 6. RESERVED KEYS 89

Un
offi
cia
l D
raf
t

reserve a subset of their assigned nodes for dynamic operations such as PMIx_Spawn - i.e.,1
not all nodes may have executing processes from this job at a given point in time.2

PMIX_NODE_MAP "pmix.nmap" (char*)3
Regular expression of nodes currently hosting processes in the specified realm - see 17.2.3.24
for an explanation of its generation. Defaults to the job realm. In this context, this is the5
regular expression of nodes currently hosting processes in the specified job.6

PMIX_NODE_LIST "pmix.nlist" (char*)7
Comma-delimited list of nodes currently hosting processes in the specified realm. Defaults8
to the job realm. In this context, this is the comma-delimited list of nodes currently hosting9
processes in the specified job.10

PMIX_PROC_MAP "pmix.pmap" (char*)11
Regular expression describing processes on each node in the specified realm - see 17.2.3.212
for an explanation of its generation. Defaults to the job realm. In this context, this is the13
regular expression describing processes on each node in the specified job.14

PMIX_ANL_MAP "pmix.anlmap" (char*)15
Process map equivalent to PMIX_PROC_MAP expressed in Argonne National Laboratory’s16
PMI-1/PMI-2 notation. Defaults to the job realm. In this context, this is the process17
mapping in Argonne National Laboratory’s PMI-1/PMI-2 notation of the processes in the18
specified job.19

PMIX_CMD_LINE "pmix.cmd.line" (char*)20
Command line used to execute the specified job (e.g., "mpirun -n 2 –map-by foo ./myapp : -n21
4 ./myapp2"). If the job was created by a call to PMIx_Spawn, the string is an inorder22
concatenation of the values of PMIX_APP_ARGV for each application in the job using the23
character ’:’ as a separator.24

PMIX_NSDIR "pmix.nsdir" (char*)25
Full path to the temporary directory assigned to the specified job, under PMIX_TMPDIR.26

PMIX_JOB_SIZE "pmix.job.size" (uint32_t)27
Total number of processes in the specified job across all contained applications. Note that28
this value can be different from PMIX_MAX_PROCS. For example, users may choose to29
subdivide an allocation (running several jobs in parallel within it), and dynamic30
programming models may support adding and removing processes from a running job31
on-the-fly. In the latter case, PMIx events may be used to notify processes within the job that32
the job size has changed.33

PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)34
Number of applications in the specified job.35

PMIX_LOCAL_PEERS "pmix.lpeers" (char*)36
Comma-delimited list of ranks that are executing on the local node within the specified37
namespace – shortcut for PMIx_Resolve_peers for the local node.38

PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)39
Lowest rank within the specified job on the node (defaults to current node in absence of40
PMIX_HOSTNAME or PMIX_NODEID qualifier).41

90 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_LOCAL_CPUSETS "pmix.lcpus" (pmix_data_array_t)1
A pmix_data_array_t array of string representations of the Processing Unit (PU)2
binding bitmaps applied to each local peer on the caller’s node upon launch. Each string3
shall begin with the name of the library that generated it (e.g., "hwloc") followed by a colon4
and the bitmap string itself. The array shall be in the same order as the processes returned by5
PMIX_LOCAL_PEERS for that namespace.6

PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)7
Number of processes in the specified job or application on the caller’s node. Defaults to job8
unless the PMIX_APP_INFO and the PMIX_APPNUM qualifiers are given.9

6.1.3 Application realm attributes10

Application-related information can be retrieved by requesting a key which defaults to the11
application realm or by including the PMIX_APP_INFO attribute in the info array passed to12
PMIx_Get. If the PMIX_APPNUM qualifier is given, then the query shall return the corresponding13
value for the given application within the namespace specified in the proc argument of the query (a14
NULL value for the proc argument equates to the namespace of the caller). If the PMIX_APPNUM15
qualifier is not included, then the retrieval shall default to the application containing the process16
specified by proc. If the rank specified in proc is PMIX_RANK_WILDCARD, then the application17
number shall default to that of the calling process if the namespace is its own job, or a value of zero18
if the namespace is that of a different job.19

The following keys, by default, request application-level information. They will return information20
about the application indicated in proc:21

PMIX_APPLDR "pmix.aldr" (pmix_rank_t)22
Lowest rank in the specified application.23

PMIX_APP_SIZE "pmix.app.size" (uint32_t)24
Number of processes in the specified application, regardless of their execution state - i.e.,25
this number may include processes that either failed to start or have already terminated.26

PMIX_APP_ARGV "pmix.app.argv" (char*)27
Consolidated argv passed to the spawn command for the given application (e.g., "./myapp28
arg1 arg2 arg3").29

PMIX_APP_MAP_TYPE "pmix.apmap.type" (char*)30
Type of mapping used to layout the application (e.g., cyclic).31

PMIX_APP_MAP_REGEX "pmix.apmap.regex" (char*)32
Regular expression describing the result of the process mapping.33

The following application-related keys default to the realms described in their descriptions but can34
be retrieved from the application realm by setting the PMIX_APP_INFO attribute in the info array35
passed to PMIx_Get:36

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)37
Number of nodes currently hosting processes in the specified realm. Defaults to the job38
realm. In this context, this is the number of nodes currently hosting processes in the39
specified application, which may be a subset of the nodes allocated to the overall session.40

CHAPTER 6. RESERVED KEYS 91

Un
offi
cia
l D
raf
t

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)1
Maximum number of processes that can be simultaneously executed in the specified realm.2
Typically, this is a constraint imposed by a scheduler or by user settings in a hostfile or other3
resource description. Defaults to the job realm. In this context, this is the maximum number4
of processes that can be executed in the specified application, which may be a subset of the5
number allocated to the overall session and job.6

PMIX_NUM_SLOTS "pmix.num.slots" (uint32_t)7
Maximum number of processes that can simultaneously be executing in the specified realm.8
Note that this attribute is the equivalent to PMIX_MAX_PROCS - it is included in the PMIx9
Standard for historical reasons. Defaults to the job realm. In this context, this is the number10
of slots assigned to the specified application, which may be a subset of the slots allocated to11
the overall session and job.12

PMIX_NODE_MAP "pmix.nmap" (char*)13
Regular expression of nodes currently hosting processes in the specified realm - see 17.2.3.214
for an explanation of its generation. Defaults to the job realm. In this context, this is the15
regular expression of nodes currently hosting processes in the specified application.16

PMIX_NODE_LIST "pmix.nlist" (char*)17
Comma-delimited list of nodes currently hosting processes in the specified realm. Defaults18
to the job realm. In this context, this is the comma-delimited list of nodes currently hosting19
processes in the specified application.20

PMIX_PROC_MAP "pmix.pmap" (char*)21
Regular expression describing processes on each node in the specified realm - see 17.2.3.222
for an explanation of its generation. Defaults to the job realm. In this context, this is the23
regular expression describing processes on each node in the specified application.24

6.1.4 Process realm attributes25

Process-related information can be retrieved by requesting a key which defaults to the process26
realm or by including the PMIX_PROC_INFO attribute in the info array passed to PMIx_Get.27
The target process is specified by the namespace and rank of the proc argument to PMIx_Get. For28
process-related keys (other than PMIX_PROCID and PMIX_NSPACE) the target process is29
specified by setting the namespace and rank of the target process in the proc argument passed to30
PMIx_Get. If information is requested about a process in a session other than the one containing31
the requesting process, then an attribute identifying the target session must be provided. This is32
required as many environments only guarantee unique namespaces within a session, and not across33
sessions.34

The following keys, by default, request process-level information: They will return information35
about the process indicated in proc:36

PMIX_APPNUM "pmix.appnum" (uint32_t)37
The application number within the job in which the specified process is a member.38

92 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_RANK "pmix.rank" (pmix_rank_t)1
Process rank within the job, starting from zero.2

PMIX_NSPACE "pmix.nspace" (char*)3
Namespace of the job - may be a numerical value expressed as a string, but is often an4
alphanumeric string carrying information solely of use to the system. Required to be unique5
within the scope of the host environment. One cannot retrieve the namespace of an arbitrary6
process since that would require already knowing the namespace of that process. However, a7
process’ own namespace can be retrieved by passing a NULL value of proc to PMIx_Get.8

PMIX_SESSION_ID "pmix.session.id" (uint32_t)9
Session identifier assigned by the scheduler.10

PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)11
Rank of the specified process spanning across all jobs in this session, starting with zero.12
Note that no ordering of the jobs is implied when computing this value. As jobs can start and13
end at random times, this is defined as a continually growing number - i.e., it is not14
dynamically adjusted as individual jobs and processes are started or terminated.15

PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)16
Rank of the specified process within its application.17

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)18
Process identifier of the parent process of the specified process - typically used to identify19
the application process that caused the job containing the specified process to be spawned20
(e.g., the process that called PMIx_Spawn). This attribute is only provided for a process if21
it was created by a call to PMIx_Spawn or PMIx_Spawn_nb.22

PMIX_EXIT_CODE "pmix.exit.code" (int)23
Exit code returned when the specified process terminated.24

PMIX_PROCID "pmix.procid" (pmix_proc_t)25
The caller’s process identifier. The value returned is identical to what PMIx_Init or26
PMIx_tool_init provides. The process identifier in the PMIx_Get call is ignored when27
requesting this key.28

PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)29
Rank of the specified process on its node - refers to the numerical location (starting from30
zero) of the process on its node when counting only those processes from the same job that31
share the node, ordered by their overall rank within that job.32

PMIX_NODE_RANK "pmix.nrank" (uint16_t)33
Rank of the specified process on its node spanning all jobs- refers to the numerical location34
(starting from zero) of the process on its node when counting all processes (regardless of35
job) that share the node, ordered by their overall rank within the job. The value represents a36
snapshot in time when the specified process was started on its node and is not dynamically37
adjusted as processes from other jobs are started or terminated on the node.38

PMIX_PACKAGE_RANK "pmix.pkgrank" (uint16_t)39
Rank of the specified process on the package where this process resides - refers to the40
numerical location (starting from zero) of the process on its package when counting only41
those processes from the same job that share the package, ordered by their overall rank42

CHAPTER 6. RESERVED KEYS 93

Un
offi
cia
l D
raf
t

within that job. Note that processes that are not bound to PUs within a single specific1
package cannot have a package rank.2

PMIX_PROC_PID "pmix.ppid" (pid_t)3
Operating system PID of specified process.4

PMIX_PROCDIR "pmix.pdir" (char*)5
Full path to the subdirectory under PMIX_NSDIR assigned to the specified process.6

PMIX_CPUSET "pmix.cpuset" (char*)7
A string representation of the PU binding bitmap applied to the process upon launch. The8
string shall begin with the name of the library that generated it (e.g., "hwloc") followed by a9
colon and the bitmap string itself.10

PMIX_CPUSET_BITMAP "pmix.bitmap" (pmix_cpuset_t*)11
Bitmap applied to the process upon launch.12

PMIX_CREDENTIAL "pmix.cred" (char*)13
Security credential assigned to the process.14

PMIX_SPAWNED "pmix.spawned" (bool)15
true if this process resulted from a call to PMIx_Spawn. Lack of inclusion (i.e., a return16
status of PMIX_ERR_NOT_FOUND) corresponds to a value of false for this attribute.17

PMIX_REINCARNATION "pmix.reinc" (uint32_t)18
Number of times this process has been re-instantiated - i.e, a value of zero indicates that the19
process has never been restarted.20

In addition, process-level information includes functional attributes directly associated with a21
process - for example, the process-related fabric attributes included in Section 15.3 or the distance22
attributes of Section 12.4.11.23

6.1.5 Node realm keys24

Node-related information can be retrieved by requesting a key which defaults to the node realm or25
by including the PMIX_NODE_INFO attribute in the info array passed to PMIx_Get. The target26
node defaults to the local node unless a different node is specified in the info array using either the27
PMIX_HOSTNAME or PMIX_NODEID. Some node related keys are an exception to this rule and28
are listed separately at the end of this section. These special keys can only target the local node and29
also require that a namespace be specified using the proc argument to PMIx_Get.30

The following keys, by default, request node-level information. They will return information about31
either the local node or the node specified by PMIX_HOSTNAME or PMIX_NODEID:32

PMIX_HOSTNAME "pmix.hname" (char*)33
Name of the host, as returned by the gethostname utility or its equivalent.34

PMIX_HOSTNAME_ALIASES "pmix.alias" (char*)35
Comma-delimited list of names by which the target node is known.36

PMIX_NODEID "pmix.nodeid" (uint32_t)37

94 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Node identifier expressed as the node’s index (beginning at zero) in an array of nodes within1
the active session. The value must be unique and directly correlate to the PMIX_HOSTNAME2
of the node - i.e., users can interchangeably reference the same location using either the3
PMIX_HOSTNAME or corresponding PMIX_NODEID.4

PMIX_NODE_SIZE "pmix.node.size" (uint32_t)5
Number of processes across all jobs that are executing upon the node.6

PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)7
Total available physical memory on a node.8

PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)9
Array of pmix_proc_t of all processes executing on the local node – shortcut for10
PMIx_Resolve_peers for the local node and a NULL namespace argument. The process11
identifier is ignored for this attribute.12

PMIX_NODE_OVERSUBSCRIBED "pmix.ndosub" (bool)Provisional13
True if the number of processes from this job on this node exceeds the number of slots14
allocated to it15

In addition, node-level information includes functional attributes directly associated with a node -16
for example, the node-related fabric attributes included in Section 15.3.17

6.2 Retrieval rules for reserved keys18

The retrieval rules for reserved keys are relatively simple as the keys, if provided by an19
implementation, are required, by definition, to be available when the client begins execution.20
Accordingly, PMIx_Get for a reserved key first checks the local PMIx Client cache (per the data21
realm rules of the prior section) for the target key. If the information is not found, then the22
PMIX_ERR_NOT_FOUND error constant is returned unless the target process belongs to a different23
namespace from that of the requester.24

In the case where the target and requester’s namespaces differ, then the request is forwarded to the25
local PMIx server. Upon receiving the request, the server shall check its data storage for the26
specified namespace. If it already knows about this namespace, then it shall attempt to lookup the27
specified key, returning the value if it is found or the PMIX_ERR_NOT_FOUND error constant.28

If the server does not have a copy of the information for the specified namespace, then the server29
shall take one of the following actions:30

1. If the request included the PMIX_IMMEDIATE attribute, then the server will respond to the31
client with the PMIX_ERR_NOT_FOUND status.32

2. If the host has provided the Direct Business Card Exchange (DBCX) module function interface33
(pmix_server_dmodex_req_fn_t), then the server shall pass the request to its host for34
servicing. The host is responsible for identifying a source of information on the specified35
namespace and retrieving it. The host is required to retrieve all of the information regarding the36
target namespace and return it to the requesting server in anticipation of follow-on requests. If37
the host cannot retrieve the namespace information, then it must respond with the38

CHAPTER 6. RESERVED KEYS 95

Un
offi
cia
l D
raf
t

PMIX_ERR_NOT_FOUND error constant unless the PMIX_TIMEOUT is given and reached (in1
which case, the host must respond with the PMIX_ERR_TIMEOUT constant).2

Once the the PMIx server receives the namespace information, the server shall search it (again3
adhering to the prior data realm rules) for the requested key, returning the value if it is found or4
the PMIX_ERR_NOT_FOUND error constant.5

3. If the host does not support the DBCX interface, then the server will respond to the client with6
the PMIX_ERR_NOT_FOUND status7

6.2.1 Accessing information: examples8

This section provides examples illustrating methods for accessing information from the various9
realms. The intent of the examples is not to provide comprehensive coding guidance, but rather to10
further illustrate the use of PMIx_Get for obtaining information on a session, job, application,11
process, and node.12

6.2.1.1 Session-level information13

The PMIx_Get API does not include an argument for specifying the session associated with the14
information being requested. Thus, requests for keys that are not specifically for session-level15
information must be accompanied by the PMIX_SESSION_INFO qualifier.16

Example requests are shown below:17

C
pmix_info_t info;18
pmix_value_t *value;19
pmix_status_t rc;20
pmix_proc_t myproc, wildcard;21

22
/* initialize the client library */23
PMIx_Init(&myproc, NULL, 0);24

25
/* get the #slots in our session */26
PMIX_PROC_LOAD(&wildcard, myproc.nspace, PMIX_RANK_WILDCARD);27
rc = PMIx_Get(&wildcard, PMIX_UNIV_SIZE, NULL, 0, &value);28

29
/* get the #nodes in our session */30
PMIx_Info_load(&info, PMIX_SESSION_INFO, NULL, PMIX_BOOL);31
rc = PMIx_Get(&wildcard, PMIX_NUM_NODES, &info, 1, &value);32

C

Information regarding a different session can be requested by adding the PMIX_SESSION_ID33
attribute identifying the target session. In this case, the proc argument to PMIx_Get will be34
ignored:35

96 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C
pmix_info_t info[2];1
pmix_value_t *value;2
pmix_status_t rc;3
pmix_proc_t myproc;4
uint32_t sid;5

6
/* initialize the client library */7
PMIx_Init(&myproc, NULL, 0);8

9
/* get the #nodes in a different session */10
sid = 12345;11
PMIx_Info_load(&info[0], PMIX_SESSION_INFO, NULL, PMIX_BOOL);12
PMIx_Info_load(&info[1], PMIX_SESSION_ID, &sid, PMIX_UINT32);13
rc = PMIx_Get(NULL, PMIX_NUM_NODES, info, 2, &value);14

C

6.2.1.2 Job-level information15

Information regarding a job can be obtained by the methods detailed in Section 6.1.2. Example16
requests are shown below:17

C
pmix_info_t info;18
pmix_value_t *value;19
pmix_status_t rc;20
pmix_proc_t myproc, wildcard;21

22
/* initialize the client library */23
PMIx_Init(&myproc, NULL, 0);24

25
/* get the #apps in our job */26
PMIX_PROC_LOAD(&wildcard, myproc.nspace, PMIX_RANK_WILDCARD);27
rc = PMIx_Get(&wildcard, PMIX_JOB_NUM_APPS, NULL, 0, &value);28

29
/* get the #nodes in our job */30
PMIx_Info_load(&info, PMIX_JOB_INFO, NULL, PMIX_BOOL);31
rc = PMIx_Get(&wildcard, PMIX_NUM_NODES, &info, 1, &value);32

C

CHAPTER 6. RESERVED KEYS 97

Un
offi
cia
l D
raf
t

6.2.1.3 Application-level information1

Information regarding an application can be obtained by the methods described in Section 6.1.3.2
Example requests are shown below:3

C
pmix_info_t info;4
pmix_value_t *value;5
pmix_status_t rc;6
pmix_proc_t myproc, otherproc;7
uint32_t appsize, appnum;8

9
/* initialize the client library */10
PMIx_Init(&myproc, NULL, 0);11

12
/* get the #processes in our application */13
rc = PMIx_Get(&myproc, PMIX_APP_SIZE, NULL, 0, &value);14
appsize = value->data.uint32;15

16
/* get the #nodes in an application containing "otherproc".17
* For this use-case, assume that we are in the first application18
* and we want the #nodes in the second application - use the19
* rank of the first process in that application, remembering20
* that ranks start at zero */21

PMIX_PROC_LOAD(&otherproc, myproc.nspace, appsize);22
23

/* Since "otherproc" refers to a process in the second application,24
* we can simply mark that we want the info for this key from the25
* application realm */26

PMIx_Info_load(&info, PMIX_APP_INFO, NULL, PMIX_BOOL);27
rc = PMIx_Get(&otherproc, PMIX_NUM_NODES, &info, 1, &value);28

29
/* alternatively, we can directly ask for the #nodes in30
* the second application in our job, again remembering that31
* application numbers start with zero. Since we are asking32
* for application realm information about a specific appnum33
* within our own namespace, the process identifier can be NULL */34

appnum = 1;35
PMIx_Info_load(&appinfo[0], PMIX_APP_INFO, NULL, PMIX_BOOL);36
PMIx_Info_load(&appinfo[1], PMIX_APPNUM, &appnum, PMIX_UINT32);37
rc = PMIx_Get(NULL, PMIX_NUM_NODES, appinfo, 2, &value);38

C

98 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

6.2.1.4 Process-level information1

Process-level information is accessed by providing the namespace and rank of the target process. In2
the absence of any directive as to the level of information being requested, the PMIx library will3
always return the process-level value. See Section 6.1.4 for details.4

6.2.1.5 Node-level information5

Information regarding a node within the system can be obtained by the methods described in6
Section 6.1.5. Example requests are shown below:7

C
pmix_info_t info[2];8
pmix_value_t *value;9
pmix_status_t rc;10
pmix_proc_t myproc, otherproc;11
uint32_t nodeid;12

13
/* initialize the client library */14
PMIx_Init(&myproc, NULL, 0);15

16
/* get the #procs on our node */17
rc = PMIx_Get(&myproc, PMIX_NODE_SIZE, NULL, 0, &value);18

19
/* get the #slots on another node */20
PMIx_Info_load(&info[0], PMIX_NODE_INFO, NULL, PMIX_BOOL);21
PMIx_Info_load(&info[1], PMIX_HOSTNAME, "remotehost", PMIX_STRING);22
rc = PMIx_Get(NULL, PMIX_MAX_PROCS, info, 2, &value);23

24
/* get the total #procs on the remote node - note that we don't25
* actually need to include the "PMIX_NODE_INFO" attribute here,26
* but (a) it does no harm and (b) it allowed us to simply reuse27
* the prior info array28
rc = PMIx_Get(NULL, PMIX_NODE_SIZE, info, 2, &value);29

C

CHAPTER 6. RESERVED KEYS 99

Un
offi
cia
l D
raf
t

CHAPTER 7

Query Operations

This chapter presents mechanisms for generalized queries that access information about the host1
environment and the system in general. The chapter presents the concept of a query followed by a2
detailed explanation of the query APIs provided. The chapter compares the use of these APIs with3
PMIx_Get. The chapter concludes with detailed information about how to use the query interface4
to access information about what PMIx APIs an implementation supports as well as what attributes5
each supported API supports.6

7.1 PMIx_Query_info7

As the level of interaction between applications and the host SMS grows, so too does the need for8
the application to query the SMS regarding its capabilities and state information. PMIx provides a9
generalized query interface for this purpose, along with a set of standardized attribute keys to10
support a range of requests. This includes requests to determine the status of scheduling queues and11
active allocations, the scope of API and attribute support offered by the SMS, namespaces of active12
jobs, location and information about a job’s processes, and information regarding available13
resources.14

An example use-case for the PMIx_Query_info_nb API is to ensure clean job completion.15
Time-shared systems frequently impose maximum run times when assigning jobs to resource16
allocations. To shut down gracefully (e.g., to write a checkpoint before termination) it is necessary17
for an application to periodically query the resource manager for the time remaining in its18
allocation. This is especially true on systems for which allocation times may be shortened or19
lengthened from the original time limit. Many resource managers provide APIs to dynamically20
obtain this information, but each API is specific to the resource manager. PMIx supports this21
use-case by defining an attribute key (PMIX_TIME_REMAINING) that can be used with the22
PMIx_Query_info_nb interface to obtain the number of seconds remaining in the current job23
allocation.24

PMIx sometimes provides multiple methods by which an application can obtain information or25
services. For this example, note that one could alternatively use the26
PMIx_Register_event_handler API to register for an event indicating incipient job27
termination, and then use the PMIx_Job_control_nb API to request that the host SMS28
generate an event a specified amount of time prior to reaching the maximum run time.29

100

Un
offi
cia
l D
raf
t

7.1.1 Query Structure1

A PMIx query structure is composed of one or more keys and a list of qualifiers which provide2
additional information to describe the query. Keys which use the same qualifiers can be placed in3
the same query for compactness, though it is permissible to put each key in its own query.4

The pmix_query_t structure is used by the PMIx_Query_info APIs to describe a single5
query operation.6

PMIx v2.0 C
typedef struct pmix_query {7

char **keys;8
pmix_info_t *qualifiers;9
size_t nqual;10

} pmix_query_t;11

C

where:12

• keys is a NULL-terminated argv-style array of strings13

• qualifiers is an array of pmix_info_t describing constraints on the query14

• nqual is the number of elements in the qualifiers array15

The following APIs support query of various session and environment values.16

7.1.2 PMIx_Query_info17

Summary18
Query information about the system in general.19

Format20 PMIx v4.0 C
pmix_status_t21
PMIx_Query_info(pmix_query_t queries[], size_t nqueries,22

pmix_info_t *info[], size_t *ninfo);23

C

IN queries24
Array of query structures (array of handles)25

IN nqueries26
Number of elements in the queries array (integer)27

INOUT info28
Address where a pointer to an array of pmix_info_t containing the results of the query can29
be returned (memory reference)30

CHAPTER 7. QUERY OPERATIONS 101

Un
offi
cia
l D
raf
t

INOUT ninfo1
Address where the number of elements in info can be returned (handle)2

A successful return indicates that all data was found and has been returned.3

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:4

• PMIX_ERR_NOT_FOUND None of the requested data was available.5

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. The info array shall6
contain an element for each query key that returned a value.7

If none of the above return codes are appropriate, then an implementation must return either a8
general PMIx error code or an implementation defined error code as described in Section 3.1.1.9

If a value other than PMIX_SUCCESS or PMIX_ERR_PARTIAL_SUCCESS is returned, the info10
array shall be NULL and ninfo zero.11

Required Attributes

A call to this API can specify multiple queries. Each query is composed of a list of keys and a list12
of attributes which can influence that query. PMIx libraries and host environments that support this13
API are required to support the following attributes which are specified on a per-query basis:14

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)15
Retrieve updated information from server. NO QUALIFIERS.16

PMIX_SESSION_INFO "pmix.ssn.info" (bool)17
Return information regarding the session realm of the target process.18

PMIX_JOB_INFO "pmix.job.info" (bool)19
Return information regarding the job realm corresponding to the namespace in the target20
process’ identifier.21

PMIX_APP_INFO "pmix.app.info" (bool)22
Return information regarding the application realm to which the target process belongs - the23
namespace of the target process serves to identify the job containing the target application. If24
information about an application other than the one containing the target process is desired,25
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired26
target application. This is useful in cases where there are multiple applications and the27
mapping of processes to applications is unclear.28

PMIX_NODE_INFO "pmix.node.info" (bool)29
Return information from the node realm regarding the node upon which the specified30
process is executing. If information about a node other than the one containing the specified31
process is desired, then the attribute array must also contain either the PMIX_NODEID or32
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting33
information about a specific node even if the identity of processes running on that node are34
not known.35

102 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_PROC_INFO "pmix.proc.info" (bool)1
Return information regarding the target process. This attribute is technically not required as2
the PMIx_Get API specifically identifies the target process in its parameters. However, it is3
included here for completeness.4

PMIX_PROCID "pmix.procid" (pmix_proc_t)5
The caller’s process identifier. The value returned is identical to what PMIx_Init or6
PMIx_tool_init provides. The process identifier in the PMIx_Get call is ignored when7
requesting this key. In this context, specifies the process ID whose information is being8
requested - e.g., a query asking for the pmix_proc_info_t of a specified process. Only9
required when the request is for information on a specific process.10

PMIX_NSPACE "pmix.nspace" (char*)11
Namespace of the job - may be a numerical value expressed as a string, but is often an12
alphanumeric string carrying information solely of use to the system. Required to be unique13
within the scope of the host environment. One cannot retrieve the namespace of an arbitrary14
process since that would require already knowing the namespace of that process. However, a15
process’ own namespace can be retrieved by passing a NULL value of proc to PMIx_Get.16
Specifies the namespace of the process whose information is being requested. Must be17
accompanied by the PMIX_RANK attribute. Only required when the request is for18
information on a specific process.19

PMIX_RANK "pmix.rank" (pmix_rank_t)20
Process rank within the job, starting from zero. Specifies the rank of the process whose21
information is being requested. Must be accompanied by the PMIX_NSPACE attribute.22
Only required when the request is for information on a specific process.23

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)24
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or25
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,26
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.27

PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)28
Request attributes supported by the PMIx client library.29

PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)30
Request attributes supported by the PMIx server library.31

PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)32
Request attributes supported by the host environment.33

PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)34
Request attributes supported by the PMIx tool library functions.35

Note that inclusion of both the PMIX_PROCID directive and either the PMIX_NSPACE or the36
PMIX_RANK attribute will return a PMIX_ERR_BAD_PARAM result, and that the inclusion of a37
process identifier must apply to all keys in that pmix_query_t. Queries for information on38

CHAPTER 7. QUERY OPERATIONS 103

Un
offi
cia
l D
raf
t

multiple specific processes therefore requires submitting multiple pmix_query_t structures,1
each referencing one process. Directives which are not applicable to a key are ignored.2

An implementation is not required to support any particular keys. If a key is unsupported, the3
implementation should handle that key in the same way that it is required to handle a key which it4
cannot find. The following keys may be specified in a query:5

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)6
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or7
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,8
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.9

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)10
Request a comma-delimited list of active namespaces. NO QUALIFIERS.11

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)12
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE13
indicating the namespace whose status is being queried.14

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)15
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.16

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)17
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL18
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being19
requested.20

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)21
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each22
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:23
PMIX_NSPACE indicating the namespace whose process table is being queried.24

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)25
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each26
process in the specified namespace executing on the same node as the requester, ordered by27
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace28
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME29
indicating the host whose local process table is being queried. By default, the query assumes30
that the host upon which the request was made is to be used.31

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)32
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.33

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)34
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.35

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)36

104 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Return information on memory usage for the processes indicated in the qualifiers.1
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of2
specific process(es) whose memory usage is being requested.3

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)4
Report only average values for sampled information. NO QUALIFIERS.5

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)6
Report minimum and maximum values. NO QUALIFIERS.7

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)8
String identifier of the allocation whose status is being requested. NO QUALIFIERS.9

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)10
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.11
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being12
requested (defaults to allocation containing the caller).13

PMIX_SERVER_URI "pmix.srvr.uri" (char*)14
URI of the PMIx server to be contacted. Requests the URI of the specified PMIx server’s15
PMIx connection. Defaults to requesting the information for the local PMIx server.16

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)17
Average Megabytes of memory used by client processes on node. OPTIONAL18
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).19

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)20
Megabytes of memory currently used by the RM daemon on the node. OPTIONAL21
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).22

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)23
Return operations the PMIx tool is authorized to perform. NO QUALIFIERS.24

PMIX_PROC_PID "pmix.ppid" (pid_t)25
Operating system PID of specified process.26

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)27
State of the specified process as of the last report - may not be the actual current state based28
on update rate.29

Description30
Query information about the system in general. This can include a list of active namespaces, fabric31
topology, etc. Also can be used to query node-specific info such as the list of peers executing on a32
given node. The host environment is responsible for exercising appropriate access control on the33
information.34

The returned status indicates if requested data was found or not. The returned info array will35
contain a PMIX_QUERY_RESULTS element for each query of the queries array. If qualifiers were36
included in the query, then the first element of each results array shall contain the37

CHAPTER 7. QUERY OPERATIONS 105

Un
offi
cia
l D
raf
t

PMIX_QUERY_QUALIFIERS key with a pmix_data_array_t containing the qualifiers. The1
remaining pmix_info_t shall contain the results of the query, one entry for each key that was2
found. Note that duplicate keys in the queries array shall result in duplicate responses within the3
constraints of the accompanying qualifiers. The caller is responsible for releasing the returned array.4

Advice to PMIx library implementers

It is recommended that information returned from PMIx_Query_info be locally cached so that5
retrieval by subsequent calls to PMIx_Get, PMIx_Query_info, or PMIx_Query_info_nb6
can succeed with minimal overhead. The local cache shall be checked prior to querying the PMIx7
server and/or the host environment. Queries that include the PMIX_QUERY_REFRESH_CACHE8
attribute shall bypass the local cache and retrieve a new value for the query, refreshing the values in9
the cache upon return.10

7.1.3 PMIx_Query_info_nb11

Summary12
Query information about the system in general.13

Format14 PMIx v2.0 C
pmix_status_t15
PMIx_Query_info_nb(pmix_query_t queries[], size_t nqueries,16

pmix_info_cbfunc_t cbfunc, void *cbdata);17

C

IN queries18
Array of query structures (array of handles)19

IN nqueries20
Number of elements in the queries array (integer)21

IN cbfunc22
Callback function pmix_info_cbfunc_t (function reference)23

IN cbdata24
Data to be passed to the callback function (memory reference)25

A successful return indicates that the request has been accepted for processing. The provided26
callback function will only be executed upon successful return of the operation. Note that the27
library must not invoke the callback function prior to returning from the API.28

Returns PMIX_SUCCESS or a negative value indicating the error.29

If executed, the status returned in the provided callback function will be one of the following30
constants:31

• PMIX_SUCCESS All data was found and has been returned.32

106 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• PMIX_ERR_NOT_FOUND None of the requested data was available. The info array will be1
NULL and ninfo zero.2

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. The info array shall3
contain an element for each query key that returned a value.4

• PMIX_ERR_NOT_SUPPORTED The host RM does not support this function. The info array will5
be NULL and ninfo zero.6

• a non-zero PMIx error constant indicating a reason for the request’s failure. The info array will7
be NULL and ninfo zero.8

Required Attributes

PMIx libraries and host environments that support this API are required to support the following9
attributes:10

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)11
Retrieve updated information from server. NO QUALIFIERS.12

PMIX_SESSION_INFO "pmix.ssn.info" (bool)13
Return information regarding the session realm of the target process.14

PMIX_JOB_INFO "pmix.job.info" (bool)15
Return information regarding the job realm corresponding to the namespace in the target16
process’ identifier.17

PMIX_APP_INFO "pmix.app.info" (bool)18
Return information regarding the application realm to which the target process belongs - the19
namespace of the target process serves to identify the job containing the target application. If20
information about an application other than the one containing the target process is desired,21
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired22
target application. This is useful in cases where there are multiple applications and the23
mapping of processes to applications is unclear.24

PMIX_NODE_INFO "pmix.node.info" (bool)25
Return information from the node realm regarding the node upon which the specified26
process is executing. If information about a node other than the one containing the specified27
process is desired, then the attribute array must also contain either the PMIX_NODEID or28
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting29
information about a specific node even if the identity of processes running on that node are30
not known.31

PMIX_PROC_INFO "pmix.proc.info" (bool)32
Return information regarding the target process. This attribute is technically not required as33
the PMIx_Get API specifically identifies the target process in its parameters. However, it is34
included here for completeness.35

PMIX_PROCID "pmix.procid" (pmix_proc_t)36

CHAPTER 7. QUERY OPERATIONS 107

Un
offi
cia
l D
raf
t

The caller’s process identifier. The value returned is identical to what PMIx_Init or1
PMIx_tool_init provides. The process identifier in the PMIx_Get call is ignored when2
requesting this key. In this context, specifies the process ID whose information is being3
requested - e.g., a query asking for the pmix_proc_info_t of a specified process. Only4
required when the request is for information on a specific process.5

PMIX_NSPACE "pmix.nspace" (char*)6
Namespace of the job - may be a numerical value expressed as a string, but is often an7
alphanumeric string carrying information solely of use to the system. Required to be unique8
within the scope of the host environment. One cannot retrieve the namespace of an arbitrary9
process since that would require already knowing the namespace of that process. However, a10
process’ own namespace can be retrieved by passing a NULL value of proc to PMIx_Get.11
Specifies the namespace of the process whose information is being requested. Must be12
accompanied by the PMIX_RANK attribute. Only required when the request is for13
information on a specific process.14

PMIX_RANK "pmix.rank" (pmix_rank_t)15
Process rank within the job, starting from zero. Specifies the rank of the process whose16
information is being requested. Must be accompanied by the PMIX_NSPACE attribute.17
Only required when the request is for information on a specific process.18

PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)19
Request attributes supported by the PMIx client library.20

PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)21
Request attributes supported by the PMIx server library.22

PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)23
Request attributes supported by the host environment.24

PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)25
Request attributes supported by the PMIx tool library functions.26

Note that inclusion of both the PMIX_PROCID directive and either the PMIX_NSPACE or the27
PMIX_RANK attribute will return a PMIX_ERR_BAD_PARAM result, and that the inclusion of a28
process identifier must apply to all keys in that pmix_query_t. Queries for information on29
multiple specific processes therefore requires submitting multiple pmix_query_t structures,30
each referencing one process. Directives which are not applicable to a key are ignored.31

An implementation is not required to support any particular keys. If a key is unsupported, the32
implementation should handle that key in the same way that it is required to handle a key which it33
cannot find. The following keys may be specified in a query:34

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)35

108 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or1
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,2
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.3

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)4
Request a comma-delimited list of active namespaces. NO QUALIFIERS.5

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)6
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE7
indicating the namespace whose status is being queried.8

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)9
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.10

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)11
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL12
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being13
requested.14

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)15
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each16
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:17
PMIX_NSPACE indicating the namespace whose process table is being queried.18

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)19
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each20
process in the specified namespace executing on the same node as the requester, ordered by21
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace22
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME23
indicating the host whose local process table is being queried. By default, the query assumes24
that the host upon which the request was made is to be used.25

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)26
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.27

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)28
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.29

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)30
Return information on memory usage for the processes indicated in the qualifiers.31
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of32
specific process(es) whose memory usage is being requested.33

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)34
Report only average values for sampled information. NO QUALIFIERS.35

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)36
Report minimum and maximum values. NO QUALIFIERS.37

CHAPTER 7. QUERY OPERATIONS 109

Un
offi
cia
l D
raf
t

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)1
String identifier of the allocation whose status is being requested. NO QUALIFIERS.2

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)3
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.4
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being5
requested (defaults to allocation containing the caller).6

PMIX_SERVER_URI "pmix.srvr.uri" (char*)7
URI of the PMIx server to be contacted. Requests the URI of the specified PMIx server’s8
PMIx connection. Defaults to requesting the information for the local PMIx server.9

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)10
Average Megabytes of memory used by client processes on node. OPTIONAL11
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).12

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)13
Megabytes of memory currently used by the RM daemon on the node. OPTIONAL14
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).15

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)16
Return operations the PMIx tool is authorized to perform. NO QUALIFIERS.17

PMIX_PROC_PID "pmix.ppid" (pid_t)18
Operating system PID of specified process.19

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)20
State of the specified process as of the last report - may not be the actual current state based21
on update rate.22

Description23
Non-blocking form of the PMIx_Query_info API.24

7.1.4 Query keys25

The following keys may be queried using the PMIx_Query_info and26
PMIx_Query_info_nb APIs:27

PMIX_QUERY_SUPPORTED_KEYS "pmix.qry.keys" (char*)28
Returns comma-delimited list of keys supported by the query function. NO QUALIFIERS.29

PMIX_QUERY_SUPPORTED_QUALIFIERS "pmix.qry.quals" (char*)30
Return comma-delimited list of qualifiers supported by a query on the provided key, instead31
of actually performing the query on the key. NO QUALIFIERS.32

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)33
Request a comma-delimited list of active namespaces. NO QUALIFIERS.34

PMIX_QUERY_NAMESPACE_INFO "pmix.qry.nsinfo" (pmix_data_array_t*)35

110 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Return an array of active namespace information - each element will itself contain an array1
including the namespace plus the command line of the application executing within it.2
OPTIONAL QUALIFIERS: PMIX_NSPACE of specific namespace whose info is being3
requested.4

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)5
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE6
indicating the namespace whose status is being queried.7

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)8
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.9

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)10
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL11
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being12
requested.13

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)14
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each15
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:16
PMIX_NSPACE indicating the namespace whose process table is being queried.17

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)18
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each19
process in the specified namespace executing on the same node as the requester, ordered by20
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace21
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME22
indicating the host whose local process table is being queried. By default, the query assumes23
that the host upon which the request was made is to be used.24

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)25
Return operations the PMIx tool is authorized to perform. NO QUALIFIERS.26

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)27
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.28

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)29
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.30

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)31
Return information on memory usage for the processes indicated in the qualifiers.32
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of33
specific process(es) whose memory usage is being requested.34

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)35
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.36
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being37
requested (defaults to allocation containing the caller).38

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)39
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or40
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,41
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.42

CHAPTER 7. QUERY OPERATIONS 111

Un
offi
cia
l D
raf
t

PMIX_QUERY_NUM_PSETS "pmix.qry.psetnum" (size_t)1
Return the number of process sets defined in the specified range (defaults to2
PMIX_RANGE_SESSION).3

PMIX_QUERY_PSET_NAMES "pmix.qry.psets" (pmix_data_array_t*)4
Return a pmix_data_array_t containing an array of strings of the process set names5
defined in the specified range (defaults to PMIX_RANGE_SESSION).6

PMIX_QUERY_PSET_MEMBERSHIP "pmix.qry.pmems" (pmix_data_array_t*)7
Return an array of pmix_proc_t containing the members of the specified process set.8

PMIX_QUERY_AVAIL_SERVERS "pmix.qry.asrvrs" (pmix_data_array_t*)9
Return an array of pmix_info_t, each element itself containing a10
PMIX_SERVER_INFO_ARRAY entry holding all available data for a server on this node to11
which the caller might be able to connect.12

These keys are used to query memory available and used in the system.13

PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)14
Total available physical memory on a node. OPTIONAL QUALIFERS: PMIX_HOSTNAME15
or PMIX_NODEID (defaults to caller’s node).16

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)17
Megabytes of memory currently used by the RM daemon on the node. OPTIONAL18
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).19

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)20
Average Megabytes of memory used by client processes on node. OPTIONAL21
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).22

7.1.5 Query attributes23

Attributes used to direct behavior of the PMIx_Query_info and PMIx_Query_info_nb24
APIs:25

PMIX_QUERY_RESULTS "pmix.qry.res" (pmix_data_array_t)26
Contains an array of query results for a given pmix_query_t passed to the27
PMIx_Query_info APIs. If qualifiers were included in the query, then the first element28
of the array shall be the PMIX_QUERY_QUALIFIERS attribute containing those qualifiers.29
Each of the remaining elements of the array is a pmix_info_t containing the query key30
and the corresponding value returned by the query. This attribute is solely for reporting31
purposes and cannot be used in PMIx_Get or other query operations.32

PMIX_QUERY_QUALIFIERS "pmix.qry.quals" (pmix_data_array_t)33
Contains an array of qualifiers that were included in the query that produced the provided34
results. This attribute is solely for reporting purposes and cannot be used in PMIx_Get or35
other query operations.36

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)37
Retrieve updated information from server. NO QUALIFIERS.38

112 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)1
Constrain the query to local information only. NO QUALIFIERS.2

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)3
Report only average values for sampled information. NO QUALIFIERS.4

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)5
Report minimum and maximum values. NO QUALIFIERS.6

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)7
String identifier of the allocation whose status is being requested. NO QUALIFIERS.8

PMIX_SERVER_INFO_ARRAY "pmix.srv.arr" (pmix_data_array_t)9
Array of pmix_info_t about a given server, starting with its PMIX_NSPACE and10
including at least one of the rendezvous-required pieces of information.11

The following attributes are used as qualifiers in queries regarding attribute support within the12
PMIx implementation and/or the host environment: PMIX_CLIENT_FUNCTIONS13
"pmix.client.fns" (bool)14

Request a list of functions supported by the PMIx client library.15
PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)16

Request attributes supported by the PMIx client library.17
PMIX_SERVER_FUNCTIONS "pmix.srvr.fns" (bool)18

Request a list of functions supported by the PMIx server library.19
PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)20

Request attributes supported by the PMIx server library.21
PMIX_HOST_FUNCTIONS "pmix.srvr.fns" (bool)22

Request a list of functions supported by the host environment.23
PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)24

Request attributes supported by the host environment.25
PMIX_TOOL_FUNCTIONS "pmix.tool.fns" (bool)26

Request a list of functions supported by the PMIx tool library.27
PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)28

Request attributes supported by the PMIx tool library functions.29

7.1.5.1 Query structure support macros30

The following macros are provided to support the pmix_query_t structure.31

Static initializer for the query structure32 Provisional Provide a static initializer for the pmix_query_t fields.33
PMIx v4.2 C

PMIX_QUERY_STATIC_INIT34

C

CHAPTER 7. QUERY OPERATIONS 113

Un
offi
cia
l D
raf
t

Initialize the query structure1
Initialize the pmix_query_t fields2

C
PMIX_QUERY_CONSTRUCT(m)3

C

IN m4
Pointer to the structure to be initialized (pointer to pmix_query_t)5

Destruct the query structure6
Destruct the pmix_query_t fields7

PMIx v2.0 C
PMIX_QUERY_DESTRUCT(m)8

C

IN m9
Pointer to the structure to be destructed (pointer to pmix_query_t)10

Create a query array11
Allocate and initialize an array of pmix_query_t structures12

PMIx v2.0 C
PMIX_QUERY_CREATE(m, n)13

C

INOUT m14
Address where the pointer to the array of pmix_query_t structures shall be stored (handle)15

IN n16
Number of structures to be allocated (size_t)17

Free a query structure18
Release a pmix_query_t structure19

PMIx v4.0 C
PMIX_QUERY_RELEASE(m)20

C

IN m21
Pointer to a pmix_query_t structure (handle)22

114 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Free a query array1
Release an array of pmix_query_t structures2

C
PMIX_QUERY_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_query_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Create the info array of query qualifiers8
Create an array of pmix_info_t structures for passing query qualifiers, updating the nqual field9
of the pmix_query_t structure.10

PMIx v2.2 C
PMIX_QUERY_QUALIFIERS_CREATE(m, n)11

C

IN m12
Pointer to the pmix_query_t structure (handle)13

IN n14
Number of qualifiers to be allocated (size_t)15

7.2 PMIx_Resolve_peers16

There are a number of common queries for which PMIx provides convenience routines. These APIs17
provide simplified access to commonly requested queries. Due to their simplified interface, these18
APIs cannot be customized through the use of attributes. If a more specialized version of these19
queries are required, similar functionality can often be accessed through the PMIx_Query_info20
or PMIx_Query_info_nb APIs.21

Summary22
Obtain the array of processes within the specified namespace that are executing on a given node.23

CHAPTER 7. QUERY OPERATIONS 115

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Resolve_peers(const char *nodename,3
const pmix_nspace_t nspace,4
pmix_proc_t **procs, size_t *nprocs);5

C

IN nodename6
Name of the node to query - NULL can be used to denote the current local node (string)7

IN nspace8
namespace (string)9

OUT procs10
Array of process structures (array of handles)11

OUT nprocs12
Number of elements in the procs array (integer)13

Returns PMIX_SUCCESS or a negative value indicating the error.14

Description15
Given a nodename, return the array of processes within the specified nspace that are executing on16
that node. If the nspace is NULL, then all processes on the node will be returned. If the specified17
node does not currently host any processes, then the returned array will be NULL, and nprocs will18
be zero. The caller is responsible for releasing the procs array when done with it. The19
PMIX_PROC_FREE macro is provided for this purpose.20

7.2.1 PMIx_Resolve_nodes21

Summary22
Return a list of nodes hosting processes within the given namespace.23

Format24 PMIx v1.0 C
pmix_status_t25
PMIx_Resolve_nodes(const char *nspace, char **nodelist);26

C

IN nspace27
Namespace (string)28

OUT nodelist29
Comma-delimited list of nodenames (string)30

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.31

116 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Given a nspace, return the list of nodes hosting processes within that namespace. The returned2
string will contain a comma-delimited list of nodenames. The caller is responsible for releasing the3
string when done with it.4

7.3 Using Get vs Query5

Both PMIx_Get and PMIx_Query_info can be used to retrieve information about the system.6
In general, the get operation should be used to retrieve:7

• information provided by the host environment at time of job start. This includes information on8
the number of processes in the job, their location, and possibly their communication endpoints.9

• information posted by processes via the PMIx_Put function.10

This information is largely considered to be static, although this will not necessarily be true for11
environments supporting dynamic programming models or fault tolerance. Note that the12
PMIx_Get function only accesses information about execution environments - i.e., its scope is13
limited to values pertaining to a specific session, job, application, process, or node. It cannot be14
used to obtain information about areas such as the status of queues in the WLM.15

In contrast, the query option should be used to access:16

• system-level information (such as the available WLM queues) that would generally not be17
included in job-level information provided at job start.18

• dynamic information such as application and queue status, and resource utilization statistics.19
Note that the PMIX_QUERY_REFRESH_CACHE attribute must be provided on each query to20
ensure current data is returned.21

• information created post job start, such as process tables.22

• information requiring more complex search criteria than supported by the simpler PMIx_Get23
API.24

• queries focused on retrieving multi-attribute blocks of data with a single request, thus bypassing25
the single-key limitation of the PMIx_Get API.26

In theory, all information can be accessed via PMIx_Query_info as the local cache is typically27
the same datastore searched by PMIx_Get. However, in practice, the overhead associated with the28
query operation may (depending upon implementation) be higher than the simpler get operation29
due to the need to construct and process the more complex pmix_query_t structure. Thus,30
requests for a single key value are likely to be accomplished faster with PMIx_Get versus the31
query operation.32

CHAPTER 7. QUERY OPERATIONS 117

Un
offi
cia
l D
raf
t

7.4 Accessing attribute support information1

Information as to which attributes are supported by either the PMIx implementation or its host2
environment can be obtained via the PMIx_Query_info APIs. The3
PMIX_QUERY_ATTRIBUTE_SUPPORT attribute must be listed as the first entry in the keys field4
of the pmix_query_t structure, followed by the name of the function whose attribute support is5
being requested - support for multiple functions can be requested simultaneously by simply adding6
the function names to the array of keys. Function names must be given as user-level API names -7
e.g., “PMIx_Get”, “PMIx_server_setup_application”, or “PMIx_tool_attach_to_server”.8

The desired levels of attribute support are provided as qualifiers. Multiple levels can be requested9
simultaneously by simply adding elements to the qualifiers array. Each qualifier should contain the10
desired level attribute with the boolean value set to indicate whether or not that level is to be11
included in the returned information. Failure to provide any levels is equivalent to a request for all12
levels. Supported levels include:13

• PMIX_CLIENT_FUNCTIONS "pmix.client.fns" (bool)14
Request a list of functions supported by the PMIx client library.15

• PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)16
Request attributes supported by the PMIx client library.17

• PMIX_SERVER_FUNCTIONS "pmix.srvr.fns" (bool)18
Request a list of functions supported by the PMIx server library.19

• PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)20
Request attributes supported by the PMIx server library.21

• PMIX_HOST_FUNCTIONS "pmix.srvr.fns" (bool)22
Request a list of functions supported by the host environment.23

• PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)24
Request attributes supported by the host environment.25

• PMIX_TOOL_FUNCTIONS "pmix.tool.fns" (bool)26
Request a list of functions supported by the PMIx tool library.27

• PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)28
Request attributes supported by the PMIx tool library functions.29

Unlike other queries, queries for attribute support can result in the number of returned30
pmix_info_t structures being different from the number of queries. Each element in the31
returned array will correspond to a pair of specified attribute level and function in the query, where32
the key is the function and the value contains a pmix_data_array_t of pmix_info_t. Each33
element of the array is marked by a key indicating the requested attribute level with a value34
composed of a pmix_data_array_t of pmix_regattr_t, each describing a supported35
attribute for that function, as illustrated in Fig. 7.1 below where the requestor asked for supported36

118 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

attributes of PMIx_Get at the client and server levels, plus attributes of1
PMIx_Allocation_request at all levels.2

Figure 7.1.: Returned information hierarchy for attribute support request

The array of returned structures, and their child arrays, are subject to the return rules for the3
PMIx_Query_info_nb API. For example, a request for supported attributes of the PMIx_Get4
function that includes the host level will return values for the client and server levels, plus an array5
element with a key of PMIX_HOST_ATTRIBUTES and a value type of PMIX_UNDEF indicating6
that no attributes are supported at that level.7

CHAPTER 7. QUERY OPERATIONS 119

Un
offi
cia
l D
raf
t

CHAPTER 8

Synchronization

Applications may need to synchronize their operations at various points in their execution.1
Depending on a variety of factors (e.g., the programming model and where the synchronization2
point lies), the application may choose to execute the operation using PMIx to access the3
communication capabilities of the host environment’s infrastructure. This is particularly useful in4
situations where communication libraries are not yet initialized by the application. Synchronization5
operations also offer an opportunity for processes to exchange data at a known point in their6
execution. For example, communication libraries within different processes can synchronize to7
exchange information on communication endpoints for subsequent wireup of messaging protocols.8

PMIx clients can use the PMIx_Fence and PMIx_Fence_nb functions to synchronize a set of9
processes. The fence operation can be useful after an application performs a number of PMIx_Put10
operations to coordinate with other processes that the data is available for access. This avoids11
unsuccessful PMIx_Get calls that might otherwise be invoked before the cooresponding12
PMIx_Put call is complete.13

In its default form, the fence operation acts as a barrier between the processes and does not14
exchange data. Clients can pass the PMIX_COLLECT_DATA attribute to request that the15
PMIx_Fence and PMIx_Fence_nb functions exchange all committed data between all involved16
servers during the synchronization operation. This will make local to each process the data put by17
other processes resulting in faster resolution of PMIx_Get and PMIx_Get_nb function calls at18
the cost of a synchronous data exchange and associated memory footprint expansion. In many19
situations this attribute may have performance benefits as many systems are optimized for20
transporting larger amounts of data. In such applications, a ’put/commit/fence/get’ pattern is21
common for efficiently exchanging key-value pairs. For applications where only a small subset of22
clients access another small subset’s key-value pairs this attribute may not be beneficial. As such,23
applications are not required to use PMIx_Fence or PMIx_Fence_nb functions nor the24
associated data collection attribute to ensure correctness of PMIx get/put functionality.25

8.1 PMIx_Fence26

Summary27
Execute a blocking barrier across the processes identified in the specified array, collecting28
information posted via PMIx_Put as directed.29

120

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Fence(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo);4

C

IN procs5
Array of pmix_proc_t structures (array of handles)6

IN nprocs7
Number of elements in the procs array (integer)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

Returns PMIX_SUCCESS or a negative value indicating the error.13

Required Attributes

The following attributes are required to be supported by all PMIx libraries:14

PMIX_COLLECT_DATA "pmix.collect" (bool)15
Collect all data posted by the participants using PMIx_Put that has been committed via16
PMIx_Commit, making the collection locally available to each participant at the end of the17
operation. By default, this will include all job-level information that was locally generated18
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO19
attribute.20

PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)21
Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx22
servers. Some job-level information (e.g., distance between processes and fabric devices) is23
best determined on a distributed basis as it primarily pertains to local processes. Should24
remote processes need to access the information, it can either be obtained collectively using25
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using26
PMIx_Get without first having performed the job-wide collection.27

CHAPTER 8. SYNCHRONIZATION 121

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for PMIx implementations:1

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)2
All clones of the calling process must participate in the collective operation.3

The following attributes are optional for host environments:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Passing a NULL pointer as the procs parameter indicates that the fence is to span all processes in10
the client’s namespace. Each provided pmix_proc_t struct can pass PMIX_RANK_WILDCARD11
to indicate that all processes in the given namespace are participating.12

The info array is used to pass user directives regarding the behavior of the fence operation. Note13
that for scalability reasons, the default behavior for PMIx_Fence is to not collect data posted by14
the operation’s participants.15

Advice to PMIx library implementers

PMIx_Fence and its non-blocking form are both collective operations. Accordingly, the PMIx16
server library is required to aggregate participation by local clients, passing the request to the host17
environment once all local participants have executed the API.18

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to19
identify the nodes containing participating processes, execute the collective across all participating20
nodes, and notify the local PMIx server library upon completion of the global collective.21

8.2 PMIx_Fence_nb22

Summary23
Execute a nonblocking PMIx_Fence across the processes identified in the specified array of24
processes, collecting information posted via PMIx_Put as directed.25

122 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Fence_nb(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc, void *cbdata);5

C

IN procs6
Array of pmix_proc_t structures (array of handles)7

IN nprocs8
Number of elements in the procs array (integer)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

A successful return indicates that the request is being processed and the result will be returned in18
the provided cbfunc. Note that the library must not invoke the callback function prior to returning19
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.20

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called. This can occur if the collective involved only23
processes on the local node.24

If none of the above return codes are appropriate, then an implementation must return either a25
general PMIx error code or an implementation defined error code as described in Section 3.1.1.26

Required Attributes

The following attributes are required to be supported by all PMIx libraries:27

PMIX_COLLECT_DATA "pmix.collect" (bool)28
Collect all data posted by the participants using PMIx_Put that has been committed via29
PMIx_Commit, making the collection locally available to each participant at the end of the30
operation. By default, this will include all job-level information that was locally generated31
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO32
attribute.33

PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)34

CHAPTER 8. SYNCHRONIZATION 123

Un
offi
cia
l D
raf
t

Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx1
servers. Some job-level information (e.g., distance between processes and fabric devices) is2
best determined on a distributed basis as it primarily pertains to local processes. Should3
remote processes need to access the information, it can either be obtained collectively using4
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using5
PMIx_Get without first having performed the job-wide collection.6

Optional Attributes
The following attributes are optional for PMIx implementations:7

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)8
All clones of the calling process must participate in the collective operation.9

The following attributes are optional for host environments that support this operation:10

PMIX_TIMEOUT "pmix.timeout" (int)11
Time in seconds before the specified operation should time out (zero indicating infinite) and12
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions13
caused by multiple layers (client, server, and host) simultaneously timing the operation.14

Description15
Nonblocking version of the PMIx_Fence routine. See the PMIx_Fence description for further16
details.17

8.2.1 Fence-related attributes18

The following attributes are defined specifically to support the fence operation:19

PMIX_COLLECT_DATA "pmix.collect" (bool)20
Collect all data posted by the participants using PMIx_Put that has been committed via21
PMIx_Commit, making the collection locally available to each participant at the end of the22
operation. By default, this will include all job-level information that was locally generated23
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO24
attribute.25

PMIX_LOCAL_COLLECTIVE_STATUS "pmix.loc.col.st" (pmix_status_t)Provisional26
Status code for local collective operation being reported to the host by the server library.27
PMIx servers may aggregate the participation by local client processes in a collective28
operation - e.g., instead of passing individual client calls to PMIx_Fence up to the host29
environment, the server may pass only a single call to the host when all local participants30
have executed their PMIx_Fence call, thereby reducing the burden placed on the host.31
However, in cases where the operation locally fails (e.g., if a participating client abnormally32
terminates prior to calling the operation), the server upcall functions to the host do not33
include a pmix_status_t by which the PMIx server can alert the host to that failure.34
This attribute resolves that problem by allowing the server to pass the status information35
regarding the local collective operation.36

124 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Advice to PMIx server hosts

The PMIx server is allowed to pass PMIX_SUCCESS using this attribute, but is not required to do1
so. PMIx implementations may choose to only report errors in this manner. The lack of an included2
status shall therefore be taken to indicate that the collective operation locally succeeded.3

PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)4
Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx5
servers. Some job-level information (e.g., distance between processes and fabric devices) is6
best determined on a distributed basis as it primarily pertains to local processes. Should7
remote processes need to access the information, it can either be obtained collectively using8
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using9
PMIx_Get without first having performed the job-wide collection.10

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)11
All clones of the calling process must participate in the collective operation.12

CHAPTER 8. SYNCHRONIZATION 125

Un
offi
cia
l D
raf
t

CHAPTER 9

Publish/Lookup Operations

Chapter 6 and Section 5.1 present how reserved and non-reserved keys deal with information that1
either is associated with a specific process (i.e., the retrieving process knows the identifier of the2
process that posted it) or requires a synchronization operation prior to retrieval (e.g., the case of3
globally unique non-reserved keys). However, another requirement exists for an asynchronous4
exchange of data where neither the posting nor the retrieving process is known in advance, for5
example, two namespaces that do not share a child-parent relationship. The APIs defined in this6
section focus on resolving that specific situation by allowing processes to publish data that can7
subsequently be retrieved solely by referral to its key. Mechanisms for constraining the scope of8
availability of the information are also provided as a means for better targeting of the eventual9
recipient(s).10

Note that no presumption is made regarding how the published information is to be stored, nor as to11
the entity (host environment or PMIx implementation) that shall act as the datastore. The12
descriptions in the remainder of this chapter shall simply refer to that entity as the datastore.13

9.1 PMIx_Publish14

Summary15
Publish data for later access via PMIx_Lookup.16

Format17 PMIx v1.0 C
pmix_status_t18
PMIx_Publish(const pmix_info_t info[], size_t ninfo);19

C

IN info20
Array of info structures containing both data to be published and directives (array of handles)21

IN ninfo22
Number of elements in the info array (integer)23

Returns PMIX_SUCCESS or a negative value indicating the error.24

126

Un
offi
cia
l D
raf
t

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_DATA_TO_PUBLISH "pmix.publishdata" (pmix_data_array_t)2
Array of pmix_info_t containing data to be published.3

Optional Attributes

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

PMIX_RANGE "pmix.range" (pmix_data_range_t)9
Define constraints on the processes that can access published data or generated events or10
define constraints on the provider of data when looking up published data.11

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)12
Declare how long the datastore shall retain the provided data. The datastore is to delete the13
data upon reaching the persistence criterion.14

PMIX_ACCESS_USERIDS "pmix.auids" (pmix_data_array_t)15
Array of effective User IDs (UIDs) that are allowed to access the published data.16

PMIX_ACCESS_GRPIDS "pmix.agids" (pmix_data_array_t)17
Array of effective Group IDs (GIDs) that are allowed to access the published data.18

PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)19
Define access permissions for the published data. The value shall contain an array of20
pmix_info_t structs containing the specified permissions.21

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 127

Un
offi
cia
l D
raf
t

Description1
Publish the data in the info array for subsequent lookup. By default, the data will be published into2
the PMIX_RANGE_SESSION range and with PMIX_PERSIST_APP persistence. Changes to3
those values, and any additional directives, can be included in the pmix_info_t array. Attempts4
to access the data by processes outside of the provided data range shall be rejected. The5
PMIX_PERSISTENCE attribute instructs the datastore holding the published information as to6
how long that information is to be retained.7

The blocking form of this call will block until it has obtained confirmation from the datastore that8
the data is available for lookup. The info array can be released upon return from the blocking9
function call.10

Publishing duplicate keys is permitted provided they are published to different ranges. Custom11
ranges are consider different if they have different members. Duplicate keys being published on the12
same data range shall return the PMIX_ERR_DUPLICATE_KEY error. publishing to a13
PMIX_RANGE_CUSTOM range which does not include the publisher will prevent any processes14
from using PMIx_Lookup to access the published data.15

In some cases, implementations may be incapable of distinguishing which info keys in the info16
array are for publishing and which info keys are directives. To make it clear, it is recommended that17
the keys to be published are designated by passing them as a pmix_data_array_t using the18
PMIX_DATA_TO_PUBLISH directive. If the info array contains a PMIX_DATA_TO_PUBLISH19
info, all other elements of the info array will be treated as directives. If the info array does not20
include a PMIX_DATA_TO_PUBLISH info, the implementation should distinguishing between21
info array elements that specify keys and directives as follows: All standardized directives to the22
publish call, including optional attributes the implementation does not support, should be treated as23
directives. Non-supported directives may be ignored as outlined in Section 1.3.1, but should not be24
treated as data to publish. The implementation may treat any custom (non-standardized) directives25
it supports as directives. All other info array elements should it be assumed to be data to be26
published. Since additional directives may be added to the standard and implementations may add27
support for additional custom directives, the use of PMIX_DATA_TO_PUBLISH is the only28
reliable way to ensure that future implementations will not mis-classify elements of an info array.29

9.2 PMIx_Publish_nb30

Summary31
Nonblocking PMIx_Publish routine.32

Format33 PMIx v1.0 C
pmix_status_t34
PMIx_Publish_nb(const pmix_info_t info[], size_t ninfo,35

pmix_op_cbfunc_t cbfunc, void *cbdata);36

128 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C

IN info1
Array of info structures containing both data to be published and directives (array of handles)2

IN ninfo3
Number of elements in the info array (integer)4

IN cbfunc5
Callback function pmix_op_cbfunc_t (function reference)6

IN cbdata7
Data to be passed to the callback function (memory reference)8

A successful return indicates that the request is being processed and the result will be returned in9
the provided cbfunc. Note that the library must not invoke the callback function prior to returning10
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.11

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:12

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and13
returned success - the cbfunc will not be called.14

If none of the above return codes are appropriate, then an implementation must return either a15
general PMIx error code or an implementation defined error code as described in Section 3.1.1.16

Required Attributes

The following attributes are required to be supported by all PMIx libraries:17

PMIX_DATA_TO_PUBLISH "pmix.publishdata" (pmix_data_array_t)18
Array of pmix_info_t containing data to be published.19

Optional Attributes

The following attributes are optional for host environments that support this operation:20

PMIX_TIMEOUT "pmix.timeout" (int)21
Time in seconds before the specified operation should time out (zero indicating infinite) and22
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions23
caused by multiple layers (client, server, and host) simultaneously timing the operation.24

PMIX_RANGE "pmix.range" (pmix_data_range_t)25
Define constraints on the processes that can access published data or generated events or26
define constraints on the provider of data when looking up published data.27

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)28
Declare how long the datastore shall retain the provided data. The datastore is to delete the29
data upon reaching the persistence criterion.30

PMIX_ACCESS_USERIDS "pmix.auids" (pmix_data_array_t)31
Array of effective UIDs that are allowed to access the published data.32

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 129

Un
offi
cia
l D
raf
t

PMIX_ACCESS_GRPIDS "pmix.agids" (pmix_data_array_t)1
Array of effective GIDs that are allowed to access the published data.2

PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)3
Define access permissions for the published data. The value shall contain an array of4
pmix_info_t structs containing the specified permissions.5

Description6
Nonblocking PMIx_Publish routine.7

9.3 Publish-specific constants8

The following constants are defined for use with the PMIx_Publish APIs:9

PMIX_ERR_DUPLICATE_KEY -53 The provided key has already been published on the10
same data range.11

9.4 Publish-specific attributes12

The following attributes are defined for use with the PMIx_Publish APIs:13

PMIX_RANGE "pmix.range" (pmix_data_range_t)14
Define constraints on the processes that can access published data or generated events or15
define constraints on the provider of data when looking up published data.16

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)17
Declare how long the datastore shall retain the provided data. The datastore is to delete the18
data upon reaching the persistence criterion.19

PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)20
Define access permissions for the published data. The value shall contain an array of21
pmix_info_t structs containing the specified permissions.22

PMIX_ACCESS_USERIDS "pmix.auids" (pmix_data_array_t)23
Array of effective UIDs that are allowed to access the published data.24

PMIX_ACCESS_GRPIDS "pmix.agids" (pmix_data_array_t)25
Array of effective GIDs that are allowed to access the published data.26

PMIX_DATA_TO_PUBLISH "pmix.publishdata" (pmix_data_array_t)27
Array of pmix_info_t containing data to be published.28

9.5 Publish-Lookup Datatypes29

The following data types are defined for use with the PMIx_Publish APIs.30

130 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

9.5.1 Range of Published Data1

The pmix_data_range_t structure is a uint8_t type that defines a range for data published2
via the PMIx_Publish API and events generated via the PMIx_Notify_event. The3
following constants can be used to set a variable of the type pmix_data_range_t.4

PMIX_RANGE_UNDEF 0 Undefined range.5
PMIX_RANGE_RM 1 Published data and generated events are restricted to processes6

executing under the same instance of the host environment as the publisher or event creator.7
Lookup of data is restricted to data published by processes running under the same instance of8
the host environment as the requester.9

PMIX_RANGE_LOCAL 2 Published data and generated events are restricted to processes on10
the same node as the publisher or event creator. Lookup of data is restricted to data published11
by processes on the same node as the requester.12

PMIX_RANGE_NAMESPACE 3 Published data and generated events are restricted to13
processes in the same namespace as the publisher or event creator. Lookup of data is14
restricted to data published by procesess in the same namespace as the requester.15

PMIX_RANGE_SESSION 4 Published data and generated events are restricted to processes in16
the same session as the publisher or event creator. Lookup of data is restricted to data17
published by procesess in the same session as the requester.18

PMIX_RANGE_GLOBAL 5 Published data and generated events are available to all processes19
within the domain of the host environment. Lookup of data is unrestricted and open to data20
published by any processes within the domain of the host enivornment as the requester. This21
range differs from PMIX_RANGE_RM only on systems which have mechanisms to share22
events and publish/lookup data across multiple instances of a host environment.23

PMIX_RANGE_PROC_LOCAL 7 Published data and generated events are available only to24
calling process. Lookup of data is restricted to data published by the calling process.25

PMIX_RANGE_CUSTOM 6 Published data and generated events are restricted to processes26
described in the pmix_info_t associated with this call. Lookup of data is restricted to data27
published by the processes described in in the pmix_info_t.28

PMIX_RANGE_INVALID UINT8_MAX Invalid value - typically used to indicate that a range29
has not yet been set.30

9.5.2 Data Persistence Structure31

PMIx v1.0 The pmix_persistence_t structure is a uint8_t type that defines the policy for data32
published by clients via the PMIx_Publish API. The following constants can be used to set a33
variable of the type pmix_persistence_t.34

PMIX_PERSIST_INDEF 0 Retain data until unpublished.35
PMIX_PERSIST_FIRST_READ 1 Retain data until the first access, then the data is deleted.36
PMIX_PERSIST_PROC 2 Retain data until the publishing process terminates.37
PMIX_PERSIST_APP 3 Retain data until the application terminates.38
PMIX_PERSIST_SESSION 4 Retain data until the session/allocation terminates.39

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 131

Un
offi
cia
l D
raf
t

PMIX_PERSIST_INVALID UINT8_MAX Invalid value - typically used to indicate that a1
persistence has not yet been set.2

9.5.3 Lookup Related Data Structures3

The pmix_pdata_t structure is used both to request the lookup of keys and to describe the value4
and publishing process of any keys that were successfully retrieved. A request to lookup published5
values is described by an array of pmix_pdata_t structures. Only the key field is used in the6
lookup request. The results of the lookup operation are returned in the same array with the proc and7
value fields set when the key is successfully found. The value field’s data type is set to8
PMIX_UNDEF in the associated value struct of any key which was not retrieved.PMIx v1.09

C
typedef struct pmix_pdata {10

pmix_proc_t proc;11
pmix_key_t key;12
pmix_value_t value;13

} pmix_pdata_t;14

C

where:15

• proc is the process identifier of the data publisher.16

• key is the string key of the published data.17

• value is the value associated with the key.18

9.6 PMIx_Lookup19

Summary20
Lookup information published by a process or host environment using PMIx_Publish or21
PMIx_Publish_nb.22

Format23 PMIx v1.0

132 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C
pmix_status_t1
PMIx_Lookup(pmix_pdata_t data[], size_t ndata,2

const pmix_info_t info[], size_t ninfo);3

C

INOUT data4
Array of publishable data structures (array of pmix_pdata_t)5

IN ndata6
Number of elements in the data array (integer)7

IN info8
Array of info structures (array of pmix_info_t)9

IN ninfo10
Number of elements in the info array (integer)11

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:12

• PMIX_ERR_NOT_FOUND None of the requested data could be found within the requester’s13
range.14

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. Any key that cannot15
be found will return with a data type of PMIX_UNDEF in the associated value struct. Note that16
the specific reason for a particular piece of missing information (e.g., lack of permissions) cannot17
be communicated back to the requester in this situation.18

• PMIX_ERR_NO_PERMISSIONS All of the requested data was found and range restrictions19
were met for each specified key, but none of the matching data could be returned due to lack of20
access permissions.21

If none of the above return codes are appropriate, then an implementation must return either a22
general PMIx error code or an implementation defined error code as described in Section 3.1.1.23

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any24
provided attributes must be passed to the host environment for processing, and the PMIx library is25
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is26
requesting the info.27

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 133

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

PMIX_RANGE "pmix.range" (pmix_data_range_t)6
Define constraints on the processes that can access published data or generated events or7
define constraints on the provider of data when looking up published data.8

PMIX_WAIT "pmix.wait" (int)9
Caller requests that the PMIx server wait until at least the specified number of values are10
found (a value of zero indicates all and is the default).11

Description12
Lookup information published by a process or host environment using PMIx_Publish or13
PMIx_Publish_nb. A lookup operation is always performed on a range which can be specified14
using the directive PMIX_RANGE or otherwise defaults to PMIX_RANGE_SESSION.15

The lookup operation will be constrained to data published to the specified range. Data is returned16
per the retrieval rules of Section 9.8.17

The data parameter consists of an array of pmix_pdata_t structures with the keys specifying the18
requested information. Data will be returned for each key field in the associated value field of19
this structure as per the above description of return values. The proc field in each20
pmix_pdata_t structure will contain the namespace/rank of the process that published the data.21

Advice to users

Although this is a blocking function, it will not wait by default for the requested data to be22
published. Instead, it will block for the time required by the datastore to lookup its current data and23
return any found items. Thus, the caller is responsible for either ensuring that data is published24
prior to executing a lookup, using PMIX_WAIT to instruct the datastore to wait for the data to be25
published, or retrying until the requested data is found.26

9.7 PMIx_Lookup_nb27

Summary28
Nonblocking version of PMIx_Lookup.29

134 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Lookup_nb(char **keys,3

const pmix_info_t info[], size_t ninfo,4
pmix_lookup_cbfunc_t cbfunc, void *cbdata);5

C

IN keys6
NULL-terminated array of keys (array of strings)7

IN info8
Array of info structures (array of handles)9

IN ninfo10
Number of elements in the info array (integer)11

IN cbfunc12
Callback function (handle)13

IN cbdata14
Callback data to be provided to the callback function (pointer)15

A successful return indicates that the request is being processed and the result will be returned in16
the provided cbfunc. Note that the library must not invoke the callback function prior to returning17
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.18

If executed, the status returned in the provided callback function will be one of the following19
constants:20

• PMIX_SUCCESS All data was found and has been returned.21

• PMIX_ERR_NOT_FOUND None of the requested data was available within the requester’s range.22
The pdata array in the callback function shall be NULL and the npdata parameter set to zero.23

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. Only found data will24
be included in the returned pdata array. Note that the specific reason for a particular piece of25
missing information (e.g., lack of permissions or the data has not been published) cannot be26
communicated back to the requester in this situation.27

• PMIX_ERR_NOT_SUPPORTED There is no available datastore (either at the host environment28
or PMIx implementation level) on this system that supports this function.29

• PMIX_ERR_NO_PERMISSIONS All of the requested data was found and range restrictions30
were met for each specified key, but none of the matching data could be returned due to lack of31
access permissions.32

• a non-zero PMIx error constant indicating a reason for the request’s failure.33

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 135

Un
offi
cia
l D
raf
t

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any1
provided attributes must be passed to the host environment for processing, and the PMIx library is2
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is3
requesting the info.4

Optional Attributes
The following attributes are optional for host environments that support this operation:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (zero indicating infinite) and7
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions8
caused by multiple layers (client, server, and host) simultaneously timing the operation.9

PMIX_RANGE "pmix.range" (pmix_data_range_t)10
Define constraints on the processes that can access published data or generated events or11
define constraints on the provider of data when looking up published data.12

PMIX_WAIT "pmix.wait" (int)13
Caller requests that the PMIx server wait until at least the specified number of values are14
found (a value of zero indicates all and is the default).15

Description16
Non-blocking form of the PMIx_Lookup function.17

9.7.0.1 Lookup data structure support macros18

The following macros are provided to support the pmix_pdata_t structure.19

Static initializer for the pdata structure20 Provisional Provide a static initializer for the pmix_pdata_t fields.21
PMIx v4.2 C

PMIX_LOOKUP_STATIC_INIT22

C

Initialize the pdata structure23
Initialize the pmix_pdata_t fields24

PMIx v1.0 C
PMIX_PDATA_CONSTRUCT(m)25

C
IN m26

Pointer to the structure to be initialized (pointer to pmix_pdata_t)27

136 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Destruct the pdata structure1
Destruct the pmix_pdata_t fields2

PMIx v1.0 C
PMIX_PDATA_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_pdata_t)5

Create a pdata array6
Allocate and initialize an array of pmix_pdata_t structures7

PMIx v1.0 C
PMIX_PDATA_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_pdata_t structures shall be stored (handle)10

IN n11
Number of structures to be allocated (size_t)12

Free a pdata structure13
Release a pmix_pdata_t structure14

PMIx v4.0 C
PMIX_PDATA_RELEASE(m)15

C

IN m16
Pointer to a pmix_pdata_t structure (handle)17

Free a pdata array18
Release an array of pmix_pdata_t structures19

PMIx v1.0 C
PMIX_PDATA_FREE(m, n)20

C

IN m21
Pointer to the array of pmix_pdata_t structures (handle)22

IN n23
Number of structures in the array (size_t)24

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 137

Un
offi
cia
l D
raf
t

Load a lookup data structure1
This macro simplifies the loading of key, process identifier, and data into a pmix_pdata_t by2
correctly assigning values to the structure’s fields.3

C
PMIX_PDATA_LOAD(m, p, k, d, t);4

C

IN m5
Pointer to the pmix_pdata_t structure into which the key and data are to be loaded6
(pointer to pmix_pdata_t)7

IN p8
Pointer to the pmix_proc_t structure containing the identifier of the process being9
referenced (pointer to pmix_proc_t)10

IN k11
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length12
(handle)13

IN d14
Pointer to the data value to be loaded (handle)15

IN t16
Type of the provided data value (pmix_data_type_t)17

Advice to users

Key, process identifier, and data will all be copied into the pmix_pdata_t - thus, the source18
information can be modified or free’d without affecting the copied data once the macro has19
completed.20

Transfer a lookup data structure21
This macro simplifies the transfer of key, process identifier, and data value between22
twopmix_pdata_t structures.23

PMIx v2.0 C
PMIX_PDATA_XFER(d, s);24

C

IN d25
Pointer to the destination pmix_pdata_t (pointer to pmix_pdata_t)26

IN s27
Pointer to the source pmix_pdata_t (pointer to pmix_pdata_t)28

138 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Advice to users

Key, process identifier, and data will all be copied into the destination pmix_pdata_t - thus, the1
source pmix_pdata_t may free’d without affecting the copied data once the macro has2
completed.3

9.8 Retrieval rules for published data4

The retrieval rules for published data primarily revolve around enforcing data access permissions5
and range constraints. All publish and lookup operations operate on a range. If not specified, the6
range defaults to PMIX_RANGE_SESSION. The key being looked up will match with a published7
key only if all of the following conditions are met:8

1. The lookup key matches the published key.9

2. The type of range specified by the publisher is the same as the type of range specified by the10
requester.11

3. If a custom range is specified by the publisher and the requester, the members described in both12
cases must be identical. The publisher is not required to be a member of a custom range.13

4. The requestor must be a member of the publisher’s range.14

5. If the publisher specified access permissions, the effective UID and GID of the requester must15
meet those requirements.16

The status returned by the datastore shall be set to:17

• PMIX_SUCCESS All data was found and is included in the returned information.18

• PMIX_ERR_NOT_FOUND None of the requested data could be found within a requester’s range.19

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. Only found data will20
be included in the returned information. Note that the specific reason for a particular piece of21
missing information (e.g., lack of permissions) cannot be communicated back to the requester in22
this situation.23

• PMIX_ERR_NO_PERMISSIONS All requested data was found and range restrictions were met24
for each specified key, but none of the matching data could be returned due to lack of access25
permissions.26

• a non-zero PMIx error constant indicating a reason for the request’s failure.27

9.9 PMIx_Unpublish28

Summary29
Unpublish a list of keys published by the calling process.30

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 139

Un
offi
cia
l D
raf
t

Format1 PMIx v1.0 C
pmix_status_t2
PMIx_Unpublish(char **keys,3

const pmix_info_t info[], size_t ninfo);4

C

IN keys5
NULL-terminated array of keys (array of strings)6

IN info7
Array of info structures (array of handles)8

IN ninfo9
Number of elements in the info array (integer)10

Returns PMIX_SUCCESS or a negative value indicating the error.11

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any12
provided attributes must be passed to the host environment for processing, and the PMIx library is13
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is14
requesting the operation.15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_TIMEOUT "pmix.timeout" (int)17
Time in seconds before the specified operation should time out (zero indicating infinite) and18
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions19
caused by multiple layers (client, server, and host) simultaneously timing the operation.20

PMIX_RANGE "pmix.range" (pmix_data_range_t)21
Define constraints on the processes that can access published data or generated events or22
define constraints on the provider of data when looking up published data.23

Description24
Unpublish a list of keys published by the calling process. The function will block until the data has25
been removed by the server (i.e., it is safe to publish that key again within the specified range). A26
value of NULL for the keys parameter instructs the server to remove all data published by this27
process.28

By default, the range is assumed to be PMIX_RANGE_SESSION. Changes to the range, and any29
additional directives, can be provided in the info array.30

140 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

9.10 PMIx_Unpublish_nb1

Summary2
Nonblocking version of PMIx_Unpublish.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Unpublish_nb(char **keys,6

const pmix_info_t info[], size_t ninfo,7
pmix_op_cbfunc_t cbfunc, void *cbdata);8

C

IN keys9
NULL-terminated array of keys (array of strings)10

IN info11
Array of info structures (array of handles)12

IN ninfo13
Number of elements in the info array (integer)14

IN cbfunc15
Callback function pmix_op_cbfunc_t (function reference)16

IN cbdata17
Data to be passed to the callback function (memory reference)18

A successful return indicates that the request is being processed and the result will be returned in19
the provided cbfunc. Note that the library must not invoke the callback function prior to returning20
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.21

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:22

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and23
returned success - the cbfunc will not be called.24

If none of the above return codes are appropriate, then an implementation must return either a25
general PMIx error code or an implementation defined error code as described in Section 3.1.1.26

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any27
provided attributes must be passed to the host environment for processing, and the PMIx library is28
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is29
requesting the operation.30

CHAPTER 9. PUBLISH/LOOKUP OPERATIONS 141

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

PMIX_RANGE "pmix.range" (pmix_data_range_t)6
Define constraints on the processes that can access published data or generated events or7
define constraints on the provider of data when looking up published data.8

Description9
Non-blocking form of the PMIx_Unpublish function. The callback function will be executed10
once the server confirms removal of the specified data. The info array must be maintained until the11
callback is provided.12

142 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 10

Event Notification

This chapter defines the PMIx event notification system. These interfaces are designed to support1
the reporting of events to/from clients and servers, and between library layers within a single2
process.3

10.1 Notification and Management4

PMIx event notification provides an asynchronous out-of-band mechanism for communicating5
events between application processes and/or elements of the SMS. Its uses span a wide range6
including fault notification, coordination between multiple programming libraries within a single7
process, and workflow orchestration for non-synchronous programming models. Events can be8
divided into two distinct classes:9

• Job-specific events directly relate to a job executing within the session, such as a debugger10
attachment, process failure within a related job, or events generated by an application process.11
Events in this category are to be immediately delivered to the PMIx server library for relay to the12
related local processes.13

• Environment events indirectly relate to a job but do not specifically target the job itself. This14
category includes SMS-generated events such as Error Check and Correction (ECC) errors,15
temperature excursions, and other non-job conditions that might directly affect a session’s16
resources, but would never include an event generated by an application process. Note that17
although these do potentially impact the session’s jobs, they are not directly tied to those jobs.18
Thus, events in this category are to be delivered to the PMIx server library only upon request.19

Both SMS elements and applications can register for events of either type.20

Advice to PMIx library implementers

Race conditions can cause the registration to come after events of possible interest (e.g., a memory21
ECC event that occurs after start of execution but prior to registration, or an application process22
generating an event prior to another process registering to receive it). SMS vendors are requested to23
cache environment events for some time to mitigate this situation, but are not required to do so.24
However, PMIx implementers are required to cache all events received by the PMIx server library25
and to deliver them to registering clients in the same order in which they were received26

143

Un
offi
cia
l D
raf
t

Advice to users

Applications must be aware that they may not receive environment events that occur prior to1
registration, depending upon the capabilities of the host SMS.2

The generator of an event can specify the target range for delivery of that event. Thus, the generator3
can choose to limit notification to processes on the local node, processes within the same job as the4
generator, processes within the same allocation, other threads within the same process, only the5
SMS (i.e., not to any application processes), all application processes, or to a custom range based6
on specific process identifiers. Only processes within the given range that register for the provided7
event code will be notified. In addition, the generator can use attributes to direct that the event not8
be delivered to any default event handlers, or to any multi-code handler (as defined below).9

Event notifications provide the process identifier of the source of the event plus the event code and10
any additional information provided by the generator. When an event notification is received by a11
process, the registered handlers are scanned for their event code(s), with matching handlers12
assembled into an event chain for servicing. Note that users can also specify a source range when13
registering an event (using the same range designators described above) to further limit when they14
are to be invoked. When assembled, PMIx event chains are ordered based on both the specificity of15
the event handler and user directives at time of handler registration. By default, handlers are16
grouped into three categories based on the number of event codes that can trigger the callback:17

• single-code handlers are serviced first as they are the most specific. These are handlers that are18
registered against one specific event code.19

• multi-code handlers are serviced once all single-code handlers have completed. The handler will20
be included in the chain upon receipt of an event matching any of the provided codes.21

• default handlers are serviced once all multi-code handlers have completed. These handlers are22
always included in the chain unless the generator specifically excludes them.23

Users can specify the callback order of a handler within its category at the time of registration.24
Ordering can be specified by providing the relevant event handler names, if the user specified an25
event handler name when registering the corresponding event. Thus, users can specify that a given26
handler be executed before or after another handler should both handlers appear in an event chain27
(the ordering is ignored if the other handler isn’t included). Note that ordering does not imply28
immediate relationships. For example, multiple handlers registered to be serviced after event29
handler A will all be executed after A, but are not guaranteed to be executed in any particular order30
amongst themselves.31

In addition, one event handler can be declared as the first handler to be executed in the chain. This32
handler will always be called prior to any other handler, regardless of category, provided the33
incoming event matches both the specified range and event code. Only one handler can be so34
designated — attempts to designate additional handlers as first will return an error. Deregistration35
of the declared first handler will re-open the position for subsequent assignment.36

144 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Similarly, one event handler can be declared as the last handler to be executed in the chain. This1
handler will always be called after all other handlers have executed, regardless of category,2
provided the incoming event matches both the specified range and event code. Note that this3
handler will not be called if the chain is terminated by an earlier handler. Only one handler can be4
designated as last — attempts to designate additional handlers as last will return an error.5
Deregistration of the declared last handler will re-open the position for subsequent assignment.6

Advice to users

Note that the last handler is called after all registered default handlers that match the specified7
range of the incoming event unless a handler prior to it terminates the chain. Thus, if the application8
intends to define a last handler, it should ensure that no default handler aborts the process before it.9

Upon completing its work and prior to returning, each handler must call the event handler10
completion function provided when it was invoked (including a status code plus any information to11
be passed to later handlers) so that the chain can continue being progressed. PMIx automatically12
aggregates the status and any results of each handler (as provided in the completion callback) with13
status from all prior handlers so that each step in the chain has full knowledge of what preceded it.14
An event handler can terminate all further progress along the chain by passing the15
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function.16

10.1.1 Events versus status constants17

Return status constants (see Section 3.1.1) represent values that can be returned from or passed into18
PMIx APIs. These are distinct from PMIx events in that they are not values that can be registered19
against event handlers. In general, the two types of constants are distinguished by inclusion of an20
"ERR" in the name of error constants versus an "EVENT" in events, though there are exceptions21
(e.g, the PMIX_SUCCESS constant).22

10.1.2 PMIx_Register_event_handler23

Summary24
Register an event handler.25

CHAPTER 10. EVENT NOTIFICATION 145

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,3

pmix_info_t info[], size_t ninfo,4
pmix_notification_fn_t evhdlr,5
pmix_hdlr_reg_cbfunc_t cbfunc,6
void *cbdata);7

C

IN codes8
Array of status codes (array of pmix_status_t)9

IN ncodes10
Number of elements in the codes array (size_t)11

IN info12
Array of info structures (array of handles)13

IN ninfo14
Number of elements in the info array (size_t)15

IN evhdlr16
Event handler to be called pmix_notification_fn_t (function reference)17

IN cbfunc18
Callback function pmix_hdlr_reg_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the cbfunc callback function (memory reference)21

If cbfunc is NULL, the function call will be treated as a blocking call. In this case, the returned22
status will be either (a) the event handler reference identifier if the value is greater than or equal to23
zero, or (b) a negative error code indicative of the reason for the failure.24

If the cbfunc is non-NULL, the function call will be treated as a non-blocking call and will return25
the following:26

A successful return indicates that the request is being processed and the result will be returned in27
the provided cbfunc. Note that the library must not invoke the callback function prior to returning28
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.The29
result of the registration operation shall be returned in the provided callback function along with the30
assigned event handler identifier.31

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:32

• PMIX_ERR_EVENT_REGISTRATION indicating that the registration has failed for an33
undetermined reason.34

If none of the above return codes are appropriate, then an implementation must return either a35
general PMIx error code or an implementation defined error code as described in Section 3.1.1.36

146 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The callback function must not be executed prior to returning from the API, and no events1
corresponding to this registration may be delivered prior to the completion of the registration2
callback function (cbfunc).3

Required Attributes

The following attributes are required to be supported by all PMIx libraries:4

PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)5
String name identifying this handler.6

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)7
Invoke this event handler before any other handlers.8

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)9
Invoke this event handler after all other handlers have been called.10

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)11
Invoke this event handler before any other handlers in this category.12

PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)13
Invoke this event handler after all other handlers in this category have been called.14

PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)15
Put this event handler immediately before the one specified in the (char*) value.16

PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)17
Put this event handler immediately after the one specified in the (char*) value.18

PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)19
Prepend this handler to the precedence list within its category.20

PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)21
Append this handler to the precedence list within its category.22

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)23
Array of pmix_proc_t defining range of event notification.24

PMIX_RANGE "pmix.range" (pmix_data_range_t)25
Define constraints on the processes that can access published data or generated events or26
define constraints on the provider of data when looking up published data.27

PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)28
Object to be returned whenever the registered callback function cbfunc is invoked. The29
object will only be returned to the process that registered it.30

CHAPTER 10. EVENT NOTIFICATION 147

Un
offi
cia
l D
raf
t

1

Host environments that implement support for PMIx event notification are required to support the2
following attributes when registering handlers - these attributes are used to direct that the handler3
should be invoked only when the event affects the indicated process(es):4

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)5
The single process that was affected.6

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)7
Array of pmix_proc_t defining affected processes.8

Description9
Register an event handler to report events. Note that the codes being registered do not need to be10
PMIx error constants — any integer value can be registered. This allows for registration of11
non-PMIx events such as those defined by a particular SMS vendor or by an application itself.12

Advice to users

In order to avoid potential conflicts, users are advised to only define codes that lie outside the range13
of the PMIx standard’s error codes. Thus, SMS vendors and application developers should14
constrain their definitions to positive values or negative values beyond the15
PMIX_EXTERNAL_ERR_BASE boundary.16

Advice to users

As previously stated, upon completing its work, and prior to returning, each handler must call the17
event handler completion function provided when it was invoked (including a status code plus any18
information to be passed to later handlers) so that the chain can continue being progressed. An19
event handler can terminate all further progress along the chain by passing the20
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function. Note that the21
parameters passed to the event handler (e.g., the info and results arrays) will cease to be valid once22
the completion function has been called - thus, any information in the incoming parameters that23
will be referenced following the call to the completion function must be copied.24

10.1.3 Event registration constants25

PMIX_ERR_EVENT_REGISTRATION -144 Error in event registration.26

148 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

10.1.4 System events1

PMIX_EVENT_SYS_BASE Mark the beginning of a dedicated range of constants for system2
event reporting.3

PMIX_EVENT_NODE_DOWN -231 A node has gone down - the identifier of the affected4
node will be included in the notification.5

PMIX_EVENT_NODE_OFFLINE -232 A node has been marked as offline - the identifier of6
the affected node will be included in the notification.7

PMIX_EVENT_SYS_OTHER Mark the end of a dedicated range of constants for system event8
reporting.9

Detect system event constant10
Test a given event constant to see if it falls within the dedicated range of constants for system event11
reporting.12

PMIx v2.2 C
PMIX_SYSTEM_EVENT(a)13

C

IN a14
Error constant to be checked (pmix_status_t)15

Returns true if the provided values falls within the dedicated range of events for system event16
reporting.17

10.1.5 Event handler registration and notification attributes18

Attributes to support event registration and notification.19

PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)20
String name identifying this handler.21

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)22
Invoke this event handler before any other handlers.23

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)24
Invoke this event handler after all other handlers have been called.25

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)26
Invoke this event handler before any other handlers in this category.27

PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)28
Invoke this event handler after all other handlers in this category have been called.29

PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)30
Put this event handler immediately before the one specified in the (char*) value.31

PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)32
Put this event handler immediately after the one specified in the (char*) value.33

PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)34
Prepend this handler to the precedence list within its category.35

CHAPTER 10. EVENT NOTIFICATION 149

Un
offi
cia
l D
raf
t

PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)1
Append this handler to the precedence list within its category.2

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)3
Array of pmix_proc_t defining range of event notification.4

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)5
The single process that was affected.6

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)7
Array of pmix_proc_t defining affected processes.8

PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)9
Event is not to be delivered to default event handlers.10

PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)11
Object to be returned whenever the registered callback function cbfunc is invoked. The12
object will only be returned to the process that registered it.13

PMIX_EVENT_DO_NOT_CACHE "pmix.evnocache" (bool)14
Instruct the PMIx server not to cache the event.15

PMIX_EVENT_PROXY "pmix.evproxy" (pmix_proc_t*)16
PMIx server that sourced the event.17

PMIX_EVENT_TEXT_MESSAGE "pmix.evtext" (char*)18
Text message suitable for output by recipient - e.g., describing the cause of the event.19

PMIX_EVENT_TIMESTAMP "pmix.evtstamp" (time_t)20
System time when the associated event occurred.21

10.1.5.1 Fault tolerance event attributes22

The following attributes may be used by the host environment when providing an event notification23
as qualifiers indicating the action it intends to take in response to the event:24

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)25
The RM intends to terminate this session.26

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)27
The RM intends to terminate this job.28

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)29
The RM intends to terminate all processes on this node.30

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)31
The RM intends to terminate just this process.32

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)33
The time in seconds before the RM will execute the indicated operation.34

10.1.5.2 Hybrid programming event attributes35

The following attributes may be used by programming models to coordinate their use of common36
resources within a process in conjunction with the PMIX_OPENMP_PARALLEL_ENTERED event:37
PMIX_MODEL_PHASE_NAME "pmix.mdl.phase" (char*)38

User-assigned name for a phase in the application execution (e.g., “cfd reduction”).39

PMIX_MODEL_PHASE_TYPE "pmix.mdl.ptype" (char*)40
Type of phase being executed (e.g., “matrix multiply”).41

150 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

10.1.6 Notification Function1

Summary2
The pmix_notification_fn_t is called by PMIx to deliver notification of an event.3

Advice to users

The PMIx ad hoc v1.0 Standard defined an error notification function with an identical name, but4
different signature than the v2.0 Standard described below. The ad hoc v1.0 version was removed5
from the v2.0 Standard is not included in this document to avoid confusion.6

PMIx v2.0 C
typedef void (*pmix_notification_fn_t)7

(size_t evhdlr_registration_id,8
pmix_status_t status,9
const pmix_proc_t *source,10
pmix_info_t info[], size_t ninfo,11
pmix_info_t results[], size_t nresults,12
pmix_event_notification_cbfunc_fn_t cbfunc,13
void *cbdata);14

C

IN evhdlr_registration_id15
Registration number of the handler being called (size_t)16

IN status17
Status associated with the operation (pmix_status_t)18

IN source19
Identifier of the process that generated the event (pmix_proc_t). If the source is the SMS,20
then the nspace will be empty and the rank will be PMIX_RANK_UNDEF21

IN info22
Information describing the event (pmix_info_t). This argument will be NULL if no23
additional information was provided by the event generator.24

IN ninfo25
Number of elements in the info array (size_t)26

IN results27
Aggregated results from prior event handlers servicing this event (pmix_info_t). This28
argument will be NULL if this is the first handler servicing the event, or if no prior handlers29
provided results.30

IN nresults31
Number of elements in the results array (size_t)32

IN cbfunc33
pmix_event_notification_cbfunc_fn_t callback function to be executed upon34
completion of the handler’s operation and prior to handler return (function reference).35

CHAPTER 10. EVENT NOTIFICATION 151

Un
offi
cia
l D
raf
t

IN cbdata1
Callback data to be passed to cbfunc (memory reference)2

Description3
Note that different RMs may provide differing levels of support for event notification to application4
processes. Thus, the info array may be NULL or may contain detailed information of the event. It is5
the responsibility of the application to parse any provided info array for defined key-values if it so6
desires.7

Advice to users

Possible uses of the info array include:8

• for the host RM to alert the process as to planned actions, such as aborting the session, in9
response to the reported event10

• provide a timeout for alternative action to occur, such as for the application to request an11
alternate response to the event12

For example, the RM might alert the application to the failure of a node that resulted in termination13
of several processes, and indicate that the overall session will be aborted unless the application14
requests an alternative behavior in the next 5 seconds. The application then has time to respond15
with a checkpoint request, or a request to recover from the failure by obtaining replacement nodes16
and restarting from some earlier checkpoint.17

Support for these options is left to the discretion of the host RM. Info keys are included in the18
common definitions above but may be augmented by environment vendors.19

Advice to PMIx server hosts

On the server side, the notification function is used to inform the PMIx server library’s host of a20
detected event in the PMIx server library. Events generated by PMIx clients are communicated to21
the PMIx server library, but will be relayed to the host via the22
pmix_server_notify_event_fn_t function pointer, if provided.23

10.1.7 PMIx_Deregister_event_handler24

Summary25
Deregister an event handler.26

152 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Deregister_event_handler(size_t evhdlr_ref,3

pmix_op_cbfunc_t cbfunc,4
void *cbdata);5

C

IN evhdlr_ref6
Event handler ID returned by registration (size_t)7

IN cbfunc8
Callback function to be executed upon completion of operation pmix_op_cbfunc_t9
(function reference)10

IN cbdata11
Data to be passed to the cbfunc callback function (memory reference)12

If cbfunc is NULL, the function will be treated as a blocking call and the result of the operation13
returned in the status code.14

If cbfunc is non-NULL, the function will be treated as a non-blocking call.15

A successful return indicates that the request is being processed and the result will be returned in16
the provided cbfunc. Note that the library must not invoke the callback function prior to returning17
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.18

• PMIX_OPERATION_SUCCEEDED, returned when the request was immediately processed19
successfully - the cbfunc will not be called.20

The returned status code of cbfunc will be one of the following:21

• PMIX_SUCCESS The event handler was successfully deregistered.22

• PMIX_ERR_BAD_PARAM The provided evhdlr_ref was unrecognized.23

• PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification.24

Description25
Deregister an event handler. Note that no events corresponding to the referenced registration may26
be delivered following completion of the deregistration operation (either return from the API with27
PMIX_OPERATION_SUCCEEDED or execution of the cbfunc).28

10.1.8 PMIx_Notify_event29

Summary30
Report an event for notification via any registered event handler.31

CHAPTER 10. EVENT NOTIFICATION 153

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Notify_event(pmix_status_t status,3

const pmix_proc_t *source,4
pmix_data_range_t range,5
pmix_info_t info[], size_t ninfo,6
pmix_op_cbfunc_t cbfunc, void *cbdata);7

C

IN status8
Status code of the event (pmix_status_t)9

IN source10
Pointer to a pmix_proc_t identifying the original reporter of the event (handle)11

IN range12
Range across which this notification shall be delivered (pmix_data_range_t)13

IN info14
Array of pmix_info_t structures containing any further info provided by the originator of15
the event (array of handles)16

IN ninfo17
Number of elements in the info array (size_t)18

IN cbfunc19
Callback function to be executed upon completion of operation pmix_op_cbfunc_t20
(function reference)21

IN cbdata22
Data to be passed to the cbfunc callback function (memory reference)23

If cbfunc is NULL, the function will be treated as a blocking call and the result of the operation24
returned in the status code.25

If cbfunc is non-NULL, the function will be treated as a non-blocking call.26

A successful return indicates that the request is being processed and the result will be returned in the27
provided cbfunc. Note that the library must not invoke the callback function prior to returning from28
the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.Note that29
a successful call does not reflect the success or failure of delivering the event to any recipients.30

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:31

• PMIX_OPERATION_SUCCEEDED, returned when the request was immmediately processed32
successfully - the cbfunc will not be called.33

If none of the above return codes are appropriate, then an implementation must return either a34
general PMIx error code or an implementation defined error code as described in Section 3.1.1.35

154 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)2
Event is not to be delivered to default event handlers.3

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)4
Array of pmix_proc_t defining range of event notification.5

PMIX_EVENT_DO_NOT_CACHE "pmix.evnocache" (bool)6
Instruct the PMIx server not to cache the event.7

PMIX_EVENT_PROXY "pmix.evproxy" (pmix_proc_t*)8
PMIx server that sourced the event.9

PMIX_EVENT_TEXT_MESSAGE "pmix.evtext" (char*)10
Text message suitable for output by recipient - e.g., describing the cause of the event.11

12

Host environments that implement support for PMIx event notification are required to provide the13
following attributes for all events generated by the environment:14

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)15
The single process that was affected.16

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)17
Array of pmix_proc_t defining affected processes.18

Optional Attributes

Host environments that support PMIx event notification may offer notifications for environmental19
events impacting the job and for SMS events relating to the job. The following attributes may20
optionally be included to indicate the host environment’s intended response to the event:21

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)22
The RM intends to terminate this session.23

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)24
The RM intends to terminate this job.25

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)26
The RM intends to terminate all processes on this node.27

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)28
The RM intends to terminate just this process.29

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)30
The time in seconds before the RM will execute the indicated operation.31

CHAPTER 10. EVENT NOTIFICATION 155

Un
offi
cia
l D
raf
t

Description1
Report an event for notification via any registered event handler. This function can be called by any2
PMIx process, including application processes, PMIx servers, and SMS elements. The PMIx server3
calls this API to report events it detected itself so that the host SMS daemon distribute and handle4
them, and to pass events given to it by its host down to any attached client processes for processing.5
Examples might include notification of the failure of another process, detection of an impending6
node failure due to rising temperatures, or an intent to preempt the application. Events may be7
locally generated or come from anywhere in the system.8

Host SMS daemons call the API to pass events down to its embedded PMIx server both for9
transmittal to local client processes and for the host’s own internal processing where the host has10
registered its own event handlers. The PMIx server library is not allowed to echo any event given to11
it by its host via this API back to the host through the pmix_server_notify_event_fn_t12
server module function. The host is required to deliver the event to all PMIx servers where the13
targeted processes either are currently running, or (if they haven’t started yet) might be running at14
some point in the future as the events are required to be cached by the PMIx server library.15

Client application processes can call this function to notify the SMS and/or other application16
processes of an event it encountered. Note that processes are not constrained to report status values17
defined in the official PMIx standard — any integer value can be used. Thus, applications are free18
to define their own internal events and use the notification system for their own internal purposes.19

Advice to users

The callback function will be called upon completion of the notify_event function’s actions.20
At that time, any messages required for executing the operation (e.g., to send the notification to the21
local PMIx server) will have been queued, but may not yet have been transmitted. The caller is22
required to maintain the input data until the callback function has been executed — the sole purpose23
of the callback function is to indicate when the input data is no longer required.24

156 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

10.1.9 Notification Handler Completion Callback Function1

Summary2
The pmix_event_notification_cbfunc_fn_t is called by event handlers to indicate3
completion of their operations.4

C
typedef void (*pmix_event_notification_cbfunc_fn_t)5

(pmix_status_t status,6
pmix_info_t *results, size_t nresults,7
pmix_op_cbfunc_t cbfunc, void *thiscbdata,8
void *notification_cbdata);9

C

IN status10
Status returned by the event handler’s operation (pmix_status_t)11

IN results12
Results from this event handler’s operation on the event (pmix_info_t)13

IN nresults14
Number of elements in the results array (size_t)15

IN cbfunc16
pmix_op_cbfunc_t function to be executed when PMIx completes processing the17
callback (function reference)18

IN thiscbdata19
Callback data that was passed in to the handler (memory reference)20

IN cbdata21
Callback data to be returned when PMIx executes cbfunc (memory reference)22

Description23
Define a callback by which an event handler can notify the PMIx library that it has completed its24
response to the notification. The handler is required to execute this callback so the library can25
determine if additional handlers need to be called. The handler shall return26
PMIX_EVENT_ACTION_COMPLETE if no further action is required. The return status of each27
event handler and any returned pmix_info_t structures will be added to the results array of28
pmix_info_t passed to any subsequent event handlers to help guide their operation.29

If non-NULL, the provided callback function will be called to allow the event handler to release the30
provided info array and execute any other required cleanup operations.31

10.1.9.1 Completion Callback Function Status Codes32

The following status code may be returned indicating various actions taken by other event handlers.33

PMIX_EVENT_NO_ACTION_TAKEN -331 Event handler: No action taken.34
PMIX_EVENT_PARTIAL_ACTION_TAKEN -332 Event handler: Partial action taken.35
PMIX_EVENT_ACTION_DEFERRED -333 Event handler: Action deferred.36
PMIX_EVENT_ACTION_COMPLETE -334 Event handler: Action complete.37

CHAPTER 10. EVENT NOTIFICATION 157

Un
offi
cia
l D
raf
t

CHAPTER 11

Data Packing and Unpacking

PMIx intentionally does not include support for internode communications in the standard, instead1
relying on its host SMS environment to transfer any needed data and/or requests between nodes.2
These operations frequently involve PMIx-defined public data structures that include binary data.3
Many HPC clusters are homogeneous, and so transferring the structures can be done rather simply.4
However, greater effort is required in heterogeneous environments to ensure binary data is correctly5
transferred. PMIx buffer manipulation functions are provided for this purpose via standardized6
interfaces to ease adoption.7

11.1 Data Buffer Type8

The pmix_data_buffer_t structure describes a data buffer used for packing and unpacking.9
PMIx v2.0 C

typedef struct pmix_data_buffer {10
/** Start of my memory */11
char *base_ptr;12
/** Where the next data will be packed to13

(within the allocated memory starting14
at base_ptr) */15

char *pack_ptr;16
/** Where the next data will be unpacked17

from (within the allocated memory18
starting as base_ptr) */19

char *unpack_ptr;20
/** Number of bytes allocated (starting21

at base_ptr) */22
size_t bytes_allocated;23
/** Number of bytes used by the buffer24

(i.e., amount of data - including25
overhead - packed in the buffer) */26

size_t bytes_used;27
} pmix_data_buffer_t;28

C

158

Un
offi
cia
l D
raf
t

11.2 Support Macros1

PMIx provides a set of convenience macros for creating, initiating, and releasing data buffers.2

Static initializer for the data buffer structure3 Provisional Provide a static initializer for the pmix_data_buffer_t fields.4
PMIx v4.2 C

PMIX_DATA_BUFFER_STATIC_INIT5

C

PMIX_DATA_BUFFER_CREATE6
Allocate memory for a pmix_data_buffer_t object and initialize it. This macro uses calloc to7
allocate memory for the buffer and initialize all fields in it8

PMIx v2.0 C
PMIX_DATA_BUFFER_CREATE(buffer);9

C

OUT buffer10
Variable to be assigned the pointer to the allocated pmix_data_buffer_t (handle)11

PMIX_DATA_BUFFER_RELEASE12
Free a pmix_data_buffer_t object and the data it contains. Free’s the data contained in the13
buffer, and then free’s the buffer itself14

PMIx v2.0 C
PMIX_DATA_BUFFER_RELEASE(buffer);15

C

IN buffer16
Pointer to the pmix_data_buffer_t to be released (handle)17

PMIX_DATA_BUFFER_CONSTRUCT18
Initialize a statically declared pmix_data_buffer_t object.19

PMIx v2.0 C
PMIX_DATA_BUFFER_CONSTRUCT(buffer);20

C

IN buffer21
Pointer to the allocated pmix_data_buffer_t that is to be initialized (handle)22

CHAPTER 11. DATA PACKING AND UNPACKING 159

Un
offi
cia
l D
raf
t

PMIX_DATA_BUFFER_DESTRUCT1
Release the data contained in a pmix_data_buffer_t object.2

C
PMIX_DATA_BUFFER_DESTRUCT(buffer);3

C

IN buffer4
Pointer to the pmix_data_buffer_t whose data is to be released (handle)5

PMIX_DATA_BUFFER_LOAD6
Load a blob into a pmix_data_buffer_t object. Load the given data into the provided7
pmix_data_buffer_t object, usually done in preparation for unpacking the provided data.8
Note that the data is not copied into the buffer - thus, the blob must not be released until after9
operations on the buffer have completed.10

PMIx v2.0 C
PMIX_DATA_BUFFER_LOAD(buffer, data, size);11

C

IN buffer12
Pointer to a pre-allocated pmix_data_buffer_t (handle)13

IN data14
Pointer to a blob (char*)15

IN size16
Number of bytes in the blob size_t17

PMIX_DATA_BUFFER_UNLOAD18
Unload the data from a pmix_data_buffer_t object. Extract the data in a buffer, assigning the19
pointer to the data (and the number of bytes in the blob) to the provided variables, usually done to20
transmit the blob to a remote process for unpacking. The buffer’s internal pointer will be set to21
NULL to protect the data upon buffer destruct or release - thus, the user is responsible for releasing22
the blob when done with it.23

PMIx v2.0 C
PMIX_DATA_BUFFER_UNLOAD(buffer, data, size);24

C

IN buffer25
Pointer to the pmix_data_buffer_t whose data is to be extracted (handle)26

OUT data27
Variable to be assigned the pointer to the extracted blob (void*)28

OUT size29
Variable to be assigned the number of bytes in the blob size_t30

160 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

11.3 General Routines1

The following routines are provided to support internode transfers in heterogeneous environments.2

11.3.1 PMIx_Data_pack3

Summary4
Pack one or more values of a specified type into a buffer, usually for transmission to another process.5

Format6 PMIx v2.0 C
pmix_status_t7
PMIx_Data_pack(const pmix_proc_t *target,8

pmix_data_buffer_t *buffer,9
void *src, int32_t num_vals,10
pmix_data_type_t type);11

C

IN target12
Pointer to a pmix_proc_t containing the nspace/rank of the process that will be unpacking13
the final buffer. A NULL value may be used to indicate that the target is based on the same14
PMIx version as the caller. Note that only the target’s nspace is relevant. (handle)15

IN buffer16
Pointer to a pmix_data_buffer_t where the packed data is to be stored (handle)17

IN src18
Pointer to a location where the data resides. Strings are to be passed as (char **) — i.e., the19
caller must pass the address of the pointer to the string as the (void*). This allows the caller to20
pass multiple strings in a single call. (memory reference)21

IN num_vals22
Number of elements pointed to by the src pointer. A string value is counted as a single value23
regardless of length. The values must be contiguous in memory. Arrays of pointers (e.g.,24
string arrays) should be contiguous, although the data pointed to need not be contiguous25
across array entries.(int32_t)26

IN type27
The type of the data to be packed (pmix_data_type_t)28

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:29

PMIX_ERR_BAD_PARAM The provided buffer or src is NULL30
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this31

implementation32
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation33

If none of the above return codes are appropriate, then an implementation must return either a34
general PMIx error code or an implementation defined error code as described in Section 3.1.1.35

CHAPTER 11. DATA PACKING AND UNPACKING 161

Un
offi
cia
l D
raf
t

Description1
The pack function packs one or more values of a specified type into the specified buffer. The buffer2
must have already been initialized via the PMIX_DATA_BUFFER_CREATE or3
PMIX_DATA_BUFFER_CONSTRUCT macros — otherwise, PMIx_Data_pack will return an4
error. Providing an unsupported type flag will likewise be reported as an error.5

Note that any data to be packed that is not hard type cast (i.e., not type cast to a specific size) may6
lose precision when unpacked by a non-homogeneous recipient. The PMIx_Data_pack function7
will do its best to deal with heterogeneity issues between the packer and unpacker in such cases.8
Sending a number larger than can be handled by the recipient will return an error code (generated9
upon unpacking) — the error cannot be detected during packing.10

The namespace of the intended recipient of the packed buffer (i.e., the process that will be11
unpacking it) is used solely to resolve any data type differences between PMIx versions. The12
recipient must, therefore, be known to the user prior to calling the pack function so that the PMIx13
library is aware of the version the recipient is using. Note that all processes in a given namespace14
are required to use the same PMIx version — thus, the caller must only know at least one process15
from the target’s namespace.16

11.3.2 PMIx_Data_unpack17

Summary18
Unpack values from a pmix_data_buffer_t19

Format20 PMIx v2.0 C
pmix_status_t21
PMIx_Data_unpack(const pmix_proc_t *source,22

pmix_data_buffer_t *buffer, void *dest,23
int32_t *max_num_values,24
pmix_data_type_t type);25

26
C

IN source27
Pointer to a pmix_proc_t structure containing the nspace/rank of the process that packed28
the provided buffer. A NULL value may be used to indicate that the source is based on the29
same PMIx version as the caller. Note that only the source’s nspace is relevant. (handle)30

IN buffer31
A pointer to the buffer from which the value will be extracted. (handle)32

INOUT dest33
A pointer to the memory location into which the data is to be stored. Note that these values34
will be stored contiguously in memory. For strings, this pointer must be to (char**) to provide35
a means of supporting multiple string operations. The unpack function will allocate memory36
for each string in the array - the caller must only provide adequate memory for the array of37
pointers. (void*)38

162 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

INOUT max_num_values1
The number of values to be unpacked — upon completion, the parameter will be set to the2
actual number of values unpacked. In most cases, this should match the maximum number3
provided in the parameters — but in no case will it exceed the value of this parameter. Note4
that unpacking fewer values than are actually available will leave the buffer in an unpackable5
state — the function will return an error code to warn of this condition.(int32_t)6

IN type7
The type of the data to be unpacked — must be one of the PMIx defined data types8
(pmix_data_type_t)9

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:10

PMIX_ERR_BAD_PARAM The provided buffer or dest is NULL11
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this12

implementation13
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation14

If none of the above return codes are appropriate, then an implementation must return either a15
general PMIx error code or an implementation defined error code as described in Section 3.1.1.16

Description17
The unpack function unpacks the next value (or values) of a specified type from the given buffer.18
The buffer must have already been initialized via an PMIX_DATA_BUFFER_CREATE or19
PMIX_DATA_BUFFER_CONSTRUCT call (and assumedly filled with some data) — otherwise, the20
unpack_value function will return an error. Providing an unsupported type flag will likewise be21
reported as an error, as will specifying a data type that does not match the type of the next item in22
the buffer. An attempt to read beyond the end of the stored data held in the buffer will also return an23
error.24

Note that it is possible for the buffer to be corrupted and that PMIx will think there is a proper25
variable type at the beginning of an unpack region — but that the value is bogus (e.g., just a byte26
field in a string array that so happens to have a value that matches the specified data type flag).27
Therefore, the data type error check is not completely safe.28

Unpacking values is a "nondestructive" process — i.e., the values are not removed from the buffer.29
It is therefore possible for the caller to re-unpack a value from the same buffer by resetting the30
unpack_ptr.31

Warning: The caller is responsible for providing adequate memory storage for the requested data.32
The user must provide a parameter indicating the maximum number of values that can be unpacked33
into the allocated memory. If more values exist in the buffer than can fit into the memory storage,34
then the function will unpack what it can fit into that location and return an error code indicating35
that the buffer was only partially unpacked.36

Note that any data that was not hard type cast (i.e., not type cast to a specific size) when packed may37
lose precision when unpacked by a non-homogeneous recipient. PMIx will do its best to deal with38
heterogeneity issues between the packer and unpacker in such cases. Sending a number larger than39

CHAPTER 11. DATA PACKING AND UNPACKING 163

Un
offi
cia
l D
raf
t

can be handled by the recipient will return an error code generated upon unpacking — these errors1
cannot be detected during packing.2

The namespace of the process that packed the buffer is used solely to resolve any data type3
differences between PMIx versions. The packer must, therefore, be known to the user prior to4
calling the pack function so that the PMIx library is aware of the version the packer is using. Note5
that all processes in a given namespace are required to use the same PMIx version — thus, the6
caller must only know at least one process from the packer’s namespace.7

11.3.3 PMIx_Data_copy8

Summary9
Copy a data value from one location to another.10

Format11 PMIx v2.0 C
pmix_status_t12
PMIx_Data_copy(void **dest, void *src,13

pmix_data_type_t type);14

C

IN dest15
The address of a pointer into which the address of the resulting data is to be stored. (void**)16

IN src17
A pointer to the memory location from which the data is to be copied (handle)18

IN type19
The type of the data to be copied — must be one of the PMIx defined data types.20
(pmix_data_type_t)21

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:22

PMIX_ERR_BAD_PARAM The provided src or dest is NULL23
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this24

implementation25
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation26

If none of the above return codes are appropriate, then an implementation must return either a27
general PMIx error code or an implementation defined error code as described in Section 3.1.1.28

Description29
Since registered data types can be complex structures, the system needs some way to know how to30
copy the data from one location to another (e.g., for storage in the registry). This function, which31
can call other copy functions to build up complex data types, defines the method for making a copy32
of the specified data type.33

164 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

11.3.4 PMIx_Data_print1

Summary2
Pretty-print a data value.3

Format4 PMIx v2.0 C
pmix_status_t5
PMIx_Data_print(char **output, char *prefix,6

void *src, pmix_data_type_t type);7

C

IN output8
The address of a pointer into which the address of the resulting output is to be stored.9
(char**)10

IN prefix11
String to be prepended to the resulting output (char*)12

IN src13
A pointer to the memory location of the data value to be printed (handle)14

IN type15
The type of the data value to be printed — must be one of the PMIx defined data types.16
(pmix_data_type_t)17

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:18

PMIX_ERR_BAD_PARAM The provided data type is not recognized.19

If none of the above return codes are appropriate, then an implementation must return either a20
general PMIx error code or an implementation defined error code as described in Section 3.1.1.21

Description22
Since registered data types can be complex structures, the system needs some way to know how to23
print them (i.e., convert them to a string representation). Primarily for debug purposes.24

11.3.5 PMIx_Data_copy_payload25

Summary26
Copy a payload from one buffer to another27

CHAPTER 11. DATA PACKING AND UNPACKING 165

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Data_copy_payload(pmix_data_buffer_t *dest,3

pmix_data_buffer_t *src);4

C

IN dest5
Pointer to the destination pmix_data_buffer_t (handle)6

IN src7
Pointer to the source pmix_data_buffer_t (handle)8

Returns one of the following:9

PMIX_SUCCESS The data has been copied as requested10
PMIX_ERR_BAD_PARAM The src and dest pmix_data_buffer_t types do not match11
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.12

Description13
This function will append a copy of the payload in one buffer into another buffer. Note that this is14
not a destructive procedure — the source buffer’s payload will remain intact, as will any pre-existing15
payload in the destination’s buffer. Only the unpacked portion of the source payload will be copied.16

11.3.6 PMIx_Data_load17

Summary18
Load a buffer with the provided payload19

Format20 Provisional
v4.1

C
pmix_status_t21
PMIx_Data_load(pmix_data_buffer_t *dest,22

pmix_byte_object_t *src);23

C

IN dest24
Pointer to the destination pmix_data_buffer_t (handle)25

IN src26
Pointer to the source pmix_byte_object_t (handle)27

Returns one of the following:28

PMIX_SUCCESS The data has been loaded as requested29
PMIX_ERR_BAD_PARAM The dest structure pointer is NULL30
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.31

166 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
The load function allows the caller to transfer the contents of the src pmix_byte_object_t to2
the dest target buffer. If a payload already exists in the buffer, the function will "free" the existing3
data to release it, and then replace the data payload with the one provided by the caller.4

Advice to users

The buffer must be allocated or constructed in advance - failing to do so will cause the load5
function to return an error code.6

The caller is responsible for pre-packing the provided payload. For example, the load function7
cannot convert to network byte order any data contained in the provided payload.8

11.3.7 PMIx_Data_unload9

Summary10
Unload a buffer into a byte object11

Format12 Provisional
v4.1

C
pmix_status_t13
PMIx_Data_unload(pmix_data_buffer_t *src,14

pmix_byte_object_t *dest);15

C

IN src16
Pointer to the source pmix_data_buffer_t (handle)17

IN dest18
Pointer to the destination pmix_byte_object_t (handle)19

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:20

PMIX_ERR_BAD_PARAM The destination and/or source pointer is NULL21

If none of the above return codes are appropriate, then an implementation must return either a22
general PMIx error code or an implementation defined error code as described in Section 3.1.1.23

CHAPTER 11. DATA PACKING AND UNPACKING 167

Un
offi
cia
l D
raf
t

Description1
The unload function provides the caller with a pointer to the portion of the data payload within the2
buffer that has not yet been unpacked, along with the size of that region. Any portion of the payload3
that was previously unpacked using the PMIx_Data_unpack routine will be ignored. This4
allows the user to directly access the payload.5

Advice to users

This is a destructive operation. While the payload returned in the destination6
pmix_byte_object_t is undisturbed, the function will clear the src’s pointers to the payload.7
Thus, the src and the payload are completely separated, leaving the caller able to free or destruct the8
src.9

11.3.8 PMIx_Data_compress10

Summary11
Perform a lossless compression on the provided data12

Format13 Provisional
v4.1

C
bool14
PMIx_Data_compress(const uint8_t *inbytes, size_t size,15

uint8_t **outbytes, size_t *nbytes);16

C

IN inbytes17
Pointer to the source data (handle)18

IN size19
Number of bytes in the source data region (size_t)20

OUT outbytes21
Address where the pointer to the compressed data region is to be returned (handle)22

OUT nbytes23
Address where the number of bytes in the compressed data region is to be returned (handle)24

Returns one of the following:25

• True The data has been compressed as requested26

• False The data has not been compressed27

168 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Compress the provided data block. Destination memory will be allocated if operation is2
successfully concluded. Caller is responsible for release of the allocated region. The input data3
block will remain unaltered.4

Note: the compress function will return False if the operation would not result in a smaller data5
block.6

11.3.9 PMIx_Data_decompress7

Summary8
Decompress the provided data9

Format10 Provisional
v4.1

C
bool11
PMIx_Data_decompress(const uint8_t *inbytes, size_t size,12

uint8_t **outbytes, size_t *nbytes);13

C

OUT outbytes14
Address where the pointer to the decompressed data region is to be returned (handle)15

OUT nbytes16
Address where the number of bytes in the decompressed data region is to be returned (handle)17

IN inbytes18
Pointer to the source data (handle)19

IN size20
Number of bytes in the source data region (size_t)21

Returns one of the following:22

• True The data has been decompressed as requested23

• False The data has not been decompressed24

Description25
Decompress the provided data block. Destination memory will be allocated if operation is26
successfully concluded. Caller is responsible for release of the allocated region. The input data27
block will remain unaltered.28

Only data compressed by the PMIx_Data_compress API can be decompressed by this29
function. Passing data that has not been compressed by PMIx_Data_compress will lead to30
unexpected and potentially catastrophic results.31

CHAPTER 11. DATA PACKING AND UNPACKING 169

Un
offi
cia
l D
raf
t

11.3.10 PMIx_Data_embed1

Summary2
Embed a data payload into a buffer3

Format4 C
pmix_status_t5
PMIx_Data_embed(pmix_data_buffer_t *buffer,6

const pmix_byte_object_t *payload);7

C

OUT buffer8
Address of the buffer where the payload is to be embedded (handle)9

IN payload10
Address of the pmix_byte_object_t structure containing the data to be embedded into11
the buffer (handle)12

Returns one of the following:13

PMIX_SUCCESS The data has been embedded as requested14
PMIX_ERR_BAD_PARAM The destination and/or source pointer is NULL15
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.16

Description17
The embed function is identical in operation to PMIx_Data_load except that it does not clear18
the payload object upon completion.19

170 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 12

Process Management

This chapter defines functionality processes can use to abort processes, spawn processes, and1
determine the relative locality of local processes.2

12.1 Abort3

PMIx provides a dedicated API by which an application can request that specified processes be4
aborted by the system.5

12.1.1 PMIx_Abort6

Summary7
Abort the specified processes8

Format9 PMIx v1.0 C
pmix_status_t10
PMIx_Abort(int status, const char msg[],11

pmix_proc_t procs[], size_t nprocs)12

C

IN status13
Error code to return to invoking environment (integer)14

IN msg15
String message to be returned to user (string)16

IN procs17
Array of pmix_proc_t structures (array of handles)18

IN nprocs19
Number of elements in the procs array (integer)20

A successful return indicates that the requested processes are in a terminated state. Note that the21
function shall not return in this situation if the caller’s own process was included in the request.22

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:23

171

Un
offi
cia
l D
raf
t

• PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED if the PMIx implementation and host1
environment support this API, but the request includes processes that the host environment2
cannot abort - e.g., if the request is to abort subsets of processes from a namespace, or processes3
outside of the caller’s own namespace, and the host environment does not permit such4
operations. In this case, none of the specified processes will be terminated.5

If none of the above return codes are appropriate, then an implementation must return either a6
general PMIx error code or an implementation defined error code as described in Section 3.1.1.7

Description8
Request that the host resource manager print the provided message and abort the provided array of9
procs. A Unix or POSIX environment should handle the provided status as a return error code from10
the main program that launched the application. A NULL for the procs array indicates that all11
processes in the caller’s namespace are to be aborted, including itself - this is the equivalent of12
passing a pmix_proc_t array element containing the caller’s namespace and a rank value of13
PMIX_RANK_WILDCARD. While it is permitted for a caller to request abort of processes from14
namespaces other than its own, not all environments will support such requests. Passing a NULL15
msg parameter is allowed.16

The function shall not return until the host environment has carried out the operation on the17
specified processes. If the caller is included in the array of targets, then the function will not return18
unless the host is unable to execute the operation.19

Advice to users

The response to this request is somewhat dependent on the specific RM and its configuration (e.g.,20
some resource managers will not abort the application if the provided status is zero unless21
specifically configured to do so, some cannot abort subsets of processes in an application, and some22
may not permit termination of processes outside of the caller’s own namespace), and thus lies23
outside the control of PMIx itself. However, the PMIx client library shall inform the RM of the24
request that the specified procs be aborted, regardless of the value of the provided status.25

Note that race conditions caused by multiple processes calling PMIx_Abort are left to the server26
implementation to resolve with regard to which status is returned and what messages (if any) are27
printed.28

12.2 Process Creation29

The PMIx_Spawn commands spawn new processes and/or applications in the PMIx universe.30
This may include requests to extend the existing resource allocation or obtain a new one, depending31
upon provided and supported attributes.32

172 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

12.2.1 PMIx_Spawn1

Summary2
Spawn a new job.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,6

const pmix_app_t apps[], size_t napps,7
char nspace[])8

C

IN job_info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the job_info array (integer)12

IN apps13
Array of pmix_app_t structures (array of handles)14

IN napps15
Number of elements in the apps array (integer)16

OUT nspace17
Namespace of the new job (string)18

Returns PMIX_SUCCESS or a negative value indicating the error.19

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any20
provided attributes must be passed to the host environment for processing.21

Host environments are required to support the following attributes when present in either the22
job_info or the info array of an element of the apps array:23

PMIX_WDIR "pmix.wdir" (char*)24
Working directory for spawned processes.25

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)26
Set the current working directory to the session working directory assigned by the RM - can27
be assigned to the entire job (by including attribute in the job_info array) or on a28
per-application basis in the info array for each pmix_app_t.29

PMIX_PREFIX "pmix.prefix" (char*)30
Prefix to use for starting spawned processes - i.e., the directory where the executables can be31
found.32

PMIX_HOST "pmix.host" (char*)33
Comma-delimited list of hosts to use for spawned processes.34

CHAPTER 12. PROCESS MANAGEMENT 173

Un
offi
cia
l D
raf
t

PMIX_HOSTFILE "pmix.hostfile" (char*)1
Hostfile to use for spawned processes.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)4
Hostfile containing hosts to add to existing allocation.5

PMIX_ADD_HOST "pmix.addhost" (char*)6
Comma-delimited list of hosts to add to the allocation.7

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)8
Preload executables onto nodes prior to executing launch procedure.9

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)10
Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.11

PMIX_PERSONALITY "pmix.pers" (char*)12
Name of personality corresponding to programming model used by application - supported13
values depend upon PMIx implementation.14

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)15
Display process mapping upon spawn.16

PMIX_PPR "pmix.ppr" (char*)17
Number of processes to spawn on each identified resource.18

PMIX_MAPBY "pmix.mapby" (char*)19
Process mapping policy - when accessed using PMIx_Get, use the20
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the21
provided namespace. Supported values are launcher specific.22

PMIX_RANKBY "pmix.rankby" (char*)23
Process ranking policy - when accessed using PMIx_Get, use the24
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the25
provided namespace. Supported values are launcher specific.26

PMIX_BINDTO "pmix.bindto" (char*)27
Process binding policy - when accessed using PMIx_Get, use the28
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the29
provided namespace. Supported values are launcher specific.30

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)31
Spawned process rank that is to receive any forwarded stdin.32

PMIX_TAG_OUTPUT "pmix.tagout" (bool)33

174 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Tag stdout/stderr with the identity of the source process - can be assigned to the entire1
job (by including attribute in the job_info array) or on a per-application basis in the info2
array for each pmix_app_t.3

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)4
Timestamp output - can be assigned to the entire job (by including attribute in the job_info5
array) or on a per-application basis in the info array for each pmix_app_t.6

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)7
Merge stdout and stderr streams - can be assigned to the entire job (by including8
attribute in the job_info array) or on a per-application basis in the info array for each9
pmix_app_t.10

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)11
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be12
assigned to the entire job (by including attribute in the job_info array) or on a per-application13
basis in the info array for each pmix_app_t.14

PMIX_INDEX_ARGV "pmix.indxargv" (bool)15
Mark the argv with the rank of the process.16

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)17
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the18
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the19
provided namespace.20

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)21
Do not place processes on the head node.22

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)23
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a24
node.25

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)26
Report bindings of the individual processes.27

PMIX_CPU_LIST "pmix.cpulist" (char*)28
List of PUs to use for this job - when accessed using PMIx_Get, use the29
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided30
namespace.31

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)32
Application supports recoverable operations.33

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)34
Application is continuous, all failed processes should be immediately restarted.35

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)36

CHAPTER 12. PROCESS MANAGEMENT 175

Un
offi
cia
l D
raf
t

Maximum number of times to restart a process - when accessed using PMIx_Get, use the1
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided2
namespace.3

PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)4
Set the envar to the given value, overwriting any pre-existing one5

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)6
Unset the environment variable specified in the string.7

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)8
Add the environment variable, but do not overwrite any pre-existing one9

PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)10
Prepend the given value to the specified environmental value using the given separator11
character, creating the variable if it doesn’t already exist12

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)13
Append the given value to the specified environmental value using the given separator14
character, creating the variable if it doesn’t already exist15

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)16
Ensure the given value appears first in the specified envar using the separator character,17
creating the envar if it doesn’t already exist18

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)19
Name of the WLM queue to which the allocation request is to be directed, or the queue being20
referenced in a query.21

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)22
Total session time (in seconds) being requested in an allocation request.23

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)24
The number of nodes being requested in an allocation request.25

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)26
Regular expression of the specific nodes being requested in an allocation request.27

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)28
Number of PUs being requested in an allocation request.29

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)30
Regular expression of the number of PUs for each node being requested in an allocation31
request.32

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)33
Regular expression of the specific PUs being requested in an allocation request.34

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)35

176 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Number of Megabytes[base2] of memory (per process) being requested in an allocation1
request.2

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)3
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation4
request.5

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)6
Fabric quality of service level for the job being requested in an allocation request.7

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)8
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.9

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)10
ID string for the fabric plane to be used for the requested allocation.11

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)12
Number of endpoints to allocate per process in the job.13

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)14
Number of endpoints to allocate per node for the job.15

PMIX_COSPAWN_APP "pmix.cospawn" (bool)16
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not17
include the application in any of the job-level values (e.g., PMIX_RANK within the job)18
provided to any other application process generated by the same spawn request. Typically19
used to cospawn debugger daemons alongside an application.20

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)21
Indicate that the job being spawned is a tool.22

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)23
Do not generate an event when this job normally terminates.24

PMIX_ENVARS_HARVESTED "pmix.evar.hvstd" (bool)25
Environmental parameters have been harvested by the spawn requestor - the server does not26
need to harvest them.27

PMIX_JOB_TIMEOUT "pmix.job.time" (int)28
Time in seconds before the spawned job should time out and be terminated (0 => infinite),29
defined as the total runtime of the job (equivalent to the walltime limit of typical batch30
schedulers).31

PMIX_SPAWN_TIMEOUT "pmix.sp.time" (int)32
Time in seconds before spawn operation should time out (0 => infinite). Logically33
equivalent to passing the PMIX_TIMEOUT attribute to the PMIx_Spawn API, it is34
provided as a separate attribute to distinguish it from the PMIX_JOB_TIMEOUT attribute35

CHAPTER 12. PROCESS MANAGEMENT 177

Un
offi
cia
l D
raf
t

Description1
Spawn a new job. The assigned namespace of the spawned applications is returned in the nspace2
parameter. A NULL value in that location indicates that the caller doesn’t wish to have the3
namespace returned. The nspace array must be at least of size one more than PMIX_MAX_NSLEN.4

By default, the spawned processes will be PMIx “connected” to the parent process upon successful5
launch (see Section 12.3 for details). This includes that (a) the parent process will be given a copy6
of the new job’s information so it can query job-level info without incurring any communication7
penalties, (b) newly spawned child processes will receive a copy of the parent processes job-level8
info, and (c) both the parent process and members of the child job will receive notification of errors9
from processes in their combined assemblage.10

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any11
application process to start will result in termination/cleanup of all processes in the newly spawned12
job and return of an error code to the caller.13

Advice to PMIx library implementers

Tools may utilize PMIx_Spawn to start intermediate launchers as described in Section 18.2.2. For14
times where the tool is not attached to a PMIx server, internal support for fork/exec of the specified15
applications would allow the tool to maintain a single code path for both the connected and16
disconnected cases. Inclusion of such support is recommended, but not required.17

12.2.2 PMIx_Spawn_nb18

Summary19
Nonblocking version of the PMIx_Spawn routine.20

178 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Spawn_nb(const pmix_info_t job_info[], size_t ninfo,3

const pmix_app_t apps[], size_t napps,4
pmix_spawn_cbfunc_t cbfunc, void *cbdata)5

C

IN job_info6
Array of info structures (array of handles)7

IN ninfo8
Number of elements in the job_info array (integer)9

IN apps10
Array of pmix_app_t structures (array of handles)11

IN cbfunc12
Callback function pmix_spawn_cbfunc_t (function reference)13

IN cbdata14
Data to be passed to the callback function (memory reference)15

A successful return indicates that the request is being processed and the result will be returned in16
the provided cbfunc. Note that the library must not invoke the callback function prior to returning17
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.18

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:19

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and20
returned success - the cbfunc will not be called21

If none of the above return codes are appropriate, then an implementation must return either a22
general PMIx error code or an implementation defined error code as described in Section 3.1.1.23

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any24
provided attributes must be passed to the host SMS daemon for processing.25

Host environments are required to support the following attributes when present in either the26
job_info or the info array of an element of the apps array:27

PMIX_WDIR "pmix.wdir" (char*)28
Working directory for spawned processes.29

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)30
Set the current working directory to the session working directory assigned by the RM - can31
be assigned to the entire job (by including attribute in the job_info array) or on a32
per-application basis in the info array for each pmix_app_t.33

PMIX_PREFIX "pmix.prefix" (char*)34

CHAPTER 12. PROCESS MANAGEMENT 179

Un
offi
cia
l D
raf
t

Prefix to use for starting spawned processes - i.e., the directory where the executables can be1
found.2

PMIX_HOST "pmix.host" (char*)3
Comma-delimited list of hosts to use for spawned processes.4

PMIX_HOSTFILE "pmix.hostfile" (char*)5
Hostfile to use for spawned processes.6

Optional Attributes

The following attributes are optional for host environments that support this operation:7

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)8
Hostfile containing hosts to add to existing allocation.9

PMIX_ADD_HOST "pmix.addhost" (char*)10
Comma-delimited list of hosts to add to the allocation.11

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)12
Preload executables onto nodes prior to executing launch procedure.13

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)14
Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.15

PMIX_PERSONALITY "pmix.pers" (char*)16
Name of personality corresponding to programming model used by application - supported17
values depend upon PMIx implementation.18

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)19
Display process mapping upon spawn.20

PMIX_PPR "pmix.ppr" (char*)21
Number of processes to spawn on each identified resource.22

PMIX_MAPBY "pmix.mapby" (char*)23
Process mapping policy - when accessed using PMIx_Get, use the24
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the25
provided namespace. Supported values are launcher specific.26

PMIX_RANKBY "pmix.rankby" (char*)27
Process ranking policy - when accessed using PMIx_Get, use the28
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the29
provided namespace. Supported values are launcher specific.30

PMIX_BINDTO "pmix.bindto" (char*)31
Process binding policy - when accessed using PMIx_Get, use the32
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the33
provided namespace. Supported values are launcher specific.34

180 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)1
Spawned process rank that is to receive any forwarded stdin.2

PMIX_TAG_OUTPUT "pmix.tagout" (bool)3
Tag stdout/stderr with the identity of the source process - can be assigned to the entire4
job (by including attribute in the job_info array) or on a per-application basis in the info5
array for each pmix_app_t.6

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)7
Timestamp output - can be assigned to the entire job (by including attribute in the job_info8
array) or on a per-application basis in the info array for each pmix_app_t.9

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)10
Merge stdout and stderr streams - can be assigned to the entire job (by including11
attribute in the job_info array) or on a per-application basis in the info array for each12
pmix_app_t.13

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)14
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be15
assigned to the entire job (by including attribute in the job_info array) or on a per-application16
basis in the info array for each pmix_app_t.17

PMIX_INDEX_ARGV "pmix.indxargv" (bool)18
Mark the argv with the rank of the process.19

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)20
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the21
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the22
provided namespace.23

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)24
Do not place processes on the head node.25

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)26
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a27
node.28

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)29
Report bindings of the individual processes.30

PMIX_CPU_LIST "pmix.cpulist" (char*)31
List of PUs to use for this job - when accessed using PMIx_Get, use the32
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided33
namespace.34

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)35
Application supports recoverable operations.36

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)37

CHAPTER 12. PROCESS MANAGEMENT 181

Un
offi
cia
l D
raf
t

Application is continuous, all failed processes should be immediately restarted.1

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)2
Maximum number of times to restart a process - when accessed using PMIx_Get, use the3
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided4
namespace.5

PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)6
Set the envar to the given value, overwriting any pre-existing one7

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)8
Unset the environment variable specified in the string.9

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)10
Add the environment variable, but do not overwrite any pre-existing one11

PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)12
Prepend the given value to the specified environmental value using the given separator13
character, creating the variable if it doesn’t already exist14

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)15
Append the given value to the specified environmental value using the given separator16
character, creating the variable if it doesn’t already exist17

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)18
Ensure the given value appears first in the specified envar using the separator character,19
creating the envar if it doesn’t already exist20

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)21
Name of the WLM queue to which the allocation request is to be directed, or the queue being22
referenced in a query.23

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)24
Total session time (in seconds) being requested in an allocation request.25

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)26
The number of nodes being requested in an allocation request.27

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)28
Regular expression of the specific nodes being requested in an allocation request.29

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)30
Number of PUs being requested in an allocation request.31

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)32
Regular expression of the number of PUs for each node being requested in an allocation33
request.34

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)35
Regular expression of the specific PUs being requested in an allocation request.36

182 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)1
Number of Megabytes[base2] of memory (per process) being requested in an allocation2
request.3

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)4
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation5
request.6

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)7
Fabric quality of service level for the job being requested in an allocation request.8

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)9
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.10

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)11
ID string for the fabric plane to be used for the requested allocation.12

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)13
Number of endpoints to allocate per process in the job.14

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)15
Number of endpoints to allocate per node for the job.16

PMIX_COSPAWN_APP "pmix.cospawn" (bool)17
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not18
include the application in any of the job-level values (e.g., PMIX_RANK within the job)19
provided to any other application process generated by the same spawn request. Typically20
used to cospawn debugger daemons alongside an application.21

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)22
Indicate that the job being spawned is a tool.23

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)24
Do not generate an event when this job normally terminates.25

PMIX_ENVARS_HARVESTED "pmix.evar.hvstd" (bool)26
Environmental parameters have been harvested by the spawn requestor - the server does not27
need to harvest them.28

PMIX_JOB_TIMEOUT "pmix.job.time" (int)29
Time in seconds before the spawned job should time out and be terminated (0 => infinite),30
defined as the total runtime of the job (equivalent to the walltime limit of typical batch31
schedulers).32

PMIX_SPAWN_TIMEOUT "pmix.sp.time" (int)33
Time in seconds before spawn operation should time out (0 => infinite). Logically34
equivalent to passing the PMIX_TIMEOUT attribute to the PMIx_Spawn API, it is35
provided as a separate attribute to distinguish it from the PMIX_JOB_TIMEOUT attribute36

CHAPTER 12. PROCESS MANAGEMENT 183

Un
offi
cia
l D
raf
t

Description1
Nonblocking version of the PMIx_Spawn routine. The provided callback function will be2
executed upon successful start of all specified application processes.3

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any4
application process to start will result in termination/cleanup of all processes in the newly spawned5
job and return of an error code to the caller.6

12.2.3 Spawn-specific constants7

In addition to the generic error constants, the following spawn-specific error constants may be8
returned by the spawn APIs:9

PMIX_ERR_JOB_ALLOC_FAILED -188 The job request could not be executed due to10
failure to obtain the specified allocation11

PMIX_ERR_JOB_APP_NOT_EXECUTABLE -177 The specified application executable12
either could not be found, or lacks execution privileges.13

PMIX_ERR_JOB_NO_EXE_SPECIFIED -178 The job request did not specify an14
executable.15

PMIX_ERR_JOB_FAILED_TO_MAP -179 The launcher was unable to map the processes16
for the specified job request.17

PMIX_ERR_JOB_FAILED_TO_LAUNCH -181 One or more processes in the job request18
failed to launch19

PMIX_ERR_JOB_EXE_NOT_FOUNDProvisional Specified executable not found20

PMIX_ERR_JOB_INSUFFICIENT_RESOURCESProvisional Insufficient resources to spawn job21

PMIX_ERR_JOB_SYS_OP_FAILEDProvisional System library operation failed22

PMIX_ERR_JOB_WDIR_NOT_FOUNDProvisional Specified working directory not found23

184 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

12.2.4 Spawn attributes1

Attributes used to describe PMIx_Spawn behavior - they are values passed to the PMIx_Spawn2
API and therefore are not accessed using the PMIx_Get APIs when used in that context. However,3
some of the attributes defined in this section can be provided by the host environment for other4
purposes - e.g., the host might provide the PMIX_MAPBY attribute in the job-related information so5
that an application can use PMIx_Get to discover the mapping used for determining process6
locations. Multi-use attributes and their respective access reference rank are denoted below.7

PMIX_PERSONALITY "pmix.pers" (char*)8
Name of personality corresponding to programming model used by application - supported9
values depend upon PMIx implementation.10

PMIX_HOST "pmix.host" (char*)11
Comma-delimited list of hosts to use for spawned processes.12

PMIX_HOSTFILE "pmix.hostfile" (char*)13
Hostfile to use for spawned processes.14

PMIX_ADD_HOST "pmix.addhost" (char*)15
Comma-delimited list of hosts to add to the allocation.16

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)17
Hostfile containing hosts to add to existing allocation.18

PMIX_PREFIX "pmix.prefix" (char*)19
Prefix to use for starting spawned processes - i.e., the directory where the executables can be20
found.21

PMIX_WDIR "pmix.wdir" (char*)22
Working directory for spawned processes.23

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)24
Display process mapping upon spawn.25

PMIX_PPR "pmix.ppr" (char*)26
Number of processes to spawn on each identified resource.27

PMIX_MAPBY "pmix.mapby" (char*)28
Process mapping policy - when accessed using PMIx_Get, use the29
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the30
provided namespace. Supported values are launcher specific.31

PMIX_RANKBY "pmix.rankby" (char*)32
Process ranking policy - when accessed using PMIx_Get, use the33
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the34
provided namespace. Supported values are launcher specific.35

PMIX_BINDTO "pmix.bindto" (char*)36
Process binding policy - when accessed using PMIx_Get, use the37
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the38
provided namespace. Supported values are launcher specific.39

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)40
Preload executables onto nodes prior to executing launch procedure.41

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)42

CHAPTER 12. PROCESS MANAGEMENT 185

Un
offi
cia
l D
raf
t

Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.1
PMIX_STDIN_TGT "pmix.stdin" (uint32_t)2

Spawned process rank that is to receive any forwarded stdin.3
PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)4

Set the current working directory to the session working directory assigned by the RM - can5
be assigned to the entire job (by including attribute in the job_info array) or on a6
per-application basis in the info array for each pmix_app_t.7

PMIX_TAG_OUTPUT "pmix.tagout" (bool)8
Tag stdout/stderr with the identity of the source process - can be assigned to the entire9
job (by including attribute in the job_info array) or on a per-application basis in the info10
array for each pmix_app_t.11

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)12
Timestamp output - can be assigned to the entire job (by including attribute in the job_info13
array) or on a per-application basis in the info array for each pmix_app_t.14

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)15
Merge stdout and stderr streams - can be assigned to the entire job (by including16
attribute in the job_info array) or on a per-application basis in the info array for each17
pmix_app_t.18

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)19
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be20
assigned to the entire job (by including attribute in the job_info array) or on a per-application21
basis in the info array for each pmix_app_t.22

PMIX_OUTPUT_TO_DIRECTORY "pmix.outdir" (char*)23
Direct output into files of form "<directory>/<jobid>/rank.<rank>/24
stdout[err]" - can be assigned to the entire job (by including attribute in the job_info25
array) or on a per-application basis in the info array for each pmix_app_t.26

PMIX_INDEX_ARGV "pmix.indxargv" (bool)27
Mark the argv with the rank of the process.28

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)29
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the30
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the31
provided namespace.32

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)33
Do not place processes on the head node.34

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)35
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a36
node.37

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)38
Report bindings of the individual processes.39

PMIX_CPU_LIST "pmix.cpulist" (char*)40
List of PUs to use for this job - when accessed using PMIx_Get, use the41
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided42
namespace.43

186 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)1
Application supports recoverable operations.2

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)3
Application is continuous, all failed processes should be immediately restarted.4

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)5
Maximum number of times to restart a process - when accessed using PMIx_Get, use the6
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided7
namespace.8

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)9
Indicate that the job being spawned is a tool.10

PMIX_TIMEOUT_STACKTRACES "pmix.tim.stack" (bool)11
Include process stacktraces in timeout report from a job.12

PMIX_TIMEOUT_REPORT_STATE "pmix.tim.state" (bool)13
Report process states in timeout report from a job.14

PMIX_NOTIFY_JOB_EVENTS "pmix.note.jev" (bool)15
Requests that the launcher generate the PMIX_EVENT_JOB_START,16
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events. Each event is to17
include at least the namespace of the corresponding job and a PMIX_EVENT_TIMESTAMP18
indicating the time the event occurred. Note that the requester must register for these19
individual events, or capture and process them by registering a default event handler instead20
of individual handlers and then process the events based on the returned status code.21
Another common method is to register one event handler for all job-related events, with a22
separate handler for non-job events - see PMIx_Register_event_handler for details.23

PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)24
Requests that the launcher generate the PMIX_EVENT_JOB_END event for normal or25
abnormal termination of the spawned job. The event shall include the returned status code26
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)27
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a28
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred. Note that the29
requester must register for the event or capture and process it within a default event handler.30

PMIX_NOTIFY_PROC_TERMINATION "pmix.noteproc" (bool)31
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event32
whenever a process either normally or abnormally terminates.33

PMIX_NOTIFY_PROC_ABNORMAL_TERMINATION "pmix.noteabproc" (bool)34
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event only35
when a process abnormally terminates.36

PMIX_LOG_PROC_TERMINATION "pmix.logproc" (bool)37
Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event whenever a38
process either normally or abnormally terminates.39

PMIX_LOG_PROC_ABNORMAL_TERMINATION "pmix.logabproc" (bool)40
Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event only when a41
process abnormally terminates.42

PMIX_LOG_JOB_EVENTS "pmix.log.jev" (bool)43

CHAPTER 12. PROCESS MANAGEMENT 187

Un
offi
cia
l D
raf
t

Requests that the launcher log the PMIX_EVENT_JOB_START,1
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events using PMIx_Log,2
subject to the logging attributes of Section 13.4.3.3

PMIX_LOG_COMPLETION "pmix.logcomp" (bool)4
Requests that the launcher log the PMIX_EVENT_JOB_END event for normal or abnormal5
termination of the spawned job using PMIx_Log, subject to the logging attributes of6
Section 13.4.3. The event shall include the returned status code7
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)8
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a9
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred.10

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)11
Do not generate an event when this job normally terminates.12

PMIX_ENVARS_HARVESTED "pmix.evar.hvstd" (bool)Provisional13
Environmental parameters have been harvested by the spawn requestor - the server does not14
need to harvest them.15

PMIX_JOB_TIMEOUT "pmix.job.time" (int)Provisional16
Time in seconds before the spawned job should time out and be terminated (0 => infinite),17
defined as the total runtime of the job (equivalent to the walltime limit of typical batch18
schedulers).19

PMIX_SPAWN_TIMEOUT "pmix.sp.time" (int)Provisional20
Time in seconds before spawn operation should time out (0 => infinite). Logically21
equivalent to passing the PMIX_TIMEOUT attribute to the PMIx_Spawn API, it is22
provided as a separate attribute to distinguish it from the PMIX_JOB_TIMEOUT attribute23

Attributes used to adjust remote environment variables prior to spawning the specified application24
processes.25

PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)26
Set the envar to the given value, overwriting any pre-existing one27

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)28
Unset the environment variable specified in the string.29

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)30
Add the environment variable, but do not overwrite any pre-existing one31

PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)32
Prepend the given value to the specified environmental value using the given separator33
character, creating the variable if it doesn’t already exist34

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)35
Append the given value to the specified environmental value using the given separator36
character, creating the variable if it doesn’t already exist37

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)38
Ensure the given value appears first in the specified envar using the separator character,39
creating the envar if it doesn’t already exist40

188 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

12.2.5 Application Structure1

The pmix_app_t structure describes the application context for the PMIx_Spawn and2
PMIx_Spawn_nb operations.3

PMIx v1.0 C
typedef struct pmix_app {4

/** Executable */5
char *cmd;6
/** Argument set, NULL terminated */7
char **argv;8
/** Environment set, NULL terminated */9
char **env;10
/** Current working directory */11
char *cwd;12
/** Maximum processes with this profile */13
int maxprocs;14
/** Array of info keys describing this application*/15
pmix_info_t *info;16
/** Number of info keys in ’info’ array */17
size_t ninfo;18

} pmix_app_t;19

C

12.2.5.1 App structure support macros20

The following macros are provided to support the pmix_app_t structure.21

Static initializer for the app structure22 Provisional Provide a static initializer for the pmix_app_t fields.23
PMIx v4.2 C

PMIX_APP_STATIC_INIT24

C

Initialize the app structure25
Initialize the pmix_app_t fields26

PMIx v1.0 C
PMIX_APP_CONSTRUCT(m)27

C

IN m28
Pointer to the structure to be initialized (pointer to pmix_app_t)29

CHAPTER 12. PROCESS MANAGEMENT 189

Un
offi
cia
l D
raf
t

Destruct the app structure1
Destruct the pmix_app_t fields2

C
PMIX_APP_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_app_t)5

Create an app array6
Allocate and initialize an array of pmix_app_t structures7

PMIx v1.0 C
PMIX_APP_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_app_t structures shall be stored (handle)10

IN n11
Number of structures to be allocated (size_t)12

Free an app structure13
Release a pmix_app_t structure14

PMIx v4.0 C
PMIX_APP_RELEASE(m)15

C

IN m16
Pointer to a pmix_app_t structure (handle)17

Free an app array18
Release an array of pmix_app_t structures19

PMIx v1.0 C
PMIX_APP_FREE(m, n)20

C

IN m21
Pointer to the array of pmix_app_t structures (handle)22

IN n23
Number of structures in the array (size_t)24

190 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Create the info array of application directives1
Create an array of pmix_info_t structures for passing application-level directives, updating the2
ninfo field of the pmix_app_t structure.3

C
PMIX_APP_INFO_CREATE(m, n)4

C

IN m5
Pointer to the pmix_app_t structure (handle)6

IN n7
Number of directives to be allocated (size_t)8

12.2.5.2 Spawn Callback Function9

Summary10
The pmix_spawn_cbfunc_t is used on the PMIx client side by PMIx_Spawn_nb and on the11
PMIx server side by pmix_server_spawn_fn_t.12

PMIx v1.0 C
typedef void (*pmix_spawn_cbfunc_t)13

(pmix_status_t status,14
pmix_nspace_t nspace, void *cbdata);15

C

IN status16
Status associated with the operation (handle)17

IN nspace18
Namespace string (pmix_nspace_t)19

IN cbdata20
Callback data passed to original API call (memory reference)21

Description22
The callback will be executed upon launch of the specified applications in PMIx_Spawn_nb, or23
upon failure to launch any of them.24

The status of the callback will indicate whether or not the spawn succeeded. The nspace of the25
spawned processes will be returned, along with any provided callback data. Note that the returned26
nspace value will not be protected upon return from the callback function, so the receiver must27
copy it if it needs to be retained.28

CHAPTER 12. PROCESS MANAGEMENT 191

Un
offi
cia
l D
raf
t

12.3 Connecting and Disconnecting Processes1

This section defines functions to connect and disconnect processes in two or more separate PMIx2
namespaces. The PMIx definition of connected solely implies that the host environment should3
treat the failure of any process in the assemblage as a reportable event, taking action on the4
assemblage as if it were a single application. For example, if the environment defaults (in the5
absence of any application directives) to terminating an application upon failure of any process in6
that application, then the environment should terminate all processes in the connected assemblage7
upon failure of any member.8

The host environment may choose to assign a new namespace to the connected assemblage and/or9
assign new ranks for its members for its own internal tracking purposes. However, it is not required10
to communicate such assignments to the participants (e.g., in response to an appropriate call to11
PMIx_Query_info_nb). The host environment is required to generate a12
PMIX_ERR_PROC_TERM_WO_SYNC event should any process in the assemblage terminate or13
call PMIx_Finalize without first disconnecting from the assemblage. If the job including the14
process is terminated as a result of that action, then the host environment is required to also15
generate the PMIX_ERR_JOB_TERM_WO_SYNC for all jobs that were terminated as a result.16

Advice to PMIx server hosts

The connect operation does not require the exchange of job-level information nor the inclusion of17
information posted by participating processes via PMIx_Put. Indeed, the callback function18
utilized in pmix_server_connect_fn_t cannot pass information back into the PMIx server19
library. However, host environments are advised that collecting such information at the20
participating daemons represents an optimization opportunity as participating processes are likely21
to request such information after the connect operation completes.22

Advice to users

Attempting to connect processes solely within the same namespace is essentially a no-op operation.23
While not explicitly prohibited, users are advised that a PMIx implementation or host environment24
may return an error in such cases.25

Neither the PMIx implementation nor host environment are required to provide any tracking26
support for the assemblage. Thus, the application is responsible for maintaining the membership27
list of the assemblage.28

12.3.1 PMIx_Connect29

Summary30
Connect namespaces.31

192 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Connect(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo)4

C

IN procs5
Array of proc structures (array of handles)6

IN nprocs7
Number of elements in the procs array (integer)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

Returns PMIX_SUCCESS or a negative value indicating the error.13

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any14
provided attributes must be passed to the host SMS daemon for processing.15

Optional Attributes

The following attributes are optional for PMIx implementations:16

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)17
All clones of the calling process must participate in the collective operation.18

The following attributes are optional for host environments that support this operation:19

PMIX_TIMEOUT "pmix.timeout" (int)20
Time in seconds before the specified operation should time out (zero indicating infinite) and21
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions22
caused by multiple layers (client, server, and host) simultaneously timing the operation.23

CHAPTER 12. PROCESS MANAGEMENT 193

Un
offi
cia
l D
raf
t

Description1
Record the processes specified by the procs array as connected as per the PMIx definition. The2
function will return once all processes identified in procs have called either PMIx_Connect or its3
non-blocking version, and the host environment has completed any supporting operations required4
to meet the terms of the PMIx definition of connected processes.5

A process can only engage in one connect operation involving the identical procs array at a time.6
However, a process can be simultaneously engaged in multiple connect operations, each involving a7
different procs array.8

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level9
directives regarding timeout constraints and other options available from the host RM.10

Advice to users

All processes engaged in a given PMIx_Connect operation must provide the identical procs array11
as ordering of entries in the array and the method by which those processes are identified (e.g., use12
of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the host13
environment’s algorithm for uniquely identifying an operation.14

Advice to PMIx library implementers

PMIx_Connect and its non-blocking form are both collective operations. Accordingly, the PMIx15
server library is required to aggregate participation by local clients, passing the request to the host16
environment once all local participants have executed the API.17

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to18
identify the nodes containing participating processes, execute the collective across all participating19
nodes, and notify the local PMIx server library upon completion of the global collective.20

12.3.2 PMIx_Connect_nb21

Summary22
Nonblocking PMIx_Connect_nb routine.23

194 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Connect_nb(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc, void *cbdata)5

C

IN procs6
Array of proc structures (array of handles)7

IN nprocs8
Number of elements in the procs array (integer)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

A successful return indicates that the request is being processed and the result will be returned in18
the provided cbfunc. Note that the library must not invoke the callback function prior to returning19
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.20

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

If none of the above return codes are appropriate, then an implementation must return either a24
general PMIx error code or an implementation defined error code as described in Section 3.1.1.25

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any26
provided attributes must be passed to the host SMS daemon for processing.27

CHAPTER 12. PROCESS MANAGEMENT 195

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for PMIx implementations:1

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)2
All clones of the calling process must participate in the collective operation.3

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Nonblocking version of PMIx_Connect. The callback function is called once all processes10
identified in procs have called either PMIx_Connect or its non-blocking version, and the host11
environment has completed any supporting operations required to meet the terms of the PMIx12
definition of connected processes. See the advice provided in the description for PMIx_Connect13
for more information.14

12.3.3 PMIx_Disconnect15

Summary16
Disconnect a previously connected set of processes.17

Format18 PMIx v1.0 C
pmix_status_t19
PMIx_Disconnect(const pmix_proc_t procs[], size_t nprocs,20

const pmix_info_t info[], size_t ninfo);21

C

IN procs22
Array of proc structures (array of handles)23

IN nprocs24
Number of elements in the procs array (integer)25

IN info26
Array of info structures (array of handles)27

IN ninfo28
Number of elements in the info array (integer)29

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:30

196 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• the PMIX_ERR_INVALID_OPERATION error indicating that the specified set of procs was not1
previously connected via a call to PMIx_Connect or its non-blocking form.2

If none of the above return codes are appropriate, then an implementation must return either a3
general PMIx error code or an implementation defined error code as described in Section 3.1.1.4

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any5
provided attributes must be passed to the host SMS daemon for processing.6

Optional Attributes

The following attributes are optional for PMIx implementations:7

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)8
All clones of the calling process must participate in the collective operation.9

The following attributes are optional for host environments that support this operation:10

PMIX_TIMEOUT "pmix.timeout" (int)11
Time in seconds before the specified operation should time out (zero indicating infinite) and12
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions13
caused by multiple layers (client, server, and host) simultaneously timing the operation.14

Description15
Disconnect a previously connected set of processes. The function will return once all processes16
identified in procs have called either PMIx_Disconnect or its non-blocking version, and the17
host environment has completed any required supporting operations.18

A process can only engage in one disconnect operation involving the identical procs array at a time.19
However, a process can be simultaneously engaged in multiple disconnect operations, each20
involving a different procs array.21

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level22
directives regarding the algorithm to be used for any collective operation involved in the operation,23
timeout constraints, and other options available from the host RM.24

Advice to users

All processes engaged in a given PMIx_Disconnect operation must provide the identical procs25
array as ordering of entries in the array and the method by which those processes are identified26
(e.g., use of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the host27
environment’s algorithm for uniquely identifying an operation.28

CHAPTER 12. PROCESS MANAGEMENT 197

Un
offi
cia
l D
raf
t

Advice to PMIx library implementers

PMIx_Disconnect and its non-blocking form are both collective operations. Accordingly, the1
PMIx server library is required to aggregate participation by local clients, passing the request to the2
host environment once all local participants have executed the API.3

Advice to PMIx server hosts

The host will receive a single call for each collective operation. The host will receive a single call4
for each collective operation. It is the responsibility of the host to identify the nodes containing5
participating processes, execute the collective across all participating nodes, and notify the local6
PMIx server library upon completion of the global collective.7

12.3.4 PMIx_Disconnect_nb8

Summary9
Nonblocking PMIx_Disconnect routine.10

Format11 PMIx v1.0 C
pmix_status_t12
PMIx_Disconnect_nb(const pmix_proc_t procs[], size_t nprocs,13

const pmix_info_t info[], size_t ninfo,14
pmix_op_cbfunc_t cbfunc, void *cbdata);15

C

IN procs16
Array of proc structures (array of handles)17

IN nprocs18
Number of elements in the procs array (integer)19

IN info20
Array of info structures (array of handles)21

IN ninfo22
Number of elements in the info array (integer)23

IN cbfunc24
Callback function pmix_op_cbfunc_t (function reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

198 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A successful return indicates that the request is being processed and the result will be returned in1
the provided cbfunc. Note that the library must not invoke the callback function prior to returning2
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.3

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:4

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and5
returned success - the cbfunc will not be called6

If none of the above return codes are appropriate, then an implementation must return either a7
general PMIx error code or an implementation defined error code as described in Section 3.1.1.8

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any9
provided attributes must be passed to the host SMS daemon for processing.10

Optional Attributes

The following attributes are optional for PMIx implementations:11

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)12
All clones of the calling process must participate in the collective operation.13

The following attributes are optional for host environments that support this operation:14

PMIX_TIMEOUT "pmix.timeout" (int)15
Time in seconds before the specified operation should time out (zero indicating infinite) and16
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions17
caused by multiple layers (client, server, and host) simultaneously timing the operation.18

Description19
Nonblocking PMIx_Disconnect routine. The callback function is called either:20

• to return the PMIX_ERR_INVALID_OPERATION error indicating that the specified set of21
procs was not previously connected via a call to PMIx_Connect or its non-blocking form;22

• to return a PMIx error constant indicating that the operation failed; or23

• once all processes identified in procs have called either PMIx_Disconnect_nb or its24
blocking version, and the host environment has completed any required supporting operations.25

See the advice provided in the description for PMIx_Disconnect for more information.26

CHAPTER 12. PROCESS MANAGEMENT 199

Un
offi
cia
l D
raf
t

12.4 Process Locality1

The relative locality of processes is often used to optimize their interactions with the hardware and2
other processes. PMIx provides a means by which the host environment can communicate the3
locality of a given process using the PMIx_server_generate_locality_string to4
generate an abstracted representation of that value. This provides a human-readable format and5
allows the client to parse the locality string with a method of its choice that may differ from the one6
used by the server that generated it.7

There are times, however, when relative locality and other PMIx-provided information doesn’t8
include some element required by the application. In these instances, the application may need9
access to the full description of the local hardware topology. PMIx does not itself generate such10
descriptions - there are multiple third-party libraries that fulfill that role. Instead, PMIx offers an11
abstraction method by which users can obtain a pointer to the description. This transparently12
enables support for different methods of sharing the topology between the host environment (which13
may well have already generated it prior to local start of application processes) and the clients - e.g.,14
through passing of a shared memory region.15

12.4.1 PMIx_Load_topology16

Summary17
Load the local hardware topology description18

Format19 PMIx v4.0 C
pmix_status_t20
PMIx_Load_topology(pmix_topology_t *topo);21

C
INOUT topo22

Address of a pmix_topology_t structure where the topology information is to be loaded23
(handle)24

A successful return indicates that the topo was successfully loaded.25

Returns PMIX_SUCCESS or a negative value indicating the error.26

Description27
Obtain a pointer to the topology description of the local node. If the source field of the provided28
pmix_topology_t is set, then the PMIx library must return a description from the specified29
implementation or else indicate that the implementation is not available by returning the30
PMIX_ERR_NOT_SUPPORTED error constant.31

The returned pointer may point to a shared memory region or an actual instance of the topology32
description. In either case, the description shall be treated as a "read-only" object - attempts to33
modify the object are likely to fail and return an error. The PMIx library is responsible for34
performing any required cleanup when the client library finalizes.35

200 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Advice to users
It is the responsibility of the user to ensure that the topo argument is properly initialized prior to1
calling this API, and to check the returned source to verify that the returned topology description is2
compatible with the user’s code.3

12.4.2 PMIx_Get_relative_locality4

Summary5
Get the relative locality of two local processes given their locality strings.6

Format7 PMIx v4.0 C
pmix_status_t8
PMIx_Get_relative_locality(const char *locality1,9

const char *locality2,10
pmix_locality_t *locality);11

C
IN locality112

String returned by the PMIx_server_generate_locality_string API (handle)13
IN locality214

String returned by the PMIx_server_generate_locality_string API (handle)15
INOUT locality16

Location where the relative locality bitmask is to be constructed (memory reference)17

A successful return indicates that the locality was successfully loaded.18

Returns PMIX_SUCCESS or a negative value indicating the error.19

Description20
Parse the locality strings of two processes (as returned by PMIx_Get using the21
PMIX_LOCALITY_STRING key) and set the appropriate pmix_locality_t locality bits in22
the provided memory location.23

12.4.2.1 Topology description24

The pmix_topology_t structure contains a (case-insensitive) string identifying the source of25
the topology (e.g., "hwloc") and a pointer to the corresponding implementation-specific topology26
description.27

PMIx v4.0 C
typedef struct pmix_topology {28

char *source;29
void *topology;30

} pmix_topoology_t;31

C

CHAPTER 12. PROCESS MANAGEMENT 201

Un
offi
cia
l D
raf
t

12.4.2.2 Topology support macros1

The following macros support the pmix_topology_t structure.2

Static initializer for the topology structure3 Provisional Provide a static initializer for the pmix_topology_t fields.4
PMIx v4.2 C

PMIX_TOPOLOGY_STATIC_INIT5

C

Initialize the topology structure6
Initialize the pmix_topology_t fields to NULL7

PMIx v4.0 C
PMIX_TOPOLOGY_CONSTRUCT(m)8

C
IN m9

Pointer to the structure to be initialized (pointer to pmix_topology_t)10

Destruct a topology structure11
Summary12
Destruct a pmix_topology_t fields13

Format14 PMIx v4.2 C
void15
PMIx_Topology_destruct(pmix_topology_t *topo);16

C
IN topo17

Pointer to the structure to be destructed (pointer to pmix_topology_t)18

Description19
Release any memory storage held by the pmix_topology_t structure20

Create a topology array21
Allocate and initialize a pmix_topology_t array.22

PMIx v4.0 C
PMIX_TOPOLOGY_CREATE(m, n)23

C
INOUT m24

Address where the pointer to the array of pmix_topology_t structures shall be stored25
(handle)26

IN n27
Number of structures to be allocated (size_t)28

202 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

12.4.2.3 Relative locality of two processes1

The pmix_locality_t datatype is a uint16_t bitmask that defines the relative locality of2
two processes on a node. The following constants represent specific bits in the mask and can be3
used to test a locality value using standard bit-test methods.4

PMIX_LOCALITY_UNKNOWN 0x0000 All bits are set to zero, indicating that the relative5
locality of the two processes is unknown6

PMIX_LOCALITY_NONLOCAL 0x0000 The two processes do not share any common7
locations8

PMIX_LOCALITY_SHARE_HWTHREAD 0x0001 The two processes share at least one9
hardware thread10

PMIX_LOCALITY_SHARE_CORE 0x0002 The two processes share at least one core11
PMIX_LOCALITY_SHARE_L1CACHE 0x0004 The two processes share at least an L112

cache13
PMIX_LOCALITY_SHARE_L2CACHE 0x0008 The two processes share at least an L214

cache15
PMIX_LOCALITY_SHARE_L3CACHE 0x0010 The two processes share at least an L316

cache17
PMIX_LOCALITY_SHARE_PACKAGE 0x0020 The two processes share at least a package18
PMIX_LOCALITY_SHARE_NUMA 0x0040 The two processes share at least one19

Non-Uniform Memory Access (NUMA) region20
PMIX_LOCALITY_SHARE_NODE 0x4000 The two processes are executing on the same21

node22

Implementers and vendors may choose to extend these definitions as needed to describe a particular23
system.24

12.4.2.4 Locality keys25

PMIX_LOCALITY_STRING "pmix.locstr" (char*)26
String describing a process’s bound location - referenced using the process’s rank. The string27
is prefixed by the implementation that created it (e.g., "hwloc") followed by a colon. The28
remainder of the string represents the corresponding locality as expressed by the underlying29
implementation. The entire string must be passed to PMIx_Get_relative_locality30
for processing. Note that hosts are only required to provide locality strings for local client31
processes - thus, a call to PMIx_Get for the locality string of a process that returns32
PMIX_ERR_NOT_FOUND indicates that the process is not executing on the same node.33

12.4.3 PMIx_Parse_cpuset_string34

Summary35
Parse the PU binding bitmap from its string representation.36

CHAPTER 12. PROCESS MANAGEMENT 203

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Parse_cpuset_string(const char *cpuset_string,3

pmix_cpuset_t *cpuset);4

C

IN cpuset_string5
String returned by the PMIx_server_generate_cpuset_string API (handle)6

INOUT cpuset7
Address of an object where the bitmap is to be stored (memory reference)8

A successful return indicates that the cpuset was successfully loaded.9

Returns PMIX_SUCCESS or a negative value indicating the error.10

Description11
Parse the string representation of the binding bitmap (as returned by PMIx_Get using the12
PMIX_CPUSET key) and set the appropriate PU binding location information in the provided13
memory location.14

12.4.4 PMIx_Get_cpuset15

Summary16
Get the PU binding bitmap of the current process.17

Format18 PMIx v4.0 C
pmix_status_t19
PMIx_Get_cpuset(pmix_cpuset_t *cpuset, pmix_bind_envelope_t ref);20

C

INOUT cpuset21
Address of an object where the bitmap is to be stored (memory reference)22

IN ref23
The binding envelope to be considered when formulating the bitmap24
(pmix_bind_envelope_t)25

A successful return indicates that the cpuset was successfully loaded.26

Returns PMIX_SUCCESS or a negative value indicating the error.27

Description28
Obtain and set the appropriate PU binding location information in the provided memory location29
based on the specified binding envelope.30

204 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

12.4.4.1 Binding envelope1

The pmix_bind_envelope_t data type defines the envelope of threads within a possibly2
multi-threaded process that are to be considered when getting the cpuset associated with the3
process. Valid values include:4

PMIX_CPUBIND_PROCESS 0 Use the location of all threads in the possibly multi-threaded5
process.6

PMIX_CPUBIND_THREAD 1 Use only the location of the thread calling the API.7

12.4.5 PMIx_Compute_distances8

Summary9
Compute distances from specified process location to local devices.10

Format11 PMIx v4.0 C
pmix_status_t12
PMIx_Compute_distances(pmix_topology_t *topo,13

pmix_cpuset_t *cpuset,14
pmix_info_t info[], size_t ninfo[],15
pmix_device_distance_t *distances[],16
size_t *ndist);17

C

IN topo18
Pointer to the topology description of the node where the process is located (NULL indicates19
the local node) (pmix_topology_t)20

IN cpuset21
Pointer to the location of the process (pmix_cpuset_t)22

IN info23
Array of pmix_info_t describing the devices whose distance is to be computed (handle)24

IN ninfo25
Number of elements in info (integer)26

INOUT distances27
Pointer to an address where the array of pmix_device_distance_t structures28
containing the distances from the caller to the specified devices is to be returned (handle)29

INOUT ndist30
Pointer to an address where the number of elements in the distances array is to be returned31
(handle)32

Returns PMIX_SUCCESS or a negative value indicating the error.33

CHAPTER 12. PROCESS MANAGEMENT 205

Un
offi
cia
l D
raf
t

Description1
Both the minimum and maximum distance fields in the elements of the array shall be filled with the2
respective distances between the current process location and the types of devices or specific device3
identified in the info directives. In the absence of directives, distances to all supported device types4
shall be returned.5

Advice to users

A process whose threads are not all bound to the same location may return inconsistent results from6
calls to this API by different threads if the PMIX_CPUBIND_THREAD binding envelope was used7
when generating the cpuset.8

12.4.6 PMIx_Compute_distances_nb9

Summary10
Compute distances from specified process location to local devices.11

Format12 PMIx v4.0 C
pmix_status_t13
PMIx_Compute_distances_nb(pmix_topology_t *topo,14

pmix_cpuset_t *cpuset,15
pmix_info_t info[], size_t ninfo[],16
pmix_device_dist_cbfunc_t cbfunc,17
void *cbdata);18

C

IN topo19
Pointer to the topology description of the node where the process is located (NULL indicates20
the local node) (pmix_topology_t)21

IN cpuset22
Pointer to the location of the process (pmix_cpuset_t)23

IN info24
Array of pmix_info_t describing the devices whose distance is to be computed (handle)25

IN ninfo26
Number of elements in info (integer)27

IN cbfunc28
Callback function pmix_info_cbfunc_t (function reference)29

IN cbdata30
Data to be passed to the callback function (memory reference)31

206 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A successful return indicates that the request is being processed and the result will be returned in1
the provided cbfunc. Note that the library must not invoke the callback function prior to returning2
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.3

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:4

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed5
successfully - the cbfunc will not be called.6

If none of the above return codes are appropriate, then an implementation must return either a7
general PMIx error code or an implementation defined error code as described in Section 3.1.1.8

Description9
Non-blocking form of the PMIx_Compute_distances API.10

12.4.7 Device Distance Callback Function11

Summary12
The pmix_device_dist_cbfunc_t is used to return an array of device distances.13

PMIx v4.0 C
typedef void (*pmix_device_dist_cbfunc_t)14

(pmix_status_t status,15
pmix_device_distance_t *dist,16
size_t ndist,17
void *cbdata,18
pmix_release_cbfunc_t release_fn,19
void *release_cbdata);20

C

IN status21
Status associated with the operation (pmix_status_t)22

IN dist23
Array of pmix_device_distance_t returned by the operation (pointer)24

IN ndist25
Number of elements in the dist array (size_t)26

IN cbdata27
Callback data passed to original API call (memory reference)28

IN release_fn29
Function to be called when done with the dist data (function pointer)30

IN release_cbdata31
Callback data to be passed to release_fn (memory reference)32

Description33
The status indicates if requested data was found or not. The array of34
pmix_device_distance_t will contain the distance information.35

CHAPTER 12. PROCESS MANAGEMENT 207

Un
offi
cia
l D
raf
t

12.4.8 Device type1

The pmix_device_type_t is a uint64_t bitmask for identifying the type(s) whose2
distances are being requested, or the type of a specific device being referenced (e.g., in a3
pmix_device_distance_t object).4

PMIx v1.0 C
typedef uint16_t pmix_device_type_t;5

C

The following constants can be used to set a variable of the type pmix_device_type_t.6

PMIX_DEVTYPE_UNKNOWN 0x00 The device is of an unknown type - will not be included7
in returned device distances.8

PMIX_DEVTYPE_BLOCK 0x01 Operating system block device, or non-volatile memory9
device (e.g., "sda" or "dax2.0" on Linux).10

PMIX_DEVTYPE_GPU 0x02 Operating system Graphics Processing Unit (GPU) device11
(e.g., "card0" for a Linux Direct Rendering Manager (DRM) device).12

PMIX_DEVTYPE_NETWORK 0x04 Operating system network device (e.g., the "eth0"13
interface on Linux).14

PMIX_DEVTYPE_OPENFABRICS 0x08 Operating system OpenFabrics device (e.g., an15
"mlx4_0" InfiniBand Host Channel Adapter (HCA), or "hfi1_0" Omni-Path interface on16
Linux).17

PMIX_DEVTYPE_DMA 0x10 Operating system Direct Memory Access (DMA) engine18
device (e.g., the "dma0chan0" DMA channel on Linux).19

PMIX_DEVTYPE_COPROC 0x20 Operating system co-processor device (e.g., "mic0" for a20
Xeon Phi on Linux, "opencl0d0" for a OpenCL device, or "cuda0" for a Compute Unified21
Device Architecture (CUDA) device).22

12.4.9 Device Distance Structure23

The pmix_device_distance_t structure contains the minimum and maximum relative24
distance from the caller to a given device.25

PMIx v4.0 C
typedef struct pmix_device_distance {26

char *uuid;27
char *osname;28
pmix_device_type_t type;29
uint16_t mindist;30
uint16_t maxdist;31

} pmix_device_distance_t;32

208 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C

The uuid is a string identifier guaranteed to be unique within the cluster and is typically assembled1
from discovered device attributes (e.g., the Internet Protocol (IP) address of the device). The2
osname is the local operating system name of the device and is only unique to that node.3

The two distance fields provide the minimum and maximum relative distance to the device from the4
specified location of the process, expressed as a 16-bit integer value where a smaller number5
indicates that this device is closer to the process than a device with a larger distance value. Note6
that relative distance values are not necessarily correlated to a physical property - e.g., a device at7
twice the distance from another device does not necessarily have twice the latency for8
communication with it.9

Relative distances only apply to similar devices and cannot be used to compare devices of different10
types. Both minimum and maximum distances are provided to support cases where the process may11
be bound to more than one location, and the locations are at different distances from the device.12

A relative distance value of UINT16_MAX indicates that the distance from the process to the13
device could not be provided. This may be due to lack of available information (e.g., the PMIx14
library not having access to device locations) or other factors.15

12.4.10 Device distance support macros16

The following macros are provided to support the pmix_device_distance_t structure.17

Static initializer for the device distance structure18 Provisional Provide a static initializer for the pmix_device_distance_t fields.19
PMIx v4.2 C

PMIX_DEVICE_DIST_STATIC_INIT20

C

Initialize the device distance structure21
Initialize the pmix_device_distance_t fields.22

PMIx v4.0 C
PMIX_DEVICE_DIST_CONSTRUCT(m)23

C

IN m24
Pointer to the structure to be initialized (pointer to pmix_device_distance_t)25

CHAPTER 12. PROCESS MANAGEMENT 209

Un
offi
cia
l D
raf
t

Destruct the device distance structure1
Destruct the pmix_device_distance_t fields.2

C
PMIX_DEVICE_DIST_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_device_distance_t)5

Create an device distance array6
Allocate and initialize a pmix_device_distance_t array.7

PMIx v4.0 C
PMIX_DEVICE_DIST_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_device_distance_t structures shall be10
stored (handle)11

IN n12
Number of structures to be allocated (size_t)13

Release an device distance array14
Release an array of pmix_device_distance_t structures.15

PMIx v4.0 C
PMIX_DEVICE_DIST_FREE(m, n)16

C

IN m17
Pointer to the array of pmix_device_distance_t structures (handle)18

IN n19
Number of structures in the array (size_t)20

210 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

12.4.11 Device distance attributes1

The following attributes can be used to retrieve device distances from the PMIx data store. Note2
that distances stored by the host environment are based on the process location at the time of start3
of execution and may not reflect changes to location imposed by the process itself.4
PMIX_DEVICE_DISTANCES "pmix.dev.dist" (pmix_data_array_t)5

Return an array of pmix_device_distance_t containing the minimum and maximum6
distances of the given process location to all devices of the specified type on the local node.7

PMIX_DEVICE_TYPE "pmix.dev.type" (pmix_device_type_t)8
Bitmask specifying the type(s) of device(s) whose information is being requested. Only used9
as a directive/qualifier.10

PMIX_DEVICE_ID "pmix.dev.id" (string)11
System-wide Universally Unique IDentifier (UUID) or node-local Operating System (OS)12
name of a particular device.13

CHAPTER 12. PROCESS MANAGEMENT 211

Un
offi
cia
l D
raf
t

CHAPTER 13

Job Management and Reporting

The job management APIs provide an application with the ability to orchestrate its operation in1
partnership with the SMS. Members of this category include the2
PMIx_Allocation_request, PMIx_Job_control, and PMIx_Process_monitor3
APIs.4

13.1 Allocation Requests5

This section defines functionality to request new allocations from the RM, and request6
modifications to existing allocations. These are primarily used in the following scenarios:7

• Evolving applications that dynamically request and return resources as they execute.8

• Malleable environments where the scheduler redirects resources away from executing9
applications for higher priority jobs or load balancing.10

• Resilient applications that need to request replacement resources in the face of failures.11

• Rigid jobs where the user has requested a static allocation of resources for a fixed period of time,12
but realizes that they underestimated their required time while executing.13

PMIx attempts to address this range of use-cases with a flexible API.14

13.1.1 PMIx_Allocation_request15

Summary16
Request an allocation operation from the host resource manager.17

Format18 PMIx v3.0 C
pmix_status_t19
PMIx_Allocation_request(pmix_alloc_directive_t directive,20

pmix_info_t info[], size_t ninfo,21
pmix_info_t *results[], size_t *nresults);22

212

Un
offi
cia
l D
raf
t

C

IN directive1
Allocation directive (pmix_alloc_directive_t)2

IN info3
Array of pmix_info_t structures (array of handles)4

IN ninfo5
Number of elements in the info array (integer)6

INOUT results7
Address where a pointer to an array of pmix_info_t containing the results of the request8
can be returned (memory reference)9

INOUT nresults10
Address where the number of elements in results can be returned (handle)11

Returns PMIX_SUCCESS or a negative value indicating the error.12

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any13
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is14
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making15
the request.16

Host environments that implement support for this operation are required to support the following17
attributes:18

PMIX_ALLOC_REQ_ID "pmix.alloc.reqid" (char*)19
User-provided string identifier for this allocation request which can later be used to query20
status of the request.21

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)22
The number of nodes being requested in an allocation request.23

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)24
Number of PUs being requested in an allocation request.25

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)26
Total session time (in seconds) being requested in an allocation request.27

CHAPTER 13. JOB MANAGEMENT AND REPORTING 213

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)2
Regular expression of the specific nodes being requested in an allocation request.3

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)4
Regular expression of the number of PUs for each node being requested in an allocation5
request.6

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)7
Regular expression of the specific PUs being requested in an allocation request.8

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)9
Number of Megabytes[base2] of memory (per process) being requested in an allocation10
request.11

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)12
Array of pmix_info_t describing requested fabric resources. This must include at least:13
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and14
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.15

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)16
The key to be used when accessing this requested fabric allocation. The fabric allocation17
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first18
element is composed of this key and the allocated resource description. The type of the19
included value depends upon the fabric support. For example, a Transmission Control20
Protocol (TCP) allocation might consist of a comma-delimited string of socket ranges such21
as "32000-32100,33005,38123-38146". Additional array entries will consist of22
any provided resource request directives, along with their assigned values. Examples23
include: PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;24
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned25
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -26
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the27
requested fabric allocation. NOTE: the array contents may differ from those requested,28
especially if PMIX_INFO_REQD was not set in the request.29

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)30
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation31
request.32

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)33
Fabric quality of service level for the job being requested in an allocation request.34

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)35
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.36

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)37

214 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

ID string for the fabric plane to be used for the requested allocation.1

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)2
Number of endpoints to allocate per process in the job.3

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)4
Number of endpoints to allocate per node for the job.5

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)6
Request that the allocation include a fabric security key for the spawned job.7

Description8
Request an allocation operation from the host resource manager. Several broad categories are9
envisioned, including the ability to:10

• Request allocation of additional resources, including memory, bandwidth, and compute. This11
should be accomplished in a non-blocking manner so that the application can continue to12
progress while waiting for resources to become available. Note that the new allocation will be13
disjoint from (i.e., not affiliated with) the allocation of the requestor - thus the termination of one14
allocation will not impact the other.15

• Extend the reservation on currently allocated resources, subject to scheduling availability and16
priorities. This includes extending the time limit on current resources, and/or requesting17
additional resources be allocated to the requesting job. Any additional allocated resources will be18
considered as part of the current allocation, and thus will be released at the same time.19

• Return no-longer-required resources to the scheduler. This includes the “loan” of resources back20
to the scheduler with a promise to return them upon subsequent request.21

If successful, the returned results for a request for additional resources must include the host22
resource manager’s identifier (PMIX_ALLOC_ID) that the requester can use to specify the23
resources in, for example, a call to PMIx_Spawn.24

13.1.2 PMIx_Allocation_request_nb25

Summary26
Request an allocation operation from the host resource manager.27

CHAPTER 13. JOB MANAGEMENT AND REPORTING 215

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Allocation_request_nb(pmix_alloc_directive_t directive,3

pmix_info_t info[], size_t ninfo,4
pmix_info_cbfunc_t cbfunc, void *cbdata);5

6
C

IN directive7
Allocation directive (pmix_alloc_directive_t)8

IN info9
Array of pmix_info_t structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN cbfunc13
Callback function pmix_info_cbfunc_t (function reference)14

IN cbdata15
Data to be passed to the callback function (memory reference)16

Returns one of the following:17

A successful return indicates that the request is being processed and the result will be returned in18
the provided cbfunc. Note that the library must not invoke the callback function prior to returning19
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.20

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

If none of the above return codes are appropriate, then an implementation must return either a24
general PMIx error code or an implementation defined error code as described in Section 3.1.1.25

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any26
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is27
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making28
the request.29

Host environments that implement support for this operation are required to support the following30
attributes:31

PMIX_ALLOC_REQ_ID "pmix.alloc.reqid" (char*)32
User-provided string identifier for this allocation request which can later be used to query33
status of the request.34

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)35

216 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The number of nodes being requested in an allocation request.1

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)2
Number of PUs being requested in an allocation request.3

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)4
Total session time (in seconds) being requested in an allocation request.5

Optional Attributes

The following attributes are optional for host environments that support this operation:6

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)7
Regular expression of the specific nodes being requested in an allocation request.8

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)9
Regular expression of the number of PUs for each node being requested in an allocation10
request.11

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)12
Regular expression of the specific PUs being requested in an allocation request.13

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)14
Number of Megabytes[base2] of memory (per process) being requested in an allocation15
request.16

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)17
Array of pmix_info_t describing requested fabric resources. This must include at least:18
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and19
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.20

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)21
The key to be used when accessing this requested fabric allocation. The fabric allocation22
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first23
element is composed of this key and the allocated resource description. The type of the24
included value depends upon the fabric support. For example, a TCP allocation might25
consist of a comma-delimited string of socket ranges such as "32000-32100,26
33005,38123-38146". Additional array entries will consist of any provided resource27
request directives, along with their assigned values. Examples include:28
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;29
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned30
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -31
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the32
requested fabric allocation. NOTE: the array contents may differ from those requested,33
especially if PMIX_INFO_REQD was not set in the request.34

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)35

CHAPTER 13. JOB MANAGEMENT AND REPORTING 217

Un
offi
cia
l D
raf
t

Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation1
request.2

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)3
Fabric quality of service level for the job being requested in an allocation request.4

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)5
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.6

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)7
ID string for the fabric plane to be used for the requested allocation.8

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)9
Number of endpoints to allocate per process in the job.10

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)11
Number of endpoints to allocate per node for the job.12

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)13
Request that the allocation include a fabric security key for the spawned job.14

Description15
Non-blocking form of the PMIx_Allocation_request API.16

13.1.3 Job Allocation attributes17

Attributes used to describe the job allocation - these are values passed to and/or returned by the18
PMIx_Allocation_request_nb and PMIx_Allocation_request APIs and are not19
accessed using the PMIx_Get API.20

PMIX_ALLOC_REQ_ID "pmix.alloc.reqid" (char*)21
User-provided string identifier for this allocation request which can later be used to query22
status of the request.23

PMIX_ALLOC_ID "pmix.alloc.id" (char*)24
A string identifier (provided by the host environment) for the resulting allocation which can25
later be used to reference the allocated resources in, for example, a call to PMIx_Spawn.26

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)27
Name of the WLM queue to which the allocation request is to be directed, or the queue being28
referenced in a query.29

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)30
The number of nodes being requested in an allocation request.31

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)32
Regular expression of the specific nodes being requested in an allocation request.33

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)34
Number of PUs being requested in an allocation request.35

218 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)1
Regular expression of the number of PUs for each node being requested in an allocation2
request.3

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)4
Regular expression of the specific PUs being requested in an allocation request.5

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)6
Number of Megabytes[base2] of memory (per process) being requested in an allocation7
request.8

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)9
Array of pmix_info_t describing requested fabric resources. This must include at least:10
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and11
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.12

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)13
The key to be used when accessing this requested fabric allocation. The fabric allocation14
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first15
element is composed of this key and the allocated resource description. The type of the16
included value depends upon the fabric support. For example, a TCP allocation might17
consist of a comma-delimited string of socket ranges such as "32000-32100,18
33005,38123-38146". Additional array entries will consist of any provided resource19
request directives, along with their assigned values. Examples include:20
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;21
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned22
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -23
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the24
requested fabric allocation. NOTE: the array contents may differ from those requested,25
especially if PMIX_INFO_REQD was not set in the request.26

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)27
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation28
request.29

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)30
Fabric quality of service level for the job being requested in an allocation request.31

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)32
Total session time (in seconds) being requested in an allocation request.33

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)34
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.35

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)36
ID string for the fabric plane to be used for the requested allocation.37

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)38
Number of endpoints to allocate per process in the job.39

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)40
Number of endpoints to allocate per node for the job.41

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)42
Request that the allocation include a fabric security key for the spawned job.43

CHAPTER 13. JOB MANAGEMENT AND REPORTING 219

Un
offi
cia
l D
raf
t

13.1.4 Job Allocation Directives1

The pmix_alloc_directive_t structure is a uint8_t type that defines the behavior of2
allocation requests. The following constants can be used to set a variable of the type3
pmix_alloc_directive_t. All definitions were introduced in version 2 of the standard4
unless otherwise marked.5

PMIX_ALLOC_NEW 1 A new allocation is being requested. The resulting allocation will be6
disjoint (i.e., not connected in a job sense) from the requesting allocation.7

PMIX_ALLOC_EXTEND 2 Extend the existing allocation, either in time or as additional8
resources.9

PMIX_ALLOC_RELEASE 3 Release part of the existing allocation. Attributes in the10
accompanying pmix_info_t array may be used to specify permanent release of the11
identified resources, or “lending” of those resources for some period of time.12

PMIX_ALLOC_REAQUIRE 4 Reacquire resources that were previously “lent” back to the13
scheduler.14

PMIX_ALLOC_EXTERNAL A value boundary above which implementers are free to define15
their own directive values.16

13.2 Job Control17

This section defines APIs that enable the application and host environment to coordinate the18
response to failures and other events. This can include requesting termination of the entire job or a19
subset of processes within a job, but can also be used in combination with other PMIx capabilities20
(e.g., allocation support and event notification) for more nuanced responses. For example, an21
application notified of an incipient over-temperature condition on a node could use the22
PMIx_Allocation_request_nb interface to request replacement nodes while23
simultaneously using the PMIx_Job_control_nb interface to direct that a checkpoint event be24
delivered to all processes in the application. If replacement resources are not available, the25
application might use the PMIx_Job_control_nb interface to request that the job continue at a26
lower power setting, perhaps sufficient to avoid the over-temperature failure.27

The job control APIs can also be used by an application to register itself as available for preemption28
when operating in an environment such as a cloud or where incentives, financial or otherwise, are29
provided to jobs willing to be preempted. Registration can include attributes indicating how many30
resources are being offered for preemption (e.g., all or only some portion), whether the application31
will require time to prepare for preemption, etc. Jobs that request a warning will receive an event32
notifying them of an impending preemption (possibly including information as to the resources that33
will be taken away, how much time the application will be given prior to being preempted, whether34
the preemption will be a suspension or full termination, etc.) so they have an opportunity to save35
their work. Once the application is ready, it calls the provided event completion callback function to36
indicate that the SMS is free to suspend or terminate it, and can include directives regarding any37
desired restart.38

220 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

13.2.1 PMIx_Job_control1

Summary2
Request a job control action.3

Format4 PMIx v3.0 C
pmix_status_t5
PMIx_Job_control(const pmix_proc_t targets[], size_t ntargets,6

const pmix_info_t directives[], size_t ndirs,7
pmix_info_t *results[], size_t *nresults);8

C

IN targets9
Array of proc structures (array of handles)10

IN ntargets11
Number of elements in the targets array (integer)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the directives array (integer)16

INOUT results17
Address where a pointer to an array of pmix_info_t containing the results of the request18
can be returned (memory reference)19

INOUT nresults20
Address where the number of elements in results can be returned (handle)21

Returns PMIX_SUCCESS or a negative value indicating the error.22

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any23
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is24
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making25
the request.26

Host environments that implement support for this operation are required to support the following27
attributes:28

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)29
Provide a string identifier for this request. The user can provide an identifier for the30
requested operation, thus allowing them to later request status of the operation or to31
terminate it. The host, therefore, shall track it with the request for future reference.32

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)33
Pause the specified processes.34

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)35

CHAPTER 13. JOB MANAGEMENT AND REPORTING 221

Un
offi
cia
l D
raf
t

Resume (“un-pause”) the specified processes.1

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)2
Forcibly terminate the specified processes and cleanup.3

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)4
Send given signal to specified processes.5

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)6
Politely terminate the specified processes.7

PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)8
Comma-delimited list of files to be removed upon process termination.9

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)10
Comma-delimited list of directories to be removed upon process termination.11

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)12
Recursively cleanup all subdirectories under the specified one(s).13

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)14
Only remove empty subdirectories.15

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)16
Comma-delimited list of filenames that are not to be removed.17

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)18
When recursively cleaning subdirectories, do not remove the top-level directory (the one19
given in the cleanup request).20

Optional Attributes

The following attributes are optional for host environments that support this operation:21

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)22
Cancel the specified request - the provided request ID must match the23
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of24
NULL implies cancel all requests from this requestor.25

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)26
Restart the specified processes using the given checkpoint ID.27

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)28
Checkpoint the specified processes and assign the given ID to it.29

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)30
Use event notification to trigger a process checkpoint.31

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)32
Use the given signal to trigger a process checkpoint.33

222 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)1
Time in seconds to wait for a checkpoint to complete.2

PMIX_JOB_CTRL_CHECKPOINT_METHOD3
"pmix.jctrl.ckmethod" (pmix_data_array_t)4

Array of pmix_info_t declaring each method and value supported by this application.5

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)6
Regular expression identifying nodes that are to be provisioned.7

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)8
Name of the image that is to be provisioned.9

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)10
Indicate that the job can be pre-empted.11

Description12
Request a job control action. The targets array identifies the processes to which the requested job13
control action is to be applied. All clones of an identified process are to have the requested action14
applied to them. A NULL value can be used to indicate all processes in the caller’s namespace. The15
use of PMIX_RANK_WILDCARD can also be used to indicate that all processes in the given16
namespace are to be included.17

The directives are provided as pmix_info_t structures in the directives array. The returned18
status indicates whether or not the request was granted, and information as to the reason for any19
denial of the request shall be returned in the results array.20

13.2.2 PMIx_Job_control_nb21

Summary22
Request a job control action.23

Format24 PMIx v2.0 C
pmix_status_t25
PMIx_Job_control_nb(const pmix_proc_t targets[], size_t ntargets,26

const pmix_info_t directives[], size_t ndirs,27
pmix_info_cbfunc_t cbfunc, void *cbdata);28

CHAPTER 13. JOB MANAGEMENT AND REPORTING 223

Un
offi
cia
l D
raf
t

C

IN targets1
Array of proc structures (array of handles)2

IN ntargets3
Number of elements in the targets array (integer)4

IN directives5
Array of info structures (array of handles)6

IN ndirs7
Number of elements in the directives array (integer)8

IN cbfunc9
Callback function pmix_info_cbfunc_t (function reference)10

IN cbdata11
Data to be passed to the callback function (memory reference)12

A successful return indicates that the request is being processed and the result will be returned in13
the provided cbfunc. Note that the library must not invoke the callback function prior to returning14
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.15

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:16

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and17
returned success - the cbfunc will not be called18

If none of the above return codes are appropriate, then an implementation must return either a19
general PMIx error code or an implementation defined error code as described in Section 3.1.1.20

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any21
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is22
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making23
the request.24

Host environments that implement support for this operation are required to support the following25
attributes:26

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)27
Provide a string identifier for this request. The user can provide an identifier for the28
requested operation, thus allowing them to later request status of the operation or to29
terminate it. The host, therefore, shall track it with the request for future reference.30

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)31
Pause the specified processes.32

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)33
Resume (“un-pause”) the specified processes.34

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)35

224 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Forcibly terminate the specified processes and cleanup.1

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)2
Send given signal to specified processes.3

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)4
Politely terminate the specified processes.5

PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)6
Comma-delimited list of files to be removed upon process termination.7

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)8
Comma-delimited list of directories to be removed upon process termination.9

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)10
Recursively cleanup all subdirectories under the specified one(s).11

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)12
Only remove empty subdirectories.13

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)14
Comma-delimited list of filenames that are not to be removed.15

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)16
When recursively cleaning subdirectories, do not remove the top-level directory (the one17
given in the cleanup request).18

Optional Attributes

The following attributes are optional for host environments that support this operation:19

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)20
Cancel the specified request - the provided request ID must match the21
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of22
NULL implies cancel all requests from this requestor.23

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)24
Restart the specified processes using the given checkpoint ID.25

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)26
Checkpoint the specified processes and assign the given ID to it.27

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)28
Use event notification to trigger a process checkpoint.29

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)30
Use the given signal to trigger a process checkpoint.31

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)32
Time in seconds to wait for a checkpoint to complete.33

CHAPTER 13. JOB MANAGEMENT AND REPORTING 225

Un
offi
cia
l D
raf
t

PMIX_JOB_CTRL_CHECKPOINT_METHOD1
"pmix.jctrl.ckmethod" (pmix_data_array_t)2

Array of pmix_info_t declaring each method and value supported by this application.3

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)4
Regular expression identifying nodes that are to be provisioned.5

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)6
Name of the image that is to be provisioned.7

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)8
Indicate that the job can be pre-empted.9

Description10
Non-blocking form of the PMIx_Job_control API. The targets array identifies the processes to11
which the requested job control action is to be applied. All clones of an identified process are to12
have the requested action applied to them. A NULL value can be used to indicate all processes in13
the caller’s namespace. The use of PMIX_RANK_WILDCARD can also be used to indicate that all14
processes in the given namespace are to be included.15

The directives are provided as pmix_info_t structures in the directives array. The callback16
function provides a status to indicate whether or not the request was granted, and to provide some17
information as to the reason for any denial in the pmix_info_cbfunc_t array of18
pmix_info_t structures.19

13.2.3 Job control constants20

The following constants are specifically defined for return by the job control APIs:21

PMIX_ERR_CONFLICTING_CLEANUP_DIRECTIVES -51 Conflicting directives given22
for job/process cleanup.23

13.2.4 Job control events24

The following job control events may be available for registration, depending upon implementation25
and host environment support:26

PMIX_JCTRL_CHECKPOINT -106 Monitored by PMIx client to trigger a checkpoint27
operation.28

PMIX_JCTRL_CHECKPOINT_COMPLETE -107 Sent by a PMIx client and monitored by a29
PMIx server to notify that requested checkpoint operation has completed.30

PMIX_JCTRL_PREEMPT_ALERT -108 Monitored by a PMIx client to detect that an RM31
intends to preempt the job.32

PMIX_ERR_PROC_RESTART -4 Error in process restart.33
PMIX_ERR_PROC_CHECKPOINT -5 Error in process checkpoint.34
PMIX_ERR_PROC_MIGRATE -6 Error in process migration.35

226 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

13.2.5 Job control attributes1

Attributes used to request control operations on an executing application - these are values passed2
to the job control APIs and are not accessed using the PMIx_Get API.3

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)4
Provide a string identifier for this request. The user can provide an identifier for the5
requested operation, thus allowing them to later request status of the operation or to6
terminate it. The host, therefore, shall track it with the request for future reference.7

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)8
Pause the specified processes.9

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)10
Resume (“un-pause”) the specified processes.11

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)12
Cancel the specified request - the provided request ID must match the13
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of14
NULL implies cancel all requests from this requestor.15

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)16
Forcibly terminate the specified processes and cleanup.17

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)18
Restart the specified processes using the given checkpoint ID.19

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)20
Checkpoint the specified processes and assign the given ID to it.21

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)22
Use event notification to trigger a process checkpoint.23

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)24
Use the given signal to trigger a process checkpoint.25

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)26
Time in seconds to wait for a checkpoint to complete.27

PMIX_JOB_CTRL_CHECKPOINT_METHOD28
"pmix.jctrl.ckmethod" (pmix_data_array_t)29

Array of pmix_info_t declaring each method and value supported by this application.30
PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)31

Send given signal to specified processes.32
PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)33

Regular expression identifying nodes that are to be provisioned.34
PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)35

Name of the image that is to be provisioned.36
PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)37

Indicate that the job can be pre-empted.38
PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)39

Politely terminate the specified processes.40
PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)41

Comma-delimited list of files to be removed upon process termination.42

CHAPTER 13. JOB MANAGEMENT AND REPORTING 227

Un
offi
cia
l D
raf
t

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)1
Comma-delimited list of directories to be removed upon process termination.2

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)3
Recursively cleanup all subdirectories under the specified one(s).4

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)5
Only remove empty subdirectories.6

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)7
Comma-delimited list of filenames that are not to be removed.8

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)9
When recursively cleaning subdirectories, do not remove the top-level directory (the one10
given in the cleanup request).11

13.3 Process and Job Monitoring12

In addition to external faults, a common problem encountered in HPC applications is a failure to13
make progress due to some internal conflict in the computation. These situations can result in a14
significant waste of resources as the SMS is unaware of the problem, and thus cannot terminate the15
job. Various watchdog methods have been developed for detecting this situation, including16
requiring a periodic “heartbeat” from the application and monitoring a specified file for changes in17
size and/or modification time.18

The following APIs allow applications to request monitoring, directing what is to be monitored, the19
frequency of the associated check, whether or not the application is to be notified (via the event20
notification subsystem) of stall detection, and other characteristics of the operation.21

13.3.1 PMIx_Process_monitor22

Summary23
Request that application processes be monitored.24

Format25 PMIx v3.0 C
pmix_status_t26
PMIx_Process_monitor(const pmix_info_t *monitor,27

pmix_status_t error,28
const pmix_info_t directives[], size_t ndirs,29
pmix_info_t *results[], size_t *nresults);30

C

IN monitor31
info (handle)32

IN error33
status (integer)34

228 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

IN directives1
Array of info structures (array of handles)2

IN ndirs3
Number of elements in the directives array (integer)4

INOUT results5
Address where a pointer to an array of pmix_info_t containing the results of the request6
can be returned (memory reference)7

INOUT nresults8
Address where the number of elements in results can be returned (handle)9

A successful return indicates that the results have been placed in the results array.10

Returns PMIX_SUCCESS or a negative value indicating the error.11

Optional Attributes

The following attributes may be implemented by a PMIx library or by the host environment. If12
supported by the PMIx server library, then the library must not pass the supported attributes to the13
host environment. All attributes not directly supported by the server library must be passed to the14
host environment if it supports this operation, and the library is required to add the15
PMIX_USERID and the PMIX_GRPID attributes of the requesting process:16

PMIX_MONITOR_ID "pmix.monitor.id" (char*)17
Provide a string identifier for this request.18

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)19
Identifier to be canceled (NULL means cancel all monitoring for this process).20

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)21
The application desires to control the response to a monitoring event - i.e., the application is22
requesting that the host environment not take immediate action in response to the event (e.g.,23
terminating the job).24

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)25
Register to have the PMIx server monitor the requestor for heartbeats.26

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)27
Time in seconds before declaring heartbeat missed.28

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)29
Number of heartbeats that can be missed before generating the event.30

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)31
Register to monitor file for signs of life.32

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)33
Monitor size of given file is growing to determine if the application is running.34

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)35
Monitor time since last access of given file to determine if the application is running.36

CHAPTER 13. JOB MANAGEMENT AND REPORTING 229

Un
offi
cia
l D
raf
t

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)1
Monitor time since last modified of given file to determine if the application is running.2

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)3
Time in seconds between checking the file.4

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)5
Number of file checks that can be missed before generating the event.6

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)7
Send heartbeat to local PMIx server.8

Description9
Request that application processes be monitored via several possible methods. For example, that10
the server monitor this process for periodic heartbeats as an indication that the process has not11
become “wedged”. When a monitor detects the specified alarm condition, it will generate an event12
notification using the provided error code and passing along any available relevant information. It13
is up to the caller to register a corresponding event handler.14

The monitor argument is an attribute indicating the type of monitor being requested. For example,15
PMIX_MONITOR_FILE to indicate that the requestor is asking that a file be monitored.16

The error argument is the status code to be used when generating an event notification alerting that17
the monitor has been triggered. The range of the notification defaults to18
PMIX_RANGE_NAMESPACE. This can be changed by providing a PMIX_RANGE directive.19

The directives argument characterizes the monitoring request (e.g., monitor file size) and frequency20
of checking to be done21

The returned status indicates whether or not the request was granted, and information as to the22
reason for any denial of the request shall be returned in the results array.23

13.3.2 PMIx_Process_monitor_nb24

Summary25
Request that application processes be monitored.26

230 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Process_monitor_nb(const pmix_info_t *monitor,3

pmix_status_t error,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_info_cbfunc_t cbfunc, void *cbdata);7

C

IN monitor8
info (handle)9

IN error10
status (integer)11

IN directives12
Array of info structures (array of handles)13

IN ndirs14
Number of elements in the directives array (integer)15

IN cbfunc16
Callback function pmix_info_cbfunc_t (function reference)17

IN cbdata18
Data to be passed to the callback function (memory reference)19

Returns one of the following:20

A successful return indicates that the request is being processed and the result will be returned in21
the provided cbfunc. Note that the library must not invoke the callback function prior to returning22
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.23

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

If none of the above return codes are appropriate, then an implementation must return either a27
general PMIx error code or an implementation defined error code as described in Section 3.1.1.28

Optional Attributes

The following attributes may be implemented by a PMIx library or by the host environment. If29
supported by the PMIx server library, then the library must not pass the supported attributes to the30
host environment. All attributes not directly supported by the server library must be passed to the31
host environment if it supports this operation, and the library is required to add the32
PMIX_USERID and the PMIX_GRPID attributes of the requesting process:33

PMIX_MONITOR_ID "pmix.monitor.id" (char*)34
Provide a string identifier for this request.35

CHAPTER 13. JOB MANAGEMENT AND REPORTING 231

Un
offi
cia
l D
raf
t

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)1
Identifier to be canceled (NULL means cancel all monitoring for this process).2

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)3
The application desires to control the response to a monitoring event - i.e., the application is4
requesting that the host environment not take immediate action in response to the event (e.g.,5
terminating the job).6

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)7
Register to have the PMIx server monitor the requestor for heartbeats.8

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)9
Time in seconds before declaring heartbeat missed.10

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)11
Number of heartbeats that can be missed before generating the event.12

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)13
Register to monitor file for signs of life.14

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)15
Monitor size of given file is growing to determine if the application is running.16

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)17
Monitor time since last access of given file to determine if the application is running.18

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)19
Monitor time since last modified of given file to determine if the application is running.20

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)21
Time in seconds between checking the file.22

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)23
Number of file checks that can be missed before generating the event.24

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)25
Send heartbeat to local PMIx server.26

Description27
Non-blocking form of the PMIx_Process_monitor API. The cbfunc function provides a28
status to indicate whether or not the request was granted, and to provide some information as to the29
reason for any denial in the pmix_info_cbfunc_t array of pmix_info_t structures.30

13.3.3 PMIx_Heartbeat31

Summary32
Send a heartbeat to the PMIx server library33

232 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
PMIx_Heartbeat();2

C

Description3
A simplified macro wrapping PMIx_Process_monitor_nb that sends a heartbeat to the PMIx4
server library.5

13.3.4 Monitoring events6

The following monitoring events may be available for registration, depending upon implementation7
and host environment support:8

PMIX_MONITOR_HEARTBEAT_ALERT -109 Heartbeat failed to arrive within specified9
window. The process that triggered this alert will be identified in the event.10

PMIX_MONITOR_FILE_ALERT -110 File failed its monitoring detection criteria. The file11
that triggered this alert will be identified in the event.12

13.3.5 Monitoring attributes13

Attributes used to control monitoring of an executing application- these are values passed to the14
PMIx_Process_monitor_nb API and are not accessed using the PMIx_Get API.15

PMIX_MONITOR_ID "pmix.monitor.id" (char*)16
Provide a string identifier for this request.17

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)18
Identifier to be canceled (NULL means cancel all monitoring for this process).19

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)20
The application desires to control the response to a monitoring event - i.e., the application is21
requesting that the host environment not take immediate action in response to the event (e.g.,22
terminating the job).23

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)24
Register to have the PMIx server monitor the requestor for heartbeats.25

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)26
Send heartbeat to local PMIx server.27

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)28
Time in seconds before declaring heartbeat missed.29

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)30
Number of heartbeats that can be missed before generating the event.31

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)32
Register to monitor file for signs of life.33

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)34
Monitor size of given file is growing to determine if the application is running.35

CHAPTER 13. JOB MANAGEMENT AND REPORTING 233

Un
offi
cia
l D
raf
t

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)1
Monitor time since last access of given file to determine if the application is running.2

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)3
Monitor time since last modified of given file to determine if the application is running.4

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)5
Time in seconds between checking the file.6

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)7
Number of file checks that can be missed before generating the event.8

13.4 Logging9

The logging interface supports posting information by applications and SMS elements to persistent10
storage. This function is not intended for output of computational results, but rather for reporting11
status and saving state information such as inserting computation progress reports into the12
application’s SMS job log or error reports to the local syslog.13

13.4.1 PMIx_Log14

Summary15
Log data to a data service.16

Format17 PMIx v3.0 C
pmix_status_t18
PMIx_Log(const pmix_info_t data[], size_t ndata,19

const pmix_info_t directives[], size_t ndirs);20

C

IN data21
Array of info structures (array of handles)22

IN ndata23
Number of elements in the data array (size_t)24

IN directives25
Array of info structures (array of handles)26

IN ndirs27
Number of elements in the directives array (size_t)28

Returns PMIX_SUCCESS or a negative value indicating the error.29

234 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

If the PMIx library does not itself perform this operation, then it is required to pass any attributes1
provided by the client to the host environment for processing. In addition, it must include the2
following attributes in the passed info array:3

PMIX_USERID "pmix.euid" (uint32_t)4
Effective user ID of the connecting process.5

PMIX_GRPID "pmix.egid" (uint32_t)6
Effective group ID of the connecting process.7

Host environments or PMIx libraries that implement support for this operation are required to8
support the following attributes:9

PMIX_LOG_STDERR "pmix.log.stderr" (char*)10
Log string to stderr.11

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)12
Log string to stdout.13

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)14
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,15
otherwise to local syslog.16

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)17
Log data to local syslog. Defaults to ERROR priority.18

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)19
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.20

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)21
Syslog priority level.22

PMIX_LOG_ONCE "pmix.log.once" (bool)23
Only log this once with whichever channel can first support it, taking the channels in priority24
order.25

Optional Attributes

The following attributes are optional for host environments or PMIx libraries that support this26
operation:27

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)28
ID of source of the log request.29

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)30
Timestamp for log report.31

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)32

CHAPTER 13. JOB MANAGEMENT AND REPORTING 235

Un
offi
cia
l D
raf
t

Generate timestamp for log.1

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)2
Label the output stream with the channel name (e.g., “stdout”).3

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)4
Print timestamp in output string.5

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)6
Print the output stream in eXtensible Markup Language (XML) format.7

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)8
Log via email based on pmix_info_t containing directives.9

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)10
Comma-delimited list of email addresses that are to receive the message.11

PMIX_LOG_EMAIL_SENDER_ADDR "pmix.log.emfaddr" (char*)12
Return email address of sender.13

PMIX_LOG_EMAIL_SERVER "pmix.log.esrvr" (char*)14
Hostname (or IP address) of SMTP server.15

PMIX_LOG_EMAIL_SRVR_PORT "pmix.log.esrvrprt" (int32_t)16
Port the email server is listening to.17

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)18
Subject line for email.19

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)20
Message to be included in email.21

PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)22
Log the provided information to the host environment’s job record.23

PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)24
Store the log data in a global data store (e.g., database).25

Description26
Log data subject to the services offered by the host environment. The data to be logged is provided27
in the data array. The (optional) directives can be used to direct the choice of logging channel.28

Advice to users

It is strongly recommended that the PMIx_Log API not be used by applications for streaming data29
as it is not a “performant” transport and can perturb the application since it involves the local PMIx30
server and host SMS daemon. Note that a return of PMIX_SUCCESS only denotes that the data31
was successfully handed to the appropriate system call (for local channels) or the host environment32
and does not indicate receipt at the final destination.33

236 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t13.4.2 PMIx_Log_nb1

Summary2
Log data to a data service.3

Format4 PMIx v2.0 C
pmix_status_t5
PMIx_Log_nb(const pmix_info_t data[], size_t ndata,6

const pmix_info_t directives[], size_t ndirs,7
pmix_op_cbfunc_t cbfunc, void *cbdata);8

C

IN data9
Array of info structures (array of handles)10

IN ndata11
Number of elements in the data array (size_t)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the directives array (size_t)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Return codes are one of the following:21

A successful return indicates that the request is being processed and the result will be returned in22
the provided cbfunc. Note that the library must not invoke the callback function prior to returning23
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.24

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:25

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and26
returned success - the cbfunc will not be called27

PMIX_ERR_BAD_PARAM The logging request contains at least one incorrect entry that prevents28
it from being processed. The callback function will not be called.29

If none of the above return codes are appropriate, then an implementation must return either a30
general PMIx error code or an implementation defined error code as described in Section 3.1.1.31

CHAPTER 13. JOB MANAGEMENT AND REPORTING 237

Un
offi
cia
l D
raf
t

Required Attributes

If the PMIx library does not itself perform this operation, then it is required to pass any attributes1
provided by the client to the host environment for processing. In addition, it must include the2
following attributes in the passed info array:3

PMIX_USERID "pmix.euid" (uint32_t)4
Effective user ID of the connecting process.5

PMIX_GRPID "pmix.egid" (uint32_t)6
Effective group ID of the connecting process.7

Host environments or PMIx libraries that implement support for this operation are required to8
support the following attributes:9

PMIX_LOG_STDERR "pmix.log.stderr" (char*)10
Log string to stderr.11

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)12
Log string to stdout.13

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)14
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,15
otherwise to local syslog.16

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)17
Log data to local syslog. Defaults to ERROR priority.18

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)19
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.20

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)21
Syslog priority level.22

PMIX_LOG_ONCE "pmix.log.once" (bool)23
Only log this once with whichever channel can first support it, taking the channels in priority24
order.25

Optional Attributes

The following attributes are optional for host environments or PMIx libraries that support this26
operation:27

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)28
ID of source of the log request.29

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)30
Timestamp for log report.31

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)32

238 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Generate timestamp for log.1

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)2
Label the output stream with the channel name (e.g., “stdout”).3

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)4
Print timestamp in output string.5

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)6
Print the output stream in XML format.7

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)8
Log via email based on pmix_info_t containing directives.9

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)10
Comma-delimited list of email addresses that are to receive the message.11

PMIX_LOG_EMAIL_SENDER_ADDR "pmix.log.emfaddr" (char*)12
Return email address of sender.13

PMIX_LOG_EMAIL_SERVER "pmix.log.esrvr" (char*)14
Hostname (or IP address) of SMTP server.15

PMIX_LOG_EMAIL_SRVR_PORT "pmix.log.esrvrprt" (int32_t)16
Port the email server is listening to.17

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)18
Subject line for email.19

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)20
Message to be included in email.21

PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)22
Log the provided information to the host environment’s job record.23

PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)24
Store the log data in a global data store (e.g., database).25

Description26
Log data subject to the services offered by the host environment. The data to be logged is provided27
in the data array. The (optional) directives can be used to direct the choice of logging channel. The28
callback function will be executed when the log operation has been completed. The data and29
directives arrays must be maintained until the callback is provided.30

CHAPTER 13. JOB MANAGEMENT AND REPORTING 239

Un
offi
cia
l D
raf
t

Advice to users

It is strongly recommended that the PMIx_Log_nb API not be used by applications for streaming1
data as it is not a “performant” transport and can perturb the application since it involves the local2
PMIx server and host SMS daemon. Note that a return of PMIX_SUCCESS only denotes that the3
data was successfully handed to the appropriate system call (for local channels) or the host4
environment and does not indicate receipt at the final destination.5

13.4.3 Log attributes6

Attributes used to describe PMIx_Log behavior - these are values passed to the PMIx_Log API7
and therefore are not accessed using the PMIx_Get API.8

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)9
ID of source of the log request.10

PMIX_LOG_STDERR "pmix.log.stderr" (char*)11
Log string to stderr.12

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)13
Log string to stdout.14

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)15
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,16
otherwise to local syslog.17

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)18
Log data to local syslog. Defaults to ERROR priority.19

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)20
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.21

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)22
Syslog priority level.23

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)24
Timestamp for log report.25

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)26
Generate timestamp for log.27

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)28
Label the output stream with the channel name (e.g., “stdout”).29

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)30
Print timestamp in output string.31

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)32
Print the output stream in XML format.33

PMIX_LOG_ONCE "pmix.log.once" (bool)34
Only log this once with whichever channel can first support it, taking the channels in priority35
order.36

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)37

240 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Message blob to be sent somewhere.1
PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)2

Log via email based on pmix_info_t containing directives.3
PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)4

Comma-delimited list of email addresses that are to receive the message.5
PMIX_LOG_EMAIL_SENDER_ADDR "pmix.log.emfaddr" (char*)6

Return email address of sender.7
PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)8

Subject line for email.9
PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)10

Message to be included in email.11
PMIX_LOG_EMAIL_SERVER "pmix.log.esrvr" (char*)12

Hostname (or IP address) of SMTP server.13
PMIX_LOG_EMAIL_SRVR_PORT "pmix.log.esrvrprt" (int32_t)14

Port the email server is listening to.15
PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)16

Store the log data in a global data store (e.g., database).17
PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)18

Log the provided information to the host environment’s job record.19

CHAPTER 13. JOB MANAGEMENT AND REPORTING 241

Un
offi
cia
l D
raf
t

CHAPTER 14

Process Sets and Groups

PMIx supports two slightly related, but functionally different concepts known as process sets and1
process groups. This chapter defines these two concepts and describes how they are utilized, along2
with their corresponding APIs.3

14.1 Process Sets4

A PMIx Process Set is a user-provided or host environment assigned label associated with a given5
set of application processes. Processes can belong to multiple process sets at a time. Users may6
define a PMIx process set at time of application execution. For example, if using the command line7
parallel launcher "prun", one could specify process sets as follows:8

C
$ prun -n 4 --pset ocean myoceanapp : -n 3 --pset ice myiceapp9

C

In this example, the processes in the first application will be labeled with a PMIX_PSET_NAMES10
attribute with a value of ocean while those in the second application will be labeled with an ice11
value. During the execution, application processes could lookup the process set attribute for any12
process using PMIx_Get. Alternatively, other executing applications could utilize the13
PMIx_Query_info APIs to obtain the number of declared process sets in the system, a list of14
their names, and other information about them. In other words, the process set identifier provides a15
label by which an application can derive information about a process and its application - it does16
not, however, confer any operational function.17

Host environments can create or delete process sets at any time through the18
PMIx_server_define_process_set and PMIx_server_delete_process_set19
APIs. PMIx servers shall notify all local clients of process set operations via the20
PMIX_PROCESS_SET_DEFINE or PMIX_PROCESS_SET_DELETE events.21

Process sets differ from process groups in several key ways:22

• Process sets have no implied relationship between their members - i.e., a process in a process set23
has no concept of a “pset rank” as it would in a process group.24

• Process set identifiers are set by the host environment or by the user at time of application25
submission for execution - there are no PMIx APIs provided by which an application can define a26
process set or change a process set membership. In contrast, PMIx process groups can only be27
defined dynamically by the application.28

242

Un
offi
cia
l D
raf
t

• Process sets are immutable - members cannot be added or removed once the set has been defined.1
In contrast, PMIx process groups can dynamically change their membership using the2
appropriate APIs.3

• Process groups can be used in calls to PMIx operations. Members of process groups that are4
involved in an operation are translated by their PMIx server into their native identifier prior to the5
operation being passed to the host environment. For example, an application can define a process6
group to consist of ranks 0 and 1 from the host-assigned namespace of 210456, identified by the7
group id of foo. If the application subsequently calls the PMIx_Fence API with a process8
identifier of {foo, PMIX_RANK_WILDCARD}, the PMIx server will replace that identifier9
with an array consisting of {210456, 0} and {210456, 1} - the host-assigned identifiers10
of the participating processes - prior to processing the request.11

• Process groups can request that the host environment assign a unique size_t Process Group12
Context IDentifier (PGCID) to the group at time of group construction. An Message Passing13
Interface (MPI) library may, for example, use the PGCID as the MPI communicator identifier for14
the group.15

The two concepts do, however, overlap in that they both involve collections of processes. Users16
desiring to create a process group based on a process set could, for example, obtain the membership17
array of the process set and use that as input to PMIx_Group_construct, perhaps including18
the process set name as the group identifier for clarity. Note that no linkage between the set and19
group of the same name is implied nor maintained - e.g., changes in process group membership can20
not be reflected in the process set using the same identifier.21

Advice to PMIx server hosts

The host environment is responsible for ensuring:22

• consistent knowledge of process set membership across all involved PMIx servers; and23

• that process set names do not conflict with system-assigned namespaces within the scope of the24
set.25

14.1.1 Process Set Constants26

PMIx v4.0 The PMIx server is required to send a notification to all local clients upon creation or deletion of27
process sets. Client processes wishing to receive such notifications must register for the28
corresponding event:29

PMIX_PROCESS_SET_DEFINE -55 The host environment has defined a new process set -30
the event will include the process set name (PMIX_PSET_NAME) and the membership31
(PMIX_PSET_MEMBERS).32

PMIX_PROCESS_SET_DELETE -56 The host environment has deleted a process set - the33
event will include the process set name (PMIX_PSET_NAME).34

CHAPTER 14. PROCESS SETS AND GROUPS 243

Un
offi
cia
l D
raf
t

14.1.2 Process Set Attributes1

Several attributes are provided for querying the system regarding process sets using the2
PMIx_Query_info APIs.3

PMIX_QUERY_NUM_PSETS "pmix.qry.psetnum" (size_t)4
Return the number of process sets defined in the specified range (defaults to5
PMIX_RANGE_SESSION).6

PMIX_QUERY_PSET_NAMES "pmix.qry.psets" (pmix_data_array_t*)7
Return a pmix_data_array_t containing an array of strings of the process set names8
defined in the specified range (defaults to PMIX_RANGE_SESSION).9

PMIX_QUERY_PSET_MEMBERSHIP "pmix.qry.pmems" (pmix_data_array_t*)10
Return an array of pmix_proc_t containing the members of the specified process set.11

The PMIX_PROCESS_SET_DEFINE event shall include the name of the newly defined process12
set and its members: PMIX_PSET_NAME "pmix.pset.nm" (char*)13

The name of the newly defined process set.14
PMIX_PSET_MEMBERS "pmix.pset.mems" (pmix_data_array_t*)15

An array of pmix_proc_t containing the members of the newly defined process set.16

In addition, a process can request (via PMIx_Get) the process sets to which a given process17
(including itself) belongs:18

PMIX_PSET_NAMES "pmix.pset.nms" (pmix_data_array_t*)19
Returns an array of char* string names of the process sets in which the given process is a20
member.21

14.2 Process Groups22

PMIx Groups are defined as a collection of processes desiring a common, unique identifier for23
operational purposes such as passing events or participating in PMIx fence operations. As with24
processes that assemble via PMIx_Connect, each member of the group is provided with both the25
job-level information of any other namespace represented in the group, and the contact information26
for all group members.27

However, members of PMIx Groups are loosely coupled as opposed to tightly connected when28
constructed via PMIx_Connect. Thus, groups differ from PMIx_Connect assemblages in29
several key areas, as detailed in the following sections.30

14.2.1 Relation to the host environment31

Calls to PMIx Group APIs are first processed within the local PMIx server. When constructed, the32
server creates a tracker that associates the specified processes with the user-provided group33
identifier, and assigns a new group rank based on their relative position in the array of processes34
provided in the call to PMIx_Group_construct. Members of the group can subsequently35

244 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

utilize the group identifier in PMIx function calls to address the group’s members, using either1
PMIX_RANK_WILDCARD to refer to all of them or the group-level rank of specific members. The2
PMIx server will translate the specified processes into their RM-assigned identifiers prior to3
passing the request up to its host. Thus, the host environment has no visibility into the group’s4
existence or membership.5

In contrast, calls to PMIx_Connect are relayed to the host environment. This means that the host6
RM should treat the failure of any process in the specified assemblage as a reportable event and7
take appropriate action. However, the environment is not required to define a new identifier for the8
connected assemblage or any of its member processes, nor does it define a new rank for each9
process within that assemblage. In addition, the PMIx server does not provide any tracking support10
for the assemblage. Thus, the caller is responsible for addressing members of the connected11
assemblage using their RM-provided identifiers.12

Advice to users

User-provided group identifiers must be distinct from both other group identifiers within the system13
and namespaces provided by the RM so as to avoid collisions between group identifiers and14
RM-assigned namespaces. This can usually be accomplished through the use of an15
application-specific prefix – e.g., “myapp-foo”16

14.2.2 Construction procedure17

PMIx_Connect calls require that every process call the API before completing – i.e., it is18
modeled upon the bulk synchronous traditional MPI connect/accept methodology. Thus, a given19
application thread can only be involved in one connect/accept operation at a time, and is blocked in20
that operation until all specified processes participate. In addition, there is no provision for21
replacing processes in the assemblage due to failure to participate, nor a mechanism by which a22
process might decline participation.23

In contrast, PMIx Groups are designed to be more flexible in their construction procedure by24
relaxing these constraints. While a standard blocking form of constructing groups is provided, the25
event notification system is utilized to provide a designated group leader with the ability to replace26
participants that fail to participate within a given timeout period. This provides a mechanism by27
which the application can, if desired, replace members on-the-fly or allow the group to proceed28
with partial membership. In such cases, the final group membership is returned to all participants29
upon completion of the operation.30

Additionally, PMIx supports dynamic definition of group membership based on an invite/join31
model. A process can asynchronously initiate construction of a group of any processes via the32
PMIx_Group_invite function call. Invitations are delivered via a PMIx event (using the33
PMIX_GROUP_INVITED event) to the invited processes which can then either accept or decline34
the invitation using the PMIx_Group_join API. The initiating process tracks responses by35
registering for the events generated by the call to PMIx_Group_join, timeouts, or process36

CHAPTER 14. PROCESS SETS AND GROUPS 245

Un
offi
cia
l D
raf
t

terminations, optionally replacing processes that decline the invitation, fail to respond in time, or1
terminate without responding. Upon completion of the operation, the final list of participants is2
communicated to each member of the new group.3

14.2.3 Destruct procedure4

Members of a PMIx Group may depart the group at any time via the PMIx_Group_leave API.5
Other members are notified of the departure via the PMIX_GROUP_LEFT event to distinguish such6
events from those reporting process termination. This leaves the remaining members free to7
continue group operations. The PMIx_Group_destruct operation offers a collective method8
akin to PMIx_Disconnect for deconstructing the entire group.9

In contrast, processes that assemble via PMIx_Connect must all depart the assemblage together –10
i.e., no member can depart the assemblage while leaving the remaining members in it. Even the11
non-blocking form of PMIx_Disconnect retains this requirement in that members remain a part12
of the assemblage until all members have called PMIx_Disconnect_nb13

Note that applications supporting dynamic group behaviors such as asynchronous departure take14
responsibility for ensuring global consistency in the group definition prior to executing group15
collective operations - i.e., it is the application’s responsibility to either ensure that knowledge of16
the current group membership is globally consistent across the participants, or to register for17
appropriate events to deal with the lack of consistency during the operation.18

Advice to users

The reliance on PMIx events in the PMIx Group concept dictates that processes utilizing these APIs19
must register for the corresponding events. Failure to do so will likely lead to operational failures.20
Users are recommended to utilize the PMIX_TIMEOUT directive (or retain an internal timer) on21
calls to PMIx Group APIs (especially the blocking form of those functions) as processes that have22
not registered for required events will never respond.23

14.2.4 Process Group Events24

PMIx v4.0 Asynchronous process group operations rely heavily on PMIx events. The following events have25
been defined for that purpose.26

PMIX_GROUP_INVITED -159 The process has been invited to join a PMIx Group - the27
identifier of the group and the ID’s of other invited (or already joined) members will be28
included in the notification.29

PMIX_GROUP_LEFT -160 A process has asynchronously left a PMIx Group - the process30
identifier of the departing process will in included in the notification.31

PMIX_GROUP_MEMBER_FAILED -170 A member of a PMIx Group has abnormally32
terminated (i.e., without formally leaving the group prior to termination) - the process33
identifier of the failed process will be included in the notification.34

246 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_GROUP_INVITE_ACCEPTED -161 A process has accepted an invitation to join a1
PMIx Group - the identifier of the group being joined will be included in the notification.2

PMIX_GROUP_INVITE_DECLINED -162 A process has declined an invitation to join a3
PMIx Group - the identifier of the declined group will be included in the notification.4

PMIX_GROUP_INVITE_FAILED -163 An invited process failed or terminated prior to5
responding to the invitation - the identifier of the failed process will be included in the6
notification.7

PMIX_GROUP_MEMBERSHIP_UPDATE -164 The membership of a PMIx group has8
changed - the identifiers of the revised membership will be included in the notification.9

PMIX_GROUP_CONSTRUCT_ABORT -165 Any participant in a PMIx group construct10
operation that returns PMIX_GROUP_CONSTRUCT_ABORT from the leader failed event11
handler will cause all participants to receive an event notifying them of that status. Similarly,12
the leader may elect to abort the procedure by either returning this error code from the handler13
assigned to the PMIX_GROUP_INVITE_ACCEPTED or14
PMIX_GROUP_INVITE_DECLINED codes, or by generating an event for the abort code.15
Abort events will be sent to all invited or existing members of the group.16

PMIX_GROUP_CONSTRUCT_COMPLETE -166 The group construct operation has17
completed - the final membership will be included in the notification.18

PMIX_GROUP_LEADER_FAILED -168 The current leader of a group including this19
process has abnormally terminated - the group identifier will be included in the notification.20

PMIX_GROUP_LEADER_SELECTED -167 A new leader of a group including this process21
has been selected - the identifier of the new leader will be included in the notification.22

PMIX_GROUP_CONTEXT_ID_ASSIGNED -169 A new PGCID has been assigned by the23
host environment to a group that includes this process - the group identifier will be included in24
the notification.25

14.2.5 Process Group Attributes26

PMIx v4.0 Attributes for querying the system regarding process groups include:27

PMIX_QUERY_NUM_GROUPS "pmix.qry.pgrpnum" (size_t)28
Return the number of process groups defined in the specified range (defaults to session).29
OPTIONAL QUALIFERS: PMIX_RANGE.30

PMIX_QUERY_GROUP_NAMES "pmix.qry.pgrp" (pmix_data_array_t*)31
Return a pmix_data_array_t containing an array of string names of the process groups32
defined in the specified range (defaults to session). OPTIONAL QUALIFERS:33
PMIX_RANGE.34

PMIX_QUERY_GROUP_MEMBERSHIP35
"pmix.qry.pgrpmems" (pmix_data_array_t*)36

Return a pmix_data_array_t of pmix_proc_t containing the members of the37
specified process group. REQUIRED QUALIFIERS: PMIX_GROUP_ID.38

The following attributes are used as directives in PMIx Group operations:39

PMIX_GROUP_ID "pmix.grp.id" (char*)40

CHAPTER 14. PROCESS SETS AND GROUPS 247

Un
offi
cia
l D
raf
t

User-provided group identifier - as the group identifier may be used in PMIx operations, the1
user is required to ensure that the provided ID is unique within the scope of the host2
environment (e.g., by including some user-specific or application-specific prefix or suffix to3
the string).4

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)5
This process is the leader of the group.6

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)7
Participation is optional - do not return an error if any of the specified processes terminate8
without having joined. The default is false.9

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)10
Notify remaining members when another member terminates without first leaving the group.11

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)12
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective13
operation.14

PMIX_GROUP_MEMBERSHIP "pmix.grp.mbrs" (pmix_data_array_t*)15
Array pmix_proc_t identifiers identifying the members of the specified group.16

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)17
Requests that the RM assign a new context identifier to the newly created group. The18
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range19
specified in the request. Thus, the value serves as a means of identifying the group within20
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.21

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)22
Group operation only involves local processes. PMIx implementations are required to23
automatically scan an array of group members for local vs remote processes - if only local24
processes are detected, the implementation need not execute a global collective for the25
operation unless a context ID has been requested from the host environment. This can result26
in significant time savings. This attribute can be used to optimize the operation by indicating27
whether or not only local processes are represented, thus allowing the implementation to28
bypass the scan.29

The following attributes are used to return information at the conclusion of a PMIx Group30
operation and/or in event notifications:31

PMIX_GROUP_CONTEXT_ID "pmix.grp.ctxid" (size_t)32
Context identifier assigned to the group by the host RM.33

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)34
Data collected during group construction to ensure communication between group members35
is supported upon completion of the operation.36

In addition, a process can request (via PMIx_Get) the process groups to which a given process37
(including itself) belongs:38

PMIX_GROUP_NAMES "pmix.pgrp.nm" (pmix_data_array_t*)39

248 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Returns an array of char* string names of the process groups in which the given process is1
a member.2

14.2.6 PMIx_Group_construct3

Summary4
Construct a PMIx process group.5

Format6 PMIx v4.0 C
pmix_status_t7
PMIx_Group_construct(const char grp[],8

const pmix_proc_t procs[], size_t nprocs,9
const pmix_info_t directives[],10
size_t ndirs,11
pmix_info_t **results,12
size_t *nresults);13

C

IN grp14
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group15
identifier (string)16

IN procs17
Array of pmix_proc_t structures containing the PMIx identifiers of the member processes18
(array of handles)19

IN nprocs20
Number of elements in the procs array (size_t)21

IN directives22
Array of pmix_info_t structures (array of handles)23

IN ndirs24
Number of elements in the directives array (size_t)25

INOUT results26
Pointer to a location where the array of pmix_info_t describing the results of the27
operation is to be returned (pointer to handle)28

INOUT nresults29
Pointer to a size_t location where the number of elements in results is to be returned30
(memory reference)31

Returns PMIX_SUCCESS or a negative value indicating the error.32

CHAPTER 14. PROCESS SETS AND GROUPS 249

Un
offi
cia
l D
raf
t

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this1
operation:2

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)3
This process is the leader of the group.4

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)5
Participation is optional - do not return an error if any of the specified processes terminate6
without having joined. The default is false.7

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)8
Group operation only involves local processes. PMIx implementations are required to9
automatically scan an array of group members for local vs remote processes - if only local10
processes are detected, the implementation need not execute a global collective for the11
operation unless a context ID has been requested from the host environment. This can result12
in significant time savings. This attribute can be used to optimize the operation by indicating13
whether or not only local processes are represented, thus allowing the implementation to14
bypass the scan.15

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)16
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective17
operation.18

Host environments that support this operation are required to support the following attributes:19

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)20
Requests that the RM assign a new context identifier to the newly created group. The21
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range22
specified in the request. Thus, the value serves as a means of identifying the group within23
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.24

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)25
Notify remaining members when another member terminates without first leaving the group.26

27

Optional Attributes

The following attributes are optional for host environments that support this operation:28

PMIX_TIMEOUT "pmix.timeout" (int)29
Time in seconds before the specified operation should time out (zero indicating infinite) and30
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions31
caused by multiple layers (client, server, and host) simultaneously timing the operation.32

250 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Construct a new group composed of the specified processes and identified with the provided group2
identifier. The group identifier is a user-defined, NULL-terminated character array of length less3
than or equal to PMIX_MAX_NSLEN. Only characters accepted by standard string comparison4
functions (e.g., strncmp) are supported. Processes may engage in multiple simultaneous group5
construct operations so long as each is provided with a unique group ID. The directives array can be6
used to pass user-level directives regarding timeout constraints and other options available from the7
PMIx server.8

If the PMIX_GROUP_NOTIFY_TERMINATION attribute is provided and has a value of true,9
then either the construct leader (if PMIX_GROUP_LEADER is provided) or all participants who10
register for the PMIX_GROUP_MEMBER_FAILED event will receive events whenever a process11
fails or terminates prior to calling PMIx_Group_construct – i.e. if a group leader is declared,12
only that process will receive the event. In the absence of a declared leader, all specified group13
members will receive the event.14

The event will contain the identifier of the process that failed to join plus any other information that15
the host RM provided. This provides an opportunity for the leader or the collective members to16
react to the event – e.g., to decide to proceed with a smaller group or to abort the operation. The17
decision is communicated to the PMIx library in the results array at the end of the event handler.18
This allows PMIx to properly adjust accounting for procedure completion. When construct is19
complete, the participating PMIx servers will be alerted to any change in participants and each20
group member will receive an updated group membership (marked with the21
PMIX_GROUP_MEMBERSHIP attribute) as part of the results array returned by this API.22

Failure of the declared leader at any time will cause a PMIX_GROUP_LEADER_FAILED event to23
be delivered to all participants so they can optionally declare a new leader. A new leader is24
identified by providing the PMIX_GROUP_LEADER attribute in the results array in the return of25
the event handler. Only one process is allowed to return that attribute, thereby declaring itself as the26
new leader. Results of the leader selection will be communicated to all participants via a27
PMIX_GROUP_LEADER_SELECTED event identifying the new leader. If no leader was selected,28
then the pmix_info_t provided to that event handler will include that information so the29
participants can take appropriate action.30

Any participant that returns PMIX_GROUP_CONSTRUCT_ABORT from either the31
PMIX_GROUP_MEMBER_FAILED or the PMIX_GROUP_LEADER_FAILED event handler will32
cause the construct process to abort, returning from the call with a33
PMIX_GROUP_CONSTRUCT_ABORT status.34

If the PMIX_GROUP_NOTIFY_TERMINATION attribute is not provided or has a value of35
false, then the PMIx_Group_construct operation will simply return an error whenever a36
proposed group member fails or terminates prior to calling PMIx_Group_construct.37

Providing the PMIX_GROUP_OPTIONAL attribute with a value of true directs the PMIx library38
to consider participation by any specified group member as non-required - thus, the operation will39
return PMIX_SUCCESS if all members participate, or PMIX_ERR_PARTIAL_SUCCESS if some40

CHAPTER 14. PROCESS SETS AND GROUPS 251

Un
offi
cia
l D
raf
t

members fail to participate. The results array will contain the final group membership in the latter1
case. Note that this use-case can cause the operation to hang if the PMIX_TIMEOUT attribute is2
not specified and one or more group members fail to call PMIx_Group_construct while3
continuing to execute. Also, note that no leader or member failed events will be generated during4
the operation.5

Processes in a group under construction are not allowed to leave the group until group construction6
is complete. Upon completion of the construct procedure, each group member will have access to7
the job-level information of all namespaces represented in the group plus any information posted8
via PMIx_Put (subject to the usual scoping directives) for every group member.9

Advice to PMIx library implementers

At the conclusion of the construct operation, the PMIx library is required to ensure that job-related10
information from each participating namespace plus any information posted by group members via11
PMIx_Put (subject to scoping directives) is available to each member via calls to PMIx_Get.12

Advice to PMIx server hosts

The collective nature of this API generally results in use of a fence-like operation by the backend13
host environment. Host environments that utilize the array of process participants as a signature for14
such operations may experience potential conflicts should both a PMIx_Group_construct and15
a PMIx_Fence operation involving the same participants be simultaneously executed. As PMIx16
allows for such use-cases, it is therefore the responsibility of the host environment to resolve any17
potential conflicts.18

14.2.7 PMIx_Group_construct_nb19

Summary20
Non-blocking form of PMIx_Group_construct.21

252 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Group_construct_nb(const char grp[],3

const pmix_proc_t procs[], size_t nprocs,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_info_cbfunc_t cbfunc, void *cbdata);7

C

IN grp8
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group9
identifier (string)10

IN procs11
Array of pmix_proc_t structures containing the PMIx identifiers of the member processes12
(array of handles)13

IN nprocs14
Number of elements in the procs array (size_t)15

IN directives16
Array of pmix_info_t structures (array of handles)17

IN ndirs18
Number of elements in the directives array (size_t)19

IN cbfunc20
Callback function pmix_info_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

A successful return indicates that the request is being processed and the result will be returned in24
the provided cbfunc. Note that the library must not invoke the callback function prior to returning25
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.26

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:27

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed28
successfully - the cbfunc will not be called.29

If none of the above return codes are appropriate, then an implementation must return either a30
general PMIx error code or an implementation defined error code as described in Section 3.1.1.31

If executed, the status returned in the provided callback function will be one of the following32
constants:33

• PMIX_SUCCESS The operation succeeded and all specified members participated.34

• PMIX_ERR_PARTIAL_SUCCESS The operation succeeded but not all specified members35
participated - the final group membership is included in the callback function.36

CHAPTER 14. PROCESS SETS AND GROUPS 253

Un
offi
cia
l D
raf
t

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM1
does not.2

• a non-zero PMIx error constant indicating a reason for the request’s failure.3

Required Attributes

PMIx libraries that choose not to support this operation must return4
PMIX_ERR_NOT_SUPPORTED when the function is called.5

The following attributes are required to be supported by all PMIx libraries that support this6
operation:7

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)8
This process is the leader of the group.9

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)10
Participation is optional - do not return an error if any of the specified processes terminate11
without having joined. The default is false.12

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)13
Group operation only involves local processes. PMIx implementations are required to14
automatically scan an array of group members for local vs remote processes - if only local15
processes are detected, the implementation need not execute a global collective for the16
operation unless a context ID has been requested from the host environment. This can result17
in significant time savings. This attribute can be used to optimize the operation by indicating18
whether or not only local processes are represented, thus allowing the implementation to19
bypass the scan.20

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)21
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective22
operation.23

Host environments that support this operation are required to provide the following attributes:24

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)25
Requests that the RM assign a new context identifier to the newly created group. The26
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range27
specified in the request. Thus, the value serves as a means of identifying the group within28
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.29

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)30
Notify remaining members when another member terminates without first leaving the group.31

32

254 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Non-blocking version of the PMIx_Group_construct operation. The callback function will be7
called once all group members have called either PMIx_Group_construct or8
PMIx_Group_construct_nb.9

14.2.8 PMIx_Group_destruct10

Summary11
Destruct a PMIx process group.12

Format13 PMIx v4.0 C
pmix_status_t14
PMIx_Group_destruct(const char grp[],15

const pmix_info_t directives[],16
size_t ndirs);17

C

IN grp18
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the19
identifier of the group to be destructed (string)20

IN directives21
Array of pmix_info_t structures (array of handles)22

IN ndirs23
Number of elements in the directives array (size_t)24

Returns PMIX_SUCCESS or a negative value indicating the error.25

Required Attributes

For implementations and host environments that support the operation, there are no identified26
required attributes for this API.27

CHAPTER 14. PROCESS SETS AND GROUPS 255

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Destruct a group identified by the provided group identifier. Processes may engage in multiple7
simultaneous group destruct operations so long as each involves a unique group ID. The directives8
array can be used to pass user-level directives regarding timeout constraints and other options9
available from the PMIx server.10

The destruct API will return an error if any group process fails or terminates prior to calling11
PMIx_Group_destruct or its non-blocking version unless the12
PMIX_GROUP_NOTIFY_TERMINATION attribute was provided (with a value of false) at time13
of group construction. If notification was requested, then the PMIX_GROUP_MEMBER_FAILED14
event will be delivered for each process that fails to call destruct and the destruct tracker updated to15
account for the lack of participation. The PMIx_Group_destruct operation will subsequently16
return PMIX_SUCCESS when the remaining processes have all called destruct – i.e., the event will17
serve in place of return of an error.18

Advice to PMIx server hosts

The collective nature of this API generally results in use of a fence-like operation by the backend19
host environment. Host environments that utilize the array of process participants as a signature for20
such operations may experience potential conflicts should both a PMIx_Group_destruct and a21
PMIx_Fence operation involving the same participants be simultaneously executed. As PMIx22
allows for such use-cases, it is therefore the responsibility of the host environment to resolve any23
potential conflicts.24

14.2.9 PMIx_Group_destruct_nb25

Summary26
Non-blocking form of PMIx_Group_destruct.27

256 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Group_destruct_nb(const char grp[],3

const pmix_info_t directives[],4
size_t ndirs,5
pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

IN grp7
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the8
identifier of the group to be destructed (string)9

IN directives10
Array of pmix_info_t structures (array of handles)11

IN ndirs12
Number of elements in the directives array (size_t)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

A successful return indicates that the request is being processed and the result will be returned in18
the provided cbfunc. Note that the library must not invoke the callback function prior to returning19
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.20

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:21

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed22
successfully - the cbfunc will not be called.23

If none of the above return codes are appropriate, then an implementation must return either a24
general PMIx error code or an implementation defined error code as described in Section 3.1.1.25

If executed, the status returned in the provided callback function will be one of the following26
constants:27

• PMIX_SUCCESS The operation was successfully completed.28

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM29
does not.30

• a non-zero PMIx error constant indicating a reason for the request’s failure.31

Required Attributes

PMIx libraries that choose not to support this operation must return32
PMIX_ERR_NOT_SUPPORTED when the function is called. For implementations and host33
environments that support the operation, there are no identified required attributes for this API.34

CHAPTER 14. PROCESS SETS AND GROUPS 257

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Non-blocking version of the PMIx_Group_destruct operation. The callback function will be7
called once all members of the group have executed either PMIx_Group_destruct or8
PMIx_Group_destruct_nb.9

14.2.10 PMIx_Group_invite10

Summary11
Asynchronously construct a PMIx process group.12

Format13 PMIx v4.0 C
pmix_status_t14
PMIx_Group_invite(const char grp[],15

const pmix_proc_t procs[], size_t nprocs,16
const pmix_info_t directives[], size_t ndirs,17
pmix_info_t **results, size_t *nresult);18

C

IN grp19
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group20
identifier (string)21

IN procs22
Array of pmix_proc_t structures containing the PMIx identifiers of the processes to be23
invited (array of handles)24

IN nprocs25
Number of elements in the procs array (size_t)26

IN directives27
Array of pmix_info_t structures (array of handles)28

IN ndirs29
Number of elements in the directives array (size_t)30

258 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

INOUT results1
Pointer to a location where the array of pmix_info_t describing the results of the2
operation is to be returned (pointer to handle)3

INOUT nresults4
Pointer to a size_t location where the number of elements in results is to be returned5
(memory reference)6

Returns PMIX_SUCCESS or a negative value indicating the error.7

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this8
operation:9

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)10
Participation is optional - do not return an error if any of the specified processes terminate11
without having joined. The default is false.12

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)13
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective14
operation.15

Host environments that support this operation are required to provide the following attributes:16

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)17
Requests that the RM assign a new context identifier to the newly created group. The18
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range19
specified in the request. Thus, the value serves as a means of identifying the group within20
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.21

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)22
Notify remaining members when another member terminates without first leaving the group.23

24

Optional Attributes

The following attributes are optional for host environments that support this operation:25

PMIX_TIMEOUT "pmix.timeout" (int)26
Time in seconds before the specified operation should time out (zero indicating infinite) and27
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions28
caused by multiple layers (client, server, and host) simultaneously timing the operation.29

CHAPTER 14. PROCESS SETS AND GROUPS 259

Un
offi
cia
l D
raf
t

Description1
Explicitly invite the specified processes to join a group. The process making the2
PMIx_Group_invite call is automatically declared to be the group leader. Each invited3
process will be notified of the invitation via the PMIX_GROUP_INVITED event - the processes4
being invited must therefore register for the PMIX_GROUP_INVITED event in order to be notified5
of the invitation. Note that the PMIx event notification system caches events - thus, no ordering of6
invite versus event registration is required.7

The invitation event will include the identity of the inviting process plus the name of the group.8
When ready to respond, each invited process provides a response using either the blocking or9
non-blocking form of PMIx_Group_join. This will notify the inviting process that the10
invitation was either accepted (via the PMIX_GROUP_INVITE_ACCEPTED event) or declined11
(via the PMIX_GROUP_INVITE_DECLINED event). The PMIX_GROUP_INVITE_ACCEPTED12
event is captured by the PMIx client library of the inviting process – i.e., the application itself does13
not need to register for this event. The library will track the number of accepting processes and14
alert the inviting process (by returning from the blocking form of PMIx_Group_invite or15
calling the callback function of the non-blocking form) when group construction completes.16

The inviting process should, however, register for the PMIX_GROUP_INVITE_DECLINED if the17
application allows invited processes to decline the invitation. This provides an opportunity for the18
application to either invite a replacement, declare “abort”, or choose to remove the declining19
process from the final group. The inviting process should also register to receive20
PMIX_GROUP_INVITE_FAILED events whenever a process fails or terminates prior to21
responding to the invitation. Actions taken by the inviting process in response to these events must22
be communicated at the end of the event handler by returning the corresponding result so that the23
PMIx library can adjust accordingly.24

Upon completion of the operation, all members of the new group will receive access to the job-level25
information of each other’s namespaces plus any information posted via PMIx_Put by the other26
members.27

The inviting process is automatically considered the leader of the asynchronous group construction28
procedure and will receive all failure or termination events for invited members prior to completion.29
The inviting process is required to provide a PMIX_GROUP_CONSTRUCT_COMPLETE event once30
the group has been fully assembled – this event is used by the PMIx library as a trigger to release31
participants from their call to PMIx_Group_join and provides information (e.g., the final group32
membership) to be returned in the results array.33

Failure of the inviting process at any time will cause a PMIX_GROUP_LEADER_FAILED event to34
be delivered to all participants so they can optionally declare a new leader. A new leader is35
identified by providing the PMIX_GROUP_LEADER attribute in the results array in the return of36
the event handler. Only one process is allowed to return that attribute, declaring itself as the new37
leader. Results of the leader selection will be communicated to all participants via a38
PMIX_GROUP_LEADER_SELECTED event identifying the new leader. If no leader was selected,39
then the status code provided in the event handler will provide an error value so the participants can40
take appropriate action.41

260 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Advice to users

Applications are not allowed to use the group in any operations until group construction is1
complete. This is required in order to ensure consistent knowledge of group membership across all2
participants.3

14.2.11 PMIx_Group_invite_nb4

Summary5
Non-blocking form of PMIx_Group_invite.6

Format7 PMIx v4.0 C
pmix_status_t8
PMIx_Group_invite_nb(const char grp[],9

const pmix_proc_t procs[], size_t nprocs,10
const pmix_info_t directives[], size_t ndirs,11
pmix_info_cbfunc_t cbfunc, void *cbdata);12

C

IN grp13
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group14
identifier (string)15

IN procs16
Array of pmix_proc_t structures containing the PMIx identifiers of the processes to be17
invited (array of handles)18

IN nprocs19
Number of elements in the procs array (size_t)20

IN directives21
Array of pmix_info_t structures (array of handles)22

IN ndirs23
Number of elements in the directives array (size_t)24

IN cbfunc25
Callback function pmix_info_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

A successful return indicates that the request is being processed and the result will be returned in29
the provided cbfunc. Note that the library must not invoke the callback function prior to returning30
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.31

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:32

CHAPTER 14. PROCESS SETS AND GROUPS 261

Un
offi
cia
l D
raf
t

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed1
successfully - the cbfunc will not be called.2

If none of the above return codes are appropriate, then an implementation must return either a3
general PMIx error code or an implementation defined error code as described in Section 3.1.1.4

If executed, the status returned in the provided callback function will be one of the following5
constants:6

• PMIX_SUCCESS The operation succeeded and all specified members participated.7

• PMIX_ERR_PARTIAL_SUCCESS The operation succeeded but not all specified members8
participated - the final group membership is included in the callback function.9

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM10
does not.11

• a non-zero PMIx error constant indicating a reason for the request’s failure.12

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this13
operation:14

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)15
Participation is optional - do not return an error if any of the specified processes terminate16
without having joined. The default is false.17

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)18
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective19
operation.20

Host environments that support this operation are required to provide the following attributes:21

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)22
Requests that the RM assign a new context identifier to the newly created group. The23
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range24
specified in the request. Thus, the value serves as a means of identifying the group within25
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.26

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)27
Notify remaining members when another member terminates without first leaving the group.28

29

262 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Non-blocking version of the PMIx_Group_invite operation. The callback function will be7
called once all invited members of the group (or their substitutes) have executed either8
PMIx_Group_join or PMIx_Group_join_nb.9

14.2.12 PMIx_Group_join10

Summary11
Accept an invitation to join a PMIx process group.12

Format13 PMIx v4.0 C
pmix_status_t14
PMIx_Group_join(const char grp[],15

const pmix_proc_t *leader,16
pmix_group_opt_t opt,17
const pmix_info_t directives[], size_t ndirs,18
pmix_info_t **results, size_t *nresult);19

C

IN grp20
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group21
identifier (string)22

IN leader23
Process that generated the invitation (handle)24

IN opt25
Accept or decline flag (pmix_group_opt_t)26

IN directives27
Array of pmix_info_t structures (array of handles)28

IN ndirs29
Number of elements in the directives array (size_t)30

INOUT results31
Pointer to a location where the array of pmix_info_t describing the results of the32
operation is to be returned (pointer to handle)33

CHAPTER 14. PROCESS SETS AND GROUPS 263

Un
offi
cia
l D
raf
t

INOUT nresults1
Pointer to a size_t location where the number of elements in results is to be returned2
(memory reference)3

Returns PMIX_SUCCESS or a negative value indicating the error.4

Required Attributes

There are no identified required attributes for implementers.5

Optional Attributes

The following attributes are optional for host environments that support this operation:6

PMIX_TIMEOUT "pmix.timeout" (int)7
Time in seconds before the specified operation should time out (zero indicating infinite) and8
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions9
caused by multiple layers (client, server, and host) simultaneously timing the operation.10

Description11
Respond to an invitation to join a group that is being asynchronously constructed. The process must12
have registered for the PMIX_GROUP_INVITED event in order to be notified of the invitation.13
When called, the event information will include the pmix_proc_t identifier of the process that14
generated the invitation along with the identifier of the group being constructed. When ready to15
respond, the process provides a response using either form of PMIx_Group_join.16

Advice to users

Since the process is alerted to the invitation in a PMIx event handler, the process must not use the17
blocking form of this call unless it first “thread shifts” out of the handler and into its own thread18
context. Likewise, while it is safe to call the non-blocking form of the API from the event handler,19
the process must not block in the handler while waiting for the callback function to be called.20

264 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Calling this function causes the inviting process (aka the group leader) to be notified that the1
process has either accepted or declined the request. The blocking form of the API will return once2
the group has been completely constructed or the group’s construction has failed (as described3
below) – likewise, the callback function of the non-blocking form will be executed upon the same4
conditions.5

Failure of the leader during the call to PMIx_Group_join will cause a6
PMIX_GROUP_LEADER_FAILED event to be delivered to all invited participants so they can7
optionally declare a new leader. A new leader is identified by providing the8
PMIX_GROUP_LEADER attribute in the results array in the return of the event handler. Only one9
process is allowed to return that attribute, declaring itself as the new leader. Results of the leader10
selection will be communicated to all participants via a PMIX_GROUP_LEADER_SELECTED11
event identifying the new leader. If no leader was selected, then the status code provided in the12
event handler will provide an error value so the participants can take appropriate action.13

Any participant that returns PMIX_GROUP_CONSTRUCT_ABORT from the leader failed event14
handler will cause all participants to receive an event notifying them of that status. Similarly, the15
leader may elect to abort the procedure by either returning PMIX_GROUP_CONSTRUCT_ABORT16
from the handler assigned to the PMIX_GROUP_INVITE_ACCEPTED or17
PMIX_GROUP_INVITE_DECLINED codes, or by generating an event for the abort code. Abort18
events will be sent to all invited participants.19

14.2.13 PMIx_Group_join_nb20

Summary21
Non-blocking form of PMIx_Group_join22

Format23 PMIx v4.0 C
pmix_status_t24
PMIx_Group_join_nb(const char grp[],25

const pmix_proc_t *leader,26
pmix_group_opt_t opt,27
const pmix_info_t directives[], size_t ndirs,28
pmix_info_cbfunc_t cbfunc, void *cbdata);29

C

IN grp30
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group31
identifier (string)32

IN leader33
Process that generated the invitation (handle)34

CHAPTER 14. PROCESS SETS AND GROUPS 265

Un
offi
cia
l D
raf
t

IN opt1
Accept or decline flag (pmix_group_opt_t)2

IN directives3
Array of pmix_info_t structures (array of handles)4

IN ndirs5
Number of elements in the directives array (size_t)6

IN cbfunc7
Callback function pmix_info_cbfunc_t (function reference)8

IN cbdata9
Data to be passed to the callback function (memory reference)10

A successful return indicates that the request is being processed and the result will be returned in11
the provided cbfunc. Note that the library must not invoke the callback function prior to returning12
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.13

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:14

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed15
successfully - the cbfunc will not be called.16

If none of the above return codes are appropriate, then an implementation must return either a17
general PMIx error code or an implementation defined error code as described in Section 3.1.1.18

If executed, the status returned in the provided callback function will be one of the following19
constants:20

• PMIX_SUCCESS The operation succeeded and group membership is in the callback function21
parameters.22

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM23
does not.24

• a non-zero PMIx error constant indicating a reason for the request’s failure.25

Required Attributes

There are no identified required attributes for implementers.26

Optional Attributes

The following attributes are optional for host environments that support this operation:27

PMIX_TIMEOUT "pmix.timeout" (int)28
Time in seconds before the specified operation should time out (zero indicating infinite) and29
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions30
caused by multiple layers (client, server, and host) simultaneously timing the operation.31

266 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Non-blocking version of the PMIx_Group_join operation. The callback function will be called2
once all invited members of the group (or their substitutes) have executed either3
PMIx_Group_join or PMIx_Group_join_nb.4

14.2.13.1 Group accept/decline directives5
PMIx v4.0 The pmix_group_opt_t type is a uint8_t value used with the PMIx_Group_join API to6

indicate accept or decline of the invitation - these are provided for readability of user code:7

PMIX_GROUP_DECLINE 0 Decline the invitation.8
PMIX_GROUP_ACCEPT 1 Accept the invitation.9

14.2.14 PMIx_Group_leave10

Summary11
Leave a PMIx process group.12

Format13 PMIx v4.0 C
pmix_status_t14
PMIx_Group_leave(const char grp[],15

const pmix_info_t directives[],16
size_t ndirs);17

C

IN grp18
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group19
identifier (string)20

IN directives21
Array of pmix_info_t structures (array of handles)22

IN ndirs23
Number of elements in the directives array (size_t)24

Returns PMIX_SUCCESS or a negative value indicating the error.25

Required Attributes

There are no identified required attributes for implementers.26

CHAPTER 14. PROCESS SETS AND GROUPS 267

Un
offi
cia
l D
raf
t

Description1
Calls to PMIx_Group_leave (or its non-blocking form) will cause a PMIX_GROUP_LEFT2
event to be generated notifying all members of the group of the caller’s departure. The function will3
return (or the non-blocking function will execute the specified callback function) once the event has4
been locally generated and is not indicative of remote receipt.5

Advice to users

The PMIx_Group_leave API is intended solely for asynchronous departures of individual6
processes from a group as it is not a scalable operation – i.e., when a process determines it should7
no longer be a part of a defined group, but the remainder of the group retains a valid reason to8
continue in existence. Developers are advised to use PMIx_Group_destruct (or its9
non-blocking form) for all other scenarios as it represents a more scalable operation.10

14.2.15 PMIx_Group_leave_nb11

Summary12
Non-blocking form of PMIx_Group_leave.13

Format14 PMIx v4.0 C
pmix_status_t15
PMIx_Group_leave_nb(const char grp[],16

const pmix_info_t directives[],17
size_t ndirs,18
pmix_op_cbfunc_t cbfunc,19
void *cbdata);20

C

IN grp21
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group22
identifier (string)23

IN directives24
Array of pmix_info_t structures (array of handles)25

IN ndirs26
Number of elements in the directives array (size_t)27

IN cbfunc28
Callback function pmix_op_cbfunc_t (function reference)29

IN cbdata30
Data to be passed to the callback function (memory reference)31

268 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A successful return indicates that the request is being processed and the result will be returned in1
the provided cbfunc. Note that the library must not invoke the callback function prior to returning2
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.3

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:4

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed5
successfully - the cbfunc will not be called.6

If none of the above return codes are appropriate, then an implementation must return either a7
general PMIx error code or an implementation defined error code as described in Section 3.1.1.8

If executed, the status returned in the provided callback function will be one of the following9
constants:10

• PMIX_SUCCESS The operation succeeded - i.e., the PMIX_GROUP_LEFT event was generated.11

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx library supports this operation, the host RM12
does not.13

• a non-zero PMIx error constant indicating a reason for the request’s failure.14

Required Attributes

There are no identified required attributes for implementers.15

Description16
Non-blocking version of the PMIx_Group_leave operation. The callback function will be17
called once the event has been locally generated and is not indicative of remote receipt.18

CHAPTER 14. PROCESS SETS AND GROUPS 269

Un
offi
cia
l D
raf
t

CHAPTER 15

Fabric Support Definitions

As the drive for performance continues, interest has grown in scheduling algorithms that take into1
account network locality of the allocated resources and in optimizing collective communication2
patterns by structuring them to follow fabric topology. In addition, concerns over the time required3
to initiate execution of parallel applications and enable communication across them have grown as4
the size of those applications extends into the hundreds of thousands of individual processes5
spanning tens of thousands of nodes.6

PMIx supports the communication part of these efforts by defining data types and attributes by7
which fabric endpoints and coordinates for processes and devices can be obtained from the host8
environment. When used in conjunction with other PMIx methods described in Chapter 17, this9
results in the ability of a process to obtain the fabric endpoint and coordinate of all other processes10
without incurring additional overhead associated with a global exchange of that information. This11
includes:12

• Defining several interfaces specifically intended to support WLMs by providing access to13
information of potential use to scheduling algorithms - e.g., information on communication costs14
between different points on the fabric.15

• Supporting hierarchical collective operations by providing the fabric coordinates for all devices16
on participating nodes as well as a list of the peers sharing each fabric switch. This enables one,17
for example, to aggregate the contribution from all processes on a node, then again across all18
nodes on a common switch, and finally across all switches based on detailed knowledge of the19
fabric location of each participant.20

• Enabling the "instant on" paradigm to mitigate the scalable launch problem by providing each21
process with a rich set of information about the environment and the application, including22
everything required for communication between peers within the application, at time of process23
start of execution.24

Meeting these needs in the case where only a single fabric device exists on each node is relatively25
straightforward - PMIx and the host environment provide a single endpoint for each process plus a26
coordinate for the device on each node, and there is no uncertainty regarding the endpoint each27
process will use. Extending this to the multiple device per node case is more difficult as the choice28
of endpoint by any given process cannot be known in advance, and questions arise regarding29
reachability between devices on different nodes. Resolving these ambiguities without requiring a30
global operation requires that PMIx provide both (a) an endpoint for each application process on31
each of its local devices; and (b) the fabric coordinates of all remote and local devices on32
participating nodes. It also requires that each process open all of its assigned endpoints as the33
endpoint selected for contact by a remote peer cannot be known in advance.34

270

Un
offi
cia
l D
raf
t

While these steps ensure the ability of a process to connect to a remote peer, it leaves unanswered1
the question of selecting the preferred device for that communication. If multiple devices are2
present on a node, then the application can benefit from having each process utilize its "closest"3
fabric device (i.e., the device that minimizes the communication distance between the process’4
location and that device) for messaging operations. In some cases, messaging libraries prefer to5
also retain the ability to use non-nearest devices, prioritizing the devices based on distance to6
support multi-device operations (e.g., for large message transmission in parallel).7

PMIx supports this requirement by providing the array of process-to-device distance information8
for each process and local fabric device at start of execution. Both minimum and maximum9
distances are provided since a single process can occupy multiple processor locations. In addition,10
since processes can relocate themselves by changing their processor bindings, PMIx provides an11
API that allows the process to dynamically request an update to its distance array.12

However, while these measures assist a process in selecting its own best endpoint, they do not13
resolve the uncertainty over the choice of preferred device by a remote peer. There are two methods14
by which this ambiguity can be resolved:15

a) A process can select a remote endpoint to use based on its own preferred device and reachability16
of the peer’s remote devices. Once the initial connection has been made, the two processes can17
exchange information and mutually determine their desired communication path going forward.18

b) The application can use knowledge of both the local and remote distance arrays to compute the19
best communication path and establish that connection. In some instances (e.g., a homogeneous20
system), a PMIx server may provide distance information for both local and remote devices.21
Alternatively, when this isn’t available, an application can opt to collect the information using22
the PMIX_COLLECT_GENERATED_JOB_INFO with the PMIx_Fence API, or can obtain it23
on a one peer-at-a-time basis using the PMIx_Get API on systems where the host environment24
supports the Direct Modex operation.25

Information on fabric coordinates, endpoints, and device distances are provided as reserved keys as26
detailed in Chapter 6 - i.e., they are to be available at client start of execution and are subject to the27
retrieval rules of Section 6.2. Examples for retrieving fabric-related information include retrieval of:28

• An array of information on fabric devices for a node by passing PMIX_FABRIC_DEVICES as29
the key to PMIx_Get along with the PMIX_HOSTNAME of the node as a directive30

• An array of information on a specific fabric device by passing PMIX_FABRIC_DEVICE as the31
key to PMIx_Get along with the PMIX_DEVICE_ID of the device as a directive32

• An array of information on a specific fabric device by passing PMIX_FABRIC_DEVICE as the33
key to PMIx_Get along with both PMIX_FABRIC_DEVICE_NAME of the device and the34
PMIX_HOSTNAME of the node as directives35

When requesting data on a device, returned data must include at least the following attributes:36

• PMIX_HOSTNAME "pmix.hname" (char*)37

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 271

Un
offi
cia
l D
raf
t

Name of the host, as returned by the gethostname utility or its equivalent. The1
PMIX_NODEID may be returned in its place, or in addition to the hostname.2

• PMIX_DEVICE_ID "pmix.dev.id" (string)3
System-wide UUID or node-local OS name of a particular device.4

• PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)5
The operating system name associated with the device. This may be a logical fabric6
interface name (e.g. "eth0" or "eno1") or an absolute filename.7

• PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)8
Indicates the name of the vendor that distributes the device.9

• PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)10
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").11

• PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)12
A node-level unique identifier for a Peripheral Component Interconnect (PCI) device.13
Provided only if the device is located on a PCI bus. The identifier is constructed as a14
four-part tuple delimited by colons comprised of the PCI 16-bit domain, 8-bit bus, 8-bit15
device, and 8-bit function IDs, each expressed in zero-extended hexadecimal form. Thus,16
an example identifier might be "abc1:0f:23:01". The combination of node identifier17
(PMIX_HOSTNAME or PMIX_NODEID) and PMIX_FABRIC_DEVICE_PCI_DEVID18
shall be unique within the overall system. This item should be included if the device bus19
type is PCI - the equivalent should be provided for any other bus type.20

The returned array may optionally contain one or more of the following in addition to the above list:21

• PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)22
Index of the device within an associated communication cost matrix.23

• PMIX_FABRIC_DEVICE_VENDORID "pmix.fabdev.vendid" (string)24
This is a vendor-provided identifier for the device or product.25

• PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)26
The name of the driver associated with the device.27

• PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)28
The device’s firmware version.29

• PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)30
The primary link-level address associated with the device, such as a Media Access31
Control (MAC) address. If multiple addresses are available, only one will be reported.32

• PMIX_FABRIC_DEVICE_COORDINATES "pmix.fab.coord" (pmix_geometry_t)33
The pmix_geometry_t fabric coordinates for the device, including values for all34
supported coordinate views.35

272 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)1
The maximum transfer unit of link level frames or packets, in bytes.2

• PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)3
The active link data rate, given in bits per second.4

• PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)5
The last available physical port state for the specified device. Possible values are6
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to7
indicate if the port state is unknown or not applicable (unknown), inactive (down), or8
active (up).9

• PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)10
Specifies the type of fabric interface currently active on the device, such as Ethernet or11
InfiniBand.12

The remainder of this chapter details the events, data types, attributes, and APIs associated with13
fabric-related operations.14

15.1 Fabric Support Events15

The following events are defined for use in fabric-related operations.16

PMIX_FABRIC_UPDATE_PENDING -176 The PMIx server library has been alerted to a17
change in the fabric that requires updating of one or more registered pmix_fabric_t18
objects.19

PMIX_FABRIC_UPDATED -175 The PMIx server library has completed updating the20
entries of all affected pmix_fabric_t objects registered with the library. Access to the21
entries of those objects may now resume.22

PMIX_FABRIC_UPDATE_ENDPOINTS -113 Endpoint assignments have been updated,23
usually in response to migration or restart of a process. Clients should use PMIx_Get to24
update any internally cached connections.25

15.2 Fabric Support Datatypes26

Several datatype definitions have been created to support fabric-related operations and information.27

15.2.1 Fabric Endpoint Structure28

The pmix_endpoint_t structure contains an assigned endpoint for a given fabric device.29
PMIx v4.0

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 273

Un
offi
cia
l D
raf
t

C
typedef struct pmix_endpoint {1

char *uuid;2
char *osname;3
pmix_byte_object_t endpt;4

} pmix_endpoint_t;5

C

The uuid field contains the UUID of the fabric device, the osname is the local operating system’s6
name for the device, and the endpt field contains a fabric vendor-specific object identifying the7
communication endpoint assigned to the process.8

15.2.2 Fabric endpoint support macros9

The following macros are provided to support the pmix_endpoint_t structure.10

Static initializer for the endpoint structure11 Provisional Provide a static initializer for the pmix_endpoint_t fields.12
PMIx v4.2 C

PMIX_ENDPOINT_STATIC_INIT13

C

Initialize the endpoint structure14
Initialize the pmix_endpoint_t fields.15

PMIx v4.0 C
PMIX_ENDPOINT_CONSTRUCT(m)16

C

IN m17
Pointer to the structure to be initialized (pointer to pmix_endpoint_t)18

Destruct the endpoint structure19
Destruct the pmix_endpoint_t fields.20

PMIx v4.0 C
PMIX_ENDPOINT_DESTRUCT(m)21

C

IN m22
Pointer to the structure to be destructed (pointer to pmix_endpoint_t)23

274 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Create an endpoint array1
Allocate and initialize a pmix_endpoint_t array.2

C
PMIX_ENDPOINT_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_endpoint_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

Release an endpoint array9
Release an array of pmix_endpoint_t structures.10

PMIx v4.0 C
PMIX_ENDPOINT_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_endpoint_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

15.2.3 Fabric Coordinate Structure16

The pmix_coord_t structure describes the fabric coordinates of a specified device in a given17
view.18

PMIx v4.0 C
typedef struct pmix_coord {19

pmix_coord_view_t view;20
uint32_t *coord;21
size_t dims;22

} pmix_coord_t;23

C

All coordinate values shall be expressed as unsigned integers due to their units being defined in24
fabric devices and not physical distances. The coordinate is therefore an indicator of connectivity25
and not relative communication distance.26

Advice to PMIx library implementers

Note that the pmix_coord_t structure does not imply nor mandate any requirement on how the27
coordinate data is to be stored within the PMIx library. Implementers are free to store the28
coordinate in whatever format they choose.29

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 275

Un
offi
cia
l D
raf
t

A fabric coordinate is associated with a given fabric device and must be unique within a given view.1
Fabric devices are associated with the operating system which hosts them - thus, fabric coordinates2
are logically grouped within the node realm (as described in Section 6.1) and can be retrieved per3
the rules detailed in Section 6.1.5.4

15.2.4 Fabric coordinate support macros5

The following macros are provided to support the pmix_coord_t structure.6

Static initializer for the coord structure7 Provisional Provide a static initializer for the pmix_coord_t fields.8
PMIx v4.2 C

PMIX_COORD_STATIC_INIT9

C
Initialize the coord structure10
Initialize the pmix_coord_t fields.11

PMIx v4.0 C
PMIX_COORD_CONSTRUCT(m)12

C
IN m13

Pointer to the structure to be initialized (pointer to pmix_coord_t)14

Destruct the coord structure15
Destruct the pmix_coord_t fields.16

PMIx v4.0 C
PMIX_COORD_DESTRUCT(m)17

C
IN m18

Pointer to the structure to be destructed (pointer to pmix_coord_t)19

Create a coord array20
Allocate and initialize a pmix_coord_t array.21

PMIx v4.0 C
PMIX_COORD_CREATE(m, n)22

C
INOUT m23

Address where the pointer to the array of pmix_coord_t structures shall be stored (handle)24
IN n25

Number of structures to be allocated (size_t)26

276 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Release a coord array1
Release an array of pmix_coord_t structures.2

PMIx v4.0 C
PMIX_COORD_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_coord_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

15.2.5 Fabric Geometry Structure8

The pmix_geometry_t structure describes the fabric coordinates of a specified device.9
PMIx v4.0 C

typedef struct pmix_geometry {10
size_t fabric;11
char *uuid;12
char *osname;13
pmix_coord_t *coordinates;14
size_t ncoords;15

} pmix_geometry_t;16

C

All coordinate values shall be expressed as unsigned integers due to their units being defined in17
fabric devices and not physical distances. The coordinate is therefore an indicator of connectivity18
and not relative communication distance.19

Advice to PMIx library implementers

Note that the pmix_coord_t structure does not imply nor mandate any requirement on how the20
coordinate data is to be stored within the PMIx library. Implementers are free to store the21
coordinate in whatever format they choose.22

A fabric coordinate is associated with a given fabric device and must be unique within a given view.23
Fabric devices are associated with the operating system which hosts them - thus, fabric coordinates24
are logically grouped within the node realm (as described in Section 6.1) and can be retrieved per25
the rules detailed in Section 6.1.5.26

15.2.6 Fabric geometry support macros27

The following macros are provided to support the pmix_geometry_t structure.28

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 277

Un
offi
cia
l D
raf
t

Static initializer for the geometry structure1
Provide a static initializer for the pmix_geometry_t fields.2

C
PMIX_GEOMETRY_STATIC_INIT3

C

Initialize the geometry structure4
Initialize the pmix_geometry_t fields.5

PMIx v4.0 C
PMIX_GEOMETRY_CONSTRUCT(m)6

C

IN m7
Pointer to the structure to be initialized (pointer to pmix_geometry_t)8

Destruct the geometry structure9
Destruct the pmix_geometry_t fields.10

PMIx v4.0 C
PMIX_GEOMETRY_DESTRUCT(m)11

C

IN m12
Pointer to the structure to be destructed (pointer to pmix_geometry_t)13

Create a geometry array14
Allocate and initialize a pmix_geometry_t array.15

PMIx v4.0 C
PMIX_GEOMETRY_CREATE(m, n)16

C

INOUT m17
Address where the pointer to the array of pmix_geometry_t structures shall be stored18
(handle)19

IN n20
Number of structures to be allocated (size_t)21

278 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Release a geometry array1
Release an array of pmix_geometry_t structures.2

C
PMIX_GEOMETRY_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_geometry_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

15.2.7 Fabric Coordinate Views8

PMIx v4.0 C
typedef uint8_t pmix_coord_view_t;9
#define PMIX_COORD_VIEW_UNDEF 0x0010
#define PMIX_COORD_LOGICAL_VIEW 0x0111
#define PMIX_COORD_PHYSICAL_VIEW 0x0212

C

Fabric coordinates can be reported based on different views according to user preference at the time13
of request. The following views have been defined:14

PMIX_COORD_VIEW_UNDEF 0x00 The coordinate view has not been defined.15
PMIX_COORD_LOGICAL_VIEW 0x01 The coordinates are provided in a logical view,16

typically given in Cartesian (x,y,z) dimensions, that describes the data flow in the fabric as17
defined by the arrangement of the hierarchical addressing scheme, fabric segmentation,18
routing domains, and other similar factors employed by that fabric.19

PMIX_COORD_PHYSICAL_VIEW 0x02 The coordinates are provided in a physical view20
based on the actual wiring diagram of the fabric - i.e., values along each axis reflect the21
relative position of that interface on the specific fabric cabling.22

If the requester does not specify a view, coordinates shall default to the logical view.23

15.2.8 Fabric Link State24

The pmix_link_state_t is a uint32_t type for fabric link states.25
PMIx v4.0

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 279

Un
offi
cia
l D
raf
t

C
typedef uint8_t pmix_link_state_t;1

C

The following constants can be used to set a variable of the type pmix_link_state_t. All2
definitions were introduced in version 4 of the standard unless otherwise marked. Valid link state3
values start at zero.4

PMIX_LINK_STATE_UNKNOWN 0 The port state is unknown or not applicable.5
PMIX_LINK_DOWN 1 The port is inactive.6
PMIX_LINK_UP 2 The port is active.7

15.2.9 Fabric Operation Constants8

PMIx v4.0 The pmix_fabric_operation_t data type is an enumerated type for specifying fabric9
operations used in the PMIx server module’s pmix_server_fabric_fn_t API.10

PMIX_FABRIC_REQUEST_INFO 0 Request information on a specific fabric - if the fabric11
isn’t specified as per PMIx_Fabric_register, then return information on the default12
fabric of the overall system. Information to be returned is described in pmix_fabric_t.13

PMIX_FABRIC_UPDATE_INFO 1 Update information on a specific fabric - the index of the14
fabric (PMIX_FABRIC_INDEX) to be updated must be provided.15

15.2.10 Fabric registration structure16

The pmix_fabric_t structure is used by a WLM to interact with fabric-related PMIx interfaces,17
and to provide information about the fabric for use in scheduling algorithms or other purposes.18

PMIx v4.0 C
typedef struct pmix_fabric_s {19

char *name;20
size_t index;21
pmix_info_t *info;22
size_t ninfo;23
void *module;24

} pmix_fabric_t;;25

C

Note that in this structure:26

• name is an optional user-supplied string name identifying the fabric being referenced by this27
struct. If provided, the field must be a NULL-terminated string composed of standard28
alphanumeric values supported by common utilities such as strcmp.;29

• index is a PMIx-provided number identifying this object;30

280 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• info is an array of pmix_info_t containing information (provided by the PMIx library) about1
the fabric;2

• ninfo is the number of elements in the info array;3

• module points to an opaque object reserved for use by the PMIx server library.4

Note that only the name field is provided by the user - all other fields are provided by the PMIx5
library and must not be modified by the user. The info array contains a varying amount of6
information depending upon both the PMIx implementation and information available from the7
fabric vendor. At a minimum, it must contain (ordering is arbitrary):8

Required Attributes

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)9
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.10

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)11
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).12

PMIX_FABRIC_NUM_DEVICES "pmix.fab.nverts" (size_t)13
Total number of fabric devices in the overall system - corresponds to the number of rows or14
columns in the cost matrix.15

and may optionally contain one or more of the following:16

Optional Attributes

PMIX_FABRIC_COST_MATRIX "pmix.fab.cm" (pointer)17
Pointer to a two-dimensional square array of point-to-point relative communication costs18
expressed as uint16_t values.19

PMIX_FABRIC_GROUPS "pmix.fab.grps" (string)20
A string delineating the group membership of nodes in the overall system, where each fabric21
group consists of the group number followed by a colon and a comma-delimited list of nodes22
in that group, with the groups delimited by semi-colons (e.g.,23
0:node000,node002,node004,node006;1:node001,node003,24
node005,node007)25

PMIX_FABRIC_DIMS "pmix.fab.dims" (uint32_t)26
Number of dimensions in the specified fabric plane/view. If no plane is specified in a27
request, then the dimensions of all planes in the overall system will be returned as a28
pmix_data_array_t containing an array of uint32_t values. Default is to provide29
dimensions in logical view.30

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)31

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 281

Un
offi
cia
l D
raf
t

ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request1
for information, specifies the plane whose information is to be returned. When used directly2
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric3
planes in the overall system.4

PMIX_FABRIC_SHAPE "pmix.fab.shape" (pmix_data_array_t*)5
The size of each dimension in the specified fabric plane/view, returned in a6
pmix_data_array_t containing an array of uint32_t values. The size is defined as7
the number of elements present in that dimension - e.g., the number of devices in one8
dimension of a physical view of a fabric plane. If no plane is specified, then the shape of9
each plane in the overall system will be returned in a pmix_data_array_t array where10
each element is itself a two-element array containing the PMIX_FABRIC_PLANE followed11
by that plane’s fabric shape. Default is to provide the shape in logical view.12

PMIX_FABRIC_SHAPE_STRING "pmix.fab.shapestr" (string)13
Network shape expressed as a string (e.g., "10x12x2"). If no plane is specified, then the14
shape of each plane in the overall system will be returned in a pmix_data_array_t array15
where each element is itself a two-element array containing the PMIX_FABRIC_PLANE16
followed by that plane’s fabric shape string. Default is to provide the shape in logical view.17

While unusual due to scaling issues, implementations may include an array of18
PMIX_FABRIC_DEVICE elements describing the device information for each device in the19
overall system. Each element shall contain a pmix_data_array_t of pmix_info_t values20
describing the device. Each array may contain one or more of the following (ordering is arbitrary):21

PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)22
The operating system name associated with the device. This may be a logical fabric interface23
name (e.g. "eth0" or "eno1") or an absolute filename.24

PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)25
Indicates the name of the vendor that distributes the device.26

PMIX_DEVICE_ID "pmix.dev.id" (string)27
System-wide UUID or node-local OS name of a particular device.28

PMIX_HOSTNAME "pmix.hname" (char*)29
Name of the host, as returned by the gethostname utility or its equivalent.30

PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)31
The name of the driver associated with the device.32

PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)33
The device’s firmware version.34

PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)35
The primary link-level address associated with the device, such as a MAC address. If36
multiple addresses are available, only one will be reported.37

PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)38

282 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The maximum transfer unit of link level frames or packets, in bytes.1

PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)2
The active link data rate, given in bits per second.3

PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)4
The last available physical port state for the specified device. Possible values are5
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to indicate6
if the port state is unknown or not applicable (unknown), inactive (down), or active (up).7

PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)8
Specifies the type of fabric interface currently active on the device, such as Ethernet or9
InfiniBand.10

PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)11
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").12

PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)13
A node-level unique identifier for a PCI device. Provided only if the device is located on a14
PCI bus. The identifier is constructed as a four-part tuple delimited by colons comprised of15
the PCI 16-bit domain, 8-bit bus, 8-bit device, and 8-bit function IDs, each expressed in16
zero-extended hexadecimal form. Thus, an example identifier might be "abc1:0f:23:01". The17
combination of node identifier (PMIX_HOSTNAME or PMIX_NODEID) and18
PMIX_FABRIC_DEVICE_PCI_DEVID shall be unique within the overall system.19

15.2.10.1 Static initializer for the fabric structure20
Provisional Provide a static initializer for the pmix_fabric_t fields.21
PMIx v4.2 C

PMIX_FABRIC_STATIC_INIT22

C

15.2.10.2 Initialize the fabric structure23

Initialize the pmix_fabric_t fields.24
PMIx v4.0 C

PMIX_FABRIC_CONSTRUCT(m)25

C

IN m26
Pointer to the structure to be initialized (pointer to pmix_fabric_t)27

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 283

Un
offi
cia
l D
raf
t

15.3 Fabric Support Attributes1

The following attribute is used by the PMIx server library supporting the system’s WLM to indicate2
that it wants access to the fabric support functions:3

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)4
Server is supporting system scheduler and desires access to appropriate WLM-supporting5
features. Indicates that the library is to be initialized for scheduler support.6

The following attributes may be returned in response to fabric-specific APIs or queries (e.g.,7
PMIx_Get or PMIx_Query_info). These attributes are not related to a specific data realm (as8
described in Section 6.1) - the PMIx_Get function shall therefore ignore the value in its proc9
process identifier argument when retrieving these values.10

PMIX_FABRIC_COST_MATRIX "pmix.fab.cm" (pointer)11
Pointer to a two-dimensional square array of point-to-point relative communication costs12
expressed as uint16_t values.13

PMIX_FABRIC_GROUPS "pmix.fab.grps" (string)14
A string delineating the group membership of nodes in the overall system, where each fabric15
group consists of the group number followed by a colon and a comma-delimited list of nodes16
in that group, with the groups delimited by semi-colons (e.g.,17
0:node000,node002,node004,node006;1:node001,node003,18
node005,node007)19

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)20
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request21
for information, specifies the plane whose information is to be returned. When used directly22
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric23
planes in the overall system.24

PMIX_FABRIC_SWITCH "pmix.fab.switch" (string)25
ID string of a fabric switch. When used as a modifier in a request for information, specifies26
the switch whose information is to be returned. When used directly as a key in a request,27
returns a pmix_data_array_t of string identifiers for all fabric switches in the overall28
system.29

The following attributes may be returned in response to queries (e.g., PMIx_Get or30
PMIx_Query_info). A qualifier (e.g., PMIX_FABRIC_INDEX) identifying the fabric whose31
value is being referenced must be provided for queries on systems supporting more than one fabric32
when values for the non-default fabric are requested. These attributes are not related to a specific33
data realm (as described in Section 6.1) - the PMIx_Get function shall therefore ignore the value34
in its proc process identifier argument when retrieving these values.35

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)36
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.37

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)38

284 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).1
PMIX_FABRIC_INDEX "pmix.fab.idx" (size_t)2

The index of the fabric as returned in pmix_fabric_t.3
PMIX_FABRIC_NUM_DEVICES "pmix.fab.nverts" (size_t)4

Total number of fabric devices in the overall system - corresponds to the number of rows or5
columns in the cost matrix.6

PMIX_FABRIC_DIMS "pmix.fab.dims" (uint32_t)7
Number of dimensions in the specified fabric plane/view. If no plane is specified in a8
request, then the dimensions of all planes in the overall system will be returned as a9
pmix_data_array_t containing an array of uint32_t values. Default is to provide10
dimensions in logical view.11

PMIX_FABRIC_SHAPE "pmix.fab.shape" (pmix_data_array_t*)12
The size of each dimension in the specified fabric plane/view, returned in a13
pmix_data_array_t containing an array of uint32_t values. The size is defined as14
the number of elements present in that dimension - e.g., the number of devices in one15
dimension of a physical view of a fabric plane. If no plane is specified, then the shape of16
each plane in the overall system will be returned in a pmix_data_array_t array where17
each element is itself a two-element array containing the PMIX_FABRIC_PLANE followed18
by that plane’s fabric shape. Default is to provide the shape in logical view.19

PMIX_FABRIC_SHAPE_STRING "pmix.fab.shapestr" (string)20
Network shape expressed as a string (e.g., "10x12x2"). If no plane is specified, then the21
shape of each plane in the overall system will be returned in a pmix_data_array_t array22
where each element is itself a two-element array containing the PMIX_FABRIC_PLANE23
followed by that plane’s fabric shape string. Default is to provide the shape in logical view.24

The following attributes are related to the node realm (as described in Section 6.1.5) and are25
retrieved according to those rules.26

PMIX_FABRIC_DEVICES "pmix.fab.devs" (pmix_data_array_t)27
Array of pmix_info_t containing information for all devices on the specified node. Each28
element of the array will contain a PMIX_FABRIC_DEVICE entry, which in turn will29
contain an array of information on a given device.30

PMIX_FABRIC_COORDINATES "pmix.fab.coords" (pmix_data_array_t)31
Array of pmix_geometry_t fabric coordinates for devices on the specified node. The32
array will contain the coordinates of all devices on the node, including values for all33
supported coordinate views. The information for devices on the local node shall be provided34
if the node is not specified in the request.35

PMIX_FABRIC_DEVICE "pmix.fabdev" (pmix_data_array_t)36
An array of pmix_info_t describing a particular fabric device using one or more of the37
attributes defined below. The first element in the array shall be the PMIX_DEVICE_ID of38
the device.39

PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)40
Index of the device within an associated communication cost matrix.41

PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)42

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 285

Un
offi
cia
l D
raf
t

The operating system name associated with the device. This may be a logical fabric interface1
name (e.g. "eth0" or "eno1") or an absolute filename.2

PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)3
Indicates the name of the vendor that distributes the device.4

PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)5
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").6

PMIX_FABRIC_DEVICE_VENDORID "pmix.fabdev.vendid" (string)7
This is a vendor-provided identifier for the device or product.8

PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)9
The name of the driver associated with the device.10

PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)11
The device’s firmware version.12

PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)13
The primary link-level address associated with the device, such as a MAC address. If14
multiple addresses are available, only one will be reported.15

PMIX_FABRIC_DEVICE_COORDINATES "pmix.fab.coord" (pmix_geometry_t)16
The pmix_geometry_t fabric coordinates for the device, including values for all17
supported coordinate views.18

PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)19
The maximum transfer unit of link level frames or packets, in bytes.20

PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)21
The active link data rate, given in bits per second.22

PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)23
The last available physical port state for the specified device. Possible values are24
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to indicate25
if the port state is unknown or not applicable (unknown), inactive (down), or active (up).26

PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)27
Specifies the type of fabric interface currently active on the device, such as Ethernet or28
InfiniBand.29

PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)30
A node-level unique identifier for a PCI device. Provided only if the device is located on a31
PCI bus. The identifier is constructed as a four-part tuple delimited by colons comprised of32
the PCI 16-bit domain, 8-bit bus, 8-bit device, and 8-bit function IDs, each expressed in33
zero-extended hexadecimal form. Thus, an example identifier might be "abc1:0f:23:01". The34
combination of node identifier (PMIX_HOSTNAME or PMIX_NODEID) and35
PMIX_FABRIC_DEVICE_PCI_DEVID shall be unique within the overall system.36

The following attributes are related to the process realm (as described in Section 6.1.4) and are37
retrieved according to those rules.38

PMIX_FABRIC_ENDPT "pmix.fab.endpt" (pmix_data_array_t)39
Fabric endpoints for a specified process. As multiple endpoints may be assigned to a given40
process (e.g., in the case where multiple devices are associated with a package to which the41

286 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

process is bound), the returned values will be provided in a pmix_data_array_t of1
pmix_endpoint_t elements.2

The following attributes are related to the job realm (as described in Section 6.1.2) and are retrieved3
according to those rules. Note that distances to fabric devices are retrieved using the4
PMIX_DEVICE_DISTANCES key with the appropriate pmix_device_type_t qualifier.5

PMIX_SWITCH_PEERS "pmix.speers" (pmix_data_array_t)6
Peer ranks that share the same switch as the process specified in the call to PMIx_Get.7
Returns a pmix_data_array_t array of pmix_info_t results, each element8
containing the PMIX_SWITCH_PEERS key with a three-element pmix_data_array_t9
array of pmix_info_t containing the PMIX_DEVICE_ID of the local fabric device, the10
PMIX_FABRIC_SWITCH identifying the switch to which it is connected, and a11
comma-delimited string of peer ranks sharing the switch to which that device is connected.12

15.4 Fabric Support Functions13

The following APIs allow the WLM to request specific services from the fabric subsystem via the14
PMIx library.15

Advice to PMIx server hosts

Due to their high cost in terms of execution, memory consumption, and interactions with other16
SMS components (e.g., a fabric manager), it is strongly advised that the underlying implementation17
of these APIs be restricted to a single PMIx server in a system that is supporting the SMS18
component responsible for the scheduling of allocations (i.e., the system scheduler). The19
PMIX_SERVER_SCHEDULER attribute can be used for this purpose to control the execution path.20
Clients, tools, and other servers utilizing these functions are advised to have their requests21
forwarded to the server supporting the scheduler using the pmix_server_fabric_fn_t22
server module function, as needed.23

15.4.1 PMIx_Fabric_register24

Summary25
Register for access to fabric-related information.26

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 287

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Fabric_register(pmix_fabric_t *fabric,3

const pmix_info_t directives[],4
size_t ndirs);5

C

INOUT fabric6
address of a pmix_fabric_t (backed by storage). User may populate the "name" field at7
will - PMIx does not utilize this field (handle)8

IN directives9
an optional array of values indicating desired behaviors and/or fabric to be accessed. If NULL,10
then the highest priority available fabric will be used (array of handles)11

IN ndirs12
Number of elements in the directives array (integer)13

Returns PMIX_SUCCESS or a negative value indicating the error.14

Required Attributes

The following directives are required to be supported by all PMIx libraries to aid users in15
identifying the fabric whose data is being sought:16

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)17
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request18
for information, specifies the plane whose information is to be returned. When used directly19
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric20
planes in the overall system.21

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)22
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).23

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)24
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.25

288 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Register for access to fabric-related information, including the communication cost matrix. This2
call must be made prior to requesting information from a fabric. The caller may request access to a3
particular fabric using the vendor, type, or identifier, or to a specific fabric plane via the4
PMIX_FABRIC_PLANE attribute - otherwise, information for the default fabric will be returned.5
Upon successful completion of the call, information will have been filled into the fields of the6
provided fabric structure.7

For performance reasons, the PMIx library does not provide thread protection for accessing the8
information in the pmix_fabric_t structure. Instead, the PMIx implementation shall provide9
two methods for coordinating updates to the provided fabric information:10

• Users may periodically poll for updates using the PMIx_Fabric_update API11

• Users may register for PMIX_FABRIC_UPDATE_PENDING events indicating that an update to12
the cost matrix is pending. When received, users are required to terminate or pause any actions13
involving access to the cost matrix before returning from the event. Completion of the14
PMIX_FABRIC_UPDATE_PENDING event handler indicates to the PMIx library that the fabric15
object’s entries are available for updating. This may include releasing and re-allocating memory16
as the number of vertices may have changed (e.g., due to addition or removal of one or more17
devices). When the update has been completed, the PMIx library will generate a18
PMIX_FABRIC_UPDATED event indicating that it is safe to begin using the updated fabric19
object(s).20

There is no requirement that the caller exclusively use either one of these options. For example, the21
user may choose to both register for fabric update events, but poll for an update prior to some22
critical operation.23

15.4.2 PMIx_Fabric_register_nb24

Summary25
Register for access to fabric-related information.26

Format27 PMIx v4.0 C
pmix_status_t28
PMIx_Fabric_register_nb(pmix_fabric_t *fabric,29

const pmix_info_t directives[],30
size_t ndirs,31
pmix_op_cbfunc_t cbfunc, void *cbdata);32

C

INOUT fabric33
address of a pmix_fabric_t (backed by storage). User may populate the "name" field at34
will - PMIx does not utilize this field (handle)35

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 289

Un
offi
cia
l D
raf
t

IN directives1
an optional array of values indicating desired behaviors and/or fabric to be accessed. If NULL,2
then the highest priority available fabric will be used (array of handles)3

IN ndirs4
Number of elements in the directives array (integer)5

IN cbfunc6
Callback function pmix_op_cbfunc_t (function reference)7

IN cbdata8
Data to be passed to the callback function (memory reference)9

A successful return indicates that the request is being processed and the result will be returned in10
the provided cbfunc. Note that the library must not invoke the callback function prior to returning11
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.12

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:13

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and14
returned success - the cbfunc will not be called15

If none of the above return codes are appropriate, then an implementation must return either a16
general PMIx error code or an implementation defined error code as described in Section 3.1.1.17

Description18
Non-blocking form of PMIx_Fabric_register. The caller is not allowed to access the19
provided pmix_fabric_t until the callback function has been executed, at which time the fabric20
information will have been loaded into the provided structure.21

15.4.3 PMIx_Fabric_update22

Summary23
Update fabric-related information.24

Format25 PMIx v4.0 C
pmix_status_t26
PMIx_Fabric_update(pmix_fabric_t *fabric);27

C
INOUT fabric28

address of a pmix_fabric_t (backed by storage) (handle)29

Returns PMIX_SUCCESS or a negative value indicating the error.30

Description31
Update fabric-related information. This call can be made at any time to request an update of the32
fabric information contained in the provided pmix_fabric_t object. The caller is not allowed to33
access the provided pmix_fabric_t until the call has returned. Upon successful return, the34
information fields in the fabric structure will have been updated.35

290 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

15.4.4 PMIx_Fabric_update_nb1

Summary2
Update fabric-related information.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Fabric_update_nb(pmix_fabric_t *fabric,6

pmix_op_cbfunc_t cbfunc, void *cbdata);7

C

INOUT fabric8
address of a pmix_fabric_t (handle)9

IN cbfunc10
Callback function pmix_op_cbfunc_t (function reference)11

IN cbdata12
Data to be passed to the callback function (memory reference)13

A successful return indicates that the request is being processed and the result will be returned in14
the provided cbfunc. Note that the library must not invoke the callback function prior to returning15
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.16

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:17

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and18
returned success - the cbfunc will not be called19

If none of the above return codes are appropriate, then an implementation must return either a20
general PMIx error code or an implementation defined error code as described in Section 3.1.1.21

Description22
Non-blocking form of PMIx_Fabric_update. The caller is not allowed to access the provided23
pmix_fabric_t until the callback function has been executed, at which time the fields in the24
provided fabric structure will have been updated.25

15.4.5 PMIx_Fabric_deregister26

Summary27
Deregister a fabric object.28

CHAPTER 15. FABRIC SUPPORT DEFINITIONS 291

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Fabric_deregister(pmix_fabric_t *fabric);3

C
IN fabric4

address of a pmix_fabric_t (handle)5

Returns PMIX_SUCCESS or a negative value indicating the error.6

Description7
Deregister a fabric object, providing an opportunity for the PMIx library to cleanup any information8
(e.g., cost matrix) associated with it. Contents of the provided pmix_fabric_t will be9
invalidated upon function return.10

15.4.6 PMIx_Fabric_deregister_nb11

Summary12
Deregister a fabric object.13

Format14 PMIx v4.0 C
pmix_status_t PMIx_Fabric_deregister_nb(pmix_fabric_t *fabric,15

pmix_op_cbfunc_t cbfunc,16
void *cbdata);17

C
IN fabric18

address of a pmix_fabric_t (handle)19
IN cbfunc20

Callback function pmix_op_cbfunc_t (function reference)21
IN cbdata22

Data to be passed to the callback function (memory reference)23

A successful return indicates that the request is being processed and the result will be returned in24
the provided cbfunc. Note that the library must not invoke the callback function prior to returning25
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.26

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

If none of the above return codes are appropriate, then an implementation must return either a30
general PMIx error code or an implementation defined error code as described in Section 3.1.1.31

Description32
Non-blocking form of PMIx_Fabric_deregister. Provided fabric must not be accessed until33
after callback function has been executed.34

292 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 16

Security

PMIx utilizes a multi-layered approach toward security that differs for client versus tool processes.1
By definition, client processes must be preregistered with the PMIx server library via the2
PMIx_server_register_client API before they are spawned. This API requires that the3
host pass the expected effective UID/GID of the client process.4

When the client attempts to connect to the PMIx server, the server shall use available standard OS5
methods to determine the effective UID/GID of the process requesting the connection. PMIx6
implementations shall not rely on any values reported by the client process itself. The effective7
UID/GID reported by the OS is compared to the values provided by the host during registration - if8
the values fail to match, the PMIx server is required to drop the connection request. This ensures9
that the PMIx server does not allow connection from a client that doesn’t at least meet some10
minimal security requirement.11

Once the requesting client passes the initial test, the PMIx server can, at the choice of the12
implementor, perform additional security checks. This may involve a variety of methods such as13
exchange of a system-provided key or credential. At the conclusion of that process, the PMIx server14
reports the client connection request to the host via the15
pmix_server_client_connected2_fn_t interface, if provided. The host may perform16
any additional checks and operations before responding with either PMIX_SUCCESS to indicate17
that the connection is approved, or a PMIx error constant indicating that the connection request is18
refused. In this latter case, the PMIx server is required to drop the connection.19

Tools started by the host environment are classed as a subgroup of client processes and follow the20
client process procedure. However, tools that are not started by the host environment must be21
handled differently as registration information is not available prior to the connection request. In22
these cases, the PMIx server library is required to use available standard OS methods to get the23
effective UID/GID of the tool and report them upwards as part of invoking the24
pmix_server_tool_connection_fn_t interface, deferring initial security screening to the25
host. Host environments willing to accept tool connections must therefore both explicitly enable26
them via the PMIX_SERVER_TOOL_SUPPORT attribute, thereby confirming acceptance of the27
authentication and authorization burden, and provide the28
pmix_server_tool_connection_fn_t server module function pointer.29

16.1 Obtaining Credentials30

Applications and tools often interact with the host environment in ways that require security beyond31
just verifying the user’s identity - e.g., access to that user’s relevant authorizations. This is32

293

Un
offi
cia
l D
raf
t

particularly important when tools connect directly to a system-level PMIx server that may be1
operating at a privileged level. A variety of system management software packages provide2
authorization services, but the lack of standardized interfaces makes portability problematic.3

This section defines two PMIx client-side APIs for this purpose. These are most likely to be used4
by user-space applications/tools, but are not restricted to that realm.5

16.1.1 PMIx_Get_credential6

Summary7
Request a credential from the PMIx server library or the host environment.8

Format9 PMIx v3.0 C
pmix_status_t10
PMIx_Get_credential(const pmix_info_t info[], size_t ninfo,11

pmix_byte_object_t *credential);12

C

IN info13
Array of pmix_info_t structures (array of handles)14

IN ninfo15
Number of elements in the info array (size_t)16

IN credential17
Address of a pmix_byte_object_t within which to return credential (handle)18

A successful return indicates that the credential has been returned in the provided19
pmix_byte_object_t.20

Returns PMIX_SUCCESS or a negative value indicating the error.21

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally22
execute integration for some security environments (e.g., directly contacting a munge server).23

Implementations that support the operation but cannot directly process the client’s request must24
pass any attributes that are provided by the client to the host environment for processing. In25
addition, the following attributes are required to be included in the info array passed from the PMIx26
library to the host environment:27

PMIX_USERID "pmix.euid" (uint32_t)28
Effective user ID of the connecting process.29

PMIX_GRPID "pmix.egid" (uint32_t)30
Effective group ID of the connecting process.31

294 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Request a credential from the PMIx server library or the host environment. The credential is7
returned as a pmix_byte_object_t to support potential binary formats - it is therefore opaque8
to the caller. No information as to the source of the credential is provided.9

16.1.2 PMIx_Get_credential_nb10

Summary11
Request a credential from the PMIx server library or the host environment.12

Format13 PMIx v3.0 C
pmix_status_t14
PMIx_Get_credential_nb(const pmix_info_t info[], size_t ninfo,15

pmix_credential_cbfunc_t cbfunc,16
void *cbdata);17

C

IN info18
Array of pmix_info_t structures (array of handles)19

IN ninfo20
Number of elements in the info array (size_t)21

IN cbfunc22
Callback function to return credential (pmix_credential_cbfunc_t function23
reference)24

IN cbdata25
Data to be passed to the callback function (memory reference)26

A successful return indicates that the request is being processed and the result will be returned in27
the provided cbfunc. Note that the library must not invoke the callback function prior to returning28
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.29

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:30

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed31
successfully - the cbfunc will not be called.32

CHAPTER 16. SECURITY 295

Un
offi
cia
l D
raf
t

If none of the above return codes are appropriate, then an implementation must return either a1
general PMIx error code or an implementation defined error code as described in Section 3.1.1.2

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally3
execute integration for some security environments (e.g., directly contacting a munge server).4

Implementations that support the operation but cannot directly process the client’s request must5
pass any attributes that are provided by the client to the host environment for processing. In6
addition, the following attributes are required to be included in the info array passed from the PMIx7
library to the host environment:8

PMIX_USERID "pmix.euid" (uint32_t)9
Effective user ID of the connecting process.10

PMIX_GRPID "pmix.egid" (uint32_t)11
Effective group ID of the connecting process.12

Optional Attributes

The following attributes are optional for host environments that support this operation:13

PMIX_TIMEOUT "pmix.timeout" (int)14
Time in seconds before the specified operation should time out (zero indicating infinite) and15
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions16
caused by multiple layers (client, server, and host) simultaneously timing the operation.17

Description18
Request a credential from the PMIx server library or the host environment. This version of the API19
is generally preferred in scenarios where the host environment may have to contact a remote20
credential service. Thus, provision is made for the system to return additional information (e.g., the21
identity of the issuing agent) outside of the credential itself and visible to the application.22

16.1.3 Credential Attributes23

The following attributes are defined to support credential operations:24

PMIX_CRED_TYPE "pmix.sec.ctype" (char*)25
When passed in PMIx_Get_credential, a prioritized, comma-delimited list of desired26
credential types for use in environments where multiple authentication mechanisms may be27
available. When returned in a callback function, a string identifier of the credential type.28

PMIX_CRYPTO_KEY "pmix.sec.key" (pmix_byte_object_t)29
Blob containing crypto key.30

296 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

16.2 Validating Credentials1

Given a credential, PMIx provides two methods by which a caller can request that the system2
validate it, returning any additional information (e.g., authorizations) conveyed within the3
credential.4

16.2.1 PMIx_Validate_credential5

Summary6
Request validation of a credential by the PMIx server library or the host environment.7

Format8 PMIx v3.0 C
pmix_status_t9
PMIx_Validate_credential(const pmix_byte_object_t *cred,10

const pmix_info_t info[], size_t ninfo,11
pmix_info_t **results, size_t *nresults);12

C

IN cred13
Pointer to pmix_byte_object_t containing the credential (handle)14

IN info15
Array of pmix_info_t structures (array of handles)16

IN ninfo17
Number of elements in the info array (size_t)18

INOUT results19
Address where a pointer to an array of pmix_info_t containing the results of the request20
can be returned (memory reference)21

INOUT nresults22
Address where the number of elements in results can be returned (handle)23

A successful return indicates that the credential was valid and any information it contained was24
successfully processed. Details of the result will be returned in the results array.25

Returns PMIX_SUCCESS or a negative value indicating the error.26

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally27
execute integration for some security environments (e.g., directly contacting a munge server).28

Implementations that support the operation but cannot directly process the client’s request must29
pass any attributes that are provided by the client to the host environment for processing. In30
addition, the following attributes are required to be included in the info array passed from the PMIx31
library to the host environment:32

PMIX_USERID "pmix.euid" (uint32_t)33

CHAPTER 16. SECURITY 297

Un
offi
cia
l D
raf
t

Effective user ID of the connecting process.1

PMIX_GRPID "pmix.egid" (uint32_t)2
Effective group ID of the connecting process.3

Optional Attributes

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Request validation of a credential by the PMIx server library or the host environment.10

16.2.2 PMIx_Validate_credential_nb11

Summary12
Request validation of a credential by the PMIx server library or the host environment. Provision is13
made for the system to return additional information regarding possible authorization limitations14
beyond simple authentication.15

298 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_Validate_credential_nb(const pmix_byte_object_t *cred,3

const pmix_info_t info[], size_t ninfo,4
pmix_validation_cbfunc_t cbfunc,5
void *cbdata);6

C

IN cred7
Pointer to pmix_byte_object_t containing the credential (handle)8

IN info9
Array of pmix_info_t structures (array of handles)10

IN ninfo11
Number of elements in the info array (size_t)12

IN cbfunc13
Callback function to return result (pmix_validation_cbfunc_t function reference)14

IN cbdata15
Data to be passed to the callback function (memory reference)16

A successful return indicates that the request is being processed and the result will be returned in17
the provided cbfunc. Note that the library must not invoke the callback function prior to returning18
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.19

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:20

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed21
successfully - the cbfunc will not be called.22

If none of the above return codes are appropriate, then an implementation must return either a23
general PMIx error code or an implementation defined error code as described in Section 3.1.1.24

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally25
execute integration for some security environments (e.g., directly contacting a munge server).26

Implementations that support the operation but cannot directly process the client’s request must27
pass any attributes that are provided by the client to the host environment for processing. In28
addition, the following attributes are required to be included in the info array passed from the PMIx29
library to the host environment:30

PMIX_USERID "pmix.euid" (uint32_t)31
Effective user ID of the connecting process.32

PMIX_GRPID "pmix.egid" (uint32_t)33
Effective group ID of the connecting process.34

CHAPTER 16. SECURITY 299

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Request validation of a credential by the PMIx server library or the host environment. This version7
of the API is generally preferred in scenarios where the host environment may have to contact a8
remote credential service. Provision is made for the system to return additional information (e.g.,9
possible authorization limitations) beyond simple authentication.10

300 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 17

Server-Specific Interfaces

The process that hosts the PMIx server library interacts with that library in two distinct manners.1
First, PMIx provides a set of APIs by which the host can request specific services from its library.2
This includes:3

• collecting inventory to support scheduling algorithms,4
• providing subsystems with an opportunity to precondition their resources for optimized5
application support,6

• generating regular expressions,7
• registering information to be passed to client processes, and8
• requesting information on behalf of a remote process.9

Note that the host always has access to all PMIx client APIs - the functions listed below are in10
addition to those available to a PMIx client.11

Second, the host can provide a set of callback functions by which the PMIx server library can pass12
requests upward for servicing by the host. These include notifications of client connection and13
finalize, as well as requests by clients for information and/or services that the PMIx server library14
does not itself provide.15

17.1 Server Initialization and Finalization16

Initialization and finalization routines for PMIx servers.17

17.1.1 PMIx_server_init18

Summary19
Initialize the PMIx server.20

Format21 PMIx v1.0 C
pmix_status_t22
PMIx_server_init(pmix_server_module_t *module,23

pmix_info_t info[], size_t ninfo);24

301

Un
offi
cia
l D
raf
t

C

INOUT module1
pmix_server_module_t structure (handle)2

IN info3
Array of pmix_info_t structures (array of handles)4

IN ninfo5
Number of elements in the info array (size_t)6

Returns PMIX_SUCCESS or a negative value indicating the error.7

Required Attributes

The following attributes are required to be supported by all PMIx libraries:8

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)9
Name of the namespace to use for this PMIx server.10

PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)11
Rank of this PMIx server.12

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)13
Top-level temporary directory for all client processes connected to this server, and where the14
PMIx server will place its tool rendezvous point and contact information.15

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)16
Temporary directory for this system, and where a PMIx server that declares itself to be a17
system-level server will place a tool rendezvous point and contact information.18

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)19
The host RM wants to declare itself as willing to accept tool connection requests.20

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)21
The host RM wants to declare itself as being the local system server for PMIx connection22
requests.23

PMIX_SERVER_SESSION_SUPPORT "pmix.srvr.sess" (bool)24
The host RM wants to declare itself as being the local session server for PMIx connection25
requests.26

PMIX_SERVER_GATEWAY "pmix.srv.gway" (bool)27
Server is acting as a gateway for PMIx requests that cannot be serviced on backend nodes28
(e.g., logging to email).29

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)30
Server is supporting system scheduler and desires access to appropriate WLM-supporting31
features. Indicates that the library is to be initialized for scheduler support.32

302 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:1

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)2
Disable legacy UNIX socket (usock) support. If the library supports Unix socket3
connections, this attribute may be supported for disabling it.4

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)5
POSIX mode_t (9 bits valid). If the library supports socket connections, this attribute may6
be supported for setting the socket mode.7

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)8
Use only one rendezvous socket, letting priorities and/or environment parameters select the9
active transport.10

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)11
If provided, directs that the TCP URI be reported and indicates the desired method of12
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket13
connections, this attribute may be supported for reporting the URI.14

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)15
Comma-delimited list of devices and/or CIDR notation to include when establishing the16
TCP connection. If the library supports TCP socket connections, this attribute may be17
supported for specifying the interfaces to be used.18

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)19
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the20
TCP connection. If the library supports TCP socket connections, this attribute may be21
supported for specifying the interfaces that are not to be used.22

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)23
The IPv4 port to be used.. If the library supports IPV4 connections, this attribute may be24
supported for specifying the port to be used.25

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)26
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be27
supported for specifying the port to be used.28

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)29
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,30
this attribute may be supported for disabling it.31

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)32
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,33
this attribute may be supported for disabling it.34

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)35

CHAPTER 17. SERVER-SPECIFIC INTERFACES 303

Un
offi
cia
l D
raf
t

Allow connections from remote tools. Forces the PMIx server to not exclusively use1
loopback device. If the library supports connections from remote tools, this attribute may2
be supported for enabling or disabling it.3

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)4
The host shall progress the PMIx library via calls to PMIx_Progress5

PMIX_EVENT_BASE "pmix.evbase" (void*)6
Pointer to an event_base to use in place of the internal progress thread. All PMIx library7
events are to be assigned to the provided event base. The event base must be compatible with8
the event library used by the PMIx implementation - e.g., either both the host and PMIx9
library must use libevent, or both must use libev. Cross-matches are unlikely to work and10
should be avoided - it is the responsibility of the host to ensure that the PMIx11
implementation supports (and was built with) the appropriate event library.12

PMIX_TOPOLOGY2 "pmix.topo2" (pmix_topology_t)13
Provide a pointer to an implementation-specific description of the local node topology.14

PMIX_SERVER_SHARE_TOPOLOGY "pmix.srvr.share" (bool)15
The PMIx server is to share its copy of the local node topology (whether given to it or16
self-discovered) with any clients. The PMIx server will perform the necessary actions to17
scalably expose the description to the local clients. This includes creating any required18
shared memory backing stores and/ or XML representations, plus ensuring that all necessary19
key-value pairs for clients to access the description are included in the job-level information20
provided to each client. All required files are to be installed under the effective21
PMIX_SERVER_TMPDIR directory. The PMIx server library is responsible for cleaning up22
any artifacts (e.g., shared memory backing files or cached key-value pairs) at library finalize.23

PMIX_SERVER_ENABLE_MONITORING "pmix.srv.monitor" (bool)24
Enable PMIx internal monitoring by the PMIx server.25

PMIX_HOMOGENEOUS_SYSTEM "pmix.homo" (bool)26
The nodes comprising the session are homogeneous - i.e., they each contain the same27
number of identical packages, fabric interfaces, GPUs, and other devices.28

PMIX_SINGLETON "pmix.singleton" (char*)29
String representation (nspace.rank) of proc ID for the singleton the server was started to30
support31

PMIX_IOF_LOCAL_OUTPUT "pmix.iof.local" (bool)32
Write output streams to local stdout/err33

304 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Initialize the PMIx server support library, and provide a pointer to a pmix_server_module_t2
structure containing the caller’s callback functions. The array of pmix_info_t structs is used to3
pass additional info that may be required by the server when initializing. For example, it may4
include the PMIX_SERVER_TOOL_SUPPORT attribute, thereby indicating that the daemon is5
willing to accept connection requests from tools.6

Advice to PMIx server hosts

Providing a value of NULL for the module argument is permitted, as is passing an empty module7
structure. Doing so indicates that the host environment will not provide support for multi-node8
operations such as PMIx_Fence, but does intend to support local clients access to information.9

17.1.2 PMIx_server_finalize10

Summary11
Finalize the PMIx server library.12

Format13 PMIx v1.0 C
pmix_status_t14
PMIx_server_finalize(void);15

C

Returns PMIX_SUCCESS or a negative value indicating the error.16

Description17
Finalize the PMIx server support library, terminating all connections to attached tools and any local18
clients. All memory usage is released.19

CHAPTER 17. SERVER-SPECIFIC INTERFACES 305

Un
offi
cia
l D
raf
t

17.1.3 Server Initialization Attributes1

These attributes are used to direct the configuration and operation of the PMIx server library by2
passing them into PMIx_server_init.3

PMIX_TOPOLOGY2 "pmix.topo2" (pmix_topology_t)4
Provide a pointer to an implementation-specific description of the local node topology.5

PMIX_SERVER_SHARE_TOPOLOGY "pmix.srvr.share" (bool)6
The PMIx server is to share its copy of the local node topology (whether given to it or7
self-discovered) with any clients.8

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)9
Disable legacy UNIX socket (usock) support.10

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)11
POSIX mode_t (9 bits valid).12

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)13
Use only one rendezvous socket, letting priorities and/or environment parameters select the14
active transport.15

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)16
The host RM wants to declare itself as willing to accept tool connection requests.17

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)18
Allow connections from remote tools. Forces the PMIx server to not exclusively use19
loopback device.20

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)21
The host RM wants to declare itself as being the local system server for PMIx connection22
requests.23

PMIX_SERVER_SESSION_SUPPORT "pmix.srvr.sess" (bool)24
The host RM wants to declare itself as being the local session server for PMIx connection25
requests.26

PMIX_SERVER_START_TIME "pmix.srvr.strtime" (char*)27
Time when the server started - i.e., when the server created it’s rendezvous file (given in28
ctime string format).29

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)30
Top-level temporary directory for all client processes connected to this server, and where the31
PMIx server will place its tool rendezvous point and contact information.32

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)33
Temporary directory for this system, and where a PMIx server that declares itself to be a34
system-level server will place a tool rendezvous point and contact information.35

PMIX_SERVER_ENABLE_MONITORING "pmix.srv.monitor" (bool)36
Enable PMIx internal monitoring by the PMIx server.37

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)38
Name of the namespace to use for this PMIx server.39

PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)40
Rank of this PMIx server.41

PMIX_SERVER_GATEWAY "pmix.srv.gway" (bool)42

306 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Server is acting as a gateway for PMIx requests that cannot be serviced on backend nodes1
(e.g., logging to email).2

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)3
Server is supporting system scheduler and desires access to appropriate WLM-supporting4
features. Indicates that the library is to be initialized for scheduler support.5

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)6
The host shall progress the PMIx library via calls to PMIx_Progress7

PMIX_HOMOGENEOUS_SYSTEM "pmix.homo" (bool)8
The nodes comprising the session are homogeneous - i.e., they each contain the same9
number of identical packages, fabric interfaces, GPUs, and other devices.10

PMIX_SINGLETON "pmix.singleton" (char*)Provisional11
String representation (nspace.rank) of proc ID for the singleton the server was started to12
support13

17.2 Server Support Functions14

The following APIs allow the RM daemon that hosts the PMIx server library to request specific15
services from the PMIx library.16

17.2.1 PMIx_generate_regex17

Summary18
Generate a compressed representation of the input string.19

Format20 PMIx v1.0 C
pmix_status_t21
PMIx_generate_regex(const char *input, char **output);22

C

IN input23
String to process (string)24

OUT output25
Compressed representation of input (array of bytes)26

Returns PMIX_SUCCESS or a negative value indicating the error.27

CHAPTER 17. SERVER-SPECIFIC INTERFACES 307

Un
offi
cia
l D
raf
t

Description1
Given a comma-separated list of input values, generate a reduced size representation of the input2
that can be passed down to the PMIx server library’s PMIx_server_register_nspace API3
for parsing. The order of the individual values in the input string is preserved across the operation.4
The caller is responsible for releasing the returned data.5

The precise compressed representations will be implementation specific. The regular expression6
itself is not required to be a printable string nor to obey typical string constraints (e.g., include a7
NULL terminator byte). However, all PMIx implementations are required to include a8
colon-delimited NULL-terminated string at the beginning of the output representation that can be9
printed for diagnostic purposes and identifies the method used to generate the representation. The10
following identifiers are reserved by the PMIx Standard:11

• "raw:\0" - indicates that the expression following the identifier is simply the12
comma-delimited input string (no processing was performed).13

• "pmix:\0" - a PMIx-unique regular expression represented as a NULL-terminated string14
following the identifier.15

• "blob:\0" - a PMIx-unique regular expression that is not represented as a NULL-terminated16
string following the identifier. Additional implementation-specific metadata may follow the17
identifier along with the data itself. For example, a compressed binary array format based on the18
zlib compression package, with the size encoded in the space immediately following the19
identifier.20

Communicating the resulting output should be done by first packing the returned expression using21
the PMIx_Data_pack, declaring the input to be of type PMIX_REGEX, and then obtaining the22
resulting blob to be communicated using the PMIX_DATA_BUFFER_UNLOAD macro. The23
reciprocal method can be used on the remote end prior to passing the regex into24
PMIx_server_register_nspace. The pack/unpack routines will ensure proper handling of25
the data based on the regex prefix.26

17.2.2 PMIx_generate_ppn27

Summary28
Generate a compressed representation of the input identifying the processes on each node.29

Format30 PMIx v1.0 C
pmix_status_t31
PMIx_generate_ppn(const char *input, char **ppn);32

C

IN input33
String to process (string)34

308 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

OUT ppn1
Compressed representation of input (array of bytes)2

Returns PMIX_SUCCESS or a negative value indicating the error.3

Description4
The input shall consist of a semicolon-separated list of ranges representing the ranks of processes5
on each node of the job - e.g., "1-4;2-5;8,10,11,12;6,7,9". Each field of the input must6
correspond to the node name provided at that position in the input to PMIx_generate_regex.7
Thus, in the example, ranks 1-4 would be located on the first node of the comma-separated list of8
names provided to PMIx_generate_regex, and ranks 2-5 would be on the second name in the9
list.10

Rules governing the format of the returned regular expression are the same as those specified for11
PMIx_generate_regex, as detailed here.12

17.2.3 PMIx_server_register_nspace13

Summary14
Setup the data about a particular namespace.15

Format16 PMIx v1.0 C
pmix_status_t17
PMIx_server_register_nspace(const pmix_nspace_t nspace,18

int nlocalprocs,19
pmix_info_t info[], size_t ninfo,20
pmix_op_cbfunc_t cbfunc,21
void *cbdata);22

C

IN nspace23
Character array of maximum size PMIX_MAX_NSLEN containing the namespace identifier24
(string)25

IN nlocalprocs26
number of local processes (integer)27

IN info28
Array of info structures (array of handles)29

IN ninfo30
Number of elements in the info array (integer)31

IN cbfunc32
Callback function pmix_op_cbfunc_t to be executed upon completion of the operation.33
A NULL function reference indicates that the function is to be executed as a blocking34
operation (function reference)35

CHAPTER 17. SERVER-SPECIFIC INTERFACES 309

Un
offi
cia
l D
raf
t

IN cbdata1
Data to be passed to the callback function (memory reference)2

A successful return indicates that the request is being processed and the result will be returned in3
the provided cbfunc. Note that the library must not invoke the callback function prior to returning4
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.5

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:6

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and7
returned success - the cbfunc will not be called8

If none of the above return codes are appropriate, then an implementation must return either a9
general PMIx error code or an implementation defined error code as described in Section 3.1.1.10

Required Attributes

The following attributes are required to be supported by all PMIx libraries:11

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)12
Registration is for this namespace only, do not copy job data.13

PMIX_SESSION_INFO_ARRAY "pmix.ssn.arr" (pmix_data_array_t)14
Provide an array of pmix_info_t containing session-realm information. The15
PMIX_SESSION_ID attribute is required to be included in the array.16

PMIX_JOB_INFO_ARRAY "pmix.job.arr" (pmix_data_array_t)17
Provide an array of pmix_info_t containing job-realm information. The18
PMIX_SESSION_ID attribute of the session containing the job is required to be included in19
the array whenever the PMIx server library may host multiple sessions (e.g., when executing20
with a host RM daemon). As information is registered one job (aka namespace) at a time via21
the PMIx_server_register_nspace API, there is no requirement that the array22
contain either the PMIX_NSPACE or PMIX_JOBID attributes when used in that context23
(though either or both of them may be included). At least one of the job identifiers must be24
provided in all other contexts where the job being referenced is ambiguous.25

PMIX_APP_INFO_ARRAY "pmix.app.arr" (pmix_data_array_t)26
Provide an array of pmix_info_t containing application-realm information. The27
PMIX_NSPACE or PMIX_JOBID attributes of the job containing the application, plus its28
PMIX_APPNUM attribute, must to be included in the array when the array is not included as29
part of a call to PMIx_server_register_nspace - i.e., when the job containing the30
application is ambiguous. The job identification is otherwise optional.31

PMIX_PROC_INFO_ARRAY "pmix.pdata" (pmix_data_array_t)32
Provide an array of pmix_info_t containing process-realm information. The33
PMIX_RANK and PMIX_NSPACE attributes, or the PMIX_PROCID attribute, are required34
to be included in the array when the array is not included as part of a call to35
PMIx_server_register_nspace - i.e., when the job containing the process is36
ambiguous. All three may be included if desired. When the array is included in some37

310 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

broader structure that identifies the job, then only the PMIX_RANK or the PMIX_PROCID1
attribute must be included (the others are optional).2

PMIX_NODE_INFO_ARRAY "pmix.node.arr" (pmix_data_array_t)3
Provide an array of pmix_info_t containing node-realm information. At a minimum,4
either the PMIX_NODEID or PMIX_HOSTNAME attribute is required to be included in the5
array, though both may be included.6

7

Host environments are required to provide a wide range of session-, job-, application-, node-, and8
process-realm information, and may choose to provide a similarly wide range of optional9
information. The information is broadly separated into categories based on the data realm10
definitions explained in Section 6.1, and retrieved according to the rules detailed in Section 6.2.11

Session-realm information may be passed as individual pmix_info_t entries, or as part of a12
pmix_data_array_t using the PMIX_SESSION_INFO_ARRAY attribute. The list of data13
referenced in this way shall include:14

• PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)15
Maximum number of process that can be simultaneously executing in a session. Note that16
this attribute is equivalent to the PMIX_MAX_PROCS attribute for the session realm - it is17
included in the PMIx Standard for historical reasons.18

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)19
Maximum number of processes that can be simultaneously executed in the specified20
realm. Typically, this is a constraint imposed by a scheduler or by user settings in a21
hostfile or other resource description. Defaults to the job realm. Must be provided if22
PMIX_UNIV_SIZE is not given. Requires use of the PMIX_SESSION_INFO attribute23
to avoid ambiguity when retrieving it.24

• PMIX_SESSION_ID "pmix.session.id" (uint32_t)25
Session identifier assigned by the scheduler.26

plus the following optional information:27

• PMIX_CLUSTER_ID "pmix.clid" (char*)28
A string name for the cluster this allocation is on. As this information is not related to the29
namespace, it is best passed using the PMIx_server_register_resources API.30

• PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)31
Comma-delimited list or regular expression of all nodes in the specified realm regardless32
of whether or not they currently host processes. Defaults to the job realm.33

• PMIX_RM_NAME "pmix.rm.name" (char*)34
String name of the RM. As this information is not related to the namespace, it is best35
passed using the PMIx_server_register_resources API.36

• PMIX_RM_VERSION "pmix.rm.version" (char*)37

CHAPTER 17. SERVER-SPECIFIC INTERFACES 311

Un
offi
cia
l D
raf
t

RM version string. As this information is not related to the namespace, it is best passed1
using the PMIx_server_register_resources API.2

• PMIX_SERVER_HOSTNAME "pmix.srvr.host" (char*)3
Host where target PMIx server is located. As this information is not related to the4
namespace, it is best passed using the PMIx_server_register_resources API.5

Job-realm information may be passed as individual pmix_info_t entries, or as part of a6
pmix_data_array_t using the PMIX_JOB_INFO_ARRAY attribute. The list of data7
referenced in this way shall include:8

• PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)9
Name of the namespace to use for this PMIx server. Identifies the namespace of the PMIx10
server itself11

• PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)12
Rank of this PMIx server. Identifies the rank of the PMIx server itself.13

• PMIX_NSPACE "pmix.nspace" (char*)14
Namespace of the job - may be a numerical value expressed as a string, but is often an15
alphanumeric string carrying information solely of use to the system. Required to be16
unique within the scope of the host environment. One cannot retrieve the namespace of an17
arbitrary process since that would require already knowing the namespace of that process.18
However, a process’ own namespace can be retrieved by passing a NULL value of proc to19
PMIx_Get. Identifies the namespace of the job being registered.20

• PMIX_JOBID "pmix.jobid" (char*)21
Job identifier assigned by the scheduler to the specified job - may be identical to the22
namespace, but is often a numerical value expressed as a string (e.g., "12345.3").23

• PMIX_JOB_SIZE "pmix.job.size" (uint32_t)24
Total number of processes in the specified job across all contained applications. Note that25
this value can be different from PMIX_MAX_PROCS. For example, users may choose to26
subdivide an allocation (running several jobs in parallel within it), and dynamic27
programming models may support adding and removing processes from a running job28
on-the-fly. In the latter case, PMIx events may be used to notify processes within the job29
that the job size has changed.30

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)31
Maximum number of processes that can be simultaneously executed in the specified realm.32
Typically, this is a constraint imposed by a scheduler or by user settings in a hostfile or33
other resource description. Defaults to the job realm. Retrieval of this attribute defaults to34
the job level unless an appropriate specification is given (e.g., PMIX_SESSION_INFO).35

• PMIX_NODE_MAP "pmix.nmap" (char*)36
Regular expression of nodes currently hosting processes in the specified realm - see37
17.2.3.2 for an explanation of its generation. Defaults to the job realm.38

312 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• PMIX_PROC_MAP "pmix.pmap" (char*)1
Regular expression describing processes on each node in the specified realm - see 17.2.3.22
for an explanation of its generation. Defaults to the job realm.3

plus the following optional information:4

• PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)5
Starting global rank of the specified job. The returned value is the same as the value of6
PMIX_GLOBAL_RANK of rank 0 of the specified job.7

• PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)8
Number of applications in the specified job. This is a required attribute if more than one9
application is included in the job.10

• PMIX_MAPBY "pmix.mapby" (char*)11
Process mapping policy - when accessed using PMIx_Get, use the12
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the13
provided namespace. Supported values are launcher specific.14

• PMIX_RANKBY "pmix.rankby" (char*)15
Process ranking policy - when accessed using PMIx_Get, use the16
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for17
the provided namespace. Supported values are launcher specific.18

• PMIX_BINDTO "pmix.bindto" (char*)19
Process binding policy - when accessed using PMIx_Get, use the20
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the21
provided namespace. Supported values are launcher specific.22

• PMIX_HOSTNAME_KEEP_FQDN "pmix.fqdn" (bool)23
FQDNs are being retained by the PMIx library.24

• PMIX_ANL_MAP "pmix.anlmap" (char*)25
Process map equivalent to PMIX_PROC_MAP expressed in Argonne National26
Laboratory’s PMI-1/PMI-2 notation. Defaults to the job realm.27

• PMIX_TDIR_RMCLEAN "pmix.tdir.rmclean" (bool)28
The Resource Manager will remove any directories or files it creates in PMIX_TMPDIR.29

• PMIX_CRYPTO_KEY "pmix.sec.key" (pmix_byte_object_t)30
Blob containing crypto key.31

If more than one application is included in the namespace, then the host environment is also32
required to supply data consisting of the following items for each application in the job, passed as a33
pmix_data_array_t using the PMIX_APP_INFO_ARRAY attribute:34

• PMIX_APPNUM "pmix.appnum" (uint32_t)35
The application number within the job in which the specified process is a member. This36
attribute must appear at the beginning of the array.37

CHAPTER 17. SERVER-SPECIFIC INTERFACES 313

Un
offi
cia
l D
raf
t

• PMIX_APP_SIZE "pmix.app.size" (uint32_t)1
Number of processes in the specified application, regardless of their execution state - i.e.,2
this number may include processes that either failed to start or have already terminated.3

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)4
Maximum number of processes that can be simultaneously executed in the specified5
realm. Typically, this is a constraint imposed by a scheduler or by user settings in a6
hostfile or other resource description. Defaults to the job realm. Requires use of the7
PMIX_APP_INFO attribute to avoid ambiguity when retrieving it.8

• PMIX_APPLDR "pmix.aldr" (pmix_rank_t)9
Lowest rank in the specified application.10

• PMIX_WDIR "pmix.wdir" (char*)11
Working directory for spawned processes. This attribute is required for all registrations,12
but may be provided as an individual pmix_info_t entry if only one application is13
included in the namespace.14

• PMIX_APP_ARGV "pmix.app.argv" (char*)15
Consolidated argv passed to the spawn command for the given application (e.g., "./myapp16
arg1 arg2 arg3"). This attribute is required for all registrations, but may be provided as an17
individual pmix_info_t entry if only one application is included in the namespace.18

plus the following optional information:19

• PMIX_PSET_NAMES "pmix.pset.nms" (pmix_data_array_t*)20
Returns an array of char* string names of the process sets in which the given process is21
a member.22

• PMIX_APP_MAP_TYPE "pmix.apmap.type" (char*)23
Type of mapping used to layout the application (e.g., cyclic). This attribute may be24
provided as an individual pmix_info_t entry if only one application is included in the25
namespace.26

• PMIX_APP_MAP_REGEX "pmix.apmap.regex" (char*)27
Regular expression describing the result of the process mapping. This attribute may be28
provided as an individual pmix_info_t entry if only one application is included in the29
namespace.30

The data may also include attributes provided by the host environment that identify the31
programming model (as specified by the user) being executed within the application. The PMIx32
server library may utilize this information to customize the environment to fit that model (e.g.,33
adding environmental variables specified by the corresponding standard for that model):34

• PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)35
Programming model being initialized (e.g., “MPI” or “OpenMP”).36

• PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)37
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).38

314 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)1
Programming model version string (e.g., “2.1.1”).2

Node-realm information may be passed as individual pmix_info_t entries if only one node will3
host processes from the job being registered, or as part of a pmix_data_array_t using the4
PMIX_NODE_INFO_ARRAY attribute when multiple nodes are involved in the job. The list of data5
referenced in this way shall include:6

• PMIX_NODEID "pmix.nodeid" (uint32_t)7
Node identifier expressed as the node’s index (beginning at zero) in an array of nodes8
within the active session. The value must be unique and directly correlate to the9
PMIX_HOSTNAME of the node - i.e., users can interchangeably reference the same10
location using either the PMIX_HOSTNAME or corresponding PMIX_NODEID.11

• PMIX_HOSTNAME "pmix.hname" (char*)12
Name of the host, as returned by the gethostname utility or its equivalent. As this13
information is not related to the namespace, it can be passed using the14
PMIx_server_register_resources API. However, either it or the15
PMIX_NODEID must be included in the array to properly identify the node.16

• PMIX_HOSTNAME_ALIASES "pmix.alias" (char*)17
Comma-delimited list of names by which the target node is known. As this information is18
not related to the namespace, it is best passed using the19
PMIx_server_register_resources API.20

• PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)21
Number of processes in the specified job or application on the caller’s node. Defaults to22
job unless the PMIX_APP_INFO and the PMIX_APPNUM qualifiers are given.23

• PMIX_NODE_SIZE "pmix.node.size" (uint32_t)24
Number of processes across all jobs that are executing upon the node.25

• PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)26
Lowest rank within the specified job on the node (defaults to current node in absence of27
PMIX_HOSTNAME or PMIX_NODEID qualifier).28

• PMIX_LOCAL_PEERS "pmix.lpeers" (char*)29
Comma-delimited list of ranks that are executing on the local node within the specified30
namespace – shortcut for PMIx_Resolve_peers for the local node.31

• PMIX_NODE_OVERSUBSCRIBED "pmix.ndosub" (bool)32
True if the number of processes from this job on this node exceeds the number of slots33
allocated to it34

plus the following information for the server’s own node:35

• PMIX_TMPDIR "pmix.tmpdir" (char*)36
Full path to the top-level temporary directory assigned to the session.37

CHAPTER 17. SERVER-SPECIFIC INTERFACES 315

Un
offi
cia
l D
raf
t

• PMIX_NSDIR "pmix.nsdir" (char*)1
Full path to the temporary directory assigned to the specified job, under PMIX_TMPDIR.2

• PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)3
Array of pmix_proc_t of all processes executing on the local node – shortcut for4
PMIx_Resolve_peers for the local node and a NULL namespace argument. The5
process identifier is ignored for this attribute.6

The data may also include the following optional information for the server’s own node:7

• PMIX_LOCAL_CPUSETS "pmix.lcpus" (pmix_data_array_t)8
A pmix_data_array_t array of string representations of the PU binding bitmaps9
applied to each local peer on the caller’s node upon launch. Each string shall begin with10
the name of the library that generated it (e.g., "hwloc") followed by a colon and the bitmap11
string itself. The array shall be in the same order as the processes returned by12
PMIX_LOCAL_PEERS for that namespace.13

• PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)14
Total available physical memory on a node. As this information is not related to the15
namespace, it can be passed using the PMIx_server_register_resources API.16

and the following optional information for other nodes:17

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)18
Maximum number of processes that can be simultaneously executed in the specified19
realm. Typically, this is a constraint imposed by a scheduler or by user settings in a20
hostfile or other resource description. Defaults to the job realm. Requires use of the21
PMIX_NODE_INFO attribute to avoid ambiguity when retrieving it.22

Process-realm information shall include the following data for each process in the job, passed as a23
pmix_data_array_t using the PMIX_PROC_INFO_ARRAY attribute:24

• PMIX_RANK "pmix.rank" (pmix_rank_t)25
Process rank within the job, starting from zero.26

• PMIX_APPNUM "pmix.appnum" (uint32_t)27
The application number within the job in which the specified process is a member. This28
attribute may be omitted if only one application is present in the namespace.29

• PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)30
Rank of the specified process within its application. This attribute may be omitted if only31
one application is present in the namespace.32

• PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)33
Rank of the specified process spanning across all jobs in this session, starting with zero.34
Note that no ordering of the jobs is implied when computing this value. As jobs can start35
and end at random times, this is defined as a continually growing number - i.e., it is not36
dynamically adjusted as individual jobs and processes are started or terminated.37

316 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)1
Rank of the specified process on its node - refers to the numerical location (starting from2
zero) of the process on its node when counting only those processes from the same job3
that share the node, ordered by their overall rank within that job.4

• PMIX_NODE_RANK "pmix.nrank" (uint16_t)5
Rank of the specified process on its node spanning all jobs- refers to the numerical location6
(starting from zero) of the process on its node when counting all processes (regardless of7
job) that share the node, ordered by their overall rank within the job. The value represents8
a snapshot in time when the specified process was started on its node and is not9
dynamically adjusted as processes from other jobs are started or terminated on the node.10

• PMIX_NODEID "pmix.nodeid" (uint32_t)11
Node identifier expressed as the node’s index (beginning at zero) in an array of nodes12
within the active session. The value must be unique and directly correlate to the13
PMIX_HOSTNAME of the node - i.e., users can interchangeably reference the same14
location using either the PMIX_HOSTNAME or corresponding PMIX_NODEID.15

• PMIX_REINCARNATION "pmix.reinc" (uint32_t)16
Number of times this process has been re-instantiated - i.e, a value of zero indicates that17
the process has never been restarted.18

• PMIX_SPAWNED "pmix.spawned" (bool)19
true if this process resulted from a call to PMIx_Spawn. Lack of inclusion (i.e., a return20
status of PMIX_ERR_NOT_FOUND) corresponds to a value of false for this attribute.21

plus the following information for processes that are local to the server:22

• PMIX_LOCALITY_STRING "pmix.locstr" (char*)23
String describing a process’s bound location - referenced using the process’s rank. The24
string is prefixed by the implementation that created it (e.g., "hwloc") followed by a colon.25
The remainder of the string represents the corresponding locality as expressed by the26
underlying implementation. The entire string must be passed to27
PMIx_Get_relative_locality for processing. Note that hosts are only required to28
provide locality strings for local client processes - thus, a call to PMIx_Get for the29
locality string of a process that returns PMIX_ERR_NOT_FOUND indicates that the30
process is not executing on the same node.31

• PMIX_PROCDIR "pmix.pdir" (char*)32
Full path to the subdirectory under PMIX_NSDIR assigned to the specified process.33

• PMIX_PACKAGE_RANK "pmix.pkgrank" (uint16_t)34
Rank of the specified process on the package where this process resides - refers to the35
numerical location (starting from zero) of the process on its package when counting only36
those processes from the same job that share the package, ordered by their overall rank37
within that job. Note that processes that are not bound to PUs within a single specific38
package cannot have a package rank.39

CHAPTER 17. SERVER-SPECIFIC INTERFACES 317

Un
offi
cia
l D
raf
t

and the following optional information - note that some of this information can be derived from1
information already provided by other attributes, but it may be included here for ease of retrieval by2
users:3

• PMIX_HOSTNAME "pmix.hname" (char*)4
Name of the host, as returned by the gethostname utility or its equivalent.5

• PMIX_CPUSET "pmix.cpuset" (char*)6
A string representation of the PU binding bitmap applied to the process upon launch. The7
string shall begin with the name of the library that generated it (e.g., "hwloc") followed by8
a colon and the bitmap string itself.9

• PMIX_CPUSET_BITMAP "pmix.bitmap" (pmix_cpuset_t*)10
Bitmap applied to the process upon launch.11

• PMIX_DEVICE_DISTANCES "pmix.dev.dist" (pmix_data_array_t)12
Return an array of pmix_device_distance_t containing the minimum and13
maximum distances of the given process location to all devices of the specified type on the14
local node.15

16

Attributes not directly provided by the host environment may be derived by the PMIx server library17
from other required information and included in the data made available to the server library’s18
clients.19

Description20
Pass job-related information to the PMIx server library for distribution to local client processes.21

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application22
process within the given namespace.23

The PMIx server must register all namespaces that will participate in collective operations with24
local processes. This means that the server must register a namespace even if it will not host any25
local processes from within that namespace if any local process of another namespace might at26
some point perform an operation involving one or more processes from the new namespace. This is27
necessary so that the collective operation can identify the participants and know when it is locally28
complete.29

The caller must also provide the number of local processes that will be launched within this30
namespace. This is required for the PMIx server library to correctly handle collectives as a31
collective operation call can occur before all the local processes have been started.32

A NULL cbfunc reference indicates that the function is to be executed as a blocking operation.33

318 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Advice to users

The number of local processes for any given namespace is generally fixed at the time of application1
launch. Calls to PMIx_Spawn result in processes launched in their own namespace, not that of2
their parent. However, it is possible for processes to migrate to another node via a call to3
PMIx_Job_control_nb, thus resulting in a change to the number of local processes on both4
the initial node and the node to which the process moved. It is therefore critical that applications5
not migrate processes without first ensuring that PMIx-based collective operations are not in6
progress, and that no such operations be initiated until process migration has completed.7

17.2.3.1 Namespace registration attributes8

The following attributes are defined specifically for use with the9
PMIx_server_register_nspace API: PMIX_REGISTER_NODATA10
"pmix.reg.nodata" (bool)11

Registration is for this namespace only, do not copy job data.12

The following attributes are used to assemble information according to its data realm (session, job,13
application, node, or process as defined in Section 6.1) for registration where ambiguity may exist -14
see 17.2.3.2 for examples of their use.15

PMIX_SESSION_INFO_ARRAY "pmix.ssn.arr" (pmix_data_array_t)16
Provide an array of pmix_info_t containing session-realm information. The17
PMIX_SESSION_ID attribute is required to be included in the array.18

PMIX_JOB_INFO_ARRAY "pmix.job.arr" (pmix_data_array_t)19
Provide an array of pmix_info_t containing job-realm information. The20
PMIX_SESSION_ID attribute of the session containing the job is required to be included in21
the array whenever the PMIx server library may host multiple sessions (e.g., when executing22
with a host RM daemon). As information is registered one job (aka namespace) at a time via23
the PMIx_server_register_nspace API, there is no requirement that the array24
contain either the PMIX_NSPACE or PMIX_JOBID attributes when used in that context25
(though either or both of them may be included). At least one of the job identifiers must be26
provided in all other contexts where the job being referenced is ambiguous.27

PMIX_APP_INFO_ARRAY "pmix.app.arr" (pmix_data_array_t)28
Provide an array of pmix_info_t containing application-realm information. The29
PMIX_NSPACE or PMIX_JOBID attributes of the job containing the application, plus its30
PMIX_APPNUM attribute, must to be included in the array when the array is not included as31
part of a call to PMIx_server_register_nspace - i.e., when the job containing the32
application is ambiguous. The job identification is otherwise optional.33

PMIX_PROC_INFO_ARRAY "pmix.pdata" (pmix_data_array_t)34

CHAPTER 17. SERVER-SPECIFIC INTERFACES 319

Un
offi
cia
l D
raf
t

Provide an array of pmix_info_t containing process-realm information. The1
PMIX_RANK and PMIX_NSPACE attributes, or the PMIX_PROCID attribute, are required2
to be included in the array when the array is not included as part of a call to3
PMIx_server_register_nspace - i.e., when the job containing the process is4
ambiguous. All three may be included if desired. When the array is included in some5
broader structure that identifies the job, then only the PMIX_RANK or the PMIX_PROCID6
attribute must be included (the others are optional).7

PMIX_NODE_INFO_ARRAY "pmix.node.arr" (pmix_data_array_t)8
Provide an array of pmix_info_t containing node-realm information. At a minimum,9
either the PMIX_NODEID or PMIX_HOSTNAME attribute is required to be included in the10
array, though both may be included.11

Note that these assemblages can be used hierarchically:12

• a PMIX_JOB_INFO_ARRAY might contain multiple PMIX_APP_INFO_ARRAY elements,13
each describing values for a specific application within the job.14

• a PMIX_JOB_INFO_ARRAY could contain a PMIX_NODE_INFO_ARRAY for each node15
hosting processes from that job, each array describing job-level values for that node.16

• a PMIX_SESSION_INFO_ARRAY might contain multiple PMIX_JOB_INFO_ARRAY17
elements, each describing a job executing within the session. Each job array could, in turn,18
contain both application and node arrays, thus providing a complete picture of the active19
operations within the allocation.20

Advice to PMIx library implementers

PMIx implementations must be capable of properly parsing and storing any hierarchical depth of21
information arrays. The resulting stored values are must to be accessible via both PMIx_Get and22
PMIx_Query_info_nb APIs, assuming appropriate directives are provided by the caller.23

17.2.3.2 Assembling the registration information24

The following description is not intended to represent the actual layout of information in a given25
PMIx library. Instead, it is describes how information provided in the info parameter of the26
PMIx_server_register_nspace shall be organized for proper processing by a PMIx server27
library. The ordering of the various information elements is arbitrary - they are presented in a28
top-down hierarchical form solely for clarity in reading.29

320 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Advice to PMIx server hosts

Creating the info array of data requires knowing in advance the number of elements required for the1
array. This can be difficult to compute and somewhat fragile in practice. One method for resolving2
the problem is to create a linked list of objects, each containing a single pmix_info_t structure.3
Allocation and manipulation of the list can then be accomplished using existing standard methods.4
Upon completion, the final info array can be allocated based on the number of elements on the list,5
and then the values in the list object pmix_info_t structures transferred to the corresponding6
array element utilizing the PMIx_Info_xfer API.7

A common building block used in several areas is the construction of a regular expression8
identifying the nodes involved in that area - e.g., the nodes in a session or job. PMIx provides9
several tools to facilitate this operation, beginning by constructing an argv-like array of node10
names. This array is then passed to the PMIx_generate_regex function to create a regular11
expression parseable by the PMIx server library, as shown below:12

C
char **nodes = NULL;13
char *nodelist;14
char *regex;15
size_t n;16
pmix_status_t rc;17
pmix_info_t info;18

19
/* loop over an array of nodes, adding each20
* name to the array */21
for (n=0; n < num_nodes; n++) {22

/* filter the nodes to ignore those not included23
* in the target range (session, job, etc.). In24
* this example, all nodes are accepted */25

PMIX_ARGV_APPEND(&nodes, node[n]->name);26
}27

28
/* join into a comma-delimited string */29
nodelist = PMIX_ARGV_JOIN(nodes, ',');30

31
/* release the array */32
PMIX_ARGV_FREE(nodes);33

34
/* generate regex */35
rc = PMIx_generate_regex(nodelist, ®ex);36

37
/* release list */38

CHAPTER 17. SERVER-SPECIFIC INTERFACES 321

Un
offi
cia
l D
raf
t

free(nodelist);1
2

/* pass the regex as the value to the PMIX_NODE_MAP key */3
PMIx_Info_load(&info, PMIX_NODE_MAP, regex, PMIX_REGEX);4
/* release the regex */5
free(regex);6

C

Changing the filter criteria allows the construction of node maps for any level of information. A7
description of the returned regular expression is provided here.8

A similar method is used to construct the map of processes on each node from the namespace being9
registered. This may be done for each information level of interest (e.g., to identify the process map10
for the entire job or for each application in the job) by changing the search criteria. An example is11
shown below for the case of creating the process map for a job:12

C
char **ndppn;13
char rank[30];14
char **ppnarray = NULL;15
char *ppn;16
char *localranks;17
char *regex;18
size_t n, m;19
pmix_status_t rc;20
pmix_info_t info;21

22
/* loop over an array of nodes */23
for (n=0; n < num_nodes; n++) {24

/* for each node, construct an array of ranks on that node */25
ndppn = NULL;26
for (m=0; m < node[n]->num_procs; m++) {27

/* ignore processes that are not part of the target job */28
if (!PMIX_CHECK_NSPACE(targetjob,node[n]->proc[m].nspace)) {29

continue;30
}31
snprintf(rank, 30, "%d", node[n]->proc[m].rank);32
PMIX_ARGV_APPEND(&ndppn, rank);33

}34
/* convert the array into a comma-delimited string of ranks */35
localranks = PMIX_ARGV_JOIN(ndppn, ',');36
/* release the local array */37
PMIX_ARGV_FREE(ndppn);38
/* add this node's contribution to the overall array */39

322 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_ARGV_APPEND(&ppnarray, localranks);1
/* release the local list */2
free(localranks);3

}4
5

/* join into a semicolon-delimited string */6
ppn = PMIX_ARGV_JOIN(ppnarray, ';');7

8
/* release the array */9
PMIX_ARGV_FREE(ppnarray);10

11
/* generate ppn regex */12
rc = PMIx_generate_ppn(ppn, ®ex);13

14
/* release list */15
free(ppn);16

17
/* pass the regex as the value to the PMIX_PROC_MAP key */18
PMIx_Info_load(&info, PMIX_PROC_MAP, regex, PMIX_REGEX);19
/* release the regex */20
free(regex);21

C

Note that the PMIX_NODE_MAP and PMIX_PROC_MAP attributes are linked in that the order of22
entries in the process map must match the ordering of nodes in the node map - i.e., there is no23
provision in the PMIx process map regular expression generator/parser pair supporting an24
out-of-order node or a node that has no corresponding process map entry (e.g., a node with no25
processes on it). Armed with these tools, the registration info array can be constructed as follows:26

• Session-level information includes all session-specific values. In many cases, only two values27
(PMIX_SESSION_ID and PMIX_UNIV_SIZE) are included in the registration array. Since28
both of these values are session-specific, they can be specified independently - i.e., in their own29
pmix_info_t elements of the info array. Alternatively, they can be provided as a30
pmix_data_array_t array of pmix_info_t using the PMIX_SESSION_INFO_ARRAY31
attribute and identifed by including the PMIX_SESSION_ID attribute in the array - this is32
required in cases where non-specific attributes (e.g., PMIX_NUM_NODES or33
PMIX_NODE_MAP) are passed to describe aspects of the session. Note that the node map can34
include nodes not used by the job being registered as no corresponding process map is specified.35

The info array at this point might look like (where the labels identify the corresponding attribute36
- e.g., “Session ID” corresponds to the PMIX_SESSION_ID attribute):37

• Job-level information includes all job-specific values such as PMIX_JOB_SIZE,38
PMIX_JOB_NUM_APPS, and PMIX_JOBID. Since each invocation of39
PMIx_server_register_nspace describes a single job, job-specific values can be40

CHAPTER 17. SERVER-SPECIFIC INTERFACES 323

Un
offi
cia
l D
raf
t

Figure 17.1.: Session-level information elements

specified independently - i.e., in their own pmix_info_t elements of the info array.1
Alternatively, they can be provided as a pmix_data_array_t array of pmix_info_t2
identified by the PMIX_JOB_INFO_ARRAY attribute - this is required in cases where3
non-specific attributes (e.g., PMIX_NODE_MAP) are passed to describe aspects of the job. Note4
that since the invocation only involves a single namespace, there is no need to include the5
PMIX_NSPACE attribute in the array.6

Upon conclusion of this step, the info array might look like:7

Note that in this example, PMIX_NUM_NODES is not required as that information is contained in8
the PMIX_NODE_MAP attribute. Similarly, PMIX_JOB_SIZE is not technically required as that9
information is contained in the PMIX_PROC_MAP when combined with the corresponding node10
map - however, there is no issue with including the job size as a separate entry.11

The example also illustrates the hierarchical use of the PMIX_NODE_INFO_ARRAY attribute.12
In this case, we have chosen to pass several job-related values for each node - since those values13
are non-unique across the job, they must be passed in a node-info container. Note that the choice14
of what information to pass into the PMIx server library versus what information to derive from15
other values at time of request is left to the host environment. PMIx implementors in turn may, if16
they choose, pre-parse registration data to create expanded views (thus enabling faster response17
to requests at the expense of memory footprint) or to compress views into tighter representations18
(thus trading minimized footprint for longer response times).19

• Application-level information includes all application-specific values such as PMIX_APP_SIZE20
and PMIX_APPLDR. If the job contains only a single application, then the application-specific21
values can be specified independently - i.e., in their own pmix_info_t elements of the info22
array - or as a pmix_data_array_t array of pmix_info_t using the23
PMIX_APP_INFO_ARRAY attribute and identifed by including the PMIX_APPNUM attribute in24
the array. Use of the array format is must in cases where non-specific attributes (e.g.,25
PMIX_NODE_MAP) are passed to describe aspects of the application.26

However, in the case of a job consisting of multiple applications, all application-specific values27
for each application must be provided using the PMIX_APP_INFO_ARRAY format, each28
identified by its PMIX_APPNUM value.29

324 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Figure 17.2.: Job-level information elements

Upon conclusion of this step, the info array might look like that shown in 17.3, assuming there1
are two applications in the job being registered:2

• Process-level information includes an entry for each process in the job being registered, each3
entry marked with the PMIX_PROC_INFO_ARRAY attribute. The rank of the process must be4
the first entry in the array - this provides efficiency when storing the data. Upon conclusion of5
this step, the info array might look like the diagram in 17.4:6

• For purposes of this example, node-level information only includes values describing the local7
node - i.e., it does not include information about other nodes in the job or session. In many cases,8
the values included in this level are unique to it and can be specified independently - i.e., in their9
own pmix_info_t elements of the info array. Alternatively, they can be provided as a10
pmix_data_array_t array of pmix_info_t using the PMIX_NODE_INFO_ARRAY11
attribute - this is required in cases where non-specific attributes are passed to describe aspects of12
the node, or where values for multiple nodes are being provided.13

The node-level information requires two elements that must be constructed in a manner similar to14
that used for the node map. The PMIX_LOCAL_PEERS value is computed based on the15
processes on the local node, filtered to select those from the job being registered, as shown below16

CHAPTER 17. SERVER-SPECIFIC INTERFACES 325

Un
offi
cia
l D
raf
t

Figure 17.3.: Application-level information elements

using the tools provided by PMIx:1

C
char **ndppn = NULL;2
char rank[30];3
char *localranks;4
size_t m;5
pmix_info_t info;6

7
for (m=0; m < mynode->num_procs; m++) {8

/* ignore processes that are not part of the target job */9
if (!PMIX_CHECK_NSPACE(targetjob,mynode->proc[m].nspace)) {10

continue;11
}12
snprintf(rank, 30, "%d", mynode->proc[m].rank);13
PMIX_ARGV_APPEND(&ndppn, rank);14

}15
/* convert the array into a comma-delimited string of ranks */16
localranks = PMIX_ARGV_JOIN(ndppn, ',');17
/* release the local array */18
PMIX_ARGV_FREE(ndppn);19

326 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Figure 17.4.: Process-level information elements

1
/* pass the string as the value to the PMIX_LOCAL_PEERS key */2
PMIx_Info_load(&info, PMIX_LOCAL_PEERS, localranks, PMIX_STRING);3

4
/* release the list */5
free(localranks);6

C

The PMIX_LOCAL_CPUSETS value is constructed in a similar manner. In the provided7
example, it is assumed that an Hardware Locality (HWLOC) cpuset representation (a8
comma-delimited string of processor IDs) of the processors assigned to each process has9
previously been generated and stored on the process description. Thus, the value can be10
constructed as shown below:11

CHAPTER 17. SERVER-SPECIFIC INTERFACES 327

Un
offi
cia
l D
raf
t

C
char **ndcpus = NULL;1
char *localcpus;2
size_t m;3
pmix_info_t info;4

5
for (m=0; m < mynode->num_procs; m++) {6

/* ignore processes that are not part of the target job */7
if (!PMIX_CHECK_NSPACE(targetjob,mynode->proc[m].nspace)) {8

continue;9
}10
PMIX_ARGV_APPEND(&ndcpus, mynode->proc[m].cpuset);11

}12
/* convert the array into a colon-delimited string */13
localcpus = PMIX_ARGV_JOIN(ndcpus, ':');14
/* release the local array */15
PMIX_ARGV_FREE(ndcpus);16

17
/* pass the string as the value to the PMIX_LOCAL_CPUSETS key */18
PMIx_Info_load(&info, PMIX_LOCAL_CPUSETS, localcpus, PMIX_STRING);19

20
/* release the list */21
free(localcpus);22

C

Note that for efficiency, these two values can be computed at the same time.23

The final info array might therefore look like the diagram in 17.5:24

17.2.4 PMIx_server_deregister_nspace25

Summary26
Deregister a namespace.27

Format28 PMIx v1.0

328 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Figure 17.5.: Final information array

C
void PMIx_server_deregister_nspace(const pmix_nspace_t nspace,1

pmix_op_cbfunc_t cbfunc, void *cbdata);2

C

IN nspace3
Namespace (string)4

IN cbfunc5
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the6
function is to be executed as a blocking operation. (function reference)7

IN cbdata8
Data to be passed to the callback function (memory reference)9

Description10
Deregister the specified nspace and purge all objects relating to it, including any client information11
from that namespace. This is intended to support persistent PMIx servers by providing an12
opportunity for the host RM to tell the PMIx server library to release all memory for a completed13
job. Note that the library must not invoke the callback function prior to returning from the API, and14
that a NULL cbfunc reference indicates that the function is to be executed as a blocking operation.15

CHAPTER 17. SERVER-SPECIFIC INTERFACES 329

Un
offi
cia
l D
raf
t

17.2.5 PMIx_server_register_resources1

Summary2
Register non-namespace related information with the local PMIx server library.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_server_register_resources(pmix_info_t info[], size_t ninfo,6

pmix_op_cbfunc_t cbfunc,7
void *cbdata);8

C

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN cbfunc13
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the14
function is to be executed as a blocking operation (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Description18
Pass information about resources not associated with a given namespace to the PMIx server library19
for distribution to local client processes. This includes information on fabric devices, GPUs, and20
other resources. All information provided through this API shall be made available to each job as21
part of its job-level information. Duplicate information provided with the22
PMIx_server_register_nspace API shall override any information provided by this23
function for that namespace, but only for that specific namespace.24

Returns PMIX_SUCCESS or a negative value indicating the error.25

Advice to PMIx server hosts

Note that information passed in this manner could also have been included in a call to26
PMIx_server_register_nspace - e.g., as part of a PMIX_NODE_INFO_ARRAY array.27
This API is provided as a logical alternative for code clarity, especially where multiple jobs may be28
supported by a single PMIx server library instance, to avoid multiple registration of static resource29
information.30

A NULL cbfunc reference indicates that the function is to be executed as a blocking operation.31

330 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

17.2.6 PMIx_server_deregister_resources1

Summary2
Remove specified non-namespace related information from the local PMIx server library.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_server_deregister_resources(pmix_info_t info[], size_t ninfo,6

pmix_op_cbfunc_t cbfunc,7
void *cbdata);8

C

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN cbfunc13
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the14
function is to be executed as a blocking operation (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Description18
Remove information about resources not associated with a given namespace from the PMIx server19
library. Only the key fields of the provided info array shall be used for the operation - the associated20
values shall be ignored except where they serve as qualifiers to the request. For example, to remove21
a specific fabric device from a given node, the info array might include a22
PMIX_NODE_INFO_ARRAY containing the PMIX_NODEID or PMIX_HOSTNAME identifying23
the node hosting the device, and the PMIX_FABRIC_DEVICE_NAME specifying the device to be24
removed. Alternatively, the device could be removed using only the PMIX_DEVICE_ID as this is25
unique across the overall system.26

Returns PMIX_SUCCESS or a negative value indicating the error.27

Advice to PMIx server hosts

As information not related to namespaces is considered static, there is no requirement that the host28
environment deregister resources prior to finalizing the PMIx server library. The server library29
shall properly cleanup as part of its normal finalize operations. Deregistration of resources is only30
required, therefore, when the host environment determines that client processes should no longer31
have access to that information.32

A NULL cbfunc reference indicates that the function is to be executed as a blocking operation.33

CHAPTER 17. SERVER-SPECIFIC INTERFACES 331

Un
offi
cia
l D
raf
t

17.2.7 PMIx_server_register_client1

Summary2
Register a client process with the PMIx server library.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_server_register_client(const pmix_proc_t *proc,6

uid_t uid, gid_t gid,7
void *server_object,8
pmix_op_cbfunc_t cbfunc, void *cbdata);9

C

IN proc10
pmix_proc_t structure (handle)11

IN uid12
user id (integer)13

IN gid14
group id (integer)15

IN server_object16
(memory reference)17

IN cbfunc18
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the19
function is to be executed as a blocking operation (function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

A successful return indicates that the request is being processed and the result will be returned in23
the provided cbfunc. Note that the library must not invoke the callback function prior to returning24
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.25

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:26

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and27
returned success - the cbfunc will not be called28

If none of the above return codes are appropriate, then an implementation must return either a29
general PMIx error code or an implementation defined error code as described in Section 3.1.1.30

332 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Register a client process with the PMIx server library.2

The host server can also, if it desires, provide an object it wishes to be returned when a server3
function is called that relates to a specific process. For example, the host server may have an object4
that tracks the specific client. Passing the object to the library allows the library to provide that5
object to the host server during subsequent calls related to that client, such as a6
pmix_server_client_connected2_fn_t function. This allows the host server to access7
the object without performing a lookup based on the client’s namespace and rank.8

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting the client process. The9
expected user ID and group ID of the child process allows the server library to properly authenticate10
clients as they connect by requiring the two values to match. Accordingly, the detected user and11
group ID’s of the connecting process are not included in the12
pmix_server_client_connected2_fn_t server module function.13

Advice to PMIx library implementers

For security purposes, the PMIx server library should check the user and group ID’s of a14
connecting process against those provided for the declared client process identifier via the15
PMIx_server_register_client prior to completing the connection.16

17.2.8 PMIx_server_deregister_client17

Summary18
Deregister a client and purge all data relating to it.19

Format20 PMIx v1.0 C
void21
PMIx_server_deregister_client(const pmix_proc_t *proc,22

pmix_op_cbfunc_t cbfunc, void *cbdata);23

C

IN proc24
pmix_proc_t structure (handle)25

IN cbfunc26
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the27
function is to be executed as a blocking operation (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

CHAPTER 17. SERVER-SPECIFIC INTERFACES 333

Un
offi
cia
l D
raf
t

Description1
The PMIx_server_deregister_nspace API will delete all client information for that2
namespace. The PMIx server library will automatically perform that operation upon disconnect of3
all local clients. This API is therefore intended primarily for use in exception cases, but can be4
called in non-exception cases if desired. Note that the library must not invoke the callback function5
prior to returning from the API.6

17.2.9 PMIx_server_setup_fork7

Summary8
Setup the environment of a child process to be forked by the host.9

Format10 PMIx v1.0 C
pmix_status_t11
PMIx_server_setup_fork(const pmix_proc_t *proc,12

char ***env);13

C

IN proc14
pmix_proc_t structure (handle)15

IN env16
Environment array (array of strings)17

Returns PMIX_SUCCESS or a negative value indicating the error.18

Description19
Setup the environment of a child process to be forked by the host so it can correctly interact with20
the PMIx server.21

The PMIx client needs some setup information so it can properly connect back to the server. This22
function will set appropriate environmental variables for this purpose, and will also provide any23
environmental variables that were specified in the launch command (e.g., via PMIx_Spawn) plus24
other values (e.g., variables required to properly initialize the client’s fabric library).25

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting the client process.26

17.2.10 PMIx_server_dmodex_request27

Summary28
Define a function by which the host server can request modex data from the local PMIx server.29

334 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_server_dmodex_request(const pmix_proc_t *proc,3

pmix_dmodex_response_fn_t cbfunc,4
void *cbdata);5

C

IN proc6
pmix_proc_t structure (handle)7

IN cbfunc8
Callback function pmix_dmodex_response_fn_t (function reference)9

IN cbdata10
Data to be passed to the callback function (memory reference)11

A successful return indicates that the request is being processed and the result will be returned in12
the provided cbfunc. Note that the library must not invoke the callback function prior to returning13
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.14

Description15
Define a function by which the host server can request modex data from the local PMIx server.16
Traditional wireup procedures revolve around the per-process posting of data (e.g., location and17
endpoint information) via the PMIx_Put and PMIx_Commit functions followed by a18
PMIx_Fence barrier that globally exchanges the posted information. However, the barrier19
operation represents a signficant time impact at large scale.20

PMIx supports an alternative wireup method known as Direct Modex that replaces the21
barrier-based exchange of all process-posted information with on-demand fetch of a peer’s data. In22
place of the barrier operation, data posted by each process is cached on the local PMIx server.23
When a process requests the information posted by a particular peer, it first checks the local cache24
to see if the data is already available. If not, then the request is passed to the local PMIx server,25
which subsequently requests that its RM host request the data from the RM daemon on the node26
where the specified peer process is located. Upon receiving the request, the RM daemon passes the27
request into its PMIx server library using the PMIx_server_dmodex_request function,28
receiving the response in the provided cbfunc once the indicated process has posted its information.29
The RM daemon then returns the data to the requesting daemon, who subsequently passes the data30
to its PMIx server library for transfer to the requesting client.31

Advice to users

While direct modex allows for faster launch times by eliminating the barrier operation, per-peer32
retrieval of posted information is less efficient. Optimizations can be implemented - e.g., by33
returning posted information from all processes on a node upon first request - but in general direct34
modex remains best suited for sparsely connected applications.35

CHAPTER 17. SERVER-SPECIFIC INTERFACES 335

Un
offi
cia
l D
raf
t

17.2.10.1 Server Direct Modex Response Callback Function1

The PMIx_server_dmodex_request callback function.2

Summary3
Provide a function by which the local PMIx server library can return connection and other data4
posted by local application processes to the host resource manager.5

Format6 PMIx v1.0 C
typedef void (*pmix_dmodex_response_fn_t)(7

pmix_status_t status,8
char *data, size_t sz,9
void *cbdata);10

C

IN status11
Returned status of the request (pmix_status_t)12

IN data13
Pointer to a data "blob" containing the requested information (handle)14

IN sz15
Number of bytes in the data blob (integer)16

IN cbdata17
Data passed into the initial call to PMIx_server_dmodex_request (memory reference)18

Description19
Define a function to be called by the PMIx server library for return of information posted by a local20
application process (via PMIx_Put with subsequent PMIx_Commit) in response to a request21
from the host RM. The returned data blob is owned by the PMIx server library and will be free’d22
upon return from the function.23

17.2.11 PMIx_server_setup_application24

Summary25
Provide a function by which a launcher can request application-specific setup data prior to launch of26
a job.27

336 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_server_setup_application(const pmix_nspace_t nspace,3

pmix_info_t info[], size_t ninfo,4
pmix_setup_application_cbfunc_t cbfunc,5
void *cbdata);6

C

IN nspace7
namespace (string)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN cbfunc13
Callback function pmix_setup_application_cbfunc_t (function reference)14

IN cbdata15
Data to be passed to the cbfunc callback function (memory reference)16

A successful return indicates that the request is being processed and the result will be returned in17
the provided cbfunc. Note that the library must not invoke the callback function prior to returning18
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.19

Required Attributes

PMIx libraries that support this operation are required to support the following:20

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)21
Harvest and include relevant environmental variables.22

PMIX_SETUP_APP_NONENVARS ""pmix.setup.nenv" (bool)23
Include all relevant data other than environmental variables.24

PMIX_SETUP_APP_ALL "pmix.setup.all" (bool)25
Include all relevant data.26

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)27
Array of pmix_info_t describing requested fabric resources. This must include at least:28
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and29
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.30

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)31

CHAPTER 17. SERVER-SPECIFIC INTERFACES 337

Un
offi
cia
l D
raf
t

The key to be used when accessing this requested fabric allocation. The fabric allocation1
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first2
element is composed of this key and the allocated resource description. The type of the3
included value depends upon the fabric support. For example, a TCP allocation might4
consist of a comma-delimited string of socket ranges such as "32000-32100,5
33005,38123-38146". Additional array entries will consist of any provided resource6
request directives, along with their assigned values. Examples include:7
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;8
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned9
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -10
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the11
requested fabric allocation. NOTE: the array contents may differ from those requested,12
especially if PMIX_INFO_REQD was not set in the request.13

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)14
Request that the allocation include a fabric security key for the spawned job.15

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)16
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.17

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)18
ID string for the fabric plane to be used for the requested allocation.19

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)20
Number of endpoints to allocate per process in the job.21

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)22
Number of endpoints to allocate per node for the job.23

PMIX_PROC_MAP "pmix.pmap" (char*)24
Regular expression describing processes on each node in the specified realm - see 17.2.3.225
for an explanation of its generation. Defaults to the job realm.26

PMIX_NODE_MAP "pmix.nmap" (char*)27
Regular expression of nodes currently hosting processes in the specified realm - see 17.2.3.228
for an explanation of its generation. Defaults to the job realm.29

Optional Attributes

PMIx libraries that support this operation may support the following:30

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)31
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation32
request.33

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)34
Fabric quality of service level for the job being requested in an allocation request.35

338 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_SESSION_INFO "pmix.ssn.info" (bool)1
Return information regarding the session realm of the target process. In this context,2
indicates that the information provided in the PMIX_NODE_MAP is for the entire session and3
not just the indicated namespace. Thus, subsequent calls to this API may omit node-level4
information - e.g., the library may not need to include information on the devices on each5
node in a subsequent call.6

The following optional attributes may be provided by the host environment to identify the7
programming model (as specified by the user) being executed within the application. The PMIx8
server library may utilize this information to harvest/forward model-specific environmental9
variables, record the programming model associated with the application, etc.10

• PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)11
Programming model being initialized (e.g., “MPI” or “OpenMP”).12

• PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)13
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).14

• PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)15
Programming model version string (e.g., “2.1.1”).16

Description17
Provide a function by which the RM can request application-specific setup data (e.g., environmental18
variables, fabric configuration and security credentials) from supporting PMIx server library19
subsystems prior to initiating launch of a job.20

This is defined as a non-blocking operation in case contributing subsystems need to perform some21
potentially time consuming action (e.g., query a remote service) before responding. The returned22
data must be distributed by the host environment and subsequently delivered to the local PMIx23
server on each node where application processes will execute, prior to initiating execution of those24
processes.25

Advice to PMIx server hosts

Host environments are required to execute this operation prior to launching a job. In addition to26
supported directives, the info array must include a description of the job using the27
PMIX_NODE_MAP and PMIX_PROC_MAP attributes.28

Note that the function can be called on a per-application basis if the PMIX_PROC_MAP and29
PMIX_NODE_MAP are provided only for the corresponding application (as opposed to the entire30
job) each time.31

Advice to PMIx library implementers

Support for harvesting of environmental variables and providing of local configuration information32
by the PMIx implementation is optional.33

CHAPTER 17. SERVER-SPECIFIC INTERFACES 339

Un
offi
cia
l D
raf
t

17.2.11.1 Server Setup Application Callback Function1

The PMIx_server_setup_application callback function.2

Summary3
Provide a function by which the resource manager can receive application-specific environmental4
variables and other setup data prior to launch of an application.5

Format6 PMIx v2.0 C
typedef void (*pmix_setup_application_cbfunc_t)(7

pmix_status_t status,8
pmix_info_t info[], size_t ninfo,9
void *provided_cbdata,10
pmix_op_cbfunc_t cbfunc, void *cbdata);11

C
IN status12

returned status of the request (pmix_status_t)13
IN info14

Array of info structures (array of handles)15
IN ninfo16

Number of elements in the info array (integer)17
IN provided_cbdata18

Data originally passed to call to PMIx_server_setup_application (memory19
reference)20

IN cbfunc21
pmix_op_cbfunc_t function to be called when processing completed (function reference)22

IN cbdata23
Data to be passed to the cbfunc callback function (memory reference)24

Description25
Define a function to be called by the PMIx server library for return of application-specific setup26
data in response to a request from the host RM. The returned info array is owned by the PMIx27
server library and will be free’d when the provided cbfunc is called.28

17.2.11.2 Server Setup Application Attributes29
PMIx v3.0 Attributes specifically defined for controlling contents of application setup data.30

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)31
Harvest and include relevant environmental variables.32

PMIX_SETUP_APP_NONENVARS ""pmix.setup.nenv" (bool)33
Include all relevant data other than environmental variables.34

PMIX_SETUP_APP_ALL "pmix.setup.all" (bool)35
Include all relevant data.36

340 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

17.2.12 PMIx_Register_attributes1

Summary2
Register host environment attribute support for a function.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Register_attributes(char *function,6

pmix_regattr_t attrs[],7
size_t nattrs);8

C

IN function9
String name of function (string)10

IN attrs11
Array of pmix_regattr_t describing the supported attributes (handle)12

IN nattrs13
Number of elements in attrs (size_t)14

Returns PMIX_SUCCESS or a negative value indicating the error.15

Description16
The PMIx_Register_attributes function is used by the host environment to register with17
its PMIx server library the attributes it supports for each pmix_server_module_t function.18
The function is the string name of the server module function (e.g., "register_events",19
"validate_credential", or "allocate") whose attributes are being registered. See the20
pmix_regattr_t entry for a description of the attrs array elements.21

Note that the host environment can also query the library (using the PMIx_Query_info_nb22
API) for its attribute support both at the server, client, and tool levels once the host has executed23
PMIx_server_init since the server will internally register those values.24

Advice to PMIx server hosts

Host environments are strongly encouraged to register all supported attributes immediately after25
initializing the library to ensure that user requests are correctly serviced.26

CHAPTER 17. SERVER-SPECIFIC INTERFACES 341

Un
offi
cia
l D
raf
t

Advice to PMIx library implementers

PMIx implementations are required to register all internally supported attributes for each API1
during initialization of the library (i.e., when the process calls their respective PMIx init function).2
Specifically, the implementation must not register supported attributes upon first call to a given API3
as this would prevent users from discovering supported attributes prior to first use of an API.4

It is the implementation’s responsibility to associate registered attributes for a given5
pmix_server_module_t function with their corresponding user-facing API. Supported6
attributes must be reported to users in terms of their support for user-facing APIs, broken down by7
the level (see Section 7.1.5) at which the attribute is supported.8

Note that attributes can/will be registered on an API for each level. It is required that the9
implementation support user queries for supported attributes on a per-level basis. Duplicate10
registrations at the same level for a function shall return an error - however, duplicate registrations11
at different levels shall be independently tracked.12

17.2.12.1 Attribute registration constants13

Constants supporting attribute registration.14

PMIX_ERR_REPEAT_ATTR_REGISTRATION -171 The attributes for an identical15
function have already been registered at the specified level (host, server, or client).16

17.2.12.2 Attribute registration structure17

The pmix_regattr_t structure is used to register attribute support for a PMIx function.18
PMIx v4.0 C

typedef struct pmix_regattr {19
char *name;20
pmix_key_t *string;21
pmix_data_type_t type;22
pmix_info_t *info;23
size_t ninfo;24
char **description;25

} pmix_regattr_t;;26

C

Note that in this structure:27

• the name is the actual name of the attribute - e.g., "PMIX_MAX_PROCS"28

• the string is the literal string value of the attribute - e.g., "pmix.max.size" for the29
PMIX_MAX_PROCS attribute30

• type must be a PMIx data type identifying the type of data associated with this attribute.31

342 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• the info array contains machine-usable information regarding the range of accepted values. This1
may include entries for PMIX_MIN_VALUE, PMIX_MAX_VALUE, PMIX_ENUM_VALUE, or a2
combination of them. For example, an attribute that supports all positive integers might delineate3
it by including a pmix_info_t with a key of PMIX_MIN_VALUE, type of PMIX_INT, and4
value of zero. The lack of an entry for PMIX_MAX_VALUE indicates that there is no ceiling to5
the range of accepted values.6

• ninfo indicates the number of elements in the info array7

• The description field consists of a NULL-terminated array of strings describing the attribute,8
optionally including a human-readable description of the range of accepted values - e.g., "ALL9
POSITIVE INTEGERS", or a comma-delimited list of enum value names. No correlation10
between the number of entries in the description and the number of elements in the info array is11
implied or required.12

The attribute name and string fields must be NULL-terminated strings composed of standard13
alphanumeric values supported by common utilities such as strcmp.14

Although not strictly required, both PMIx library implementers and host environments are strongly15
encouraged to provide both human-readable and machine-parsable descriptions of supported16
attributes when registering them.17

17.2.12.3 Attribute registration structure descriptive attributes18

The following attributes relate to the nature of the values being reported in the pmix_regattr_t19
structures.20

PMIX_MAX_VALUE "pmix.descr.maxval" (varies)21
Used in pmix_regattr_t to describe the maximum valid value for the associated22
attribute.23

PMIX_MIN_VALUE "pmix.descr.minval" (varies)24
Used in pmix_regattr_t to describe the minimum valid value for the associated25
attribute.26

PMIX_ENUM_VALUE "pmix.descr.enum" (char*)27
Used in pmix_regattr_t to describe accepted values for the associated attribute.28
Numerical values shall be presented in a form convertible to the attribute’s declared data29
type. Named values (i.e., values defined by constant names via a typical C-language enum30
declaration) must be provided as their numerical equivalent.31

17.2.12.4 Attribute registration structure support macros32

The following macros are provided to support the pmix_regattr_t structure.33

Static initializer for the regattr structure34 Provisional Provide a static initializer for the pmix_regattr_t fields.35
PMIx v4.2

CHAPTER 17. SERVER-SPECIFIC INTERFACES 343

Un
offi
cia
l D
raf
t

C
PMIX_REGATTR_STATIC_INIT1

C
Initialize the regattr structure2
Initialize the pmix_regattr_t fields3

PMIx v4.0 C
PMIX_REGATTR_CONSTRUCT(m)4

C
IN m5

Pointer to the structure to be initialized (pointer to pmix_regattr_t)6

Destruct the regattr structure7
Destruct the pmix_regattr_t fields, releasing all strings.8

PMIx v4.0 C
PMIX_REGATTR_DESTRUCT(m)9

C
IN m10

Pointer to the structure to be destructed (pointer to pmix_regattr_t)11

Create a regattr array12
Allocate and initialize an array of pmix_regattr_t structures.13

PMIx v4.0 C
PMIX_REGATTR_CREATE(m, n)14

C
INOUT m15

Address where the pointer to the array of pmix_regattr_t structures shall be stored16
(handle)17

IN n18
Number of structures to be allocated (size_t)19

Free a regattr array20
Release an array of pmix_regattr_t structures.21

PMIx v4.0 C
PMIX_REGATTR_FREE(m, n)22

C
INOUT m23

Pointer to the array of pmix_regattr_t structures (handle)24
IN n25

Number of structures in the array (size_t)26

344 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Load a regattr structure1
Load values into a pmix_regattr_t structure. The macro can be called multiple times to add as2
many strings as desired to the same structure by passing the same address and a NULL key to the3
macro. Note that the t type value must be given each time.4

PMIx v4.0 C
PMIX_REGATTR_LOAD(a, n, k, t, ni, v)5

C

IN a6
Pointer to the structure to be loaded (pointer to pmix_proc_t)7

IN n8
String name of the attribute (string)9

IN k10
Key value to be loaded (pmix_key_t)11

IN t12
Type of data associated with the provided key (pmix_data_type_t)13

IN ni14
Number of pmix_info_t elements to be allocated in info (size_t)15

IN v16
One-line description to be loaded (more can be added separately) (string)17

Transfer a regattr to another regattr18
Non-destructively transfer the contents of a pmix_regattr_t structure to another one.19

PMIx v4.0 C
PMIX_REGATTR_XFER(m, n)20

C

INOUT m21
Pointer to the destination pmix_regattr_t structure (handle)22

IN m23
Pointer to the source pmix_regattr_t structure (handle)24

17.2.13 PMIx_server_setup_local_support25

Summary26
Provide a function by which the local PMIx server can perform any application-specific operations27
prior to spawning local clients of a given application.28

CHAPTER 17. SERVER-SPECIFIC INTERFACES 345

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_server_setup_local_support(const pmix_nspace_t nspace,3

pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata);6

C

IN nspace7
Namespace (string)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (size_t)12

IN cbfunc13
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the14
function is to be executed as a blocking operation (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

A successful return indicates that the request is being processed and the result will be returned in18
the provided cbfunc. Note that the library must not invoke the callback function prior to returning19
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.20

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

If none of the above return codes are appropriate, then an implementation must return either a24
general PMIx error code or an implementation defined error code as described in Section 3.1.1.25

Description26
Provide a function by which the local PMIx server can perform any application-specific operations27
prior to spawning local clients of a given application. For example, a fabric library might need to28
setup the local driver for “instant on” addressing. The data provided in the info array is the data29
returned to the host RM by the callback function executed as a result of a call to30
PMIx_server_setup_application.31

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application32
processes from the specified namespace if information was obtained from a call to33
PMIx_server_setup_application.34

346 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Host environments must register the nspace using PMIx_server_register_nspace prior to1
calling this API to ensure that all namespace-related information required to support this function is2
available to the library. This eliminates the need to include any of the registration information in the3
info array passed to this API.4

17.2.14 PMIx_server_IOF_deliver5

Summary6
Provide a function by which the host environment can pass forwarded Input/Output (IO) to the7
PMIx server library for distribution to its clients.8

Format9 PMIx v3.0 C
pmix_status_t10
PMIx_server_IOF_deliver(const pmix_proc_t *source,11

pmix_iof_channel_t channel,12
const pmix_byte_object_t *bo,13
const pmix_info_t info[], size_t ninfo,14
pmix_op_cbfunc_t cbfunc, void *cbdata);15

C

IN source16
Pointer to pmix_proc_t identifying source of the IO (handle)17

IN channel18
IO channel of the data (pmix_iof_channel_t)19

IN bo20
Pointer to pmix_byte_object_t containing the payload to be delivered (handle)21

IN info22
Array of pmix_info_t metadata describing the data (array of handles)23

IN ninfo24
Number of elements in the info array (size_t)25

IN cbfunc26
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the27
function is to be executed as a blocking operation (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

A successful return indicates that the request is being processed and the result will be returned in31
the provided cbfunc. Note that the library must not invoke the callback function prior to returning32
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.33

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:34

CHAPTER 17. SERVER-SPECIFIC INTERFACES 347

Un
offi
cia
l D
raf
t

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and1
returned success - the cbfunc will not be called2

If none of the above return codes are appropriate, then an implementation must return either a3
general PMIx error code or an implementation defined error code as described in Section 3.1.1.4

Description5
Provide a function by which the host environment can pass forwarded IO to the PMIx server library6
for distribution to its clients. The PMIx server library is responsible for determining which of its7
clients have actually registered for the provided data and delivering it. The cbfunc callback function8
will be called once the PMIx server library no longer requires access to the provided data.9

17.2.15 PMIx_server_collect_inventory10

Summary11
Collect inventory of resources on a node.12

Format13 PMIx v3.0 C
pmix_status_t14
PMIx_server_collect_inventory(const pmix_info_t directives[],15

size_t ndirs,16
pmix_info_cbfunc_t cbfunc,17
void *cbdata);18

C

IN directives19
Array of pmix_info_t directing the request (array of handles)20

IN ndirs21
Number of elements in the directives array (size_t)22

IN cbfunc23
Callback function to return collected data (pmix_info_cbfunc_t function reference)24

IN cbdata25
Data to be passed to the callback function (memory reference)26

A successful return indicates that the request is being processed and the result will be returned in27
the provided cbfunc. Note that the library must not invoke the callback function prior to returning28
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.29

348 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Provide a function by which the host environment can request its PMIx server library collect an2
inventory of local resources. Supported resources depends upon the PMIx implementation, but may3
include the local node topology and fabric interfaces.4

Advice to PMIx server hosts

This is a non-blocking API as it may involve somewhat lengthy operations to obtain the requested5
information. Inventory collection is expected to be a rare event – at system startup and upon6
command from a system administrator. Inventory updates are expected to initiate a smaller7
operation involving only the changed information. For example, replacement of a node would8
generate an event to notify the scheduler with an inventory update without invoking a global9
inventory operation.10

17.2.16 PMIx_server_deliver_inventory11

Summary12
Pass collected inventory to the PMIx server library for storage.13

Format14 PMIx v3.0 C
pmix_status_t15
PMIx_server_deliver_inventory(const pmix_info_t info[],16

size_t ninfo,17
const pmix_info_t directives[],18
size_t ndirs,19
pmix_op_cbfunc_t cbfunc,20
void *cbdata);21

C

IN info22
Array of pmix_info_t containing the inventory (array of handles)23

IN ninfo24
Number of elements in the info array (size_t)25

IN directives26
Array of pmix_info_t directing the request (array of handles)27

IN ndirs28
Number of elements in the directives array (size_t)29

IN cbfunc30
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the31
function is to be executed as a blocking operation (function reference)32

IN cbdata33
Data to be passed to the callback function (memory reference)34

CHAPTER 17. SERVER-SPECIFIC INTERFACES 349

Un
offi
cia
l D
raf
t

Returns one of the following:1

A successful return indicates that the request is being processed and the result will be returned in2
the provided cbfunc. Note that the library must not invoke the callback function prior to returning3
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.4

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:5

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and6
returned success - the cbfunc will not be called7

If none of the above return codes are appropriate, then an implementation must return either a8
general PMIx error code or an implementation defined error code as described in Section 3.1.1.9

Description10
Provide a function by which the host environment can pass inventory information obtained from a11
node (as a result of a call to PMIx_server_collect_inventory) to the PMIx server library12
for storage. Inventory data is subsequently used by the PMIx server library for allocations in13
response to PMIx_server_setup_application, and may be available to the library’s host14
via the PMIx_Get API (depending upon PMIx implementation). The cbfunc callback function15
will be called once the PMIx server library no longer requires access to the provided data.16

17.2.17 PMIx_server_generate_locality_string17

Summary18
Generate a PMIx locality string from a given cpuset.19

Format20 PMIx v4.0 C
pmix_status_t21
PMIx_server_generate_locality_string(const pmix_cpuset_t *cpuset,22

char **locality);23

C

IN cpuset24
Pointer to a pmix_cpuset_t containing the bitmap of assigned PUs (handle)25

OUT locality26
String representation of the PMIx locality corresponding to the input bitmap (char*)27

A successful return indicates that the returned string contains the generated locality string.28

Returns PMIX_SUCCESS or a negative value indicating the error.29

350 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Provide a function by which the host environment can generate a PMIx locality string for inclusion2
in the call to PMIx_server_register_nspace. This function shall only be called for local3
client processes, with the returned locality included in the job-level information (via the4
PMIX_LOCALITY_STRING attribute) provided to local clients. Local clients can use these5
strings as input to determine the relative locality of their local peers via the6
PMIx_Get_relative_locality API.7

The function is required to return a string prefixed by the source field of the provided cpuset8
followed by a colon. The remainder of the string shall represent the corresponding locality as9
expressed by the underlying implementation.10

17.2.18 PMIx_server_generate_cpuset_string11

Summary12
Generate a PMIx string representation of the provided cpuset.13

Format14 PMIx v4.0 C
pmix_status_t15
PMIx_server_generate_cpuset_string(const pmix_cpuset_t *cpuset,16

char **cpuset_string);17

C

IN cpuset18
Pointer to a pmix_cpuset_t containing the bitmap of assigned PUs (handle)19

OUT cpuset_string20
String representation of the input bitmap (char*)21

A successful return indicates that the returned string contains the generated cpuset representation22
string.23

Returns PMIX_SUCCESS or a negative value indicating the error.24

Description25
Provide a function by which the host environment can generate a string representation of the cpuset26
bitmap for inclusion in the call to PMIx_server_register_nspace. This function shall only27
be called for local client processes, with the returned string included in the job-level information28
(via the PMIX_CPUSET attribute) provided to local clients. Local clients can use these strings as29
input to obtain their PU bindings via the PMIx_Parse_cpuset_string API.30

The function is required to return a string prefixed by the source field of the provided cpuset31
followed by a colon. The remainder of the string shall represent the PUs to which the process is32
bound as expressed by the underlying implementation.33

CHAPTER 17. SERVER-SPECIFIC INTERFACES 351

Un
offi
cia
l D
raf
t

17.2.18.1 Cpuset Structure1

The pmix_cpuset_t structure contains a character string identifying the source of the bitmap2
(e.g., "hwloc") and a pointer to the corresponding implementation-specific structure (e.g.,3
hwloc_cpuset_t).4

PMIx v4.0 C
typedef struct pmix_cpuset {5

char *source;6
void *bitmap;7

} pmix_cpuset_t;8

C

17.2.18.2 Cpuset support macros9

The following macros support the pmix_cpuset_t structure.10

Static initializer for the cpuset structure11 Provisional Provide a static initializer for the pmix_cpuset_t fields.12
PMIx v4.2 C

PMIX_CPUSET_STATIC_INIT13

C

Initialize the cpuset structure14
Initialize the pmix_cpuset_t fields.15

PMIx v4.0 C
PMIX_CPUSET_CONSTRUCT(m)16

C

IN m17
Pointer to the structure to be initialized (pointer to pmix_cpuset_t)18

Destruct the cpuset structure19
Destruct the pmix_cpuset_t fields.20

PMIx v4.0 C
PMIX_CPUSET_DESTRUCT(m)21

C

IN m22
Pointer to the structure to be destructed (pointer to pmix_cpuset_t)23

352 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Create a cpuset array1
Allocate and initialize a pmix_cpuset_t array.2

C
PMIX_CPUSET_CREATE(m, n)3

C
INOUT m4

Address where the pointer to the array of pmix_cpuset_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

Release a cpuset array9
Deconstruct and free a pmix_cpuset_t array.10

PMIx v4.0 C
PMIX_CPUSET_FREE(m, n)11

C
INOUT m12

Address the array of pmix_cpuset_t structures to be released (handle)13
IN n14

Number of structures in the array (size_t)15

17.2.19 PMIx_server_define_process_set16

Summary17
Define a PMIx process set.18

Format19 PMIx v4.0 C
pmix_status_t20
PMIx_server_define_process_set(const pmix_proc_t members[],21

size_t nmembers,22
char *pset_name);23

C
IN members24

Pointer to an array of pmix_proc_t containing the identifiers of the processes in the25
process set (handle)26

IN nmembers27
Number of elements in members (integer)28

IN pset_name29
String name of the process set being defined (char*)30

Returns PMIX_SUCCESS or a negative value indicating the error.31

CHAPTER 17. SERVER-SPECIFIC INTERFACES 353

Un
offi
cia
l D
raf
t

Description1
Provide a function by which the host environment can create a process set. The PMIx server shall2
alert all local clients of the new process set (including process set name and membership) via the3
PMIX_PROCESS_SET_DEFINE event.4

Advice to PMIx server hosts

The host environment is responsible for ensuring:5

• consistent knowledge of process set membership across all involved PMIx servers; and6

• that process set names do not conflict with system-assigned namespaces within the scope of the7
set8

17.2.20 PMIx_server_delete_process_set9

Summary10
Delete a PMIx process set name11

Format12 PMIx v4.0 C
pmix_status_t13
PMIx_server_delete_process_set(char *pset_name);14

C

IN pset_name15
String name of the process set being deleted (char*)16

Returns PMIX_SUCCESS or a negative value indicating the error.17

Description18
Provide a function by which the host environment can delete a process set name. The PMIx server19
shall alert all local clients of the process set name being deleted via the20
PMIX_PROCESS_SET_DELETE event. Deletion of the name has no impact on the member21
processes.22

Advice to PMIx server hosts

The host environment is responsible for ensuring consistent knowledge of process set membership23
across all involved PMIx servers.24

354 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

17.3 Server Function Pointers1

PMIx utilizes a "function-shipping" approach to support for implementing the server-side of the2
protocol. This method allows RMs to implement the server without being burdened with PMIx3
internal details. When a request is received from the client, the corresponding server function will4
be called with the information.5

Any functions not supported by the RM can be indicated by a NULL for the function pointer. PMIx6
implementations are required to return a PMIX_ERR_NOT_SUPPORTED status to all calls to7
functions that require host environment support and are not backed by a corresponding server8
module entry. Host environments may, if they choose, include a function pointer for operations they9
have not yet implemented and simply return PMIX_ERR_NOT_SUPPORTED.10

Functions that accept directives (i.e., arrays of pmix_info_t structures) must check any provided11
directives for those marked as required via the PMIX_INFO_REQD flag. PMIx client and server12
libraries are required to mark any such directives with the PMIX_INFO_REQD_PROCESSED flag13
should they have handled the request. Any required directive that has not been marked therefore14
becomes the responsibility of the host environment. If a required directive that hasn’t been15
processed by a lower level cannot be supported by the host, then the16
PMIX_ERR_NOT_SUPPORTED error constant must be returned. If the directive can be processed17
by the host, then the host shall do so and mark the attribute with the18
PMIX_INFO_REQD_PROCESSED flag.19

The host RM will provide the function pointers in a pmix_server_module_t structure passed20
to PMIx_server_init. The module structure and associated function references are defined in21
this section.22

Advice to PMIx server hosts

For performance purposes, the host server is required to return as quickly as possible from all23
functions. Execution of the function is thus to be done asynchronously so as to allow the PMIx24
server support library to handle multiple client requests as quickly and scalably as possible.25

All data passed to the host server functions is “owned” by the PMIX server support library and26
must not be free’d. Data returned by the host server via callback function is owned by the host27
server, which is free to release it upon return from the callback28

17.3.1 pmix_server_module_t Module29

Summary30
List of function pointers that a PMIx server passes to PMIx_server_init during startup.31

CHAPTER 17. SERVER-SPECIFIC INTERFACES 355

Un
offi
cia
l D
raf
t

Format1
C

typedef struct pmix_server_module_4_0_0_t {2
/* v1x interfaces */3
pmix_server_client_connected_fn_t client_connected; // DEPRECATED4
pmix_server_client_finalized_fn_t client_finalized;5
pmix_server_abort_fn_t abort;6
pmix_server_fencenb_fn_t fence_nb;7
pmix_server_dmodex_req_fn_t direct_modex;8
pmix_server_publish_fn_t publish;9
pmix_server_lookup_fn_t lookup;10
pmix_server_unpublish_fn_t unpublish;11
pmix_server_spawn_fn_t spawn;12
pmix_server_connect_fn_t connect;13
pmix_server_disconnect_fn_t disconnect;14
pmix_server_register_events_fn_t register_events;15
pmix_server_deregister_events_fn_t deregister_events;16
pmix_server_listener_fn_t listener;17
/* v2x interfaces */18
pmix_server_notify_event_fn_t notify_event;19
pmix_server_query_fn_t query;20
pmix_server_tool_connection_fn_t tool_connected;21
pmix_server_log_fn_t log;22
pmix_server_alloc_fn_t allocate;23
pmix_server_job_control_fn_t job_control;24
pmix_server_monitor_fn_t monitor;25
/* v3x interfaces */26
pmix_server_get_cred_fn_t get_credential;27
pmix_server_validate_cred_fn_t validate_credential;28
pmix_server_iof_fn_t iof_pull;29
pmix_server_stdin_fn_t push_stdin;30
/* v4x interfaces */31
pmix_server_grp_fn_t group;32
pmix_server_fabric_fn_t fabric;33
pmix_server_client_connected2_fn_t client_connected2;34

} pmix_server_module_t;35

C
Advice to PMIx server hosts

Note that some PMIx implementations require the use of C99-style designated initializers to clearly36
correlate each provided function pointer with the correct member of the37
pmix_server_module_t structure as the location/ordering of struct members may change over38
time.39

356 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t17.3.2 pmix_server_client_connected_fn_t1

Summary2
Notify the host server that a client connected to this server. This function module entry has been3
DEPRECATED in favor of pmix_server_client_connected2_fn_t.4

Format5 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_client_connected_fn_t)(6

const pmix_proc_t *proc,7
void* server_object,8
pmix_op_cbfunc_t cbfunc,9
void *cbdata);10

C

IN proc11
pmix_proc_t structure (handle)12

IN server_object13
object reference (memory reference)14

IN cbfunc15
Callback function pmix_op_cbfunc_t (function reference)16

IN cbdata17
Data to be passed to the callback function (memory reference)18

Returns one of the following:19

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result20
will be returned in the provided cbfunc. Note that the host must not invoke the callback function21
prior to returning from the API.22

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and23
returned success - the cbfunc will not be called24

• a PMIx error constant indicating either an error in the input or that the request was immediately25
processed and failed - the cbfunc will not be called26

Description27
This function module entry has been DEPRECATED in favor of28
pmix_server_client_connected2_fn_t. If both functions are provided, the PMIx29
library will ignore this function module entry in favor of its replacement.30

CHAPTER 17. SERVER-SPECIFIC INTERFACES 357

Un
offi
cia
l D
raf
t

17.3.3 pmix_server_client_connected2_fn_t1

Summary2
Notify the host server that a client connected to this server - this version of the original function3
definition has been extended to include an array of pmix_info_t, thereby allowing the PMIx4
server library to pass additional information identifying the client to the host environment.5

Format6 PMIx v4.0 C
typedef pmix_status_t (*pmix_server_client_connected2_fn_t)(7

const pmix_proc_t *proc,8
void* server_object,9
pmix_info_t info[], size_t ninfo,10
pmix_op_cbfunc_t cbfunc,11
void *cbdata)12

C

IN proc13
pmix_proc_t structure (handle)14

IN server_object15
object reference (memory reference)16

IN info17
Array of info structures (array of handles)18

IN ninfo19
Number of elements in the info array (integer)20

IN cbfunc21
Callback function pmix_op_cbfunc_t (function reference)22

IN cbdata23
Data to be passed to the callback function (memory reference)24

Returns one of the following:25

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result26
will be returned in the provided cbfunc. Note that the host must not invoke the callback function27
prior to returning from the API.28

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and29
returned success - the cbfunc will not be called30

• a PMIx error constant indicating either an error in the input or that the request was immediately31
processed and failed - the cbfunc will not be called. The PMIx server library is to immediately32
terminate the connection.33

358 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Notify the host environment that a client has called PMIx_Init. Note that the client will be in a2
blocked state until the host server executes the callback function, thus allowing the PMIx server3
support library to release the client. The server_object parameter will be the value of the4
server_object parameter passed to PMIx_server_register_client by the host server when5
registering the connecting client. A host server can choose to not be notified when clients connect6
by setting pmix_server_client_connected2_fn_t to NULL.7

It is possible that only a subset of the clients in a namespace call PMIx_Init. The server’s8
pmix_server_client_connected2_fn_t implementation should therefore not depend on9
being called once per rank in a namespace or delay calling the callback function until all ranks have10
connected. However, the host may rely on the pmix_server_client_connected2_fn_t11
function module entry being called for a given rank prior to any other function module entries12
being executed on behalf of that rank.13

17.3.4 pmix_server_client_finalized_fn_t14

Summary15
Notify the host environment that a client called PMIx_Finalize.16

Format17 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_client_finalized_fn_t)(18

const pmix_proc_t *proc,19
void* server_object,20
pmix_op_cbfunc_t cbfunc,21
void *cbdata);22

C

IN proc23
pmix_proc_t structure (handle)24

IN server_object25
object reference (memory reference)26

IN cbfunc27
Callback function pmix_op_cbfunc_t (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

Returns one of the following:31

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result32
will be returned in the provided cbfunc. Note that the host must not invoke the callback function33
prior to returning from the API.34

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and35
returned success - the cbfunc will not be called36

CHAPTER 17. SERVER-SPECIFIC INTERFACES 359

Un
offi
cia
l D
raf
t

• a PMIx error constant indicating either an error in the input or that the request was immediately1
processed and failed - the cbfunc will not be called2

Description3
Notify the host environment that a client called PMIx_Finalize. Note that the client will be in a4
blocked state until the host server executes the callback function, thus allowing the PMIx server5
support library to release the client. The server_object parameter will be the value of the6
server_object parameter passed to PMIx_server_register_client by the host server when7
registering the connecting client. If provided, an implementation of8
pmix_server_client_finalized_fn_t is only required to call the callback function9
designated. A host server can choose to not be notified when clients finalize by setting10
pmix_server_client_finalized_fn_t to NULL.11

Note that the host server is only being informed that the client has called PMIx_Finalize. The12
client might not have exited. If a client exits without calling PMIx_Finalize, the server support13
library will not call the pmix_server_client_finalized_fn_t implementation.14

Advice to PMIx server hosts

This operation is an opportunity for a host server to update the status of the tasks it manages. It is15
also a convenient and well defined time to release resources used to support that client.16

17.3.5 pmix_server_abort_fn_t17

Summary18
Notify the host environment that a local client called PMIx_Abort.19

Format20 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_abort_fn_t)(21

const pmix_proc_t *proc,22
void *server_object,23
int status,24
const char msg[],25
pmix_proc_t procs[],26
size_t nprocs,27
pmix_op_cbfunc_t cbfunc,28
void *cbdata);29

360 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C

IN proc1
pmix_proc_t structure identifying the process requesting the abort (handle)2

IN server_object3
object reference (memory reference)4

IN status5
exit status (integer)6

IN msg7
exit status message (string)8

IN procs9
Array of pmix_proc_t structures identifying the processes to be terminated (array of10
handles)11

IN nprocs12
Number of elements in the procs array (integer)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the host must not invoke the callback function20
prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED indicating that the host environment supports24
this API, but the request includes processes that the host environment cannot abort - e.g., if the25
request is to abort subsets of processes from a namespace, or processes outside of the caller’s26
own namespace, and the host environment does not permit such operations. In this case, none of27
the specified processes will be terminated - the cbfunc will not be called28

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the29
request, even though the function entry was provided in the server module - the cbfunc will not30
be called31

• a PMIx error constant indicating either an error in the input or that the request was immediately32
processed and failed - the cbfunc will not be called33

CHAPTER 17. SERVER-SPECIFIC INTERFACES 361

Un
offi
cia
l D
raf
t

Description1
A local client called PMIx_Abort. Note that the client will be in a blocked state until the host2
server executes the callback function, thus allowing the PMIx server library to release the client.3
The array of procs indicates which processes are to be terminated. A NULL for the procs array4
indicates that all processes in the caller’s namespace are to be aborted, including itself - this is the5
equivalent of passing a pmix_proc_t array element containing the caller’s namespace and a rank6
value of PMIX_RANK_WILDCARD.7

17.3.6 pmix_server_fencenb_fn_t8

Summary9
At least one client called either PMIx_Fence or PMIx_Fence_nb.10

Format11 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_fencenb_fn_t)(12

const pmix_proc_t procs[],13
size_t nprocs,14
const pmix_info_t info[],15
size_t ninfo,16
char *data, size_t ndata,17
pmix_modex_cbfunc_t cbfunc,18
void *cbdata);19

C

IN procs20
Array of pmix_proc_t structures identifying operation participants(array of handles)21

IN nprocs22
Number of elements in the procs array (integer)23

IN info24
Array of info structures (array of handles)25

IN ninfo26
Number of elements in the info array (integer)27

IN data28
(string)29

IN ndata30
(integer)31

IN cbfunc32
Callback function pmix_modex_cbfunc_t (function reference)33

IN cbdata34
Data to be passed to the callback function (memory reference)35

Returns one of the following:36

362 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the host must not invoke the callback function2
prior to returning from the API.3

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the4
request, even though the function entry was provided in the server module - the cbfunc will not5
be called6

• a PMIx error constant indicating either an error in the input or that the request was immediately7
processed and failed - the cbfunc will not be called8

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.9

The following attributes are required to be supported by all host environments:10

PMIX_COLLECT_DATA "pmix.collect" (bool)11
Collect all data posted by the participants using PMIx_Put that has been committed via12
PMIx_Commit, making the collection locally available to each participant at the end of the13
operation. By default, this will include all job-level information that was locally generated14
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO15
attribute.16

PMIX_LOCAL_COLLECTIVE_STATUS "pmix.loc.col.st" (pmix_status_t)17
Status code for local collective operation being reported to the host by the server library.18
PMIx servers may aggregate the participation by local client processes in a collective19
operation - e.g., instead of passing individual client calls to PMIx_Fence up to the host20
environment, the server may pass only a single call to the host when all local participants21
have executed their PMIx_Fence call, thereby reducing the burden placed on the host.22
However, in cases where the operation locally fails (e.g., if a participating client abnormally23
terminates prior to calling the operation), the server upcall functions to the host do not24
include a pmix_status_t by which the PMIx server can alert the host to that failure.25
This attribute resolves that problem by allowing the server to pass the status information26
regarding the local collective operation.27

Optional Attributes

The following attributes are optional for host environments:28

PMIX_TIMEOUT "pmix.timeout" (int)29
Time in seconds before the specified operation should time out (zero indicating infinite) and30
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions31
caused by multiple layers (client, server, and host) simultaneously timing the operation.32

CHAPTER 17. SERVER-SPECIFIC INTERFACES 363

Un
offi
cia
l D
raf
t

Advice to PMIx server hosts

Host environment are required to return PMIX_ERR_NOT_SUPPORTED if passed an attributed1
marked as PMIX_INFO_REQD that they do not support, even if support for that attribute is2
optional.3

Description4
All local clients in the provided array of procs called either PMIx_Fence or PMIx_Fence_nb.5
In either case, the host server will be called via a non-blocking function to execute the specified6
operation once all participating local processes have contributed. All processes in the specified7
procs array are required to participate in the PMIx_Fence/PMIx_Fence_nb operation. The8
callback is to be executed once every daemon hosting at least one participant has called the host9
server’s pmix_server_fencenb_fn_t function.10

The provided data is to be collectively shared with all PMIx servers involved in the fence operation,11
and returned in the modex cbfunc. A NULL data value indicates that the local processes had no data12
to contribute.13

The array of info structs is used to pass user-requested options to the server. This can include14
directives as to the algorithm to be used to execute the fence operation. The directives are optional15
unless the PMIX_INFO_REQD flag has been set - in such cases, the host RM is required to return16
an error if the directive cannot be met.17

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request18
to the host environment once all local participants have executed the API.19

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to20
identify the nodes containing participating processes, execute the collective across all participating21
nodes, and notify the local PMIx server library upon completion of the global collective. Data22
received from each node must be simply concatenated to form an aggregated unit, as shown in the23
following example:24

C
uint8_t *blob1, *blob2, *total;25
size_t sz_blob1, sz_blob2, sz_total;26

27
sz_total = sz_blob1 + sz_blob2;28
total = (uint8_t*)malloc(sz_total);29
memcpy(total, blob1, sz_blob1);30
memcpy(&total[sz_blob1], blob2, sz_blob2);31

364 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C

Note that the ordering of the data blobs does not matter. The host is responsible for free’ing the1
data object passed to it by the PMIx server library.2

17.3.6.1 Modex Callback Function3

Summary4
The pmix_modex_cbfunc_t is used by the pmix_server_fencenb_fn_t and5
pmix_server_dmodex_req_fn_t PMIx server operations to return modex Business Card6
Exchange (BCX) data.7

PMIx v1.0 C
typedef void (*pmix_modex_cbfunc_t)8

(pmix_status_t status,9
const char *data, size_t ndata,10
void *cbdata,11
pmix_release_cbfunc_t release_fn,12
void *release_cbdata);13

C

IN status14
Status associated with the operation (handle)15

IN data16
Data to be passed (pointer)17

IN ndata18
size of the data (size_t)19

IN cbdata20
Callback data passed to original API call (memory reference)21

IN release_fn22
Callback for releasing data (function pointer)23

IN release_cbdata24
Pointer to be passed to release_fn (memory reference)25

Description26
A callback function that is solely used by PMIx servers, and not clients, to return modex BCX data27
in response to “fence” and “get” operations. The returned blob contains the data collected from28
each server participating in the operation.29

17.3.7 pmix_server_dmodex_req_fn_t30

Summary31
Used by the PMIx server to request its local host contact the PMIx server on the remote node that32
hosts the specified process to obtain and return a direct modex blob for that process.33

CHAPTER 17. SERVER-SPECIFIC INTERFACES 365

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_dmodex_req_fn_t)(2

const pmix_proc_t *proc,3
const pmix_info_t info[],4
size_t ninfo,5
pmix_modex_cbfunc_t cbfunc,6
void *cbdata);7

C

IN proc8
pmix_proc_t structure identifying the process whose data is being requested (handle)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function pmix_modex_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the host must not invoke the callback function20
prior to returning from the API.21

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the22
request, even though the function entry was provided in the server module - the cbfunc will not23
be called24

• a PMIx error constant indicating either an error in the input or that the request was immediately25
processed and failed - the cbfunc will not be called26

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.27

All host environments are required to support the following attributes:28

PMIX_REQUIRED_KEY "pmix.req.key" (char*)29
Identifies a key that must be included in the requested information. If the specified key is not30
already available, then the PMIx servers are required to delay response to the dmodex31
request until either the key becomes available or the request times out.32

366 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Used by the PMIx server to request its local host contact the PMIx server on the remote node that7
hosts the specified proc to obtain and return any information that process posted via calls to8
PMIx_Put and PMIx_Commit.9

The array of info structs is used to pass user-requested options to the server. This can include a10
timeout to preclude an indefinite wait for data that may never become available. The directives are11
optional unless the mandatory flag has been set - in such cases, the host RM is required to return an12
error if the directive cannot be met.13

17.3.7.1 Dmodex attributes14

PMIX_REQUIRED_KEY "pmix.req.key" (char*)15
Identifies a key that must be included in the requested information. If the specified key is not16
already available, then the PMIx servers are required to delay response to the dmodex17
request until either the key becomes available or the request times out.18

17.3.8 pmix_server_publish_fn_t19

Summary20
Publish data per the PMIx API specification.21

Format22 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_publish_fn_t)(23

const pmix_proc_t *proc,24
const pmix_info_t info[],25
size_t ninfo,26
pmix_op_cbfunc_t cbfunc,27
void *cbdata);28

CHAPTER 17. SERVER-SPECIFIC INTERFACES 367

Un
offi
cia
l D
raf
t

C

IN proc1
pmix_proc_t structure of the process publishing the data (handle)2

IN info3
Array of info structures (array of handles)4

IN ninfo5
Number of elements in the info array (integer)6

IN cbfunc7
Callback function pmix_op_cbfunc_t (function reference)8

IN cbdata9
Data to be passed to the callback function (memory reference)10

Returns one of the following:11

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result12
will be returned in the provided cbfunc. Note that the host must not invoke the callback function13
prior to returning from the API.14

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and15
returned success - the cbfunc will not be called16

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the17
request, even though the function entry was provided in the server module - the cbfunc will not18
be called19

• a PMIx error constant indicating either an error in the input or that the request was immediately20
processed and failed - the cbfunc will not be called21

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.22
In addition, the following attributes are required to be included in the passed info array:23

PMIX_USERID "pmix.euid" (uint32_t)24
Effective user ID of the connecting process.25

PMIX_GRPID "pmix.egid" (uint32_t)26
Effective group ID of the connecting process.27

28

Host environments that implement this entry point are required to support the following attributes:29

PMIX_RANGE "pmix.range" (pmix_data_range_t)30
Define constraints on the processes that can access published data or generated events or31
define constraints on the provider of data when looking up published data.32

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)33

368 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Declare how long the datastore shall retain the provided data. The datastore is to delete the1
data upon reaching the persistence criterion.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_TIMEOUT "pmix.timeout" (int)4
Time in seconds before the specified operation should time out (zero indicating infinite) and5
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions6
caused by multiple layers (client, server, and host) simultaneously timing the operation.7

Description8
Publish data per the PMIx_Publish specification. The callback is to be executed upon9
completion of the operation. The default data range is left to the host environment, but expected to10
be PMIX_RANGE_SESSION, and the default persistence PMIX_PERSIST_SESSION or their11
equivalent. These values can be specified by including the respective attributed in the info array.12

The persistence indicates how long the server should retain the data.13

Advice to PMIx server hosts

The host environment is not required to guarantee support for any specific range - i.e., the14
environment does not need to return an error if the data store doesn’t support a specified range so15
long as it is covered by some internally defined range. However, the server must return an error (a)16
if the key is duplicative within the storage range, and (b) if the server does not allow overwriting of17
published info by the original publisher - it is left to the discretion of the host environment to allow18
info-key-based flags to modify this behavior.19

The PMIX_USERID and PMIX_GRPID of the publishing process will be provided to support20
authorization-based access to published information and must be returned on any subsequent21
lookup request.22

17.3.9 pmix_server_lookup_fn_t23

Summary24
Lookup published data.25

CHAPTER 17. SERVER-SPECIFIC INTERFACES 369

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_lookup_fn_t)(2

const pmix_proc_t *proc,3
char **keys,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_lookup_cbfunc_t cbfunc,7
void *cbdata);8

C

IN proc9
pmix_proc_t structure of the process seeking the data (handle)10

IN keys11
(array of strings)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_lookup_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.32
In addition, the following attributes are required to be included in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user ID of the connecting process.35

370 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group ID of the connecting process.2

3

Host environments that implement this entry point are required to support the following attributes:4

PMIX_RANGE "pmix.range" (pmix_data_range_t)5
Define constraints on the processes that can access published data or generated events or6
define constraints on the provider of data when looking up published data.7

PMIX_WAIT "pmix.wait" (int)8
Caller requests that the PMIx server wait until at least the specified number of values are9
found (a value of zero indicates all and is the default).10

Optional Attributes

The following attributes are optional for host environments that support this operation:11

PMIX_TIMEOUT "pmix.timeout" (int)12
Time in seconds before the specified operation should time out (zero indicating infinite) and13
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions14
caused by multiple layers (client, server, and host) simultaneously timing the operation.15

Description16
Lookup published data. The host server will be passed a NULL-terminated array of string keys17
identifying the data being requested.18

The array of info structs is used to pass user-requested options to the server. The default data range19
is left to the host environment, but expected to be PMIX_RANGE_SESSION. This can include a20
wait flag to indicate that the server should wait for all data to become available before executing the21
callback function, or should immediately callback with whatever data is available. In addition, a22
timeout can be specified on the wait to preclude an indefinite wait for data that may never be23
published.24

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support25
authorization-based access to published information. The host environment is not required to26
guarantee support for any specific range - i.e., the environment does not need to return an error if27
the data store doesn’t support a specified range so long as it is covered by some internally defined28
range.29

CHAPTER 17. SERVER-SPECIFIC INTERFACES 371

Un
offi
cia
l D
raf
t

17.3.10 pmix_server_unpublish_fn_t1

Summary2
Delete data from the data store.3

Format4 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_unpublish_fn_t)(5

const pmix_proc_t *proc,6
char **keys,7
const pmix_info_t info[],8
size_t ninfo,9
pmix_op_cbfunc_t cbfunc,10
void *cbdata);11

C

IN proc12
pmix_proc_t structure identifying the process making the request (handle)13

IN keys14
(array of strings)15

IN info16
Array of info structures (array of handles)17

IN ninfo18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_op_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

372 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1
In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

7

Host environments that implement this entry point are required to support the following attributes:8

PMIX_RANGE "pmix.range" (pmix_data_range_t)9
Define constraints on the processes that can access published data or generated events or10
define constraints on the provider of data when looking up published data.11

Optional Attributes

The following attributes are optional for host environments that support this operation:12

PMIX_TIMEOUT "pmix.timeout" (int)13
Time in seconds before the specified operation should time out (zero indicating infinite) and14
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions15
caused by multiple layers (client, server, and host) simultaneously timing the operation.16

Description17
Delete data from the data store. The host server will be passed a NULL-terminated array of string18
keys, plus potential directives such as the data range within which the keys should be deleted. The19
default data range is left to the host environment, but expected to be PMIX_RANGE_SESSION.20
The callback is to be executed upon completion of the delete procedure.21

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support22
authorization-based access to published information. The host environment is not required to23
guarantee support for any specific range - i.e., the environment does not need to return an error if24
the data store doesn’t support a specified range so long as it is covered by some internally defined25
range.26

CHAPTER 17. SERVER-SPECIFIC INTERFACES 373

Un
offi
cia
l D
raf
t

17.3.11 pmix_server_spawn_fn_t1

Summary2
Spawn a set of applications/processes as per the PMIx_Spawn API.3

Format4 C
typedef pmix_status_t (*pmix_server_spawn_fn_t)(5

const pmix_proc_t *proc,6
const pmix_info_t job_info[],7
size_t ninfo,8
const pmix_app_t apps[],9
size_t napps,10
pmix_spawn_cbfunc_t cbfunc,11
void *cbdata);12

C
IN proc13

pmix_proc_t structure of the process making the request (handle)14
IN job_info15

Array of info structures (array of handles)16
IN ninfo17

Number of elements in the jobinfo array (integer)18
IN apps19

Array of pmix_app_t structures (array of handles)20
IN napps21

Number of elements in the apps array (integer)22
IN cbfunc23

Callback function pmix_spawn_cbfunc_t (function reference)24
IN cbdata25

Data to be passed to the callback function (memory reference)26

Returns one of the following:27

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result28
will be returned in the provided cbfunc. Note that the host must not invoke the callback function29
prior to returning from the API.30

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and31
returned success - the cbfunc will not be called32

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the33
request, even though the function entry was provided in the server module - the cbfunc will not34
be called35

• a PMIx error constant indicating either an error in the input or that the request was immediately36
processed and failed - the cbfunc will not be called37

374 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

PMIx server libraries are required to pass any provided attributes to the host environment for1
processing. In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

PMIX_SPAWNED "pmix.spawned" (bool)7
true if this process resulted from a call to PMIx_Spawn. Lack of inclusion (i.e., a return8
status of PMIX_ERR_NOT_FOUND) corresponds to a value of false for this attribute.9

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)10
Process identifier of the parent process of the specified process - typically used to identify11
the application process that caused the job containing the specified process to be spawned12
(e.g., the process that called PMIx_Spawn). This attribute is only provided for a process if13
it was created by a call to PMIx_Spawn or PMIx_Spawn_nb.14

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)15
The requesting process is a PMIx tool.16

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)17
The requesting process is a PMIx client.18

19

Host environments that provide this module entry point are required to pass the PMIX_SPAWNED20
and PMIX_PARENT_ID attributes to all PMIx servers launching new child processes so those21
values can be returned to clients upon connection to the PMIx server. In addition, they are required22
to support the following attributes when present in either the job_info or the info array of an23
element of the apps array:24

PMIX_WDIR "pmix.wdir" (char*)25
Working directory for spawned processes.26

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)27
Set the current working directory to the session working directory assigned by the RM - can28
be assigned to the entire job (by including attribute in the job_info array) or on a29
per-application basis in the info array for each pmix_app_t.30

PMIX_PREFIX "pmix.prefix" (char*)31
Prefix to use for starting spawned processes - i.e., the directory where the executables can be32
found.33

PMIX_HOST "pmix.host" (char*)34
Comma-delimited list of hosts to use for spawned processes.35

CHAPTER 17. SERVER-SPECIFIC INTERFACES 375

Un
offi
cia
l D
raf
t

PMIX_HOSTFILE "pmix.hostfile" (char*)1
Hostfile to use for spawned processes.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)4
Hostfile containing hosts to add to existing allocation.5

PMIX_ADD_HOST "pmix.addhost" (char*)6
Comma-delimited list of hosts to add to the allocation.7

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)8
Preload executables onto nodes prior to executing launch procedure.9

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)10
Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.11

PMIX_PERSONALITY "pmix.pers" (char*)12
Name of personality corresponding to programming model used by application - supported13
values depend upon PMIx implementation.14

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)15
Display process mapping upon spawn.16

PMIX_PPR "pmix.ppr" (char*)17
Number of processes to spawn on each identified resource.18

PMIX_MAPBY "pmix.mapby" (char*)19
Process mapping policy - when accessed using PMIx_Get, use the20
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the21
provided namespace. Supported values are launcher specific.22

PMIX_RANKBY "pmix.rankby" (char*)23
Process ranking policy - when accessed using PMIx_Get, use the24
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the25
provided namespace. Supported values are launcher specific.26

PMIX_BINDTO "pmix.bindto" (char*)27
Process binding policy - when accessed using PMIx_Get, use the28
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the29
provided namespace. Supported values are launcher specific.30

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)31
Spawned process rank that is to receive any forwarded stdin.32

PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)33

376 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The requester intends to push information from its stdin to the indicated process. The1
local spawn agent should, therefore, ensure that the stdin channel to that process remains2
available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the spawned3
job are potential recipients. The requester will issue a call to PMIx_IOF_push to initiate4
the actual forwarding of information to specified targets - this attribute simply requests that5
the IL retain the ability to forward the information to the designated targets.6

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)7
Requests that the ability to forward the stdout of the spawned processes be maintained.8
The requester will issue a call to PMIx_IOF_pull to specify the callback function and9
other options for delivery of the forwarded output.10

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)11
Requests that the ability to forward the stderr of the spawned processes be maintained.12
The requester will issue a call to PMIx_IOF_pull to specify the callback function and13
other options for delivery of the forwarded output.14

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)15
Included in the pmix_info_t array of a pmix_app_t, this attribute declares that the16
application consists of debugger daemons and shall be governed accordingly. If used as the17
sole pmix_app_t in a PMIx_Spawn request, then the PMIX_DEBUG_TARGET attribute18
must also be provided (in either the job_info or in the info array of the pmix_app_t) to19
identify the namespace to be debugged so that the launcher can determine where to place the20
spawned daemons. If neither PMIX_DEBUG_DAEMONS_PER_PROC nor21
PMIX_DEBUG_DAEMONS_PER_NODE is specified, then the launcher shall default to a22
placement policy of one daemon per process in the target job.23

PMIX_TAG_OUTPUT "pmix.tagout" (bool)24
Tag stdout/stderr with the identity of the source process - can be assigned to the entire25
job (by including attribute in the job_info array) or on a per-application basis in the info26
array for each pmix_app_t.27

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)28
Timestamp output - can be assigned to the entire job (by including attribute in the job_info29
array) or on a per-application basis in the info array for each pmix_app_t.30

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)31
Merge stdout and stderr streams - can be assigned to the entire job (by including32
attribute in the job_info array) or on a per-application basis in the info array for each33
pmix_app_t.34

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)35
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be36
assigned to the entire job (by including attribute in the job_info array) or on a per-application37
basis in the info array for each pmix_app_t.38

PMIX_INDEX_ARGV "pmix.indxargv" (bool)39

CHAPTER 17. SERVER-SPECIFIC INTERFACES 377

Un
offi
cia
l D
raf
t

Mark the argv with the rank of the process.1

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)2
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the3
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the4
provided namespace.5

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)6
Do not place processes on the head node.7

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)8
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a9
node.10

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)11
Report bindings of the individual processes.12

PMIX_CPU_LIST "pmix.cpulist" (char*)13
List of PUs to use for this job - when accessed using PMIx_Get, use the14
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided15
namespace.16

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)17
Application supports recoverable operations.18

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)19
Application is continuous, all failed processes should be immediately restarted.20

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)21
Maximum number of times to restart a process - when accessed using PMIx_Get, use the22
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided23
namespace.24

PMIX_TIMEOUT "pmix.timeout" (int)25
Time in seconds before the specified operation should time out (zero indicating infinite) and26
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions27
caused by multiple layers (client, server, and host) simultaneously timing the operation.28

PMIX_JOB_TIMEOUT "pmix.job.time" (int)29
Time in seconds before the spawned job should time out and be terminated (0 => infinite),30
defined as the total runtime of the job (equivalent to the walltime limit of typical batch31
schedulers).32

PMIX_SPAWN_TIMEOUT "pmix.sp.time" (int)33
Time in seconds before spawn operation should time out (0 => infinite). Logically34
equivalent to passing the PMIX_TIMEOUT attribute to the PMIx_Spawn API, it is35
provided as a separate attribute to distinguish it from the PMIX_JOB_TIMEOUT attribute36

378 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Spawn a set of applications/processes as per the PMIx_Spawn API. Note that applications are not2
required to be MPI or any other programming model. Thus, the host server cannot make any3
assumptions as to their required support. The callback function is to be executed once all processes4
have been started. An error in starting any application or process in this request shall cause all5
applications and processes in the request to be terminated, and an error returned to the originating6
caller.7

Note that a timeout can be specified in the job_info array to indicate that failure to start the8
requested job within the given time should result in termination to avoid hangs.9

17.3.11.1 Server spawn attributes10

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)11
The requesting process is a PMIx tool.12

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)13
The requesting process is a PMIx client.14

17.3.12 pmix_server_connect_fn_t15

Summary16
Record the specified processes as connected.17

Format18 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_connect_fn_t)(19

const pmix_proc_t procs[],20
size_t nprocs,21
const pmix_info_t info[],22
size_t ninfo,23
pmix_op_cbfunc_t cbfunc,24
void *cbdata);25

C

IN procs26
Array of pmix_proc_t structures identifying participants (array of handles)27

IN nprocs28
Number of elements in the procs array (integer)29

IN info30
Array of info structures (array of handles)31

IN ninfo32
Number of elements in the info array (integer)33

IN cbfunc34
Callback function pmix_op_cbfunc_t (function reference)35

IN cbdata36
Data to be passed to the callback function (memory reference)37

CHAPTER 17. SERVER-SPECIFIC INTERFACES 379

Un
offi
cia
l D
raf
t

Returns one of the following:1

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result2
will be returned in the provided cbfunc. Note that the host must not invoke the callback function3
prior to returning from the API.4

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and5
returned success - the cbfunc will not be called6

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the7
request, even though the function entry was provided in the server module - the cbfunc will not8
be called9

• a PMIx error constant indicating either an error in the input or that the request was immediately10
processed and failed - the cbfunc will not be called11

Required Attributes

PMIX_LOCAL_COLLECTIVE_STATUS "pmix.loc.col.st" (pmix_status_t)12
Status code for local collective operation being reported to the host by the server library.13
PMIx servers may aggregate the participation by local client processes in a collective14
operation - e.g., instead of passing individual client calls to PMIx_Fence up to the host15
environment, the server may pass only a single call to the host when all local participants16
have executed their PMIx_Fence call, thereby reducing the burden placed on the host.17
However, in cases where the operation locally fails (e.g., if a participating client abnormally18
terminates prior to calling the operation), the server upcall functions to the host do not19
include a pmix_status_t by which the PMIx server can alert the host to that failure.20
This attribute resolves that problem by allowing the server to pass the status information21
regarding the local collective operation.22

PMIx libraries are required to pass any provided attributes to the host environment for processing.23

Optional Attributes

The following attributes are optional for host environments that support this operation:24

PMIX_TIMEOUT "pmix.timeout" (int)25
Time in seconds before the specified operation should time out (zero indicating infinite) and26
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions27
caused by multiple layers (client, server, and host) simultaneously timing the operation.28

380 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Record the processes specified by the procs array as connected as per the PMIx definition. The2
callback is to be executed once every daemon hosting at least one participant has called the host3
server’s pmix_server_connect_fn_t function, and the host environment has completed any4
supporting operations required to meet the terms of the PMIx definition of connected processes.5

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request6
to the host environment once all local participants have executed the API.7

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to8
identify the nodes containing participating processes, execute the collective across all participating9
nodes, and notify the local PMIx server library upon completion of the global collective.10

17.3.13 pmix_server_disconnect_fn_t11

Summary12
Disconnect a previously connected set of processes.13

CHAPTER 17. SERVER-SPECIFIC INTERFACES 381

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_disconnect_fn_t)(2

const pmix_proc_t procs[],3
size_t nprocs,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata);8

C

IN procs9
Array of pmix_proc_t structures identifying participants (array of handles)10

IN nprocs11
Number of elements in the procs array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIX_LOCAL_COLLECTIVE_STATUS "pmix.loc.col.st" (pmix_status_t)32

382 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Status code for local collective operation being reported to the host by the server library.1
PMIx servers may aggregate the participation by local client processes in a collective2
operation - e.g., instead of passing individual client calls to PMIx_Fence up to the host3
environment, the server may pass only a single call to the host when all local participants4
have executed their PMIx_Fence call, thereby reducing the burden placed on the host.5
However, in cases where the operation locally fails (e.g., if a participating client abnormally6
terminates prior to calling the operation), the server upcall functions to the host do not7
include a pmix_status_t by which the PMIx server can alert the host to that failure.8
This attribute resolves that problem by allowing the server to pass the status information9
regarding the local collective operation.10

PMIx libraries are required to pass any provided attributes to the host environment for processing.11

Optional Attributes

The following attributes are optional for host environments that support this operation:12

PMIX_TIMEOUT "pmix.timeout" (int)13
Time in seconds before the specified operation should time out (zero indicating infinite) and14
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions15
caused by multiple layers (client, server, and host) simultaneously timing the operation.16

Description17
Disconnect a previously connected set of processes. The callback is to be executed once every18
daemon hosting at least one participant has called the host server’s has called the19
pmix_server_disconnect_fn_t function, and the host environment has completed any20
required supporting operations.21

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request22
to the host environment once all local participants have executed the API.23

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to24
identify the nodes containing participating processes, execute the collective across all participating25
nodes, and notify the local PMIx server library upon completion of the global collective.26

A PMIX_ERR_INVALID_OPERATION error must be returned if the specified set of procs was27
not previously connected via a call to the pmix_server_connect_fn_t function.28

CHAPTER 17. SERVER-SPECIFIC INTERFACES 383

Un
offi
cia
l D
raf
t

17.3.14 pmix_server_register_events_fn_t1

Summary2
Register to receive notifications for the specified events.3

Format4 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_register_events_fn_t)(5

pmix_status_t *codes,6
size_t ncodes,7
const pmix_info_t info[],8
size_t ninfo,9
pmix_op_cbfunc_t cbfunc,10
void *cbdata);11

C

IN codes12
Array of pmix_status_t values (array of handles)13

IN ncodes14
Number of elements in the codes array (integer)15

IN info16
Array of info structures (array of handles)17

IN ninfo18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_op_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

384 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1
In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

Description7
Register to receive notifications for the specified status codes. The info array included in this API is8
reserved for possible future directives to further steer notification.9

Advice to PMIx library implementers

The PMIx server library must track all client registrations for subsequent notification. This module10
function shall only be called when:11

• the client has requested notification of an environmental code (i.e., a PMIx codes in the range12
between PMIX_EVENT_SYS_BASE and PMIX_EVENT_SYS_OTHER, inclusive) or codes that13
lies outside the defined PMIx range of constants; and14

• the PMIx server library has not previously requested notification of that code - i.e., the host15
environment is to be contacted only once a given unique code value16

Advice to PMIx server hosts

The host environment is required to pass to its PMIx server library all non-environmental events17
that directly relate to a registered namespace without the PMIx server library explicitly requesting18
them. Environmental events are to be translated to their nearest PMIx equivalent code as defined in19
the range between PMIX_EVENT_SYS_BASE and PMIX_EVENT_SYS_OTHER (inclusive).20

17.3.15 pmix_server_deregister_events_fn_t21

Summary22
Deregister to receive notifications for the specified events.23

CHAPTER 17. SERVER-SPECIFIC INTERFACES 385

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_deregister_events_fn_t)(2

pmix_status_t *codes,3
size_t ncodes,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata);6

C

IN codes7
Array of pmix_status_t values (array of handles)8

IN ncodes9
Number of elements in the codes array (integer)10

IN cbfunc11
Callback function pmix_op_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the callback function (memory reference)14

Returns one of the following:15

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result16
will be returned in the provided cbfunc. Note that the host must not invoke the callback function17
prior to returning from the API.18

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and19
returned success - the cbfunc will not be called20

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the21
request, even though the function entry was provided in the server module - the cbfunc will not22
be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

Description26
Deregister to receive notifications for the specified events to which the PMIx server has previously27
registered.28

Advice to PMIx library implementers

The PMIx server library must track all client registrations. This module function shall only be29
called when:30

• the library is deregistering environmental codes (i.e., a PMIx codes in the range between31
PMIX_EVENT_SYS_BASE and PMIX_EVENT_SYS_OTHER, inclusive) or codes that lies32
outside the defined PMIx range of constants; and33

386 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• no client (including the server library itself) remains registered for notifications on any included1
code - i.e., a code should be included in this call only when no registered notifications against it2
remain.3

17.3.16 pmix_server_notify_event_fn_t4

Summary5
Notify the specified processes of an event.6

Format7 PMIx v2.0 C
typedef pmix_status_t (*pmix_server_notify_event_fn_t)(8

pmix_status_t code,9
const pmix_proc_t *source,10
pmix_data_range_t range,11
pmix_info_t info[],12
size_t ninfo,13
pmix_op_cbfunc_t cbfunc,14
void *cbdata);15

C

IN code16
The pmix_status_t event code being referenced structure (handle)17

IN source18
pmix_proc_t of process that generated the event (handle)19

IN range20
pmix_data_range_t range over which the event is to be distributed (handle)21

IN info22
Optional array of pmix_info_t structures containing additional information on the event23
(array of handles)24

IN ninfo25
Number of elements in the info array (integer)26

IN cbfunc27
Callback function pmix_op_cbfunc_t (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

Returns one of the following:31

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result32
will be returned in the provided cbfunc. Note that the host must not invoke the callback function33
prior to returning from the API.34

CHAPTER 17. SERVER-SPECIFIC INTERFACES 387

Un
offi
cia
l D
raf
t

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and1
returned success - the cbfunc will not be called2

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the3
request, even though the function entry was provided in the server module - the cbfunc will not4
be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.8

Host environments that provide this module entry point are required to support the following9
attributes:10

PMIX_RANGE "pmix.range" (pmix_data_range_t)11
Define constraints on the processes that can access published data or generated events or12
define constraints on the provider of data when looking up published data.13

Description14
Notify the specified processes (described through a combination of range and attributes provided in15
the info array) of an event generated either by the PMIx server itself or by one of its local clients.16
The process generating the event is provided in the source parameter, and any further descriptive17
information is included in the info array.18

Note that the PMIx server library is not allowed to echo any event given to it by its host via the19
PMIx_Notify_event API back to the host through the20
pmix_server_notify_event_fn_t server module function.21

Advice to PMIx server hosts

The callback function is to be executed once the host environment no longer requires that the PMIx22
server library maintain the provided data structures. It does not necessarily indicate that the event23
has been delivered to any process, nor that the event has been distributed for delivery24

17.3.17 pmix_server_listener_fn_t25

Summary26
Register a socket the host server can monitor for connection requests.27

388 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_listener_fn_t)(2

int listening_sd,3
pmix_connection_cbfunc_t cbfunc,4
void *cbdata);5

C

IN incoming_sd6
(integer)7

IN cbfunc8
Callback function pmix_connection_cbfunc_t (function reference)9

IN cbdata10
(memory reference)11

Returns PMIX_SUCCESS indicating that the request is accepted, or a negative value corresponding12
to a PMIx error constant indicating that the request has been rejected.13

Description14
Register a socket the host environment can monitor for connection requests, harvest them, and then15
call the PMIx server library’s internal callback function for further processing. A listener thread is16
essential to efficiently harvesting connection requests from large numbers of local clients such as17
occur when running on large SMPs. The host server listener is required to call accept on the18
incoming connection request, and then pass the resulting socket to the provided cbfunc. A NULL19
for this function will cause the internal PMIx server to spawn its own listener thread.20

17.3.17.1 PMIx Client Connection Callback Function21

Summary22
Callback function for incoming connection request from a local client.23

Format24 PMIx v1.0 C
typedef void (*pmix_connection_cbfunc_t)(25

int incoming_sd, void *cbdata);26

C

IN incoming_sd27
(integer)28

IN cbdata29
(memory reference)30

Description31
Callback function for incoming connection requests from local clients - only used by host32
environments that wish to directly handle socket connection requests.33

CHAPTER 17. SERVER-SPECIFIC INTERFACES 389

Un
offi
cia
l D
raf
t

17.3.18 pmix_server_query_fn_t1

Summary2
Query information from the resource manager.3

Format4 PMIx v2.0 C
typedef pmix_status_t (*pmix_server_query_fn_t)(5

pmix_proc_t *proct,6
pmix_query_t *queries,7
size_t nqueries,8
pmix_info_cbfunc_t cbfunc,9
void *cbdata);10

C

IN proct11
pmix_proc_t structure of the requesting process (handle)12

IN queries13
Array of pmix_query_t structures (array of handles)14

IN nqueries15
Number of elements in the queries array (integer)16

IN cbfunc17
Callback function pmix_info_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

390 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1
In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

Optional Attributes

The following attributes are optional for host environments that support this operation:7

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)8
Request a comma-delimited list of active namespaces. NO QUALIFIERS.9

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)10
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE11
indicating the namespace whose status is being queried.12

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)13
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.14

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)15
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL16
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being17
requested.18

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)19
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each20
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:21
PMIX_NSPACE indicating the namespace whose process table is being queried.22

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)23
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each24
process in the specified namespace executing on the same node as the requester, ordered by25
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace26
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME27
indicating the host whose local process table is being queried. By default, the query assumes28
that the host upon which the request was made is to be used.29

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)30
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.31

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)32
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.33

CHAPTER 17. SERVER-SPECIFIC INTERFACES 391

Un
offi
cia
l D
raf
t

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)1
Return information on memory usage for the processes indicated in the qualifiers.2
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of3
specific process(es) whose memory usage is being requested.4

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)5
Constrain the query to local information only. NO QUALIFIERS.6

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)7
Report only average values for sampled information. NO QUALIFIERS.8

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)9
Report minimum and maximum values. NO QUALIFIERS.10

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)11
String identifier of the allocation whose status is being requested. NO QUALIFIERS.12

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)13
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.14
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being15
requested (defaults to allocation containing the caller).16

Description17
Query information from the host environment. The query will include the namespace/rank of the18
process that is requesting the info, an array of pmix_query_t describing the request, and a19
callback function/data for the return.20

Advice to PMIx library implementers

The PMIx server library should not block in this function as the host environment may, depending21
upon the information being requested, require significant time to respond.22

17.3.19 pmix_server_tool_connection_fn_t23

Summary24
Register that a tool has connected to the server.25

392 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
typedef void (*pmix_server_tool_connection_fn_t)(2

pmix_info_t info[], size_t ninfo,3
pmix_tool_connection_cbfunc_t cbfunc,4
void *cbdata);5

C

IN info6
Array of pmix_info_t structures (array of handles)7

IN ninfo8
Number of elements in the info array (integer)9

IN cbfunc10
Callback function pmix_tool_connection_cbfunc_t (function reference)11

IN cbdata12
Data to be passed to the callback function (memory reference)13

Required Attributes

PMIx libraries are required to pass the following attributes in the info array:14

PMIX_USERID "pmix.euid" (uint32_t)15
Effective user ID of the connecting process.16

PMIX_GRPID "pmix.egid" (uint32_t)17
Effective group ID of the connecting process.18

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)19
Name of the namespace to use for this tool. This must be included only if the tool already20
has an assigned namespace.21

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)22
Rank of this tool. This must be included only if the tool already has an assigned rank.23

PMIX_CREDENTIAL "pmix.cred" (char*)24
Security credential assigned to the process.25

CHAPTER 17. SERVER-SPECIFIC INTERFACES 393

Un
offi
cia
l D
raf
t

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)2
Requests that the ability to forward the stdout of the spawned processes be maintained.3
The requester will issue a call to PMIx_IOF_pull to specify the callback function and4
other options for delivery of the forwarded output.5

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)6
Requests that the ability to forward the stderr of the spawned processes be maintained.7
The requester will issue a call to PMIx_IOF_pull to specify the callback function and8
other options for delivery of the forwarded output.9

PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)10
The requester intends to push information from its stdin to the indicated process. The11
local spawn agent should, therefore, ensure that the stdin channel to that process remains12
available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the spawned13
job are potential recipients. The requester will issue a call to PMIx_IOF_push to initiate14
the actual forwarding of information to specified targets - this attribute simply requests that15
the IL retain the ability to forward the information to the designated targets.16

PMIX_VERSION_INFO "pmix.version" (char*)17
PMIx version of the library being used by the connecting process.18

Description19
Register that a tool has connected to the server, possibly requesting that the tool be assigned a20
namespace/rank identifier for further interactions. The pmix_info_t array is used to pass21
qualifiers for the connection request, including the effective uid and gid of the calling tool for22
authentication purposes.23

If the tool already has an assigned process identifier, then this must be indicated in the info array.24
The host is responsible for checking that the provided namespace does not conflict with any25
currently known assignments, returning an appropriate error in the callback function if a conflict is26
found.27

The host environment is solely responsible for authenticating and authorizing the connection using28
whatever means it deems appropriate. If certificates or other authentication information are29
required, then the tool must provide them. The conclusion of those operations shall be30
communicated back to the PMIx server library via the callback function.31

Approval or rejection of the connection request shall be returned in the status parameter of the32
pmix_tool_connection_cbfunc_t. If the connection is refused, the PMIx server library33
must terminate the connection attempt. The host must not execute the callback function prior to34
returning from the API.35

394 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

17.3.19.1 Tool connection attributes1

Attributes associated with tool connections.2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

PMIX_VERSION_INFO "pmix.version" (char*)7
PMIx version of the library being used by the connecting process.8

17.3.19.2 PMIx Tool Connection Callback Function9

Summary10
Callback function for incoming tool connections.11

Format12 PMIx v2.0 C
typedef void (*pmix_tool_connection_cbfunc_t)(13

pmix_status_t status,14
pmix_proc_t *proc, void *cbdata);15

C

IN status16
pmix_status_t value (handle)17

IN proc18
pmix_proc_t structure containing the identifier assigned to the tool (handle)19

IN cbdata20
Data to be passed (memory reference)21

Description22
Callback function for incoming tool connections. The host environment shall provide a23
namespace/rank identifier for the connecting tool.24

Advice to PMIx server hosts

It is assumed that rank=0 will be the normal assignment, but allow for the future possibility of a25
parallel set of tools connecting, and thus each process requiring a unique rank.26

17.3.20 pmix_server_log_fn_t27

Summary28
Log data on behalf of a client.29

CHAPTER 17. SERVER-SPECIFIC INTERFACES 395

Un
offi
cia
l D
raf
t

Format1 C
typedef void (*pmix_server_log_fn_t)(2

const pmix_proc_t *client,3
const pmix_info_t data[], size_t ndata,4
const pmix_info_t directives[], size_t ndirs,5
pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

IN client7
pmix_proc_t structure (handle)8

IN data9
Array of info structures (array of handles)10

IN ndata11
Number of elements in the data array (integer)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the directives array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.21
In addition, the following attributes are required to be included in the passed info array:22

PMIX_USERID "pmix.euid" (uint32_t)23
Effective user ID of the connecting process.24

PMIX_GRPID "pmix.egid" (uint32_t)25
Effective group ID of the connecting process.26

27

Host environments that provide this module entry point are required to support the following28
attributes:29

PMIX_LOG_STDERR "pmix.log.stderr" (char*)30
Log string to stderr.31

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)32
Log string to stdout.33

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)34

396 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,1
otherwise to local syslog.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)4
Message blob to be sent somewhere.5

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)6
Log via email based on pmix_info_t containing directives.7

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)8
Comma-delimited list of email addresses that are to receive the message.9

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)10
Subject line for email.11

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)12
Message to be included in email.13

Description14
Log data on behalf of a client. This function is not intended for output of computational results, but15
rather for reporting status and error messages. The host must not execute the callback function prior16
to returning from the API.17

17.3.21 pmix_server_alloc_fn_t18

Summary19
Request allocation operations on behalf of a client.20

CHAPTER 17. SERVER-SPECIFIC INTERFACES 397

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_alloc_fn_t)(2

const pmix_proc_t *client,3
pmix_alloc_directive_t directive,4
const pmix_info_t data[],5
size_t ndata,6
pmix_info_cbfunc_t cbfunc,7
void *cbdata);8

C

IN client9
pmix_proc_t structure of process making request (handle)10

IN directive11
Specific action being requested (pmix_alloc_directive_t)12

IN data13
Array of info structures (array of handles)14

IN ndata15
Number of elements in the data array (integer)16

IN cbfunc17
Callback function pmix_info_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.32
In addition, the following attributes are required to be included in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user ID of the connecting process.35

398 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group ID of the connecting process.2

3

Host environments that provide this module entry point are required to support the following4
attributes:5

PMIX_ALLOC_ID "pmix.alloc.id" (char*)6
A string identifier (provided by the host environment) for the resulting allocation which can7
later be used to reference the allocated resources in, for example, a call to PMIx_Spawn.8

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)9
The number of nodes being requested in an allocation request.10

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)11
Number of PUs being requested in an allocation request.12

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)13
Total session time (in seconds) being requested in an allocation request.14

Optional Attributes

The following attributes are optional for host environments that support this operation:15

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)16
Regular expression of the specific nodes being requested in an allocation request.17

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)18
Regular expression of the number of PUs for each node being requested in an allocation19
request.20

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)21
Regular expression of the specific PUs being requested in an allocation request.22

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)23
Number of Megabytes[base2] of memory (per process) being requested in an allocation24
request.25

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)26
Array of pmix_info_t describing requested fabric resources. This must include at least:27
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and28
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.29

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)30

CHAPTER 17. SERVER-SPECIFIC INTERFACES 399

Un
offi
cia
l D
raf
t

The key to be used when accessing this requested fabric allocation. The fabric allocation1
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first2
element is composed of this key and the allocated resource description. The type of the3
included value depends upon the fabric support. For example, a TCP allocation might4
consist of a comma-delimited string of socket ranges such as "32000-32100,5
33005,38123-38146". Additional array entries will consist of any provided resource6
request directives, along with their assigned values. Examples include:7
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;8
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned9
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -10
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the11
requested fabric allocation. NOTE: the array contents may differ from those requested,12
especially if PMIX_INFO_REQD was not set in the request.13

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)14
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation15
request.16

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)17
Fabric quality of service level for the job being requested in an allocation request.18

Description19
Request new allocation or modifications to an existing allocation on behalf of a client. Several20
broad categories are envisioned, including the ability to:21

• Request allocation of additional resources, including memory, bandwidth, and compute for an22
existing allocation. Any additional allocated resources will be considered as part of the current23
allocation, and thus will be released at the same time.24

• Request a new allocation of resources. Note that the new allocation will be disjoint from (i.e., not25
affiliated with) the allocation of the requestor - thus the termination of one allocation will not26
impact the other.27

• Extend the reservation on currently allocated resources, subject to scheduling availability and28
priorities.29

• Return no-longer-required resources to the scheduler. This includes the loan of resources back to30
the scheduler with a promise to return them upon subsequent request.31

The callback function provides a status to indicate whether or not the request was granted, and to32
provide some information as to the reason for any denial in the pmix_info_cbfunc_t array of33
pmix_info_t structures.34

17.3.22 pmix_server_job_control_fn_t35

Summary36
Execute a job control action on behalf of a client.37

400 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_job_control_fn_t)(2

const pmix_proc_t *requestor,3
const pmix_proc_t targets[],4
size_t ntargets,5
const pmix_info_t directives[],6
size_t ndirs,7
pmix_info_cbfunc_t cbfunc,8
void *cbdata);9

C

IN requestor10
pmix_proc_t structure of requesting process (handle)11

IN targets12
Array of proc structures (array of handles)13

IN ntargets14
Number of elements in the targets array (integer)15

IN directives16
Array of info structures (array of handles)17

IN ndirs18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_info_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

CHAPTER 17. SERVER-SPECIFIC INTERFACES 401

Un
offi
cia
l D
raf
t

Required Attributes

PMIx libraries are required to pass any attributes provided by the client to the host environment for1
processing. In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

7

Host environments that provide this module entry point are required to support the following8
attributes:9

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)10
Provide a string identifier for this request. The user can provide an identifier for the11
requested operation, thus allowing them to later request status of the operation or to12
terminate it. The host, therefore, shall track it with the request for future reference.13

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)14
Pause the specified processes.15

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)16
Resume (“un-pause”) the specified processes.17

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)18
Forcibly terminate the specified processes and cleanup.19

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)20
Send given signal to specified processes.21

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)22
Politely terminate the specified processes.23

Optional Attributes

The following attributes are optional for host environments that support this operation:24

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)25
Cancel the specified request - the provided request ID must match the26
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of27
NULL implies cancel all requests from this requestor.28

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)29
Restart the specified processes using the given checkpoint ID.30

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)31
Checkpoint the specified processes and assign the given ID to it.32

402 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)1
Use event notification to trigger a process checkpoint.2

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)3
Use the given signal to trigger a process checkpoint.4

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)5
Time in seconds to wait for a checkpoint to complete.6

PMIX_JOB_CTRL_CHECKPOINT_METHOD7
"pmix.jctrl.ckmethod" (pmix_data_array_t)8

Array of pmix_info_t declaring each method and value supported by this application.9

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)10
Regular expression identifying nodes that are to be provisioned.11

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)12
Name of the image that is to be provisioned.13

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)14
Indicate that the job can be pre-empted.15

Description16
Execute a job control action on behalf of a client. The targets array identifies the processes to17
which the requested job control action is to be applied. A NULL value can be used to indicate all18
processes in the caller’s namespace. The use of PMIX_RANK_WILDCARD can also be used to19
indicate that all processes in the given namespace are to be included.20

The directives are provided as pmix_info_t structures in the directives array. The callback21
function provides a status to indicate whether or not the request was granted, and to provide some22
information as to the reason for any denial in the pmix_info_cbfunc_t array of23
pmix_info_t structures.24

17.3.23 pmix_server_monitor_fn_t25

Summary26
Request that a client be monitored for activity.27

CHAPTER 17. SERVER-SPECIFIC INTERFACES 403

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_monitor_fn_t)(2

const pmix_proc_t *requestor,3
const pmix_info_t *monitor,4
pmix_status_t error,5
const pmix_info_t directives[],6
size_t ndirs,7
pmix_info_cbfunc_t cbfunc,8
void *cbdata);9

C

IN requestor10
pmix_proc_t structure of requesting process (handle)11

IN monitor12
pmix_info_t identifying the type of monitor being requested (handle)13

IN error14
Status code to use in generating event if alarm triggers (integer)15

IN directives16
Array of info structures (array of handles)17

IN ndirs18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_info_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

This entry point is only called for monitoring requests that are not directly supported by the PMIx35
server library itself.36

404 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

If supported by the PMIx server library, then the library must not pass any supported attributes to1
the host environment. Any attributes provided by the client that are not directly supported by the2
server library must be passed to the host environment if it provides this module entry. In addition,3
the following attributes are required to be included in the passed info array:4

PMIX_USERID "pmix.euid" (uint32_t)5
Effective user ID of the connecting process.6

PMIX_GRPID "pmix.egid" (uint32_t)7
Effective group ID of the connecting process.8

Host environments are not required to support any specific monitoring attributes.9

Optional Attributes

The following attributes may be implemented by a host environment.10

PMIX_MONITOR_ID "pmix.monitor.id" (char*)11
Provide a string identifier for this request.12

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)13
Identifier to be canceled (NULL means cancel all monitoring for this process).14

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)15
The application desires to control the response to a monitoring event - i.e., the application is16
requesting that the host environment not take immediate action in response to the event (e.g.,17
terminating the job).18

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)19
Register to have the PMIx server monitor the requestor for heartbeats.20

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)21
Time in seconds before declaring heartbeat missed.22

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)23
Number of heartbeats that can be missed before generating the event.24

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)25
Register to monitor file for signs of life.26

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)27
Monitor size of given file is growing to determine if the application is running.28

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)29
Monitor time since last access of given file to determine if the application is running.30

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)31
Monitor time since last modified of given file to determine if the application is running.32

CHAPTER 17. SERVER-SPECIFIC INTERFACES 405

Un
offi
cia
l D
raf
t

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)1
Time in seconds between checking the file.2

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)3
Number of file checks that can be missed before generating the event.4

Description5
Request that a client be monitored for activity.6

17.3.24 pmix_server_get_cred_fn_t7

Summary8
Request a credential from the host environment.9

Format10 PMIx v3.0 C
typedef pmix_status_t (*pmix_server_get_cred_fn_t)(11

const pmix_proc_t *proc,12
const pmix_info_t directives[],13
size_t ndirs,14
pmix_credential_cbfunc_t cbfunc,15
void *cbdata);16

C

IN proc17
pmix_proc_t structure of requesting process (handle)18

IN directives19
Array of info structures (array of handles)20

IN ndirs21
Number of elements in the info array (integer)22

IN cbfunc23
Callback function to return the credential (pmix_credential_cbfunc_t function24
reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result28
will be returned in the provided cbfunc29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

406 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

If the PMIx library does not itself provide the requested credential, then it is required to pass any1
attributes provided by the client to the host environment for processing. In addition, it must include2
the following attributes in the passed info array:3

PMIX_USERID "pmix.euid" (uint32_t)4
Effective user ID of the connecting process.5

PMIX_GRPID "pmix.egid" (uint32_t)6
Effective group ID of the connecting process.7

Optional Attributes

The following attributes are optional for host environments that support this operation:8

PMIX_CRED_TYPE "pmix.sec.ctype" (char*)9
When passed in PMIx_Get_credential, a prioritized, comma-delimited list of desired10
credential types for use in environments where multiple authentication mechanisms may be11
available. When returned in a callback function, a string identifier of the credential type.12

PMIX_TIMEOUT "pmix.timeout" (int)13
Time in seconds before the specified operation should time out (zero indicating infinite) and14
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions15
caused by multiple layers (client, server, and host) simultaneously timing the operation.16

Description17
Request a credential from the host environment.18

17.3.24.1 Credential callback function19

Summary20
Callback function to return a requested security credential21

CHAPTER 17. SERVER-SPECIFIC INTERFACES 407

Un
offi
cia
l D
raf
t

Format1 C
typedef void (*pmix_credential_cbfunc_t)(2

pmix_status_t status,3
pmix_byte_object_t *credential,4
pmix_info_t info[], size_t ninfo,5
void *cbdata);6

C

IN status7
pmix_status_t value (handle)8

IN credential9
pmix_byte_object_t structure containing the security credential (handle)10

IN info11
Array of provided by the system to pass any additional information about the credential - e.g.,12
the identity of the issuing agent. (handle)13

IN ninfo14
Number of elements in info (size_t)15

IN cbdata16
Object passed in original request (memory reference)17

Description18
Define a callback function to return a requested security credential. Information provided by the19
issuing agent can subsequently be used by the application for a variety of purposes. Examples20
include:21

• checking identified authorizations to determine what requests/operations are feasible as a means22
to steering workflows23

• compare the credential type to that of the local SMS for compatibility24

Advice to users

The credential is opaque and therefore understandable only by a service compatible with the issuer.25
The info array is owned by the PMIx library and is not to be released or altered by the receiving26
party.27

17.3.25 pmix_server_validate_cred_fn_t28

Summary29
Request validation of a credential.30

408 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_validate_cred_fn_t)(2

const pmix_proc_t *proc,3
const pmix_byte_object_t *cred,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_validation_cbfunc_t cbfunc,7
void *cbdata);8

C

IN proc9
pmix_proc_t structure of requesting process (handle)10

IN cred11
Pointer to pmix_byte_object_t containing the credential (handle)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function to return the result (pmix_validation_cbfunc_t function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc23

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and24
returned success - the cbfunc will not be called25

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the26
request, even though the function entry was provided in the server module - the cbfunc will not27
be called28

• a PMIx error constant indicating either an error in the input or that the request was immediately29
processed and failed - the cbfunc will not be called30

Required Attributes

If the PMIx library does not itself validate the credential, then it is required to pass any attributes31
provided by the client to the host environment for processing. In addition, it must include the32
following attributes in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user ID of the connecting process.35

CHAPTER 17. SERVER-SPECIFIC INTERFACES 409

Un
offi
cia
l D
raf
t

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group ID of the connecting process.2

3

Host environments are not required to support any specific attributes.4

Optional Attributes

The following attributes are optional for host environments that support this operation:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (zero indicating infinite) and7
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions8
caused by multiple layers (client, server, and host) simultaneously timing the operation.9

Description10
Request validation of a credential obtained from the host environment via a prior call to the11
pmix_server_get_cred_fn_t module entry.12

17.3.26 Credential validation callback function13

Summary14
Callback function for security credential validation.15

410 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
typedef void (*pmix_validation_cbfunc_t)(2

pmix_status_t status,3
pmix_info_t info[], size_t ninfo,4
void *cbdata);5

C

IN status6
pmix_status_t value (handle)7

IN info8
Array of pmix_info_t provided by the system to pass any additional information about the9
authentication - e.g., the effective userid and group id of the certificate holder, and any related10
authorizations (handle)11

IN ninfo12
Number of elements in info (size_t)13

IN cbdata14
Object passed in original request (memory reference)15

The returned status shall be one of the following:16

• PMIX_SUCCESS, indicating that the request was processed and returned success (i.e., the17
credential was both valid and any information it contained was successfully processed). Details18
of the result will be returned in the info array19

• a PMIx error constant indicating either an error in the parsing of the credential or that the request20
was refused21

Description22
Define a validation callback function to indicate if a provided credential is valid, and any23
corresponding information regarding authorizations and other security matters.24

Advice to users

The precise contents of the array will depend on the host environment and its associated security25
system. At the minimum, it is expected (but not required) that the array will contain entries for the26
PMIX_USERID and PMIX_GRPID of the client described in the credential. The info array is27
owned by the PMIx library and is not to be released or altered by the receiving party.28

17.3.27 pmix_server_iof_fn_t29

Summary30
Request the specified IO channels be forwarded from the given array of processes.31

CHAPTER 17. SERVER-SPECIFIC INTERFACES 411

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_iof_fn_t)(2

const pmix_proc_t procs[],3
size_t nprocs,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_iof_channel_t channels,7
pmix_op_cbfunc_t cbfunc, void *cbdata);8

C

IN procs9
Array pmix_proc_t identifiers whose IO is being requested (handle)10

IN nprocs11
Number of elements in procs (size_t)12

IN directives13
Array of pmix_info_t structures further defining the request (array of handles)14

IN ndirs15
Number of elements in the info array (integer)16

IN channels17
Bitmask identifying the channels to be forwarded (pmix_iof_channel_t)18

IN cbfunc19
Callback function pmix_op_cbfunc_t (function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

Returns one of the following:23

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result24
will be returned in the provided cbfunc. Note that the library must not invoke the callback25
function prior to returning from the API.26

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and27
returned success - the cbfunc will not be called28

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the29
request, even though the function entry was provided in the server module - the cbfunc will not30
be called31

• a PMIx error constant indicating either an error in the input or that the request was immediately32
processed and failed - the cbfunc will not be called33

Required Attributes

The following attributes are required to be included in the passed info array:34

PMIX_USERID "pmix.euid" (uint32_t)35

412 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Effective user ID of the connecting process.1

PMIX_GRPID "pmix.egid" (uint32_t)2
Effective group ID of the connecting process.3

4

Host environments that provide this module entry point are required to support the following5
attributes:6

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)7
The requested size of the PMIx server cache in bytes for each specified channel. By default,8
the server is allowed (but not required) to drop all bytes received beyond the max size.9

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)10
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the11
cache.12

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)13
In an overflow situation, the PMIx server is to drop any new bytes received until room14
becomes available in the cache (default).15

Optional Attributes

The following attributes may be supported by a host environment.16

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)17
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the18
specified number of bytes is collected to avoid being called every time a block of IO arrives.19
The PMIx tool library will execute the callback and reset the collection counter whenever the20
specified number of bytes becomes available. Any remaining buffered data will be flushed to21
the callback upon a call to deregister the respective channel.22

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)23
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering24
size, this prevents IO from being held indefinitely while waiting for another payload to25
arrive.26

CHAPTER 17. SERVER-SPECIFIC INTERFACES 413

Un
offi
cia
l D
raf
t

Description1
Request the specified IO channels be forwarded from the given array of processes. An error shall be2
returned in the callback function if the requested service from any of the requested processes cannot3
be provided.4

Advice to PMIx library implementers

The forwarding of stdin is a push process - processes cannot request that it be pulled from some5
other source. Requests including the PMIX_FWD_STDIN_CHANNEL channel will return a6
PMIX_ERR_NOT_SUPPORTED error.7

17.3.27.1 IOF delivery function8

Summary9
Callback function for delivering forwarded IO to a process.10

Format11 PMIx v3.0 C
typedef void (*pmix_iof_cbfunc_t)(12

size_t iofhdlr, pmix_iof_channel_t channel,13
pmix_proc_t *source, char *payload,14
pmix_info_t info[], size_t ninfo);15

C

IN iofhdlr16
Registration number of the handler being invoked (size_t)17

IN channel18
bitmask identifying the channel the data arrived on (pmix_iof_channel_t)19

IN source20
Pointer to a pmix_proc_t identifying the namespace/rank of the process that generated the21
data (char*)22

IN payload23
Pointer to character array containing the data.24

IN info25
Array of pmix_info_t provided by the source containing metadata about the payload. This26
could include PMIX_IOF_COMPLETE (handle)27

IN ninfo28
Number of elements in info (size_t)29

414 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Description1
Define a callback function for delivering forwarded IO to a process. This function will be called2
whenever data becomes available, or a specified buffering size and/or time has been met.3

Advice to users

Multiple strings may be included in a given payload, and the payload may not be NULL terminated.4
The user is responsible for releasing the payload memory. The info array is owned by the PMIx5
library and is not to be released or altered by the receiving party.6

17.3.28 pmix_server_stdin_fn_t7

Summary8
Pass standard input data to the host environment for transmission to specified recipients.9

Format10 PMIx v3.0 C
typedef pmix_status_t (*pmix_server_stdin_fn_t)(11

const pmix_proc_t *source,12
const pmix_proc_t targets[],13
size_t ntargets,14
const pmix_info_t directives[],15
size_t ndirs,16
const pmix_byte_object_t *bo,17
pmix_op_cbfunc_t cbfunc, void *cbdata);18

C

IN source19
pmix_proc_t structure of source process (handle)20

IN targets21
Array of pmix_proc_t target identifiers (handle)22

IN ntargets23
Number of elements in the targets array (integer)24

IN directives25
Array of info structures (array of handles)26

IN ndirs27
Number of elements in the info array (integer)28

IN bo29
Pointer to pmix_byte_object_t containing the payload (handle)30

IN cbfunc31
Callback function pmix_op_cbfunc_t (function reference)32

IN cbdata33
Data to be passed to the callback function (memory reference)34

CHAPTER 17. SERVER-SPECIFIC INTERFACES 415

Un
offi
cia
l D
raf
t

Returns one of the following:1

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result2
will be returned in the provided cbfunc. Note that the library must not invoke the callback3
function prior to returning from the API.4

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and5
returned success - the cbfunc will not be called6

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the7
request, even though the function entry was provided in the server module - the cbfunc will not8
be called9

• a PMIx error constant indicating either an error in the input or that the request was immediately10
processed and failed - the cbfunc will not be called11

Required Attributes

The following attributes are required to be included in the passed info array:12

PMIX_USERID "pmix.euid" (uint32_t)13
Effective user ID of the connecting process.14

PMIX_GRPID "pmix.egid" (uint32_t)15
Effective group ID of the connecting process.16

Description17
Passes stdin to the host environment for transmission to specified recipients. The host environment18
is responsible for forwarding the data to all locations that host the specified targets and delivering19
the payload to the PMIx server library connected to those clients.20

17.3.29 pmix_server_grp_fn_t21

Summary22
Request group operations (construct, destruct, etc.) on behalf of a set of processes.23

416 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_grp_fn_t)(2

pmix_group_operation_t op,3
char grp[],4
const pmix_proc_t procs[],5
size_t nprocs,6
const pmix_info_t directives[],7
size_t ndirs,8
pmix_info_cbfunc_t cbfunc,9
void *cbdata);10

C

IN op11
pmix_group_operation_t value indicating operation the host is requested to perform12
(integer)13

IN grp14
Character string identifying the group (string)15

IN procs16
Array of pmix_proc_t identifiers of participants (handle)17

IN nprocs18
Number of elements in the procs array (integer)19

IN directives20
Array of info structures (array of handles)21

IN ndirs22
Number of elements in the info array (integer)23

IN cbfunc24
Callback function pmix_info_cbfunc_t (function reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

Returns one of the following:28

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result29
will be returned in the provided cbfunc. Note that the library must not invoke the callback30
function prior to returning from the API.31

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and32
returned success - the cbfunc will not be called33

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the34
request, even though the function entry was provided in the server module - the cbfunc will not35
be called36

• a PMIx error constant indicating either an error in the input or that the request was immediately37
processed and failed - the cbfunc will not be called38

CHAPTER 17. SERVER-SPECIFIC INTERFACES 417

Un
offi
cia
l D
raf
t

Required Attributes

The following attributes are required to be supported by a host environment.1

PMIX_LOCAL_COLLECTIVE_STATUS "pmix.loc.col.st" (pmix_status_t)2
Status code for local collective operation being reported to the host by the server library.3
PMIx servers may aggregate the participation by local client processes in a collective4
operation - e.g., instead of passing individual client calls to PMIx_Fence up to the host5
environment, the server may pass only a single call to the host when all local participants6
have executed their PMIx_Fence call, thereby reducing the burden placed on the host.7
However, in cases where the operation locally fails (e.g., if a participating client abnormally8
terminates prior to calling the operation), the server upcall functions to the host do not9
include a pmix_status_t by which the PMIx server can alert the host to that failure.10
This attribute resolves that problem by allowing the server to pass the status information11
regarding the local collective operation.12

Optional Attributes

The following attributes may be supported by a host environment.13

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)14
Requests that the RM assign a new context identifier to the newly created group. The15
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range16
specified in the request. Thus, the value serves as a means of identifying the group within17
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.18

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)19
Group operation only involves local processes. PMIx implementations are required to20
automatically scan an array of group members for local vs remote processes - if only local21
processes are detected, the implementation need not execute a global collective for the22
operation unless a context ID has been requested from the host environment. This can result23
in significant time savings. This attribute can be used to optimize the operation by indicating24
whether or not only local processes are represented, thus allowing the implementation to25
bypass the scan.26

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)27
Data collected during group construction to ensure communication between group members28
is supported upon completion of the operation.29

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)30
Participation is optional - do not return an error if any of the specified processes terminate31
without having joined. The default is false.32

PMIX_RANGE "pmix.range" (pmix_data_range_t)33
Define constraints on the processes that can access published data or generated events or34
define constraints on the provider of data when looking up published data.35

418 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The following attributes may be included in the host’s response:1

PMIX_GROUP_ID "pmix.grp.id" (char*)2
User-provided group identifier - as the group identifier may be used in PMIx operations, the3
user is required to ensure that the provided ID is unique within the scope of the host4
environment (e.g., by including some user-specific or application-specific prefix or suffix to5
the string).6

PMIX_GROUP_MEMBERSHIP "pmix.grp.mbrs" (pmix_data_array_t*)7
Array pmix_proc_t identifiers identifying the members of the specified group.8

PMIX_GROUP_CONTEXT_ID "pmix.grp.ctxid" (size_t)9
Context identifier assigned to the group by the host RM.10

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)11
Data collected during group construction to ensure communication between group members12
is supported upon completion of the operation.13

Description14
Perform the specified operation across the identified processes, plus any special actions included in15
the directives. Return the result of any special action requests in the callback function when the16
operation is completed. Actions may include a request (PMIX_GROUP_ASSIGN_CONTEXT_ID)17
that the host assign a unique numerical (size_t) ID to this group - if given, the PMIX_RANGE18
attribute will specify the range across which the ID must be unique (default to19
PMIX_RANGE_SESSION).20

17.3.29.1 Group Operation Constants21
PMIx v4.0 The pmix_group_operation_t structure is a uint8_t value for specifying group22

operations. All values were originally defined in version 4 of the standard unless otherwise marked.23

PMIX_GROUP_CONSTRUCT 0 Construct a group composed of the specified processes - used24
by a PMIx server library to direct host operation.25

PMIX_GROUP_DESTRUCT 1 Destruct the specified group - used by a PMIx server library to26
direct host operation.27

17.3.30 pmix_server_fabric_fn_t28

Summary29
Request fabric-related operations (e.g., information on a fabric) on behalf of a tool or other process.30

CHAPTER 17. SERVER-SPECIFIC INTERFACES 419

Un
offi
cia
l D
raf
t

Format1 C
typedef pmix_status_t (*pmix_server_fabric_fn_t)(2

const pmix_proc_t *requestor,3
pmix_fabric_operation_t op,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_info_cbfunc_t cbfunc,7
void *cbdata);8

C

IN requestor9
pmix_proc_t identifying the requestor (handle)10

IN op11
pmix_fabric_operation_t value indicating operation the host is requested to perform12
(integer)13

IN directives14
Array of info structures (array of handles)15

IN ndirs16
Number of elements in the info array (integer)17

IN cbfunc18
Callback function pmix_info_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the callback function (memory reference)21

Returns one of the following:22

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result23
will be returned in the provided cbfunc. Note that the library must not invoke the callback24
function prior to returning from the API.25

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and26
returned success - the cbfunc will not be called27

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the28
request, even though the function entry was provided in the server module - the cbfunc will not29
be called30

• a PMIx error constant indicating either an error in the input or that the request was immediately31
processed and failed - the cbfunc will not be called32

Required Attributes

The following directives are required to be supported by all hosts to aid users in identifying the33
fabric and (if applicable) the device to whom the operation references:34

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)35
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.36

420 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)1
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).2

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)3
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request4
for information, specifies the plane whose information is to be returned. When used directly5
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric6
planes in the overall system.7

PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)8
Index of the device within an associated communication cost matrix.9

Description10
Perform the specified operation. Return the result of any requests in the callback function when the11
operation is completed. Operations may, for example, include a request for fabric information. See12
pmix_fabric_t for a list of expected information to be included in the response. Note that13
requests for device index are to be returned in the callback function’s array of pmix_info_t14
using the PMIX_FABRIC_DEVICE_INDEX attribute.15

CHAPTER 17. SERVER-SPECIFIC INTERFACES 421

Un
offi
cia
l D
raf
t

CHAPTER 18

Tools and Debuggers

The term tool widely refers to programs executed by the user or system administrator on a1
command line. Tools frequently interact with either the SMS, user applications, or both to perform2
administrative and support functions. For example, a debugger tool might be used to remotely3
control the processes of a parallel application, monitoring their behavior on a step-by-step basis.4
Historically, such tools were custom-written for each specific host environment due to the5
customized and/or proprietary nature of the environment’s interfaces.6

The advent of PMIx offers the possibility for creating portable tools capable of interacting with7
multiple RMs without modification. Possible use-cases include:8

• querying the status of scheduling queues and estimated allocation time for various resource9
options10

• job submission and allocation requests11

• querying job status for executing applications12

• launching, monitoring, and debugging applications13

Enabling these capabilities requires some extensions to the PMIx Standard (both in terms of APIs14
and attributes), and utilization of client-side APIs for more tool-oriented purposes.15

This chapter defines specific APIs related to tools, provides tool developers with an overview of the16
support provided by PMIx, and serves to guide RM vendors regarding roles and responsibilities of17
RMs to support tools. As the number of tool-specific APIs and attributes is fairly small, the bulk of18
the chapter serves to provide a "theory of operation" for tools and debuggers. Description of the19
APIs themselves is therefore deferred to the Section 18.5 later in the chapter.20

18.1 Connection Mechanisms21

The key to supporting tools lies in providing mechanisms by which a tool can connect to a PMIx22
server. Application processes are able to connect because their local RM daemon provides them23
with the necessary contact information upon execution. A command-line tool, however, isn’t24
spawned by an RM daemon, and therefore lacks the information required for rendezvous with a25
PMIx server.26

Once a tool has started, it initializes PMIx as a tool (via PMIx_tool_init) if its access is27
restricted to PMIx-based informational services such as PMIx_Query_info. However, if the28

422

Un
offi
cia
l D
raf
t

tool intends to start jobs, then it must include the PMIX_LAUNCHER attribute to inform the library1
of that intent so that the library can initialize and provide access to the corresponding support.2

Support for tools requires that the PMIx server be initialized with an appropriate attribute3
indicating that tool connections are to be allowed. Separate attributes are provided to "fine-tune"4
this permission by allowing the environment to independently enable (or disable) connections from5
tools executing on nodes other than the one hosting the server itself. The PMIx server library shall6
provide an opportunity for the host environment to authenticate and approve each connection7
request from a specific tool by calling the pmix_server_tool_connection_fn_t "hook"8
provided in the server module for that purpose. Servers in environments that do not provide this9
"hook" shall automatically reject all tool connection requests.10

Tools can connect to any local or remote PMIx server provided they are either explicitly given the11
required connection information, or are able to discover it via one of several defined rendezvous12
protocols. Connection discovery centers around the existence of rendezvous files containing the13
necessary connection information, as illustrated in Fig. 18.1.14

Figure 18.1.: Tool rendezvous files

The contents of each rendezvous file are specific to a given PMIx implementation, but should at15
least contain the namespace and rank of the server along with its connection URI. Note that tools16
linked to one PMIx implementation are therefore unlikely to successfully connect to PMIx server17
libraries from another implementation.18

The top of the directory tree is defined by either the PMIX_SYSTEM_TMPDIR attribute (if given)19
or the TMPDIR environmental variable. PMIx servers that are designated as system servers by20
including the PMIX_SERVER_SYSTEM_SUPPORT attribute when calling21
PMIx_server_init will create a rendezvous file in this top-level directory. The filename will22
be of the form pmix.sys.hostname, where hostname is the string returned by the gethostname23
system call. Note that only one PMIx server on a node can be designated as the system server.24

Non-system PMIx servers will create a set of three rendezvous files in the directory defined by25
either the PMIX_SERVER_TMPDIR attribute or the TMPDIR environmental variable:26

CHAPTER 18. TOOLS AND DEBUGGERS 423

Un
offi
cia
l D
raf
t

• pmix.host.tool.nspace where host is the string returned by the gethostname system call and1
nspace is the namespace of the server.2

• pmix.host.tool.pid where host is the string returned by the gethostname system call and pid is3
the PID of the server.4

• pmix.host.tool where host is the string returned by the gethostname system call. Note that5
servers which are not given a namespace-specific PMIX_SERVER_TMPDIR attribute may not6
generate this file due to conflicts should multiple servers be present on the node.7

The files are identical and may be implemented as symlinks to a single instance. The individual file8
names are composed so as to aid the search process should a tool wish to connect to a server9
identified by its namespace or PID.10

Servers will additionally provide a rendezvous file in any given location if the path (either absolute11
or relative) and filename is specified either during PMIx_server_init using the12
PMIX_LAUNCHER_RENDEZVOUS_FILE attribute, or by the PMIX_LAUNCHER_RNDZ_FILE13
environmental variable prior to executing the process containing the server. This latter mechanism14
may be the preferred mechanism for tools such as debuggers that need to fork/exec a launcher (e.g.,15
"mpiexec") and then rendezvous with it. This is described in more detail in Section 18.2.2.16

Rendezvous file ownerships are set to the UID and GID of the server that created them, with17
permissions set according to the desires of the implementation and/or system administrator policy.18
All connection attempts are first governed by read access privileges to the target rendezvous file -19
thus, the combination of permissions, UID, and GID of the rendezvous files act as a first-level of20
security for tool access.21

A tool may connect to as many servers at one time as the implementation supports, but is limited to22
designating only one such connection as its primary server. This is done to avoid confusion when23
the tool calls an API as to which server should service the request. The first server the tool connects24
to is automatically designated as the primary server.25

Tools are allowed to change their primary server at any time via the PMIx_tool_set_server26
API, and to connect/disconnect from a server as many times as desired. Note that standing requests27
(e.g., event registrations) with the current primary server may be lost and/or may not be transferred28
when transitioning to another primary server - PMIx implementors are not required to maintain or29
transfer state across tool-server connections.30

Tool process identifiers are assigned by one of the following methods:31

• If PMIX_TOOL_NSPACE is given, then the namespace of the tool will be assigned that value.32

– If PMIX_TOOL_RANK is also given, then the rank of the tool will be assigned that value.33

– If PMIX_TOOL_RANK is not given, then the rank will be set to a default value of zero.34

• If a process ID is not provided and the tool connects to a server, then one will be assigned by the35
host environment upon connection to that server.36

424 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• If a process ID is not provided and the tool does not connect to a server (e.g., if1
PMIX_TOOL_DO_NOT_CONNECT is given), then the tool shall self-assign a unique identifier.2
This is often done using some combination involving hostname and PID.3

Tool process identifiers remain constant across servers. Thus, it is critical that a system-wide unique4
namespace be provided if the tool itself sets the identifier, and that host environments provide a5
system-wide unique identifier in the case where the identifier is set by the server upon connection.6
The host environment is required to reject any connection request that fails to meet this criterion.7

For simplicity, the following descriptions will refer to the:8

• PMIX_SYSTEM_TMPDIR as the directory specified by either the PMIX_SYSTEM_TMPDIR9
attribute (if given) or the TMPDIR environmental variable.10

• PMIX_SERVER_TMPDIR as the directory specified by either the PMIX_SERVER_TMPDIR11
attribute or the TMPDIR environmental variable.12

The rendezvous methods are automatically employed for the initial tool connection during13
PMIx_tool_init unless the PMIX_TOOL_DO_NOT_CONNECT attribute is specified, and on14
all subsequent calls to PMIx_tool_attach_to_server.15

18.1.1 Rendezvousing with a local server16

Connection to a local PMIx server is pursued according to the following precedence chain based on17
attributes contained in the call to the PMIx_tool_init or18
PMIx_tool_attach_to_server APIs. Servers to which the tool already holds a connection19
will be ignored. Except where noted, the PMIx library will return an error if the specified file20
cannot be found, the caller lacks permissions to read it, or the server specified within the file does21
not respond to or accept the connection — the library will not proceed to check for other22
connection options as the user specified a particular one to use.23

Note that the PMIx implementation may choose to introduce a "delayed connection" protocol24
between steps in the precedence chain - i.e., the library may cycle several times, checking for25
creation of the rendezvous file each time after a delay of some period of time, thereby allowing the26
tool to wait for the server to create the rendezvous file before either returning an error or continuing27
to the next step in the chain.28

• If PMIX_TOOL_ATTACHMENT_FILE is given, then the tool will attempt to read the specified29
file and connect to the server based on the information contained within it. The format of the30
attachment file is identical to the rendezvous files described in earlier in this section. An error31
will be returned if the specified file cannot be found.32

• If PMIX_SERVER_URI or PMIX_TCP_URI is given, then connection will be attempted to the33
server at the specified URI. Note that it is an error for both of these attributes to be specified.34
PMIX_SERVER_URI is the preferred method as it is more generalized — PMIX_TCP_URI is35
provided for those cases where the user specifically wants to use a TCP transport for the36
connection and wants to error out if one isn’t available or cannot be used.37

CHAPTER 18. TOOLS AND DEBUGGERS 425

Un
offi
cia
l D
raf
t

• If PMIX_SERVER_PIDINFO was provided, then the tool will search for a rendezvous file1
created by a PMIx server of the given PID in the PMIX_SERVER_TMPDIR directory. An error2
will be returned if a matching rendezvous file cannot be found.3

• If PMIX_SERVER_NSPACE is given, then the tool will search for a rendezvous file created by a4
PMIx server of the given namespace in the PMIX_SERVER_TMPDIR directory. An error will5
be returned if a matching rendezvous file cannot be found.6

• If PMIX_CONNECT_TO_SYSTEM is given, then the tool will search for a system-level7
rendezvous file created by a PMIx server in the PMIX_SYSTEM_TMPDIR directory. An error8
will be returned if a matching rendezvous file cannot be found.9

• If PMIX_CONNECT_SYSTEM_FIRST is given, then the tool will look for a system-level10
rendezvous file created by a PMIx server in the PMIX_SYSTEM_TMPDIR directory. If found,11
then the tool will attempt to connect to it. In this case, no error will be returned if the rendezvous12
file is not found or connection is refused — the PMIx library will silently continue to the next13
option.14

• By default, the tool will search the directory tree under the PMIX_SERVER_TMPDIR directory15
for rendezvous files of PMIx servers, attempting to connect to each it finds until one accepts the16
connection. If no rendezvous files are found, or all contacted servers refuse connection, then the17
PMIx library will return an error. No "delayed connection" protocols may be utilized at this point.18

Note that there can be multiple local servers - one from the system plus others from launchers and19
active jobs. The PMIx tool connection search method is not guaranteed to pick a particular server20
unless directed to do so. Tools can obtain a list of servers available on their local node using the21
PMIx_Query_info APIs with the PMIX_QUERY_AVAIL_SERVERS key.22

18.1.2 Connecting to a remote server23

Connecting to remote servers is complicated due to the lack of access to the previously-described24
rendezvous files. Two methods are required to be supported, both based on the caller having explicit25
knowledge of either connection information or a path to a local file that contains such information:26

• If PMIX_TOOL_ATTACHMENT_FILE is given, then the tool will attempt to read the specified27
file and connect to the server based on the information contained within it. The format of the28
attachment file is identical to the rendezvous files described in earlier in this section.29

• If PMIX_SERVER_URI or PMIX_TCP_URI is given, then connection will be attempted to the30
server at the specified URI. Note that it is an error for both of these attributes to be specified.31
PMIX_SERVER_URI is the preferred method as it is more generalized — PMIX_TCP_URI is32
provided for those cases where the user specifically wants to use the TCP transport for the33
connection and wants to error out if it isn’t available or cannot be used.34

Additional methods may be provided by particular PMIx implementations. For example, the tool35
may use ssh to launch a probe process onto the remote node so that the probe can search the36
PMIX_SYSTEM_TMPDIR and PMIX_SERVER_TMPDIR directories for rendezvous files,37

426 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

relaying the discovered information back to the requesting tool. If sufficient information is found to1
allow for remote connection, then the tool can use it to establish the connection. Note that this2
method is not required to be supported - it is provided here as an example and left to the discretion3
of PMIx implementors.4

18.1.3 Attaching to running jobs5

When attaching to a running job, the tool must connect to a PMIx server that is associated with that6
job - e.g., a server residing in the host environment’s local daemon that spawned one or more of the7
job’s processes, or the server residing in the launcher that is overseeing the job. Identifying an8
appropriate server can sometimes prove challenging, particularly in an environment where multiple9
job launchers may be in operation, possibly under control of the same user.10

In cases where the user has only the one job of interest in operation on the local node (e.g., when11
engaged in an interactive session on the node from which the launcher was executed), the normal12
rendezvous file discovery method can often be used to successfully connect to the target job, even13
in the presence of jobs executed by other users. The permissions and security authorizations can, in14
many cases, reliably ensure that only the one connection can be made. However, this is not15
guaranteed in all cases.16

The most common method, therefore, for attaching to a running job is to specify either the PID of17
the job’s launcher or the namespace of the launcher’s job (note that the launcher’s namespace18
frequently differs from the namespace of the job it has launched). Unless the application processes19
themselves act as PMIx servers, connection must be to the servers in the daemons that oversee the20
application. This is typically either daemons specifically started by the job’s launcher process, or21
daemons belonging to the host environment, that are responsible for starting the application’s22
processes and oversee their execution.23

Identifying the correct PID or namespace can be accomplished in a variety of ways, including:24

• Using typical OS or host environment tools to obtain a listing of active jobs and perusing those to25
find the target launcher.26

• Using a PMIx-based tool attached to a system-level server to query the active jobs and their27
command lines, thereby identifying the application of interest and its associated launcher.28

• Manually recording the PID of the launcher upon starting the job.29

Once the namespace and/or PID of the target server has been identified, either of the previous30
methods can be used to connect to it.31

18.1.4 Tool initialization attributes32

The following attributes are passed to the PMIx_tool_init API for use when initializing the33
PMIx library.34

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)35

CHAPTER 18. TOOLS AND DEBUGGERS 427

Un
offi
cia
l D
raf
t

Name of the namespace to use for this tool.1
PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)2

Rank of this tool.3
PMIX_LAUNCHER "pmix.tool.launcher" (bool)4

Tool is a launcher and needs to create rendezvous files.5

18.1.5 Tool initialization environmental variables6

The following environmental variables are used during PMIx_tool_init and7
PMIx_server_init to control various rendezvous-related operations when the process is8
started manually (e.g., on a command line) or by a fork/exec-like operation.9

PMIX_LAUNCHER_RNDZ_URI10
The spawned tool is to be connected back to the spawning tool using the given URI so that11
the spawning tool can provide directives (e.g., a PMIx_Spawn command) to it.12

PMIX_LAUNCHER_RNDZ_FILE13
If the specified file does not exist, this variable contains the absolute path of the file where14
the spawned tool is to store its connection information so that the spawning tool can connect15
to it. If the file does exist, it contains the information specifying the server to which the16
spawned tool is to connect.17

PMIX_KEEPALIVE_PIPE18
An integer read-end of a POSIX pipe that the tool should monitor for closure, thereby19
indicating that the parent tool has terminated. Used. for example, when a tool fork/exec’s an20
intermediate launcher that should self-terminate if the originating tool exits.21

Note that these environmental variables should be cleared from the environment after use and prior22
to forking child processes to avoid potentially unexpected behavior by the child processes.23

18.1.6 Tool connection attributes24

These attributes are defined to assist PMIx-enabled tools to connect with a PMIx server by passing25
them into either the PMIx_tool_init or the PMIx_tool_attach_to_server APIs - thus,26
they are not typically accessed via the PMIx_Get API.27

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)28
PID of the target PMIx server for a tool.29

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)30
The requester requires that a connection be made only to a local, system-level PMIx server.31

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)32
Preferentially, look for a system-level PMIx server first.33

PMIX_SERVER_URI "pmix.srvr.uri" (char*)34
URI of the PMIx server to be contacted.35

PMIX_SERVER_HOSTNAME "pmix.srvr.host" (char*)36
Host where target PMIx server is located.37

PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)38

428 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Maximum number of times to try to connect to PMIx server - the default value is1
implementation specific.2

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)3
Time in seconds between connection attempts to a PMIx server - the default value is4
implementation specific.5

PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)6
The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.7

PMIX_TOOL_CONNECT_OPTIONAL "pmix.tool.conopt" (bool)8
The tool shall connect to a server if available, but otherwise continue to operate unconnected.9

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)10
Pathname of file containing connection information to be used for attaching to a specific11
server.12

PMIX_LAUNCHER_RENDEZVOUS_FILE "pmix.tool.lncrnd" (char*)13
Pathname of file where the launcher is to store its connection information so that the14
spawning tool can connect to it.15

PMIX_PRIMARY_SERVER "pmix.pri.srvr" (bool)16
The server to which the tool is connecting shall be designated the primary server once17
connection has been accomplished.18

PMIX_WAIT_FOR_CONNECTION "pmix.wait.conn" (bool)19
Wait until the specified process has connected to the requesting tool or server, or the20
operation times out (if the PMIX_TIMEOUT directive is included in the request).21

18.2 Launching Applications with Tools22

Tool-directed launches require that the tool include the PMIX_LAUNCHER attribute when calling23
PMIx_tool_init. Two launch modes are supported:24

• Direct launch where the tool itself is directly responsible for launching all processes, including25
debugger daemons, using either the RM or daemons launched by the tool – i.e., there is no26
intermediate launcher (IL) such as mpiexec. The case where the tool is self-contained (i.e., uses27
its own daemons without interacting with an external entity such as the RM) lies outside the28
scope of this Standard; and29

• Indirect launch where all processes are started via an IL such as mpiexec and the tool itself is not30
directly involved in launching application processes or debugger daemons. Note that the IL may31
utilize the RM to launch processes and/or daemons under the tool’s direction.32

Either of these methods can be executed interactively or by a batch script. Note that not all host33
environments may support the direct launch method.34

18.2.1 Direct launch35

In the direct-launch use-case (Fig. 18.2), the tool itself performs the role of the launcher. Once36
invoked, the tool connects to an appropriate PMIx server - e.g., a system-level server hosted by the37

CHAPTER 18. TOOLS AND DEBUGGERS 429

Un
offi
cia
l D
raf
t

RM. The tool is responsible for assembling the description of the application to be launched (e.g.,1
by parsing its command line) into a spawn request containing an array of pmix_app_t2
applications and pmix_info_t job-level information. An allocation of resources may or may not3
have been made in advance – if not, then the spawn request must include allocation request4
information.5

Figure 18.2.: Direct Launch

In addition to the attributes described in PMIx_Spawn, the tool may optionally wish to include the6
following tool-specific attributes in the job_info argument to that API (the debugger-related7
attributes are discussed in more detail in Section 18.4):8

• PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)9
The requester intends to push information from its stdin to the indicated process. The10
local spawn agent should, therefore, ensure that the stdin channel to that process11
remains available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the12
spawned job are potential recipients. The requester will issue a call to PMIx_IOF_push13
to initiate the actual forwarding of information to specified targets - this attribute simply14
requests that the IL retain the ability to forward the information to the designated targets.15

• PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)16
Requests that the ability to forward the stdout of the spawned processes be maintained.17
The requester will issue a call to PMIx_IOF_pull to specify the callback function and18
other options for delivery of the forwarded output.19

• PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)20
Requests that the ability to forward the stderr of the spawned processes be maintained.21
The requester will issue a call to PMIx_IOF_pull to specify the callback function and22

430 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

other options for delivery of the forwarded output.1

• PMIX_FWD_STDDIAG "pmix.fwd.stddiag" (bool)2
Requests that the ability to forward the diagnostic channel (if it exists) of the spawned3
processes be maintained. The requester will issue a call to PMIx_IOF_pull to specify4
the callback function and other options for delivery of the forwarded output.5

• PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)6
The requested size of the PMIx server cache in bytes for each specified channel. By7
default, the server is allowed (but not required) to drop all bytes received beyond the max8
size.9

• PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)10
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the11
cache.12

• PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)13
In an overflow situation, the PMIx server is to drop any new bytes received until room14
becomes available in the cache (default).15

• PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)16
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until17
the specified number of bytes is collected to avoid being called every time a block of IO18
arrives. The PMIx tool library will execute the callback and reset the collection counter19
whenever the specified number of bytes becomes available. Any remaining buffered data20
will be flushed to the callback upon a call to deregister the respective channel.21

• PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)22
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering23
size, this prevents IO from being held indefinitely while waiting for another payload to24
arrive.25

• PMIX_IOF_OUTPUT_RAW "pmix.iof.raw" (bool)26
Do not buffer output to be written as complete lines - output characters as the stream27
delivers them28

• PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)29
Requests that output be prefixed with the nspace,rank of the source and a string30
identifying the channel (stdout, stderr, etc.).31

• PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)32
Requests that output be marked with the time at which the data was received by the tool -33
note that this will differ from the time at which the data was collected from the source.34

• PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)35
Requests that output be formatted in XML.36

• PMIX_IOF_RANK_OUTPUT "pmix.iof.rank" (bool)37
Tag output with the rank it came from38

CHAPTER 18. TOOLS AND DEBUGGERS 431

Un
offi
cia
l D
raf
t

• PMIX_IOF_OUTPUT_TO_FILE "pmix.iof.file" (char*)1
Direct application output into files of form "<filename>.<nspace>.<rank>.stdout" (for2
stdout) and "<filename>.<nspace>.<rank>.stderr" (for stderr). If3
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be4
created and both streams will be written into it.5

• PMIX_IOF_OUTPUT_TO_DIRECTORY "pmix.iof.dir" (char*)6
Direct application output into files of form "<directory>/<nspace>/rank.<rank>/stdout"7
(for stdout) and "<directory>/<nspace>/rank.<rank>/stderr" (for stderr). If8
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be9
created and both streams will be written into it.10

• PMIX_IOF_FILE_PATTERN "pmix.iof.fpt" (bool)11
Specified output file is to be treated as a pattern and not automatically annotated by12
nspace, rank, or other parameters. The pattern can use %n for the namespace, and %r for13
the rank wherever those quantities are to be placed. The resulting filename will be14
appended with ".stdout" for the stdout stream and ".stderr" for the stderr stream. If15
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be16
created and both streams will be written into it.17

• PMIX_IOF_FILE_ONLY "pmix.iof.fonly" (bool)18
Output only into designated files - do not also output a copy to the console’s stdout/stderr19

• PMIX_IOF_MERGE_STDERR_STDOUT "pmix.iof.mrg" (bool)20
Merge stdout and stderr streams from application procs21

• PMIX_NOHUP "pmix.nohup" (bool)22
Any processes started on behalf of the calling tool (or the specified namespace, if such23
specification is included in the list of attributes) should continue after the tool disconnects24
from its server.25

• PMIX_NOTIFY_JOB_EVENTS "pmix.note.jev" (bool)26
Requests that the launcher generate the PMIX_EVENT_JOB_START,27
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events. Each event is to28
include at least the namespace of the corresponding job and a29
PMIX_EVENT_TIMESTAMP indicating the time the event occurred. Note that the30
requester must register for these individual events, or capture and process them by31
registering a default event handler instead of individual handlers and then process the32
events based on the returned status code. Another common method is to register one event33
handler for all job-related events, with a separate handler for non-job events - see34
PMIx_Register_event_handler for details.35

• PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)36
Requests that the launcher generate the PMIX_EVENT_JOB_END event for normal or37
abnormal termination of the spawned job. The event shall include the returned status code38
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)39
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a40

432 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_EVENT_TIMESTAMP indicating the time the termination occurred. Note that the1
requester must register for the event or capture and process it within a default event2
handler.3

• PMIX_LOG_JOB_EVENTS "pmix.log.jev" (bool)4
Requests that the launcher log the PMIX_EVENT_JOB_START,5
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events using PMIx_Log,6
subject to the logging attributes of Section 13.4.3.7

• PMIX_LOG_COMPLETION "pmix.logcomp" (bool)8
Requests that the launcher log the PMIX_EVENT_JOB_END event for normal or9
abnormal termination of the spawned job using PMIx_Log, subject to the logging10
attributes of Section 13.4.3. The event shall include the returned status code11
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)12
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a13
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred.14

• PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)15
Included in either the pmix_info_t array in a pmix_app_t description (if the16
directive applies only to that application) or in the job_info array if it applies to all17
applications in the given spawn request. Indicates that the application is being spawned18
under a debugger, and that the local launch agent is to pause the resulting application19
processes on first instruction for debugger attach. The launcher (RM or IL) is to generate20
the PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.21

• PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)22
Included in either the pmix_info_t array in a pmix_app_t description (if the23
directive applies only to that application) or in the job_info array if it applies to all24
applications in the given spawn request. Indicates that the specified application is being25
spawned under a debugger. The PMIx client library in each resulting application process26
shall notify its PMIx server that it is pausing and then pause during PMIx_Init of the27
spawned processes until either released by debugger modification of an appropriate28
variable or receipt of the PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL)29
is responsible for generating the PMIX_READY_FOR_DEBUG event (stipulating a30
breakpoint of p̈mix-init)̈ when all processes have reached the pause point.31

• PMIX_DEBUG_STOP_IN_APP "pmix.dbg.notify" (varies)32
Direct specified ranks to stop at application-specific point and notify they are33
ready-to-debug. The attribute’s value can be any of three data types:34

– bool - true indicating all ranks35
– pmix_rank_t - the rank of one proc, or PMIX_RANK_WILDCARD for all36
– a pmix_data_array_t if an array of individual processes are specified37

The resulting application processes are to notify their server (by generating the38
PMIX_READY_FOR_DEBUG event) when they reach some application-determined39
location - the event shall include the PMIX_BREAKPOINT attribute indicating where the40

CHAPTER 18. TOOLS AND DEBUGGERS 433

Un
offi
cia
l D
raf
t

application has stopped. The application shall pause at that point until released by1
debugger modification of an appropriate variable. The launcher (RM or IL) is responsible2
for generating the PMIX_READY_FOR_DEBUG event when all processes have indicated3
they are at the pause point.4

Advice to users

The PMIX_IOF_FILE_ONLY indicates output is directed to files and no copy is sent back to the5
application. For example, this can be combined with PMIX_IOF_OUTPUT_TO_FILE or6
PMIX_IOF_OUTPUT_TO_DIRECTORY to only output to files.7

The tool then calls the PMIx_Spawn API so that the PMIx library can communicate the spawn8
request to the server.9

Upon receipt, the PMIx server library passes the spawn request to its host RM daemon for10
processing via the pmix_server_spawn_fn_t server module function. If this callback was not11
provided, then the PMIx server library will return the PMIX_ERR_NOT_SUPPORTED error status.12

If an allocation must be made, then the host environment is responsible for communicating the13
request to its associated scheduler. Once resources are available, the host environment initiates the14
launch process to start the job. The host environment must parse the spawn request for relevant15
directives, returning an error if any required directive cannot be supported. Optional directives may16
be ignored if they cannot be supported.17

Any error while executing the spawn request must be returned by PMIx_Spawn to the requester.18
Once the spawn request has succeeded in starting the specified processes, the request will return19
PMIX_SUCCESS back to the requester along with the namespace of the started job. Upon20
termination of the spawned job, the host environment must generate a PMIX_EVENT_JOB_END21
event for normal or abnormal termination if requested to do so. The event shall include:22

• the returned status code (PMIX_JOB_TERM_STATUS) for the corresponding job;23

• the identity (PMIX_PROCID) and exit status (PMIX_EXIT_CODE) of the first failed process, if24
applicable;25

• a PMIX_EVENT_TIMESTAMP indicating the time the termination occurred; plus26

• any other info provided by the host environment.27

434 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

18.2.2 Indirect launch1

In the indirect launch use-case, the application processes are started via an intermediate launcher2
(e.g., mpiexec) that is itself started by the tool (see Fig 18.3). Thus, at a high level, this is a3
two-stage launch procedure to start the application: the tool (henceforth referred to as the initiator)4
starts the IL, which then starts the applications. In practice, additional steps may be involved if, for5
example, the IL starts its own daemons to shepherd the application processes.6

A key aspect of this operational mode is the avoidance of any requirement that the initiator parse7
and/or understand the command line of the IL. Instead, the indirect launch procedure supports8
either of two methods: one where the initiator assumes responsibility for parsing its command line9
to obtain the application as well as the IL and its options, and another where the initiator defers the10
command line parsing to the IL. Both of these methods are described in the following sections.11

18.2.2.1 Initiator-based command line parsing12

This method utilizes a first call to the PMIx_Spawn API to start the IL itself, and then uses a13
second call to PMIx_Spawn to request that the IL spawn the actual job. The burden of analyzing14
the initial command line to separately identify the IL’s command line from the application itself15
falls upon the initiator. An example is provided below:16

$ initiator --launcher "mpiexec --verbose" -n 3 ./app <appoptions>17

The initiator spawns the IL using the same procedure for launching an application - it begins by18
assembling the description of the IL into a spawn request containing an array of pmix_app_t and19
pmix_info_t job-level information. Note that this step does not include any information20
regarding the application itself - only the launcher is included. In addition, the initiator must21
include the rendezvous URI in the environment so the IL knows how to connect back to it.22

An allocation of resources for the IL itself may or may not be required – if it is, then the allocation23
must be made in advance or the spawn request must include allocation request information.24

(a) Indirect Launch - Start (b) Indirect Launch - End

Figure 18.3.: Indirect launch procedure

CHAPTER 18. TOOLS AND DEBUGGERS 435

Un
offi
cia
l D
raf
t

The initiator may optionally wish to include the following tool-specific attributes in the job_info1
argument to PMIx_Spawn - note that these attributes refer only to the behavior of the IL itself and2
not the eventual job to be launched:3

• PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)4
The requester intends to push information from its stdin to the indicated process. The5
local spawn agent should, therefore, ensure that the stdin channel to that process6
remains available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the7
spawned job are potential recipients. The requester will issue a call to PMIx_IOF_push8
to initiate the actual forwarding of information to specified targets - this attribute simply9
requests that the IL retain the ability to forward the information to the designated targets.10

• PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)11
Requests that the ability to forward the stdout of the spawned processes be maintained.12
The requester will issue a call to PMIx_IOF_pull to specify the callback function and13
other options for delivery of the forwarded output.14

• PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)15
Requests that the ability to forward the stderr of the spawned processes be maintained.16
The requester will issue a call to PMIx_IOF_pull to specify the callback function and17
other options for delivery of the forwarded output.18

• PMIX_FWD_STDDIAG "pmix.fwd.stddiag" (bool)19
Requests that the ability to forward the diagnostic channel (if it exists) of the spawned20
processes be maintained. The requester will issue a call to PMIx_IOF_pull to specify21
the callback function and other options for delivery of the forwarded output.22

• PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)23
The requested size of the PMIx server cache in bytes for each specified channel. By24
default, the server is allowed (but not required) to drop all bytes received beyond the max25
size.26

• PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)27
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the28
cache.29

• PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)30
In an overflow situation, the PMIx server is to drop any new bytes received until room31
becomes available in the cache (default).32

• PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)33
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until34
the specified number of bytes is collected to avoid being called every time a block of IO35
arrives. The PMIx tool library will execute the callback and reset the collection counter36
whenever the specified number of bytes becomes available. Any remaining buffered data37
will be flushed to the callback upon a call to deregister the respective channel.38

• PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)39

436 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering1
size, this prevents IO from being held indefinitely while waiting for another payload to2
arrive.3

• PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)4
Requests that output be prefixed with the nspace,rank of the source and a string5
identifying the channel (stdout, stderr, etc.).6

• PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)7
Requests that output be marked with the time at which the data was received by the tool -8
note that this will differ from the time at which the data was collected from the source.9

• PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)10
Requests that output be formatted in XML.11

• PMIX_NOHUP "pmix.nohup" (bool)12
Any processes started on behalf of the calling tool (or the specified namespace, if such13
specification is included in the list of attributes) should continue after the tool disconnects14
from its server.15

• PMIX_LAUNCHER_DAEMON "pmix.lnch.dmn" (char*)16
Path to executable that is to be used as the backend daemon for the launcher. This replaces17
the launcher’s own daemon with the specified executable. Note that the user is therefore18
responsible for ensuring compatibility of the specified executable and the host launcher.19

• PMIX_FORKEXEC_AGENT "pmix.frkex.agnt" (char*)20
Path to executable that the launcher’s backend daemons are to fork/exec in place of the21
actual application processes. The fork/exec agent shall connect back (as a PMIx tool) to22
the launcher’s daemon to receive its spawn instructions, and is responsible for starting the23
actual application process it replaced. See Section 18.4.3 for details.24

• PMIX_EXEC_AGENT "pmix.exec.agnt" (char*)25
Path to executable that the launcher’s backend daemons are to fork/exec in place of the26
actual application processes. The launcher’s daemon shall pass the full command line of27
the application on the command line of the exec agent, which shall not connect back to the28
launcher’s daemon. The exec agent is responsible for exec’ing the specified application29
process in its own place. See Section 18.4.3 for details.30

• PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)31
Included in either the pmix_info_t array in a pmix_app_t description (if the32
directive applies only to that application) or in the job_info array if it applies to all33
applications in the given spawn request. Indicates that the specified application is being34
spawned under a debugger. The PMIx client library in each resulting application process35
shall notify its PMIx server that it is pausing and then pause during PMIx_Init of the36
spawned processes until either released by debugger modification of an appropriate37
variable or receipt of the PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL)38
is responsible for generating the PMIX_READY_FOR_DEBUG event (stipulating a39

CHAPTER 18. TOOLS AND DEBUGGERS 437

Un
offi
cia
l D
raf
t

breakpoint of p̈mix-init)̈ when all processes have reached the pause point. In this context,1
the initiator is directing the IL to stop in PMIx_tool_init. This gives the initiator a2
chance to connect to the IL and register for events prior to the IL launching the application3
job.4

and the following optional variables in the environment of the IL:5

• PMIX_KEEPALIVE_PIPE - an integer read-end of a POSIX pipe that the IL should monitor6
for closure, thereby indicating that the initiator has terminated.7

The initiator then calls the PMIx_Spawn API so that the PMIx library can either communicate the8
spawn request to a server (if connected to one), or locally spawn the IL itself if not connected to a9
server and the PMIx implementation includes self-spawn support. PMIx_Spawn shall return an10
error if neither of these conditions is met.11

When initialized by the IL, the PMIx_tool_init function must perform two operations:12

• check for the presence of the PMIX_KEEPALIVE_PIPE environmental variable - if provided,13
then the library shall monitor the pipe for closure, providing a PMIX_EVENT_JOB_END event14
when the pipe closes (thereby indicating the termination of the initiator). The IL should register15
for this event after completing PMIx_tool_init - the initiator’s namespace can be obtained16
via a call to PMIx_Get with the PMIX_PARENT_ID key. Note that this feature will only be17
available if the spawned IL is local to the initiator.18

• check for the PMIX_LAUNCHER_RNDZ_URI environmental parameter - if found, the library19
shall connect back to the initiator using the PMIx_tool_attach_to_server API,20
retaining its current server as its primary server.21

Once the IL completes PMIx_tool_init, it must register for the PMIX_EVENT_JOB_END22
termination event and then idle until receiving that event - either directly from the initiator, or from23
the PMIx library upon detecting closure of the keepalive pipe. The IL idles in the intervening time24
as it is solely acting as a relay (if connected to a server that is performing the actual application25
launch) or as a PMIx server responding to spawn requests.26

Upon return from the PMIx_Spawn API, the initiator should set the spawned IL as its primary27
server using the PMIx_tool_set_server API with the nspace returned by PMIx_Spawn and28
any valid rank (a rank of zero would ordinarily be used as only one IL process is typically started).29
It is advisable to set a connection timeout value when calling this function. The initiator can then30
proceed to spawn the actual application according to the procedure described in Section 18.2.1.31

18.2.2.2 IL-based command line parsing32

In the case where the initiator cannot parse its command line, it must defer that parsing to the IL. A33
common example is provided below:34

$ initiator mpiexec --verbose -n 3 ./app <appoptions>35

For this situation, the initiator proceeds as above with only one notable exception: instead of calling36
PMIx_Spawn twice (once to start the IL and again to start the actual application), the initiator only37
calls that API one time:38

438 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• The app parameter passed to the spawn request contains only one pmix_app_t that contains1
the entire command line, including both launcher and application(s).2

• The launcher executable must be in the app.cmd field and in app.argv[0], with the rest of the3
command line appended to the app.argv array.4

• Any job-level directives for the IL itself (e.g., PMIX_FORKEXEC_AGENT or5
PMIX_FWD_STDOUT) are included in the job_info parameter of the call to PMIx_Spawn.6

• The job-level directives must include both the PMIX_SPAWN_TOOL attribute indicating that the7
initiator is spawning a tool, and the PMIX_DEBUG_STOP_IN_INIT attribute directing the IL8
to stop during the call to PMIx_tool_init. The latter directive allows the initiator to connect9
to the IL prior to launch of the application.10

• The PMIX_LAUNCHER_RNDZ_URI and PMIX_KEEPALIVE_PIPE environmental variables11
are provided to the launcher in its environment via the app.env field.12

• The IL must use PMIx_Get with the PMIX_LAUNCH_DIRECTIVES key to obtain any13
initiator-provided directives (e.g., PMIX_DEBUG_STOP_IN_INIT or14
PMIX_DEBUG_STOP_ON_EXEC) aimed at the application(s) it will spawn.15

Upon return from PMIx_Spawn, the initiator must:16

• use the PMIx_tool_set_server API to set the spawned IL as its primary server17

• register with that server to receive the PMIX_LAUNCH_COMPLETE event. This allows the18
initiator to know when the IL has completed launch of the application19

• release the IL from its "hold" in PMIx_tool_init by issuing the20
PMIX_DEBUGGER_RELEASE event, specifying the IL as the custom range. Upon receipt of the21
event, the IL is free to parse its command line, apply any provided directives, and execute the22
application.23

Upon receipt of the PMIX_LAUNCH_COMPLETE event, the initiator should register to receive24
notification of completion of the returned namespace of the application. Receipt of the25
PMIX_EVENT_JOB_END event provides a signal that the initiator may itself terminate.26

18.2.3 Tool spawn-related attributes27

Tools are free to utilize the spawn attributes available to applications (see 12.2.4) when28
constructing a spawn request, but can also utilize the following attributes that are specific to29
tool-based spawn operations:30

PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)31
The requester intends to push information from its stdin to the indicated process. The32
local spawn agent should, therefore, ensure that the stdin channel to that process remains33
available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the spawned34
job are potential recipients. The requester will issue a call to PMIx_IOF_push to initiate35
the actual forwarding of information to specified targets - this attribute simply requests that36
the IL retain the ability to forward the information to the designated targets.37

CHAPTER 18. TOOLS AND DEBUGGERS 439

Un
offi
cia
l D
raf
t

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)1
Requests that the ability to forward the stdout of the spawned processes be maintained.2
The requester will issue a call to PMIx_IOF_pull to specify the callback function and3
other options for delivery of the forwarded output.4

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)5
Requests that the ability to forward the stderr of the spawned processes be maintained.6
The requester will issue a call to PMIx_IOF_pull to specify the callback function and7
other options for delivery of the forwarded output.8

PMIX_FWD_STDDIAG "pmix.fwd.stddiag" (bool)9
Requests that the ability to forward the diagnostic channel (if it exists) of the spawned10
processes be maintained. The requester will issue a call to PMIx_IOF_pull to specify the11
callback function and other options for delivery of the forwarded output.12

PMIX_NOHUP "pmix.nohup" (bool)13
Any processes started on behalf of the calling tool (or the specified namespace, if such14
specification is included in the list of attributes) should continue after the tool disconnects15
from its server.16

PMIX_LAUNCHER_DAEMON "pmix.lnch.dmn" (char*)17
Path to executable that is to be used as the backend daemon for the launcher. This replaces18
the launcher’s own daemon with the specified executable. Note that the user is therefore19
responsible for ensuring compatibility of the specified executable and the host launcher.20

PMIX_FORKEXEC_AGENT "pmix.frkex.agnt" (char*)21
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual22
application processes. The fork/exec agent shall connect back (as a PMIx tool) to the23
launcher’s daemon to receive its spawn instructions, and is responsible for starting the actual24
application process it replaced. See Section 18.4.3 for details.25

PMIX_EXEC_AGENT "pmix.exec.agnt" (char*)26
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual27
application processes. The launcher’s daemon shall pass the full command line of the28
application on the command line of the exec agent, which shall not connect back to the29
launcher’s daemon. The exec agent is responsible for exec’ing the specified application30
process in its own place. See Section 18.4.3 for details.31

PMIX_LAUNCH_DIRECTIVES "pmix.lnch.dirs" (pmix_data_array_t*)32
Array of pmix_info_t containing directives for the launcher - a convenience attribute for33
retrieving all directives with a single call to PMIx_Get.34

18.2.4 Tool rendezvous-related events35

The following constants refer to events relating to rendezvous of a tool and launcher during spawn36
of the IL.37

PMIX_LAUNCHER_READY -155 An application launcher (e.g., mpiexec) shall generate this38
event to signal a tool that started it that the launcher is ready to receive directives/commands39
(e.g., PMIx_Spawn). This is only used when the initiator is able to parse the command line40
itself, or the launcher is started as a persistent Distributed Virtual Machine (DVM).41

440 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

18.3 IO Forwarding1

Underlying the operation of many tools is a common need to forward stdin from the tool to2
targeted processes, and to return stdout/stderr from those processes to the tool (e.g., for3
display on the user’s console). Historically, each tool developer was responsible for creating their4
own IO forwarding subsystem. However, the introduction of PMIx as a standard mechanism for5
interacting between applications and the host environment has made it possible to relieve tool6
developers of this burden.7

This section defines functions by which tools can request forwarding of input/output to/from other8
processes and serves as a design guide to:9

• provide tool developers with an overview of the expected behavior of the PMIx IO forwarding10
support;11

• guide RM vendors regarding roles and responsibilities expected of the RM to support IO12
forwarding; and13

• provide insight into the thinking of the PMIx community behind the definition of the PMIx IO14
forwarding APIs.15

Note that the forwarding of IO via PMIx requires that both the host environment and the tool16
support PMIx, but does not impose any similar requirements on the application itself.17

The responsibility of the host environment in forwarding of IO falls into the following areas:18

• Capturing output from specified processes.19

• Forwarding that output to the host of the PMIx server library that requested it.20

• Delivering that payload to the PMIx server library via the PMIx_server_IOF_deliver API21
for final dispatch to the requesting tool.22

It is the responsibility of the PMIx library to buffer, format, and deliver the payload to the23
requesting client. This may require caching of output until a forwarding registration is received, as24
governed by the corresponding IO forwarding attributes of Section 18.3.5 that are supported by the25
implementation.26

18.3.1 Forwarding stdout/stderr27

At an appropriate point in its operation (usually during startup), a tool will utilize the28
PMIx_tool_init function to connect to a PMIx server. The PMIx server can be hosted by an29
RM daemon or could be embedded in a library-provided starter program such as mpiexec - in terms30
of IO forwarding, the operations remain the same either way. For purposes of this discussion, we31
will assume the server is in an RM daemon and that the application processes are directly launched32
by the RM, as shown in Fig 18.4.33

Once the tool has connected to the target server, it can request that processes be spawned on its34
behalf or that output from a specified set of existing processes in a given executing application be35

CHAPTER 18. TOOLS AND DEBUGGERS 441

Un
offi
cia
l D
raf
t

Figure 18.4.: Forwarding stdout/stderr

forwarded to it. Requests to spawn processes should include the PMIX_FWD_STDIN,1
PMIX_FWD_STDOUT, and/or PMIX_FWD_STDERR attributes if the tool intends to request that2
the corresponding streams be forwarded at some point during execution.3

Note that requests to capture output from existing processes via the PMIx_IOF_pull API, and/or4
to forward input to specified processes via the PMIx_IOF_push API, can only succeed if the5
required attributes to retain that ability were passed when the corresponding job was spawned. The6
host is required to return an error for all such requests in cases where this condition is not met.7

Two modes are supported when requesting that the host forward standard output/error via the8
PMIx_IOF_pull API - these can be controlled by including one of the following attributes in the9
info array passed to that function:10

• PMIX_IOF_COPY "pmix.iof.cpy" (bool)11
Requests that the host environment deliver a copy of the specified output stream(s) to the12
tool, letting the stream(s) continue to also be delivered to the default location. This allows13
the tool to tap into the output stream(s) without redirecting it from its current final14
destination.15

• PMIX_IOF_REDIRECT "pmix.iof.redir" (bool)16
Requests that the host environment intercept the specified output stream(s) and deliver it17
to the requesting tool instead of its current final destination. This might be used, for18
example, during a debugging procedure to avoid injection of debugger-related output into19
the application’s results file. The original output stream(s) destination is restored upon20
termination of the tool. This is the default mode of operation.21

When requesting to forward stdout/stderr, the tool can specify several formatting options to22

442 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

be used on the resulting output stream. These include:1

• PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)2
Requests that output be prefixed with the nspace,rank of the source and a string3
identifying the channel (stdout, stderr, etc.).4

• PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)5
Requests that output be marked with the time at which the data was received by the tool -6
note that this will differ from the time at which the data was collected from the source.7

• PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)8
Requests that output be formatted in XML.9

• PMIX_IOF_RANK_OUTPUT "pmix.iof.rank" (bool)10
Tag output with the rank it came from11

• PMIX_IOF_OUTPUT_TO_FILE "pmix.iof.file" (char*)12
Direct application output into files of form "<filename>.<nspace>.<rank>.stdout" (for13
stdout) and "<filename>.<nspace>.<rank>.stderr" (for stderr). If14
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be15
created and both streams will be written into it.16

• PMIX_IOF_OUTPUT_TO_DIRECTORY "pmix.iof.dir" (char*)17
Direct application output into files of form "<directory>/<nspace>/rank.<rank>/stdout"18
(for stdout) and "<directory>/<nspace>/rank.<rank>/stderr" (for stderr). If19
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be20
created and both streams will be written into it.21

• PMIX_IOF_FILE_PATTERN "pmix.iof.fpt" (bool)22
Specified output file is to be treated as a pattern and not automatically annotated by23
nspace, rank, or other parameters. The pattern can use %n for the namespace, and %r for24
the rank wherever those quantities are to be placed. The resulting filename will be25
appended with ".stdout" for the stdout stream and ".stderr" for the stderr stream. If26
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be27
created and both streams will be written into it.28

• PMIX_IOF_FILE_ONLY "pmix.iof.fonly" (bool)29
Output only into designated files - do not also output a copy to the console’s stdout/stderr30

• PMIX_IOF_MERGE_STDERR_STDOUT "pmix.iof.mrg" (bool)31
Merge stdout and stderr streams from application procs32

The PMIx client in the tool is responsible for formatting the output stream. Note that output from33
multiple processes will often be interleaved due to variations in arrival time - ordering of output is34
not guaranteed across processes and/or nodes.35

CHAPTER 18. TOOLS AND DEBUGGERS 443

Un
offi
cia
l D
raf
t

18.3.2 Forwarding stdin1

A tool is not necessarily a child of the RM as it may have been started directly from the command2
line. Thus, provision must be made for the tool to collect its stdin and pass it to the host RM (via3
the PMIx server) for forwarding. Two methods of support for forwarding of stdin are defined:4

Figure 18.5.: Forwarding stdin

• internal collection by the PMIx tool library itself. This is requested via the5
PMIX_IOF_PUSH_STDIN attribute in the PMIx_IOF_push call. When this mode is6
selected, the tool library begins collecting all stdin data and internally passing it to the local7
server for distribution to the specified target processes. All collected data is sent to the same8
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that includes9
the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be terminated.10

• external collection directly by the tool. It is assumed that the tool will provide its own11
code/mechanism for collecting its stdin as the tool developers may choose to insert some12
filtering and/or editing of the stream prior to forwarding it. In addition, the tool can directly13
control the targets for the data on a per-call basis – i.e., each call to PMIx_IOF_push can14
specify its own set of target recipients for that particular blob of data. Thus, this method provides15
maximum flexibility, but requires that the tool developer provide their own code to capture16
stdin.17

Note that it is the responsibility of the RM to forward data to the host where the target process(es)18
are executing, and for the host daemon on that node to deliver the data to the stdin of target19
process(es). The PMIx server on the remote node is not involved in this process. Systems that do20

444 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

not support forwarding of stdin shall return PMIX_ERR_NOT_SUPPORTED in response to a1
forwarding request.2

Advice to users

Scalable forwarding of stdin represents a significant challenge. Most environments will at least3
handle a send-to-1 model whereby stdin is forwarded to a single identified process, and4
occasionally an additional send-to-all model where stdin is forwarded to all processes in the5
application. Users are advised to check their host environment for available support as the6
distribution method lies outside the scope of PMIx.7

Stdin buffering by the RM and/or PMIx library can be problematic. If any targeted recipient is8
slow reading data (or decides never to read data), then the data must be buffered in some9
intermediate daemon or the PMIx tool library itself. Thus, piping a large amount of data into10
stdin can result in a very large memory footprint in the system management stack or the tool.11
Best practices, therefore, typically focus on reading of input files by application processes as12
opposed to forwarding of stdin.13

18.3.3 IO Forwarding Channels14

PMIx v3.0 The pmix_iof_channel_t structure is a uint16_t type that defines a set of bit-mask flags15
for specifying IO forwarding channels. These can be bitwise OR’d together to reference multiple16
channels.17

PMIX_FWD_NO_CHANNELS 0x0000 Forward no channels.18
PMIX_FWD_STDIN_CHANNEL 0x0001 Forward stdin.19
PMIX_FWD_STDOUT_CHANNEL 0x0002 Forward stdout.20
PMIX_FWD_STDERR_CHANNEL 0x0004 Forward stderr.21
PMIX_FWD_STDDIAG_CHANNEL 0x0008 Forward stddiag, if available.22
PMIX_FWD_ALL_CHANNELS 0x00ff Forward all available channels.23

18.3.4 IO Forwarding constants24

PMIX_ERR_IOF_FAILURE -172 An IO forwarding operation failed - the affected channel25
will be included in the notification.26

PMIX_ERR_IOF_COMPLETE -173 IO forwarding of the standard input for this process has27
completed - i.e., the stdin file descriptor has closed.28

CHAPTER 18. TOOLS AND DEBUGGERS 445

Un
offi
cia
l D
raf
t

18.3.5 IO Forwarding attributes1

The following attributes are used to control IO forwarding behavior at the request of tools. Use of2
the attributes is optional - any option not provided will revert to some implementation-specific3
value.4

PMIX_IOF_LOCAL_OUTPUT "pmix.iof.local" (bool)5
Write output streams to local stdout/err6

PMIX_IOF_MERGE_STDERR_STDOUT "pmix.iof.mrg" (bool)7
Merge stdout and stderr streams from application procs8

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)9
The requested size of the PMIx server cache in bytes for each specified channel. By default,10
the server is allowed (but not required) to drop all bytes received beyond the max size.11

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)12
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the13
cache.14

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)15
In an overflow situation, the PMIx server is to drop any new bytes received until room16
becomes available in the cache (default).17

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)18
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the19
specified number of bytes is collected to avoid being called every time a block of IO arrives.20
The PMIx tool library will execute the callback and reset the collection counter whenever the21
specified number of bytes becomes available. Any remaining buffered data will be flushed to22
the callback upon a call to deregister the respective channel.23

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)24
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering25
size, this prevents IO from being held indefinitely while waiting for another payload to arrive.26

PMIX_IOF_OUTPUT_RAW "pmix.iof.raw" (bool)Provisional27
Do not buffer output to be written as complete lines - output characters as the stream delivers28
them29

PMIX_IOF_COMPLETE "pmix.iof.cmp" (bool)30
Indicates that the specified IO channel has been closed by the source.31

PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)32
Requests that output be prefixed with the nspace,rank of the source and a string identifying33
the channel (stdout, stderr, etc.).34

PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)35
Requests that output be marked with the time at which the data was received by the tool -36
note that this will differ from the time at which the data was collected from the source.37

PMIX_IOF_RANK_OUTPUT "pmix.iof.rank" (bool)Provisional38
Tag output with the rank it came from39

PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)40
Requests that output be formatted in XML.41

PMIX_IOF_PUSH_STDIN "pmix.iof.stdin" (bool)42

446 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Requests that the PMIx library collect the stdin of the requester and forward it to the1
processes specified in the PMIx_IOF_push call. All collected data is sent to the same2
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that3
includes the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be4
terminated.5

PMIX_IOF_COPY "pmix.iof.cpy" (bool)6
Requests that the host environment deliver a copy of the specified output stream(s) to the7
tool, letting the stream(s) continue to also be delivered to the default location. This allows the8
tool to tap into the output stream(s) without redirecting it from its current final destination.9

PMIX_IOF_REDIRECT "pmix.iof.redir" (bool)10
Requests that the host environment intercept the specified output stream(s) and deliver it to11
the requesting tool instead of its current final destination. This might be used, for example,12
during a debugging procedure to avoid injection of debugger-related output into the13
application’s results file. The original output stream(s) destination is restored upon14
termination of the tool.15

PMIX_IOF_OUTPUT_TO_FILE "pmix.iof.file" (char*)Provisional16
Direct application output into files of form "<filename>.<nspace>.<rank>.stdout" (for17
stdout) and "<filename>.<nspace>.<rank>.stderr" (for stderr). If18
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be19
created and both streams will be written into it.20

PMIX_IOF_OUTPUT_TO_DIRECTORY "pmix.iof.dir" (char*)Provisional21
Direct application output into files of form "<directory>/<nspace>/rank.<rank>/stdout" (for22
stdout) and "<directory>/<nspace>/rank.<rank>/stderr" (for stderr). If23
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be24
created and both streams will be written into it.25

PMIX_IOF_FILE_PATTERN "pmix.iof.fpt" (bool)Provisional26
Specified output file is to be treated as a pattern and not automatically annotated by nspace,27
rank, or other parameters. The pattern can use %n for the namespace, and %r for the rank28
wherever those quantities are to be placed. The resulting filename will be appended with29
".stdout" for the stdout stream and ".stderr" for the stderr stream. If30
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be31
created and both streams will be written into it.32

PMIX_IOF_FILE_ONLY "pmix.iof.fonly" (bool)Provisional33
Output only into designated files - do not also output a copy to the console’s stdout/stderr34

18.4 Debugger Support35

Debuggers are a class of tool that merits special consideration due to their particular requirements36
for access to job-related information and control over process execution. The primary advantage of37
using PMIx for these purposes lies in the resulting portability of the debugger as it can be used with38
any system and/or programming model that supports PMIx. In addition to the general tool support39
described above, debugger support includes:40

CHAPTER 18. TOOLS AND DEBUGGERS 447

Un
offi
cia
l D
raf
t

• Co-location, co-spawn, and communication wireup of debugger daemons for scalable launch.1
This includes providing debugger daemons with endpoint connection information across the2
daemons themselves.3

• Identification of the job that is to be debugged. This includes automatically providing debugger4
daemons with the job-level information for their target job.5

Debuggers can also utilize the options in the PMIx_Spawn API to exercise a degree of control6
over spawned jobs for debugging purposes. For example, a debugger can utilize the environmental7
parameter attributes of Section 12.2.4 to request LD_PRELOAD of a memory interceptor library8
prior to spawning an application process, or interject a custom fork/exec agent to shepherd the9
application process.10

A key element of the debugging process is the ability of the debugger to require that processes11
pause at some well-defined point, thereby providing the debugger with an opportunity to attach and12
control execution. The actual implementation of the pause lies outside the scope of PMIx - it13
typically requires either the launcher or the application itself to implement the necessary14
operations. However, PMIx does provide several standard attributes by which the debugger can15
specify the desired attach point:16

• PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)17
Included in either the pmix_info_t array in a pmix_app_t description (if the18
directive applies only to that application) or in the job_info array if it applies to all19
applications in the given spawn request. Indicates that the application is being spawned20
under a debugger, and that the local launch agent is to pause the resulting application21
processes on first instruction for debugger attach. The launcher (RM or IL) is to generate22
the PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.23
Launchers that cannot support this operation shall return an error from the PMIx_Spawn24
API if this behavior is requested.25

• PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)26
Included in either the pmix_info_t array in a pmix_app_t description (if the27
directive applies only to that application) or in the job_info array if it applies to all28
applications in the given spawn request. Indicates that the specified application is being29
spawned under a debugger. The PMIx client library in each resulting application process30
shall notify its PMIx server that it is pausing and then pause during PMIx_Init of the31
spawned processes until either released by debugger modification of an appropriate32
variable or receipt of the PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL)33
is responsible for generating the PMIX_READY_FOR_DEBUG event (stipulating a34
breakpoint of p̈mix-init)̈ when all processes have reached the pause point. PMIx35
implementations that do not support this operation shall return an error from36
PMIx_Init if this behavior is requested. Launchers that cannot support this operation37
shall return an error from the PMIx_Spawn API if this behavior is requested.38

• PMIX_DEBUG_STOP_IN_APP "pmix.dbg.notify" (varies)39

448 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Direct specified ranks to stop at application-specific point and notify they are1
ready-to-debug. The attribute’s value can be any of three data types:2

– bool - true indicating all ranks3
– pmix_rank_t - the rank of one proc, or PMIX_RANK_WILDCARD for all4
– a pmix_data_array_t if an array of individual processes are specified5

The resulting application processes are to notify their server (by generating the6
PMIX_READY_FOR_DEBUG event) when they reach some application-determined7
location - the event shall include the PMIX_BREAKPOINT attribute indicating where the8
application has stopped. The application shall pause at that point until released by9
debugger modification of an appropriate variable. The launcher (RM or IL) is responsible10
for generating the PMIX_READY_FOR_DEBUG event when all processes have indicated11
they are at the pause point. Launchers that cannot support this operation shall return an12
error from the PMIx_Spawn API if this behavior is requested.13

Note that there is no mechanism by which the PMIx library or the launcher can verify that14
an application will recognize and support the PMIX_DEBUG_STOP_IN_APP request.15
Debuggers utilizing this attachment method must, therefore, be prepared to deal with the16
case where the application fails to recognize and/or honor the request.17

If the PMIx implementation and/or the host environment support it, debuggers can utilize the18
PMIx_Query_info API to determine which features are available via the19
PMIX_QUERY_ATTRIBUTE_SUPPORT attribute.20

• PMIX_DEBUG_STOP_IN_INIT by checking PMIX_CLIENT_ATTRIBUTES for the21
PMIx_Init API.22

• PMIX_DEBUG_STOP_ON_EXEC by checking PMIX_HOST_ATTRIBUTES for the23
PMIx_Spawn API.24

The target namespace or process (as given by the debugger in the spawn request) shall be provided25
to each daemon in its job-level information via the PMIX_DEBUG_TARGET attribute. Debugger26
daemons are responsible for self-determining their specific target process(es), and can then utilize27
the PMIx_Query_info API to obtain information about them (see Fig 18.6) - e.g., to obtain the28
PIDs of the local processes to which they need to attach. PMIx provides the29
pmix_proc_info_t structure for organizing information about a process’ PID, location, and30
state. Debuggers may request information on a given job at two levels:31

• PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)32
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each33
process in the specified namespace, ordered by process job rank. REQUIRED34
QUALIFIER: PMIX_NSPACE indicating the namespace whose process table is being35
queried.36

• PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)37

CHAPTER 18. TOOLS AND DEBUGGERS 449

Un
offi
cia
l D
raf
t

Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each1
process in the specified namespace executing on the same node as the requester, ordered2
by process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the3
namespace whose local process table is being queried. OPTIONAL QUALIFIER:4
PMIX_HOSTNAME indicating the host whose local process table is being queried. By5
default, the query assumes that the host upon which the request was made is to be used.6

Note that the information provided in the returned proctable represents a snapshot in time. Any7
process, regardless of role (tool, client, debugger, etc.) can obtain the proctable of a given8
namespace so long as it has the system-determined authorizations to do so. The list of namespaces9
available via a given server can be obtained using the PMIx_Query_info API with the10
PMIX_QUERY_NAMESPACES key.11

Figure 18.6.: Obtaining proctables

Debugger daemons can be started in two ways - either at the same time the application is spawned,12
or separately at a later time.13

18.4.1 Co-Location of Debugger Daemons14

Debugging operations typically require the use of daemons that are located on the same node as the15
processes they are attempting to debug. The debugger can, of course, specify its own mapping16
method when issuing its spawn request or utilize its own internal launcher to place the daemons.17
However, when attaching to a running job, PMIx provides debuggers with a simplified method for18
requesting that the launcher associated with the job co-locate the required daemons. Debuggers can19
request co-location of their daemons by adding the following attributes to the PMIx_Spawn used20
to spawn them:21

• PMIX_DEBUGGER_DAEMONS - indicating that the launcher is being asked to spawn debugger22
daemons.23

450 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• PMIX_DEBUG_TARGET - indicating the job or process that is to be debugged. This allows the1
launcher to identify the processes to be debugged and their location. Note that the debugger job2
shall be assigned its own namespace (different from that of the job it is being spawned to debug)3
and each daemon will be assigned a unique rank within that namespace.4

• PMIX_DEBUG_DAEMONS_PER_PROC - specifies the number of debugger daemons to be5
co-located per target process.6

• PMIX_DEBUG_DAEMONS_PER_NODE - specifies the number of debugger daemons to be7
co-located per node where at least one target process is executing.8

Debugger daemons spawned in this manner shall be provided with the typical PMIx information for9
their own job plus the target they are to debug via the PMIX_DEBUG_TARGET attribute. The10
debugger daemons spawned on a given node are responsible for self-determining their specific11
target process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger12
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node. Note that13
the debugger will be attaching to the application processes at some arbitrary point in the14
application’s execution unless some method for pausing the application (e.g., by providing a PMIx15
directive at time of launch, or via a tool using the PMIx_Job_control API to direct that the16
process be paused) has been employed.17

Advice to users

Note that the tool calling PMIx_Spawn to request the launch of the debugger daemons is not18
included in the resulting job - i.e., the debugger daemons do not inherit the namespace of the tool.19
Thus, collective operations and notifications that target the debugger daemon job will not include20
the tool unless the namespace/rank of the tool is explicitly included.21

18.4.2 Co-Spawn of Debugger Daemons22

In the case where a job is being spawned under the control of a debugger, PMIx provides a shortcut23
method for spawning the debugger’s daemons in parallel with the job. This requires that the24
debugger be specified as one of the pmix_app_t in the same spawn command used to start the25
job. The debugger application must include at least the PMIX_DEBUGGER_DAEMONS attribute26
identifying itself as a debugger, and may utilize either a mapping option to direct daemon27
placement, or one of the PMIX_DEBUG_DAEMONS_PER_PROC or28
PMIX_DEBUG_DAEMONS_PER_NODE directives.29

The launcher must not include information regarding the debugger daemons in the job-level info30
provided to the rest of the pmix_app_ts, nor in any calculated rank values (e.g.,31
PMIX_NODE_RANK or PMIX_LOCAL_RANK) in those applications. The debugger job is to be32
assigned its own namespace and each debugger daemon shall receive a unique rank - i.e., the33
debugger application is to be treated as a completely separate PMIx job that is simply being started34
in parallel with the user’s applications. The launcher is free to implement the launch as a single35
operation for both the applications and debugger daemons (preferred), or may stage the launches as36

CHAPTER 18. TOOLS AND DEBUGGERS 451

Un
offi
cia
l D
raf
t

required. The launcher shall not return from the PMIx_Spawn command until all included1
applications and the debugger daemons have been started.2

Attributes that apply to both the debugger daemons and the application processes can be specified3
in the job_info array passed into the PMIx_Spawn API. Attributes that either (a) apply solely to4
the debugger daemons or to one of the applications included in the spawn request, or (b) have5
values that differ from those provided in the job_info array, should be specified in the info array in6
the corresponding pmix_app_t. Note that PMIx job pause attributes (e.g.,7
PMIX_DEBUG_STOP_IN_INIT) do not apply to applications (defined in pmix_app_t) where8
the PMIX_DEBUGGER_DAEMONS attribute is set to true.9

Debugger daemons spawned in this manner shall be provided with the typical PMIx information for10
their own job plus the target they are to debug via the PMIX_DEBUG_TARGET attribute. The11
debugger daemons spawned on a given node are responsible for self-determining their specific12
target process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger13
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.14

Advice to users

Note that the tool calling PMIx_Spawn to request the launch of the debugger daemons is not15
included in the resulting job - i.e., the debugger daemons do not inherit the namespace of the tool.16
Thus, collective operations and notifications that target the debugger daemon job will not include17
the tool unless the namespace/rank of the tool is explicitly included.18

The PMIx_Spawn API only supports the return of a single namespace resulting from the spawn19
request. In the case where the debugger job is co-spawned with the application, the spawn function20
shall return the namespace of the application and not the debugger job. Tools requiring access to21
the namespace of the debugger job must query the launcher for the spawned namespaces to find the22
one belonging to the debugger job.23

18.4.3 Debugger Agents24

Individual debuggers may, depending upon implementation, require varying degrees of control over25
each application process when it is started beyond those available via directives to PMIx_Spawn.26
PMIx offers two mechanisms to help provide a means of meeting these needs.27

The PMIX_FORKEXEC_AGENT attribute allows the debugger to specify an intermediate process28
(the Fork/Exec Agent (FEA)) for spawning the actual application process (see Fig. 18.7a), thereby29
interposing the debugger daemon between the application process and the launcher’s daemon.30
Instead of spawning the application process, the launcher will spawn the FEA, which will connect31
back to the PMIx server as a tool to obtain the spawn description of the application process it is to32
spawn. The PMIx server in the launcher’s daemon shall not register the fork/exec agent as a local33
client process, nor shall the launcher include the agent in any of the job-level values (e.g.,34
PMIX_RANK within the job or PMIX_LOCAL_RANK on the node) provided to the application35

452 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

(a) Fork/exec agent (b) Exec agent

Figure 18.7.: Intermediate agents

process. The launcher shall treat the collection of FEAs as a debugger job equivalent to the1
co-spawn use-case described in Section 18.4.2.2

In contrast, the PMIX_EXEC_AGENT attribute (Fig. 18.7b) allows the debugger to specify an agent3
that will perform some preparatory actions and then exec the eventual application process to replace4
itself. In this scenario, the exec agent is provided with the application process’ command line as5
arguments on its command line (e.g., "./agent appargv[0] appargv[1]") and does not6
connect back to the host’s PMIx server. It is the responsibility of the exec agent to properly separate7
its own command line arguments (if any) from the application description.8

18.4.4 Tracking the job lifecycle9

There are a wide range of events a debugger can register to receive, but three are specifically10
defined for tracking a job’s progress:11

• PMIX_EVENT_JOB_START indicates when the first process in the job has been spawned.12

• PMIX_LAUNCH_COMPLETE indicates when the last process in the job has been spawned.13

• PMIX_EVENT_JOB_END indicates that all processes have terminated.14

Each event is required to contain at least the namespace of the corresponding job and a15
PMIX_EVENT_TIMESTAMP indicating the time the event occurred. In addition, the16
PMIX_EVENT_JOB_END event shall contain the returned status code17
(PMIX_JOB_TERM_STATUS) for the corresponding job, plus the identity (PMIX_PROCID) and18
exit status (PMIX_EXIT_CODE) of the first failed process, if applicable. Generation of these19
events by the launcher can be requested by including the PMIX_NOTIFY_JOB_EVENTS20
attributes in the spawn request. Note that these events can be logged via the PMIx_Log API by21
including the PMIX_LOG_JOB_EVENTS attribute - this can be done either in conjunction with22
generated events, or in place of them.23

CHAPTER 18. TOOLS AND DEBUGGERS 453

Un
offi
cia
l D
raf
t

Alternatively, if the debugger or tool solely wants to be alerted to job termination, then including1
the PMIX_NOTIFY_COMPLETION attribute in the spawn request would suffice. This attribute2
directs the launcher to provide just the PMIX_EVENT_JOB_END event. Note that this event can be3
logged via the PMIx_Log API by including the PMIX_LOG_COMPLETION attribute - this can be4
done either in conjunction with the generated event, or in place of it.5

Advice to users

The PMIx server is required to cache events in order to avoid race conditions - e.g., when a tool is6
trying to register for the PMIX_EVENT_JOB_END event from a very short-lived job. Accordingly,7
registering for job-related events can result in receiving events relating to jobs other than the one of8
interest.9

Users are therefore advised to specify the job whose events are of interest by including the10
PMIX_EVENT_AFFECTED_PROC or PMIX_EVENT_AFFECTED_PROCS attribute in the info11
array passed to the PMIx_Register_event_handler API.12

18.4.4.1 Job lifecycle events13

PMIX_EVENT_JOB_START -191 The first process in the job has been spawned - includes14
PMIX_EVENT_TIMESTAMP as well as the PMIX_JOBID and/or PMIX_NSPACE of the job.15

PMIX_LAUNCH_COMPLETE -174 All processes in the job have been spawned - includes16
PMIX_EVENT_TIMESTAMP as well as the PMIX_JOBID and/or PMIX_NSPACE of the job.17

PMIX_EVENT_JOB_END -145 All processes in the job have terminated - includes18
PMIX_EVENT_TIMESTAMP when the last process terminated as well as the PMIX_JOBID19
and/or PMIX_NSPACE of the job.20

PMIX_EVENT_SESSION_START -192 The allocation has been instantiated and is ready21
for use - includes PMIX_EVENT_TIMESTAMP as well as the PMIX_SESSION_ID of the22
allocation. This event is issued after any system-controlled prologue has completed, but23
before any user-specified actions are taken.24

PMIX_EVENT_SESSION_END -193 The allocation has terminated - includes25
PMIX_EVENT_TIMESTAMP as well as the PMIX_SESSION_ID of the allocation. This26
event is issued after any user-specified actions have completed, but before any27
system-controlled epilogue is performed.28

The following events relate to processes within a job:29

PMIX_EVENT_PROC_TERMINATED -201 The specified process(es) terminated - normal30
or abnormal termination will be indicated by the PMIX_PROC_TERM_STATUS in the info31
array of the notification. Note that a request for individual process events can generate a32
significant event volume from large-scale jobs.33

PMIX_ERR_PROC_TERM_WO_SYNC -200 Process terminated without calling34
PMIx_Finalize, or was a member of an assemblage formed via PMIx_Connect and35
terminated or called PMIx_Finalize without first calling PMIx_Disconnect (or its36
non-blocking form) from that assemblage.37

454 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The following constants may be included via the PMIX_JOB_TERM_STATUS attributed in the1
info array in the PMIX_EVENT_JOB_END event notification to provide more detailed information2
regarding the reason for job abnormal termination:3

PMIX_ERR_JOB_CANCELED -180 The job was canceled by the host environment.4
PMIX_ERR_JOB_ABORTED -182 One or more processes in the job called abort, causing5

the job to be terminated.6
PMIX_ERR_JOB_KILLED_BY_CMD -183 The job was killed by user command.7
PMIX_ERR_JOB_ABORTED_BY_SIG -184 The job was aborted due to receipt of an error8

signal (e.g., SIGKILL).9
PMIX_ERR_JOB_TERM_WO_SYNC -185 The job was terminated due to at least one10

process terminating without calling PMIx_Finalize, or was a member of an assemblage11
formed via PMIx_Connect and terminated or called PMIx_Finalize without first12
calling PMIx_Disconnect (or its non-blocking form) from that assemblage.13

PMIX_ERR_JOB_SENSOR_BOUND_EXCEEDED -186 The job was terminated due to one14
or more processes exceeding a specified sensor limit.15

PMIX_ERR_JOB_NON_ZERO_TERM -187 The job was terminated due to one or more16
processes exiting with a non-zero status.17

PMIX_ERR_JOB_ABORTED_BY_SYS_EVENT -189 The job was aborted due to receipt of18
a system event.19

18.4.4.2 Job lifecycle attributes20

PMIX_JOB_TERM_STATUS "pmix.job.term.status" (pmix_status_t)21
Status returned by job upon its termination. The status will be communicated as part of a22
PMIx event payload provided by the host environment upon termination of a job. Note that23
generation of the PMIX_EVENT_JOB_END event is optional and host environments may24
choose to provide it only upon request.25

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)26
State of the specified process as of the last report - may not be the actual current state based27
on update rate.28

PMIX_PROC_TERM_STATUS "pmix.proc.term.status" (pmix_status_t)29
Status returned by a process upon its termination. The status will be communicated as part30
of a PMIx event payload provided by the host environment upon termination of a process.31
Note that generation of the PMIX_EVENT_PROC_TERMINATED event is optional and host32
environments may choose to provide it only upon request.33

18.4.5 Debugger-related constants34

The following constants are used in events used to coordinate applications and the debuggers35
attaching to them.36

PMIX_READY_FOR_DEBUG -58 Event indicating a job (or specified set of processes) is37
ready for debug - includes identification of the target processes as well as the38
PMIX_BREAKPOINT indicating where the target is waiting39

PMIX_DEBUGGER_RELEASE -3 Release a tool that is paused during PMIx_tool_init.40

CHAPTER 18. TOOLS AND DEBUGGERS 455

Un
offi
cia
l D
raf
t

18.4.6 Debugger attributes1

Attributes used to assist debuggers - these are values that can either be passed to the PMIx_Spawn2
APIs or accessed by a debugger itself using the PMIx_Get API with the3
PMIX_RANK_WILDCARD rank.4

PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)5
Included in either the pmix_info_t array in a pmix_app_t description (if the directive6
applies only to that application) or in the job_info array if it applies to all applications in the7
given spawn request. Indicates that the application is being spawned under a debugger, and8
that the local launch agent is to pause the resulting application processes on first instruction9
for debugger attach. The launcher (RM or IL) is to generate the10
PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.11

PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)12
Included in either the pmix_info_t array in a pmix_app_t description (if the directive13
applies only to that application) or in the job_info array if it applies to all applications in the14
given spawn request. Indicates that the specified application is being spawned under a15
debugger. The PMIx client library in each resulting application process shall notify its PMIx16
server that it is pausing and then pause during PMIx_Init of the spawned processes until17
either released by debugger modification of an appropriate variable or receipt of the18
PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL) is responsible for generating19
the PMIX_READY_FOR_DEBUG event (stipulating a breakpoint of p̈mix-init)̈ when all20
processes have reached the pause point.21

PMIX_DEBUG_STOP_IN_APP "pmix.dbg.notify" (varies)22
Direct specified ranks to stop at application-specific point and notify they are23
ready-to-debug. The attribute’s value can be any of three data types:24
• bool - true indicating all ranks25 • pmix_rank_t - the rank of one proc, or PMIX_RANK_WILDCARD for all26 • a pmix_data_array_t if an array of individual processes are specified27
The resulting application processes are to notify their server (by generating the28
PMIX_READY_FOR_DEBUG event) when they reach some application-determined location29
- the event shall include the PMIX_BREAKPOINT attribute indicating where the application30
has stopped. The application shall pause at that point until released by debugger31
modification of an appropriate variable. The launcher (RM or IL) is responsible for32
generating the PMIX_READY_FOR_DEBUG event when all processes have indicated they33
are at the pause point.34

PMIX_BREAKPOINT "pmix.brkpnt" (char*)35
String ID of the breakpoint where the process(es) is(are) waiting.36

PMIX_DEBUG_TARGET "pmix.dbg.tgt" (pmix_proc_t*)37
Identifier of process(es) to be debugged - a rank of PMIX_RANK_WILDCARD indicates that38
all processes in the specified namespace are to be included.39

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)40
Included in the pmix_info_t array of a pmix_app_t, this attribute declares that the41
application consists of debugger daemons and shall be governed accordingly. If used as the42
sole pmix_app_t in a PMIx_Spawn request, then the PMIX_DEBUG_TARGET attribute43

456 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

must also be provided (in either the job_info or in the info array of the pmix_app_t) to1
identify the namespace to be debugged so that the launcher can determine where to place the2
spawned daemons. If neither PMIX_DEBUG_DAEMONS_PER_PROC nor3
PMIX_DEBUG_DAEMONS_PER_NODE is specified, then the launcher shall default to a4
placement policy of one daemon per process in the target job.5

PMIX_COSPAWN_APP "pmix.cospawn" (bool)6
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not7
include the application in any of the job-level values (e.g., PMIX_RANK within the job)8
provided to any other application process generated by the same spawn request. Typically9
used to cospawn debugger daemons alongside an application.10

PMIX_DEBUG_DAEMONS_PER_PROC "pmix.dbg.dpproc" (uint16_t)11
Number of debugger daemons to be spawned per application process. The launcher is to pass12
the identifier of the namespace to be debugged by including the PMIX_DEBUG_TARGET13
attribute in the daemon’s job-level information. The debugger daemons spawned on a given14
node are responsible for self-determining their specific target process(es) - e.g., by15
referencing their own PMIX_LOCAL_RANK in the daemon debugger job versus the16
corresponding PMIX_LOCAL_RANK of the target processes on the node.17

PMIX_DEBUG_DAEMONS_PER_NODE "pmix.dbg.dpnd" (uint16_t)18
Number of debugger daemons to be spawned on each node where the target job is executing.19
The launcher is to pass the identifier of the namespace to be debugged by including the20
PMIX_DEBUG_TARGET attribute in the daemon’s job-level information. The debugger21
daemons spawned on a given node are responsible for self-determining their specific target22
process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger23
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.24

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)25
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each26
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:27
PMIX_NSPACE indicating the namespace whose process table is being queried.28

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)29
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each30
process in the specified namespace executing on the same node as the requester, ordered by31
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace32
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME33
indicating the host whose local process table is being queried. By default, the query assumes34
that the host upon which the request was made is to be used.35

18.5 Tool-Specific APIs36

PMIx-based tools automatically have access to all PMIx client functions. Tools designated as a37
launcher or a server will also have access to all PMIx server functions. There are, however, an38
additional set of functions (described in this section) that are specific to a PMIx tool. Access to39
those functions require use of the tool initialization routine.40

CHAPTER 18. TOOLS AND DEBUGGERS 457

Un
offi
cia
l D
raf
t

18.5.1 PMIx_tool_init1

Summary2
Initialize the PMIx library for operating as a tool, optionally connecting to a specified PMIx server.3

Format4 PMIx v2.0 C
pmix_status_t5
PMIx_tool_init(pmix_proc_t *proc,6

pmix_info_t info[], size_t ninfo);7

C

INOUT proc8
pmix_proc_t structure (handle)9

IN info10
Array of pmix_info_t structures (array of handles)11

IN ninfo12
Number of elements in the info array (size_t)13

Returns PMIX_SUCCESS or a negative value indicating the error.14

Required Attributes

The following attributes are required to be supported by all PMIx libraries:15

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)16
Name of the namespace to use for this tool.17

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)18
Rank of this tool.19

PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)20
The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.21

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)22
Pathname of file containing connection information to be used for attaching to a specific23
server.24

PMIX_SERVER_URI "pmix.srvr.uri" (char*)25
URI of the PMIx server to be contacted.26

PMIX_TCP_URI "pmix.tcp.uri" (char*)27
The URI of the PMIx server to connect to, or a file name containing it in the form of28
file:<name of file containing it>.29

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)30
PID of the target PMIx server for a tool.31

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)32
Name of the namespace to use for this PMIx server.33

458 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)1
The requester requires that a connection be made only to a local, system-level PMIx server.2

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)3
Preferentially, look for a system-level PMIx server first.4

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:5

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)6
Time in seconds between connection attempts to a PMIx server - the default value is7
implementation specific.8

PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)9
Maximum number of times to try to connect to PMIx server - the default value is10
implementation specific.11

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)12
POSIX mode_t (9 bits valid). If the library supports socket connections, this attribute may13
be supported for setting the socket mode.14

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)15
If provided, directs that the TCP URI be reported and indicates the desired method of16
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket17
connections, this attribute may be supported for reporting the URI.18

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)19
Comma-delimited list of devices and/or CIDR notation to include when establishing the20
TCP connection. If the library supports TCP socket connections, this attribute may be21
supported for specifying the interfaces to be used.22

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)23
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the24
TCP connection. If the library supports TCP socket connections, this attribute may be25
supported for specifying the interfaces that are not to be used.26

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)27
The IPv4 port to be used.. If the library supports IPV4 connections, this attribute may be28
supported for specifying the port to be used.29

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)30
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be31
supported for specifying the port to be used.32

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)33
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,34
this attribute may be supported for disabling it.35

CHAPTER 18. TOOLS AND DEBUGGERS 459

Un
offi
cia
l D
raf
t

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)1
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,2
this attribute may be supported for disabling it.3

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)4
The host shall progress the PMIx library via calls to PMIx_Progress5

PMIX_EVENT_BASE "pmix.evbase" (void*)6
Pointer to an event_base to use in place of the internal progress thread. All PMIx library7
events are to be assigned to the provided event base. The event base must be compatible with8
the event library used by the PMIx implementation - e.g., either both the host and PMIx9
library must use libevent, or both must use libev. Cross-matches are unlikely to work and10
should be avoided - it is the responsibility of the host to ensure that the PMIx11
implementation supports (and was built with) the appropriate event library.12

PMIX_IOF_LOCAL_OUTPUT "pmix.iof.local" (bool)13
Write output streams to local stdout/err14

Description15
Initialize the PMIx tool, returning the process identifier assigned to this tool in the provided16
pmix_proc_t struct. The info array is used to pass user requests pertaining to the initialization17
and subsequent operations. Passing a NULL value for the array pointer is supported if no directives18
are desired.19

If called with the PMIX_TOOL_DO_NOT_CONNECT attribute, the PMIx tool library will fully20
initialize but not attempt to connect to a PMIx server. The tool can connect to a server at a later21
point in time, if desired, by calling the PMIx_tool_attach_to_server function. If provided,22
the proc structure will be set to a zero-length namespace and a rank of PMIX_RANK_UNDEF unless23
the PMIX_TOOL_NSPACE and PMIX_TOOL_RANK attributes are included in the info array.24

In all other cases, the PMIx tool library will automatically attempt to connect to a PMIx server25
according to the precedence chain described in Section 18.1. If successful, the function will return26
PMIX_SUCCESS and will fill the process structure (if provided) with the assigned namespace and27
rank of the tool. The server to which the tool connects will be designated its primary server. Note28
that each connection attempt in the above precedence chain will retry (with delay between each29
retry) a number of times according to the values of the corresponding attributes.30

Note that the PMIx tool library is referenced counted, and so multiple calls to PMIx_tool_init31
are allowed. If the tool is not connected to any server when this API is called, then the tool will32
attempt to connect to a server unless the PMIX_TOOL_DO_NOT_CONNECT is included in the call33
to API.34

18.5.2 PMIx_tool_finalize35

Summary36
Finalize the PMIx tool library.37

460 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 PMIx v2.0 C
pmix_status_t2
PMIx_tool_finalize(void);3

C

Returns PMIX_SUCCESS or a negative value indicating the error.4

Description5
Finalize the PMIx tool library, closing all existing connections to servers. An error code will be6
returned if, for some reason, a connection cannot be cleanly terminated — in such cases, the7
connection is dropped. Upon detecting loss of the connection, the PMIx server shall cleanup all8
associated records of the tool.9

18.5.3 PMIx_tool_disconnect10

Summary11
Disconnect the PMIx tool from the specified server connection while leaving the tool library12
initialized.13

Format14 PMIx v4.0 C
pmix_status_t15
PMIx_tool_disconnect(const pmix_proc_t *server);16

C

IN server17
pmix_proc_t structure (handle)18

Returns PMIX_SUCCESS or a negative value indicating the error.19

Description20
Close the current connection to the specified server, if one has been made, while leaving the PMIx21
library initialized. An error code will be returned if, for some reason, the connection cannot be22
cleanly terminated - in this case, the connection is dropped. In either case, the library will remain23
initialized. Upon detecting loss of the connection, the PMIx server shall cleanup all associated24
records of the tool.25

Note that if the server being disconnected is the current primary server, then all operations26
requiring support from a server will return the PMIX_ERR_UNREACH error until the tool either27
designates an existing connection to be the primary server or, if no other connections exist, the tool28
establishes a connection to a PMIx server.29

CHAPTER 18. TOOLS AND DEBUGGERS 461

Un
offi
cia
l D
raf
t

18.5.4 PMIx_tool_attach_to_server1

Summary2
Establish a connection to a PMIx server.3

Format4 C
pmix_status_t5
PMIx_tool_attach_to_server(pmix_proc_t *proc,6

pmix_proc_t *server,7
pmix_info_t info[],8
size_t ninfo);9

C

INOUT proc10
Pointer to pmix_proc_t structure (handle)11

INOUT server12
Pointer to pmix_proc_t structure (handle)13

IN info14
Array of pmix_info_t structures (array of handles)15

IN ninfo16
Number of elements in the info array (size_t)17

Returns PMIX_SUCCESS or a negative value indicating the error.18

Required Attributes

The following attributes are required to be supported by all PMIx libraries:19

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)20
Pathname of file containing connection information to be used for attaching to a specific21
server.22

PMIX_SERVER_URI "pmix.srvr.uri" (char*)23
URI of the PMIx server to be contacted.24

PMIX_TCP_URI "pmix.tcp.uri" (char*)25
The URI of the PMIx server to connect to, or a file name containing it in the form of26
file:<name of file containing it>.27

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)28
PID of the target PMIx server for a tool.29

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)30
Name of the namespace to use for this PMIx server.31

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)32
The requester requires that a connection be made only to a local, system-level PMIx server.33

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)34

462 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Preferentially, look for a system-level PMIx server first.1

PMIX_PRIMARY_SERVER "pmix.pri.srvr" (bool)2
The server to which the tool is connecting shall be designated the primary server once3
connection has been accomplished.4

Description5
Establish a connection to a server. This function can be called at any time by a PMIx tool to create a6
new connection to a server. If a specific server is given and the tool is already attached to it, then7
the API shall return PMIX_SUCCESS without taking any further action. In all other cases, the tool8
will attempt to discover a server using the method described in Section 18.1, ignoring all candidates9
to which it is already connected. The PMIX_ERR_UNREACH error shall be returned if no new10
connection is made.11

The process identifier assigned to this tool is returned in the provided proc structure. Passing a12
value of NULL for the proc parameter is allowed if the user wishes solely to connect to a PMIx13
server and does not require return of the identifier at that time.14

The process identifier of the server to which the tool attached is returned in the server structure.15
Passing a value of NULL for the proc parameter is allowed if the user wishes solely to connect to a16
PMIx server and does not require return of the identifier at that time.17

Note that the PMIX_PRIMARY_SERVER attribute must be included in the info array if the server18
being connected to is to become the primary server, or a call to PMIx_tool_set_server must19
be provided immediately after the call to this function.20

Advice to PMIx library implementers

When a tool connects to a server that is under a different namespace manager (e.g., host RM) from21
the prior server, the namespace in the identifier of the tool must remain unique in the new universe.22
If the namespace of the tool fails to meet this criteria in the new universe, then the new namespace23
manager is required to return an error and the connection attempt must fail.24

Advice to users

Some PMIx implementations may not support connecting to a server that is not under the same25
namespace manager (e.g., host RM) as the server to which the tool is currently connected.26

18.5.5 PMIx_tool_get_servers27

Summary28
Get an array containing the pmix_proc_t process identifiers of all servers to which the tool is29
currently connected.30

CHAPTER 18. TOOLS AND DEBUGGERS 463

Un
offi
cia
l D
raf
t

Format1 C
pmix_status_t2
PMIx_tool_get_servers(pmix_proc_t *servers[], size_t *nservers);3

C

OUT servers4
Address where the pointer to an array of pmix_proc_t structures shall be returned (handle)5

INOUT nservers6
Address where the number of elements in servers shall be returned (handle)7

Returns PMIX_SUCCESS or a negative value indicating the error.8

Description9
Return an array containing the pmix_proc_t process identifiers of all servers to which the tool is10
currently connected. The process identifier of the current primary server shall be the first entry in11
the array, with the remaining entries in order of attachment from earliest to most recent.12

18.5.6 PMIx_tool_set_server13

Summary14
Designate a server as the tool’s primary server.15

Format16 PMIx v4.0 C
pmix_status_t17
PMIx_tool_set_server(const pmix_proc_t *server pmix_info_t18
info[], size_t ninfo);19

C

IN server20
pmix_proc_t structure (handle)21

IN info22
Array of pmix_info_t structures (array of handles)23

IN ninfo24
Number of elements in the info array (size_t)25

Returns PMIX_SUCCESS or a negative value indicating the error.26

464 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_WAIT_FOR_CONNECTION "pmix.wait.conn" (bool)2
Wait until the specified process has connected to the requesting tool or server, or the3
operation times out (if the PMIX_TIMEOUT directive is included in the request).4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Designate the specified server to be the tool’s primary server for all subsequent API calls.10

18.5.7 PMIx_IOF_pull11

Summary12
Register to receive output forwarded from a set of remote processes.13

Format14 PMIx v3.0 C
pmix_status_t15
PMIx_IOF_pull(const pmix_proc_t procs[], size_t nprocs,16

const pmix_info_t directives[], size_t ndirs,17
pmix_iof_channel_t channel,18
pmix_iof_cbfunc_t cbfunc,19
pmix_hdlr_reg_cbfunc_t regcbfunc,20
void *regcbdata);21

C

IN procs22
Array of proc structures identifying desired source processes (array of handles)23

IN nprocs24
Number of elements in the procs array (integer)25

IN directives26
Array of pmix_info_t structures (array of handles)27

IN ndirs28
Number of elements in the directives array (integer)29

IN channel30
Bitmask of IO channels included in the request (pmix_iof_channel_t)31

IN cbfunc32
Callback function for delivering relevant output (pmix_iof_cbfunc_t function reference)33

CHAPTER 18. TOOLS AND DEBUGGERS 465

Un
offi
cia
l D
raf
t

IN regcbfunc1
Function to be called when registration is completed (pmix_hdlr_reg_cbfunc_t2
function reference)3

IN regcbdata4
Data to be passed to the regcbfunc callback function (memory reference)5

Returns PMIX_SUCCESS or a negative value indicating the error.In the event the function returns6
an error, the regcbfunc will not be called.7

Required Attributes

The following attributes are required for PMIx libraries that support IO forwarding:8

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)9
The requested size of the PMIx server cache in bytes for each specified channel. By default,10
the server is allowed (but not required) to drop all bytes received beyond the max size.11

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)12
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the13
cache.14

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)15
In an overflow situation, the PMIx server is to drop any new bytes received until room16
becomes available in the cache (default).17

Optional Attributes

The following attributes are optional for PMIx libraries that support IO forwarding:18

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)19
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the20
specified number of bytes is collected to avoid being called every time a block of IO arrives.21
The PMIx tool library will execute the callback and reset the collection counter whenever the22
specified number of bytes becomes available. Any remaining buffered data will be flushed to23
the callback upon a call to deregister the respective channel.24

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)25
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering26
size, this prevents IO from being held indefinitely while waiting for another payload to27
arrive.28

PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)29
Requests that output be prefixed with the nspace,rank of the source and a string identifying30
the channel (stdout, stderr, etc.).31

PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)32
Requests that output be marked with the time at which the data was received by the tool -33
note that this will differ from the time at which the data was collected from the source.34

466 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)1
Requests that output be formatted in XML.2

Description3
Register to receive output forwarded from a set of remote processes.4

Advice to users

Providing a NULL function pointer for the cbfunc parameter will cause output for the indicated5
channels to be written to their corresponding stdout/stderr file descriptors. Use of6
PMIX_RANK_WILDCARD to specify all processes in a given namespace is supported but should be7
used carefully due to bandwidth and memory footprint considerations.8

18.5.8 PMIx_IOF_deregister9

Summary10
Deregister from output forwarded from a set of remote processes.11

Format12 PMIx v3.0 C
pmix_status_t13
PMIx_IOF_deregister(size_t iofhdlr,14

const pmix_info_t directives[], size_t ndirs,15
pmix_op_cbfunc_t cbfunc, void *cbdata);16

C

IN iofhdlr17
Registration number returned from the pmix_hdlr_reg_cbfunc_t callback from the18
call to PMIx_IOF_pull (size_t)19

IN directives20
Array of pmix_info_t structures (array of handles)21

IN ndirs22
Number of elements in the directives array (integer)23

IN cbfunc24
Callback function to be called when deregistration has been completed. (function reference)25

IN cbdata26
Data to be passed to the cbfunc callback function (memory reference)27

A successful return indicates that the request is being processed and the result will be returned in28
the provided cbfunc. Note that the library must not invoke the callback function prior to returning29
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.30

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:31

CHAPTER 18. TOOLS AND DEBUGGERS 467

Un
offi
cia
l D
raf
t

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed1
successfully - the cbfunc will not be called.2

If none of the above return codes are appropriate, then an implementation must return either a3
general PMIx error code or an implementation defined error code as described in Section 3.1.1.4

Description5
Deregister from output forwarded from a set of remote processes.6

Advice to PMIx library implementers

Any currently buffered IO should be flushed upon receipt of a deregistration request. All received7
IO after receipt of the request shall be discarded.8

18.5.9 PMIx_IOF_push9

Summary10
Push data collected locally (typically from stdin or a file) to stdin of the target recipients.11

Format12 PMIx v3.0 C
pmix_status_t13
PMIx_IOF_push(const pmix_proc_t targets[], size_t ntargets,14

pmix_byte_object_t *bo,15
const pmix_info_t directives[], size_t ndirs,16
pmix_op_cbfunc_t cbfunc, void *cbdata);17

C

IN targets18
Array of proc structures identifying desired target processes (array of handles)19

IN ntargets20
Number of elements in the targets array (integer)21

IN bo22
Pointer to pmix_byte_object_t containing the payload to be delivered (handle)23

IN directives24
Array of pmix_info_t structures (array of handles)25

IN ndirs26
Number of elements in the directives array (integer)27

IN directives28
Array of pmix_info_t structures (array of handles)29

IN cbfunc30
Callback function to be called when operation has been completed. (pmix_op_cbfunc_t31
function reference)32

468 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

IN cbdata1
Data to be passed to the cbfunc callback function (memory reference)2

A successful return indicates that the request is being processed and the result will be returned in3
the provided cbfunc. Note that the library must not invoke the callback function prior to returning4
from the API. The callback function, cbfunc, is only called when PMIX_SUCCESS is returned.5

Returns PMIX_SUCCESS or one of the following error codes when the condition described occurs:6

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed7
successfully - the cbfunc will not be called.8

If none of the above return codes are appropriate, then an implementation must return either a9
general PMIx error code or an implementation defined error code as described in Section 3.1.1.10

Required Attributes

The following attributes are required for PMIx libraries that support IO forwarding:11

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)12
The requested size of the PMIx server cache in bytes for each specified channel. By default,13
the server is allowed (but not required) to drop all bytes received beyond the max size.14

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)15
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the16
cache.17

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)18
In an overflow situation, the PMIx server is to drop any new bytes received until room19
becomes available in the cache (default).20

Optional Attributes

The following attributes are optional for PMIx libraries that support IO forwarding:21

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)22
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the23
specified number of bytes is collected to avoid being called every time a block of IO arrives.24
The PMIx tool library will execute the callback and reset the collection counter whenever the25
specified number of bytes becomes available. Any remaining buffered data will be flushed to26
the callback upon a call to deregister the respective channel.27

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)28
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering29
size, this prevents IO from being held indefinitely while waiting for another payload to30
arrive.31

PMIX_IOF_PUSH_STDIN "pmix.iof.stdin" (bool)32

CHAPTER 18. TOOLS AND DEBUGGERS 469

Un
offi
cia
l D
raf
t

Requests that the PMIx library collect the stdin of the requester and forward it to the1
processes specified in the PMIx_IOF_push call. All collected data is sent to the same2
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that3
includes the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be4
terminated.5

Description6
Called either to:7

• push data collected by the caller themselves (typically from stdin or a file) to stdin of the8
target recipients;9

• request that the PMIx library automatically collect and push the stdin of the caller to the target10
recipients; or11

• indicate that automatic collection and transmittal of stdin is to stop12

Advice to users

Execution of the cbfunc callback function serves as notice that the PMIx library no longer requires13
the caller to maintain the bo data object - it does not indicate delivery of the payload to the targets.14
Use of PMIX_RANK_WILDCARD to specify all processes in a given namespace is supported but15
should be used carefully due to bandwidth and memory footprint considerations.16

470 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

CHAPTER 19

Storage Support Definitions

Provisional Distributed and parallel computing systems are increasingly embracing storage hierarchies to meet1
the diverse data management needs of applications and other systems software in a cost-effective2
manner. These hierarchies provide access to a number of distinct storage layers, with each3
potentially composed of different storage hardware (e.g., HDD, SSD, tape, PMEM), deployed at4
different locations (e.g., on-node, on-switch, on-site, WAN), and designed using different storage5
paradigms (e.g., file-based, object-based). Each of these systems offers unique performance and6
usage characteristics that storage system users should carefully consider to ensure the most efficient7
use of storage resources.8

PMIx enables users to better understand storage hierarchies by defining attributes that formalize9
storage system characteristics, state, and other parameters. These attributes can be queried by10
applications, I/O libraries and middleware, and workflow systems to discover available storage11
resources and to inform on which resources are most suitable for different I/O workload12
requirements.13

19.1 Storage support constants14

Provisional The pmix_storage_medium_t is a uint64_t type that defines a set of bit-mask flags for15
specifying different types of storage mediums. These can be bitwise OR’d together to16
accommodate storage systems that mix storage medium types.17

PMIX_STORAGE_MEDIUM_UNKNOWNProvisional 0x0000000000000001 The storage medium18
type is unknown.19

PMIX_STORAGE_MEDIUM_TAPEProvisional 0x0000000000000002 The storage system uses20
tape media.21

PMIX_STORAGE_MEDIUM_HDDProvisional 0x0000000000000004 The storage system uses22
HDDs with traditional SAS, SATA interfaces.23

PMIX_STORAGE_MEDIUM_SSDProvisional 0x0000000000000008 The storage system uses24
SSDs with traditional SAS, SATA interfaces.25

PMIX_STORAGE_MEDIUM_NVMEProvisional 0x0000000000000010 The storage system uses26
SSDs with NVMe interface.27

PMIX_STORAGE_MEDIUM_PMEMProvisional 0x0000000000000020 The storage system uses28
persistent memory.29

PMIX_STORAGE_MEDIUM_RAMProvisional 0x0000000000000040 The storage system is30
volatile (e.g., tmpfs).31

471

Un
offi
cia
l D
raf
t

Advice to PMIx library implementers

PMIx implementations should maintain the same ordering for bit-mask values for1
pmix_storage_medium_t struct as provided in this standard, since these constants are ordered2
to provide semantic information that may be of use to PMIx users. Namely,3
pmix_storage_medium_t constants are ordered in terms of increasing medium bandwidth.4

It is further recommended that implementations should try to allocate empty bits in the mask so5
that they can be extended to account for new constant definitions corresponding to new storage6
mediums.7

Provisional The pmix_storage_accessibility_t is a uint64_t type that defines a set of bit-mask8
flags for specifying different levels of storage accessibility (i.e,. from where a storage system may9
be accessed). These can be bitwise OR’d together to accommodate storage systems that are10
accessibile in multiple ways.11

PMIX_STORAGE_ACCESSIBILITY_NODEProvisional 0x0000000000000001 The storage12
system resources are accessible within the same node.13

PMIX_STORAGE_ACCESSIBILITY_SESSIONProvisional 0x0000000000000002 The storage14
system resources are accessible within the same session.15

PMIX_STORAGE_ACCESSIBILITY_JOBProvisional 0x0000000000000004 The storage16
system resources are accessible within the same job.17

PMIX_STORAGE_ACCESSIBILITY_RACKProvisional 0x0000000000000008 The storage18
system resources are accessible within the same rack.19

PMIX_STORAGE_ACCESSIBILITY_CLUSTERProvisional 0x0000000000000010 The storage20
system resources are accessible within the same cluster.21

PMIX_STORAGE_ACCESSIBILITY_REMOTEProvisional 0x0000000000000020 The storage22
system resources are remote.23

Provisional The pmix_storage_persistence_t is a uint64_t type that defines a set of bit-mask24
flags for specifying different levels of persistence for a particular storage system.25

PMIX_STORAGE_PERSISTENCE_TEMPORARYProvisional 0x0000000000000001 Data on the26
storage system is persisted only temporarily (i.e, it does not survive across sessions or node27
reboots).28

PMIX_STORAGE_PERSISTENCE_NODEProvisional 0x0000000000000002 Data on the storage29
system is persisted on the node.30

PMIX_STORAGE_PERSISTENCE_SESSIONProvisional 0x0000000000000004 Data on the31
storage system is persisted for the duration of the session.32

PMIX_STORAGE_PERSISTENCE_JOBProvisional 0x0000000000000008 Data on the storage33
system is persisted for the duration of the job.34

PMIX_STORAGE_PERSISTENCE_SCRATCHProvisional 0x0000000000000010 Data on the35
storage system is persisted according to scratch storage policies (short-term storage, typically36
persisted for days to weeks).37

472 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_STORAGE_PERSISTENCE_PROJECT 0x0000000000000020 Data on the1
storage system is persisted according to project storage policies (long-term storage, typically2
persisted for the duration of a project).3

PMIX_STORAGE_PERSISTENCE_ARCHIVEProvisional 0x0000000000000040 Data on the4
storage system is persisted according to archive storage policies (long-term storage, typically5
persisted indefinitely).6

Provisional The pmix_storage_access_type_t is a uint16_t type that defines a set of bit-mask7
flags for specifying different storage system access types.8

PMIX_STORAGE_ACCESS_RDProvisional 0x0001 Provide information on storage system read9
operations.10

PMIX_STORAGE_ACCESS_WRProvisional 0x0002 Provide information on storage system write11
operations.12

PMIX_STORAGE_ACCESS_RDWRProvisional 0x0003 Provide information on storage system read13
and write operations.14

19.2 Storage support attributes15

The following attributes may be returned in response to queries (e.g., PMIx_Get or16
PMIx_Query_info) made by processes or tools.17

PMIX_STORAGE_ID "pmix.strg.id" (char*)Provisional18
An identifier for the storage system (e.g., lustre-fs1, daos-oss1, home-fs)19

PMIX_STORAGE_PATH "pmix.strg.path" (char*)Provisional20
Mount point path for the storage system (valid only for file-based storage systems)21

PMIX_STORAGE_TYPE "pmix.strg.type" (char*)Provisional22
Type of storage system (i.e., "lustre", "gpfs", "daos", "ext4")23

PMIX_STORAGE_VERSION "pmix.strg.ver" (char*)Provisional24
Version string for the storage system25

PMIX_STORAGE_MEDIUM "pmix.strg.medium" (pmix_storage_medium_t)Provisional26
Types of storage mediums utilized by the storage system (e.g., SSDs, HDDs, tape)27

PMIX_STORAGE_ACCESSIBILITY28
"pmix.strg.access" (pmix_storage_accessibility_t)Provisional29

Accessibility level of the storage system (e.g., within same node, within same session)30
PMIX_STORAGE_PERSISTENCE31
"pmix.strg.persist" (pmix_storage_persistence_t)Provisional32

Persistence level of the storage system (e.g., sratch storage or achive storage)33
PMIX_QUERY_STORAGE_LIST "pmix.strg.list" (char*)Provisional34

Comma-delimited list of storage identifiers (i.e., PMIX_STORAGE_ID types) for available35
storage systems36

PMIX_STORAGE_CAPACITY_LIMIT "pmix.strg.caplim" (double)Provisional37
Overall limit on capacity (in bytes) for the storage system38

PMIX_STORAGE_CAPACITY_USED "pmix.strg.capuse" (double)Provisional39

CHAPTER 19. STORAGE SUPPORT DEFINITIONS 473

Un
offi
cia
l D
raf
t

Overall used capacity (in bytes) for the storage system1
PMIX_STORAGE_OBJECT_LIMIT "pmix.strg.objlim" (uint64_t)2

Overall limit on number of objects (e.g., inodes) for the storage system3
PMIX_STORAGE_OBJECTS_USED "pmix.strg.objuse" (uint64_t)Provisional4

Overall used number of objects (e.g., inodes) for the storage system5
PMIX_STORAGE_MINIMAL_XFER_SIZE "pmix.strg.minxfer" (double)Provisional6

Minimal transfer size (in bytes) for the storage system - this is the storage system’s atomic7
unit of transfer (e.g., block size)8

PMIX_STORAGE_SUGGESTED_XFER_SIZE "pmix.strg.sxfer" (double)Provisional9
Suggested transfer size (in bytes) for the storage system10

PMIX_STORAGE_BW_MAX "pmix.strg.bwmax" (double)Provisional11
Maximum bandwidth (in bytes/sec) for storage system - provided as the theoretical12
maximum or the maximum observed bandwidth value13

PMIX_STORAGE_BW_CUR "pmix.strg.bwcur" (double)Provisional14
Observed bandwidth (in bytes/sec) for storage system - provided as a recently observed15
bandwidth value, with the exact measurement interval depending on the storage system16
and/or PMIx library implementation17

PMIX_STORAGE_IOPS_MAX "pmix.strg.iopsmax" (double)Provisional18
Maximum IOPS (in I/O operations per second) for storage system - provided as the19
theoretical maximum or the maximum observed IOPS value20

PMIX_STORAGE_IOPS_CUR "pmix.strg.iopscur" (double)Provisional21
Observed IOPS (in I/O operations per second) for storage system - provided as a recently22
observed IOPS value, with the exact measurement interval depending on the storage system23
and/or PMIx library implementation24

PMIX_STORAGE_ACCESS_TYPE25
"pmix.strg.atype" (pmix_storage_access_type_t)Provisional26

Qualifier describing the type of storage access to return information for (e.g., for qualifying27
PMIX_STORAGE_BW_CUR, PMIX_STORAGE_IOPS_CUR, or28
PMIX_STORAGE_SUGGESTED_XFER_SIZE attributes)29

474 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

APPENDIX A

Python Bindings

While the PMIx Standard is defined in terms of C-based APIs, there is no intent to limit the use of1
PMIx to that specific language. Support for other languages is captured in the Standard by2
describing their equivalent syntax for the PMIx APIs and native forms for the PMIx datatypes. This3
Appendix specifically deals with Python interfaces, beginning with a review of the PMIx datatypes.4
Support is restricted to Python 3 and above - i.e., the Python bindings do not support Python 2.5

Note: the PMIx APIs have been loosely collected into three Python classes based on their PMIx6
“class” (i.e., client, server, and tool). All processes have access to a basic set of the APIs, and7
therefore those have been included in the “client” class. Servers can utilize any of those functions8
plus a set focused on operations not commonly executed by an application process. Finally, tools9
can also act as servers but have their own initialization function.10

A.1 Design Considerations11

Several issues arose during design of the Python bindings:12

A.1.1 Error Codes vs Python Exceptions13

The C programming language reports errors through the return of the corresponding integer status14
codes. PMIx has defined a range of negative values for this purpose. However, Python has the15
option of raising exceptions that effectively operate as interrupts that can be trapped if the program16
appropriately tests for them. The PMIx Python bindings opted to follow the C-based standard and17
return PMIx status codes in lieu of raising exceptions as this method was considered more18
consistent for those working in both domains.19

A.1.2 Representation of Structured Data20

PMIx utilizes a number of C-language structures to efficiently bundle related information. For21
example, the PMIx process identifier is represented as a struct containing a character array for the22
namespace and a 32-bit unsigned integer for the process rank. There are several options for23
translating such objects to Python – e.g., the PMIx process identifier could be represented as a24
two-element tuple (nspace, rank) or as a dictionary ‘nspace’: name, ‘rank’: 0. Exploration found no25
discernible benefit to either representation, nor was any clearly identifiable rationale developed that26
would lead a user to expect one versus the other for a given PMIx data type. Consistency in the27
translation (i.e., exclusively using tuple or dictionary) appeared to be the most important criterion.28
Hence, the decision was made to express all complex datatypes as Python dictionaries.29

475

Un
offi
cia
l D
raf
t

A.2 Datatype Definitions1

PMIx defines a number of datatypes comprised of fixed-size character arrays, restricted range2
integers (e.g., uint32_t), and structures. Each datatype is represented by a named unsigned 16-bit3
integer (uint16_t) constant. Users are advised to use the named PMIx constants for indicating4
datatypes instead of integer values to ensure compatibility with future PMIx versions.5

With only a few exceptions, the C-based PMIx datatypes defined in Chapter 3 on page 13 directly6
translate to Python. However, Python lacks the size-specific value definitions of C (e.g., uint8_t)7
and thus some care must be taken to protect against overflow/underflow situations when moving8
between the languages. Python bindings that accept values including PMIx datatypes shall9
therefore have the datatype and associated value checked for compatibility with their PMIx-defined10
equivalents, returning an error if:11

• datatypes not defined by PMIx are encountered12

• provided values fall outside the range of the C-equivalent definition - e.g., if a value identified as13
PMIX_UINT8 lies outside the uint8_trange14

Note that explicit labeling of PMIx data type, even when Python itself doesn’t care, is often15
required for the Python bindings to know how to properly interpret and label the provided value16
when passing it to the PMIx library.17

Table A.1 lists the correspondence between data types in the two languages.18

476 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Unofficial Draft
Table A.1.: C-to-Python Datatype Correspondence

C-Definition PMIx Name Python Definition Notes
bool PMIX_BOOL boolean
byte PMIX_BYTE A single element byte

array (i.e., a byte array
of length one)

char* PMIX_STRING string
size_t PMIX_SIZE integer
pid_t PMIX_PID integer value shall be limited to the uint32_t

range
int, int8_t, int16_t,
int32_t, int64_t

PMIX_INT, PMIX_INT8,
PMIX_INT16,
PMIX_INT32, PMIX_INT64

integer value shall be limited to its corresponding
range

uint, uint8_t,
uint16_t, uint32_t,
uint64_t

PMIX_UINT, PMIX_UINT8,
PMIX_UINT16,
PMIX_UINT32,
PMIX_UINT64

integer value shall be limited to its corresponding
range

float, double PMIX_FLOAT,
PMIX_DOUBLE

float value shall be limited to its corresponding
range

struct timeval PMIX_TIMEVAL {’sec’: sec, ’usec’:
microsec}

each field is an integer value

time_t PMIX_TIME integer limited to positive values
pmix_data_type_t PMIX_DATA_TYPE integer value shall be limited to the uint16_t

range
pmix_status_t PMIX_STATUS integer
pmix_key_t N/A string The string’s length shall be limited to one

less than the size of the pmix_key_t
array (to reserve space for the terminating
NULL)

pmix_nspace_t N/A string The string’s length shall be limited to one
less than the size of the pmix_nspace_t
array (to reserve space for the terminating
NULL)

A
PPEN

D
IX

A
.
PY

TH
O
N
BIN

D
IN

G
S

477

Unofficial Draft
Table A.1.: C-to-Python Datatype Correspondence

C-Definition PMIx Name Python Definition Notes
pmix_rank_t PMIX_PROC_RANK integer value shall be limited to the uint32_t

range excepting the reserved values near
UINT32_MAX

pmix_proc_t PMIX_PROC {’nspace’: nspace,
’rank’: rank}

nspace is a Python string and rank is an
integer value. The nspace string’s length
shall be limited to one less than the size of
the pmix_nspace_t array (to reserve
space for the terminating NULL), and the
rank value shall conform to the constraints
associated with pmix_rank_t

pmix_byte_object_t PMIX_BYTE_OBJECT {’bytes’: bytes, ’size’:
size}

bytes is a Python byte array and size is the
integer number of bytes in that array.

pmix_persistence_t PMIX_PERSISTENCE integer value shall be limited to the uint8_t
range

pmix_scope_t PMIX_SCOPE integer value shall be limited to the uint8_t
range

pmix_data_range_t PMIX_RANGE integer value shall be limited to the uint8_t
range

pmix_proc_state_t PMIX_PROC_STATE integer value shall be limited to the uint8_t
range

pmix_proc_info_t PMIX_PROC_INFO {’proc’: {’nspace’:
nspace, ’rank’:
rank}, ’hostname’:
hostname, ’executable’:
executable, ’pid’: pid,
’exitcode’: exitcode,
’state’: state}

proc is a Python proc dictionary;
hostname and executable are Python
strings; and pid, exitcode, and state are
Python integers

478
PM

Ix
Standard

–
Version

5.0
(D

raft)–
Created

on
August9,2022

Unofficial Draft
Table A.1.: C-to-Python Datatype Correspondence

C-Definition PMIx Name Python Definition Notes
pmix_data_array_t PMIX_DATA_ARRAY {’type’: type, ’array’:

array}
type is the PMIx type of object in the array
and array is a Python list containing the
individual array elements. Note that array
can consist of any PMIx types, including
(for example) a Python info object that
itself contains an array value

pmix_info_directives_t PMIX_INFO_DIRECTIVES list list of integer values (defined in Section
3.2.10)

pmix_alloc_directive_t PMIX_ALLOC_DIRECTIVE integer value shall be limited to the uint8_t
range

pmix_iof_channel_t PMIX_IOF_CHANNEL list list of integer values (defined in Section
18.3.3)

pmix_envar_t PMIX_ENVAR {’envar’: envar,
’value’: value,
’separator’: separator}

envar and value are Python strings, and
separator a single-character Python string

pmix_value_t PMIX_VALUE {’value’: value,
’val_type’: type}

type is the PMIx datatype of value, and
value is the associated value expressed
in the appropriate Python form for the
specified datatype

pmix_info_t PMIX_INFO {’key’: key, ’flags’:
flags, value’: value,
’val_type’: type}

key is a Python string key, flags is an
info directives value, type is
the PMIx datatype of value, and value
is the associated value expressed in the
appropriate Python form for the specified
datatype

pmix_pdata_t PMIX_PDATA {’proc’: {’nspace’:
nspace, ’rank’: rank},
’key’: key, ’value’:
value, ’val_type’: type}

proc is a Python proc dictionary;
key is a Python string key; type is the
PMIx datatype of value; and value is
the associated value expressed in the
appropriate Python form for the specified
datatype

A
PPEN

D
IX

A
.
PY

TH
O
N
BIN

D
IN

G
S

479

Unofficial Draft
Table A.1.: C-to-Python Datatype Correspondence

C-Definition PMIx Name Python Definition Notes
pmix_app_t PMIX_APP {’cmd’: cmd, ’argv’:

[argv], ’env’: [env],
’maxprocs’: maxprocs,
’info’: [info]}

cmd is a Python string; argv and env are
Python lists containing Python strings;
maxprocs is an integer; and info is a
Python list of info values

pmix_query_t PMIX_QUERY {’keys’: [keys],
’qualifiers’: [info]}

keys is a Python list of Python strings, and
qualifiers is a Python list of info values

pmix_regattr_t PMIX_REGATTR {’name’: name, ’key’:
key, ’type’: type, ’info’:
[info], ’description’:
[desc]}

name and string are Python strings; type
is the PMIx datatype for the attribute’s
value; info is a Python list of info values;
and description is a list of Python strings
describing the attribute

pmix_job_state_t PMIX_JOB_STATE integer value shall be limited to the uint8_t
range

pmix_link_state_t PMIX_LINK_STATE integer value shall be limited to the uint8_t
range

pmix_cpuset_t PMIX_PROC_CPUSET {’source’: source,
’cpus’: bitmap}

source is a string name of the library that
created the cpuset; and cpus is a list of
string ranges identifying the PUs to which
the process is bound (e.g., [1, 3-5, 7])

pmix_locality_t PMIX_LOCTYPE list list of integer values (defined in Section
12.4.2.3) describing the relative locality of
the specified local process

pmix_fabric_t N/A {’name’: name,
’index’: idx, ’info’:
[info]}

name is the string name assigned to the
fabric; index is the integer ID assigned to
the fabric; info is a list of info describing
the fabric

pmix_endpoint_t PMIX_ENDPOINT {’uuid’: uuid,
’osname’: osname,
endpt’: endpt}

uuid is the string system-unique identifier
assigned to the device; osname is the
operating system name assigned to
the device; endpt is a byteobject
containing the endpoint information

480
PM

Ix
Standard

–
Version

5.0
(D

raft)–
Created

on
August9,2022

Unofficial Draft
Table A.1.: C-to-Python Datatype Correspondence

C-Definition PMIx Name Python Definition Notes
pmix_device_distance_t PMIX_DEVICE_DIST {’uuid’: uuid,

’osname’: osname,
mindist’: mindist,
’maxdist’: maxdist}

uuid is the string system-unique identifier
assigned to the device; osname is the
operating system name assigned to the
device; and mindist and maxdist are
Python integers

pmix_coord_t PMIX_COORD {’view’: view, ’coord’:
[coords]}

view is the pmix_coord_view_t of the
coordinate; and coord is a list of integer
coordinates, one for each dimension of the
fabric

pmix_geometry_t PMIX_GEOMETRY {’fabric’: idx, ’uuid’:
uuid, ’osname’:
osname, coordinates’:
[coords]}

fabric is the Python integer index of the
fabric; uuid is the string system-unique
identifier assigned to the device; osname is
the operating system name assigned to the
device; and coordinates is a list of coord
containing the coordinates for the device
across all views

pmix_device_type_t PMIX_DEVTYPE list list of integer values (defined in Section
12.4.8)

pmix_bind_envelope_t N/A integer one of the values defined in Section
12.4.4.1

A
PPEN

D
IX

A
.
PY

TH
O
N
BIN

D
IN

G
S

481

Un
offi
cia
l D
raf
t

A.2.1 Example1

Converting a C-based program to its Python equivalent requires translation of the relevant2
datatypes as well as use of the appropriate API form. An example small program may help3
illustrate the changes. Consider the following C-based program snippet:4

C
#include <pmix.h>5
...6

7
pmix_info_t info[2];8

9
PMIx_Info_load(&info[0], PMIX_PROGRAMMING_MODEL, "TEST", PMIX_STRING)10
PMIx_Info_load(&info[1], PMIX_MODEL_LIBRARY_NAME, "PMIX", PMIX_STRING)11

12
rc = PMIx_Init(&myproc, info, 2);13

14
PMIX_INFO_DESTRUCT(&info[0]); // free the copied string15
PMIX_INFO_DESTRUCT(&info[1]); // free the copied string16

C

Moving to the Python version requires that the pmix_info_t be translated to the Python info17
equivalent, and that the returned information be captured in the return parameters as opposed to a18
pointer parameter in the function call, as shown below:19

Python
import pmix20
...21

22
myclient = PMIxClient()23
info = [{'key':PMIX_PROGRAMMING_MODEL,24

'value':'TEST', 'val_type':PMIX_STRING},25
{'key':PMIX_MODEL_LIBRARY_NAME,26

'value':'PMIX', 'val_type':PMIX_STRING}]27
(rc,myproc) = myclient.init(info)28

Python

Note the use of the PMIX_STRING identifier to ensure the Python bindings interpret the provided29
string value as a PMIx "string" and not an array of bytes.30

482 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.3 Callback Function Definitions1

A.3.1 IOF Delivery Function2

Summary3
Callback function for delivering forwarded IO to a process4

Format5 PMIx v4.0 Python
def iofcbfunc(iofhdlr:integer, channel:bitarray,6

source:dict, payload:dict, info:list)7

Python

IN iofhdlr8
Registration number of the handler being invoked (integer)9

IN channel10
Python channel 16-bit bitarray identifying the channel the data arrived on (bitarray)11

IN source12
Python proc identifying the namespace/rank of the process that generated the data (dict)13

IN payload14
Python byteobject containing the data (dict)15

IN info16
List of Python info provided by the source containing metadata about the payload. This17
could include PMIX_IOF_COMPLETE (list)18

Returns: nothing19

See pmix_iof_cbfunc_t for details20

A.3.2 Event Handler21

Summary22
Callback function for event handlers23

Format24 PMIx v4.0

APPENDIX A. PYTHON BINDINGS 483

Un
offi
cia
l D
raf
t

Python
def evhandler(evhdlr:integer, status:integer,1

source:dict, info:list, results:list)2

Python

IN iofhdlr3
Registration number of the handler being invoked (integer)4

IN status5
Status associated with the operation (integer)6

IN source7
Python proc identifying the namespace/rank of the process that generated the event (dict)8

IN info9
List of Python info provided by the source containing metadata about the event (list)10

IN results11
List of Python info containing the aggregated results of all prior evhandlers (list)12

Returns:13

• rc - Status returned by the event handler’s operation (integer)14

• results - List of Python info containing results from this event handler’s operation on the event15
(list)16

See pmix_notification_fn_t for details17

A.3.3 Server Module Functions18

The following definitions represent functions that may be provided to the PMIx server library at19
time of initialization for servicing of client requests. Module functions that are not provided default20
to returning "not supported" to the caller.21

A.3.3.1 Client Connected22

Summary23
Notify the host server that a client connected to this server.24

Format25 PMIx v4.0

484 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Python
def clientconnected2(proc:dict is not None, info:list)1

Python

IN proc2
Python proc identifying the namespace/rank of the process that connected (dict)3

IN info4
list of Python info containing information about the process (list)5

Returns:6

• rc - PMIX_SUCCESS or a PMIx error code indicating the connection should be rejected (integer)7

See pmix_server_client_connected2_fn_t for details8

A.3.3.2 Client Finalized9

Summary10
Notify the host environment that a client called PMIx_Finalize.11

Format12 PMIx v4.0 Python
def clientfinalized(proc:dict is not None):13

Python

IN proc14
Python proc identifying the namespace/rank of the process that finalized (dict)15

Returns: nothing16

See pmix_server_client_finalized_fn_t for details17

A.3.3.3 Client Aborted18

Summary19
Notify the host environment that a local client called PMIx_Abort.20

APPENDIX A. PYTHON BINDINGS 485

Un
offi
cia
l D
raf
t

Format1 Python
def clientaborted(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’caller’: Python proc identifying the namespace/rank of the process calling abort (dict)5

• ’status’: PMIx status to be returned on exit (integer)6

• ’msg’: Optional string message to be printed (string)7

• ’targets’: Optional list of Python proc identifying the namespace/rank of the processes to8
be aborted (list)9

Returns:10

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)11

See pmix_server_abort_fn_t for details12

A.3.3.4 Fence13

Summary14
At least one client called either PMIx_Fence or PMIx_Fence_nb15

Format16 PMIx v4.0 Python
def fence(args:dict is not None)17

Python

IN args18
Python dictionary containing:19

• ’procs’: List of Python proc identifying the namespace/rank of the participating processes20
(list)21

• ’directives’: Optional list of Python info containing directives controlling the operation22
(list)23

• ’data’: Optional Python bytearray of data to be circulated during fence operation (bytearray)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

• data - Python bytearray containing the aggregated data from all participants (bytearray)27

See pmix_server_fencenb_fn_t for details28

486 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.3.3.5 Direct Modex1

Summary2
Used by the PMIx server to request its local host contact the PMIx server on the remote node that3
hosts the specified proc to obtain and return a direct modex blob for that proc.4

Format5 PMIx v4.0 Python
def dmodex(args:dict is not None)6

Python

IN args7
Python dictionary containing:8

• ’proc’: Python proc of process whose data is being requested (dict)9

• ’directives’: Optional list of Python info containing directives controlling the operation10
(list)11

Returns:12

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)13

• data - Python bytearray containing the data for the specified process (bytearray)14

See pmix_server_dmodex_req_fn_t for details15

A.3.3.6 Publish16

Summary17
Publish data per the PMIx API specification.18

Format19 PMIx v4.0 Python
def publish(args:dict is not None)20

Python

IN args21
Python dictionary containing:22

• ’proc’: Python proc dictionary of process publishing the data (dict)23

• ’directives’: List of Python info containing data and directives (list)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

See pmix_server_publish_fn_t for details27

APPENDIX A. PYTHON BINDINGS 487

Un
offi
cia
l D
raf
t

A.3.3.7 Lookup1

Summary2
Lookup published data.3

Format4 PMIx v4.0 Python
def lookup(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’proc’: Python proc of process seeking the data (dict)8

• ’keys’: List of Python strings (list)9

• ’directives’: Optional list of Python info containing directives (list)10

Returns:11

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)12

• pdata - List of pdata containing the returned results (list)13

See pmix_server_lookup_fn_t for details14

A.3.3.8 Unpublish15

Summary16
Delete data from the data store.17

Format18 PMIx v4.0 Python
def unpublish(args:dict is not None)19

Python

IN args20
Python dictionary containing:21

• ’proc’: Python proc of process unpublishing data (dict)22

• ’keys’: List of Python strings (list)23

• ’directives’: Optional list of Python info containing directives (list)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

See pmix_server_unpublish_fn_t for details27

488 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.3.3.9 Spawn1

Summary2
Spawn a set of applications/processes as per the PMIx_Spawn API.3

Format4 PMIx v4.0 Python
def spawn(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’proc’: Python proc of process making the request (dict)8

• ’jobinfo’: Optional list of Python info job-level directives and information (list)9

• ’apps’: List of Python app describing applications to be spawned (list)10

Returns:11

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)12

• nspace - Python string containing namespace of the spawned job (str)13

See pmix_server_spawn_fn_t for details14

A.3.3.10 Connect15

Summary16
Record the specified processes as connected.17

Format18 PMIx v4.0 Python
def connect(args:dict is not None)19

Python

IN args20
Python dictionary containing:21

• ’procs’: List of Python proc identifying the namespace/rank of the participating processes22
(list)23

• ’directives’: Optional list of Python info containing directives controlling the operation24
(list)25

Returns:26

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)27

See pmix_server_connect_fn_t for details28

APPENDIX A. PYTHON BINDINGS 489

Un
offi
cia
l D
raf
t

A.3.3.11 Disconnect1

Summary2
Disconnect a previously connected set of processes.3

Format4 PMIx v4.0 Python
def disconnect(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’procs’: List of Python proc identifying the namespace/rank of the participating processes8
(list)9

• ’directives’: Optional list of Python info containing directives controlling the operation10
(list)11

Returns:12

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)13

See pmix_server_disconnect_fn_t for details14

A.3.3.12 Register Events15

Summary16
Register to receive notifications for the specified events.17

Format18 PMIx v4.0 Python
def register_events(args:dict is not None)19

Python

IN args20
Python dictionary containing:21

• ’codes’: List of Python integers (list)22

• ’directives’: Optional list of Python info containing directives controlling the operation23
(list)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

See pmix_server_register_events_fn_t for details27

490 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.3.3.13 Deregister Events1

Summary2
Deregister to receive notifications for the specified events.3

Format4 PMIx v4.0 Python
def deregister_events(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’codes’: List of Python integers (list)8

Returns:9

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)10

See pmix_server_deregister_events_fn_t for details11

A.3.3.14 Notify Event12

Summary13
Notify the specified range of processes of an event.14

Format15 PMIx v4.0 Python
def notify_event(args:dict is not None)16

Python

IN args17
Python dictionary containing:18

• ’code’: Python integer pmix_status_t (integer)19

• ’source’: Python proc of process that generated the event (dict)20

• ’range’: Python range in which the event is to be reported (integer)21

• ’directives’: Optional list of Python info directives (list)22

Returns:23

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)24

See pmix_server_notify_event_fn_t for details25

A.3.3.15 Query26

Summary27
Query information from the resource manager.28

APPENDIX A. PYTHON BINDINGS 491

Un
offi
cia
l D
raf
t

Format1 Python
def query(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’queries’: List of Python query directives (list)6

Returns:7

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)8

• info - List of Python info containing the returned results (list)9

See pmix_server_query_fn_t for details10

A.3.3.16 Tool Connected11

Summary12
Register that a tool has connected to the server.13

Format14 PMIx v4.0 Python
def tool_connected(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’directives’: Optional list of Python info info on the connecting tool (list)18

Returns:19

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)20

• proc - Python proc containing the assigned namespace:rank for the tool (dict)21

See pmix_server_tool_connection_fn_t for details22

A.3.3.17 Log23

Summary24
Log data on behalf of a client.25

492 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
def log(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’data’: Optional list of Python info containing data to be logged (list)6

• ’directives’: Optional list of Python info containing directives (list)7

Returns:8

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)9

See pmix_server_log_fn_t for details.10

A.3.3.18 Allocate Resources11

Summary12
Request allocation operations on behalf of a client.13

Format14 PMIx v4.0 Python
def allocate(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’source’: Python proc of requesting process (dict)18

• ’action’: Python allocdir specifying requested action (integer)19

• ’directives’: Optional list of Python info containing directives (list)20

Returns:21

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)22

• refarginfo - List of Python info containing results of requested operation (list)23

See pmix_server_alloc_fn_t for details.24

A.3.3.19 Job Control25

Summary26
Execute a job control action on behalf of a client.27

APPENDIX A. PYTHON BINDINGS 493

Un
offi
cia
l D
raf
t

Format1 Python
def job_control(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’targets’: List of Python proc specifying target processes (list)6

• ’directives’: Optional list of Python info containing directives (list)7

Returns:8

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)9

See pmix_server_job_control_fn_t for details.10

A.3.3.20 Monitor11

Summary12
Request that a client be monitored for activity.13

Format14 PMIx v4.0 Python
def monitor(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’source’: Python proc of requesting process (dict)18

• ’monitor’: Python info attribute indicating the type of monitor being requested (dict)19

• ’error’: Status code to be used when generating an event notification (integer) alerting that20
the monitor has been triggered.21

• ’directives’: Optional list of Python info containing directives (list)22

Returns:23

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)24

See pmix_server_monitor_fn_t for details.25

A.3.3.21 Get Credential26

Summary27
Request a credential from the host environment.28

494 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
def get_credential(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’directives’: Optional list of Python info containing directives (list)6

Returns:7

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)8

• cred - Python byteobject containing returned credential (dict)9

• info - List of Python info containing any additional info about the credential (list)10

See pmix_server_get_cred_fn_t for details.11

A.3.3.22 Validate Credential12

Summary13
Request validation of a credential14

Format15 PMIx v4.0 Python
def validate_credential(args:dict is not None)16

Python

IN args17
Python dictionary containing:18

• ’source’: Python proc of requesting process (dict)19

• ’credential’: Python byteobject containing credential (dict)20

• ’directives’: Optional list of Python info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)23

• info - List of Python info containing any additional info from the credential (list)24

See pmix_server_validate_cred_fn_t for details.25

A.3.3.23 IO Forward26

Summary27
Request the specified IO channels be forwarded from the given array of processes.28

APPENDIX A. PYTHON BINDINGS 495

Un
offi
cia
l D
raf
t

Format1 Python
def iof_pull(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’sources’: List of Python proc of processes whose IO is being requested (list)5

• ’channels’: Bitmask of Python channel identifying IO channels to be forwarded (integer)6

• ’directives’: Optional list of Python info containing directives (list)7

Returns:8

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)9

See pmix_server_iof_fn_t for details.10

A.3.3.24 IO Push11

Summary12
Pass standard input data to the host environment for transmission to specified recipients.13

Format14 PMIx v4.0 Python
def iof_push(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’source’: Python proc of process whose input is being forwarded (dict)18

• ’payload’: Python byteobject containing input bytes (dict)19

• ’targets’: List of proc of processes that are to receive the payload (list)20

• ’directives’: Optional list of Python info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)23

See pmix_server_stdin_fn_t for details.24

A.3.3.25 Group Operations25

Summary26
Request group operations (construct, destruct, etc.) on behalf of a set of processes.27

496 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
def group(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’op’: Operation host is to perform on the specified group (integer)5

• ’group’: String identifier of target group (str)6

• ’procs’: List of Python proc of participating processes (dict)7

• ’directives’: Optional list of Python info containing directives (list)8

Returns:9

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)10

• refarginfo - List of Python info containing results of requested operation (list)11

See pmix_server_grp_fn_t for details.12

A.3.3.26 Fabric Operations13

Summary14
Request fabric-related operations (e.g., information on a fabric) on behalf of a tool or other process.15

Format16 PMIx v4.0 Python
def fabric(args:dict is not None)17

Python

IN args18
Python dictionary containing:19

• ’source’: Python proc of requesting process (dict)20

• ’index’: Identifier of the fabric being operated upon (integer)21

• ’op’: Operation host is to perform on the specified fabric (integer)22

• ’directives’: Optional list of Python info containing directives (list)23

Returns:24

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)25

• refarginfo - List of Python info containing results of requested operation (list)26

See pmix_server_fabric_fn_t for details.27

APPENDIX A. PYTHON BINDINGS 497

Un
offi
cia
l D
raf
t

A.4 PMIxClient1

The client Python class is by far the richest in terms of APIs as it houses all the APIs that an2
application might utilize. Due to the datatype translation requirements of the C-Python interface,3
only the blocking form of each API is supported – providing a Python callback function directly to4
the C interface underlying the bindings was not a supportable option.5

A.4.1 Client.init6

Summary7
Initialize the PMIx client library after obtaining a new PMIxClient object.8

Format9 PMIx v4.0 Python
rc, proc = myclient.init(info:list)10

Python

IN info11
List of Python info dictionaries (list)12

Returns:13

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)14

• proc - a Python proc dictionary (dict)15

See PMIx_Init for description of all relevant attributes and behaviors.16

A.4.2 Client.initialized17

Format18 PMIx v4.0 Python
rc = myclient.initialized()19

Python

Returns:20

• rc - a value of 1 (true) will be returned if the PMIx library has been initialized, and 0 (false)21
otherwise (integer)22

See PMIx_Initialized for description of all relevant attributes and behaviors.23

498 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.4.3 Client.get_version1

Format2 Python
vers = myclient.get_version()3

Python

Returns:4

• vers - Python string containing the version of the PMIx library (e.g., "3.1.4") (integer)5

See PMIx_Get_version for description of all relevant attributes and behaviors.6

A.4.4 Client.finalize7

Summary8
Finalize the PMIx client library.9

Format10 PMIx v4.0 Python
rc = myclient.finalize(info:list)11

Python

IN info12
List of Python info dictionaries (list)13

Returns:14

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)15

See PMIx_Finalize for description of all relevant attributes and behaviors.16

A.4.5 Client.abort17

Summary18
Request that the provided list of processes be aborted.19

APPENDIX A. PYTHON BINDINGS 499

Un
offi
cia
l D
raf
t

Format1 Python
rc = myclient.abort(status:integer, msg:str, targets:list)2

Python

IN status3
PMIx status to be returned on exit (integer)4

IN msg5
String message to be printed (string)6

IN targets7
List of Python proc dictionaries (list)8

Returns:9

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)10

See PMIx_Abort for description of all relevant attributes and behaviors.11

A.4.6 Client.store_internal12

Summary13
Store some data locally for retrieval by other areas of the process14

Format15 PMIx v4.0 Python
rc = myclient.store_internal(proc:dict, key:str, value:dict)16

Python

IN proc17
Python proc dictionary of the process being referenced (dict)18

IN key19
String key of the data (string)20

IN value21
Python value dictionary (dict)22

Returns:23

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)24

See PMIx_Store_internal for details.25

A.4.7 Client.put26

Summary27
Push a key/value pair into the client’s namespace.28

500 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc = myclient.put(scope:integer, key:str, value:dict)2

Python

IN scope3
Scope of the data being posted (integer)4

IN key5
String key of the data (string)6

IN value7
Python value dictionary (dict)8

Returns:9

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)10

See PMIx_Put for description of all relevant attributes and behaviors.11

A.4.8 Client.commit12

Summary13
Push all previously PMIxClient.put values to the local PMIx server.14

Format15 PMIx v4.0 Python
rc = myclient.commit()16

Python

Returns:17

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)18

See PMIx_Commit for description of all relevant attributes and behaviors.19

A.4.9 Client.fence20

Summary21
Execute a blocking barrier across the processes identified in the specified list.22

APPENDIX A. PYTHON BINDINGS 501

Un
offi
cia
l D
raf
t

Format1 Python
rc = myclient.fence(peers:list, directives:list)2

Python

IN peers3
List of Python proc dictionaries (list)4

IN directives5
List of Python info dictionaries (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Fence for description of all relevant attributes and behaviors.9

A.4.10 Client.get10

Summary11
Retrieve a key/value pair.12

Format13 PMIx v4.0 Python
rc, val = myclient.get(proc:dict, key:str, directives:list)14

Python

IN proc15
Python proc whose data is being requested (dict)16

IN key17
Python string key of the data to be returned (str)18

IN directives19
List of Python info dictionaries (list)20

Returns:21

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)22

• val - Python value containing the returned data (dict)23

See PMIx_Get for description of all relevant attributes and behaviors.24

A.4.11 Client.publish25

Summary26
Publish data for later access via PMIx_Lookup.27

502 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc = myclient.publish(directives:list)2

Python

IN directives3
List of Python info dictionaries containing data to be published and directives (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

See PMIx_Publish for description of all relevant attributes and behaviors.7

A.4.12 Client.lookup8

Summary9
Lookup information published by this or another process with PMIx_Publish.10

Format11 PMIx v4.0 Python
rc,info = myclient.lookup(pdata:list, directives:list)12

Python

IN pdata13
List of Python pdata dictionaries identifying data to be retrieved (list)14

IN directives15
List of Python info dictionaries (list)16

Returns:17

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)18

• info - Python list of info containing the returned data (list)19

See PMIx_Lookup for description of all relevant attributes and behaviors.20

A.4.13 Client.unpublish21

Summary22
Delete data published by this process with PMIx_Publish.23

APPENDIX A. PYTHON BINDINGS 503

Un
offi
cia
l D
raf
t

Format1 Python
rc = myclient.unpublish(keys:list, directives:list)2

Python

IN keys3
List of Python string keys identifying data to be deleted (list)4

IN directives5
List of Python info dictionaries (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Unpublish for description of all relevant attributes and behaviors.9

A.4.14 Client.spawn10

Summary11
Spawn a new job.12

Format13 PMIx v4.0 Python
rc,nspace = myclient.spawn(jobinfo:list, apps:list)14

Python

IN jobinfo15
List of Python info dictionaries (list)16

IN apps17
List of Python app dictionaries (list)18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

• nspace - Python nspace of the new job (dict)21

See PMIx_Spawn for description of all relevant attributes and behaviors.22

A.4.15 Client.connect23

Summary24
Connect namespaces.25

504 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc = myclient.connect(peers:list, directives:list)2

Python

IN peers3
List of Python proc dictionaries (list)4

IN directives5
List of Python info dictionaries (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Connect for description of all relevant attributes and behaviors.9

A.4.16 Client.disconnect10

Summary11
Disconnect namespaces.12

Format13 PMIx v4.0 Python
rc = myclient.disconnect(peers:list, directives:list)14

Python

IN peers15
List of Python proc dictionaries (list)16

IN directives17
List of Python info dictionaries (list)18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

See PMIx_Disconnect for description of all relevant attributes and behaviors.21

A.4.17 Client.resolve_peers22

Summary23
Return list of processes within the specified nspace on the given node.24

APPENDIX A. PYTHON BINDINGS 505

Un
offi
cia
l D
raf
t

Format1 Python
rc,procs = myclient.resolve_peers(node:str, nspace:str)2

Python

IN node3
Name of node whose processes are being requested (str)4

IN nspace5
Python nspace whose processes are to be returned (str)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

• procs - List of Python proc dictionaries (list)9

See PMIx_Resolve_peers for description of all relevant attributes and behaviors.10

A.4.18 Client.resolve_nodes11

Summary12
Return list of nodes hosting processes within the specified nspace.13

Format14 PMIx v4.0 Python
rc,nodes = myclient.resolve_nodes(nspace:str)15

Python

IN nspace16
Python nspace (str)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

• nodes - List of Python string node names (list)20

See PMIx_Resolve_nodes for description of all relevant attributes and behaviors.21

A.4.19 Client.query22

Summary23
Query information about the system in general.24

506 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,info = myclient.query(queries:list)2

Python

IN queries3
List of Python query dictionaries (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• info - List of Python info containing results of the query (list)7

See PMIx_Query_info for description of all relevant attributes and behaviors.8

A.4.20 Client.log9

Summary10
Log data to a central data service/store.11

Format12 PMIx v4.0 Python
rc = myclient.log(data:list, directives:list)13

Python

IN data14
List of Python info (list)15

IN directives16
Optional list of Python info (list)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

See PMIx_Log for description of all relevant attributes and behaviors.20

A.4.21 Client.allocation_request21

Summary22
Request an allocation operation from the host resource manager.23

APPENDIX A. PYTHON BINDINGS 507

Un
offi
cia
l D
raf
t

Format1 Python
rc,info = myclient.allocation_request(request:integer, directives:list)2

Python

IN request3
Python allocdir specifying requested operation (integer)4

IN directives5
List of Python info describing request (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

• info - List of Python info containing results of the request (list)9

See PMIx_Allocation_request for description of all relevant attributes and behaviors.10

A.4.22 Client.job_ctrl11

Summary12
Request a job control action.13

Format14 PMIx v4.0 Python
rc,info = myclient.job_ctrl(targets:list, directives:list)15

Python

IN targets16
List of Python proc specifying targets of requested operation (integer)17

IN directives18
List of Python info describing operation to be performed (list)19

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

• info - List of Python info containing results of the request (list)22

See PMIx_Job_control for description of all relevant attributes and behaviors.23

A.4.23 Client.monitor24

Summary25
Request that something be monitored.26

508 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,info = myclient.monitor(monitor:dict, error_code:integer, directives:list)2

Python

IN monitor3
Python info specifying specifying the type of monitor being requested (dict)4

IN error_code5
Status code to be used when generating an event notification alerting that the monitor has6
been triggered (integer)7

IN directives8
List of Python info describing request (list)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• info - List of Python info containing results of the request (list)12

See PMIx_Process_monitor for description of all relevant attributes and behaviors.13

A.4.24 Client.get_credential14

Summary15
Request a credential from the PMIx server/SMS.16

Format17 PMIx v4.0 Python
rc,cred = myclient.get_credential(directives:list)18

Python

IN directives19
Optional list of Python info describing request (list)20

Returns:21

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)22

• cred - Python byteobject containing returned credential (dict)23

See PMIx_Get_credential for description of all relevant attributes and behaviors.24

A.4.25 Client.validate_credential25

Summary26
Request validation of a credential by the PMIx server/SMS.27

APPENDIX A. PYTHON BINDINGS 509

Un
offi
cia
l D
raf
t

Format1 Python
rc,info = myclient.validate_credential(cred:dict, directives:list)2

Python

IN cred3
Python byteobject containing credential (dict)4

IN directives5
Optional list of Python info describing request (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

• info - List of Python info containing additional results of the request (list)9

See PMIx_Validate_credential for description of all relevant attributes and behaviors.10

A.4.26 Client.group_construct11

Summary12
Construct a new group composed of the specified processes and identified with the provided group13
identifier.14

Format15 PMIx v4.0 Python
rc,info = myclient.construct_group(grp:string,16

members:list, directives:list)17

Python

IN grp18
Python string identifier for the group (str)19

IN members20
List of Python proc dictionaries identifying group members (list)21

IN directives22
Optional list of Python info describing request (list)23

Returns:24

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)25

• info - List of Python info containing results of the request (list)26

See PMIx_Group_construct for description of all relevant attributes and behaviors.27

A.4.27 Client.group_invite28

Summary29
Explicitly invite specified processes to join a group.30

510 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,info = myclient.group_invite(grp:string,2

members:list, directives:list)3

Python

IN grp4
Python string identifier for the group (str)5

IN members6
List of Python proc dictionaries identifying processes to be invited (list)7

IN directives8
Optional list of Python info describing request (list)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• info - List of Python info containing results of the request (list)12

See PMIx_Group_invite for description of all relevant attributes and behaviors.13

A.4.28 Client.group_join14

Summary15
Respond to an invitation to join a group that is being asynchronously constructed.16

Format17 PMIx v4.0 Python
rc,info = myclient.group_join(grp:string,18

leader:dict, opt:integer,19
directives:list)20

Python

IN grp21
Python string identifier for the group (str)22

IN leader23
Python proc dictionary identifying process leading the group (dict)24

IN opt25
One of the pmix_group_opt_t values indicating decline/accept (integer)26

IN directives27
Optional list of Python info describing request (list)28

Returns:29

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)30

• info - List of Python info containing results of the request (list)31

See PMIx_Group_join for description of all relevant attributes and behaviors.32

APPENDIX A. PYTHON BINDINGS 511

Un
offi
cia
l D
raf
t

A.4.29 Client.group_leave1

Summary2
Leave a PMIx Group.3

Format4 PMIx v4.0 Python
rc = myclient.group_leave(grp:string, directives:list)5

Python

IN grp6
Python string identifier for the group (str)7

IN directives8
Optional list of Python info describing request (list)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

See PMIx_Group_leave for description of all relevant attributes and behaviors.12

A.4.30 Client.group_destruct13

Summary14
Destruct a PMIx Group.15

Format16 PMIx v4.0 Python
rc = myclient.group_destruct(grp:string, directives:list)17

Python

IN grp18
Python string identifier for the group (str)19

IN directives20
Optional list of Python info describing request (list)21

Returns:22

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)23

See PMIx_Group_destruct for description of all relevant attributes and behaviors.24

A.4.31 Client.register_event_handler25

Summary26
Register an event handler to report events.27

512 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,id = myclient.register_event_handler(codes:list,2

directives:list, cbfunc)3

Python

IN codes4
List of Python integer status codes that should be reported to this handler (llist)5

IN directives6
Optional list of Python info describing request (list)7

IN cbfunc8
Python evhandler to be called when event is received (func)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• id - PMIx reference identifier for handler (integer)12

See PMIx_Register_event_handler for description of all relevant attributes and behaviors.13

A.4.32 Client.deregister_event_handler14

Summary15
Deregister an event handler.16

Format17 PMIx v4.0 Python
myclient.deregister_event_handler(id:integer)18

Python

IN id19
PMIx reference identifier for handler (integer)20

Returns: None21

See PMIx_Deregister_event_handler for description of all relevant attributes and22
behaviors.23

A.4.33 Client.notify_event24

Summary25
Report an event for notification via any registered handler.26

APPENDIX A. PYTHON BINDINGS 513

Un
offi
cia
l D
raf
t

Format1 Python
rc = myclient.notify_event(status:integer, source:dict,2

range:integer, directives:list)3

Python

IN status4
PMIx status code indicating the event being reported (integer)5

IN source6
Python proc of the process that generated the event (dict)7

IN range8
Python range in which the event is to be reported (integer)9

IN directives10
Optional list of Python info dictionaries describing the event (list)11

Returns:12

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)13

See PMIx_Notify_event for description of all relevant attributes and behaviors.14

A.4.34 Client.fabric_register15

Summary16
Register for access to fabric-related information, including communication cost matrix.17

Format18 PMIx v4.0 Python
rc,idx,fabricinfo = myclient.fabric_register(directives:list)19

Python

IN directives20
Optional list of Python info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)23

• idx - Index of the registered fabric (integer)24

• fabricinfo - List of Python info containing fabric info (list)25

See PMIx_Fabric_register for details.26

A.4.35 Client.fabric_update27

Summary28
Update fabric-related information, including communication cost matrix.29

514 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,fabricinfo = myclient.fabric_update(idx:integer)2

Python
IN idx3

Index of the registered fabric (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• fabricinfo - List of Python info containing updated fabric info (list)7

See PMIx_Fabric_update for details.8

A.4.36 Client.fabric_deregister9

Summary10
Deregister fabric.11

Format12 PMIx v4.0 Python
rc = myclient.fabric_deregister(idx:integer)13

Python
IN idx14

Index of the registered fabric (list)15

Returns:16

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)17

See PMIx_Fabric_deregister for details.18

A.4.37 Client.load_topology19

Summary20
Load the local hardware topology into the PMIx library.21

Format22 PMIx v4.0 Python
rc = myclient.load_topology()23

Python
Returns:24

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)25

See PMIx_Load_topology for details - note that the topology loaded into the PMIx library may26
be utilized by PMIx and other libraries, but is not directly accessible by Python.27

APPENDIX A. PYTHON BINDINGS 515

Un
offi
cia
l D
raf
t

A.4.38 Client.get_relative_locality1

Summary2
Get the relative locality of two local processes.3

Format4 PMIx v4.0 Python
rc,locality = myclient.get_relative_locality(loc1:str, loc2:str)5

Python

IN loc16
Locality string of a process (str)7

IN loc28
Locality string of a process (str)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• locality - locality list containing the relative locality of the two processes (list)12

See PMIx_Get_relative_locality for details.13

A.4.39 Client.get_cpuset14

Summary15
Get the PU binding bitmap of the current process.16

Format17 PMIx v4.0 Python
rc,cpuset = myclient.get_cpuset(ref:integer)18

Python

IN ref19
bindenv binding envelope to be used (integer)20

Returns:21

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)22

• cpuset - cpuset containing the source and bitmap of the cpuset (dict)23

See PMIx_Get_cpuset for details.24

A.4.40 Client.parse_cpuset_string25

Summary26
Parse the PU binding bitmap from its string representation.27

516 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,cpuset = myclient.parse_cpuset_string(cpuset:string)2

Python

IN cpuset3
String returned by PMIxServer.generate_cpuset_string (string)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• cpuset - cpuset containing the source and bitmap of the cpuset (dict)7

See PMIx_Parse_cpuset_string for details.8

A.4.41 Client.compute_distances9

Summary10
Compute distances from specified process location to local devices.11

Format12 PMIx v4.0 Python
rc,distances = myclient.compute_distances(cpuset:dict, info:list)13

Python

IN cpuset14
cpuset describing the location of the process (dict)15

IN info16
List of info dictionaries describing the devices whose distance is to be computed (list)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

• distances - List of devdist structures containing the distances from the caller to the specified20
devices (list)21

See PMIx_Compute_distances for details. Note that distances can only be computed against22
the local topology.23

A.4.42 Client.error_string24

Summary25
Pretty-print string representation of pmix_status_t.26

APPENDIX A. PYTHON BINDINGS 517

Un
offi
cia
l D
raf
t

Format1 Python
rep = myclient.error_string(status:integer)2

Python
IN status3

PMIx status code (integer)4

Returns:5

• rep - String representation of the provided status code (str)6

See PMIx_Error_string for further details.7

A.4.43 Client.proc_state_string8

Summary9
Pretty-print string representation of pmix_proc_state_t.10

Format11 PMIx v4.0 Python
rep = myclient.proc_state_string(state:integer)12

Python
IN state13

PMIx process state code (integer)14

Returns:15

• rep - String representation of the provided process state (str)16

See PMIx_Proc_state_string for further details.17

A.4.44 Client.scope_string18

Summary19
Pretty-print string representation of pmix_scope_t.20

Format21 PMIx v4.0 Python
rep = myclient.scope_string(scope:integer)22

Python
IN scope23

PMIx scope value (integer)24

Returns:25

• rep - String representation of the provided scope (str)26

See PMIx_Scope_string for further details27

518 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.4.45 Client.persistence_string1

Summary2
Pretty-print string representation of pmix_persistence_t.3

Format4 PMIx v4.0 Python
rep = myclient.persistence_string(persistence:integer)5

Python

IN persistence6
PMIx persistence value (integer)7

Returns:8

• rep - String representation of the provided persistence (str)9

See PMIx_Persistence_string for further details.10

A.4.46 Client.data_range_string11

Summary12
Pretty-print string representation of pmix_data_range_t.13

Format14 PMIx v4.0 Python
rep = myclient.data_range_string(range:integer)15

Python

IN range16
PMIx data range value (integer)17

Returns:18

• rep - String representation of the provided data range (str)19

See PMIx_Data_range_string for further details.20

A.4.47 Client.info_directives_string21

Summary22
Pretty-print string representation of pmix_info_directives_t.23

APPENDIX A. PYTHON BINDINGS 519

Un
offi
cia
l D
raf
t

Format1 Python
rep = myclient.info_directives_string(directives:bitarray)2

Python
IN directives3

PMIx info directives value (bitarray)4

Returns:5

• rep - String representation of the provided info directives (str)6

See PMIx_Info_directives_string for further details.7

A.4.48 Client.data_type_string8

Summary9
Pretty-print string representation of pmix_data_type_t.10

Format11 PMIx v4.0 Python
rep = myclient.data_type_string(dtype:integer)12

Python
IN dtype13

PMIx datatype value (integer)14

Returns:15

• rep - String representation of the provided datatype (str)16

See PMIx_Data_type_string for further details.17

A.4.49 Client.alloc_directive_string18

Summary19
Pretty-print string representation of pmix_alloc_directive_t.20

Format21 PMIx v4.0 Python
rep = myclient.alloc_directive_string(adir:integer)22

Python
IN adir23

PMIx allocation directive value (integer)24

Returns:25

• rep - String representation of the provided allocation directive (str)26

See PMIx_Alloc_directive_string for further details.27

520 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.4.50 Client.iof_channel_string1

Summary2
Pretty-print string representation of pmix_iof_channel_t.3

Format4 PMIx v4.0 Python
rep = myclient.iof_channel_string(channel:bitarray)5

Python

IN channel6
PMIx IOF channel value (bitarray)7

Returns:8

• rep - String representation of the provided IOF channel (str)9

See PMIx_IOF_channel_string for further details.10

A.4.51 Client.job_state_string11

Summary12
Pretty-print string representation of pmix_job_state_t.13

Format14 PMIx v4.0 Python
rep = myclient.job_state_string(state:integer)15

Python

IN state16
PMIx job state value (integer)17

Returns:18

• rep - String representation of the provided job state (str)19

See PMIx_Job_state_string for further details.20

A.4.52 Client.get_attribute_string21

Summary22
Pretty-print string representation of a PMIx attribute.23

APPENDIX A. PYTHON BINDINGS 521

Un
offi
cia
l D
raf
t

Format1 Python
rep = myclient.get_attribute_string(attribute:str)2

Python
IN attribute3

PMIx attribute name (string)4

Returns:5

• rep - String representation of the provided attribute (str)6

See PMIx_Get_attribute_string for further details.7

A.4.53 Client.get_attribute_name8

Summary9
Pretty-print name of a PMIx attribute corresponding to the provided string.10

Format11 PMIx v4.0 Python
rep = myclient.get_attribute_name(attribute:str)12

Python
IN attributestring13

Attribute string (string)14

Returns:15

• rep - Attribute name corresponding to the provided string (str)16

See PMIx_Get_attribute_name for further details.17

A.4.54 Client.link_state_string18

Summary19
Pretty-print string representation of pmix_link_state_t.20

Format21 PMIx v4.0 Python
rep = myclient.link_state_string(state:integer)22

Python
IN state23

PMIx link state value (integer)24

Returns:25

• rep - String representation of the provided link state (str)26

See PMIx_Link_state_string for further details.27

522 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.4.55 Client.device_type_string1

Summary2
Pretty-print string representation of pmix_device_type_t.3

Format4 PMIx v4.0 Python
rep = myclient.device_type_string(type:bitarray)5

Python

IN type6
PMIx device type value (bitarray)7

Returns:8

• rep - String representation of the provided device type (str)9

See PMIx_Device_type_string for further details.10

A.4.56 Client.progress11

Summary12
Progress the PMIx library.13

Format14 PMIx v4.0 Python
myclient.progress()15

Python

See PMIx_Progress for further details.16

A.5 PMIxServer17

The server Python class inherits the Python "client" class as its parent. Thus, it includes all client18
functions in addition to the ones defined in this section.19

A.5.1 Server.init20

Summary21
Initialize the PMIx server library after obtaining a new PMIxServer object.22

APPENDIX A. PYTHON BINDINGS 523

Un
offi
cia
l D
raf
t

Format1 Python
rc = myserver.init(directives:list, map:dict)2

Python

IN directives3
List of Python info dictionaries (list)4

IN map5
Python dictionary key-function pairs that map server module callback functions to6
provided implementations (see pmix_server_module_t) (dict)7

Returns:8

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)9

See PMIx_server_init for description of all relevant attributes and behaviors.10

A.5.2 Server.finalize11

Summary12
Finalize the PMIx server library.13

Format14 PMIx v4.0 Python
rc = myserver.finalize()15

Python

Returns:16

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)17

See PMIx_server_finalize for details.18

A.5.3 Server.generate_regex19

Summary20
Generate a regular expression representation of the input strings.21

524 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,regex = myserver.generate_regex(input:list)2

Python

IN input3
List of Python strings (e.g., node names) (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• regex - Python bytearray containing regular expression representation of the input list7
(bytearray)8

See PMIx_generate_regex for details.9

A.5.4 Server.generate_ppn10

Summary11
Generate a regular expression representation of the input strings.12

Format13 PMIx v4.0 Python
rc,regex = myserver.generate_ppn(input:list)14

Python

IN input15
List of Python strings, each string consisting of a comma-delimited list of ranks on each node,16
with the strings being in the same order as the node names provided to "generate_regex" (list)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

• regex - Python bytearray containing regular expression representation of the input list20
(bytearray)21

See PMIx_generate_ppn for details.22

A.5.5 Server.generate_locality_string23

Summary24
Generate a PMIx locality string from a given cpuset.25

APPENDIX A. PYTHON BINDINGS 525

Un
offi
cia
l D
raf
t

Format1 Python
rc,locality = myserver.generate_locality_string(cpuset:dict)2

Python

IN cset3
cpuset containing the bitmap of assigned PUs (dict)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• locality - String representation of the PMIx locality corresponding to the input bitmap (string)7

See PMIx_server_generate_locality_string for details.8

A.5.6 Server.generate_cpuset_string9

Summary10
Generate a PMIx string representation of the provided cpuset.11

Format12 PMIx v4.0 Python
rc,cpustr = myserver.generate_cpuset_string(cpuset:dict)13

Python

IN cset14
cpuset containing the bitmap of assigned PUs (dict)15

Returns:16

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)17

• cpustr - String representation of the input bitmap (string)18

See PMIx_server_generate_cpuset_string for details.19

A.5.7 Server.register_nspace20

Summary21
Setup the data about a particular namespace.22

526 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc = myserver.register_nspace(nspace:str,2

nlocalprocs:integer,3
directives:list)4

Python

IN nspace5
Python string containing the namespace (str)6

IN nlocalprocs7
Number of local processes (integer)8

IN directives9
List of Python info dictionaries (list)10

Returns:11

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)12

See PMIx_server_register_nspace for description of all relevant attributes and behaviors.13

A.5.8 Server.deregister_nspace14

Summary15
Deregister a namespace.16

Format17 PMIx v4.0 Python
myserver.deregister_nspace(nspace:str)18

Python

IN nspace19
Python string containing the namespace (str)20

Returns: None21

See PMIx_server_deregister_nspace for details.22

A.5.9 Server.register_resources23

Summary24
Register non-namespace related information with the local PMIx library25

APPENDIX A. PYTHON BINDINGS 527

Un
offi
cia
l D
raf
t

Format1 Python
myserver.register_resources(directives:list)2

Python
IN directives3

List of Python info dictionaries (list)4

Returns: None5

See PMIx_server_register_resources for details.6

A.5.10 Server.deregister_resources7

Summary8
Remove non-namespace related information from the local PMIx library9

Format10 PMIx v4.0 Python
myserver.deregister_resources(directives:list)11

Python
IN directives12

List of Python info dictionaries (list)13

Returns: None14

See PMIx_server_deregister_resources for details.15

A.5.11 Server.register_client16

Summary17
Register a client process with the PMIx server library.18

Format19 PMIx v4.0 Python
rc = myserver.register_client(proc:dict, uid:integer, gid:integer)20

Python
IN proc21

Python proc dictionary identifying the client process (dict)22
IN uid23

Linux uid value for user executing client process (integer)24
IN gid25

Linux gid value for user executing client process (integer)26

Returns:27

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)28

See PMIx_server_register_client for details.29

528 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.5.12 Server.deregister_client1

Summary2
Deregister a client process and purge all data relating to it.3

Format4 PMIx v4.0 Python
myserver.deregister_client(proc:dict)5

Python

IN proc6
Python proc dictionary identifying the client process (dict)7

Returns: None8

See PMIx_server_deregister_client for details.9

A.5.13 Server.setup_fork10

Summary11
Setup the environment of a child process that is to be forked by the host.12

Format13 PMIx v4.0 Python
rc = myserver.setup_fork(proc:dict, envin:dict)14

Python

IN proc15
Python proc dictionary identifying the client process (dict)16

INOUT envin17
Python dictionary containing the environment to be passed to the client (dict)18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

See PMIx_server_setup_fork for details.21

A.5.14 Server.dmodex_request22

Summary23
Function by which the host server can request modex data from the local PMIx server.24

APPENDIX A. PYTHON BINDINGS 529

Un
offi
cia
l D
raf
t

Format1 Python
rc,data = myserver.dmodex_request(proc:dict)2

Python

IN proc3
Python proc dictionary identifying the process whose data is requested (dict)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• data - Python byteobject containing the returned data (dict)7

See PMIx_server_dmodex_request for details.8

A.5.15 Server.setup_application9

Summary10
Function by which the resource manager can request application-specific setup data prior to launch11
of a job.12

Format13 PMIx v4.0 Python
rc,info = myserver.setup_application(nspace:str, directives:list)14

Python

IN nspace15
Namespace whose setup information is being requested (str)16

IN directives17
Python list of info directives18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

• info - Python list of info dictionaries containing the returned data (list)21

See PMIx_server_setup_application for details.22

A.5.16 Server.register_attributes23

Summary24
Register host environment attribute support for a function.25

530 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc = myserver.register_attributes(function:str, attrs:list)2

Python

IN function3
Name of the function (str)4

IN attrs5
Python list of regattr describing the supported attributes6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Register_attributes for details.9

A.5.17 Server.setup_local_support10

Summary11
Function by which the local PMIx server can perform any application-specific operations prior to12
spawning local clients of a given application.13

Format14 PMIx v4.0 Python
rc = myserver.setup_local_support(nspace:str, info:list)15

Python

IN nspace16
Namespace whose setup information is being requested (str)17

IN info18
Python list of info containing the setup data (list)19

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

See PMIx_server_setup_local_support for details.22

A.5.18 Server.iof_deliver23

Summary24
Function by which the host environment can pass forwarded IO to the PMIx server library for25
distribution to its clients.26

APPENDIX A. PYTHON BINDINGS 531

Un
offi
cia
l D
raf
t

Format1 Python
rc = myserver.iof_deliver(source:dict, channel:integer,2

data:dict, directives:list)3

Python

IN source4
Python proc dictionary identifying the process who generated the data (dict)5

IN channel6
Python channel bitmask identifying IO channel of the provided data (integer)7

IN data8
Python byteobject containing the data (dict)9

IN directives10
Python list of info containing directives (list)11

Returns:12

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)13

See PMIx_server_IOF_deliver for details.14

A.5.19 Server.collect_inventory15

Summary16
Collect inventory of resources on a node.17

Format18 PMIx v4.0 Python
rc,info = myserver.collect_inventory(directives:list)19

Python

IN directives20
Optional Python list of info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)23

• info - Python list of info containing the returned data (list)24

See PMIx_server_collect_inventory for details.25

A.5.20 Server.deliver_inventory26

Summary27
Pass collected inventory to the PMIx server library for storage.28

532 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc = myserver.deliver_inventory(info:list, directives:list)2

Python

IN info3
- Python list of info dictionaries containing the inventory data (list)4

IN directives5
Python list of info dictionaries containing directives (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_server_deliver_inventory for details.9

A.5.21 Server.define_process_set10

Summary11
Add members to a PMIx process set.12

Format13 PMIx v4.0 Python
rc = myserver.define_process_set(members:list, name:str)14

Python

IN members15
- List of Python proc dictionaries identifying the processes to be added to the process set16
(list)17

IN name18
- Name of the process set (str)19

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

See PMIx_server_define_process_set for details.22

A.5.22 Server.delete_process_set23

Summary24
Delete a PMIx process set.25

APPENDIX A. PYTHON BINDINGS 533

Un
offi
cia
l D
raf
t

Format1 Python
rc = myserver.delete_process_set(name:str)2

Python
IN name3

- Name of the process set (str)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

See PMIx_server_delete_process_set for details.7

A.5.23 Server.register_resources8

Summary9
Register non-namespace related information with the local PMIx server library.10

Format11 PMIx v4.0 Python
rc = myserver.register_resources(info:list)12

Python
IN info13

- List of Python info dictionaries list)14

Returns:15

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)16

See PMIx_server_register_resources for details.17

A.5.24 Server.deregister_resources18

Summary19
Deregister non-namespace related information with the local PMIx server library.20

Format21 PMIx v4.0 Python
rc = myserver.deregister_resources(info:list)22

Python
IN info23

- List of Python info dictionaries list)24

Returns:25

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)26

See PMIx_server_deregister_resources for details.27

534 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

A.6 PMIxTool1

The tool Python class inherits the Python "server" class as its parent. Thus, it includes all client and2
server functions in addition to the ones defined in this section.3

A.6.1 Tool.init4

Summary5
Initialize the PMIx tool library after obtaining a new PMIxTool object.6

Format7 PMIx v4.0 Python
rc,proc = mytool.init(info:list)8

Python

IN info9
List of Python info directives (list)10

Returns:11

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)12

• proc - a Python proc (dict)13

See PMIx_tool_init for description of all relevant attributes and behaviors.14

A.6.2 Tool.finalize15

Summary16
Finalize the PMIx tool library, closing the connection to the server.17

Format18 PMIx v4.0 Python
rc = mytool.finalize()19

Python

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

See PMIx_tool_finalize for description of all relevant attributes and behaviors.22

A.6.3 Tool.disconnect23

Summary24
Disconnect the PMIx tool from the specified server connection while leaving the tool library25
initialized.26

APPENDIX A. PYTHON BINDINGS 535

Un
offi
cia
l D
raf
t

Format1 Python
rc = mytool.disconnect(server:dict)2

Python

IN server3
Process identifier of server from which the tool is to be disconnected (proc)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

See PMIx_tool_disconnect for details.7

A.6.4 Tool.attach_to_server8

Summary9
Establish a connection to a PMIx server.10

Format11 PMIx v4.0 Python
rc,proc,server = mytool.connect_to_server(info:list)12

Python

IN info13
List of Python info dictionaries (list)14

Returns:15

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)16

• proc - a Python proc containing the tool’s identifier (dict)17

• server - a Python proc containing the identifier of the server to which the tool attached (dict)18

See PMIx_tool_attach_to_server for details.19

A.6.5 Tool.get_servers20

Summary21
Get a list containing the proc process identifiers of all servers to which the tool is currently22
connected.23

536 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc,servers = mytool.get_servers()2

Python

Returns:3

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)4

• servers - a list of Python proc containing the identifiers of the servers to which the tool is5
currently attached (dict)6

See PMIx_tool_get_servers for details.7

A.6.6 Tool.set_server8

Summary9
Designate a server as the tool’s primary server.10

Format11 PMIx v4.0 Python
rc = mytool.set_server(proc:dict, info:list)12

Python

IN proc13
Python proc containing the identifier of the servers to which the tool is to attach (list)14

IN info15
List of Python info dictionaries (list)16

Returns:17

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)18

See PMIx_tool_set_server for details.19

A.6.7 Tool.iof_pull20

Summary21
Register to receive output forwarded from a remote process.22

APPENDIX A. PYTHON BINDINGS 537

Un
offi
cia
l D
raf
t

Format1 Python
rc,id = mytool.iof_pull(sources:list, channel:integer,2

directives:list, cbfunc)3

Python

IN sources4
List of Python proc dictionaries of processes whose IO is being requested (list)5

IN channel6
Python channel bitmask identifying IO channels to be forwarded (integer)7

IN directives8
List of Python info dictionaries describing request (list)9

IN cbfunc10
Python iofcbfunc to receive IO payloads (func)11

Returns:12

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)13

• id - PMIx reference identifier for request (integer)14

See PMIx_IOF_pull for description of all relevant attributes and behaviors.15

A.6.8 Tool.iof_deregister16

Summary17
Deregister from output forwarded from a remote process.18

Format19 PMIx v4.0 Python
rc = mytool.iof_deregister(id:integer, directives:list)20

Python

IN id21
PMIx reference identifier returned by pull request (list)22

IN directives23
List of Python info dictionaries describing request (list)24

Returns:25

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)26

See PMIx_IOF_deregister for description of all relevant attributes and behaviors.27

A.6.9 Tool.iof_push28

Summary29
Push data collected locally (typically from stdin) to stdin of target recipients.30

538 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Format1 Python
rc = mytool.iof_push(targets:list, data:dict, directives:list)2

Python

IN sources3
List of Python proc of target processes (list)4

IN data5
Python byteobject containing data to be delivered (dict)6

IN directives7
Optional list of Python info describing request (list)8

Returns:9

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)10

See PMIx_IOF_push for description of all relevant attributes and behaviors.11

A.7 Example Usage12

The following examples are provided to illustrate the use of the Python bindings.13

A.7.1 Python Client14

The following example contains a client program that illustrates a fairly common usage pattern.15
The program instantiates and initializes the PMIxClient class, posts some data that is to be shared16
across all processes in the job, executes a “fence” that circulates the data, and then retrieves a value17
posted by one of its peers. Note that the example has been formatted to fit the document layout.18

Python
from pmix import *19

20
def main():21

Instantiate a client object22
myclient = PMIxClient()23
print("Testing PMIx ", myclient.get_version())24

25
Initialize the PMIx client library, declaring the programming model26
as “TEST” and the library name as “PMIX”, just for the example27
info = ['key':PMIX_PROGRAMMING_MODEL,28

'value':'TEST', 'val_type':PMIX_STRING,29
'key':PMIX_MODEL_LIBRARY_NAME,30
'value':'PMIX', 'val_type':PMIX_STRING]31

rc,myname = myclient.init(info)32

APPENDIX A. PYTHON BINDINGS 539

Un
offi
cia
l D
raf
t

if PMIX_SUCCESS != rc:1
print("FAILED TO INIT WITH ERROR", myclient.error_string(rc))2
exit(1)3

4
try posting a value5
rc = myclient.put(PMIX_GLOBAL, "mykey",6

'value':1, 'val_type':PMIX_INT32)7
if PMIX_SUCCESS != rc:8

print("PMIx_Put FAILED WITH ERROR", myclient.error_string(rc))9
cleanly finalize10
myclient.finalize()11
exit(1)12

13
commit it14
rc = myclient.commit()15
if PMIX_SUCCESS != rc:16

print("PMIx_Commit FAILED WITH ERROR",17
myclient.error_string(rc))18

cleanly finalize19
myclient.finalize()20
exit(1)21

22
execute fence across all processes in my job23
procs = []24
info = []25
rc = myclient.fence(procs, info)26
if PMIX_SUCCESS != rc:27

print("PMIx_Fence FAILED WITH ERROR", myclient.error_string(rc))28
cleanly finalize29
myclient.finalize()30
exit(1)31

32
Get a value from a peer33
if 0 != myname['rank']:34

info = []35
rc, get_val = myclient.get('nspace':"testnspace", 'rank': 0,36

"mykey", info)37
if PMIX_SUCCESS != rc:38

print("PMIx_Commit FAILED WITH ERROR",39
myclient.error_string(rc))40

cleanly finalize41
myclient.finalize()42
exit(1)43

540 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

print("Get value returned: ", get_val)1
2

test a fence that should return not_supported because3
we pass a required attribute that the server is known4
not to support5
procs = []6
info = ['key': 'ARBIT', 'flags': PMIX_INFO_REQD,7

'value':10, 'val_type':PMIX_INT]8
rc = myclient.fence(procs, info)9
if PMIX_SUCCESS == rc:10

print("PMIx_Fence SUCCEEDED BUT SHOULD HAVE FAILED")11
cleanly finalize12
myclient.finalize()13
exit(1)14

15
Publish something16
info = ['key': 'ARBITRARY', 'value':10, 'val_type':PMIX_INT]17
rc = myclient.publish(info)18
if PMIX_SUCCESS != rc:19

print("PMIx_Publish FAILED WITH ERROR",20
myclient.error_string(rc))21

cleanly finalize22
myclient.finalize()23
exit(1)24

25
finalize26
info = []27
myclient.finalize(info)28
print("Client finalize complete")29

30
Python main program entry point31
if __name__ == '__main__':32

main()33

Python

A.7.2 Python Server34

The following example contains a minimum-level server host program that instantiates and35
initializes the PMIxServer class. The program illustrates passing several server module functions to36
the bindings and includes code to setup and spawn a simple client application, waiting until the37
spawned client terminates before finalizing and exiting itself. Note that the example has been38
formatted to fit the document layout.39

APPENDIX A. PYTHON BINDINGS 541

Un
offi
cia
l D
raf
t

Python
from pmix import *1
import signal, time2
import os3
import select4
import subprocess5

6
def clientconnected(proc:tuple is not None):7

print("CLIENT CONNECTED", proc)8
return PMIX_OPERATION_SUCCEEDED9

10
def clientfinalized(proc:tuple is not None):11

print("CLIENT FINALIZED", proc)12
return PMIX_OPERATION_SUCCEEDED13

14
def clientfence(procs:list, directives:list, data:bytearray):15

check directives16
if directives is not None:17

for d in directives:18
these are each an info dict19
if "pmix" not in d['key']:20

we do not support such directives - see if21
it is required22
try:23

if d['flags'] & PMIX_INFO_REQD:24
return an error25
return PMIX_ERR_NOT_SUPPORTED26

except:27
#it can be ignored28
pass29

return PMIX_OPERATION_SUCCEEDED30
31

def main():32
try:33

myserver = PMIxServer()34
except:35

print("FAILED TO CREATE SERVER")36
exit(1)37

print("Testing server version ", myserver.get_version())38
39

args = ['key':PMIX_SERVER_SCHEDULER,40
'value':'T', 'val_type':PMIX_BOOL]41

map = 'clientconnected': clientconnected,42

542 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

'clientfinalized': clientfinalized,1
'fencenb': clientfence2

my_result = myserver.init(args, map)3
4

get our environment as a base5
env = os.environ.copy()6

7
register an nspace for the client app8
(rc, regex) = myserver.generate_regex("test000,test001,test002")9
(rc, ppn) = myserver.generate_ppn("0")10
kvals = ['key':PMIX_NODE_MAP,11

'value':regex, 'val_type':PMIX_STRING,12
'key':PMIX_PROC_MAP,13
'value':ppn, 'val_type':PMIX_STRING,14

'key':PMIX_UNIV_SIZE,15
'value':1, 'val_type':PMIX_UINT32,16

'key':PMIX_JOB_SIZE,17
'value':1, 'val_type':PMIX_UINT32]18

rc = foo.register_nspace("testnspace", 1, kvals)19
print("RegNspace ", rc)20

21
register a client22
uid = os.getuid()23
gid = os.getgid()24
rc = myserver.register_client('nspace':"testnspace", 'rank':0,25

uid, gid)26
print("RegClient ", rc)27
setup the fork28
rc = myserver.setup_fork('nspace':"testnspace", 'rank':0, env)29
print("SetupFrk", rc)30

31
setup the client argv32
args = ["./client.py"]33
open a subprocess with stdout and stderr34
as distinct pipes so we can capture their35
output as the process runs36
p = subprocess.Popen(args, env=env,37

stdout=subprocess.PIPE, stderr=subprocess.PIPE)38
define storage to catch the output39
stdout = []40
stderr = []41
loop until the pipes close42
while True:43

APPENDIX A. PYTHON BINDINGS 543

Un
offi
cia
l D
raf
t

reads = [p.stdout.fileno(), p.stderr.fileno()]1
ret = select.select(reads, [], [])2

3
stdout_done = True4
stderr_done = True5

6
for fd in ret[0]:7

if the data8
if fd == p.stdout.fileno():9

read = p.stdout.readline()10
if read:11

read = read.decode('utf-8').rstrip()12
print('stdout: ' + read)13
stdout_done = False14

elif fd == p.stderr.fileno():15
read = p.stderr.readline()16
if read:17

read = read.decode('utf-8').rstrip()18
print('stderr: ' + read)19
stderr_done = False20

21
if stdout_done and stderr_done:22

break23
print("FINALIZING")24
myserver.finalize()25

26
27

if __name__ == '__main__':28
main()29

Python

544 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

APPENDIX B

Use-Cases

The PMIx standard provides many generic interfaces that can be composed into higher-level use1
cases in a variety of ways. While the specific interfaces and attributes are standardized, the use2
cases themselves are not (and should not) be standardized. Common use cases are included here as3
examples of how PMIx’s generic interfaces might be composed together for a higher-level purpose.4
The use cases are intended for both PMIx interface users and library implementors. Whereby a5
better understanding of the general usage model within the community can help users picking up6
PMIx for the first and help implementors optimize their implementation for the common cases.7

Each use case is structured to provide background information about the high-level use case as well8
as specific details about how the PMIx interfaces are used within the use case. Some use cases even9
provide code snippets. These code snippets are apart of larger code examples located within the10
standard’s source code repository, and each complete code example is fully compilable and11
runnable. The related interfaces and attributes collected at the bottom of each use case are mainly12
for convenience and link to the full standardized definitions.13

B.1 Business Card Exchange for Process-to-14

Process Wire-up15

B.1.1 Use Case Summary16

Multi-process communication libraries, such as MPI, need to establish communication channels17
between a set of those processes. In this scenario, each process needs to share connectivity18
information (a.k.a. Business Cards) with all other processes before communication channels can be19
established. This connectivity information may take the form of one or more unique strings that20
allow a different process to establish a communication channel with the originator. The runtime21
environment must provide a mechanism for the efficient exchange of this connectivity information.22
Additional information about the current state of the job (e.g., number of processes globally and23
locally) and of how the process was started (e.g., process binding) is also helpful.24

Note: The Instant-On wire-up mechanism is a separate, related use case.25

545

Un
offi
cia
l D
raf
t

B.1.2 Use Case Details1

Each process provides their business card to PMIx via one or more PMIx_Put operations to store2
the tuple of {UID, key, value}. The UID is the unique name for this process in the PMIx3
universe (i.e., namespace and rank). The key is a unique key that other processes can reference4
generically (note that since the UID is also associated with the key there is no need to make the5
key uniquely named per process). The value is the string representation of the connectivity6
information.7

Some business card information is meant for remote processes (e.g., TCP or InfiniBand addresses)8
while others are meant only for local processes (e.g., shared memory information). As such a9
scope should be associated with the PMIx_Put operation to differentiate this intention.10

The PMIx_Put operations may be cached local to the process. Once all PMIx_Put operations11
have been called each process should call PMIx_Commit to push those values to the local PMIx12
server. Note that in a multi-library configuration each library may PMIx_Put then13
PMIx_Commit values - so there may be multiple PMIx_Commit calls before a Business Card14
Exchange is activated.15

After calling PMIx_Commit a process can activate the Business Card Exchange collective16
operation by calling PMIx_Fence. The PMIx_Fence operation is collective over the set of17
processes specified in the argument set. That allows for the collective to span a subset of a18
namespace or multiple namespaces. After the completion of the PMIx_Fence operation, the data19
stored by other processes via PMIx_Put is available to the local process through a call to20
PMIx_Get which returns the key/value pairs necessary to establish the connection(s) with the21
other processes.22

The PMIx_Fence operation has a "Synchronize Only" mode that works as a barrier operation.23
This is helpful if the communication library requires a synchronization before leaving initialization24
or starting finalization, for example.25

The PMIx_Fence operation has a "Sparse" mode in addition to a "Full" mode for the data26
exchange. The "Full" mode will fully exchange all Business Card information with all other27
processes. This is helpful for tightly communicating applications. The "Sparse" mode will28
dynamically pull the connectivity information on-demand from inside of PMIx_Get (if it is not29
already available locally). This is helpful for sparsely communicating applications. Since which30
mode is best for an application cannot be inferred by the PMIx library the caller must specify which31
mode works best for their application. The PMIx_Fence operation has an option for the end user32
to specify which mode they desire for this operation.33

Additional information about the current state of the job (e.g., number of processes globally and34
locally) and of how the process was started (e.g., process binding) is also helpful. This "job level"35
information is available immediately after PMIx_Init without the need for any explicit36
synchronization.37

The number of processes globally in the namespace and this process’s rank within that namespace38
is important to know before establishing the Business Card information to best allocate resources.39

546 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The number of processes local to the node and this process’s local rank is important to know before1
establishing the Business Card information to help the caller determine the scope of the put2
operation. For example, to designate a leader to set up a shared memory segment of the proper size3
before putting that information into the locally scoped Business Card information.4

The number of processes local to a remote node is also helpful to know before establishing the5
Business Card information. This information is useful to pre-establish local resources before that6
remote node starts to initiate a connection or to determine the number of connections that need to7
be advertised in the Business Card when it is sent out.8

Note that some of the job level information may change over the course of the job in a dynamic9
application.10

Related Interfaces11
PMIx_PutPMIx v1.012

C
pmix_status_t13
PMIx_Put(pmix_scope_t scope,14

const pmix_key_t key,15
pmix_value_t *val);16

C

PMIx_GetPMIx v1.017

C
pmix_status_t18
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,19

const pmix_info_t info[], size_t ninfo,20
pmix_value_t **val);21

C

PMIx_CommitPMIx v1.022

C
pmix_status_t PMIx_Commit(void);23

C

PMIx_FencePMIx v1.024

C
pmix_status_t25
PMIx_Fence(const pmix_proc_t procs[], size_t nprocs,26

const pmix_info_t info[], size_t ninfo);27

APPENDIX B. USE-CASES 547

Un
offi
cia
l D
raf
t

C

PMIx_Init1

C
pmix_status_t2
PMIx_Init(pmix_proc_t *proc,3

pmix_info_t info[], size_t ninfo)4

C

Related Attributes5
The following job level information is useful to have before establishing Business Card information:6

PMIX_NODE_LIST "pmix.nlist" (char*)7
Comma-delimited list of nodes currently hosting processes in the specified realm. Defaults8
to the job realm.9

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)10
Number of nodes currently hosting processes in the specified realm. Defaults to the job11
realm.12

PMIX_NODEID "pmix.nodeid" (uint32_t)13
Node identifier expressed as the node’s index (beginning at zero) in an array of nodes within14
the active session. The value must be unique and directly correlate to the PMIX_HOSTNAME15
of the node - i.e., users can interchangeably reference the same location using either the16
PMIX_HOSTNAME or corresponding PMIX_NODEID.17

PMIX_JOB_SIZE "pmix.job.size" (uint32_t)18
Total number of processes in the specified job across all contained applications. Note that19
this value can be different from PMIX_MAX_PROCS. For example, users may choose to20
subdivide an allocation (running several jobs in parallel within it), and dynamic21
programming models may support adding and removing processes from a running job22
on-the-fly. In the latter case, PMIx events may be used to notify processes within the job that23
the job size has changed.24

PMIX_PROC_MAP "pmix.pmap" (char*)25
Regular expression describing processes on each node in the specified realm - see 17.2.3.226
for an explanation of its generation. Defaults to the job realm.27

PMIX_LOCAL_PEERS "pmix.lpeers" (char*)28
Comma-delimited list of ranks that are executing on the local node within the specified29
namespace – shortcut for PMIx_Resolve_peers for the local node.30

PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)31
Number of processes in the specified job or application on the caller’s node. Defaults to job32
unless the PMIX_APP_INFO and the PMIX_APPNUM qualifiers are given.33

548 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

For each process this information is also useful (note that any one process may want to access this1
list of information about any other process in the system):2

PMIX_RANK "pmix.rank" (pmix_rank_t)3
Process rank within the job, starting from zero.4

PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)5
Rank of the specified process on its node - refers to the numerical location (starting from6
zero) of the process on its node when counting only those processes from the same job that7
share the node, ordered by their overall rank within that job.8

PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)9
Rank of the specified process spanning across all jobs in this session, starting with zero.10
Note that no ordering of the jobs is implied when computing this value. As jobs can start and11
end at random times, this is defined as a continually growing number - i.e., it is not12
dynamically adjusted as individual jobs and processes are started or terminated.13

PMIX_LOCALITY_STRING "pmix.locstr" (char*)14
String describing a process’s bound location - referenced using the process’s rank. The string15
is prefixed by the implementation that created it (e.g., "hwloc") followed by a colon. The16
remainder of the string represents the corresponding locality as expressed by the underlying17
implementation. The entire string must be passed to PMIx_Get_relative_locality18
for processing. Note that hosts are only required to provide locality strings for local client19
processes - thus, a call to PMIx_Get for the locality string of a process that returns20
PMIX_ERR_NOT_FOUND indicates that the process is not executing on the same node.21

PMIX_HOSTNAME "pmix.hname" (char*)22
Name of the host, as returned by the gethostname utility or its equivalent.23

There are other keys that are helpful to have before a synchronization point. This is not meant to be24
a comprehensive list.25

B.2 Debugging26

B.2.1 Terminology27

B.2.1.1 Tools vs Debuggers28

A tool is a process designed to monitor, record, analyze, or control the execution of another29
process. Typically used for the purposes of profiling and debugging. A first-party tool runs within30
the address space of the application process while a third-party tool run within its own process. A31
debugger is a third-party tool that inspects and controls an application process’s execution using32
system-level debug APIs (e.g., ptrace).33

APPENDIX B. USE-CASES 549

Un
offi
cia
l D
raf
t

B.2.1.2 Parallel Launching Methods1

A starter program is a program responsible for launching a parallel runtime, such as MPI. PMIx2
supports two primary methods for launching parallel applications under tools and debuggers:3
indirect and direct. In the indirect launching method (Section 18.2.2, the tool is attached to the4
starter. In the direct launching method (Section 18.2.1, the tool takes the place of the starter. PMIx5
also supports attaching to already running programs via the Process Acquisition interfaces6
(Section B.2.1.4).7

B.2.1.3 Process Synchronization8

Process Synchronization is a technique tools use to start the processes of a parallel application such9
that the tools can still attach to the process early in its lifetime. Said another away, the tool must be10
able to start the application processes without them “running away” from the tool. In the case of11
MPI (Version 3.1 [4] or the MPI World Process in future versions), this means stopping the12
applications processes before they return from MPI_Init or MPI_Init_thread.13

B.2.1.4 Process Acquisition14

Process Acquisition is a technique tools use to locate all of the processes, local and remote, of a15
given parallel application. This typically boils down to collecting the following information for16
every process in the parallel application: the hostname or IP of the machine running the process,17
the executable name, and the process ID.18

B.2.2 Use Case Details19

B.2.2.1 Direct-Launch Debugger Tool20

PMIx can support the tool itself using the PMIx spawn options to control the app’s startup,21
including directing the RM/application as to when to block and wait for tool attachment, or22
stipulating that an interceptor library be preloaded. However, this means that the user is restricted to23
whatever command line options the tool vendor has provided for operations such as process24
placement and binding, which places a significant burden on the tool vendor. An example might25
look like the following: dbgr -n 3 ./myapp.26

Assuming it is supported, co-launch of debugger daemons in this use-case is supported by adding a27
pmix_app_t to the PMIx_Spawn command, indicating that the resulting processes are28
debugger daemons by setting the PMIX_DEBUGGER_DAEMONS attribute.29

Related Interfaces30
PMIx_tool_initPMIx v2.031

C
pmix_status_t32
PMIx_tool_init(pmix_proc_t *proc,33

pmix_info_t info[], size_t ninfo);34

550 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Debugger Tool RM near Tool RM on Node ApplicationTool Daemon

Debugger Tool RM near Tool RM on Node ApplicationTool Daemon

Debugger Tool RM near Tool RM on Node ApplicationTool Daemon

PMIx_tool_init pmix_server_
 tool_connection_fn_t

// Global event reg.
PMIx_Register_event_handler

pmix_server_
 register_events_fn_t// Query capabilities of

// the Resource Mgr. (RM)
PMIx_Query_info()
 - PMIX_QUERY_SPAWN_SUPPORT
 - PMIX_QUERY_DEBUG_SUPPORT pmix_server_

 query_fn_t

// Spawn the application
PMIx_Spawn()
 - PMIX_DEBUG_STOP_IN_INIT
 - PMIX_FWD_STDOUT
 - PMIX_FWD_STDERR
 - PMIX_NOTIFY_COMPLETION

pmix_server_
 spawn_fn_t

RM internal launch message
// Setup process
// launch with PMIx
// fork/exec processes

Process paused
in PMIx_Init

// Query proc table
PMIx_Query_info()
 - PMIX_QUERY_PROC_TABLE pmix_server_

 query_fn_t

// Spawn the support daemon
PMIx_Spawn()
 - PMIX_DEBUGGER_DAEMONS
 - PMIX_DEBUG_TARGET
 - PMIX_FWD_STDOUT
 - PMIX_FWD_STDERR
 - PMIX_NOTIFY_COMPLETION
 - PMIX_DEBUG_WAIT_FOR_
 NOTIFY

pmix_server_
 spawn_fn_t

RM internal launch message
// Setup process
// launch with PMIx
// fork/exec processes

// App. completion (Opt.)
PMIx_Register_event_handler
 - PMIX_EVENT_AFFECTED_PROC pmix_server_

 register_events_fn_t

// Daemon completion (Opt.)
PMIx_Register_event_handler
 - PMIX_EVENT_AFFECTED_PROC

pmix_server_
 register_events_fn_t

Tool internal messages

PMIx_tool_init
pmix_server_
 tool_connection_fn_t

// App. events
PMIx_Register_event_
 handler
 - PMIX_EVENT_
 AFFECTED_PROC

pmix_server_
 register_events_fn_t

PMIx_Get()
 - PMIX_DEBUG_TARGET

// Query proc table
PMIx_Query_info()
 - PMIX_QUERY_
 LOCAL_PROC_TABLEpmix_server_

 query_fn_t

// Release process
PMIx_Notify_event()
 - PMIX_ERR_
 DEBUGGER_RELEASE

Tool attaches to process

pmix_server_
 notify_event_fn_t

Process
released from

PMIx_Init

Figure B.1.: Interaction diagram showing an example of the Direct Launch mechanism

APPENDIX B. USE-CASES 551

Un
offi
cia
l D
raf
t

C

PMIx_Register_event_handlerPMIx v2.01

C
pmix_status_t2
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,3

pmix_info_t info[], size_t ninfo,4
pmix_notification_fn_t evhdlr,5
pmix_hdlr_reg_cbfunc_t cbfunc,6
void *cbdata);7

C

PMIx_Query_infoPMIx v4.08

C
pmix_status_t9
PMIx_Query_info(pmix_query_t queries[], size_t nqueries,10

pmix_info_t *info[], size_t *ninfo);11

C

PMIx_SpawnPMIx v1.012

C
pmix_status_t13
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,14

const pmix_app_t apps[], size_t napps,15
char nspace[])16

C

PMIx_GetPMIx v1.017

C
pmix_status_t18
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,19

const pmix_info_t info[], size_t ninfo,20
pmix_value_t **val);21

C

PMIx_Notify_eventPMIx v2.022

552 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C
pmix_status_t1
PMIx_Notify_event(pmix_status_t status,2

const pmix_proc_t *source,3
pmix_data_range_t range,4
pmix_info_t info[], size_t ninfo,5
pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

Related Attributes7
PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)8

Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.9

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)10
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.11

PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)12
Included in either the pmix_info_t array in a pmix_app_t description (if the directive13
applies only to that application) or in the job_info array if it applies to all applications in the14
given spawn request. Indicates that the specified application is being spawned under a15
debugger. The PMIx client library in each resulting application process shall notify its PMIx16
server that it is pausing and then pause during PMIx_Init of the spawned processes until17
either released by debugger modification of an appropriate variable or receipt of the18
PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL) is responsible for generating19
the PMIX_READY_FOR_DEBUG event (stipulating a breakpoint of p̈mix-init)̈ when all20
processes have reached the pause point.21

PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)22
Included in either the pmix_info_t array in a pmix_app_t description (if the directive23
applies only to that application) or in the job_info array if it applies to all applications in the24
given spawn request. Indicates that the application is being spawned under a debugger, and25
that the local launch agent is to pause the resulting application processes on first instruction26
for debugger attach. The launcher (RM or IL) is to generate the27
PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.28

PMIX_DEBUG_DAEMONS_PER_PROC "pmix.dbg.dpproc" (uint16_t)29
Number of debugger daemons to be spawned per application process. The launcher is to pass30
the identifier of the namespace to be debugged by including the PMIX_DEBUG_TARGET31
attribute in the daemon’s job-level information. The debugger daemons spawned on a given32
node are responsible for self-determining their specific target process(es) - e.g., by33
referencing their own PMIX_LOCAL_RANK in the daemon debugger job versus the34
corresponding PMIX_LOCAL_RANK of the target processes on the node.35

PMIX_DEBUG_DAEMONS_PER_NODE "pmix.dbg.dpnd" (uint16_t)36

APPENDIX B. USE-CASES 553

Un
offi
cia
l D
raf
t

Number of debugger daemons to be spawned on each node where the target job is executing.1
The launcher is to pass the identifier of the namespace to be debugged by including the2
PMIX_DEBUG_TARGET attribute in the daemon’s job-level information. The debugger3
daemons spawned on a given node are responsible for self-determining their specific target4
process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger5
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.6

PMIX_COSPAWN_APP "pmix.cospawn" (bool)7
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not8
include the application in any of the job-level values (e.g., PMIX_RANK within the job)9
provided to any other application process generated by the same spawn request. Typically10
used to cospawn debugger daemons alongside an application.11

PMIX_MAPBY "pmix.mapby" (char*)12
Process mapping policy - when accessed using PMIx_Get, use the13
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the14
provided namespace. Supported values are launcher specific.15

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)16
Requests that the ability to forward the stdout of the spawned processes be maintained.17
The requester will issue a call to PMIx_IOF_pull to specify the callback function and18
other options for delivery of the forwarded output.19

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)20
Requests that the ability to forward the stderr of the spawned processes be maintained.21
The requester will issue a call to PMIx_IOF_pull to specify the callback function and22
other options for delivery of the forwarded output.23

PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)24
Requests that the launcher generate the PMIX_EVENT_JOB_END event for normal or25
abnormal termination of the spawned job. The event shall include the returned status code26
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)27
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a28
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred. Note that the29
requester must register for the event or capture and process it within a default event handler.30

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)31
Harvest and include relevant environmental variables.32

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)33
The single process that was affected.34

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)35
Included in the pmix_info_t array of a pmix_app_t, this attribute declares that the36
application consists of debugger daemons and shall be governed accordingly. If used as the37
sole pmix_app_t in a PMIx_Spawn request, then the PMIX_DEBUG_TARGET attribute38
must also be provided (in either the job_info or in the info array of the pmix_app_t) to39

554 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

identify the namespace to be debugged so that the launcher can determine where to place the1
spawned daemons. If neither PMIX_DEBUG_DAEMONS_PER_PROC nor2
PMIX_DEBUG_DAEMONS_PER_NODE is specified, then the launcher shall default to a3
placement policy of one daemon per process in the target job.4

PMIX_DEBUG_TARGET "pmix.dbg.tgt" (pmix_proc_t*)5
Identifier of process(es) to be debugged - a rank of PMIX_RANK_WILDCARD indicates that6
all processes in the specified namespace are to be included.7

PMIX_DEBUG_STOP_IN_APP "pmix.dbg.notify" (varies)8
Direct specified ranks to stop at application-specific point and notify they are9
ready-to-debug. The attribute’s value can be any of three data types:10

• bool - true indicating all ranks11
• pmix_rank_t - the rank of one proc, or PMIX_RANK_WILDCARD for all12
• a pmix_data_array_t if an array of individual processes are specified13

The resulting application processes are to notify their server (by generating the14
PMIX_READY_FOR_DEBUG event) when they reach some application-determined location15
- the event shall include the PMIX_BREAKPOINT attribute indicating where the application16
has stopped. The application shall pause at that point until released by debugger17
modification of an appropriate variable. The launcher (RM or IL) is responsible for18
generating the PMIX_READY_FOR_DEBUG event when all processes have indicated they19
are at the pause point.20

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)21
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each22
process in the specified namespace executing on the same node as the requester, ordered by23
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace24
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME25
indicating the host whose local process table is being queried. By default, the query assumes26
that the host upon which the request was made is to be used.27

Related Constants28
PMIX_DEBUG_WAITING_FOR_NOTIFY29
PMIX_DEBUGGER_RELEASE30

B.2.2.2 Indirect-Launch Debugger Tool31

Executing a program under a tool using an intermediate launcher such as mpiexec can also be32
made possible. This requires some degree of coordination between the tool and the launcher.33
Ultimately, it is the launcher that is going to launch the application, and the tool must somehow34
inform the launcher (and the application) that this is being done in a debug session so that the35
application knows to “block” until the tool attaches to it.36

In this operational mode, the user invokes a tool (typically on a non-compute, or “head”, node) that37
in turn uses mpiexec to launch their application – a typical command line might look like the38
following: dbgr -dbgoption mpiexec -n 32 ./myapp.39

APPENDIX B. USE-CASES 555

Un
offi
cia
l D
raf
t

Debugger Tool

Debugger Tool Launcher (mpirun)Launcher (mpirun) RM on Node Application

Debugger Tool RM on Node ApplicationTool DaemonLauncher (mpirun)Launcher (mpirun)

Debugger Tool RM on Node ApplicationTool DaemonLauncher (mpirun)Launcher (mpirun)

// Query the profitable
PMIx_Query_info()
 - PMIX_QUERY_PROC_TABLE pmix_server_

 query_fn_t

// Spawn the support daemon
PMIx_Spawn()
 - PMIX_DEBUGGER_DAEMONS
 - PMIX_DEBUG_TARGET
 - PMIX_FWD_STDOUT
 - PMIX_FWD_STDERR
 - PMIX_NOTIFY_COMPLETION

pmix_server_
 spawn_fn_t

RM internal launch message
// Setup process
// launch with PMIx
// fork/exec processes

// Daemon completion
PMIx_Register_event_handler
 - PMIX_EVENT_AFFECTED_PROC

pmix_server_
 register_events_fn_t

Tool internal messages

PMIx_tool_init
pmix_server_
 tool_connection_fn_t

// App. events
PMIx_Register_
 event_handler
 - PMIX_EVENT_
 AFFECTED_PROC

pmix_server_
 register_events_fn_t

PMIx_Get()
 - PMIX_DEBUG_TARGET

// Query proc table
PMIx_Query_info()
 - PMIX_QUERY_
 LOCAL_PROC_TABLEpmix_server_

 query_fn_t

// Release process
PMIx_Notify_event()
 - PMIX_ERR_
 DEBUGGER_RELEASE

Tool attaches to process

pmix_server_
 notify_event_fn_t

Process
released from

PMIx_Init

pmix_server_
 notify_event_fn_t

// Send launch directives
PMIx_Notify_event()
 - PMIX_DEBUGGER_RELEASE
 - PMIX_DEBUG_STOP_IN_INIT

RM internal launch message
// Setup process
// launch with PMIx
// fork/exec processes

Process paused
in PMIx_Init

// Launch the application

Released from hold
after PMIx_Init

// Notify launch
PMIx_Notify_event()
 - PMIX_LAUNCH_COMPLETE

pmix_server_
 notify_event_fn_t

// Proceed to launch daemons

HostRM near Tool Launcher (mpirun)
PMIx_tool_init pmix_server_

 tool_connection_fn_t
// Global event reg.
PMIx_Register_event_handler

pmix_server_
 register_events_fn_t

// Spawn the launcher
PMIx_Spawn()
 - setenv(“PMIX_LAUNCHER_
 RNDZ_URI”)
 - PMIX_SPAWN_TOOL
 - PMIX_FWD_STDOUT
 - PMIX_FWD_STDERR
 - PMIX_DEBUG_STOP_IN_INIT
 - PMIX_LAUNCH_DIRECTIVES

pmix_server_
 spawn_fn_t

// Setup process
// launch with PMIx
// fork/exec launcher

Launcher paused in
PMIx_Init

// Switch to Launcher RM
PMIx_tool_set_server
 - PMIX_WAIT_FOR_CONNECTION

// Notify launch
PMIx_Notify_event()
 - PMIX_LAUNCHER_READY

pmix_server_
 tool_connection_fn_t

Figure B.2.: Interaction diagram showing an example of the Indirect Launch mechanism

556 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Related Interfaces1
PMIx_tool_initPMIx v2.02

C
pmix_status_t3
PMIx_tool_init(pmix_proc_t *proc,4

pmix_info_t info[], size_t ninfo);5

C

PMIx_Register_event_handlerPMIx v2.06

C
pmix_status_t7
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,8

pmix_info_t info[], size_t ninfo,9
pmix_notification_fn_t evhdlr,10
pmix_hdlr_reg_cbfunc_t cbfunc,11
void *cbdata);12

C

PMIx_SpawnPMIx v1.013

C
pmix_status_t14
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,15

const pmix_app_t apps[], size_t napps,16
char nspace[])17

C

PMIx_Notify_eventPMIx v2.018

C
pmix_status_t19
PMIx_Notify_event(pmix_status_t status,20

const pmix_proc_t *source,21
pmix_data_range_t range,22
pmix_info_t info[], size_t ninfo,23
pmix_op_cbfunc_t cbfunc, void *cbdata);24

C

PMIx_tool_attach_to_serverPMIx v4.025

APPENDIX B. USE-CASES 557

Un
offi
cia
l D
raf
t

C
pmix_status_t1
PMIx_tool_attach_to_server(pmix_proc_t *proc,2

pmix_proc_t *server,3
pmix_info_t info[],4
size_t ninfo);5

C

PMIx_Query_infoPMIx v4.06

C
pmix_status_t7
PMIx_Query_info(pmix_query_t queries[], size_t nqueries,8

pmix_info_t *info[], size_t *ninfo);9

C

PMIx_GetPMIx v1.010

C
pmix_status_t11
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,12

const pmix_info_t info[], size_t ninfo,13
pmix_value_t **val);14

C

Related Attributes15
PMIX_LAUNCH_DIRECTIVES "pmix.lnch.dirs" (pmix_data_array_t*)16

Array of pmix_info_t containing directives for the launcher - a convenience attribute for17
retrieving all directives with a single call to PMIx_Get.18

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)19
Indicate that the job being spawned is a tool.20

PMIX_COSPAWN_APP "pmix.cospawn" (bool)21
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not22
include the application in any of the job-level values (e.g., PMIX_RANK within the job)23
provided to any other application process generated by the same spawn request. Typically24
used to cospawn debugger daemons alongside an application.25

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)26
Requests that the ability to forward the stdout of the spawned processes be maintained.27
The requester will issue a call to PMIx_IOF_pull to specify the callback function and28
other options for delivery of the forwarded output.29

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)30

558 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Requests that the ability to forward the stderr of the spawned processes be maintained.1
The requester will issue a call to PMIx_IOF_pull to specify the callback function and2
other options for delivery of the forwarded output.3

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)4
Harvest and include relevant environmental variables.5

PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)6
Included in either the pmix_info_t array in a pmix_app_t description (if the directive7
applies only to that application) or in the job_info array if it applies to all applications in the8
given spawn request. Indicates that the specified application is being spawned under a9
debugger. The PMIx client library in each resulting application process shall notify its PMIx10
server that it is pausing and then pause during PMIx_Init of the spawned processes until11
either released by debugger modification of an appropriate variable or receipt of the12
PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL) is responsible for generating13
the PMIX_READY_FOR_DEBUG event (stipulating a breakpoint of p̈mix-init)̈ when all14
processes have reached the pause point.15

PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)16
Included in either the pmix_info_t array in a pmix_app_t description (if the directive17
applies only to that application) or in the job_info array if it applies to all applications in the18
given spawn request. Indicates that the application is being spawned under a debugger, and19
that the local launch agent is to pause the resulting application processes on first instruction20
for debugger attach. The launcher (RM or IL) is to generate the21
PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.22

PMIX_DEBUG_DAEMONS_PER_PROC "pmix.dbg.dpproc" (uint16_t)23
Number of debugger daemons to be spawned per application process. The launcher is to pass24
the identifier of the namespace to be debugged by including the PMIX_DEBUG_TARGET25
attribute in the daemon’s job-level information. The debugger daemons spawned on a given26
node are responsible for self-determining their specific target process(es) - e.g., by27
referencing their own PMIX_LOCAL_RANK in the daemon debugger job versus the28
corresponding PMIX_LOCAL_RANK of the target processes on the node.29

PMIX_DEBUG_DAEMONS_PER_NODE "pmix.dbg.dpnd" (uint16_t)30
Number of debugger daemons to be spawned on each node where the target job is executing.31
The launcher is to pass the identifier of the namespace to be debugged by including the32
PMIX_DEBUG_TARGET attribute in the daemon’s job-level information. The debugger33
daemons spawned on a given node are responsible for self-determining their specific target34
process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger35
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.36

PMIX_MAPBY "pmix.mapby" (char*)37
Process mapping policy - when accessed using PMIx_Get, use the38
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the39
provided namespace. Supported values are launcher specific.40

APPENDIX B. USE-CASES 559

Un
offi
cia
l D
raf
t

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)1
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each2
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:3
PMIX_NSPACE indicating the namespace whose process table is being queried.4

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)5
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each6
process in the specified namespace executing on the same node as the requester, ordered by7
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace8
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME9
indicating the host whose local process table is being queried. By default, the query assumes10
that the host upon which the request was made is to be used.11

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)12
Included in the pmix_info_t array of a pmix_app_t, this attribute declares that the13
application consists of debugger daemons and shall be governed accordingly. If used as the14
sole pmix_app_t in a PMIx_Spawn request, then the PMIX_DEBUG_TARGET attribute15
must also be provided (in either the job_info or in the info array of the pmix_app_t) to16
identify the namespace to be debugged so that the launcher can determine where to place the17
spawned daemons. If neither PMIX_DEBUG_DAEMONS_PER_PROC nor18
PMIX_DEBUG_DAEMONS_PER_NODE is specified, then the launcher shall default to a19
placement policy of one daemon per process in the target job.20

PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)21
Requests that the launcher generate the PMIX_EVENT_JOB_END event for normal or22
abnormal termination of the spawned job. The event shall include the returned status code23
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)24
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a25
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred. Note that the26
requester must register for the event or capture and process it within a default event handler.27

PMIX_DEBUG_TARGET "pmix.dbg.tgt" (pmix_proc_t*)28
Identifier of process(es) to be debugged - a rank of PMIX_RANK_WILDCARD indicates that29
all processes in the specified namespace are to be included.30

PMIX_WAIT_FOR_CONNECTION "pmix.wait.conn" (bool)31
Wait until the specified process has connected to the requesting tool or server, or the32
operation times out (if the PMIX_TIMEOUT directive is included in the request).33

Related Constants34
PMIX_LAUNCHER_READY35
PMIX_LAUNCH_COMPLETE36
PMIX_DEBUG_WAITING_FOR_NOTIFY37
PMIX_DEBUGGER_RELEASE38
PMIX_LAUNCHER_RNDZ_URI39

560 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

B.2.2.3 Attaching to a Running Job1

PMIx supports attaching to an already running parallel job in two ways. In the first way, the main2
process of a tool calls PMIx_Query_info with the PMIX_QUERY_PROC_TABLE attribute.3
This returns an array of structs containing the information required for process acquisition. This4
includes remote hostnames, executable names, and process IDs. In the second way, every tool5
daemon calls PMIx_Query_info with the PMIX_QUERY_LOCAL_PROC_TABLE attribute.6
This returns a similar array of structs but only for processes on the same node.7

An example of this use-case may look like the following: mpiexec -n 32 ./myApp &&8
dbgr attach $!.9

PMIx_tool_initPMIx v2.010

C
pmix_status_t11
PMIx_tool_init(pmix_proc_t *proc,12

pmix_info_t info[], size_t ninfo);13

C

PMIx_Register_event_handlerPMIx v2.014

C
pmix_status_t15
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,16

pmix_info_t info[], size_t ninfo,17
pmix_notification_fn_t evhdlr,18
pmix_hdlr_reg_cbfunc_t cbfunc,19
void *cbdata);20

C

PMIx_Query_infoPMIx v4.021

C
pmix_status_t22
PMIx_Query_info(pmix_query_t queries[], size_t nqueries,23

pmix_info_t *info[], size_t *ninfo);24

C

PMIx_SpawnPMIx v1.025

APPENDIX B. USE-CASES 561

Un
offi
cia
l D
raf
tDebugger Tool RM near Tool RM on Node ApplicationTool Daemon

Debugger Tool RM near Tool RM on Node ApplicationTool Daemon

PMIx_tool_init pmix_server_
 tool_connection_fn_t// Global event reg.

PMIx_Register_event_handler
pmix_server_
 register_events_fn_t

// Query proc table
PMIx_Query_info()
 - PMIX_QUERY_PROC_TABLE pmix_server_

 query_fn_t

// Daemon completion
PMIx_Register_event_handler
 - PMIX_NSPACE pmix_server_

 register_events_fn_t

Tool internal messages

PMIx_tool_init
pmix_server_
 tool_connection_fn_t

// App. events
PMIx_Register_
 event_handlerpmix_server_

 register_events_fn_t

PMIx_Get()
 - PMIX_DEBUG_TARGET

// Query proc table
PMIx_Query_info()
 - PMIX_QUERY_
 LOCAL_PROC_TABLEpmix_server_

 query_fn_t

Tool attaches to process

// Query for all nspaces
PMIx_Query_info()
 - PMIX_QUERY_NAMESPACES

pmix_server_
 query_fn_t

// Spawn the support daemon
PMIx_Spawn()
 - PMIX_DEBUGGER_DAEMONS
 - PMIX_DEBUG_TARGET
 - PMIX_FWD_STDOUT
 - PMIX_FWD_STDERR
 - PMIX_NOTIFY_COMPLETION
 - PMIX_REQUESTOR_IS_TOOL

pmix_server_
 spawn_fn_t

RM internal launch message
// Setup process
// launch with PMIx
// fork/exec processes

Figure B.3.: Interaction diagram showing an example of the attaching to a running job

562 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C
pmix_status_t1
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,2

const pmix_app_t apps[], size_t napps,3
char nspace[])4

C

Related Attributes5
PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)6

Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each7
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:8
PMIX_NSPACE indicating the namespace whose process table is being queried.9

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)10
Included in the pmix_info_t array of a pmix_app_t, this attribute declares that the11
application consists of debugger daemons and shall be governed accordingly. If used as the12
sole pmix_app_t in a PMIx_Spawn request, then the PMIX_DEBUG_TARGET attribute13
must also be provided (in either the job_info or in the info array of the pmix_app_t) to14
identify the namespace to be debugged so that the launcher can determine where to place the15
spawned daemons. If neither PMIX_DEBUG_DAEMONS_PER_PROC nor16
PMIX_DEBUG_DAEMONS_PER_NODE is specified, then the launcher shall default to a17
placement policy of one daemon per process in the target job.18

PMIX_DEBUG_TARGET "pmix.dbg.tgt" (pmix_proc_t*)19
Identifier of process(es) to be debugged - a rank of PMIX_RANK_WILDCARD indicates that20
all processes in the specified namespace are to be included.21

PMIX_DEBUG_DAEMONS_PER_PROC "pmix.dbg.dpproc" (uint16_t)22
Number of debugger daemons to be spawned per application process. The launcher is to pass23
the identifier of the namespace to be debugged by including the PMIX_DEBUG_TARGET24
attribute in the daemon’s job-level information. The debugger daemons spawned on a given25
node are responsible for self-determining their specific target process(es) - e.g., by26
referencing their own PMIX_LOCAL_RANK in the daemon debugger job versus the27
corresponding PMIX_LOCAL_RANK of the target processes on the node.28

PMIX_DEBUG_DAEMONS_PER_NODE "pmix.dbg.dpnd" (uint16_t)29
Number of debugger daemons to be spawned on each node where the target job is executing.30
The launcher is to pass the identifier of the namespace to be debugged by including the31
PMIX_DEBUG_TARGET attribute in the daemon’s job-level information. The debugger32
daemons spawned on a given node are responsible for self-determining their specific target33
process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger34
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.35

PMIX_MAPBY "pmix.mapby" (char*)36

APPENDIX B. USE-CASES 563

Un
offi
cia
l D
raf
t

Process mapping policy - when accessed using PMIx_Get, use the1
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the2
provided namespace. Supported values are launcher specific.3

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)4
Requests that the ability to forward the stdout of the spawned processes be maintained.5
The requester will issue a call to PMIx_IOF_pull to specify the callback function and6
other options for delivery of the forwarded output.7

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)8
Requests that the ability to forward the stderr of the spawned processes be maintained.9
The requester will issue a call to PMIx_IOF_pull to specify the callback function and10
other options for delivery of the forwarded output.11

PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)12
Requests that the launcher generate the PMIX_EVENT_JOB_END event for normal or13
abnormal termination of the spawned job. The event shall include the returned status code14
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)15
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a16
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred. Note that the17
requester must register for the event or capture and process it within a default event handler.18

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)19
The requesting process is a PMIx tool.20

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)21
Request a comma-delimited list of active namespaces. NO QUALIFIERS.22

B.2.2.4 Tool Interaction with RM23

Tools can benefit from a mechanism by which they may interact with a local PMIx server that has24
opted to accept such connections along with support for tool connections to system-level PMIx25
servers, and a logging feature. To add support for tool connections to a specified system-level,26
PMIx server environments could choose to launch a set of PMIx servers to support a given27
allocation - these servers will (if so instructed) provide a tool rendezvous point that is tagged with28
their pid and typically placed in an allocation-specific temporary directory to allow for possible29
multi-tenancy scenarios. Supporting such operations requires that a system-level PMIx connection30
be provided which is not associated with a specific user or allocation. A new key has been added to31
direct the PMIx server to expose a rendezvous point specifically for this purpose.32

PMIx_Query_info_nbPMIx v2.033

564 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C
pmix_status_t1
PMIx_Query_info_nb(pmix_query_t queries[], size_t nqueries,2

pmix_info_cbfunc_t cbfunc, void *cbdata);3

C

PMIx_Register_event_handlerPMIx v2.04

C
pmix_status_t5
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,6

pmix_info_t info[], size_t ninfo,7
pmix_notification_fn_t evhdlr,8
pmix_hdlr_reg_cbfunc_t cbfunc,9
void *cbdata);10

C

PMIx_Deregister_event_handlerPMIx v2.011

C
pmix_status_t12
PMIx_Deregister_event_handler(size_t evhdlr_ref,13

pmix_op_cbfunc_t cbfunc,14
void *cbdata);15

C

PMIx_Notify_eventPMIx v2.016

C
pmix_status_t17
PMIx_Notify_event(pmix_status_t status,18

const pmix_proc_t *source,19
pmix_data_range_t range,20
pmix_info_t info[], size_t ninfo,21
pmix_op_cbfunc_t cbfunc, void *cbdata);22

C

PMIx_server_initPMIx v1.023

APPENDIX B. USE-CASES 565

Un
offi
cia
l D
raf
t

C
pmix_status_t1
PMIx_server_init(pmix_server_module_t *module,2

pmix_info_t info[], size_t ninfo);3

C
B.2.2.5 Environmental Parameter Directives for Applications4

and Launchers5

It is sometimes desirable or required that standard environmental variables (e.g., PATH,6
LD_LIBRARY_PATH, LD_PRELOAD) be modified prior to executing an application binary or a7
starter such as mpiexec - this is particularly true when tools/debuggers are used to start the8
application.9

Related Interfaces10
PMIx_SpawnPMIx v1.011

C
pmix_status_t12
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,13

const pmix_app_t apps[], size_t napps,14
char nspace[])15

C
Related Structs16
pmix_envar_t17

Related Attributes18
PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)19

Set the envar to the given value, overwriting any pre-existing one20

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)21
Add the environment variable, but do not overwrite any pre-existing one22

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)23
Unset the environment variable specified in the string.24

PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)25
Prepend the given value to the specified environmental value using the given separator26
character, creating the variable if it doesn’t already exist27

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)28
Append the given value to the specified environmental value using the given separator29
character, creating the variable if it doesn’t already exist30

Resource managers and launchers must scan for relevant directives, modifying environmental31
parameters as directed. Directives are to be processed in the order in which they were given,32
starting with job-level directives (applied to each app) followed by app-level directives.33

566 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

B.3 Hybrid Applications1

B.3.1 Use Case Summary2

Hybrid applications (i.e., applications that utilize more than one programming model or runtime3
system, such as an application using MPI that also uses OpenMP or UPS) are growing in4
popularity, especially as processors with increasingly large numbers of cores and/or hardware5
threads proliferate. Unfortunately, the various corresponding runtime systems currently operate6
under the assumption that they alone control execution. This leads to conflicts in hybrid7
applications. Deadlock of parallel applications can occur when one runtime system prevents the8
other from making progress due to lack of coordination between them [3]. Sub-optimal9
performance can also occur due to uncoordinated division of hardware resources between the10
runtime systems implementing the different programming models or systems [5, 6]. This use-case11
offers potential solutions to this problem by providing a pathway for parallel runtime systems to12
coordinate their actions.13

B.3.2 Use Case Details14

B.3.2.1 Identifying Active Parallel Runtime Systems15

The current state-of-the-practice for concurrently used runtime systems in a single application to16
detect one another is via set environment variables. For example, some OpenMP implementations17
look for environment variables to indicate that an MPI library is active. Unfortunately, this18
technique is not completely reliable as environment variables change over time and with new19
software versions, and this detection is implementation specific. Also, the fact that an environment20
variable is present doesn’t guarantee that a particular runtime system is in active use since Resource21
Managers routinely set environment variables "just in case" the application needs them. PMIx22
provides a reliable mechanism by which each library can determine that another runtime library is23
in operation.24

When initializing PMIx, runtime libraries implementing a parallel programming model can register25
themselves, including their name, the library version, the version of the API they implement, and26
the threading model. This information is then cached locally and can then be read asynchronously27
by other runtime systems using PMIx’s Event Notification system.28

This initialization mechanism also allows runtime libraries to share knowledge of each other’s29
resources and intended resource utilization. For example, if an OpenMP implementation knows30
which hardware threads an MPI library is using it could potentially avoid core and cache contention.31

Code Example32

1 pmix_proc_t myproc;
2 pmix_info_t *info;
3 volatile bool wearedone = false;
4

APPENDIX B. USE-CASES 567

Un
offi
cia
l D
raf
t

5 PMIX_INFO_CREATE(info, 4);
6 PMIX_INFO_LOAD(&info[0], PMIX_PROGRAMMING_MODEL, "MPI", PMIX_STRING);
7 PMIX_INFO_LOAD(&info[1], PMIX_MODEL_LIBRARY_NAME, "FooMPI",

PMIX_STRING);↪→

8 PMIX_INFO_LOAD(&info[2], PMIX_MODEL_LIBRARY_VERSION, "1.0.0",
PMIX_STRING);↪→

9 PMIX_INFO_LOAD(&info[3], PMIX_THREADING_MODEL, "posix", PMIX_STRING);
10 pmix_status_t rc = PMIx_Init(&myproc, info, 4);
11 PMIX_INFO_FREE(info, 4);

1

Related Interfaces2
PMIx_InitPMIx v1.23

C
pmix_status_t4
PMIx_Init(pmix_proc_t *proc,5

pmix_info_t info[], size_t ninfo)6

C

Related Attributes7
PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)8

Programming model being initialized (e.g., “MPI” or “OpenMP”).9

PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)10
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).11

PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)12
Programming model version string (e.g., “2.1.1”).13

PMIX_THREADING_MODEL "pmix.threads" (char*)14
Threading model used (e.g., “pthreads”).15

PMIX_MODEL_NUM_THREADS "pmix.mdl.nthrds" (uint64_t)16
Number of active threads being used by the model.17

PMIX_MODEL_NUM_CPUS "pmix.mdl.ncpu" (uint64_t)18
Number of cpus being used by the model.19

PMIX_MODEL_CPU_TYPE "pmix.mdl.cputype" (char*)20
Granularity - “hwthread”, “core”, etc.21

PMIX_MODEL_PHASE_NAME "pmix.mdl.phase" (char*)22
User-assigned name for a phase in the application execution (e.g., “cfd reduction”).23

PMIX_MODEL_PHASE_TYPE "pmix.mdl.ptype" (char*)24
Type of phase being executed (e.g., “matrix multiply”).25

568 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_MODEL_AFFINITY_POLICY "pmix.mdl.tap" (char*)1
Thread affinity policy - e.g.: "master" (thread co-located with master thread), "close" (thread2
located on cpu close to master thread), "spread" (threads load-balanced across available3
cpus).4

B.3.2.2 Coordinating at Runtime5

The PMIx Event Notification system provides a mechanism by which the resource manager can6
communicate system events to applications, thus providing applications with an opportunity to7
generate an appropriate response. Hybrid applications can leverage these events for cross-library8
coordination.9

Runtime libraries can access the information provided by other runtime libraries during their10
initialization using the event notification system. In this case, runtime libraries should register a11
callback for the PMIX_MODEL_DECLARED event.12

Applications, runtime libraries, and resource managers can also use the PMIx event notification13
system to communicate dynamic information, such as entering a new application phase14
(PMIX_MODEL_PHASE_NAME) or a change in resources used (PMIX_MODEL_RESOURCES).15
This dynamic information can be broadcast using the PMIx_Notify_event function. Runtime16
libraries can register callback functions to run when these events occur using17
PMIx_Register_event_handler.18

Code Example19
Registering a callback to run when another runtime library initializes:20

1 static void model_declared_cb(size_t evhdlr_registration_id,
2 pmix_status_t status, const pmix_proc_t

*source,↪→

3 pmix_info_t info[], size_t ninfo,
4 pmix_info_t results[], size_t nresults,
5 pmix_event_notification_cbfunc_fn_t

cbfunc,↪→

6 void *cbdata) {
7 printf("Entered %s\n", __FUNCTION__);
8 int n;
9 for (n = 0; n < ninfo; n++) {
10 if (PMIX_CHECK_KEY(&info[n], PMIX_PROGRAMMING_MODEL) &&
11 strcmp(info[n].value.data.string, "MPI") == 0) {
12 /* ignore our own declaration */
13 break;
14 } else {
15 /* actions to perform when another model registers */
16 }
17 }
18 if (NULL != cbfunc) {
19 /* tell the event handler that we are only a partial step */

APPENDIX B. USE-CASES 569

Un
offi
cia
l D
raf
t

20 cbfunc(PMIX_EVENT_PARTIAL_ACTION_TAKEN, NULL, 0, NULL, NULL,
cbdata);↪→

21 }
22 }
23

24 pmix_status_t code = PMIX_MODEL_DECLARED;
25 rc = PMIx_Register_event_handler(&code, 1, NULL, 0, model_declared_cb,

NULL, NULL);↪→

1

Notifying an event:2

1 PMIX_INFO_CREATE(info, 1);
2 PMIX_INFO_LOAD(&info[0], PMIX_EVENT_NON_DEFAULT, NULL, PMIX_BOOL);
3 rc = PMIx_Notify_event(PMIX_OPENMP_PARALLEL_ENTERED, &myproc,

PMIX_RANGE_PROC_LOCAL, info, 1, notify_complete, (void*)&wearedone);↪→

3

Related Interfaces4
PMIx_Notify_eventPMIx v2.05

C
pmix_status_t6
PMIx_Notify_event(pmix_status_t status,7

const pmix_proc_t *source,8
pmix_data_range_t range,9
pmix_info_t info[], size_t ninfo,10
pmix_op_cbfunc_t cbfunc, void *cbdata);11

C

PMIx_Register_event_handlerPMIx v2.012

C
pmix_status_t13
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,14

pmix_info_t info[], size_t ninfo,15
pmix_notification_fn_t evhdlr,16
pmix_hdlr_reg_cbfunc_t cbfunc,17
void *cbdata);18

C

pmix_event_notification_cbfunc_fn_tPMIx v2.019

570 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C
typedef void (*pmix_event_notification_cbfunc_fn_t)1

(pmix_status_t status,2
pmix_info_t *results, size_t nresults,3
pmix_op_cbfunc_t cbfunc, void *thiscbdata,4
void *notification_cbdata);5

C

Related Constants6
PMIX_MODEL_DECLARED7
PMIX_MODEL_RESOURCES8
PMIX_OPENMP_PARALLEL_ENTERED9
PMIX_OPENMP_PARALLEL_EXITED10
PMIX_EVENT_ACTION_COMPLETE11

B.3.2.3 Coordinating at Runtime with Multiple Event Handlers12

Coordinating with a threading library such as an OpenMP runtime library creates the need for13
separate event handlers for threads of the same process. For example in an MPI+OpenMP hybrid14
application, the MPI main thread and the OpenMP primary thread may both want to be notified15
anytime an OpenMP thread starts executing in a parallel region. This requires support for multiple16
threads to potentially register different event handlers against the same status code.17

Multiple event handlers registered against the same event are processed in a chain-like manner18
based on the order in which they were registered, as modified by any directives. Registrations19
against specific event codes are processed first, followed by registrations against multiple event20
codes and then any default registrations. At each point in the chain, an event handler is called by the21
PMIx progress thread and given a function to call when that handler has completed its operation.22
The handler callback notifies PMIx that the handler is done, returning a status code to indicate the23
result of its work. The results are appended to the array of prior results, with the returned values24
combined into an array within a single pmix_info_t as follows:25

• array[0]: the event handler name provided at registration (may be an empty field if a string26
name was not given) will be in the key, with the pmix_status_t value returned by the handler27

• array[*]: the array of results returned by the handler, if any.28

The current PMIx standard does not actually specify a default ordering for event handlers as they29
are being registered. However, it does include an inherent ordering for invocation. Specifically,30
PMIx stipulates that handlers be called in the following categorical order:31

• single status event handlers - handlers that were registered against a single specific status.32

• multi status event handlers - those registered against more than one specific status.33

• default event handlers - those registered against no specific status.34

APPENDIX B. USE-CASES 571

Un
offi
cia
l D
raf
t

Code Example1
From the OpenMP primary thread:2

1 static void parallel_region_OMP_cb(size_t evhdlr_registration_id,
2 pmix_status_t status,
3 const pmix_proc_t *source,
4 pmix_info_t info[], size_t ninfo,
5 pmix_info_t results[], size_t

nresults,↪→

6 pmix_event_notification_cbfunc_fn_t
cbfunc,↪→

7 void *cbdata) {
8 printf("Entered %s\n", __FUNCTION__);
9 /* do what we need OpenMP to do on entering a parallel region */
10 if (NULL != cbfunc) {
11 /* tell the event handler that we are only a partial step */
12 cbfunc(PMIX_EVENT_PARTIAL_ACTION_TAKEN, NULL, 0, NULL, NULL,

cbdata);↪→

13 }
14 }
15

16 bool is_true = true;
17 pmix_status_t code = PMIX_OPENMP_PARALLEL_ENTERED;
18 PMIX_INFO_CREATE(info, 2);
19 PMIX_INFO_LOAD(&info[0], PMIX_EVENT_HDLR_NAME, "OpenMP-Primary",

PMIX_STRING);↪→

20 PMIX_INFO_LOAD(&info[1], PMIX_EVENT_HDLR_FIRST, &is_true, PMIX_BOOL);
21 rc = PMIx_Register_event_handler(&code, 1, info, 2,

parallel_region_OMP_cb, NULL, NULL);↪→

22 if (rc < 0)
23 fprintf(stderr, "%s: Failed to register event handler for OpenMP

region entrance\n", __FUNCTION__);↪→

24 PMIX_INFO_FREE(info, 2);

3

From the MPI process:4

1 static void parallel_region_MPI_cb(size_t evhdlr_registration_id,
2 pmix_status_t status,
3 const pmix_proc_t *source,
4 pmix_info_t info[], size_t ninfo,
5 pmix_info_t results[], size_t

nresults,↪→

6 pmix_event_notification_cbfunc_fn_t
cbfunc,↪→

7 void *cbdata) {

572 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

8 printf("Entered %s\n", __FUNCTION__);
9 /* do what we need the MPI library to do on entering a parallel region

*/↪→

10 if (NULL != cbfunc) {
11 /* tell the event handler that we are the last step */
12 cbfunc(PMIX_EVENT_ACTION_COMPLETE, NULL, 0, NULL, NULL, cbdata);
13 }
14 }
15

16 pmix_status_t code = PMIX_OPENMP_PARALLEL_ENTERED;
17 PMIX_INFO_CREATE(info, 2);
18 PMIX_INFO_LOAD(&info[0], PMIX_EVENT_HDLR_NAME, "MPI-Thread",

PMIX_STRING);↪→

19 PMIX_INFO_LOAD(&info[1], PMIX_EVENT_HDLR_AFTER, "OpenMP-Primary",
PMIX_STRING);↪→

20 rc = PMIx_Register_event_handler(&code, 1, info, 2,
parallel_region_MPI_cb, NULL, NULL);↪→

21 if (rc < 0)
22 fprintf(stderr, "%s: Failed to register event handler for OpenMP

region entrance\n", __FUNCTION__);↪→

23 PMIX_INFO_FREE(info, 2);

1

Related Interfaces2
PMIx_Register_event_handlerPMIx v2.03

C
pmix_status_t4
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,5

pmix_info_t info[], size_t ninfo,6
pmix_notification_fn_t evhdlr,7
pmix_hdlr_reg_cbfunc_t cbfunc,8
void *cbdata);9

C

pmix_event_notification_cbfunc_fn_tPMIx v2.010

C
typedef void (*pmix_event_notification_cbfunc_fn_t)11

(pmix_status_t status,12
pmix_info_t *results, size_t nresults,13
pmix_op_cbfunc_t cbfunc, void *thiscbdata,14
void *notification_cbdata);15

C

APPENDIX B. USE-CASES 573

Un
offi
cia
l D
raf
t

Related Attributes1
PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)2

String name identifying this handler.3

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)4
Invoke this event handler before any other handlers.5

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)6
Invoke this event handler after all other handlers have been called.7

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)8
Invoke this event handler before any other handlers in this category.9

PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)10
Invoke this event handler after all other handlers in this category have been called.11

PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)12
Put this event handler immediately before the one specified in the (char*) value.13

PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)14
Put this event handler immediately after the one specified in the (char*) value.15

PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)16
Append this handler to the precedence list within its category.17

Related Constants18
PMIX_EVENT_NO_ACTION_TAKEN19
PMIX_EVENT_PARTIAL_ACTION_TAKEN20
PMIX_EVENT_ACTION_DEFERRED21

22

B.4 MPI Sessions23

B.4.1 Use Case Summary24

MPI Sessions addresses a number of the limitations of the current MPI programming model.25
Among the immediate problems MPI Sessions is intended to address are the following:26

• MPI cannot be initialized within an MPI process from different application components without27
a priori knowledge or coordination,28

• MPI cannot be initialized more than once, and MPI cannot be reinitialized after MPI finalize has29
been called.30

• With MPI Sessions, an application no longer needs to explicitly call MPI_Init to make use of31
MPI, but rather can use a Session to only initialize MPI resources for specific communication32
needs.33

574 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Figure B.4.: MPI Communicator from MPI Session Handle using PMIx

• Unless the MPI process explicitly calls MPI_Init, there is also no explicit MPI_COMM_WORLD1
communicator. Sessions can be created and destroyed multiple times in an MPI process.2

B.4.2 Use Case Details3

A PMIx Process Set (PSET) is a user-provided or host environment assigned label associated with a4
given set of application processes. Processes can belong to multiple process sets at a time.5
Definition of a PMIx process set typically occurs at time of application execution - e.g., on a6
command line: prun -n 4 -pset ocean myoceanapp : -n 3 -pset ice7
myiceapp8

PMIx PSETs are used for query functions (MPI_SESSION_GET_NUM_PSETS,9
MPI_SESSION_GET_NTH_PSET) and to create MPI_GROUP from a process set name.10

In OpenMPI’s MPI Sessions prototype, PMIx groups are used during creation of MPI_COMM from11
an MPI_GROUP. The PMIx group constructor returns a 64-bit PMIx Group Context Identifier12
(PGCID) that is guaranteed to be unique for the duration of an allocation (in the case of a batch13
managed environment). This PGCID could be used as a direct replacement for the existing unique14
identifiers for communicators in MPI (E.g. Communicator Identifiers (CIDs) in Open MPI), but15
may have performance implications.16

APPENDIX B. USE-CASES 575

Un
offi
cia
l D
raf
t

There is an important distinction between process sets and process groups. The process set1
identifiers are set by the host environment and currently there are no PMIx APIs provided by which2
an application can change a process set membership. In contrast, PMIx process groups can only be3
defined dynamically by the application.4

Related Interfaces5
PMIx_GetPMIx v1.06

C
pmix_status_t7
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,8

const pmix_info_t info[], size_t ninfo,9
pmix_value_t **val);10

C

PMIx_Group_constructPMIx v4.011

C
pmix_status_t12
PMIx_Group_construct(const char grp[],13

const pmix_proc_t procs[], size_t nprocs,14
const pmix_info_t directives[],15
size_t ndirs,16
pmix_info_t **results,17
size_t *nresults);18

C

Related Attributes19
PMIX_PSET_NAMES "pmix.pset.nms" (pmix_data_array_t*)20

Returns an array of char* string names of the process sets in which the given process is a21
member.22

PMIX_QUERY_NUM_GROUPS "pmix.qry.pgrpnum" (size_t)23
Return the number of process groups defined in the specified range (defaults to session).24
OPTIONAL QUALIFERS: PMIX_RANGE.25

PMIX_QUERY_GROUP_NAMES "pmix.qry.pgrp" (pmix_data_array_t*)26
Return a pmix_data_array_t containing an array of string names of the process groups27
defined in the specified range (defaults to session). OPTIONAL QUALIFERS:28
PMIX_RANGE.29

PMIX_QUERY_GROUP_MEMBERSHIP30
"pmix.qry.pgrpmems" (pmix_data_array_t*)31

Return a pmix_data_array_t of pmix_proc_t containing the members of the32
specified process group. REQUIRED QUALIFIERS: PMIX_GROUP_ID.33

576 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Related Constants1
PMIX_SUCCESS2
PMIX_ERR_NOT_SUPPORTED3

B.5 Cross-Version Compatibility4

B.5.1 Use Case Summary5

The PMIx interface serves as a conduit between clients (e.g., MPI libraries), tools (e.g., debuggers),6
and servers (e.g., RMs). As such, it is probable that a process operating in one of these roles (e.g.,7
as a client or tool) is running a different version of the same PMIx implementation than the process8
with which it is communicating that is operating in a different role (e.g., as a server). For processes9
running in containers cross-version compatibility is especially important because the container10
image and the system software levels will naturally evolve and drift apart. As such, there is a need11
for PMIx implementations to provide cross-version compatibility.12

The responsibility for providing cross-version compatibility is a feature of a specific PMIx13
implementation and not necessarily of the PMIx standard. The PMIx standard must strive to14
enable, and never limit, both the cross-version compatibility in any given PMIx implementation,15
and the ability for a PMIx consumer to adapt to cross-version differences in capabilities.16

This use case is focused on cross-version compatibility between different versions of the same17
PMIx implementation and not between different PMIx implementations.18

Cross-version compatibility responsibilities are not restricted to PMIx, but a general issue for any19
library that coordinates across multiple processes. This includes, but not limited to, client/server20
libraries, and libraries with a user-space and kernel-space component (e.g., high-performance21
interconnect libraries).22

B.5.2 Use Case Details23

There are three scenarios that a PMIx implementation and a PMIx consumer must consider. These24
scenarios use a PMIx Server and a PMIx Client for clarity, though the scenarios also apply to PMIx25
Tools.26

1. PMIx Server version matches PMIx Client version: No cross-version considerations are27
necessary since they are running the same version.28

2. PMIx Server version is older than PMIx Client version: The implementation must negotiate29
capabilities during the initial handshake.30
This scenario is common if the (possibly containerized) PMIx client application is being run on31
an established system that does not update as frequently as the application requires. Thus the32
PMIx Server in the RM is locked to an older version of that PMIx implementation.33

APPENDIX B. USE-CASES 577

Un
offi
cia
l D
raf
t

3. PMIx Server version is newer than PMIx Client version: The implementation must negotiate1
capabilities during the initial handshake.2
This scenario is common if the (possibly containerized) PMIx client application is being run3
after a system software upgrade on the system. Thus the PMIx Server in the RM has been4
upgraded to a newer version of that PMIx implementation and the client is still linked against the5
older version.6

When the two PMIx-enabled processes first connect to each other they need to first check the7
version of the library that they are each running. This handshake often occurs during initialization8
(though it could occur on a per-operation basis depending on the specific PMIx implementation),9
for example during the following operations:10

• PMIx Clients: PMIx_Init11

• PMIx Tools: PMIx_tool_init, PMIx_tool_attach_to_server12

• PMIx Servers: PMIx_server_init, pmix_server_client_connected2_fn_t,13
pmix_server_tool_connection_fn_t14

Commonly this cross-version handshake occurs completely transparently to the consumers of the15
PMIx interface since it happens inside a specific PMIx implementation of these interfaces.16
However, during the negotiation, some features available in one version might not be available in17
the other. The consumer of the PMIx interface should always be prepared to receive the18
PMIX_ERR_NOT_SUPPORTED error code from a PMIx interface call that the other side either19
does not support or is not available in the version of the library with which they are linked. After20
connecting to another PMIx entity, the consumer of the PMIx interface can use the21
PMIx_Query_info API to determine supported functionality and adapt accordingly.22

Related Interfaces23
PMIx_InitPMIx v1.224

C
pmix_status_t25
PMIx_Init(pmix_proc_t *proc,26

pmix_info_t info[], size_t ninfo)27

C

PMIx_tool_initPMIx v2.028

C
pmix_status_t29
PMIx_tool_init(pmix_proc_t *proc,30

pmix_info_t info[], size_t ninfo);31

C

PMIx_tool_attach_to_serverPMIx v4.032

578 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C
pmix_status_t1
PMIx_tool_attach_to_server(pmix_proc_t *proc,2

pmix_proc_t *server,3
pmix_info_t info[],4
size_t ninfo);5

C

PMIx_server_initPMIx v1.06

C
pmix_status_t7
PMIx_server_init(pmix_server_module_t *module,8

pmix_info_t info[], size_t ninfo);9

C

pmix_server_client_connected2_fn_tPMIx v4.010

C
typedef pmix_status_t (*pmix_server_client_connected2_fn_t)(11

const pmix_proc_t *proc,12
void* server_object,13
pmix_info_t info[], size_t ninfo,14
pmix_op_cbfunc_t cbfunc,15
void *cbdata)16

C

pmix_server_tool_connection_fn_tPMIx v2.017

C
typedef void (*pmix_server_tool_connection_fn_t)(18

pmix_info_t info[], size_t ninfo,19
pmix_tool_connection_cbfunc_t cbfunc,20
void *cbdata);21

C

PMIx_Query_infoPMIx v4.022

C
pmix_status_t23
PMIx_Query_info(pmix_query_t queries[], size_t nqueries,24

pmix_info_t *info[], size_t *ninfo);25

C

APPENDIX B. USE-CASES 579

Un
offi
cia
l D
raf
t

Related Constants1
PMIX_SUCCESS2
PMIX_ERR_NOT_SUPPORTED3

580 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

APPENDIX C

Revision History

C.1 Version 1.0: June 12, 20151

The PMIx version 1.0 ad hoc standard was defined in a set of header files as part of the v1.0.02
release of the OpenPMIx library prior to the creation of the formal PMIx 2.0 standard. Below are a3
summary listing of the interfaces defined in the 1.0 headers.4

• Client APIs5

– PMIx_Init, PMIx_Initialized, PMIx_Abort, PMIx_Finalize6
– PMIx_Put, PMIx_Commit,7
– PMIx_Fence, PMIx_Fence_nb8
– PMIx_Get, PMIx_Get_nb9
– PMIx_Publish, PMIx_Publish_nb10
– PMIx_Lookup, PMIx_Lookup_nb11
– PMIx_Unpublish, PMIx_Unpublish_nb12
– PMIx_Spawn, PMIx_Spawn_nb13
– PMIx_Connect, PMIx_Connect_nb14
– PMIx_Disconnect, PMIx_Disconnect_nb15
– PMIx_Resolve_nodes, PMIx_Resolve_peers16

• Server APIs17

– PMIx_server_init, PMIx_server_finalize18
– PMIx_generate_regex, PMIx_generate_ppn19
– PMIx_server_register_nspace, PMIx_server_deregister_nspace20
– PMIx_server_register_client, PMIx_server_deregister_client21
– PMIx_server_setup_fork, PMIx_server_dmodex_request22

• Common APIs23

– PMIx_Get_version, PMIx_Store_internal, PMIx_Error_string24
– PMIx_Register_errhandler, PMIx_Deregister_errhandler, PMIx_Notify_error25

The PMIx_Init API was subsequently modified in the v1.1.0 release of that library.26

581

Un
offi
cia
l D
raf
t

C.2 Version 2.0: Sept. 20181

The following APIs were introduced in v2.0 of the PMIx Standard:2

• Client APIs3

– PMIx_Query_info_nb, PMIx_Log_nb4
– PMIx_Allocation_request_nb, PMIx_Job_control_nb,5
PMIx_Process_monitor_nb, PMIx_Heartbeat6

• Server APIs7

– PMIx_server_setup_application, PMIx_server_setup_local_support8

• Tool APIs9

– PMIx_tool_init, PMIx_tool_finalize10

• Common APIs11

– PMIx_Register_event_handler, PMIx_Deregister_event_handler12
– PMIx_Notify_event13
– PMIx_Proc_state_string, PMIx_Scope_string14
– PMIx_Persistence_string, PMIx_Data_range_string15
– PMIx_Info_directives_string, PMIx_Data_type_string16
– PMIx_Alloc_directive_string17
– PMIx_Data_pack, PMIx_Data_unpack, PMIx_Data_copy18
– PMIx_Data_print, PMIx_Data_copy_payload19

C.2.1 Removed/Modified APIs20

The PMIx_Init API was modified in v2.0 of the standard from its ad hoc v1.0 signature to21
include passing of a pmix_info_t array for flexibility and “future-proofing” of the API. In22
addition, the PMIx_Notify_error, PMIx_Register_errhandler, and23
PMIx_Deregister_errhandler APIs were replaced. This pre-dated official adoption of24
PMIx as a Standard.25

C.2.2 Deprecated constants26

The following constants were deprecated in v2.0:27

PMIX_MODEX28
PMIX_INFO_ARRAY29

582 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C.2.3 Deprecated attributes1

The following attributes were deprecated in v2.0:2

PMIX_ERROR_NAME "pmix.errname" (pmix_status_t)3
Specific error to be notified4

PMIX_ERROR_GROUP_COMM "pmix.errgroup.comm" (bool)5
Set true to get comm errors notification6

PMIX_ERROR_GROUP_ABORT "pmix.errgroup.abort" (bool)7
Set true to get abort errors notification8

PMIX_ERROR_GROUP_MIGRATE "pmix.errgroup.migrate" (bool)9
Set true to get migrate errors notification10

PMIX_ERROR_GROUP_RESOURCE "pmix.errgroup.resource" (bool)11
Set true to get resource errors notification12

PMIX_ERROR_GROUP_SPAWN "pmix.errgroup.spawn" (bool)13
Set true to get spawn errors notification14

PMIX_ERROR_GROUP_NODE "pmix.errgroup.node" (bool)15
Set true to get node status notification16

PMIX_ERROR_GROUP_LOCAL "pmix.errgroup.local" (bool)17
Set true to get local errors notification18

PMIX_ERROR_GROUP_GENERAL "pmix.errgroup.gen" (bool)19
Set true to get notified of generic errors20

PMIX_ERROR_HANDLER_ID "pmix.errhandler.id" (int)21
Errhandler reference id of notification being reported22

C.3 Version 2.1: Dec. 201823

The v2.1 update includes clarifications and corrections from the v2.0 document, plus addition of24
examples:25

• Clarify description of PMIx_Connect and PMIx_Disconnect APIs.26
• Explain that values for the PMIX_COLLECTIVE_ALGO are environment-dependent27
• Identify the namespace/rank values required for retrieving attribute-associated information using28
the PMIx_Get API29

• Provide definitions for session, job, application, and other terms used throughout the document30
• Clarify definitions of PMIX_UNIV_SIZE versus PMIX_JOB_SIZE31
• Clarify server module function return values32
• Provide examples of the use of PMIx_Get for retrieval of information33
• Clarify the use of PMIx_Get versus PMIx_Query_info_nb34
• Clarify return values for non-blocking APIs and emphasize that callback functions must not be35
invoked prior to return from the API36

• Provide detailed example for construction of the PMIx_server_register_nspace input37
information array38

APPENDIX C. REVISION HISTORY 583

Un
offi
cia
l D
raf
t

• Define information levels (e.g., session vs job) and associated attributes for both storing and1
retrieving values2

• Clarify roles of PMIx server library and host environment for collective operations3
• Clarify definition of PMIX_UNIV_SIZE4

C.4 Version 2.2: Jan 20195

The v2.2 update includes the following clarifications and corrections from the v2.1 document:6

• Direct modex upcall function (pmix_server_dmodex_req_fn_t) cannot complete7
atomically as the API cannot return the requested information except via the provided callback8
function9

• Add missing pmix_data_array_t definition and support macros10
• Add a rule divider between implementer and host environment required attributes for clarity11
• Add PMIX_QUERY_QUALIFIERS_CREATE macro to simplify creation of pmix_query_t12

qualifiers13
• Add PMIX_APP_INFO_CREATE macro to simplify creation of pmix_app_t directives14
• Add flag and PMIX_INFO_IS_END macro for marking and detecting the end of a15
pmix_info_t array16

• Clarify the allowed hierarchical nesting of the PMIX_SESSION_INFO_ARRAY,17
PMIX_JOB_INFO_ARRAY, and associated attributes18

C.5 Version 3.0: Dec. 201819

The following APIs were introduced in v3.0 of the PMIx Standard:20

• Client APIs21

– PMIx_Log, PMIx_Job_control22
– PMIx_Allocation_request, PMIx_Process_monitor23
– PMIx_Get_credential, PMIx_Validate_credential24

• Server APIs25

– PMIx_server_IOF_deliver26
– PMIx_server_collect_inventory, PMIx_server_deliver_inventory27

• Tool APIs28

– PMIx_IOF_pull, PMIx_IOF_push, PMIx_IOF_deregister29
– PMIx_tool_connect_to_server30

• Common APIs31

– PMIx_IOF_channel_string32

584 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

The document added a chapter on security credentials, a new section for IO forwarding to the1
Process Management chapter, and a few blocking forms of previously-existing non-blocking APIs.2
Attributes supporting the new APIs were introduced, as well as additional attributes for a few3
existing functions.4

C.5.1 Removed constants5

The following constants were removed in v3.0:6

PMIX_MODEX7
PMIX_INFO_ARRAY8

C.5.2 Deprecated attributes9

The following attributes were deprecated in v3.0:10

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)11
If true, indicates that the requested choice of algorithm is mandatory.12

C.5.3 Removed attributes13

The following attributes were removed in v3.0:14

PMIX_ERROR_NAME "pmix.errname" (pmix_status_t)15
Specific error to be notified16

PMIX_ERROR_GROUP_COMM "pmix.errgroup.comm" (bool)17
Set true to get comm errors notification18

PMIX_ERROR_GROUP_ABORT "pmix.errgroup.abort" (bool)19
Set true to get abort errors notification20

PMIX_ERROR_GROUP_MIGRATE "pmix.errgroup.migrate" (bool)21
Set true to get migrate errors notification22

PMIX_ERROR_GROUP_RESOURCE "pmix.errgroup.resource" (bool)23
Set true to get resource errors notification24

PMIX_ERROR_GROUP_SPAWN "pmix.errgroup.spawn" (bool)25
Set true to get spawn errors notification26

PMIX_ERROR_GROUP_NODE "pmix.errgroup.node" (bool)27
Set true to get node status notification28

PMIX_ERROR_GROUP_LOCAL "pmix.errgroup.local" (bool)29
Set true to get local errors notification30

PMIX_ERROR_GROUP_GENERAL "pmix.errgroup.gen" (bool)31
Set true to get notified of generic errors32

PMIX_ERROR_HANDLER_ID "pmix.errhandler.id" (int)33
Errhandler reference id of notification being reported34

APPENDIX C. REVISION HISTORY 585

Un
offi
cia
l D
raf
t

C.6 Version 3.1: Jan. 20191

The v3.1 update includes clarifications and corrections from the v3.0 document:2

• Direct modex upcall function (pmix_server_dmodex_req_fn_t) cannot complete3
atomically as the API cannot return the requested information except via the provided callback4
function5

• Fix typo in name of PMIX_FWD_STDDIAG attribute6
• Correctly identify the information retrieval and storage attributes as “new” to v3 of the standard7
• Add missing pmix_data_array_t definition and support macros8
• Add a rule divider between implementer and host environment required attributes for clarity9
• Add PMIX_QUERY_QUALIFIERS_CREATE macro to simplify creation of pmix_query_t10
qualifiers11

• Add PMIX_APP_INFO_CREATE macro to simplify creation of pmix_app_t directives12
• Add new attributes to specify the level of information being requested where ambiguity may exist13
(see 6.1)14

• Add new attributes to assemble information by its level for storage where ambiguity may exist15
(see 17.2.3.1)16

• Add flag and PMIX_INFO_IS_END macro for marking and detecting the end of a17
pmix_info_t array18

• Clarify that PMIX_NUM_SLOTS is duplicative of (a) PMIX_UNIV_SIZE when used at the19
session level and (b) PMIX_MAX_PROCS when used at the job and application levels, but leave20
it in for backward compatibility.21

• Clarify difference between PMIX_JOB_SIZE and PMIX_MAX_PROCS22
• Clarify that PMIx_server_setup_application must be called per-job instead of23
per-application as the name implies. Unfortunately, this is a historical artifact. Note that both24
PMIX_NODE_MAP and PMIX_PROC_MAP must be included as input in the info array provided25
to that function. Further descriptive explanation of the “instant on” procedure will be provided in26
the next version of the PMIx Standard.27

• Clarify how the PMIx server expects data passed to the host by28
pmix_server_fencenb_fn_t should be aggregated across nodes, and provide a code29
snippet example30

C.7 Version 3.2: Oct. 202031

The v3.2 update includes clarifications and corrections from the v3.1 document:32

• Correct an error in the PMIx_Allocation_request function signature, and clarify the33
allocation ID attributes34

• Rename the PMIX_ALLOC_ID attribute to PMIX_ALLOC_REQ_ID to clarify that this is a35
string the user provides as a means to identify their request to query status36

586 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• Add a new PMIX_ALLOC_ID attribute that contains the identifier (provided by the host1
environment) for the resulting allocation which can later be used to reference the allocated2
resources in, for example, a call to PMIx_Spawn3

• Update the PMIx_generate_regex and PMIx_generate_ppn descriptions to clarify4
that the output from these generator functions may not be a NULL-terminated string, but instead5
could be a byte array of arbitrary binary content.6

• Add a new PMIX_REGEX constant that represents a regular expression data type.7

C.7.1 Deprecated constants8

The following constants were deprecated in v3.2:9

PMIX_ERR_DATA_VALUE_NOT_FOUND Data value not found10
PMIX_ERR_HANDSHAKE_FAILED Connection handshake failed11
PMIX_ERR_IN_ERRNO Error defined in errno12
PMIX_ERR_INVALID_ARG Invalid argument13
PMIX_ERR_INVALID_ARGS Invalid arguments14
PMIX_ERR_INVALID_KEY Invalid key15
PMIX_ERR_INVALID_KEY_LENGTH Invalid key length16
PMIX_ERR_INVALID_KEYVALP Invalid key/value pair17
PMIX_ERR_INVALID_LENGTH Invalid argument length18
PMIX_ERR_INVALID_NAMESPACE Invalid namespace19
PMIX_ERR_INVALID_NUM_ARGS Invalid number of arguments20
PMIX_ERR_INVALID_NUM_PARSED Invalid number parsed21
PMIX_ERR_INVALID_SIZE Invalid size22
PMIX_ERR_INVALID_VAL Invalid value23
PMIX_ERR_INVALID_VAL_LENGTH Invalid value length24
PMIX_ERR_NOT_IMPLEMENTED Not implemented25
PMIX_ERR_PACK_MISMATCH Pack mismatch26
PMIX_ERR_PROC_ENTRY_NOT_FOUND Process not found27
PMIX_ERR_PROC_REQUESTED_ABORT Process is already requested to abort28
PMIX_ERR_READY_FOR_HANDSHAKE Ready for handshake29
PMIX_ERR_SERVER_FAILED_REQUEST Failed to connect to the server30
PMIX_ERR_SERVER_NOT_AVAIL Server is not available31
PMIX_ERR_SILENT Silent error32
PMIX_GDS_ACTION_COMPLETE The Global Data Storage (GDS) action has completed33
PMIX_NOTIFY_ALLOC_COMPLETE Notify that a requested allocation operation is complete34

- the result of the request will be included in the info array35

APPENDIX C. REVISION HISTORY 587

Un
offi
cia
l D
raf
t

C.7.2 Deprecated attributes1

The following attributes were deprecated in v3.2:2

PMIX_ARCH "pmix.arch" (uint32_t)3
Architecture flag.4

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)5
Comma-delimited list of algorithms to use for the collective operation. PMIx does not6
impose any requirements on a host environment’s collective algorithms. Thus, the7
acceptable values for this attribute will be environment-dependent - users are encouraged to8
check their host environment for supported values.9

PMIX_DSTPATH "pmix.dstpath" (char*)10
Path to shared memory data storage (dstore) files. Deprecated from Standard as being11
implementation specific.12

PMIX_HWLOC_HOLE_KIND "pmix.hwlocholek" (char*)13
Kind of VM “hole” HWLOC should use for shared memory14

PMIX_HWLOC_SHARE_TOPO "pmix.hwlocsh" (bool)15
Share the HWLOC topology via shared memory16

PMIX_HWLOC_SHMEM_ADDR "pmix.hwlocaddr" (size_t)17
Address of the HWLOC shared memory segment.18

PMIX_HWLOC_SHMEM_FILE "pmix.hwlocfile" (char*)19
Path to the HWLOC shared memory file.20

PMIX_HWLOC_SHMEM_SIZE "pmix.hwlocsize" (size_t)21
Size of the HWLOC shared memory segment.22

PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)23
XML representation of local topology using HWLOC’s v1.x format.24

PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)25
XML representation of local topology using HWLOC’s v2.x format.26

PMIX_LOCAL_TOPO "pmix.ltopo" (char*)27
XML representation of local node topology.28

PMIX_MAPPER "pmix.mapper" (char*)29
Mapping mechanism to use for placing spawned processes - when accessed using30
PMIx_Get, use the PMIX_RANK_WILDCARD value for the rank to discover the mapping31
mechanism used for the provided namespace.32

PMIX_MAP_BLOB "pmix.mblob" (pmix_byte_object_t)33
Packed blob of process location.34

PMIX_NON_PMI "pmix.nonpmi" (bool)35
Spawned processes will not call PMIx_Init.36

PMIX_PROC_BLOB "pmix.pblob" (pmix_byte_object_t)37
Packed blob of process data.38

PMIX_PROC_URI "pmix.puri" (char*)39
URI containing contact information for the specified process.40

PMIX_TOPOLOGY_FILE "pmix.topo.file" (char*)41
Full path to file containing XML topology description42

588 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_TOPOLOGY_SIGNATURE "pmix.toposig" (char*)1
Topology signature string.2

PMIX_TOPOLOGY_XML "pmix.topo.xml" (char*)3
XML-based description of topology4

C.8 Version 4.0: Dec. 20205

NOTE: The PMIx Standard document has undergone significant reorganization in an effort to6
become more user-friendly. Highlights include:7

• Moving all added, deprecated, and removed items to this revision log section to make them more8
visible9

• Co-locating constants and attribute definitions with the primary API that uses them - citations10
and hyperlinks are retained elsewhere11

• Splitting the Key-Value Management chapter into separate chapters on the use of reserved keys,12
non-reserved keys, and non-process-related key-value data exchange13

• Creating a new chapter on synchronization and data access methods14
• Removing references to specific implementations of PMIx and to implementation-specific15
features and/or behaviors16

In addition to the reorganization, the following changes were introduced in v4.0 of the PMIx17
Standard:18

• Clarified that the PMIx_Fence_nb operation can immediately return19
PMIX_OPERATION_SUCCEEDED in lieu of passing the request to a PMIx server if only the20
calling process is involved in the operation21

• Added the PMIx_Register_attributes API by which a host environment can register the22
attributes it supports for each server-to-host operation23

• Added the ability to query supported attributes from the PMIx tool, client and server libraries, as24
well as the host environment via the new pmix_regattr_t structure. Both human-readable25
and machine-parsable output is supported. New attributes to support this operation include:26

– PMIX_CLIENT_ATTRIBUTES, PMIX_SERVER_ATTRIBUTES,27
PMIX_TOOL_ATTRIBUTES, and PMIX_HOST_ATTRIBUTES to identify which library28
supports the attribute; and29

– PMIX_MAX_VALUE, PMIX_MIN_VALUE, and PMIX_ENUM_VALUE to provide30
machine-parsable description of accepted values31

• Add PMIX_APP_WILDCARD to reference all applications within a given job32
• Fix signature of blocking APIs PMIx_Allocation_request, PMIx_Job_control,33
PMIx_Process_monitor, PMIx_Get_credential, and34
PMIx_Validate_credential to allow return of results35

• Update description to provide an option for blocking behavior of the36
PMIx_Register_event_handler, PMIx_Deregister_event_handler,37
PMIx_Notify_event, PMIx_IOF_pull, PMIx_IOF_deregister, and38
PMIx_IOF_push APIs. The need for blocking forms of these functions was not initially39

APPENDIX C. REVISION HISTORY 589

Un
offi
cia
l D
raf
t

anticipated but has emerged over time. For these functions, the return value is sufficient to1
provide the caller with information otherwise returned via callback. Thus, use of a NULL value2
as the callback function parameter was deemed a minimal disruption method for providing the3
desired capability4

• Added a chapter on fabric support that includes new APIs, datatypes, and attributes5
• Added a chapter on process sets and groups that includes new APIs and attributes6
• Added APIs and a new datatypes to support generation and parsing of PMIx locality and cpuset7
strings8

• Added a new chapter on tools that provides deeper explanation on their operation and collecting9
all tool-relevant definitions into one location. Also introduced two new APIs and removed10
restriction that limited tools to being connected to only one server at a time.11

• Extended behavior of PMIx_server_init to scalably expose the topology description to the12
local clients. This includes creating any required shared memory backing stores and/or XML13
representations, plus ensuring that all necessary key-value pairs for clients to access the14
description are included in the job-level information provided to each client.15

• Added a new API by which the host can manually progress the PMIx library in lieu of the16
library’s own progress thread. s17

The above changes included introduction of the following APIs and data types:18

• Client APIs19

– PMIx_Group_construct, PMIx_Group_construct_nb20
– PMIx_Group_destruct, PMIx_Group_destruct_nb21
– PMIx_Group_invite, PMIx_Group_invite_nb22
– PMIx_Group_join, PMIx_Group_join_nb23
– PMIx_Group_leave, PMIx_Group_leave_nb24
– PMIx_Get_relative_locality, PMIx_Load_topology25
– PMIx_Parse_cpuset_string, PMIx_Get_cpuset26
– PMIx_Link_state_string, PMIx_Job_state_string27
– PMIx_Device_type_string28
– PMIx_Fabric_register, PMIx_Fabric_register_nb29
– PMIx_Fabric_update, PMIx_Fabric_update_nb30
– PMIx_Fabric_deregister, PMIx_Fabric_deregister_nb31
– PMIx_Compute_distances, PMIx_Compute_distances_nb32
– PMIx_Get_attribute_string, PMIx_Get_attribute_name33
– PMIx_Progress34

• Server APIs35

– PMIx_server_generate_locality_string36
– PMIx_Register_attributes37
– PMIx_server_define_process_set, PMIx_server_delete_process_set38
– pmix_server_grp_fn_t, pmix_server_fabric_fn_t39
– pmix_server_client_connected2_fn_t40

590 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

– PMIx_server_generate_cpuset_string1
– PMIx_server_register_resources, PMIx_server_deregister_resources2

• Tool APIs3

– PMIx_tool_disconnect4
– PMIx_tool_set_server5
– PMIx_tool_attach_to_server6
– PMIx_tool_get_servers7

• Data types8

– pmix_regattr_t9
– pmix_cpuset_t10
– pmix_topology_t11
– pmix_locality_t12
– pmix_bind_envelope_t13
– pmix_group_opt_t14
– pmix_group_operation_t15
– pmix_fabric_t16
– pmix_device_distance_t17
– pmix_coord_t18
– pmix_coord_view_t19
– pmix_geometry_t20
– pmix_link_state_t21
– pmix_job_state_t22
– pmix_device_type_t23

• Callback functions24

– pmix_device_dist_cbfunc_t25

C.8.1 Added Constants26

General error constants27
PMIX_ERR_EXISTS_OUTSIDE_SCOPE28
PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED29
PMIX_ERR_EMPTY30

31

APPENDIX C. REVISION HISTORY 591

Un
offi
cia
l D
raf
t

Data type constants1
PMIX_COORD2
PMIX_REGATTR3
PMIX_REGEX4
PMIX_JOB_STATE5
PMIX_LINK_STATE6
PMIX_PROC_CPUSET7
PMIX_GEOMETRY8
PMIX_DEVICE_DIST9
PMIX_ENDPOINT10
PMIX_TOPO11
PMIX_DEVTYPE12
PMIX_LOCTYPE13
PMIX_DATA_TYPE_MAX14
PMIX_COMPRESSED_BYTE_OBJECT15

16

Info directives17
PMIX_INFO_REQD_PROCESSED18

19

Server constants20
PMIX_ERR_REPEAT_ATTR_REGISTRATION21

22

Job-Mgmt constants23
PMIX_ERR_CONFLICTING_CLEANUP_DIRECTIVES24

25

Publish constants26
PMIX_ERR_DUPLICATE_KEY27

28

Tool constants29
PMIX_LAUNCHER_READY30
PMIX_ERR_IOF_FAILURE31
PMIX_ERR_IOF_COMPLETE32
PMIX_EVENT_JOB_START33
PMIX_LAUNCH_COMPLETE34
PMIX_EVENT_JOB_END35
PMIX_EVENT_SESSION_START36
PMIX_EVENT_SESSION_END37
PMIX_ERR_PROC_TERM_WO_SYNC38
PMIX_ERR_JOB_CANCELED39
PMIX_ERR_JOB_ABORTED40

592 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_ERR_JOB_KILLED_BY_CMD1
PMIX_ERR_JOB_ABORTED_BY_SIG2
PMIX_ERR_JOB_TERM_WO_SYNC3
PMIX_ERR_JOB_SENSOR_BOUND_EXCEEDED4
PMIX_ERR_JOB_NON_ZERO_TERM5
PMIX_ERR_JOB_ABORTED_BY_SYS_EVENT6
PMIX_DEBUG_WAITING_FOR_NOTIFY7
PMIX_DEBUGGER_RELEASE8

9

Fabric constants10
PMIX_FABRIC_UPDATE_PENDING11
PMIX_FABRIC_UPDATED12
PMIX_FABRIC_UPDATE_ENDPOINTS13
PMIX_COORD_VIEW_UNDEF14
PMIX_COORD_LOGICAL_VIEW15
PMIX_COORD_PHYSICAL_VIEW16
PMIX_LINK_STATE_UNKNOWN17
PMIX_LINK_DOWN18
PMIX_LINK_UP19
PMIX_FABRIC_REQUEST_INFO20
PMIX_FABRIC_UPDATE_INFO21

22

Sets-Groups constants23
PMIX_PROCESS_SET_DEFINE24
PMIX_PROCESS_SET_DELETE25
PMIX_GROUP_INVITED26
PMIX_GROUP_LEFT27
PMIX_GROUP_MEMBER_FAILED28
PMIX_GROUP_INVITE_ACCEPTED29
PMIX_GROUP_INVITE_DECLINED30
PMIX_GROUP_INVITE_FAILED31
PMIX_GROUP_MEMBERSHIP_UPDATE32
PMIX_GROUP_CONSTRUCT_ABORT33
PMIX_GROUP_CONSTRUCT_COMPLETE34
PMIX_GROUP_LEADER_FAILED35
PMIX_GROUP_LEADER_SELECTED36
PMIX_GROUP_CONTEXT_ID_ASSIGNED37

38

Process-Mgmt constants39
PMIX_ERR_JOB_ALLOC_FAILED40
PMIX_ERR_JOB_APP_NOT_EXECUTABLE41

APPENDIX C. REVISION HISTORY 593

Un
offi
cia
l D
raf
t

PMIX_ERR_JOB_NO_EXE_SPECIFIED1
PMIX_ERR_JOB_FAILED_TO_MAP2
PMIX_ERR_JOB_FAILED_TO_LAUNCH3
PMIX_LOCALITY_UNKNOWN4
PMIX_LOCALITY_NONLOCAL5
PMIX_LOCALITY_SHARE_HWTHREAD6
PMIX_LOCALITY_SHARE_CORE7
PMIX_LOCALITY_SHARE_L1CACHE8
PMIX_LOCALITY_SHARE_L2CACHE9
PMIX_LOCALITY_SHARE_L3CACHE10
PMIX_LOCALITY_SHARE_PACKAGE11
PMIX_LOCALITY_SHARE_NUMA12
PMIX_LOCALITY_SHARE_NODE13

14

Events15
PMIX_EVENT_SYS_BASE16
PMIX_EVENT_NODE_DOWN17
PMIX_EVENT_NODE_OFFLINE18
PMIX_EVENT_SYS_OTHER19

20

C.8.2 Added Attributes21

Sync-Access attributes22
PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)23

Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx24
servers. Some job-level information (e.g., distance between processes and fabric devices) is25
best determined on a distributed basis as it primarily pertains to local processes. Should26
remote processes need to access the information, it can either be obtained collectively using27
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using28
PMIx_Get without first having performed the job-wide collection.29

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)30
All clones of the calling process must participate in the collective operation.31

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)32
Request that any pointers in the returned value point directly to values in the key-value store.33
The user must not release any returned data pointers.34

PMIX_GET_STATIC_VALUES "pmix.get.static" (bool)35
Request that the data be returned in the provided storage location. The caller is responsible36
for destructing the pmix_value_t using the PMIX_VALUE_DESTRUCT macro when37
done.38

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)39

594 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

When retrieving data for a remote process, refresh the existing local data cache for the1
process in case new values have been put and committed by the process since the last refresh.2
Local process information is assumed to be automatically updated upon posting by the3
process. A NULL key will cause all values associated with the process to be refreshed -4
otherwise, only the indicated key will be updated. A process rank of5
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic6
environments. The user is responsible for subsequently updating refreshed values they may7
have cached in their own local memory.8

PMIX_QUERY_RESULTS "pmix.qry.res" (pmix_data_array_t)9
Contains an array of query results for a given pmix_query_t passed to the10
PMIx_Query_info APIs. If qualifiers were included in the query, then the first element11
of the array shall be the PMIX_QUERY_QUALIFIERS attribute containing those qualifiers.12
Each of the remaining elements of the array is a pmix_info_t containing the query key13
and the corresponding value returned by the query. This attribute is solely for reporting14
purposes and cannot be used in PMIx_Get or other query operations.15

PMIX_QUERY_QUALIFIERS "pmix.qry.quals" (pmix_data_array_t)16
Contains an array of qualifiers that were included in the query that produced the provided17
results. This attribute is solely for reporting purposes and cannot be used in PMIx_Get or18
other query operations.19

PMIX_QUERY_SUPPORTED_KEYS "pmix.qry.keys" (char*)20
Returns comma-delimited list of keys supported by the query function. NO QUALIFIERS.21

PMIX_QUERY_SUPPORTED_QUALIFIERS "pmix.qry.quals" (char*)22
Return comma-delimited list of qualifiers supported by a query on the provided key, instead23
of actually performing the query on the key. NO QUALIFIERS.24

PMIX_QUERY_NAMESPACE_INFO "pmix.qry.nsinfo" (pmix_data_array_t*)25
Return an array of active namespace information - each element will itself contain an array26
including the namespace plus the command line of the application executing within it.27
OPTIONAL QUALIFIERS: PMIX_NSPACE of specific namespace whose info is being28
requested.29

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)30
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or31
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,32
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.33

PMIX_QUERY_AVAIL_SERVERS "pmix.qry.asrvrs" (pmix_data_array_t*)34
Return an array of pmix_info_t, each element itself containing a35
PMIX_SERVER_INFO_ARRAY entry holding all available data for a server on this node to36
which the caller might be able to connect.37

PMIX_SERVER_INFO_ARRAY "pmix.srv.arr" (pmix_data_array_t)38

APPENDIX C. REVISION HISTORY 595

Un
offi
cia
l D
raf
t

Array of pmix_info_t about a given server, starting with its PMIX_NSPACE and1
including at least one of the rendezvous-required pieces of information.2

PMIX_CLIENT_FUNCTIONS "pmix.client.fns" (bool)3
Request a list of functions supported by the PMIx client library.4

PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)5
Request attributes supported by the PMIx client library.6

PMIX_SERVER_FUNCTIONS "pmix.srvr.fns" (bool)7
Request a list of functions supported by the PMIx server library.8

PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)9
Request attributes supported by the PMIx server library.10

PMIX_HOST_FUNCTIONS "pmix.srvr.fns" (bool)11
Request a list of functions supported by the host environment.12

PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)13
Request attributes supported by the host environment.14

PMIX_TOOL_FUNCTIONS "pmix.tool.fns" (bool)15
Request a list of functions supported by the PMIx tool library.16

PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)17
Request attributes supported by the PMIx tool library functions.18

Server attributes19
PMIX_TOPOLOGY2 "pmix.topo2" (pmix_topology_t)20

Provide a pointer to an implementation-specific description of the local node topology.21

PMIX_SERVER_SHARE_TOPOLOGY "pmix.srvr.share" (bool)22
The PMIx server is to share its copy of the local node topology (whether given to it or23
self-discovered) with any clients.24

PMIX_SERVER_SESSION_SUPPORT "pmix.srvr.sess" (bool)25
The host RM wants to declare itself as being the local session server for PMIx connection26
requests.27

PMIX_SERVER_START_TIME "pmix.srvr.strtime" (char*)28
Time when the server started - i.e., when the server created it’s rendezvous file (given in29
ctime string format).30

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)31
Server is supporting system scheduler and desires access to appropriate WLM-supporting32
features. Indicates that the library is to be initialized for scheduler support.33

PMIX_JOB_INFO_ARRAY "pmix.job.arr" (pmix_data_array_t)34

596 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Provide an array of pmix_info_t containing job-realm information. The1
PMIX_SESSION_ID attribute of the session containing the job is required to be included in2
the array whenever the PMIx server library may host multiple sessions (e.g., when executing3
with a host RM daemon). As information is registered one job (aka namespace) at a time via4
the PMIx_server_register_nspace API, there is no requirement that the array5
contain either the PMIX_NSPACE or PMIX_JOBID attributes when used in that context6
(though either or both of them may be included). At least one of the job identifiers must be7
provided in all other contexts where the job being referenced is ambiguous.8

PMIX_APP_INFO_ARRAY "pmix.app.arr" (pmix_data_array_t)9
Provide an array of pmix_info_t containing application-realm information. The10
PMIX_NSPACE or PMIX_JOBID attributes of the job containing the application, plus its11
PMIX_APPNUM attribute, must to be included in the array when the array is not included as12
part of a call to PMIx_server_register_nspace - i.e., when the job containing the13
application is ambiguous. The job identification is otherwise optional.14

PMIX_PROC_INFO_ARRAY "pmix.pdata" (pmix_data_array_t)15
Provide an array of pmix_info_t containing process-realm information. The16
PMIX_RANK and PMIX_NSPACE attributes, or the PMIX_PROCID attribute, are required17
to be included in the array when the array is not included as part of a call to18
PMIx_server_register_nspace - i.e., when the job containing the process is19
ambiguous. All three may be included if desired. When the array is included in some20
broader structure that identifies the job, then only the PMIX_RANK or the PMIX_PROCID21
attribute must be included (the others are optional).22

PMIX_NODE_INFO_ARRAY "pmix.node.arr" (pmix_data_array_t)23
Provide an array of pmix_info_t containing node-realm information. At a minimum,24
either the PMIX_NODEID or PMIX_HOSTNAME attribute is required to be included in the25
array, though both may be included.26

PMIX_MAX_VALUE "pmix.descr.maxval" (varies)27
Used in pmix_regattr_t to describe the maximum valid value for the associated28
attribute.29

PMIX_MIN_VALUE "pmix.descr.minval" (varies)30
Used in pmix_regattr_t to describe the minimum valid value for the associated31
attribute.32

PMIX_ENUM_VALUE "pmix.descr.enum" (char*)33
Used in pmix_regattr_t to describe accepted values for the associated attribute.34
Numerical values shall be presented in a form convertible to the attribute’s declared data35
type. Named values (i.e., values defined by constant names via a typical C-language enum36
declaration) must be provided as their numerical equivalent.37

PMIX_HOMOGENEOUS_SYSTEM "pmix.homo" (bool)38
The nodes comprising the session are homogeneous - i.e., they each contain the same39
number of identical packages, fabric interfaces, GPUs, and other devices.40

APPENDIX C. REVISION HISTORY 597

Un
offi
cia
l D
raf
t

PMIX_REQUIRED_KEY "pmix.req.key" (char*)1
Identifies a key that must be included in the requested information. If the specified key is not2
already available, then the PMIx servers are required to delay response to the dmodex3
request until either the key becomes available or the request times out.4

Job-Mgmt attributes5
PMIX_ALLOC_ID "pmix.alloc.id" (char*)6

A string identifier (provided by the host environment) for the resulting allocation which can7
later be used to reference the allocated resources in, for example, a call to PMIx_Spawn.8

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)9
Name of the WLM queue to which the allocation request is to be directed, or the queue being10
referenced in a query.11

Publish attributes12
PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)13

Define access permissions for the published data. The value shall contain an array of14
pmix_info_t structs containing the specified permissions.15

PMIX_ACCESS_USERIDS "pmix.auids" (pmix_data_array_t)16
Array of effective UIDs that are allowed to access the published data.17

PMIX_ACCESS_GRPIDS "pmix.agids" (pmix_data_array_t)18
Array of effective GIDs that are allowed to access the published data.19

Reserved keys20
PMIX_NUM_ALLOCATED_NODES "pmix.num.anodes" (uint32_t)21

Number of nodes in the specified realm regardless of whether or not they currently host22
processes. Defaults to the job realm.23

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)24
Number of nodes currently hosting processes in the specified realm. Defaults to the job25
realm.26

PMIX_CMD_LINE "pmix.cmd.line" (char*)27
Command line used to execute the specified job (e.g., "mpirun -n 2 –map-by foo ./myapp : -n28
4 ./myapp2"). If the job was created by a call to PMIx_Spawn, the string is an inorder29
concatenation of the values of PMIX_APP_ARGV for each application in the job using the30
character ’:’ as a separator.31

PMIX_APP_ARGV "pmix.app.argv" (char*)32
Consolidated argv passed to the spawn command for the given application (e.g., "./myapp33
arg1 arg2 arg3").34

PMIX_PACKAGE_RANK "pmix.pkgrank" (uint16_t)35

598 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Rank of the specified process on the package where this process resides - refers to the1
numerical location (starting from zero) of the process on its package when counting only2
those processes from the same job that share the package, ordered by their overall rank3
within that job. Note that processes that are not bound to PUs within a single specific4
package cannot have a package rank.5

PMIX_REINCARNATION "pmix.reinc" (uint32_t)6
Number of times this process has been re-instantiated - i.e, a value of zero indicates that the7
process has never been restarted.8

PMIX_HOSTNAME_ALIASES "pmix.alias" (char*)9
Comma-delimited list of names by which the target node is known.10

PMIX_HOSTNAME_KEEP_FQDN "pmix.fqdn" (bool)11
FQDNs are being retained by the PMIx library.12

PMIX_CPUSET_BITMAP "pmix.bitmap" (pmix_cpuset_t*)13
Bitmap applied to the process upon launch.14

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)15
The host shall progress the PMIx library via calls to PMIx_Progress16

PMIX_NODE_MAP_RAW "pmix.nmap.raw" (char*)17
Comma-delimited list of nodes containing procs within the specified realm. Defaults to the18
job realm.19

PMIX_PROC_MAP_RAW "pmix.pmap.raw" (char*)20
Semi-colon delimited list of strings, each string containing a comma-delimited list of ranks21
on the corresponding node within the specified realm. Defaults to the job realm.22

Tool attributes23
PMIX_TOOL_CONNECT_OPTIONAL "pmix.tool.conopt" (bool)24

The tool shall connect to a server if available, but otherwise continue to operate25
unconnected.26

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)27
Pathname of file containing connection information to be used for attaching to a specific28
server.29

PMIX_LAUNCHER_RENDEZVOUS_FILE "pmix.tool.lncrnd" (char*)30
Pathname of file where the launcher is to store its connection information so that the31
spawning tool can connect to it.32

PMIX_PRIMARY_SERVER "pmix.pri.srvr" (bool)33
The server to which the tool is connecting shall be designated the primary server once34
connection has been accomplished.35

PMIX_NOHUP "pmix.nohup" (bool)36

APPENDIX C. REVISION HISTORY 599

Un
offi
cia
l D
raf
t

Any processes started on behalf of the calling tool (or the specified namespace, if such1
specification is included in the list of attributes) should continue after the tool disconnects2
from its server.3

PMIX_LAUNCHER_DAEMON "pmix.lnch.dmn" (char*)4
Path to executable that is to be used as the backend daemon for the launcher. This replaces5
the launcher’s own daemon with the specified executable. Note that the user is therefore6
responsible for ensuring compatibility of the specified executable and the host launcher.7

PMIX_FORKEXEC_AGENT "pmix.frkex.agnt" (char*)8
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual9
application processes. The fork/exec agent shall connect back (as a PMIx tool) to the10
launcher’s daemon to receive its spawn instructions, and is responsible for starting the actual11
application process it replaced. See Section 18.4.3 for details.12

PMIX_EXEC_AGENT "pmix.exec.agnt" (char*)13
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual14
application processes. The launcher’s daemon shall pass the full command line of the15
application on the command line of the exec agent, which shall not connect back to the16
launcher’s daemon. The exec agent is responsible for exec’ing the specified application17
process in its own place. See Section 18.4.3 for details.18

PMIX_IOF_PUSH_STDIN "pmix.iof.stdin" (bool)19
Requests that the PMIx library collect the stdin of the requester and forward it to the20
processes specified in the PMIx_IOF_push call. All collected data is sent to the same21
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that22
includes the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be23
terminated.24

PMIX_IOF_COPY "pmix.iof.cpy" (bool)25
Requests that the host environment deliver a copy of the specified output stream(s) to the26
tool, letting the stream(s) continue to also be delivered to the default location. This allows the27
tool to tap into the output stream(s) without redirecting it from its current final destination.28

PMIX_IOF_REDIRECT "pmix.iof.redir" (bool)29
Requests that the host environment intercept the specified output stream(s) and deliver it to30
the requesting tool instead of its current final destination. This might be used, for example,31
during a debugging procedure to avoid injection of debugger-related output into the32
application’s results file. The original output stream(s) destination is restored upon33
termination of the tool.34

PMIX_DEBUG_TARGET "pmix.dbg.tgt" (pmix_proc_t*)35
Identifier of process(es) to be debugged - a rank of PMIX_RANK_WILDCARD indicates that36
all processes in the specified namespace are to be included.37

PMIX_DEBUG_DAEMONS_PER_PROC "pmix.dbg.dpproc" (uint16_t)38

600 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Number of debugger daemons to be spawned per application process. The launcher is to pass1
the identifier of the namespace to be debugged by including the PMIX_DEBUG_TARGET2
attribute in the daemon’s job-level information. The debugger daemons spawned on a given3
node are responsible for self-determining their specific target process(es) - e.g., by4
referencing their own PMIX_LOCAL_RANK in the daemon debugger job versus the5
corresponding PMIX_LOCAL_RANK of the target processes on the node.6

PMIX_DEBUG_DAEMONS_PER_NODE "pmix.dbg.dpnd" (uint16_t)7
Number of debugger daemons to be spawned on each node where the target job is executing.8
The launcher is to pass the identifier of the namespace to be debugged by including the9
PMIX_DEBUG_TARGET attribute in the daemon’s job-level information. The debugger10
daemons spawned on a given node are responsible for self-determining their specific target11
process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger12
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.13

PMIX_WAIT_FOR_CONNECTION "pmix.wait.conn" (bool)14
Wait until the specified process has connected to the requesting tool or server, or the15
operation times out (if the PMIX_TIMEOUT directive is included in the request).16

PMIX_LAUNCH_DIRECTIVES "pmix.lnch.dirs" (pmix_data_array_t*)17
Array of pmix_info_t containing directives for the launcher - a convenience attribute for18
retrieving all directives with a single call to PMIx_Get.19

Fabric attributes20
PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)21

Server is supporting system scheduler and desires access to appropriate WLM-supporting22
features. Indicates that the library is to be initialized for scheduler support.23

PMIX_FABRIC_COST_MATRIX "pmix.fab.cm" (pointer)24
Pointer to a two-dimensional square array of point-to-point relative communication costs25
expressed as uint16_t values.26

PMIX_FABRIC_GROUPS "pmix.fab.grps" (string)27
A string delineating the group membership of nodes in the overall system, where each fabric28
group consists of the group number followed by a colon and a comma-delimited list of nodes29
in that group, with the groups delimited by semi-colons (e.g.,30
0:node000,node002,node004,node006;1:node001,node003,31
node005,node007)32

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)33
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.34

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)35
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).36

PMIX_FABRIC_INDEX "pmix.fab.idx" (size_t)37
The index of the fabric as returned in pmix_fabric_t.38

APPENDIX C. REVISION HISTORY 601

Un
offi
cia
l D
raf
t

PMIX_FABRIC_NUM_DEVICES "pmix.fab.nverts" (size_t)1
Total number of fabric devices in the overall system - corresponds to the number of rows or2
columns in the cost matrix.3

PMIX_FABRIC_COORDINATES "pmix.fab.coords" (pmix_data_array_t)4
Array of pmix_geometry_t fabric coordinates for devices on the specified node. The5
array will contain the coordinates of all devices on the node, including values for all6
supported coordinate views. The information for devices on the local node shall be provided7
if the node is not specified in the request.8

PMIX_FABRIC_DIMS "pmix.fab.dims" (uint32_t)9
Number of dimensions in the specified fabric plane/view. If no plane is specified in a10
request, then the dimensions of all planes in the overall system will be returned as a11
pmix_data_array_t containing an array of uint32_t values. Default is to provide12
dimensions in logical view.13

PMIX_FABRIC_ENDPT "pmix.fab.endpt" (pmix_data_array_t)14
Fabric endpoints for a specified process. As multiple endpoints may be assigned to a given15
process (e.g., in the case where multiple devices are associated with a package to which the16
process is bound), the returned values will be provided in a pmix_data_array_t of17
pmix_endpoint_t elements.18

PMIX_FABRIC_SHAPE "pmix.fab.shape" (pmix_data_array_t*)19
The size of each dimension in the specified fabric plane/view, returned in a20
pmix_data_array_t containing an array of uint32_t values. The size is defined as21
the number of elements present in that dimension - e.g., the number of devices in one22
dimension of a physical view of a fabric plane. If no plane is specified, then the shape of23
each plane in the overall system will be returned in a pmix_data_array_t array where24
each element is itself a two-element array containing the PMIX_FABRIC_PLANE followed25
by that plane’s fabric shape. Default is to provide the shape in logical view.26

PMIX_FABRIC_SHAPE_STRING "pmix.fab.shapestr" (string)27
Network shape expressed as a string (e.g., "10x12x2"). If no plane is specified, then the28
shape of each plane in the overall system will be returned in a pmix_data_array_t array29
where each element is itself a two-element array containing the PMIX_FABRIC_PLANE30
followed by that plane’s fabric shape string. Default is to provide the shape in logical view.31

PMIX_SWITCH_PEERS "pmix.speers" (pmix_data_array_t)32
Peer ranks that share the same switch as the process specified in the call to PMIx_Get.33
Returns a pmix_data_array_t array of pmix_info_t results, each element34
containing the PMIX_SWITCH_PEERS key with a three-element pmix_data_array_t35
array of pmix_info_t containing the PMIX_DEVICE_ID of the local fabric device, the36
PMIX_FABRIC_SWITCH identifying the switch to which it is connected, and a37
comma-delimited string of peer ranks sharing the switch to which that device is connected.38

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)39

602 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request1
for information, specifies the plane whose information is to be returned. When used directly2
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric3
planes in the overall system.4

PMIX_FABRIC_SWITCH "pmix.fab.switch" (string)5
ID string of a fabric switch. When used as a modifier in a request for information, specifies6
the switch whose information is to be returned. When used directly as a key in a request,7
returns a pmix_data_array_t of string identifiers for all fabric switches in the overall8
system.9

PMIX_FABRIC_DEVICE "pmix.fabdev" (pmix_data_array_t)10
An array of pmix_info_t describing a particular fabric device using one or more of the11
attributes defined below. The first element in the array shall be the PMIX_DEVICE_ID of12
the device.13

PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)14
Index of the device within an associated communication cost matrix.15

PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)16
The operating system name associated with the device. This may be a logical fabric interface17
name (e.g. "eth0" or "eno1") or an absolute filename.18

PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)19
Indicates the name of the vendor that distributes the device.20

PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)21
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").22

PMIX_FABRIC_DEVICE_VENDORID "pmix.fabdev.vendid" (string)23
This is a vendor-provided identifier for the device or product.24

PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)25
The name of the driver associated with the device.26

PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)27
The device’s firmware version.28

PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)29
The primary link-level address associated with the device, such as a MAC address. If30
multiple addresses are available, only one will be reported.31

PMIX_FABRIC_DEVICE_COORDINATES "pmix.fab.coord" (pmix_geometry_t)32
The pmix_geometry_t fabric coordinates for the device, including values for all33
supported coordinate views.34

PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)35
The maximum transfer unit of link level frames or packets, in bytes.36

PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)37

APPENDIX C. REVISION HISTORY 603

Un
offi
cia
l D
raf
t

The active link data rate, given in bits per second.1

PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)2
The last available physical port state for the specified device. Possible values are3
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to indicate4
if the port state is unknown or not applicable (unknown), inactive (down), or active (up).5

PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)6
Specifies the type of fabric interface currently active on the device, such as Ethernet or7
InfiniBand.8

PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)9
A node-level unique identifier for a PCI device. Provided only if the device is located on a10
PCI bus. The identifier is constructed as a four-part tuple delimited by colons comprised of11
the PCI 16-bit domain, 8-bit bus, 8-bit device, and 8-bit function IDs, each expressed in12
zero-extended hexadecimal form. Thus, an example identifier might be "abc1:0f:23:01". The13
combination of node identifier (PMIX_HOSTNAME or PMIX_NODEID) and14
PMIX_FABRIC_DEVICE_PCI_DEVID shall be unique within the overall system.15

Device attributes16
PMIX_DEVICE_DISTANCES "pmix.dev.dist" (pmix_data_array_t)17

Return an array of pmix_device_distance_t containing the minimum and maximum18
distances of the given process location to all devices of the specified type on the local node.19

PMIX_DEVICE_TYPE "pmix.dev.type" (pmix_device_type_t)20
Bitmask specifying the type(s) of device(s) whose information is being requested. Only used21
as a directive/qualifier.22

PMIX_DEVICE_ID "pmix.dev.id" (string)23
System-wide UUID or node-local OS name of a particular device.24

Sets-Groups attributes25
PMIX_QUERY_NUM_PSETS "pmix.qry.psetnum" (size_t)26

Return the number of process sets defined in the specified range (defaults to27
PMIX_RANGE_SESSION).28

PMIX_QUERY_PSET_NAMES "pmix.qry.psets" (pmix_data_array_t*)29
Return a pmix_data_array_t containing an array of strings of the process set names30
defined in the specified range (defaults to PMIX_RANGE_SESSION).31

PMIX_QUERY_PSET_MEMBERSHIP "pmix.qry.pmems" (pmix_data_array_t*)32
Return an array of pmix_proc_t containing the members of the specified process set.33

PMIX_PSET_NAME "pmix.pset.nm" (char*)34
The name of the newly defined process set.35

PMIX_PSET_MEMBERS "pmix.pset.mems" (pmix_data_array_t*)36
An array of pmix_proc_t containing the members of the newly defined process set.37

604 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_PSET_NAMES "pmix.pset.nms" (pmix_data_array_t*)1
Returns an array of char* string names of the process sets in which the given process is a2
member.3

PMIX_QUERY_NUM_GROUPS "pmix.qry.pgrpnum" (size_t)4
Return the number of process groups defined in the specified range (defaults to session).5
OPTIONAL QUALIFERS: PMIX_RANGE.6

PMIX_QUERY_GROUP_NAMES "pmix.qry.pgrp" (pmix_data_array_t*)7
Return a pmix_data_array_t containing an array of string names of the process groups8
defined in the specified range (defaults to session). OPTIONAL QUALIFERS:9
PMIX_RANGE.10

PMIX_QUERY_GROUP_MEMBERSHIP11
"pmix.qry.pgrpmems" (pmix_data_array_t*)12

Return a pmix_data_array_t of pmix_proc_t containing the members of the13
specified process group. REQUIRED QUALIFIERS: PMIX_GROUP_ID.14

PMIX_GROUP_ID "pmix.grp.id" (char*)15
User-provided group identifier - as the group identifier may be used in PMIx operations, the16
user is required to ensure that the provided ID is unique within the scope of the host17
environment (e.g., by including some user-specific or application-specific prefix or suffix to18
the string).19

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)20
This process is the leader of the group.21

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)22
Participation is optional - do not return an error if any of the specified processes terminate23
without having joined. The default is false.24

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)25
Notify remaining members when another member terminates without first leaving the group.26

27

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)28
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective29
operation.30

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)31
Requests that the RM assign a new context identifier to the newly created group. The32
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range33
specified in the request. Thus, the value serves as a means of identifying the group within34
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.35

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)36
Group operation only involves local processes. PMIx implementations are required to37
automatically scan an array of group members for local vs remote processes - if only local38

APPENDIX C. REVISION HISTORY 605

Un
offi
cia
l D
raf
t

processes are detected, the implementation need not execute a global collective for the1
operation unless a context ID has been requested from the host environment. This can result2
in significant time savings. This attribute can be used to optimize the operation by indicating3
whether or not only local processes are represented, thus allowing the implementation to4
bypass the scan.5

PMIX_GROUP_CONTEXT_ID "pmix.grp.ctxid" (size_t)6
Context identifier assigned to the group by the host RM.7

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)8
Data collected during group construction to ensure communication between group members9
is supported upon completion of the operation.10

PMIX_GROUP_NAMES "pmix.pgrp.nm" (pmix_data_array_t*)11
Returns an array of char* string names of the process groups in which the given process is12
a member.13

Process Mgmt attributes14
PMIX_OUTPUT_TO_DIRECTORY "pmix.outdir" (char*)15

Direct output into files of form "<directory>/<jobid>/rank.<rank>/16
stdout[err]" - can be assigned to the entire job (by including attribute in the job_info17
array) or on a per-application basis in the info array for each pmix_app_t.18

PMIX_TIMEOUT_STACKTRACES "pmix.tim.stack" (bool)19
Include process stacktraces in timeout report from a job.20

PMIX_TIMEOUT_REPORT_STATE "pmix.tim.state" (bool)21
Report process states in timeout report from a job.22

PMIX_NOTIFY_JOB_EVENTS "pmix.note.jev" (bool)23
Requests that the launcher generate the PMIX_EVENT_JOB_START,24
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events. Each event is to25
include at least the namespace of the corresponding job and a PMIX_EVENT_TIMESTAMP26
indicating the time the event occurred. Note that the requester must register for these27
individual events, or capture and process them by registering a default event handler instead28
of individual handlers and then process the events based on the returned status code. Another29
common method is to register one event handler for all job-related events, with a separate30
handler for non-job events - see PMIx_Register_event_handler for details.31

PMIX_NOTIFY_PROC_TERMINATION "pmix.noteproc" (bool)32
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event33
whenever a process either normally or abnormally terminates.34

PMIX_NOTIFY_PROC_ABNORMAL_TERMINATION "pmix.noteabproc" (bool)35
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event only36
when a process abnormally terminates.37

PMIX_LOG_PROC_TERMINATION "pmix.logproc" (bool)38

606 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event whenever a1
process either normally or abnormally terminates.2

PMIX_LOG_PROC_ABNORMAL_TERMINATION "pmix.logabproc" (bool)3
Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event only when a4
process abnormally terminates.5

PMIX_LOG_JOB_EVENTS "pmix.log.jev" (bool)6
Requests that the launcher log the PMIX_EVENT_JOB_START,7
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events using PMIx_Log,8
subject to the logging attributes of Section 13.4.3.9

PMIX_LOG_COMPLETION "pmix.logcomp" (bool)10
Requests that the launcher log the PMIX_EVENT_JOB_END event for normal or abnormal11
termination of the spawned job using PMIx_Log, subject to the logging attributes of12
Section 13.4.3. The event shall include the returned status code13
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)14
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a15
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred.16

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)17
Ensure the given value appears first in the specified envar using the separator character,18
creating the envar if it doesn’t already exist19

Event attributes20
PMIX_EVENT_TIMESTAMP "pmix.evtstamp" (time_t)21

System time when the associated event occurred.22

C.8.3 Added Environmental Variables23

Tool environmental variables24
PMIX_LAUNCHER_RNDZ_URI25
PMIX_LAUNCHER_RNDZ_FILE26
PMIX_KEEPALIVE_PIPE27

28

C.8.4 Added Macros29

PMIX_CHECK_RESERVED_KEY PMIX_INFO_WAS_PROCESSED PMIX_INFO_PROCESSED30
PMIX_INFO_LIST_START PMIX_INFO_LIST_ADD PMIX_INFO_LIST_XFER31
PMIX_INFO_LIST_CONVERT PMIX_INFO_LIST_RELEASE32

APPENDIX C. REVISION HISTORY 607

Un
offi
cia
l D
raf
t

C.8.5 Deprecated APIs1

pmix_evhdlr_reg_cbfunc_t Renamed to pmix_hdlr_reg_cbfunc_t2

The pmix_server_client_connected_fn_t server module entry point has been3
deprecated in favor of pmix_server_client_connected2_fn_t4

PMIx_tool_connect_to_server Replaced by PMIx_tool_attach_to_server to5
allow return of the process identifier of the server to which the tool has attached.6

C.8.6 Deprecated constants7

The following constants were deprecated in v4.0:8

PMIX_ERR_DEBUGGER_RELEASE Renamed to PMIX_DEBUGGER_RELEASE9
PMIX_ERR_JOB_TERMINATED Renamed to PMIX_EVENT_JOB_END10
PMIX_EXISTS Renamed to PMIX_ERR_EXISTS11
PMIX_ERR_PROC_ABORTED Consolidated with PMIX_EVENT_PROC_TERMINATED12
PMIX_ERR_PROC_ABORTING Consolidated with PMIX_EVENT_PROC_TERMINATED13
PMIX_ERR_LOST_CONNECTION_TO_SERVER Consolidated into14

PMIX_ERR_LOST_CONNECTION15
PMIX_ERR_LOST_PEER_CONNECTION Consolidated into16

PMIX_ERR_LOST_CONNECTION17
PMIX_ERR_LOST_CONNECTION_TO_CLIENT Consolidated into18

PMIX_ERR_LOST_CONNECTION19
PMIX_ERR_INVALID_TERMINATION Renamed to PMIX_ERR_JOB_TERM_WO_SYNC20
PMIX_PROC_TERMINATED Renamed to PMIX_EVENT_PROC_TERMINATED21
PMIX_ERR_NODE_DOWN Renamed to PMIX_EVENT_NODE_DOWN22
PMIX_ERR_NODE_OFFLINE Renamed to PMIX_EVENT_NODE_OFFLINE23
PMIX_ERR_SYS_OTHER Renamed to PMIX_EVENT_SYS_OTHER24
PMIX_CONNECT_REQUESTED Connection has been requested by a PMIx-based tool -25

deprecated as not required.26
PMIX_PROC_HAS_CONNECTED A tool or client has connected to the PMIx server -27

deprecated in favor of the new pmix_server_client_connected2_fn_t server28
module API29

C.8.7 Removed constants30

The following constants were removed from the PMIx Standard in v4.0 as they are internal to a31
particular PMIx implementation.32

PMIX_ERR_HANDSHAKE_FAILED Connection handshake failed33
PMIX_ERR_READY_FOR_HANDSHAKE Ready for handshake34
PMIX_ERR_IN_ERRNO Error defined in errno35
PMIX_ERR_INVALID_VAL_LENGTH Invalid value length36

608 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_ERR_INVALID_LENGTH Invalid argument length1
PMIX_ERR_INVALID_NUM_ARGS Invalid number of arguments2
PMIX_ERR_INVALID_ARGS Invalid arguments3
PMIX_ERR_INVALID_NUM_PARSED Invalid number parsed4
PMIX_ERR_INVALID_KEYVALP Invalid key/value pair5
PMIX_ERR_INVALID_SIZE Invalid size6
PMIX_ERR_PROC_REQUESTED_ABORT Process is already requested to abort7
PMIX_ERR_SERVER_FAILED_REQUEST Failed to connect to the server8
PMIX_ERR_PROC_ENTRY_NOT_FOUND Process not found9
PMIX_ERR_INVALID_ARG Invalid argument10
PMIX_ERR_INVALID_KEY Invalid key11
PMIX_ERR_INVALID_KEY_LENGTH Invalid key length12
PMIX_ERR_INVALID_VAL Invalid value13
PMIX_ERR_INVALID_NAMESPACE Invalid namespace14
PMIX_ERR_SERVER_NOT_AVAIL Server is not available15
PMIX_ERR_SILENT Silent error16
PMIX_ERR_PACK_MISMATCH Pack mismatch17
PMIX_ERR_DATA_VALUE_NOT_FOUND Data value not found18
PMIX_ERR_NOT_IMPLEMENTED Not implemented19
PMIX_GDS_ACTION_COMPLETE The GDS action has completed20
PMIX_NOTIFY_ALLOC_COMPLETE Notify that a requested allocation operation is complete21

- the result of the request will be included in the info array22

C.8.8 Deprecated attributes23

The following attributes were deprecated in v4.0:24

PMIX_TOPOLOGY "pmix.topo" (hwloc_topology_t)25
Renamed to PMIX_TOPOLOGY2.26

PMIX_DEBUG_JOB "pmix.dbg.job" (char*)27
Renamed to PMIX_DEBUG_TARGET)28

PMIX_RECONNECT_SERVER "pmix.tool.recon" (bool)29
Renamed to the PMIx_tool_connect_to_server API30

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)31
Renamed to PMIX_ALLOC_FABRIC32

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)33
Renamed to PMIX_ALLOC_FABRIC_ID34

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)35
Renamed to PMIX_ALLOC_FABRIC_QOS36

PMIX_ALLOC_NETWORK_TYPE "pmix.alloc.nettype" (char*)37
Renamed to PMIX_ALLOC_FABRIC_TYPE38

PMIX_ALLOC_NETWORK_PLANE "pmix.alloc.netplane" (char*)39
Renamed to PMIX_ALLOC_FABRIC_PLANE40

APPENDIX C. REVISION HISTORY 609

Un
offi
cia
l D
raf
t

PMIX_ALLOC_NETWORK_ENDPTS "pmix.alloc.endpts" (size_t)1
Renamed to PMIX_ALLOC_FABRIC_ENDPTS2

PMIX_ALLOC_NETWORK_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)3
Renamed to PMIX_ALLOC_FABRIC_ENDPTS_NODE4

PMIX_ALLOC_NETWORK_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)5
Renamed to PMIX_ALLOC_FABRIC_SEC_KEY6

PMIX_PROC_DATA "pmix.pdata" (pmix_data_array_t)7
Renamed to PMIX_PROC_INFO_ARRAY8

PMIX_LOCALITY "pmix.loc" (pmix_locality_t)9
Relative locality of the specified process to the requester, expressed as a bitmask as per the10
description in the pmix_locality_t section. This value is unique to the requesting11
process and thus cannot be communicated by the server as part of the job-level information.12
Its use has been replaced by the PMIx_Get_relative_locality function.13

C.8.9 Removed attributes14

The following attributes were removed from the PMIx Standard in v4.0 as they are internal to a15
particular PMIx implementation. Users are referred to the PMIx_Load_topology API for16
obtaining the local topology description.17

PMIX_LOCAL_TOPO "pmix.ltopo" (char*)18
XML representation of local node topology.19

PMIX_TOPOLOGY_XML "pmix.topo.xml" (char*)20
XML-based description of topology21

PMIX_TOPOLOGY_FILE "pmix.topo.file" (char*)22
Full path to file containing XML topology description23

PMIX_TOPOLOGY_SIGNATURE "pmix.toposig" (char*)24
Topology signature string.25

PMIX_HWLOC_SHMEM_ADDR "pmix.hwlocaddr" (size_t)26
Address of the HWLOC shared memory segment.27

PMIX_HWLOC_SHMEM_SIZE "pmix.hwlocsize" (size_t)28
Size of the HWLOC shared memory segment.29

PMIX_HWLOC_SHMEM_FILE "pmix.hwlocfile" (char*)30
Path to the HWLOC shared memory file.31

PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)32
XML representation of local topology using HWLOC’s v1.x format.33

PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)34
XML representation of local topology using HWLOC’s v2.x format.35

PMIX_HWLOC_SHARE_TOPO "pmix.hwlocsh" (bool)36
Share the HWLOC topology via shared memory37

PMIX_HWLOC_HOLE_KIND "pmix.hwlocholek" (char*)38
Kind of VM “hole” HWLOC should use for shared memory39

PMIX_DSTPATH "pmix.dstpath" (char*)40

610 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Path to shared memory data storage (dstore) files. Deprecated from Standard as being1
implementation specific.2

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)3
Comma-delimited list of algorithms to use for the collective operation. PMIx does not4
impose any requirements on a host environment’s collective algorithms. Thus, the5
acceptable values for this attribute will be environment-dependent - users are encouraged to6
check their host environment for supported values.7

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)8
If true, indicates that the requested choice of algorithm is mandatory.9

PMIX_PROC_BLOB "pmix.pblob" (pmix_byte_object_t)10
Packed blob of process data.11

PMIX_MAP_BLOB "pmix.mblob" (pmix_byte_object_t)12
Packed blob of process location.13

PMIX_MAPPER "pmix.mapper" (char*)14
Mapping mechanism to use for placing spawned processes - when accessed using15
PMIx_Get, use the PMIX_RANK_WILDCARD value for the rank to discover the mapping16
mechanism used for the provided namespace.17

PMIX_NON_PMI "pmix.nonpmi" (bool)18
Spawned processes will not call PMIx_Init.19

PMIX_PROC_URI "pmix.puri" (char*)20
URI containing contact information for the specified process.21

PMIX_ARCH "pmix.arch" (uint32_t)22
Architecture flag.23

C.9 Version 4.1: TBD24

The v4.1 update includes clarifications and corrections from the v4.0 document:25

C.9.1 Removed constants26

The following constants were removed from the PMIx Standard in v4.1 as they are internal to a27
particular PMIx implementation.28

PMIX_BUFFER Buffer.29

• Remove some stale language in Chapter 9.1.30
• Provisional Items:31

– Storage Chapter 19 on page 47132

C.9.2 Added Functions (Provisional)33

• PMIx_Data_load34
• PMIx_Data_unload35
• PMIx_Data_compress36
• PMIx_Data_decompress37

APPENDIX C. REVISION HISTORY 611

Un
offi
cia
l D
raf
t

C.9.3 Added Data Structures (Provisional)1

• pmix_storage_medium_t2
• pmix_storage_accessibility_t3
• pmix_storage_persistence_t4
• pmix_storage_access_type_t5

C.9.4 Added Macros (Provisional)6

• PMIX_NSPACE_INVALID7
• PMIX_RANK_IS_VALID8
• PMIX_PROCID_INVALID9
• PMIX_PROCID_XFER10

C.9.5 Added Constants (Provisional)11

• PMIX_PROC_NSPACE12

Storage constants13
• PMIX_STORAGE_MEDIUM_UNKNOWN14
• PMIX_STORAGE_MEDIUM_TAPE15
• PMIX_STORAGE_MEDIUM_HDD16
• PMIX_STORAGE_MEDIUM_SSD17
• PMIX_STORAGE_MEDIUM_NVME18
• PMIX_STORAGE_MEDIUM_PMEM19
• PMIX_STORAGE_MEDIUM_RAM20
• PMIX_STORAGE_ACCESSIBILITY_NODE21
• PMIX_STORAGE_ACCESSIBILITY_SESSION22
• PMIX_STORAGE_ACCESSIBILITY_JOB23
• PMIX_STORAGE_ACCESSIBILITY_RACK24
• PMIX_STORAGE_ACCESSIBILITY_CLUSTER25
• PMIX_STORAGE_ACCESSIBILITY_REMOTE26
• PMIX_STORAGE_PERSISTENCE_TEMPORARY27
• PMIX_STORAGE_PERSISTENCE_NODE28
• PMIX_STORAGE_PERSISTENCE_SESSION29
• PMIX_STORAGE_PERSISTENCE_JOB30
• PMIX_STORAGE_PERSISTENCE_SCRATCH31
• PMIX_STORAGE_PERSISTENCE_PROJECT32
• PMIX_STORAGE_PERSISTENCE_ARCHIVE33
• PMIX_STORAGE_ACCESS_RD34
• PMIX_STORAGE_ACCESS_WR35
• PMIX_STORAGE_ACCESS_RDWR36

612 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C.9.6 Added Attributes (Provisional)1

Storage attributes2
PMIX_STORAGE_ID "pmix.strg.id" (char*)3

An identifier for the storage system (e.g., lustre-fs1, daos-oss1, home-fs)4

PMIX_STORAGE_PATH "pmix.strg.path" (char*)5
Mount point path for the storage system (valid only for file-based storage systems)6

PMIX_STORAGE_TYPE "pmix.strg.type" (char*)7
Type of storage system (i.e., "lustre", "gpfs", "daos", "ext4")8

PMIX_STORAGE_VERSION "pmix.strg.ver" (char*)9
Version string for the storage system10

PMIX_STORAGE_MEDIUM "pmix.strg.medium" (pmix_storage_medium_t)11
Types of storage mediums utilized by the storage system (e.g., SSDs, HDDs, tape)12

PMIX_STORAGE_ACCESSIBILITY13
"pmix.strg.access" (pmix_storage_accessibility_t)14

Accessibility level of the storage system (e.g., within same node, within same session)15

PMIX_STORAGE_PERSISTENCE16
"pmix.strg.persist" (pmix_storage_persistence_t)17

Persistence level of the storage system (e.g., sratch storage or achive storage)18

PMIX_QUERY_STORAGE_LIST "pmix.strg.list" (char*)19
Comma-delimited list of storage identifiers (i.e., PMIX_STORAGE_ID types) for available20
storage systems21

PMIX_STORAGE_CAPACITY_LIMIT "pmix.strg.caplim" (double)22
Overall limit on capacity (in bytes) for the storage system23

PMIX_STORAGE_CAPACITY_USED "pmix.strg.capuse" (double)24
Overall used capacity (in bytes) for the storage system25

PMIX_STORAGE_OBJECT_LIMIT "pmix.strg.objlim" (uint64_t)26
Overall limit on number of objects (e.g., inodes) for the storage system27

PMIX_STORAGE_OBJECTS_USED "pmix.strg.objuse" (uint64_t)28
Overall used number of objects (e.g., inodes) for the storage system29

PMIX_STORAGE_MINIMAL_XFER_SIZE "pmix.strg.minxfer" (double)30
Minimal transfer size (in bytes) for the storage system - this is the storage system’s atomic31
unit of transfer (e.g., block size)32

PMIX_STORAGE_SUGGESTED_XFER_SIZE "pmix.strg.sxfer" (double)33
Suggested transfer size (in bytes) for the storage system34

PMIX_STORAGE_BW_MAX "pmix.strg.bwmax" (double)35

APPENDIX C. REVISION HISTORY 613

Un
offi
cia
l D
raf
t

Maximum bandwidth (in bytes/sec) for storage system - provided as the theoretical1
maximum or the maximum observed bandwidth value2

PMIX_STORAGE_BW_CUR "pmix.strg.bwcur" (double)3
Observed bandwidth (in bytes/sec) for storage system - provided as a recently observed4
bandwidth value, with the exact measurement interval depending on the storage system5
and/or PMIx library implementation6

PMIX_STORAGE_IOPS_MAX "pmix.strg.iopsmax" (double)7
Maximum IOPS (in I/O operations per second) for storage system - provided as the8
theoretical maximum or the maximum observed IOPS value9

PMIX_STORAGE_IOPS_CUR "pmix.strg.iopscur" (double)10
Observed IOPS (in I/O operations per second) for storage system - provided as a recently11
observed IOPS value, with the exact measurement interval depending on the storage system12
and/or PMIx library implementation13

PMIX_STORAGE_ACCESS_TYPE14
"pmix.strg.atype" (pmix_storage_access_type_t)15

Qualifier describing the type of storage access to return information for (e.g., for qualifying16
PMIX_STORAGE_BW_CUR, PMIX_STORAGE_IOPS_CUR, or17
PMIX_STORAGE_SUGGESTED_XFER_SIZE attributes)18

C.10 Version 4.2: TBD19

The v4.2 update includes the following changes from the v4.1 document:20

• Define when PMIX_PARENT_ID is set21
• Add adefinition for tool22
• Clarify PMIX_CMD_LINE in PMIx_Spawn23

C.10.1 Deprecated constants24

The following constants were deprecated in v4.2:25

PMIX_DEBUG_WAITING_FOR_NOTIFY Renamed to PMIX_READY_FOR_DEBUG26

C.10.2 Deprecated attributes27

The following attributes were deprecated in v4.2:28

PMIX_DEBUG_WAIT_FOR_NOTIFY "pmix.dbg.notify" (bool)29
Renamed to PMIX_DEBUG_STOP_IN_APP30

614 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

C.10.3 Deprecated macros1

The following macros were deprecated in v4.2:2

• PMIX_VALUE_LOAD Replaced by the PMIx_Value_load API3
• PMIX_VALUE_UNLOAD Replaced by the PMIx_Value_unload API4
• PMIX_VALUE_XFER Replaced by the PMIx_Value_xfer API5
• PMIX_INFO_LOAD Replaced by the PMIx_Info_load API6
• PMIX_INFO_XFER Replaced by the PMIx_Info_xfer API7
• PMIX_INFO_LIST_START Replaced by the PMIx_Info_list_start API8
• PMIX_INFO_LIST_ADD Replaced by the PMIx_Info_list_add API9
• PMIX_INFO_LIST_XFER Replaced by the PMIx_Info_list_xfer API10
• PMIX_INFO_LIST_CONVERT Replaced by the PMIx_Info_list_convert API11
• PMIX_INFO_LIST_RELEASE Replaced by the PMIx_Info_list_release API12
• PMIX_TOPOLOGY_DESTRUCT Replaced by the PMIx_Topology_destruct API13
• PMIX_TOPOLOGY_FREE Not replaced.14

C.10.4 Added Functions (Provisional)15

• PMIx_Data_embed16
• PMIx_Value_load17
• PMIx_Value_unload18
• PMIx_Value_xfer19
• PMIx_Info_list_start20
• PMIx_Info_list_add21
• PMIx_Info_list_xfer22
• PMIx_Info_list_convert23
• PMIx_Info_list_release24
• PMIx_Topology_destruct25

C.10.5 Added Macros (Provisional)26

• PMIX_APP_STATIC_INIT27
• PMIX_BYTE_OBJECT_STATIC_INIT28
• PMIX_COORD_STATIC_INIT29
• PMIX_CPUSET_STATIC_INIT30
• PMIX_DATA_ARRAY_STATIC_INIT31
• PMIX_DATA_BUFFER_STATIC_INIT32
• PMIX_DEVICE_DIST_STATIC_INIT33
• PMIX_ENDPOINT_STATIC_INIT34
• PMIX_ENVAR_STATIC_INIT35
• PMIX_FABRIC_STATIC_INIT36

APPENDIX C. REVISION HISTORY 615

Un
offi
cia
l D
raf
t

• PMIX_GEOMETRY_STATIC_INIT1
• PMIX_INFO_STATIC_INIT2
• PMIX_LOOKUP_STATIC_INIT3
• PMIX_PROC_INFO_STATIC_INIT4
• PMIX_PROC_STATIC_INIT5
• PMIX_QUERY_STATIC_INIT6
• PMIX_REGATTR_STATIC_INIT7
• PMIX_TOPOLOGY_STATIC_INIT8
• PMIX_VALUE_STATIC_INIT9

C.10.6 Added Constants (Provisional)10

Spawn constants11
• PMIX_ERR_JOB_EXE_NOT_FOUND12
• PMIX_ERR_JOB_INSUFFICIENT_RESOURCES13
• PMIX_ERR_JOB_SYS_OP_FAILED14
• PMIX_ERR_JOB_WDIR_NOT_FOUND15

C.10.7 Added Attributes (Provisional)16

Spawn attributes17
PMIX_ENVARS_HARVESTED "pmix.evar.hvstd" (bool)18

Environmental parameters have been harvested by the spawn requestor - the server does not19
need to harvest them.20

PMIX_JOB_TIMEOUT "pmix.job.time" (int)21
Time in seconds before the spawned job should time out and be terminated (0 => infinite),22
defined as the total runtime of the job (equivalent to the walltime limit of typical batch23
schedulers).24

PMIX_LOCAL_COLLECTIVE_STATUS "pmix.loc.col.st" (pmix_status_t)25
Status code for local collective operation being reported to the host by the server library.26
PMIx servers may aggregate the participation by local client processes in a collective27
operation - e.g., instead of passing individual client calls to PMIx_Fence up to the host28
environment, the server may pass only a single call to the host when all local participants29
have executed their PMIx_Fence call, thereby reducing the burden placed on the host.30
However, in cases where the operation locally fails (e.g., if a participating client abnormally31
terminates prior to calling the operation), the server upcall functions to the host do not32
include a pmix_status_t by which the PMIx server can alert the host to that failure.33
This attribute resolves that problem by allowing the server to pass the status information34
regarding the local collective operation.35

PMIX_NODE_OVERSUBSCRIBED "pmix.ndosub" (bool)36

616 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

True if the number of processes from this job on this node exceeds the number of slots1
allocated to it2

PMIX_SINGLETON "pmix.singleton" (char*)3
String representation (nspace.rank) of proc ID for the singleton the server was started to4
support5

PMIX_SPAWN_TIMEOUT "pmix.sp.time" (int)6
Time in seconds before spawn operation should time out (0 => infinite). Logically7
equivalent to passing the PMIX_TIMEOUT attribute to the PMIx_Spawn API, it is8
provided as a separate attribute to distinguish it from the PMIX_JOB_TIMEOUT attribute9

Tool attributes10
PMIX_IOF_FILE_PATTERN "pmix.iof.fpt" (bool)11

Specified output file is to be treated as a pattern and not automatically annotated by nspace,12
rank, or other parameters. The pattern can use %n for the namespace, and %r for the rank13
wherever those quantities are to be placed. The resulting filename will be appended with14
".stdout" for the stdout stream and ".stderr" for the stderr stream. If15
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be16
created and both streams will be written into it.17

PMIX_IOF_FILE_ONLY "pmix.iof.fonly" (bool)18
Output only into designated files - do not also output a copy to the console’s stdout/stderr19

PMIX_IOF_LOCAL_OUTPUT "pmix.iof.local" (bool)20
Write output streams to local stdout/err21

PMIX_IOF_MERGE_STDERR_STDOUT "pmix.iof.mrg" (bool)22
Merge stdout and stderr streams from application procs23

PMIX_IOF_RANK_OUTPUT "pmix.iof.rank" (bool)24
Tag output with the rank it came from25

PMIX_IOF_OUTPUT_RAW "pmix.iof.raw" (bool)26
Do not buffer output to be written as complete lines - output characters as the stream delivers27
them28

PMIX_IOF_OUTPUT_TO_DIRECTORY "pmix.iof.dir" (char*)29
Direct application output into files of form "<directory>/<nspace>/rank.<rank>/stdout" (for30
stdout) and "<directory>/<nspace>/rank.<rank>/stderr" (for stderr). If31
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be32
created and both streams will be written into it.33

PMIX_IOF_OUTPUT_TO_FILE "pmix.iof.file" (char*)34
Direct application output into files of form "<filename>.<nspace>.<rank>.stdout" (for35
stdout) and "<filename>.<nspace>.<rank>.stderr" (for stderr). If36
PMIX_IOF_MERGE_STDERR_STDOUT was given, then only the stdout file will be37
created and both streams will be written into it.38

APPENDIX C. REVISION HISTORY 617

Un
offi
cia
l D
raf
t

PMIX_BREAKPOINT "pmix.brkpnt" (char*)1
String ID of the breakpoint where the process(es) is(are) waiting.2

PMIX_DEBUG_STOP_IN_APP "pmix.dbg.notify" (varies)3
Direct specified ranks to stop at application-specific point and notify they are4
ready-to-debug. The attribute’s value can be any of three data types:5

• bool - true indicating all ranks6
• pmix_rank_t - the rank of one proc, or PMIX_RANK_WILDCARD for all7
• a pmix_data_array_t if an array of individual processes are specified8

The resulting application processes are to notify their server (by generating the9
PMIX_READY_FOR_DEBUG event) when they reach some application-determined location10
- the event shall include the PMIX_BREAKPOINT attribute indicating where the application11
has stopped. The application shall pause at that point until released by debugger12
modification of an appropriate variable. The launcher (RM or IL) is responsible for13
generating the PMIX_READY_FOR_DEBUG event when all processes have indicated they14
are at the pause point.15

618 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

APPENDIX D

Acknowledgements

This document represents the work of many people who have contributed to the PMIx community.1
Without the hard work and dedication of these people this document would not have been possible.2
The sections below list some of the active participants and organizations in the various PMIx3
standard iterations.4

D.1 Version 4.05

The following list includes some of the active participants in the PMIx v4 standardization process.6

• Ralph H. Castain and Danielle Sikich7

• Joshua Hursey and David Solt8

• Dirk Schubert9

• John DelSignore10

• Aurelien Bouteiller11

• Michael A Raymond12

• Howard Pritchard and Nathan Hjelm13

• Brice Goglin14

• Kathryn Mohror and Stephen Herbein15

• Thomas Naughton and Swaroop Pophale16

• William E. Allcock and Paul Rich17

• Michael Karo18

• Artem Polyakov19

The following institutions supported this effort through time and travel support for the people listed20
above.21

• Intel Corporation22

• IBM, Inc.23

• Allinea (ARM)24

619

Un
offi
cia
l D
raf
t

• Perforce1

• University of Tennessee, Knoxville2

• The Exascale Computing Project, an initiative of the US Department of Energy3

• National Science Foundation4

• HPE Co.5

• Los Alamos National Laboratory6

• INRIA7

• Lawrence Livermore National Laboratory8

• Oak Ridge National Laboratory9

• Argonne National Laboratory10

• Altair11

• NVIDIA12

D.2 Version 3.013

The following list includes some of the active participants in the PMIx v3 standardization process.14

• Ralph H. Castain, Andrew Friedley, Brandon Yates15

• Joshua Hursey and David Solt16

• Aurelien Bouteiller and George Bosilca17

• Dirk Schubert18

• Kevin Harms19

• Artem Polyakov20

The following institutions supported this effort through time and travel support for the people listed21
above.22

• Intel Corporation23

• IBM, Inc.24

• University of Tennessee, Knoxville25

• The Exascale Computing Project, an initiative of the US Department of Energy26

• National Science Foundation27

• Argonne National Laboratory28

620 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• Allinea (ARM)1

• NVIDIA2

D.3 Version 2.03

The following list includes some of the active participants in the PMIx v2 standardization process.4

• Ralph H. Castain, Annapurna Dasari, Christopher A. Holguin, Andrew Friedley, Michael Klemm5
and Terry Wilmarth6

• Joshua Hursey, David Solt, Alexander Eichenberger, Geoff Paulsen, and Sameh Sharkawi7

• Aurelien Bouteiller and George Bosilca8

• Artem Polyakov, Igor Ivanov and Boris Karasev9

• Gilles Gouaillardet10

• Michael A Raymond and Jim Stoffel11

• Dirk Schubert12

• Moe Jette13

• Takahiro Kawashima and Shinji Sumimoto14

• Howard Pritchard15

• David Beer16

• Brice Goglin17

• Geoffroy Vallee, Swen Boehm, Thomas Naughton and David Bernholdt18

• Adam Moody and Martin Schulz19

• Ryan Grant and Stephen Olivier20

• Michael Karo21

The following institutions supported this effort through time and travel support for the people listed22
above.23

• Intel Corporation24

• IBM, Inc.25

• University of Tennessee, Knoxville26

• The Exascale Computing Project, an initiative of the US Department of Energy27

• National Science Foundation28

• Mellanox, Inc.29

APPENDIX D. ACKNOWLEDGEMENTS 621

Un
offi
cia
l D
raf
t

• Research Organization for Information Science and Technology1

• HPE Co.2

• Allinea (ARM)3

• SchedMD, Inc.4

• Fujitsu Limited5

• Los Alamos National Laboratory6

• Adaptive Solutions, Inc.7

• INRIA8

• Oak Ridge National Laboratory9

• Lawrence Livermore National Laboratory10

• Sandia National Laboratory11

• Altair12

D.4 Version 1.013

The following list includes some of the active participants in the PMIx v1 standardization process.14

• Ralph H. Castain, Annapurna Dasari and Christopher A. Holguin15

• Joshua Hursey and David Solt16

• Aurelien Bouteiller and George Bosilca17

• Artem Polyakov, Elena Shipunova, Igor Ivanov, and Joshua Ladd18

• Gilles Gouaillardet19

• Gary Brown20

• Moe Jette21

The following institutions supported this effort through time and travel support for the people listed22
above.23

• Intel Corporation24

• IBM, Inc.25

• University of Tennessee, Knoxville26

• Mellanox, Inc.27

• Research Organization for Information Science and Technology28

622 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

• Adaptive Solutions, Inc.1

• SchedMD, Inc.2

APPENDIX D. ACKNOWLEDGEMENTS 623

Un
offi
cia
l D
raf
t

Bibliography

[1] Ralph H. Castain, David Solt, Joshua Hursey, and Aurelien Bouteiller. PMIx: Process
management for exascale environments. In Proceedings of the 24th European MPI Users’
Group Meeting, EuroMPI ’17, pages 14:1–14:10, New York, NY, USA, 2017. ACM.

[2] Balaji P. et al. PMI: A scalable parallel process-management interface for extreme-scale
systems. In Recent Advances in the Message Passing Interface, EuroMPI ’10, pages 31–41,
Berlin, Heidelberg, 2010. Springer.

[3] Khaled Hamidouche, Jian Lin, Mingzhe Li, Jie Zhang, and D.K.Panda. Supporting hybrid
MPI+PGAS programming models through unified communication runtime: An MVAPICH2-X
approach. In 4th MVAPICH User’s Group, MUG, 2016.

[4] Message Passing Interface Forum. MPI: A Message-passing Interface Standard, Version 3.1.
High-Performance Computing Center Stuttgart, University of Stuttgart, June 2015.

[5] Geoffroy R. Vallée. MOC - MPI Open MP Coordination library.
https://github.com/OMPI-X/MOC, 2018. [Online; accessed 20-Dec-2019].

[6] Geoffroy R. Vallée and David Bernhold. Improving support of MPI+OpenMP applications. In
Proceedings of the 25th European MPI Users’ Group Meeting, EuroMPI, 2018.

624

https://github.com/OMPI-X/MOC

Un
offi
cia
l D
raf
t

Index

General terms and other items not induced in the other indices.

application, 8, 96, 117, 319, 322, 324, 583, 586
attribute, 9

business card exchange, 72

client, 5, 8, 63
clients, 8
clone, 8
clones, 8, 122, 124, 125, 193, 196, 197, 199, 223, 226, 594

data realm, 86, 284
data realms, 86
device, 9
devices, 9
Direct Modex, 271, 335

fabric, 9
fabric device, 9
fabric devices, 9
fabric plane, 9, 177, 183, 215, 218, 219, 289, 338
fabric planes, 9
fabrics, 9

host environment, 8

instant on, 9, 73, 270

job, 7, 8, 88–92, 96, 117, 310–314, 316, 319, 321–324, 336, 338, 339, 530, 548, 583, 584, 586,
597–599

key, 9

modex exchange, 72

namespace, 7
node, 8, 96, 117, 177, 183, 215, 218, 219, 319, 338

package, 8, 93, 317, 599

625

Un
offi
cia
l D
raf
t

peer, 8, 91, 316
peers, 8
process, 8, 96, 117, 177, 183, 215, 218, 219, 319, 338
processing unit, 9

rank, 8, 325
realm, 86
realms, 86
resource manager, 8
RM, 8

scheduler, 8, 287
server, 5
session, 7, 87, 96, 117, 310, 311, 319, 321, 583, 584, 586, 597
singleton, 5

thread, 8
threads, 8
tool, 5, 8, 614
tools, 8

workflow, 8
workflows, 8, 408

626 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Index of APIs

PMIx_Abort, 26, 171, 172, 360, 362, 485, 500, 581
PMIxClient.abort (Python), 499

PMIx_Alloc_directive_string, 61, 520, 582
PMIxClient.alloc_directive_string (Python), 520

PMIx_Allocation_request, 119, 212, 212, 218, 508, 584, 586, 589
PMIxClient.allocation_request (Python), 507

PMIx_Allocation_request_nb, 215, 218, 220, 582
PMIx_Commit, 73, 75, 76, 77, 78, 121, 123, 124, 335, 336, 363, 367, 501, 546, 547, 581

PMIxClient.commit (Python), 501
PMIx_Compute_distances, 205, 207, 517, 590

PMIxClient.compute_distances (Python), 517
PMIx_Compute_distances_nb, 206, 590
PMIx_Connect, 192, 194, 196, 197, 199, 244–246, 454, 455, 505, 581, 583

PMIxClient.connect (Python), 504
PMIx_Connect_nb, 194, 194, 581
pmix_connection_cbfunc_t, 389, 389
pmix_credential_cbfunc_t, 295, 406, 407
PMIx_Data_compress, 168, 169, 611
PMIx_Data_copy, 164, 582
PMIx_Data_copy_payload, 165, 582
PMIx_Data_decompress, 169, 611
PMIx_Data_embed, 170, 615
PMIx_Data_load, 166, 170, 611
PMIx_Data_pack, 161, 162, 308, 582
PMIx_Data_print, 165, 582
PMIx_Data_range_string, 60, 519, 582

PMIxClient.data_range_string (Python), 519
PMIx_Data_type_string, 60, 520, 582

PMIxClient.data_type_string (Python), 520
PMIx_Data_unload, 167, 611
PMIx_Data_unpack, 162, 168, 582
PMIx_Deregister_event_handler, 152, 513, 565, 582, 589

PMIxClient.deregister_event_handler (Python), 513
pmix_device_dist_cbfunc_t, 207, 207, 591
PMIx_Device_type_string, 62, 523, 590

PMIxClient.device_type_string (Python), 523
PMIx_Disconnect, 196, 197–199, 246, 454, 455, 505, 581, 583

PMIxClient.disconnect (Python), 505

627

Un
offi
cia
l D
raf
t

PMIx_Disconnect_nb, 198, 199, 246, 581
pmix_dmodex_response_fn_t, 335, 336
PMIx_Error_string, 59, 518, 581

PMIxClient.error_string (Python), 517
pmix_event_notification_cbfunc_fn_t, 151, 157, 157, 570, 573
PMIx_Fabric_deregister, 291, 292, 515, 590

PMIxClient.fabric_deregister (Python), 515
PMIx_Fabric_deregister_nb, 292, 590
PMIx_Fabric_register, 280, 287, 290, 514, 590

PMIxClient.fabric_register (Python), 514
PMIx_Fabric_register_nb, 289, 590
PMIx_Fabric_update, 289, 290, 291, 515, 590

PMIxClient.fabric_update (Python), 514
PMIx_Fabric_update_nb, 291, 590
PMIx_Fence, 4, 73, 120, 120–122, 124, 125, 194, 197, 243, 252, 256, 271, 305, 335, 362–364, 380,

383, 418, 486, 502, 546, 547, 581, 594, 616
PMIxClient.fence (Python), 501

PMIx_Fence_nb, 57, 120, 122, 362, 364, 486, 581, 589
PMIx_Finalize, 26, 67, 69, 69, 192, 359, 360, 454, 455, 485, 499, 581

PMIxClient.finalize (Python), 499
PMIx_generate_ppn, 308, 525, 581, 587

PMIxServer.generate_ppn (Python), 525
PMIx_generate_regex, 307, 309, 321, 525, 581, 587

PMIxServer.generate_regex (Python), 524
PMIx_Get, 3, 9, 29, 67, 72–74, 77, 78, 80, 81, 83–89, 91–96, 100, 103, 106–108, 112, 117,

119–121, 124, 125, 174–176, 180–182, 185–187, 201, 203, 204, 218, 227, 233, 240, 242,
244, 248, 252, 271, 273, 284, 287, 312, 313, 317, 320, 350, 376, 378, 428, 438–440, 456,
473, 502, 546, 547, 549, 552, 554, 558, 559, 564, 576, 581, 583, 588, 594, 595, 601, 602,
611

PMIxClient.get (Python), 502
PMIx_Get_attribute_name, 61, 522, 590

PMIxClient.get_attribute_name (Python), 522
PMIx_Get_attribute_string, 61, 522, 590

PMIxClient.get_attribute_string (Python), 521
PMIx_Get_cpuset, 204, 516, 590

PMIxClient.get_cpuset (Python), 516
PMIx_Get_credential, 294, 296, 407, 509, 584, 589

PMIxClient.get_credential (Python), 509
PMIx_Get_credential_nb, 295
PMIx_Get_nb, 57, 58, 72, 73, 81, 120, 581
PMIx_Get_relative_locality, 201, 203, 317, 351, 516, 549, 590, 610

PMIxClient.get_relative_locality (Python), 516
PMIx_Get_version, 11, 64, 499, 581

628 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIxClient.get_version (Python), 499
PMIx_Group_construct, 243, 244, 249, 251, 252, 255, 510, 576, 590

PMIxClient.group_construct (Python), 510
PMIx_Group_construct_nb, 252, 255, 590
PMIx_Group_destruct, 246, 255, 256, 258, 268, 512, 590

PMIxClient.group_destruct (Python), 512
PMIx_Group_destruct_nb, 256, 258, 590
PMIx_Group_invite, 245, 258, 260, 261, 263, 511, 590

PMIxClient.group_invite (Python), 510
PMIx_Group_invite_nb, 261, 590
PMIx_Group_join, 245, 260, 263, 263–265, 267, 511, 590

PMIxClient.group_join (Python), 511
PMIx_Group_join_nb, 263, 265, 267, 590
PMIx_Group_leave, 246, 267, 268, 269, 512, 590

PMIxClient.group_leave (Python), 512
PMIx_Group_leave_nb, 268, 590
pmix_hdlr_reg_cbfunc_t, 58, 146, 466, 467, 608
pmix_info_cbfunc_t, 56, 58, 58, 106, 206, 216, 224, 226, 231, 232, 253, 261, 266, 348, 390, 398,

400, 401, 403, 404, 417, 420
PMIx_Info_directives_string, 60, 520, 582

PMIxClient.info_directives_string (Python), 519
PMIx_Info_list_add, 38, 615
PMIx_Info_list_convert, 39, 615
PMIx_Info_list_release, 39, 615
PMIx_Info_list_start, 37, 38–40, 615
PMIx_Info_list_xfer, 38, 615
PMIx_Info_load, 36, 615
PMIx_Info_xfer, 36, 321, 615
PMIx_Init, 8, 63, 64, 67, 93, 103, 108, 359, 433, 437, 448, 449, 456, 498, 546, 548, 553, 559, 568,

578, 582, 588, 611
PMIxClient.init (Python), 498

PMIx_Initialized, 63, 498, 581
PMIxClient.initialized (Python), 498

pmix_iof_cbfunc_t, 414, 465, 483
iofcbfunc (Python), 483

PMIx_IOF_channel_string, 61, 521, 584
PMIxClient.iof_channel_string (Python), 521

PMIx_IOF_deregister, 467, 538, 584, 589
PMIxTool.iof_deregister (Python), 538

PMIx_IOF_pull, 377, 394, 430, 431, 436, 440, 442, 465, 467, 538, 554, 558, 559, 564, 584, 589
PMIxTool.iof_pull (Python), 537

PMIx_IOF_push, 377, 394, 430, 436, 439, 442, 444, 447, 468, 470, 539, 584, 589, 600
PMIxTool.iof_push (Python), 538

INDEX OF APIS 629

Un
offi
cia
l D
raf
t

PMIx_Job_control, 212, 221, 222, 225–227, 402, 451, 508, 584, 589
PMIxClient.job_ctrl (Python), 508

PMIx_Job_control_nb, 100, 220, 223, 319, 582
PMIx_Job_state_string, 61, 521, 590

PMIxClient.job_state_string (Python), 521
PMIx_Link_state_string, 62, 522, 590

PMIxClient.link_state_string (Python), 522
PMIx_Load_topology, 200, 515, 590, 610

PMIxClient.load_topology (Python), 515
PMIx_Log, 188, 234, 236, 240, 433, 453, 454, 507, 584, 607

PMIxClient.log (Python), 507
PMIx_Log_nb, 237, 240, 582
PMIx_Lookup, 72, 126, 128, 132, 134, 136, 502, 503, 581

PMIxClient.lookup (Python), 503
pmix_lookup_cbfunc_t, 56, 56, 370
PMIx_Lookup_nb, 56, 57, 72, 134, 581
pmix_modex_cbfunc_t, 56, 362, 365, 365, 366
pmix_notification_fn_t, 146, 151, 151, 484

evhandler (Python), 483
PMIx_Notify_event, 131, 153, 388, 514, 552, 557, 565, 569, 570, 582, 589

PMIxClient.notify_event (Python), 513
pmix_op_cbfunc_t, 57, 57, 129, 141, 153, 154, 157, 195, 198, 237, 257, 268, 290–292, 309,

329–333, 340, 346, 347, 349, 357–359, 361, 368, 372, 379, 382, 384, 386, 387, 396, 412,
415, 468

PMIx_Parse_cpuset_string, 203, 351, 517, 590
PMIxClient.parse_cpuset_string (Python), 516

PMIx_Persistence_string, 60, 519, 582
PMIxClient.persistence_string (Python), 519

PMIx_Proc_state_string, 59, 518, 582
PMIxClient.proc_state_string (Python), 518

PMIx_Process_monitor, 212, 228, 232, 509, 584, 589
PMIxClient.monitor (Python), 508

PMIx_Process_monitor_nb, 230, 233, 582
PMIx_Progress, 66, 69, 304, 307, 460, 523, 590, 599

PMIxClient.progress (Python), 523
PMIx_Publish, 72, 126, 128, 130–132, 134, 369, 503, 581

PMIxClient.publish (Python), 502
PMIx_Publish_nb, 128, 132, 134, 581
PMIx_Put, 29, 72, 73, 74, 74–76, 78, 117, 120–124, 192, 252, 260, 335, 336, 363, 367, 501, 546,

547, 581
PMIxClient.put (Python), 500

PMIx_Query_info, 9, 101, 101, 106, 110, 112, 115, 117, 118, 242, 244, 284, 422, 426, 449, 450,
473, 507, 552, 558, 561, 578, 579, 595

630 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIxClient.query (Python), 506
PMIx_Query_info_nb, 100, 106, 106, 110, 112, 115, 119, 192, 320, 341, 564, 582, 583
PMIx_Register_attributes, 341, 531, 589, 590

PMIxServer.register_attributes (Python), 530
PMIx_Register_event_handler, 100, 145, 187, 432, 454, 513, 552, 557, 561, 565, 569, 570, 573,

582, 589, 606
PMIxClient.register_event_handler (Python), 512

pmix_release_cbfunc_t, 56, 56
PMIx_Resolve_nodes, 116, 506, 581

PMIxClient.resolve_nodes (Python), 506
PMIx_Resolve_peers, 90, 95, 115, 315, 316, 506, 548, 581

PMIxClient.resolve_peers (Python), 505
PMIx_Scope_string, 60, 518, 582

PMIxClient.scope_string (Python), 518
pmix_server_abort_fn_t, 360, 486

clientaborted (Python), 485
pmix_server_alloc_fn_t, 397, 493

allocate (Python), 493
pmix_server_client_connected2_fn_t, 57, 293, 333, 357, 358, 359, 485, 578, 579, 590, 608

clientconnected2 (Python), 484
pmix_server_client_finalized_fn_t, 359, 360, 485

clientfinalized (Python), 485
PMIx_server_collect_inventory, 348, 350, 532, 584

PMIxServer.collect_inventory (Python), 532
pmix_server_connect_fn_t, 192, 379, 381, 383, 489

connect (Python), 489
PMIx_server_define_process_set, 242, 353, 533, 590

PMIxServer.define_process_set (Python), 533
PMIx_server_delete_process_set, 242, 354, 534, 590

PMIxServer.delete_process_set (Python), 533
PMIx_server_deliver_inventory, 349, 533, 584

PMIxServer.deliver_inventory (Python), 532
PMIx_server_deregister_client, 333, 529, 581

PMIxServer.deregister_client (Python), 529
pmix_server_deregister_events_fn_t, 385, 491

deregister_events (Python), 491
PMIx_server_deregister_nspace, 328, 334, 527, 581

PMIxServer.deregister_nspace (Python), 527
PMIx_server_deregister_resources, 331, 528, 534, 591

PMIxServer.deregister_resources (Python), 528, 534
pmix_server_disconnect_fn_t, 381, 383, 490

disconnect (Python), 490
pmix_server_dmodex_req_fn_t, 78, 95, 365, 365, 487, 584, 586

INDEX OF APIS 631

Un
offi
cia
l D
raf
t

dmodex (Python), 487
PMIx_server_dmodex_request, 334, 335, 336, 530, 581

PMIxServer.dmodex_request (Python), 529
pmix_server_fabric_fn_t, 280, 287, 419, 497, 590

fabric (Python), 497
pmix_server_fencenb_fn_t, 362, 364, 365, 486, 586

fence (Python), 486
PMIx_server_finalize, 305, 524, 581

PMIxServer.finalize (Python), 524
PMIx_server_generate_cpuset_string, 204, 351, 526, 591

PMIxServer.generate_cpuset_string (Python), 526
PMIx_server_generate_locality_string, 200, 201, 350, 526, 590

PMIxServer.generate_locality_string (Python), 525
pmix_server_get_cred_fn_t, 406, 410, 495

get_credential (Python), 494
pmix_server_grp_fn_t, 416, 497, 590

group (Python), 496
PMIx_server_init, 63, 301, 306, 341, 355, 423, 424, 428, 524, 565, 578, 579, 581, 590

PMIxServer.init (Python), 523
PMIx_server_IOF_deliver, 347, 441, 532, 584

PMIxServer.iof_deliver (Python), 531
pmix_server_iof_fn_t, 411, 496

iof_pull (Python), 495
pmix_server_job_control_fn_t, 400, 494

job_control (Python), 493
pmix_server_listener_fn_t, 388
pmix_server_log_fn_t, 395, 493

log (Python), 492
pmix_server_lookup_fn_t, 369, 488

lookup (Python), 488
pmix_server_module_t, 302, 305, 341, 342, 355, 355, 356, 524
pmix_server_monitor_fn_t, 403, 494

monitor (Python), 494
pmix_server_notify_event_fn_t, 152, 156, 387, 388, 491

notify_event (Python), 491
pmix_server_publish_fn_t, 367, 487

publish (Python), 487
pmix_server_query_fn_t, 390, 492

query (Python), 491
PMIx_server_register_client, 293, 332, 333, 359, 360, 528, 581

PMIxServer.register_client (Python), 528
pmix_server_register_events_fn_t, 384, 490

register_events (Python), 490

632 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIx_server_register_nspace, 11, 57, 308, 309, 310, 319, 320, 323, 330, 347, 351, 527, 581, 583,
597

PMIxServer.register_nspace (Python), 526
PMIx_server_register_resources, 311, 312, 315, 316, 330, 528, 534, 591

PMIxServer.register_resources (Python), 527, 534
PMIx_server_setup_application, 336, 340, 346, 350, 530, 582, 586

PMIxServer.setup_application (Python), 530
PMIx_server_setup_fork, 334, 529, 581

PMIxServer.setup_fork (Python), 529
PMIx_server_setup_local_support, 345, 531, 582

PMIxServer.setup_local_support (Python), 531
pmix_server_spawn_fn_t, 191, 374, 434, 489

spawn (Python), 489
pmix_server_stdin_fn_t, 415, 496

iof_push (Python), 496
pmix_server_tool_connection_fn_t, 293, 392, 423, 492, 578, 579

tool_connected (Python), 492
pmix_server_unpublish_fn_t, 372, 488

unpublish (Python), 488
pmix_server_validate_cred_fn_t, 408, 495

validate_credential (Python), 495
pmix_setup_application_cbfunc_t, 337, 340
PMIx_Spawn, 89, 90, 93, 94, 172, 173, 177, 178, 183–185, 188, 189, 215, 218, 317, 319, 334, 374,

375, 377–379, 399, 428, 430, 434–436, 438–440, 448–452, 456, 489, 504, 550, 552, 554,
557, 560, 561, 563, 566, 581, 587, 598, 614, 617

PMIxClient.spawn (Python), 504
pmix_spawn_cbfunc_t, 179, 191, 191, 374
PMIx_Spawn_nb, 93, 178, 189, 191, 375, 581
PMIx_Store_internal, 74, 76, 500, 581

PMIxClient.store_internal (Python), 500
PMIx_tool_attach_to_server, 425, 428, 438, 460, 462, 536, 557, 578, 591, 608

PMIxTool.attach_to_server (Python), 536
PMIx_tool_connect_to_server, 584, 609
pmix_tool_connection_cbfunc_t, 393, 394, 395
PMIx_tool_disconnect, 461, 536, 591

PMIxTool.disconnect (Python), 535
PMIx_tool_finalize, 460, 535, 582

PMIxTool.finalize (Python), 535
PMIx_tool_get_servers, 463, 537, 591

PMIxTool.get_servers (Python), 536
PMIx_tool_init, 8, 63, 93, 103, 108, 422, 425, 427–429, 438, 439, 441, 455, 458, 460, 535, 550,

557, 561, 578, 582
PMIxTool.init (Python), 535

INDEX OF APIS 633

Un
offi
cia
l D
raf
t

PMIx_tool_set_server, 424, 438, 439, 463, 464, 537, 591
PMIxTool.set_server (Python), 537

PMIx_Topology_destruct, 202, 615
PMIx_Unpublish, 139, 141, 142, 504, 581

PMIxClient.unpublish (Python), 503
PMIx_Unpublish_nb, 141, 581
PMIx_Validate_credential, 297, 510, 584, 589

PMIxClient.validate_credential (Python), 509
PMIx_Validate_credential_nb, 298
pmix_validation_cbfunc_t, 299, 409, 410
pmix_value_cbfunc_t, 57, 57
PMIx_Value_load, 32, 615
PMIx_Value_unload, 32, 615
PMIx_Value_xfer, 33, 615

pmix_evhdlr_reg_cbfunc_t
(Deprecated), 608

pmix_server_client_connected_fn_t
(Deprecated), 357, 608

PMIx_tool_connect_to_server
(Deprecated), 608

634 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Index of Support Macros

PMIX_APP_CONSTRUCT, 189
PMIX_APP_CREATE, 190
PMIX_APP_DESTRUCT, 190
PMIX_APP_FREE, 190
PMIX_APP_INFO_CREATE, 191, 584, 586
PMIX_APP_RELEASE, 190
PMIX_APP_STATIC_INIT, 189, 615
PMIX_ARGV_APPEND, 49
PMIX_ARGV_APPEND_UNIQUE, 50
PMIX_ARGV_COPY, 52
PMIX_ARGV_COUNT, 52
PMIX_ARGV_FREE, 51
PMIX_ARGV_JOIN, 52
PMIX_ARGV_PREPEND, 50
PMIX_ARGV_SPLIT, 51
PMIX_BYTE_OBJECT_CONSTRUCT, 46
PMIX_BYTE_OBJECT_CREATE, 46
PMIX_BYTE_OBJECT_DESTRUCT, 46
PMIX_BYTE_OBJECT_FREE, 47
PMIX_BYTE_OBJECT_LOAD, 47
PMIX_BYTE_OBJECT_STATIC_INIT, 46, 615
PMIX_CHECK_KEY, 18
PMIX_CHECK_NSPACE, 19
PMIX_CHECK_PROCID, 24
PMIX_CHECK_RANK, 21
PMIX_CHECK_RESERVED_KEY, 18, 607
PMIX_COORD_CONSTRUCT, 276
PMIX_COORD_CREATE, 276
PMIX_COORD_DESTRUCT, 276
PMIX_COORD_FREE, 277
PMIX_COORD_STATIC_INIT, 276, 615
PMIX_CPUSET_CONSTRUCT, 352
PMIX_CPUSET_CREATE, 353
PMIX_CPUSET_DESTRUCT, 352
PMIX_CPUSET_FREE, 353
PMIX_CPUSET_STATIC_INIT, 352, 615
PMIX_DATA_ARRAY_CONSTRUCT, 48
PMIX_DATA_ARRAY_CREATE, 48

635

Un
offi
cia
l D
raf
t

PMIX_DATA_ARRAY_DESTRUCT, 48
PMIX_DATA_ARRAY_FREE, 49
PMIX_DATA_ARRAY_STATIC_INIT, 48, 615
PMIX_DATA_BUFFER_CONSTRUCT, 159, 162, 163
PMIX_DATA_BUFFER_CREATE, 159, 162, 163
PMIX_DATA_BUFFER_DESTRUCT, 160
PMIX_DATA_BUFFER_LOAD, 160
PMIX_DATA_BUFFER_RELEASE, 159
PMIX_DATA_BUFFER_STATIC_INIT, 159, 615
PMIX_DATA_BUFFER_UNLOAD, 160, 308
PMIX_DEVICE_DIST_CONSTRUCT, 209
PMIX_DEVICE_DIST_CREATE, 210
PMIX_DEVICE_DIST_DESTRUCT, 210
PMIX_DEVICE_DIST_FREE, 210
PMIX_DEVICE_DIST_STATIC_INIT, 209, 615
PMIX_ENDPOINT_CONSTRUCT, 274
PMIX_ENDPOINT_CREATE, 275
PMIX_ENDPOINT_DESTRUCT, 274
PMIX_ENDPOINT_FREE, 275
PMIX_ENDPOINT_STATIC_INIT, 274, 615
PMIX_ENVAR_CONSTRUCT, 44
PMIX_ENVAR_CREATE, 44
PMIX_ENVAR_DESTRUCT, 13, 44
PMIX_ENVAR_FREE, 45
PMIX_ENVAR_LOAD, 45
PMIX_ENVAR_STATIC_INIT, 44, 615
PMIX_FABRIC_CONSTRUCT, 283
PMIX_FABRIC_STATIC_INIT, 283, 615
PMIX_GEOMETRY_CONSTRUCT, 278
PMIX_GEOMETRY_CREATE, 278
PMIX_GEOMETRY_DESTRUCT, 278
PMIX_GEOMETRY_FREE, 279
PMIX_GEOMETRY_STATIC_INIT, 278, 616
PMIx_Heartbeat, 232, 582
PMIX_INFO_CONSTRUCT, 35
PMIX_INFO_CREATE, 35, 41, 43
PMIX_INFO_DESTRUCT, 35
PMIX_INFO_FREE, 36
PMIX_INFO_IS_END, 43, 584, 586
PMIX_INFO_IS_OPTIONAL, 42
PMIX_INFO_IS_REQUIRED, 40, 41, 42
PMIX_INFO_LIST_ADD, 607
PMIX_INFO_LIST_CONVERT, 607

636 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_INFO_LIST_RELEASE, 607
PMIX_INFO_LIST_START, 607
PMIX_INFO_LIST_XFER, 607
PMIX_INFO_OPTIONAL, 42
PMIX_INFO_PROCESSED, 42, 607
PMIX_INFO_REQUIRED, 40, 41
PMIX_INFO_STATIC_INIT, 35, 616
PMIX_INFO_TRUE, 37
PMIX_INFO_WAS_PROCESSED, 43, 607
PMIX_LOAD_KEY, 18
PMIX_LOAD_NSPACE, 20
PMIX_LOAD_PROCID, 23, 24
PMIX_LOOKUP_STATIC_INIT, 136, 616
PMIX_MULTICLUSTER_NSPACE_CONSTRUCT, 25
PMIX_MULTICLUSTER_NSPACE_PARSE, 25
PMIX_NSPACE_INVALID, 20, 612
PMIX_PDATA_CONSTRUCT, 136
PMIX_PDATA_CREATE, 137
PMIX_PDATA_DESTRUCT, 137
PMIX_PDATA_FREE, 137
PMIX_PDATA_LOAD, 138
PMIX_PDATA_RELEASE, 137
PMIX_PDATA_XFER, 138
PMIX_PROC_CONSTRUCT, 22
PMIX_PROC_CREATE, 22
PMIX_PROC_DESTRUCT, 22
PMIX_PROC_FREE, 23, 116
PMIX_PROC_INFO_CONSTRUCT, 27
PMIX_PROC_INFO_CREATE, 28
PMIX_PROC_INFO_DESTRUCT, 28
PMIX_PROC_INFO_FREE, 28
PMIX_PROC_INFO_RELEASE, 28
PMIX_PROC_INFO_STATIC_INIT, 27, 616
PMIX_PROC_LOAD, 23
PMIX_PROC_RELEASE, 23
PMIX_PROC_STATIC_INIT, 22, 616
PMIX_PROCID_INVALID, 24, 612
PMIX_PROCID_XFER, 25, 612
PMIX_QUERY_CONSTRUCT, 114
PMIX_QUERY_CREATE, 114
PMIX_QUERY_DESTRUCT, 114
PMIX_QUERY_FREE, 115
PMIX_QUERY_QUALIFIERS_CREATE, 115, 584, 586

INDEX OF SUPPORT MACROS 637

Un
offi
cia
l D
raf
t

PMIX_QUERY_RELEASE, 114
PMIX_QUERY_STATIC_INIT, 113, 616
PMIX_RANK_IS_VALID, 21, 612
PMIX_REGATTR_CONSTRUCT, 344
PMIX_REGATTR_CREATE, 344
PMIX_REGATTR_DESTRUCT, 344
PMIX_REGATTR_FREE, 344
PMIX_REGATTR_LOAD, 345
PMIX_REGATTR_STATIC_INIT, 343, 616
PMIX_REGATTR_XFER, 345
PMIX_SETENV, 53
PMIX_SYSTEM_EVENT, 149
PMIX_TOPOLOGY_CONSTRUCT, 202
PMIX_TOPOLOGY_CREATE, 202
PMIX_TOPOLOGY_STATIC_INIT, 202, 616
PMIX_VALUE_CONSTRUCT, 31
PMIX_VALUE_CREATE, 31
PMIX_VALUE_DESTRUCT, 31, 80, 84, 594
PMIX_VALUE_FREE, 32
PMIX_VALUE_GET_NUMBER, 34
PMIX_VALUE_RELEASE, 31
PMIX_VALUE_STATIC_INIT, 31, 616

PMIX_INFO_LIST_ADD
(Deprecated), 615

PMIX_INFO_LIST_CONVERT
(Deprecated), 615

PMIX_INFO_LIST_RELEASE
(Deprecated), 615

PMIX_INFO_LIST_START
(Deprecated), 615

PMIX_INFO_LIST_XFER
(Deprecated), 615

PMIX_INFO_LOAD
(Deprecated), 615

PMIX_INFO_XFER
(Deprecated), 615

PMIX_TOPOLOGY_DESTRUCT
(Deprecated), 615

PMIX_TOPOLOGY_FREE
(Deprecated), 615

PMIX_VALUE_LOAD
(Deprecated), 615

PMIX_VALUE_UNLOAD

638 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

(Deprecated), 615
PMIX_VALUE_XFER

(Deprecated), 615

INDEX OF SUPPORT MACROS 639

Un
offi
cia
l D
raf
t

Index of Data Structures

pmix_alloc_directive_t, 55, 61, 213, 216, 220, 220, 398, 479, 520
pmix_app_t, 49, 50, 53, 173, 175, 179, 181, 186, 189, 189–191, 374, 375, 377, 430, 433, 435, 437,

439, 448, 451, 452, 456, 457, 480, 553, 554, 559, 560, 563, 584, 586, 606
pmix_bind_envelope_t, 204, 205, 205, 481, 591
pmix_byte_object_t, 45, 45–47, 54, 166–168, 170, 294, 295, 297, 299, 347, 408, 409, 415, 468, 478
pmix_coord_t, 55, 275, 275–277, 481, 591
pmix_coord_view_t, 279, 481, 591
pmix_cpuset_t, 55, 205, 206, 350, 351, 352, 352, 353, 480, 591
pmix_data_array_t, 29, 39, 47, 47–49, 54, 91, 104, 106, 109, 111, 112, 118, 128, 214, 217, 219,

244, 247, 281, 282, 284, 285, 287, 288, 311–313, 315, 316, 323–325, 338, 391, 400, 421,
433, 449, 450, 456, 457, 479, 555, 560, 563, 576, 584, 586, 602–605, 618

pmix_data_buffer_t, 158, 158–162, 166, 167
pmix_data_range_t, 54, 60, 131, 131, 154, 387, 478, 519
pmix_data_type_t, 32, 34, 36, 38, 48, 53, 53, 54, 60, 138, 161, 163–165, 345, 477, 520
pmix_device_distance_t, 55, 205, 207, 208, 208–211, 318, 481, 591, 604
pmix_device_type_t, 55, 62, 208, 208, 287, 481, 523, 591
pmix_endpoint_t, 55, 273, 273–275, 287, 480, 602
pmix_envar_t, 13, 43, 43–45, 55, 479, 566
pmix_fabric_operation_t, 280, 280, 420
pmix_fabric_t, 273, 280, 280, 283, 285, 288–292, 421, 480, 591, 601
pmix_geometry_t, 55, 272, 277, 277–279, 285, 286, 481, 591, 602, 603
pmix_group_operation_t, 417, 419, 419, 591
pmix_group_opt_t, 263, 266, 267, 267, 511, 591
pmix_info_directives_t, 40, 40, 41, 54, 60, 479, 519
pmix_info_t, 4, 5, 9, 18, 34, 34–43, 54, 58, 64, 67, 69, 101, 106, 112, 113, 115, 118, 127–131, 133,

151, 154, 157, 191, 205, 206, 213, 214, 216, 217, 219–221, 223, 226, 227, 229, 232, 236,
239, 241, 249, 251, 253, 255, 257–259, 261, 263, 266–268, 281, 282, 285, 287, 294, 295,
297, 299, 302, 305, 310–312, 314, 315, 319–321, 323–325, 337, 338, 343, 345, 347–349,
355, 358, 377, 387, 393, 394, 397, 399, 400, 403, 404, 411, 412, 414, 421, 430, 433, 435,
437, 440, 448, 456, 458, 462, 464, 465, 467, 468, 479, 482, 553, 554, 558–560, 563, 571,
582, 584, 586, 595–598, 601–603

pmix_iof_channel_t, 55, 61, 347, 412, 414, 445, 445, 465, 479, 521
pmix_job_state_t, 29, 29, 55, 61, 480, 521, 591
pmix_key_t, 9, 17, 17, 74, 79, 345, 477
pmix_link_state_t, 55, 62, 273, 279, 279, 280, 283, 286, 480, 522, 591, 604
pmix_locality_t, 55, 201, 203, 203, 480, 591, 610
pmix_nspace_t, 19, 19, 20, 23–25, 54, 191, 477, 478
pmix_pdata_t, 56, 57, 132, 132–134, 136–139, 479

640

Un
offi
cia
l D
raf
t

pmix_persistence_t, 54, 60, 131, 131, 478, 519
pmix_proc_info_t, 27, 27, 28, 54, 103, 104, 108, 109, 111, 391, 449, 450, 457, 478, 555, 560, 563
pmix_proc_state_t, 26, 26, 54, 59, 478, 518
pmix_proc_t, 20, 21, 21–25, 54, 67, 81, 95, 112, 121–123, 138, 147, 148, 150, 151, 154, 155, 161,

162, 171, 172, 244, 247–249, 253, 258, 261, 264, 316, 332–335, 345, 347, 353, 357–359,
361, 362, 366, 368, 370, 372, 374, 379, 382, 387, 390, 395, 396, 398, 401, 404, 406, 409,
412, 414, 415, 417, 419, 420, 458, 460–464, 478, 576, 604, 605

pmix_query_t, 55, 101, 101, 103, 104, 108, 112–115, 117, 118, 390, 392, 480, 584, 586, 595
pmix_rank_t, 20, 20, 21, 23, 24, 54, 433, 449, 456, 478, 555, 618
pmix_regattr_t, 55, 118, 341, 342, 342–345, 480, 589, 591, 597
pmix_scope_t, 54, 60, 75, 75, 478, 518
pmix_status_t, 15, 15, 34, 49, 50, 53, 54, 58, 59, 124, 146, 149, 151, 154, 157, 207, 336, 340, 363,

380, 383, 384, 386, 387, 395, 408, 411, 418, 477, 491, 517, 571, 616
pmix_storage_access_type_t, 55, 473, 473, 612
pmix_storage_accessibility_t, 55, 472, 472, 612
pmix_storage_medium_t, 55, 471, 471, 472, 612
pmix_storage_persistence_t, 55, 472, 472, 612
pmix_topology_t, 55, 200, 201, 201, 202, 205, 206, 591
pmix_value_t, 9, 29, 29–34, 54, 57, 58, 74, 75, 80, 81, 84, 479, 594

INDEX OF DATA STRUCTURES 641

Un
offi
cia
l D
raf
t

Index of Constants

PMIX_ALLOC_DIRECTIVE, 55
PMIX_ALLOC_EXTEND, 220
PMIX_ALLOC_EXTERNAL, 220
PMIX_ALLOC_NEW, 220
PMIX_ALLOC_REAQUIRE, 220
PMIX_ALLOC_RELEASE, 220
PMIX_APP, 54
PMIX_APP_WILDCARD, 14
PMIX_BOOL, 54
PMIX_BYTE, 54
PMIX_BYTE_OBJECT, 54
PMIX_COMMAND, 54
PMIX_COMPRESSED_BYTE_OBJECT, 55
PMIX_COMPRESSED_STRING, 55
PMIX_COORD, 55
PMIX_COORD_LOGICAL_VIEW, 279
PMIX_COORD_PHYSICAL_VIEW, 279
PMIX_COORD_VIEW_UNDEF, 279
PMIX_CPUBIND_PROCESS, 205
PMIX_CPUBIND_THREAD, 205
PMIX_DATA_ARRAY, 54
PMIX_DATA_RANGE, 54
PMIX_DATA_TYPE, 54
PMIX_DATA_TYPE_MAX, 55
PMIX_DEBUGGER_RELEASE, 455
PMIX_DEVICE_DIST, 55
PMIX_DEVTYPE, 55
PMIX_DEVTYPE_BLOCK, 208
PMIX_DEVTYPE_COPROC, 208
PMIX_DEVTYPE_DMA, 208
PMIX_DEVTYPE_GPU, 208
PMIX_DEVTYPE_NETWORK, 208
PMIX_DEVTYPE_OPENFABRICS, 208
PMIX_DEVTYPE_UNKNOWN, 208
PMIX_DOUBLE, 54
PMIX_ENDPOINT, 55
PMIX_ENVAR, 55
PMIX_ERR_BAD_PARAM, 16

642

Un
offi
cia
l D
raf
t

PMIX_ERR_COMM_FAILURE, 16
PMIX_ERR_CONFLICTING_CLEANUP_DIRECTIVES, 226
PMIX_ERR_DUPLICATE_KEY, 130
PMIX_ERR_EMPTY, 16
PMIX_ERR_EVENT_REGISTRATION, 148
PMIX_ERR_EXISTS, 15
PMIX_ERR_EXISTS_OUTSIDE_SCOPE, 15
PMIX_ERR_INIT, 16
PMIX_ERR_INVALID_CRED, 15
PMIX_ERR_INVALID_OPERATION, 16
PMIX_ERR_IOF_COMPLETE, 445
PMIX_ERR_IOF_FAILURE, 445
PMIX_ERR_JOB_ABORTED, 455
PMIX_ERR_JOB_ABORTED_BY_SIG, 455
PMIX_ERR_JOB_ABORTED_BY_SYS_EVENT, 455
PMIX_ERR_JOB_ALLOC_FAILED, 184
PMIX_ERR_JOB_APP_NOT_EXECUTABLE, 184
PMIX_ERR_JOB_CANCELED, 455
PMIX_ERR_JOB_EXE_NOT_FOUND, 184
PMIX_ERR_JOB_FAILED_TO_LAUNCH, 184
PMIX_ERR_JOB_FAILED_TO_MAP, 184
PMIX_ERR_JOB_INSUFFICIENT_RESOURCES, 184
PMIX_ERR_JOB_KILLED_BY_CMD, 455
PMIX_ERR_JOB_NO_EXE_SPECIFIED, 184
PMIX_ERR_JOB_NON_ZERO_TERM, 455
PMIX_ERR_JOB_SENSOR_BOUND_EXCEEDED, 455
PMIX_ERR_JOB_SYS_OP_FAILED, 184
PMIX_ERR_JOB_TERM_WO_SYNC, 455
PMIX_ERR_JOB_WDIR_NOT_FOUND, 184
PMIX_ERR_LOST_CONNECTION, 16
PMIX_ERR_NO_PERMISSIONS, 16
PMIX_ERR_NOMEM, 16
PMIX_ERR_NOT_FOUND, 16
PMIX_ERR_NOT_SUPPORTED, 16
PMIX_ERR_OUT_OF_RESOURCE, 16
PMIX_ERR_PACK_FAILURE, 16
PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED, 16
PMIX_ERR_PARTIAL_SUCCESS, 17
PMIX_ERR_PROC_CHECKPOINT, 226
PMIX_ERR_PROC_MIGRATE, 226
PMIX_ERR_PROC_RESTART, 226
PMIX_ERR_PROC_TERM_WO_SYNC, 454
PMIX_ERR_REPEAT_ATTR_REGISTRATION, 342

INDEX OF CONSTANTS 643

Un
offi
cia
l D
raf
t

PMIX_ERR_RESOURCE_BUSY, 16
PMIX_ERR_TIMEOUT, 16
PMIX_ERR_TYPE_MISMATCH, 15
PMIX_ERR_UNKNOWN_DATA_TYPE, 15
PMIX_ERR_UNPACK_FAILURE, 16
PMIX_ERR_UNPACK_INADEQUATE_SPACE, 15
PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER, 16
PMIX_ERR_UNREACH, 16
PMIX_ERR_WOULD_BLOCK, 15
PMIX_ERROR, 15
PMIX_EVENT_ACTION_COMPLETE, 157
PMIX_EVENT_ACTION_DEFERRED, 157
PMIX_EVENT_JOB_END, 454
PMIX_EVENT_JOB_START, 454
PMIX_EVENT_NO_ACTION_TAKEN, 157
PMIX_EVENT_NODE_DOWN, 149
PMIX_EVENT_NODE_OFFLINE, 149
PMIX_EVENT_PARTIAL_ACTION_TAKEN, 157
PMIX_EVENT_PROC_TERMINATED, 454
PMIX_EVENT_SESSION_END, 454
PMIX_EVENT_SESSION_START, 454
PMIX_EVENT_SYS_BASE, 149
PMIX_EVENT_SYS_OTHER, 149
PMIX_EXTERNAL_ERR_BASE, 17
PMIX_FABRIC_REQUEST_INFO, 280
PMIX_FABRIC_UPDATE_ENDPOINTS, 273
PMIX_FABRIC_UPDATE_INFO, 280
PMIX_FABRIC_UPDATE_PENDING, 273
PMIX_FABRIC_UPDATED, 273
PMIX_FLOAT, 54
PMIX_FWD_ALL_CHANNELS, 445
PMIX_FWD_NO_CHANNELS, 445
PMIX_FWD_STDDIAG_CHANNEL, 445
PMIX_FWD_STDERR_CHANNEL, 445
PMIX_FWD_STDIN_CHANNEL, 445
PMIX_FWD_STDOUT_CHANNEL, 445
PMIX_GEOMETRY, 55
PMIX_GLOBAL, 75
PMIX_GROUP_ACCEPT, 267
PMIX_GROUP_CONSTRUCT, 419
PMIX_GROUP_CONSTRUCT_ABORT, 247
PMIX_GROUP_CONSTRUCT_COMPLETE, 247
PMIX_GROUP_CONTEXT_ID_ASSIGNED, 247

644 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_GROUP_DECLINE, 267
PMIX_GROUP_DESTRUCT, 419
PMIX_GROUP_INVITE_ACCEPTED, 247
PMIX_GROUP_INVITE_DECLINED, 247
PMIX_GROUP_INVITE_FAILED, 247
PMIX_GROUP_INVITED, 246
PMIX_GROUP_LEADER_FAILED, 247
PMIX_GROUP_LEADER_SELECTED, 247
PMIX_GROUP_LEFT, 246
PMIX_GROUP_MEMBER_FAILED, 246
PMIX_GROUP_MEMBERSHIP_UPDATE, 247
PMIX_INFO, 54
PMIX_INFO_ARRAY_END, 41
PMIX_INFO_DIR_RESERVED, 41
PMIX_INFO_DIRECTIVES, 54
PMIX_INFO_REQD, 41
PMIX_INFO_REQD_PROCESSED, 41
PMIX_INT, 54
PMIX_INT16, 54
PMIX_INT32, 54
PMIX_INT64, 54
PMIX_INT8, 54
PMIX_INTERNAL, 75
PMIX_IOF_CHANNEL, 55
PMIX_JCTRL_CHECKPOINT, 226
PMIX_JCTRL_CHECKPOINT_COMPLETE, 226
PMIX_JCTRL_PREEMPT_ALERT, 226
PMIX_JOB_STATE, 55
PMIX_JOB_STATE_AWAITING_ALLOC, 29
PMIX_JOB_STATE_CONNECTED, 29
PMIX_JOB_STATE_LAUNCH_UNDERWAY, 29
PMIX_JOB_STATE_RUNNING, 29
PMIX_JOB_STATE_SUSPENDED, 29
PMIX_JOB_STATE_TERMINATED, 29
PMIX_JOB_STATE_TERMINATED_WITH_ERROR, 29
PMIX_JOB_STATE_UNDEF, 29
PMIX_JOB_STATE_UNTERMINATED, 29
PMIX_KVAL, 54
PMIX_LAUNCH_COMPLETE, 454
PMIX_LAUNCHER_READY, 440
PMIX_LINK_DOWN, 280
PMIX_LINK_STATE, 55
PMIX_LINK_STATE_UNKNOWN, 280

INDEX OF CONSTANTS 645

Un
offi
cia
l D
raf
t

PMIX_LINK_UP, 280
PMIX_LOCAL, 75
PMIX_LOCALITY_NONLOCAL, 203
PMIX_LOCALITY_SHARE_CORE, 203
PMIX_LOCALITY_SHARE_HWTHREAD, 203
PMIX_LOCALITY_SHARE_L1CACHE, 203
PMIX_LOCALITY_SHARE_L2CACHE, 203
PMIX_LOCALITY_SHARE_L3CACHE, 203
PMIX_LOCALITY_SHARE_NODE, 203
PMIX_LOCALITY_SHARE_NUMA, 203
PMIX_LOCALITY_SHARE_PACKAGE, 203
PMIX_LOCALITY_UNKNOWN, 203
PMIX_LOCTYPE, 55
PMIX_MAX_KEYLEN, 14
PMIX_MAX_NSLEN, 14
PMIX_MODEL_DECLARED, 67
PMIX_MODEL_RESOURCES, 67
PMIX_MONITOR_FILE_ALERT, 233
PMIX_MONITOR_HEARTBEAT_ALERT, 233
PMIX_OPENMP_PARALLEL_ENTERED, 67
PMIX_OPENMP_PARALLEL_EXITED, 67
PMIX_OPERATION_IN_PROGRESS, 16
PMIX_OPERATION_SUCCEEDED, 16
PMIX_PDATA, 54
PMIX_PERSIST, 54
PMIX_PERSIST_APP, 131
PMIX_PERSIST_FIRST_READ, 131
PMIX_PERSIST_INDEF, 131
PMIX_PERSIST_INVALID, 132
PMIX_PERSIST_PROC, 131
PMIX_PERSIST_SESSION, 131
PMIX_PID, 54
PMIX_POINTER, 54
PMIX_PROC, 54
PMIX_PROC_CPUSET, 55
PMIX_PROC_INFO, 54
PMIX_PROC_NSPACE, 54
PMIX_PROC_RANK, 54
PMIX_PROC_STATE, 54
PMIX_PROC_STATE_ABORTED, 26
PMIX_PROC_STATE_ABORTED_BY_SIG, 26
PMIX_PROC_STATE_CALLED_ABORT, 26
PMIX_PROC_STATE_CANNOT_RESTART, 26

646 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_PROC_STATE_COMM_FAILED, 26
PMIX_PROC_STATE_CONNECTED, 26
PMIX_PROC_STATE_ERROR, 26
PMIX_PROC_STATE_FAILED_TO_LAUNCH, 26
PMIX_PROC_STATE_FAILED_TO_START, 26
PMIX_PROC_STATE_HEARTBEAT_FAILED, 26
PMIX_PROC_STATE_KILLED_BY_CMD, 26
PMIX_PROC_STATE_LAUNCH_UNDERWAY, 26
PMIX_PROC_STATE_MIGRATING, 26
PMIX_PROC_STATE_PREPPED, 26
PMIX_PROC_STATE_RESTART, 26
PMIX_PROC_STATE_RUNNING, 26
PMIX_PROC_STATE_SENSOR_BOUND_EXCEEDED, 26
PMIX_PROC_STATE_TERM_NON_ZERO, 26
PMIX_PROC_STATE_TERM_WO_SYNC, 26
PMIX_PROC_STATE_TERMINATE, 26
PMIX_PROC_STATE_TERMINATED, 26
PMIX_PROC_STATE_UNDEF, 26
PMIX_PROC_STATE_UNTERMINATED, 26
PMIX_PROCESS_SET_DEFINE, 243
PMIX_PROCESS_SET_DELETE, 243
PMIX_QUERY, 55
PMIX_RANGE_CUSTOM, 131
PMIX_RANGE_GLOBAL, 131
PMIX_RANGE_INVALID, 131
PMIX_RANGE_LOCAL, 131
PMIX_RANGE_NAMESPACE, 131
PMIX_RANGE_PROC_LOCAL, 131
PMIX_RANGE_RM, 131
PMIX_RANGE_SESSION, 131
PMIX_RANGE_UNDEF, 131
PMIX_RANK_INVALID, 21
PMIX_RANK_LOCAL_NODE, 20
PMIX_RANK_LOCAL_PEERS, 21
PMIX_RANK_UNDEF, 20
PMIX_RANK_VALID, 21
PMIX_RANK_WILDCARD, 20
PMIX_READY_FOR_DEBUG, 455
PMIX_REGATTR, 55
PMIX_REGEX, 55
PMIX_REMOTE, 75
PMIX_SCOPE, 54
PMIX_SCOPE_UNDEF, 75

INDEX OF CONSTANTS 647

Un
offi
cia
l D
raf
t

PMIX_SIZE, 54
PMIX_STATUS, 54
PMIX_STOR_ACCESS, 55
PMIX_STOR_ACCESS_TYPE, 55
PMIX_STOR_MEDIUM, 55
PMIX_STOR_PERSIST, 55
PMIX_STORAGE_ACCESS_RD, 473
PMIX_STORAGE_ACCESS_RDWR, 473
PMIX_STORAGE_ACCESS_WR, 473
PMIX_STORAGE_ACCESSIBILITY_CLUSTER, 472
PMIX_STORAGE_ACCESSIBILITY_JOB, 472
PMIX_STORAGE_ACCESSIBILITY_NODE, 472
PMIX_STORAGE_ACCESSIBILITY_RACK, 472
PMIX_STORAGE_ACCESSIBILITY_REMOTE, 472
PMIX_STORAGE_ACCESSIBILITY_SESSION, 472
PMIX_STORAGE_MEDIUM_HDD, 471
PMIX_STORAGE_MEDIUM_NVME, 471
PMIX_STORAGE_MEDIUM_PMEM, 471
PMIX_STORAGE_MEDIUM_RAM, 471
PMIX_STORAGE_MEDIUM_SSD, 471
PMIX_STORAGE_MEDIUM_TAPE, 471
PMIX_STORAGE_MEDIUM_UNKNOWN, 471
PMIX_STORAGE_PERSISTENCE_ARCHIVE, 473
PMIX_STORAGE_PERSISTENCE_JOB, 472
PMIX_STORAGE_PERSISTENCE_NODE, 472
PMIX_STORAGE_PERSISTENCE_PROJECT, 473
PMIX_STORAGE_PERSISTENCE_SCRATCH, 472
PMIX_STORAGE_PERSISTENCE_SESSION, 472
PMIX_STORAGE_PERSISTENCE_TEMPORARY, 472
PMIX_STRING, 54
PMIX_SUCCESS, 15
PMIX_TIME, 54
PMIX_TIMEVAL, 54
PMIX_TOPO, 55
PMIX_UINT, 54
PMIX_UINT16, 54
PMIX_UINT32, 54
PMIX_UINT64, 54
PMIX_UINT8, 54
PMIX_UNDEF, 54
PMIX_VALUE, 54

PMIX_BUFFER
Removed, 611

648 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_CONNECT_REQUESTED
Deprecated, 608

PMIX_DEBUG_WAITING_FOR_NOTIFY
Deprecated, 614

PMIX_ERR_DATA_VALUE_NOT_FOUND
Deprecated, 587
Removed, 609

PMIX_ERR_DEBUGGER_RELEASE
Deprecated, 608

PMIX_ERR_HANDSHAKE_FAILED
Deprecated, 587
Removed, 608

PMIX_ERR_IN_ERRNO
Deprecated, 587
Removed, 608

PMIX_ERR_INVALID_ARG
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_ARGS
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_KEY
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_KEY_LENGTH
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_KEYVALP
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_LENGTH
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_NAMESPACE
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_NUM_ARGS
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_NUM_PARSED
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_SIZE

INDEX OF CONSTANTS 649

Un
offi
cia
l D
raf
t

Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_TERMINATION
Deprecated, 608

PMIX_ERR_INVALID_VAL
Deprecated, 587
Removed, 609

PMIX_ERR_INVALID_VAL_LENGTH
Deprecated, 587
Removed, 608

PMIX_ERR_JOB_TERMINATED
Deprecated, 608

PMIX_ERR_LOST_CONNECTION_TO_CLIENT
Deprecated, 608

PMIX_ERR_LOST_CONNECTION_TO_SERVER
Deprecated, 608

PMIX_ERR_LOST_PEER_CONNECTION
Deprecated, 608

PMIX_ERR_NODE_DOWN
Deprecated, 608

PMIX_ERR_NODE_OFFLINE
Deprecated, 608

PMIX_ERR_NOT_IMPLEMENTED
Deprecated, 587
Removed, 609

PMIX_ERR_PACK_MISMATCH
Deprecated, 587
Removed, 609

PMIX_ERR_PROC_ABORTED
Deprecated, 608

PMIX_ERR_PROC_ABORTING
Deprecated, 608

PMIX_ERR_PROC_ENTRY_NOT_FOUND
Deprecated, 587
Removed, 609

PMIX_ERR_PROC_REQUESTED_ABORT
Deprecated, 587
Removed, 609

PMIX_ERR_READY_FOR_HANDSHAKE
Deprecated, 587
Removed, 608

PMIX_ERR_SERVER_FAILED_REQUEST
Deprecated, 587

650 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

Removed, 609
PMIX_ERR_SERVER_NOT_AVAIL

Deprecated, 587
Removed, 609

PMIX_ERR_SILENT
Deprecated, 587
Removed, 609

PMIX_ERR_SYS_OTHER
Deprecated, 608

PMIX_EXISTS
Deprecated, 608

PMIX_GDS_ACTION_COMPLETE
Deprecated, 587
Removed, 609

PMIX_INFO_ARRAY
Deprecated, 582

PMIX_MODEX
Deprecated, 582

PMIX_NOTIFY_ALLOC_COMPLETE
Deprecated, 587
Removed, 609

PMIX_PROC_HAS_CONNECTED
Deprecated, 608

PMIX_PROC_TERMINATED
Deprecated, 608

INDEX OF CONSTANTS 651

Un
offi
cia
l D
raf
t

Index of Environmental Variables

PMIX_KEEPALIVE_PIPE, 428, 438, 439, 607
PMIX_LAUNCHER_RNDZ_FILE, 424, 428, 607
PMIX_LAUNCHER_RNDZ_URI, 428, 438, 439, 560, 607

652

Un
offi
cia
l D
raf
t

Index of Attributes

PMIX_ACCESS_GRPIDS, 127, 130, 130, 598
PMIX_ACCESS_PERMISSIONS, 127, 130, 130, 598
PMIX_ACCESS_USERIDS, 127, 129, 130, 598
PMIX_ADD_ENVAR, 176, 182, 188, 566
PMIX_ADD_HOST, 174, 180, 185, 376
PMIX_ADD_HOSTFILE, 174, 180, 185, 376
PMIX_ALL_CLONES_PARTICIPATE, 122, 124, 125, 193, 196, 197, 199, 594
PMIX_ALLOC_BANDWIDTH, 177, 183, 214, 217, 219, 219, 338, 400
PMIX_ALLOC_CPU_LIST, 176, 182, 214, 217, 219, 399
PMIX_ALLOC_FABRIC, 214, 217, 219, 337, 399, 609
PMIX_ALLOC_FABRIC_ENDPTS, 177, 183, 214, 215, 217, 218, 219, 219, 337, 338, 399, 610
PMIX_ALLOC_FABRIC_ENDPTS_NODE, 177, 183, 215, 218, 219, 338, 610
PMIX_ALLOC_FABRIC_ID, 214, 217, 219, 219, 337, 399, 609
PMIX_ALLOC_FABRIC_PLANE, 177, 183, 214, 217, 218, 219, 219, 338, 400, 609
PMIX_ALLOC_FABRIC_QOS, 177, 183, 214, 217, 218, 219, 219, 338, 400, 609
PMIX_ALLOC_FABRIC_SEC_KEY, 214, 215, 217, 218, 219, 219, 338, 400, 610
PMIX_ALLOC_FABRIC_TYPE, 177, 183, 214, 217, 218, 219, 219, 337, 338, 399, 400, 609
PMIX_ALLOC_ID, 215, 218, 399, 586, 587, 598
PMIX_ALLOC_MEM_SIZE, 176, 183, 214, 217, 219, 399
PMIX_ALLOC_NODE_LIST, 176, 182, 214, 217, 218, 399
PMIX_ALLOC_NUM_CPU_LIST, 176, 182, 214, 217, 219, 399
PMIX_ALLOC_NUM_CPUS, 176, 182, 213, 217, 218, 399
PMIX_ALLOC_NUM_NODES, 176, 182, 213, 216, 218, 399
PMIX_ALLOC_QUEUE, 104, 109, 111, 176, 182, 218, 391, 598
PMIX_ALLOC_REQ_ID, 213, 216, 218, 586
PMIX_ALLOC_TIME, 176, 182, 213, 217, 219, 399
PMIX_ALLOCATED_NODELIST, 88, 311
PMIX_ANL_MAP, 89, 90, 313
PMIX_APP_ARGV, 90, 91, 314, 598
PMIX_APP_INFO, 80, 83, 86, 91, 102, 107, 314, 315, 548
PMIX_APP_INFO_ARRAY, 310, 313, 319, 320, 324, 597
PMIX_APP_MAP_REGEX, 91, 314
PMIX_APP_MAP_TYPE, 91, 314
PMIX_APP_RANK, 93, 316
PMIX_APP_SIZE, 91, 314, 324
PMIX_APPEND_ENVAR, 176, 182, 188, 566
PMIX_APPLDR, 91, 314, 324
PMIX_APPNUM, 80, 83, 86, 87, 91, 92, 102, 107, 310, 313, 315, 316, 319, 324, 548, 597

653

Un
offi
cia
l D
raf
t

PMIX_ATTR_UNDEF, 5
PMIX_AVAIL_PHYS_MEMORY, 95, 112, 316
PMIX_BINDTO, 174, 180, 185, 313, 376
PMIX_BREAKPOINT, 433, 449, 455, 456, 456, 555, 618
PMIX_CLEANUP_EMPTY, 222, 225, 228
PMIX_CLEANUP_IGNORE, 222, 225, 228
PMIX_CLEANUP_LEAVE_TOPDIR, 222, 225, 228
PMIX_CLEANUP_RECURSIVE, 222, 225, 228
PMIX_CLIENT_ATTRIBUTES, 103, 108, 113, 118, 449, 589, 596
PMIX_CLIENT_AVG_MEMORY, 105, 110, 112
PMIX_CLIENT_FUNCTIONS, 103, 104, 109, 111, 113, 118, 595, 596
PMIX_CLUSTER_ID, 87, 311
PMIX_CMD_LINE, 90, 598, 614
PMIX_COLLECT_DATA, 73, 120, 121, 123, 124, 363
PMIX_COLLECT_GENERATED_JOB_INFO, 121, 123, 124, 125, 271, 363, 594
PMIX_COLLECTIVE_ALGO, 583
PMIX_CONNECT_MAX_RETRIES, 428, 459
PMIX_CONNECT_RETRY_DELAY, 429, 459
PMIX_CONNECT_SYSTEM_FIRST, 426, 428, 459, 462
PMIX_CONNECT_TO_SYSTEM, 426, 428, 459, 462
PMIX_COSPAWN_APP, 177, 183, 457, 554, 558
PMIX_CPU_LIST, 175, 181, 186, 378
PMIX_CPUS_PER_PROC, 175, 181, 186, 378
PMIX_CPUSET, 94, 204, 318, 351
PMIX_CPUSET_BITMAP, 94, 318, 599
PMIX_CRED_TYPE, 296, 407
PMIX_CREDENTIAL, 94, 393
PMIX_CRYPTO_KEY, 296, 313
PMIX_DAEMON_MEMORY, 105, 110, 112
PMIX_DATA_SCOPE, 79, 83, 84
PMIX_DATA_TO_PUBLISH, 127–129, 130
PMIX_DEBUG_DAEMONS_PER_NODE, 377, 451, 457, 457, 553, 555, 559, 560, 563, 601
PMIX_DEBUG_DAEMONS_PER_PROC, 377, 451, 457, 457, 553, 555, 559, 560, 563, 600
PMIX_DEBUG_STOP_IN_APP, 433, 448, 449, 456, 555, 614, 618
PMIX_DEBUG_STOP_IN_INIT, 433, 437, 439, 448, 449, 452, 456, 553, 559
PMIX_DEBUG_STOP_ON_EXEC, 433, 439, 448, 449, 456, 553, 559
PMIX_DEBUG_TARGET, 377, 449, 451, 452, 456, 456, 457, 553–555, 559, 560, 563, 600, 601,

609
PMIX_DEBUGGER_DAEMONS, 377, 450–452, 456, 550, 554, 560, 563
PMIX_DEVICE_DISTANCES, 211, 287, 318, 604
PMIX_DEVICE_ID, 211, 271, 272, 282, 285, 287, 331, 602–604
PMIX_DEVICE_TYPE, 211, 604
PMIX_DISPLAY_MAP, 174, 180, 185, 376

654 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_EMBED_BARRIER, 69, 69
PMIX_ENUM_VALUE, 343, 343, 589, 597
PMIX_ENVARS_HARVESTED, 177, 183, 188, 616
PMIX_EVENT_ACTION_TIMEOUT, 150, 155
PMIX_EVENT_AFFECTED_PROC, 148, 150, 155, 454, 554
PMIX_EVENT_AFFECTED_PROCS, 148, 150, 155, 454
PMIX_EVENT_BASE, 66, 304, 460
PMIX_EVENT_CUSTOM_RANGE, 147, 150, 155
PMIX_EVENT_DO_NOT_CACHE, 150, 155
PMIX_EVENT_HDLR_AFTER, 147, 149, 574
PMIX_EVENT_HDLR_APPEND, 147, 150, 574
PMIX_EVENT_HDLR_BEFORE, 147, 149, 574
PMIX_EVENT_HDLR_FIRST, 147, 149, 574
PMIX_EVENT_HDLR_FIRST_IN_CATEGORY, 147, 149, 574
PMIX_EVENT_HDLR_LAST, 147, 149, 574
PMIX_EVENT_HDLR_LAST_IN_CATEGORY, 147, 149, 574
PMIX_EVENT_HDLR_NAME, 147, 149, 574
PMIX_EVENT_HDLR_PREPEND, 147, 149
PMIX_EVENT_NON_DEFAULT, 150, 155
PMIX_EVENT_PROXY, 150, 155
PMIX_EVENT_RETURN_OBJECT, 147, 150
PMIX_EVENT_SILENT_TERMINATION, 177, 183, 188
PMIX_EVENT_TERMINATE_JOB, 150, 155
PMIX_EVENT_TERMINATE_NODE, 150, 155
PMIX_EVENT_TERMINATE_PROC, 150, 155
PMIX_EVENT_TERMINATE_SESSION, 150, 155
PMIX_EVENT_TEXT_MESSAGE, 150, 155
PMIX_EVENT_TIMESTAMP, 150, 187, 188, 432–434, 453, 454, 554, 560, 564, 606, 607
PMIX_EXEC_AGENT, 437, 440, 453, 600
PMIX_EXIT_CODE, 93, 187, 188, 432–434, 453, 554, 560, 564, 607
PMIX_EXTERNAL_PROGRESS, 65, 304, 307, 460, 599
PMIX_FABRIC_COORDINATES, 285, 602
PMIX_FABRIC_COST_MATRIX, 281, 284, 601
PMIX_FABRIC_DEVICE, 271, 282, 285, 285, 603
PMIX_FABRIC_DEVICE_ADDRESS, 272, 282, 286, 603
PMIX_FABRIC_DEVICE_BUS_TYPE, 272, 283, 286, 603
PMIX_FABRIC_DEVICE_COORDINATES, 272, 286, 603
PMIX_FABRIC_DEVICE_DRIVER, 272, 282, 286, 603
PMIX_FABRIC_DEVICE_FIRMWARE, 272, 282, 286, 603
PMIX_FABRIC_DEVICE_INDEX, 272, 285, 421, 603
PMIX_FABRIC_DEVICE_MTU, 273, 282, 286, 603
PMIX_FABRIC_DEVICE_NAME, 271, 272, 282, 285, 331, 603
PMIX_FABRIC_DEVICE_PCI_DEVID, 272, 283, 286, 286, 604

INDEX OF ATTRIBUTES 655

Un
offi
cia
l D
raf
t

PMIX_FABRIC_DEVICE_SPEED, 273, 283, 286, 603
PMIX_FABRIC_DEVICE_STATE, 273, 283, 286, 604
PMIX_FABRIC_DEVICE_TYPE, 273, 283, 286, 604
PMIX_FABRIC_DEVICE_VENDOR, 272, 282, 286, 603
PMIX_FABRIC_DEVICE_VENDORID, 272, 286, 603
PMIX_FABRIC_DEVICES, 271, 285
PMIX_FABRIC_DIMS, 281, 285, 602
PMIX_FABRIC_ENDPT, 286, 602
PMIX_FABRIC_GROUPS, 281, 284, 601
PMIX_FABRIC_IDENTIFIER, 281, 284, 288, 421, 601
PMIX_FABRIC_INDEX, 280, 284, 285, 601
PMIX_FABRIC_NUM_DEVICES, 281, 285, 602
PMIX_FABRIC_PLANE, 281, 282, 284, 285, 288, 289, 421, 602
PMIX_FABRIC_SHAPE, 282, 285, 602
PMIX_FABRIC_SHAPE_STRING, 282, 285, 602
PMIX_FABRIC_SWITCH, 284, 287, 602, 603
PMIX_FABRIC_VENDOR, 281, 284, 288, 420, 601
PMIX_FIRST_ENVAR, 176, 182, 188, 607
PMIX_FORKEXEC_AGENT, 437, 439, 440, 452, 600
PMIX_FWD_STDDIAG, 431, 436, 440, 586
PMIX_FWD_STDERR, 377, 394, 430, 436, 440, 442, 554, 558, 564
PMIX_FWD_STDIN, 376, 394, 430, 436, 439, 442
PMIX_FWD_STDOUT, 377, 394, 430, 436, 439, 440, 442, 554, 558, 564
PMIX_GET_POINTER_VALUES, 80, 81, 83, 84, 594
PMIX_GET_REFRESH_CACHE, 77, 80, 83, 84, 594
PMIX_GET_STATIC_VALUES, 79–81, 84, 84, 594
PMIX_GLOBAL_RANK, 89, 93, 313, 316, 549
PMIX_GROUP_ASSIGN_CONTEXT_ID, 248, 250, 254, 259, 262, 418, 419, 605
PMIX_GROUP_CONTEXT_ID, 248, 419, 606
PMIX_GROUP_ENDPT_DATA, 248, 418, 419, 606
PMIX_GROUP_FT_COLLECTIVE, 248, 250, 254, 259, 262, 605
PMIX_GROUP_ID, 247, 247, 419, 576, 605
PMIX_GROUP_LEADER, 248, 250, 251, 254, 260, 265, 605
PMIX_GROUP_LOCAL_ONLY, 248, 250, 254, 418, 605
PMIX_GROUP_MEMBERSHIP, 248, 251, 419
PMIX_GROUP_NAMES, 248, 606
PMIX_GROUP_NOTIFY_TERMINATION, 248, 250, 251, 254, 256, 259, 262, 605
PMIX_GROUP_OPTIONAL, 248, 250, 251, 254, 259, 262, 418, 605
PMIX_GRPID, 133, 136, 140, 141, 213, 216, 221, 224, 229, 231, 235, 238, 294, 296, 298, 299,

368, 369, 371, 373, 375, 385, 391, 393, 395, 396, 399, 402, 405, 407, 410, 411, 413, 416
PMIX_HOMOGENEOUS_SYSTEM, 304, 307, 597
PMIX_HOST, 173, 180, 185, 375
PMIX_HOST_ATTRIBUTES, 103, 108, 113, 118, 119, 449, 589, 596

656 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_HOST_FUNCTIONS, 103, 104, 109, 111, 113, 118, 595, 596
PMIX_HOSTFILE, 174, 180, 185, 376
PMIX_HOSTNAME, 80, 83, 87, 90, 94, 94, 95, 102, 104, 105, 107, 109–112, 271, 272, 282, 283,

286, 311, 315, 317, 318, 320, 331, 391, 450, 457, 548, 549, 555, 560, 597, 604
PMIX_HOSTNAME_ALIASES, 94, 315, 599
PMIX_HOSTNAME_KEEP_FQDN, 88, 313, 599
PMIX_IMMEDIATE, 77, 79, 82, 84, 95
PMIX_INDEX_ARGV, 175, 181, 186, 377
PMIX_IOF_BUFFERING_SIZE, 413, 431, 436, 446, 466, 469
PMIX_IOF_BUFFERING_TIME, 413, 431, 436, 446, 466, 469
PMIX_IOF_CACHE_SIZE, 413, 431, 436, 446, 466, 469
PMIX_IOF_COMPLETE, 414, 444, 446, 447, 470, 483, 600
PMIX_IOF_COPY, 442, 447, 600
PMIX_IOF_DROP_NEWEST, 413, 431, 436, 446, 466, 469
PMIX_IOF_DROP_OLDEST, 413, 431, 436, 446, 466, 469
PMIX_IOF_FILE_ONLY, 432, 434, 443, 447, 617
PMIX_IOF_FILE_PATTERN, 432, 443, 447, 617
PMIX_IOF_LOCAL_OUTPUT, 304, 446, 460, 617
PMIX_IOF_MERGE_STDERR_STDOUT, 432, 443, 446, 447, 617
PMIX_IOF_OUTPUT_RAW, 431, 446, 617
PMIX_IOF_OUTPUT_TO_DIRECTORY, 432, 434, 443, 447, 617
PMIX_IOF_OUTPUT_TO_FILE, 432, 434, 443, 447, 617
PMIX_IOF_PUSH_STDIN, 444, 446, 469, 600
PMIX_IOF_RANK_OUTPUT, 431, 443, 446, 617
PMIX_IOF_REDIRECT, 442, 447, 600
PMIX_IOF_TAG_OUTPUT, 431, 437, 443, 446, 466
PMIX_IOF_TIMESTAMP_OUTPUT, 431, 437, 443, 446, 466
PMIX_IOF_XML_OUTPUT, 431, 437, 443, 446, 467
PMIX_JOB_CONTINUOUS, 175, 181, 187, 378
PMIX_JOB_CTRL_CANCEL, 222, 225, 227, 402
PMIX_JOB_CTRL_CHECKPOINT, 222, 225, 227, 402
PMIX_JOB_CTRL_CHECKPOINT_EVENT, 222, 225, 227, 403
PMIX_JOB_CTRL_CHECKPOINT_METHOD, 223, 226, 227, 403
PMIX_JOB_CTRL_CHECKPOINT_SIGNAL, 222, 225, 227, 403
PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT, 223, 225, 227, 403
PMIX_JOB_CTRL_ID, 221, 222, 224, 225, 227, 227, 402
PMIX_JOB_CTRL_KILL, 222, 224, 227, 402
PMIX_JOB_CTRL_PAUSE, 221, 224, 227, 402
PMIX_JOB_CTRL_PREEMPTIBLE, 223, 226, 227, 403
PMIX_JOB_CTRL_PROVISION, 223, 226, 227, 403
PMIX_JOB_CTRL_PROVISION_IMAGE, 223, 226, 227, 403
PMIX_JOB_CTRL_RESTART, 222, 225, 227, 402
PMIX_JOB_CTRL_RESUME, 221, 224, 227, 402

INDEX OF ATTRIBUTES 657

Un
offi
cia
l D
raf
t

PMIX_JOB_CTRL_SIGNAL, 222, 225, 227, 402
PMIX_JOB_CTRL_TERMINATE, 222, 225, 227, 402
PMIX_JOB_INFO, 80, 83, 86, 89, 102, 107
PMIX_JOB_INFO_ARRAY, 310, 312, 319, 320, 324, 584, 596
PMIX_JOB_NUM_APPS, 90, 313, 323
PMIX_JOB_RECOVERABLE, 175, 181, 187, 378
PMIX_JOB_SIZE, 90, 312, 323, 324, 548, 583, 586
PMIX_JOB_TERM_STATUS, 187, 188, 432–434, 453, 455, 455, 554, 560, 564, 607
PMIX_JOB_TIMEOUT, 177, 183, 188, 188, 378, 616, 617
PMIX_JOBID, 89, 310, 312, 319, 323, 454, 597
PMIX_LAUNCH_DIRECTIVES, 439, 440, 558, 601
PMIX_LAUNCHER, 423, 428, 429
PMIX_LAUNCHER_DAEMON, 437, 440, 600
PMIX_LAUNCHER_RENDEZVOUS_FILE, 424, 429, 599
PMIX_LOCAL_COLLECTIVE_STATUS, 124, 363, 380, 382, 418, 616
PMIX_LOCAL_CPUSETS, 91, 316, 327
PMIX_LOCAL_PEERS, 90, 91, 315, 316, 325, 548
PMIX_LOCAL_PROCS, 95, 316
PMIX_LOCAL_RANK, 93, 317, 451, 452, 457, 549, 553, 554, 559, 563, 601
PMIX_LOCAL_SIZE, 91, 315, 548
PMIX_LOCALITY_STRING, 201, 203, 317, 351, 549
PMIX_LOCALLDR, 90, 315
PMIX_LOG_COMPLETION, 188, 433, 454, 607
PMIX_LOG_EMAIL, 236, 239, 241, 397
PMIX_LOG_EMAIL_ADDR, 236, 239, 241, 397
PMIX_LOG_EMAIL_MSG, 236, 239, 241, 397
PMIX_LOG_EMAIL_SENDER_ADDR, 236, 239, 241
PMIX_LOG_EMAIL_SERVER, 236, 239, 241
PMIX_LOG_EMAIL_SRVR_PORT, 236, 239, 241
PMIX_LOG_EMAIL_SUBJECT, 236, 239, 241, 397
PMIX_LOG_GENERATE_TIMESTAMP, 235, 238, 240
PMIX_LOG_GLOBAL_DATASTORE, 236, 239, 241
PMIX_LOG_GLOBAL_SYSLOG, 235, 238, 240
PMIX_LOG_JOB_EVENTS, 187, 433, 453, 607
PMIX_LOG_JOB_RECORD, 236, 239, 241
PMIX_LOG_LOCAL_SYSLOG, 235, 238, 240
PMIX_LOG_MSG, 240, 397
PMIX_LOG_ONCE, 235, 238, 240
PMIX_LOG_PROC_ABNORMAL_TERMINATION, 187, 607
PMIX_LOG_PROC_TERMINATION, 187, 606
PMIX_LOG_SOURCE, 235, 238, 240
PMIX_LOG_STDERR, 235, 238, 240, 396
PMIX_LOG_STDOUT, 235, 238, 240, 396

658 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_LOG_SYSLOG, 235, 238, 240, 396
PMIX_LOG_SYSLOG_PRI, 235, 238, 240
PMIX_LOG_TAG_OUTPUT, 236, 239, 240
PMIX_LOG_TIMESTAMP, 235, 238, 240
PMIX_LOG_TIMESTAMP_OUTPUT, 236, 239, 240
PMIX_LOG_XML_OUTPUT, 236, 239, 240
PMIX_MAPBY, 174, 180, 185, 185, 313, 376, 554, 559, 563
PMIX_MAX_PROCS, 87, 88, 88–90, 92, 311, 312, 314, 316, 342, 548, 586
PMIX_MAX_RESTARTS, 175, 182, 187, 378
PMIX_MAX_VALUE, 343, 343, 589, 597
PMIX_MERGE_STDERR_STDOUT, 175, 181, 186, 377
PMIX_MIN_VALUE, 343, 343, 589, 597
PMIX_MODEL_AFFINITY_POLICY, 66, 68, 569
PMIX_MODEL_CPU_TYPE, 66, 68, 568
PMIX_MODEL_LIBRARY_NAME, 66, 68, 314, 339, 568
PMIX_MODEL_LIBRARY_VERSION, 66, 68, 315, 339, 568
PMIX_MODEL_NUM_CPUS, 66, 68, 568
PMIX_MODEL_NUM_THREADS, 66, 68, 568
PMIX_MODEL_PHASE_NAME, 68, 150, 568, 569
PMIX_MODEL_PHASE_TYPE, 68, 150, 568
PMIX_MONITOR_APP_CONTROL, 229, 232, 233, 405
PMIX_MONITOR_CANCEL, 229, 232, 233, 405
PMIX_MONITOR_FILE, 229, 230, 232, 233, 405
PMIX_MONITOR_FILE_ACCESS, 229, 232, 234, 405
PMIX_MONITOR_FILE_CHECK_TIME, 230, 232, 234, 406
PMIX_MONITOR_FILE_DROPS, 230, 232, 234, 406
PMIX_MONITOR_FILE_MODIFY, 230, 232, 234, 405
PMIX_MONITOR_FILE_SIZE, 229, 232, 233, 405
PMIX_MONITOR_HEARTBEAT, 229, 232, 233, 405
PMIX_MONITOR_HEARTBEAT_DROPS, 229, 232, 233, 405
PMIX_MONITOR_HEARTBEAT_TIME, 229, 232, 233, 405
PMIX_MONITOR_ID, 229, 231, 233, 405
PMIX_NO_OVERSUBSCRIBE, 175, 181, 186, 378
PMIX_NO_PROCS_ON_HEAD, 175, 181, 186, 378
PMIX_NODE_INFO, 80, 83, 87, 94, 102, 107, 316
PMIX_NODE_INFO_ARRAY, 311, 315, 320, 320, 324, 325, 330, 331, 597
PMIX_NODE_LIST, 88, 90, 92, 548
PMIX_NODE_MAP, 88, 90, 92, 312, 323, 324, 338, 339, 586
PMIX_NODE_MAP_RAW, 88, 599
PMIX_NODE_OVERSUBSCRIBED, 95, 315, 616
PMIX_NODE_RANK, 93, 317, 451
PMIX_NODE_SIZE, 95, 315
PMIX_NODEID, 80, 83, 87, 90, 94, 94, 95, 102, 105, 107, 110, 112, 272, 283, 286, 311, 315, 317,

INDEX OF ATTRIBUTES 659

Un
offi
cia
l D
raf
t

320, 331, 548, 597, 604
PMIX_NOHUP, 432, 437, 440, 599
PMIX_NOTIFY_COMPLETION, 187, 432, 454, 554, 560, 564
PMIX_NOTIFY_JOB_EVENTS, 187, 432, 453, 606
PMIX_NOTIFY_PROC_ABNORMAL_TERMINATION, 187, 606
PMIX_NOTIFY_PROC_TERMINATION, 187, 606
PMIX_NPROC_OFFSET, 89, 313
PMIX_NSDIR, 90, 94, 316, 317
PMIX_NSPACE, 87, 92, 93, 103–105, 108–111, 113, 310, 312, 319, 320, 324, 391, 392, 449, 450,

454, 457, 555, 560, 563, 595–597
PMIX_NUM_ALLOCATED_NODES, 88, 598
PMIX_NUM_NODES, 73, 86, 88, 89, 91, 323, 324, 548, 598
PMIX_NUM_SLOTS, 88, 89, 92
PMIX_OPTIONAL, 77, 79, 82, 84
PMIX_OUTPUT_TO_DIRECTORY, 186, 606
PMIX_OUTPUT_TO_FILE, 175, 181, 186, 377
PMIX_PACKAGE_RANK, 93, 317, 598
PMIX_PARENT_ID, 93, 375, 438, 614
PMIX_PERSISTENCE, 127–129, 130, 368, 478
PMIX_PERSONALITY, 174, 180, 185, 376
PMIX_PPR, 174, 180, 185, 376
PMIX_PREFIX, 173, 179, 185, 375
PMIX_PRELOAD_BIN, 174, 180, 185, 376
PMIX_PRELOAD_FILES, 174, 180, 185, 376
PMIX_PREPEND_ENVAR, 176, 182, 188, 566
PMIX_PRIMARY_SERVER, 429, 463, 599
PMIX_PROC_INFO, 87, 92, 103, 107
PMIX_PROC_INFO_ARRAY, 310, 316, 319, 325, 597, 610
PMIX_PROC_MAP, 88, 89, 90, 92, 313, 323, 324, 338, 339, 548, 586
PMIX_PROC_MAP_RAW, 88, 599
PMIX_PROC_PID, 94, 105, 110
PMIX_PROC_STATE_STATUS, 105, 110, 455
PMIX_PROC_TERM_STATUS, 454, 455
PMIX_PROCDIR, 94, 317
PMIX_PROCID, 92, 93, 103, 105, 107–109, 111, 187, 188, 310, 311, 320, 392, 432–434, 453, 554,

560, 564, 597, 607
PMIX_PROGRAMMING_MODEL, 66, 68, 314, 339, 568
PMIX_PSET_MEMBERS, 243, 244, 604
PMIX_PSET_NAME, 243, 244, 604
PMIX_PSET_NAMES, 242, 244, 314, 576, 605
PMIX_QUERY_ALLOC_STATUS, 105, 110, 113, 392
PMIX_QUERY_ATTRIBUTE_SUPPORT, 103, 104, 108, 111, 118, 449, 595
PMIX_QUERY_AUTHORIZATIONS, 105, 110, 111

660 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_QUERY_AVAIL_SERVERS, 112, 426, 595
PMIX_QUERY_DEBUG_SUPPORT, 104, 109, 111, 391, 553
PMIX_QUERY_GROUP_MEMBERSHIP, 247, 576, 605
PMIX_QUERY_GROUP_NAMES, 247, 576, 605
PMIX_QUERY_JOB_STATUS, 104, 109, 111, 391
PMIX_QUERY_LOCAL_ONLY, 113, 392
PMIX_QUERY_LOCAL_PROC_TABLE, 104, 109, 111, 391, 449, 457, 555, 560, 561
PMIX_QUERY_MEMORY_USAGE, 104, 109, 111, 392
PMIX_QUERY_NAMESPACE_INFO, 110, 595
PMIX_QUERY_NAMESPACES, 104, 109, 110, 391, 450, 564
PMIX_QUERY_NUM_GROUPS, 247, 576, 605
PMIX_QUERY_NUM_PSETS, 112, 244, 604
PMIX_QUERY_PROC_TABLE, 104, 109, 111, 391, 449, 457, 560, 561, 563
PMIX_QUERY_PSET_MEMBERSHIP, 112, 244, 604
PMIX_QUERY_PSET_NAMES, 112, 244, 604
PMIX_QUERY_QUALIFIERS, 106, 112, 112, 595
PMIX_QUERY_QUEUE_LIST, 104, 109, 111, 391
PMIX_QUERY_QUEUE_STATUS, 104, 109, 111, 391
PMIX_QUERY_REFRESH_CACHE, 102, 106, 107, 112, 117
PMIX_QUERY_REPORT_AVG, 105, 109, 113, 392
PMIX_QUERY_REPORT_MINMAX, 105, 109, 113, 392
PMIX_QUERY_RESULTS, 105, 112, 595
PMIX_QUERY_SPAWN_SUPPORT, 104, 109, 111, 391, 553
PMIX_QUERY_STORAGE_LIST, 473, 613
PMIX_QUERY_SUPPORTED_KEYS, 110, 595
PMIX_QUERY_SUPPORTED_QUALIFIERS, 110, 595
PMIX_RANGE, 127, 129, 130, 134, 136, 140, 142, 147, 230, 247, 368, 371, 373, 388, 418, 419,

478, 576, 605
PMIX_RANK, 93, 103, 105, 108, 109, 111, 177, 183, 310, 311, 316, 320, 392, 452, 457, 549, 554,

558, 597
PMIX_RANKBY, 174, 180, 185, 313, 376
PMIX_REGISTER_CLEANUP, 222, 225, 227
PMIX_REGISTER_CLEANUP_DIR, 222, 225, 228
PMIX_REGISTER_NODATA, 310, 319
PMIX_REINCARNATION, 94, 317, 599
PMIX_REPORT_BINDINGS, 175, 181, 186, 378
PMIX_REQUESTOR_IS_CLIENT, 375, 379
PMIX_REQUESTOR_IS_TOOL, 375, 379, 564
PMIX_REQUIRED_KEY, 366, 367, 598
PMIX_RM_NAME, 88, 311
PMIX_RM_VERSION, 88, 311
PMIX_SEND_HEARTBEAT, 230, 232, 233
PMIX_SERVER_ATTRIBUTES, 103, 108, 113, 118, 589, 596

INDEX OF ATTRIBUTES 661

Un
offi
cia
l D
raf
t

PMIX_SERVER_ENABLE_MONITORING, 304, 306
PMIX_SERVER_FUNCTIONS, 103, 104, 109, 111, 113, 118, 595, 596
PMIX_SERVER_GATEWAY, 302, 306
PMIX_SERVER_HOSTNAME, 312, 428
PMIX_SERVER_INFO_ARRAY, 112, 113, 595
PMIX_SERVER_NSPACE, 302, 306, 312, 426, 458, 462
PMIX_SERVER_PIDINFO, 426, 428, 458, 462
PMIX_SERVER_RANK, 302, 306, 312
PMIX_SERVER_REMOTE_CONNECTIONS, 303, 306
PMIX_SERVER_SCHEDULER, 284, 287, 302, 307, 596, 601
PMIX_SERVER_SESSION_SUPPORT, 302, 306, 596
PMIX_SERVER_SHARE_TOPOLOGY, 304, 306, 596
PMIX_SERVER_START_TIME, 306, 596
PMIX_SERVER_SYSTEM_SUPPORT, 302, 306, 423
PMIX_SERVER_TMPDIR, 302, 304, 306, 423–425
PMIX_SERVER_TOOL_SUPPORT, 293, 302, 305, 306
PMIX_SERVER_URI, 105, 110, 425, 426, 428, 458, 462
PMIX_SESSION_ID, 87, 89, 93, 96, 310, 311, 319, 323, 454, 597
PMIX_SESSION_INFO, 80, 83, 86, 88, 96, 102, 107, 311, 312, 339
PMIX_SESSION_INFO_ARRAY, 310, 311, 319, 320, 323, 584
PMIX_SET_ENVAR, 176, 182, 188, 566
PMIX_SET_SESSION_CWD, 173, 179, 186, 375
PMIX_SETUP_APP_ALL, 337, 340
PMIX_SETUP_APP_ENVARS, 337, 340, 554, 559
PMIX_SETUP_APP_NONENVARS, 337, 340
PMIX_SINGLE_LISTENER, 65, 303, 306
PMIX_SINGLETON, 304, 307, 617
PMIX_SOCKET_MODE, 65, 303, 306, 459
PMIX_SPAWN_TIMEOUT, 177, 183, 188, 378, 617
PMIX_SPAWN_TOOL, 177, 183, 187, 439, 558
PMIX_SPAWNED, 94, 317, 375
PMIX_STDIN_TGT, 174, 181, 186, 376
PMIX_STORAGE_ACCESS_TYPE, 474, 614
PMIX_STORAGE_ACCESSIBILITY, 473, 613
PMIX_STORAGE_BW_CUR, 474, 474, 614
PMIX_STORAGE_BW_MAX, 474, 613
PMIX_STORAGE_CAPACITY_LIMIT, 473, 613
PMIX_STORAGE_CAPACITY_USED, 473, 613
PMIX_STORAGE_ID, 473, 473, 613
PMIX_STORAGE_IOPS_CUR, 474, 474, 614
PMIX_STORAGE_IOPS_MAX, 474, 614
PMIX_STORAGE_MEDIUM, 473, 613
PMIX_STORAGE_MINIMAL_XFER_SIZE, 474, 613

662 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_STORAGE_OBJECT_LIMIT, 474, 613
PMIX_STORAGE_OBJECTS_USED, 474, 613
PMIX_STORAGE_PATH, 473, 613
PMIX_STORAGE_PERSISTENCE, 473, 613
PMIX_STORAGE_SUGGESTED_XFER_SIZE, 474, 474, 613, 614
PMIX_STORAGE_TYPE, 473, 613
PMIX_STORAGE_VERSION, 473, 613
PMIX_SWITCH_PEERS, 287, 287, 602
PMIX_SYSTEM_TMPDIR, 302, 306, 423, 425
PMIX_TAG_OUTPUT, 174, 181, 186, 377
PMIX_TCP_DISABLE_IPV4, 65, 68, 303, 459
PMIX_TCP_DISABLE_IPV6, 65, 68, 303, 460
PMIX_TCP_IF_EXCLUDE, 65, 68, 303, 459
PMIX_TCP_IF_INCLUDE, 65, 68, 303, 459
PMIX_TCP_IPV4_PORT, 65, 68, 303, 459
PMIX_TCP_IPV6_PORT, 65, 68, 303, 459
PMIX_TCP_REPORT_URI, 65, 67, 303, 459
PMIX_TCP_URI, 68, 425, 426, 458, 462
PMIX_TDIR_RMCLEAN, 88, 313
PMIX_THREADING_MODEL, 66, 68, 568
PMIX_TIME_REMAINING, 100, 105, 110, 111, 392
PMIX_TIMEOUT, 4, 77, 78, 81, 84, 85, 96, 122, 124, 127, 129, 134, 136, 140, 142, 177, 183, 188,

193, 196, 197, 199, 246, 250, 252, 255, 256, 258, 259, 263, 264, 266, 295, 296, 298, 300,
363, 367, 369, 371, 373, 378, 380, 383, 407, 410, 429, 465, 560, 601, 617

PMIX_TIMEOUT_REPORT_STATE, 187, 606
PMIX_TIMEOUT_STACKTRACES, 187, 606
PMIX_TIMESTAMP_OUTPUT, 175, 181, 186, 377
PMIX_TMPDIR, 87, 88, 90, 313, 315, 316
PMIX_TOOL_ATTACHMENT_FILE, 425, 426, 429, 458, 462, 599
PMIX_TOOL_ATTRIBUTES, 103, 108, 113, 118, 589, 596
PMIX_TOOL_CONNECT_OPTIONAL, 429, 599
PMIX_TOOL_DO_NOT_CONNECT, 425, 429, 458, 460
PMIX_TOOL_FUNCTIONS, 103, 104, 109, 111, 113, 118, 595, 596
PMIX_TOOL_NSPACE, 393, 424, 427, 458, 460
PMIX_TOOL_RANK, 393, 424, 428, 458, 460
PMIX_TOPOLOGY2, 304, 306, 596, 609
PMIX_UNIV_SIZE, 9, 87, 311, 323, 583, 584, 586
PMIX_UNSET_ENVAR, 176, 182, 188, 566
PMIX_USERID, 133, 136, 140, 141, 213, 216, 221, 224, 229, 231, 235, 238, 294, 296, 297, 299,

368–371, 373, 375, 385, 391, 393, 395, 396, 398, 402, 405, 407, 409, 411, 412, 416
PMIX_USOCK_DISABLE, 65, 303, 306
PMIX_VERSION_INFO, 394, 395
PMIX_WAIT, 83, 85, 134, 136, 371

INDEX OF ATTRIBUTES 663

Un
offi
cia
l D
raf
t

PMIX_WAIT_FOR_CONNECTION, 429, 465, 560, 601
PMIX_WDIR, 173, 179, 185, 314, 375

PMIX_ALLOC_NETWORK
Deprecated, 609

PMIX_ALLOC_NETWORK_ENDPTS
Deprecated, 610

PMIX_ALLOC_NETWORK_ENDPTS_NODE
Deprecated, 610

PMIX_ALLOC_NETWORK_ID
Deprecated, 609

PMIX_ALLOC_NETWORK_PLANE
Deprecated, 609

PMIX_ALLOC_NETWORK_QOS
Deprecated, 609

PMIX_ALLOC_NETWORK_SEC_KEY
Deprecated, 610

PMIX_ALLOC_NETWORK_TYPE
Deprecated, 609

PMIX_ARCH
Deprecated, 588
Removed, 611

PMIX_COLLECTIVE_ALGO
Deprecated, 588
Removed, 611

PMIX_COLLECTIVE_ALGO_REQD
Deprecated, 585
Removed, 611

PMIX_DEBUG_JOB
Deprecated, 609

PMIX_DEBUG_WAIT_FOR_NOTIFY
Deprecated, 614

PMIX_DSTPATH
Deprecated, 588
Removed, 610

PMIX_ERROR_GROUP_ABORT
Deprecated, 583
Removed, 585

PMIX_ERROR_GROUP_COMM
Deprecated, 583
Removed, 585

PMIX_ERROR_GROUP_GENERAL
Deprecated, 583
Removed, 585

664 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

Un
offi
cia
l D
raf
t

PMIX_ERROR_GROUP_LOCAL
Deprecated, 583
Removed, 585

PMIX_ERROR_GROUP_MIGRATE
Deprecated, 583
Removed, 585

PMIX_ERROR_GROUP_NODE
Deprecated, 583
Removed, 585

PMIX_ERROR_GROUP_RESOURCE
Deprecated, 583
Removed, 585

PMIX_ERROR_GROUP_SPAWN
Deprecated, 583
Removed, 585

PMIX_ERROR_HANDLER_ID
Deprecated, 583
Removed, 585

PMIX_ERROR_NAME
Deprecated, 583
Removed, 585

PMIX_HWLOC_HOLE_KIND
Deprecated, 588
Removed, 610

PMIX_HWLOC_SHARE_TOPO
Deprecated, 588
Removed, 610

PMIX_HWLOC_SHMEM_ADDR
Deprecated, 588
Removed, 610

PMIX_HWLOC_SHMEM_FILE
Deprecated, 588
Removed, 610

PMIX_HWLOC_SHMEM_SIZE
Deprecated, 588
Removed, 610

PMIX_HWLOC_XML_V1
Deprecated, 588
Removed, 610

PMIX_HWLOC_XML_V2
Deprecated, 588
Removed, 610

PMIX_LOCAL_TOPO

INDEX OF ATTRIBUTES 665

Un
offi
cia
l D
raf
t

Deprecated, 588
Removed, 610

PMIX_LOCALITY
Deprecated, 610

PMIX_MAP_BLOB
Deprecated, 588
Removed, 611

PMIX_MAPPER
Deprecated, 588
Removed, 611

PMIX_NON_PMI
Deprecated, 588
Removed, 611

PMIX_PROC_BLOB
Deprecated, 588
Removed, 611

PMIX_PROC_DATA
Deprecated, 610

PMIX_PROC_URI
Deprecated, 588
Removed, 611

PMIX_RECONNECT_SERVER
Deprecated, 609

PMIX_TOPOLOGY
Deprecated, 609

PMIX_TOPOLOGY_FILE
Deprecated, 588
Removed, 610

PMIX_TOPOLOGY_SIGNATURE
Deprecated, 589
Removed, 610

PMIX_TOPOLOGY_XML
Deprecated, 589
Removed, 610

666 PMIx Standard – Version 5.0 (Draft) – Created on August 9, 2022

	1 Introduction
	1.1 Background
	1.2 PMIx Architecture Overview
	1.3 Portability of Functionality
	1.3.1 Attributes in PMIx
	1.3.2 PMIx Roles

	2 PMIx Terms and Conventions
	2.1 Notational Conventions
	2.2 Semantics
	2.3 Naming Conventions
	2.4 Procedure Conventions

	3 Data Structures and Types
	3.1 Constants
	3.1.1 PMIx Return Status Constants
	3.1.1.1 User-Defined Error and Event Constants

	3.2 Data Types
	3.2.1 Key Structure
	3.2.1.1 Key support macros

	3.2.2 Namespace Structure
	3.2.2.1 Namespace support macros

	3.2.3 Rank Structure
	3.2.3.1 Rank support macros

	3.2.4 Process Structure
	3.2.4.1 Process structure support macros

	3.2.5 Process State Structure
	3.2.6 Process Information Structure
	3.2.6.1 Process information structure support macros

	3.2.7 Job State Structure
	3.2.8 Value Structure
	3.2.8.1 Value structure support

	3.2.9 Info Structure
	3.2.9.1 Info structure support macros
	3.2.9.2 Info structure list macros

	3.2.10 Info Type Directives
	3.2.10.1 Info Directive support macros

	3.2.11 Environmental Variable Structure
	3.2.11.1 Environmental variable support macros

	3.2.12 Byte Object Type
	3.2.12.1 Byte object support macros

	3.2.13 Data Array Structure
	3.2.13.1 Data array support macros

	3.2.14 Argument Array Macros
	3.2.15 Set Environment Variable

	3.3 Generalized Data Types Used for Packing/Unpacking
	3.4 General Callback Functions
	3.4.1 Release Callback Function
	3.4.2 Lookup Callback Function
	3.4.3 Op Callback Function
	3.4.4 Value Callback Function
	3.4.5 Info Callback Function
	3.4.6 Handler registration callback function

	3.5 PMIx Datatype Value String Representations

	4 Client Initialization and Finalization
	4.1 PMIx_Initialized
	4.2 PMIx_Get_version
	4.3 PMIx_Init
	4.3.1 Initialization events
	4.3.2 Initialization attributes
	4.3.2.1 Connection attributes
	4.3.2.2 Programming model attributes

	4.4 PMIx_Finalize
	4.4.1 Finalize attributes

	4.5 PMIx_Progress

	5 Data Access and Sharing
	5.1 Non-reserved keys
	5.2 Posting Key/Value Pairs
	5.2.1 PMIx_Put
	5.2.1.1 Scope of Put Data

	5.2.2 PMIx_Store_internal
	5.2.3 PMIx_Commit

	5.3 Retrieval rules for non-reserved keys
	5.4 PMIx_Get
	5.4.1 PMIx_Get_nb
	5.4.2 Retrieval attributes

	6 Reserved Keys
	6.1 Data realms
	6.1.1 Session realm attributes
	6.1.2 Job realm attributes
	6.1.3 Application realm attributes
	6.1.4 Process realm attributes
	6.1.5 Node realm keys

	6.2 Retrieval rules for reserved keys
	6.2.1 Accessing information: examples
	6.2.1.1 Session-level information
	6.2.1.2 Job-level information
	6.2.1.3 Application-level information
	6.2.1.4 Process-level information
	6.2.1.5 Node-level information

	7 Query Operations
	7.1 PMIx_Query_info
	7.1.1 Query Structure
	7.1.2 PMIx_Query_info
	7.1.3 PMIx_Query_info_nb
	7.1.4 Query keys
	7.1.5 Query attributes
	7.1.5.1 Query structure support macros

	7.2 PMIx_Resolve_peers
	7.2.1 PMIx_Resolve_nodes

	7.3 Using Get vs Query
	7.4 Accessing attribute support information

	8 Synchronization
	8.1 PMIx_Fence
	8.2 PMIx_Fence_nb
	8.2.1 Fence-related attributes

	9 Publish/Lookup Operations
	9.1 PMIx_Publish
	9.2 PMIx_Publish_nb
	9.3 Publish-specific constants
	9.4 Publish-specific attributes
	9.5 Publish-Lookup Datatypes
	9.5.1 Range of Published Data
	9.5.2 Data Persistence Structure
	9.5.3 Lookup Related Data Structures

	9.6 PMIx_Lookup
	9.7 PMIx_Lookup_nb
	9.7.0.1 Lookup data structure support macros

	9.8 Retrieval rules for published data
	9.9 PMIx_Unpublish
	9.10 PMIx_Unpublish_nb

	10 Event Notification
	10.1 Notification and Management
	10.1.1 Events versus status constants
	10.1.2 PMIx_Register_event_handler
	10.1.3 Event registration constants
	10.1.4 System events
	10.1.5 Event handler registration and notification attributes
	10.1.5.1 Fault tolerance event attributes
	10.1.5.2 Hybrid programming event attributes

	10.1.6 Notification Function
	10.1.7 PMIx_Deregister_event_handler
	10.1.8 PMIx_Notify_event
	10.1.9 Notification Handler Completion Callback Function
	10.1.9.1 Completion Callback Function Status Codes

	11 Data Packing and Unpacking
	11.1 Data Buffer Type
	11.2 Support Macros
	11.3 General Routines
	11.3.1 PMIx_Data_pack
	11.3.2 PMIx_Data_unpack
	11.3.3 PMIx_Data_copy
	11.3.4 PMIx_Data_print
	11.3.5 PMIx_Data_copy_payload
	11.3.6 PMIx_Data_load
	11.3.7 PMIx_Data_unload
	11.3.8 PMIx_Data_compress
	11.3.9 PMIx_Data_decompress
	11.3.10 PMIx_Data_embed

	12 Process Management
	12.1 Abort
	12.1.1 PMIx_Abort

	12.2 Process Creation
	12.2.1 PMIx_Spawn
	12.2.2 PMIx_Spawn_nb
	12.2.3 Spawn-specific constants
	12.2.4 Spawn attributes
	12.2.5 Application Structure
	12.2.5.1 App structure support macros
	12.2.5.2 Spawn Callback Function

	12.3 Connecting and Disconnecting Processes
	12.3.1 PMIx_Connect
	12.3.2 PMIx_Connect_nb
	12.3.3 PMIx_Disconnect
	12.3.4 PMIx_Disconnect_nb

	12.4 Process Locality
	12.4.1 PMIx_Load_topology
	12.4.2 PMIx_Get_relative_locality
	12.4.2.1 Topology description
	12.4.2.2 Topology support macros
	12.4.2.3 Relative locality of two processes
	12.4.2.4 Locality keys

	12.4.3 PMIx_Parse_cpuset_string
	12.4.4 PMIx_Get_cpuset
	12.4.4.1 Binding envelope

	12.4.5 PMIx_Compute_distances
	12.4.6 PMIx_Compute_distances_nb
	12.4.7 Device Distance Callback Function
	12.4.8 Device type
	12.4.9 Device Distance Structure
	12.4.10 Device distance support macros
	12.4.11 Device distance attributes

	13 Job Management and Reporting
	13.1 Allocation Requests
	13.1.1 PMIx_Allocation_request
	13.1.2 PMIx_Allocation_request_nb
	13.1.3 Job Allocation attributes
	13.1.4 Job Allocation Directives

	13.2 Job Control
	13.2.1 PMIx_Job_control
	13.2.2 PMIx_Job_control_nb
	13.2.3 Job control constants
	13.2.4 Job control events
	13.2.5 Job control attributes

	13.3 Process and Job Monitoring
	13.3.1 PMIx_Process_monitor
	13.3.2 PMIx_Process_monitor_nb
	13.3.3 PMIx_Heartbeat
	13.3.4 Monitoring events
	13.3.5 Monitoring attributes

	13.4 Logging
	13.4.1 PMIx_Log
	13.4.2 PMIx_Log_nb
	13.4.3 Log attributes

	14 Process Sets and Groups
	14.1 Process Sets
	14.1.1 Process Set Constants
	14.1.2 Process Set Attributes

	14.2 Process Groups
	14.2.1 Relation to the host environment
	14.2.2 Construction procedure
	14.2.3 Destruct procedure
	14.2.4 Process Group Events
	14.2.5 Process Group Attributes
	14.2.6 PMIx_Group_construct
	14.2.7 PMIx_Group_construct_nb
	14.2.8 PMIx_Group_destruct
	14.2.9 PMIx_Group_destruct_nb
	14.2.10 PMIx_Group_invite
	14.2.11 PMIx_Group_invite_nb
	14.2.12 PMIx_Group_join
	14.2.13 PMIx_Group_join_nb
	14.2.13.1 Group accept/decline directives

	14.2.14 PMIx_Group_leave
	14.2.15 PMIx_Group_leave_nb

	15 Fabric Support Definitions
	15.1 Fabric Support Events
	15.2 Fabric Support Datatypes
	15.2.1 Fabric Endpoint Structure
	15.2.2 Fabric endpoint support macros
	15.2.3 Fabric Coordinate Structure
	15.2.4 Fabric coordinate support macros
	15.2.5 Fabric Geometry Structure
	15.2.6 Fabric geometry support macros
	15.2.7 Fabric Coordinate Views
	15.2.8 Fabric Link State
	15.2.9 Fabric Operation Constants
	15.2.10 Fabric registration structure
	15.2.10.1 Static initializer for the fabric structure
	15.2.10.2 Initialize the fabric structure

	15.3 Fabric Support Attributes
	15.4 Fabric Support Functions
	15.4.1 PMIx_Fabric_register
	15.4.2 PMIx_Fabric_register_nb
	15.4.3 PMIx_Fabric_update
	15.4.4 PMIx_Fabric_update_nb
	15.4.5 PMIx_Fabric_deregister
	15.4.6 PMIx_Fabric_deregister_nb

	16 Security
	16.1 Obtaining Credentials
	16.1.1 PMIx_Get_credential
	16.1.2 PMIx_Get_credential_nb
	16.1.3 Credential Attributes

	16.2 Validating Credentials
	16.2.1 PMIx_Validate_credential
	16.2.2 PMIx_Validate_credential_nb

	17 Server-Specific Interfaces
	17.1 Server Initialization and Finalization
	17.1.1 PMIx_server_init
	17.1.2 PMIx_server_finalize
	17.1.3 Server Initialization Attributes

	17.2 Server Support Functions
	17.2.1 PMIx_generate_regex
	17.2.2 PMIx_generate_ppn
	17.2.3 PMIx_server_register_nspace
	17.2.3.1 Namespace registration attributes
	17.2.3.2 Assembling the registration information

	17.2.4 PMIx_server_deregister_nspace
	17.2.5 PMIx_server_register_resources
	17.2.6 PMIx_server_deregister_resources
	17.2.7 PMIx_server_register_client
	17.2.8 PMIx_server_deregister_client
	17.2.9 PMIx_server_setup_fork
	17.2.10 PMIx_server_dmodex_request
	17.2.10.1 Server Direct Modex Response Callback Function

	17.2.11 PMIx_server_setup_application
	17.2.11.1 Server Setup Application Callback Function
	17.2.11.2 Server Setup Application Attributes

	17.2.12 PMIx_Register_attributes
	17.2.12.1 Attribute registration constants
	17.2.12.2 Attribute registration structure
	17.2.12.3 Attribute registration structure descriptive attributes
	17.2.12.4 Attribute registration structure support macros

	17.2.13 PMIx_server_setup_local_support
	17.2.14 PMIx_server_IOF_deliver
	17.2.15 PMIx_server_collect_inventory
	17.2.16 PMIx_server_deliver_inventory
	17.2.17 PMIx_server_generate_locality_string
	17.2.18 PMIx_server_generate_cpuset_string
	17.2.18.1 Cpuset Structure
	17.2.18.2 Cpuset support macros

	17.2.19 PMIx_server_define_process_set
	17.2.20 PMIx_server_delete_process_set

	17.3 Server Function Pointers
	17.3.1 pmix_server_module_t Module
	17.3.2 pmix_server_client_connected_fn_t
	17.3.3 pmix_server_client_connected2_fn_t
	17.3.4 pmix_server_client_finalized_fn_t
	17.3.5 pmix_server_abort_fn_t
	17.3.6 pmix_server_fencenb_fn_t
	17.3.6.1 Modex Callback Function

	17.3.7 pmix_server_dmodex_req_fn_t
	17.3.7.1 Dmodex attributes

	17.3.8 pmix_server_publish_fn_t
	17.3.9 pmix_server_lookup_fn_t
	17.3.10 pmix_server_unpublish_fn_t
	17.3.11 pmix_server_spawn_fn_t
	17.3.11.1 Server spawn attributes

	17.3.12 pmix_server_connect_fn_t
	17.3.13 pmix_server_disconnect_fn_t
	17.3.14 pmix_server_register_events_fn_t
	17.3.15 pmix_server_deregister_events_fn_t
	17.3.16 pmix_server_notify_event_fn_t
	17.3.17 pmix_server_listener_fn_t
	17.3.17.1 PMIx Client Connection Callback Function

	17.3.18 pmix_server_query_fn_t
	17.3.19 pmix_server_tool_connection_fn_t
	17.3.19.1 Tool connection attributes
	17.3.19.2 PMIx Tool Connection Callback Function

	17.3.20 pmix_server_log_fn_t
	17.3.21 pmix_server_alloc_fn_t
	17.3.22 pmix_server_job_control_fn_t
	17.3.23 pmix_server_monitor_fn_t
	17.3.24 pmix_server_get_cred_fn_t
	17.3.24.1 Credential callback function

	17.3.25 pmix_server_validate_cred_fn_t
	17.3.26 Credential validation callback function
	17.3.27 pmix_server_iof_fn_t
	17.3.27.1 IOF delivery function

	17.3.28 pmix_server_stdin_fn_t
	17.3.29 pmix_server_grp_fn_t
	17.3.29.1 Group Operation Constants

	17.3.30 pmix_server_fabric_fn_t

	18 Tools and Debuggers
	18.1 Connection Mechanisms
	18.1.1 Rendezvousing with a local server
	18.1.2 Connecting to a remote server
	18.1.3 Attaching to running jobs
	18.1.4 Tool initialization attributes
	18.1.5 Tool initialization environmental variables
	18.1.6 Tool connection attributes

	18.2 Launching Applications with Tools
	18.2.1 Direct launch
	18.2.2 Indirect launch
	18.2.2.1 Initiator-based command line parsing
	18.2.2.2 IL-based command line parsing

	18.2.3 Tool spawn-related attributes
	18.2.4 Tool rendezvous-related events

	18.3 IO Forwarding
	18.3.1 Forwarding stdout/stderr
	18.3.2 Forwarding stdin
	18.3.3 IO Forwarding Channels
	18.3.4 IO Forwarding constants
	18.3.5 IO Forwarding attributes

	18.4 Debugger Support
	18.4.1 Co-Location of Debugger Daemons
	18.4.2 Co-Spawn of Debugger Daemons
	18.4.3 Debugger Agents
	18.4.4 Tracking the job lifecycle
	18.4.4.1 Job lifecycle events
	18.4.4.2 Job lifecycle attributes

	18.4.5 Debugger-related constants
	18.4.6 Debugger attributes

	18.5 Tool-Specific APIs
	18.5.1 PMIx_tool_init
	18.5.2 PMIx_tool_finalize
	18.5.3 PMIx_tool_disconnect
	18.5.4 PMIx_tool_attach_to_server
	18.5.5 PMIx_tool_get_servers
	18.5.6 PMIx_tool_set_server
	18.5.7 PMIx_IOF_pull
	18.5.8 PMIx_IOF_deregister
	18.5.9 PMIx_IOF_push

	19 Storage Support Definitions
	19.1 Storage support constants
	19.2 Storage support attributes

	A Python Bindings
	A.1 Design Considerations
	A.1.1 Error Codes vs Python Exceptions
	A.1.2 Representation of Structured Data

	A.2 Datatype Definitions
	A.2.1 Example

	A.3 Callback Function Definitions
	A.3.1 IOF Delivery Function
	A.3.2 Event Handler
	A.3.3 Server Module Functions
	A.3.3.1 Client Connected
	A.3.3.2 Client Finalized
	A.3.3.3 Client Aborted
	A.3.3.4 Fence
	A.3.3.5 Direct Modex
	A.3.3.6 Publish
	A.3.3.7 Lookup
	A.3.3.8 Unpublish
	A.3.3.9 Spawn
	A.3.3.10 Connect
	A.3.3.11 Disconnect
	A.3.3.12 Register Events
	A.3.3.13 Deregister Events
	A.3.3.14 Notify Event
	A.3.3.15 Query
	A.3.3.16 Tool Connected
	A.3.3.17 Log
	A.3.3.18 Allocate Resources
	A.3.3.19 Job Control
	A.3.3.20 Monitor
	A.3.3.21 Get Credential
	A.3.3.22 Validate Credential
	A.3.3.23 IO Forward
	A.3.3.24 IO Push
	A.3.3.25 Group Operations
	A.3.3.26 Fabric Operations

	A.4 PMIxClient
	A.4.1 Client.init
	A.4.2 Client.initialized
	A.4.3 Client.get_version
	A.4.4 Client.finalize
	A.4.5 Client.abort
	A.4.6 Client.store_internal
	A.4.7 Client.put
	A.4.8 Client.commit
	A.4.9 Client.fence
	A.4.10 Client.get
	A.4.11 Client.publish
	A.4.12 Client.lookup
	A.4.13 Client.unpublish
	A.4.14 Client.spawn
	A.4.15 Client.connect
	A.4.16 Client.disconnect
	A.4.17 Client.resolve_peers
	A.4.18 Client.resolve_nodes
	A.4.19 Client.query
	A.4.20 Client.log
	A.4.21 Client.allocation_request
	A.4.22 Client.job_ctrl
	A.4.23 Client.monitor
	A.4.24 Client.get_credential
	A.4.25 Client.validate_credential
	A.4.26 Client.group_construct
	A.4.27 Client.group_invite
	A.4.28 Client.group_join
	A.4.29 Client.group_leave
	A.4.30 Client.group_destruct
	A.4.31 Client.register_event_handler
	A.4.32 Client.deregister_event_handler
	A.4.33 Client.notify_event
	A.4.34 Client.fabric_register
	A.4.35 Client.fabric_update
	A.4.36 Client.fabric_deregister
	A.4.37 Client.load_topology
	A.4.38 Client.get_relative_locality
	A.4.39 Client.get_cpuset
	A.4.40 Client.parse_cpuset_string
	A.4.41 Client.compute_distances
	A.4.42 Client.error_string
	A.4.43 Client.proc_state_string
	A.4.44 Client.scope_string
	A.4.45 Client.persistence_string
	A.4.46 Client.data_range_string
	A.4.47 Client.info_directives_string
	A.4.48 Client.data_type_string
	A.4.49 Client.alloc_directive_string
	A.4.50 Client.iof_channel_string
	A.4.51 Client.job_state_string
	A.4.52 Client.get_attribute_string
	A.4.53 Client.get_attribute_name
	A.4.54 Client.link_state_string
	A.4.55 Client.device_type_string
	A.4.56 Client.progress

	A.5 PMIxServer
	A.5.1 Server.init
	A.5.2 Server.finalize
	A.5.3 Server.generate_regex
	A.5.4 Server.generate_ppn
	A.5.5 Server.generate_locality_string
	A.5.6 Server.generate_cpuset_string
	A.5.7 Server.register_nspace
	A.5.8 Server.deregister_nspace
	A.5.9 Server.register_resources
	A.5.10 Server.deregister_resources
	A.5.11 Server.register_client
	A.5.12 Server.deregister_client
	A.5.13 Server.setup_fork
	A.5.14 Server.dmodex_request
	A.5.15 Server.setup_application
	A.5.16 Server.register_attributes
	A.5.17 Server.setup_local_support
	A.5.18 Server.iof_deliver
	A.5.19 Server.collect_inventory
	A.5.20 Server.deliver_inventory
	A.5.21 Server.define_process_set
	A.5.22 Server.delete_process_set
	A.5.23 Server.register_resources
	A.5.24 Server.deregister_resources

	A.6 PMIxTool
	A.6.1 Tool.init
	A.6.2 Tool.finalize
	A.6.3 Tool.disconnect
	A.6.4 Tool.attach_to_server
	A.6.5 Tool.get_servers
	A.6.6 Tool.set_server
	A.6.7 Tool.iof_pull
	A.6.8 Tool.iof_deregister
	A.6.9 Tool.iof_push

	A.7 Example Usage
	A.7.1 Python Client
	A.7.2 Python Server

	B Use-Cases
	B.1 Business Card Exchange for Process-to-Process Wire-up
	B.1.1 Use Case Summary
	B.1.2 Use Case Details

	B.2 Debugging
	B.2.1 Terminology
	B.2.1.1 Tools vs Debuggers
	B.2.1.2 Parallel Launching Methods
	B.2.1.3 Process Synchronization
	B.2.1.4 Process Acquisition

	B.2.2 Use Case Details
	B.2.2.1 Direct-Launch Debugger Tool
	B.2.2.2 Indirect-Launch Debugger Tool
	B.2.2.3 Attaching to a Running Job
	B.2.2.4 Tool Interaction with RM
	B.2.2.5 Environmental Parameter Directives for Applications and Launchers

	B.3 Hybrid Applications
	B.3.1 Use Case Summary
	B.3.2 Use Case Details
	B.3.2.1 Identifying Active Parallel Runtime Systems
	B.3.2.2 Coordinating at Runtime
	B.3.2.3 Coordinating at Runtime with Multiple Event Handlers

	B.4 MPI Sessions
	B.4.1 Use Case Summary
	B.4.2 Use Case Details

	B.5 Cross-Version Compatibility
	B.5.1 Use Case Summary
	B.5.2 Use Case Details

	C Revision History
	C.1 Version 1.0: June 12, 2015
	C.2 Version 2.0: Sept. 2018
	C.2.1 Removed/Modified API
	C.2.2 Deprecated constants
	C.2.3 Deprecated attributes

	C.3 Version 2.1: Dec. 2018
	C.4 Version 2.2: Jan 2019
	C.5 Version 3.0: Dec. 2018
	C.5.1 Removed constants
	C.5.2 Deprecated attributes
	C.5.3 Removed attributes

	C.6 Version 3.1: Jan. 2019
	C.7 Version 3.2: Oct. 2020
	C.7.1 Deprecated constants
	C.7.2 Deprecated attributes

	C.8 Version 4.0: Dec. 2020
	C.8.1 Added Constants
	C.8.2 Added Attributes
	C.8.3 Added Environmental Variables
	C.8.4 Added Macros
	C.8.5 Deprecated API
	C.8.6 Deprecated constants
	C.8.7 Removed constants
	C.8.8 Deprecated attributes
	C.8.9 Removed attributes

	C.9 Version 4.1: TBD
	C.9.1 Removed constants
	C.9.2 Added Functions (Provisional)
	C.9.3 Added Data Structures (Provisional)
	C.9.4 Added Macros (Provisional)
	C.9.5 Added Constants (Provisional)
	C.9.6 Added Attributes (Provisional)

	C.10 Version 4.2: TBD
	C.10.1 Deprecated constants
	C.10.2 Deprecated attributes
	C.10.3 Deprecated macros
	C.10.4 Added Functions (Provisional)
	C.10.5 Added Macros (Provisional)
	C.10.6 Added Constants (Provisional)
	C.10.7 Added Attributes (Provisional)

	D Acknowledgements
	D.1 Version 4.0
	D.2 Version 3.0
	D.3 Version 2.0
	D.4 Version 1.0

	Bibliography
	Index
	Index of APIs
	Index of Support Macros
	Index of Data Structures
	Index of Constants
	Index of Environmental Variables
	Index of Attributes

