From 430a9774826072ec8890f69be6db03b098582ab2 Mon Sep 17 00:00:00 2001 From: "Koch, James V" Date: Mon, 25 Sep 2023 12:53:44 -0700 Subject: [PATCH 1/5] Inclusion of DAEs: EulerDAE integrator, GeneralNetworkedODE and GeneralNetworkedAE, updated physics.py --- examples/ODEs/Part_6_NetworkODE.ipynb | 2072 ++++++++++------------- examples/ODEs/Part_6_NetworkODE.py | 87 +- src/neuromancer/dynamics/integrators.py | 28 + src/neuromancer/dynamics/ode.py | 159 +- src/neuromancer/dynamics/physics.py | 456 ++++- 5 files changed, 1502 insertions(+), 1300 deletions(-) diff --git a/examples/ODEs/Part_6_NetworkODE.ipynb b/examples/ODEs/Part_6_NetworkODE.ipynb index 873ad5b7..be89b3bd 100644 --- a/examples/ODEs/Part_6_NetworkODE.ipynb +++ b/examples/ODEs/Part_6_NetworkODE.ipynb @@ -55,7 +55,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -77,7 +77,7 @@ "\n", "# Neuromancer imports\n", "from neuromancer.psl.coupled_systems import *\n", - "from neuromancer.dynamics import integrators, ode, physics, interpolation\n", + "from neuromancer.dynamics import integrators, ode, physics\n", "from neuromancer.dataset import DictDataset\n", "from neuromancer.constraint import variable\n", "from neuromancer.problem import Problem\n", @@ -135,11 +135,11 @@ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" ] }, "execution_count": 3, @@ -148,7 +148,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAl0lEQVR4nO3dd3hUZfr/8ff0yUwy6RUChI50kK4IghQrCBas2Av6VdRdxbKu29j9rbu6NlZXFwtiQUUUBUFp0jtICxB6ekiZZCaZen5/nGQg66AEkkwyuV/Xda6ZOXNm5s4xZj485ykaRVEUhBBCCCGaOW2oCxBCCCGEqA8SaoQQQggRFiTUCCGEECIsSKgRQgghRFiQUCOEEEKIsCChRgghhBBhQUKNEEIIIcKChBohhBBChAV9qAtoLH6/n5ycHKKiotBoNKEuRwghhBBnQVEUysvLSUtLQ6v95baYFhNqcnJySE9PD3UZQgghhDgHx48fp3Xr1r94TIsJNVFRUYB6Umw2W4irEUIIIcTZsNvtpKenB77Hf0mLCTU1l5xsNpuEGiGEEKKZOZuuI9JRWAghhBBhQUKNEEIIIcKChBohhBBChAUJNUIIIYQICxJqhBBCCBEWJNQIIYQQIixIqBFCCCFEWJBQI4QQQoiwIKFGCCGEEGFBQo0QQgghwoKEGiGEEEKEBQk1QgghhAgLdQo1M2fOZMCAAURFRZGUlMSECRPIzMysdUxWVhYTJ04kMTERm83G9ddfT35+ftD3c7lc9OnTB41Gw/bt23/xs6uqqpg2bRrx8fFERkYyadKkM75vY1IUhWkfbmXO+qOUV3lCXY4QQgjRYtUp1KxcuZJp06axfv16li5disfjYcyYMTgcDgAcDgdjxoxBo9GwbNky1qxZg9vt5qqrrsLv9//s/X7729+SlpZ2Vp89ffp0vv76a+bNm8fKlSvJycnh2muvrUv5DWLTkRK++SmXZ7/cxcA//8Bv5u1gy9ESFEUJdWlCCCFEi6JRzuPbt7CwkKSkJFauXMnw4cNZsmQJ48ePp6SkBJvNBkBZWRmxsbEsWbKE0aNHB167aNEiHnvsMT7//HO6d+/Otm3b6NOnT9DPKSsrIzExkblz5zJ58mQA9u3bR7du3Vi3bh2DBw/+1VrtdjvR0dGUlZUFaqsPJQ43n289wUcbj5FV6Ajs75wcyQ0D2nBt31bEWo319nlCCCFES1KX7+/z6lNTVlYGQFxcHKBeTtJoNJhMpsAxZrMZrVbL6tWrA/vy8/O55557+OCDD7BYLL/6OVu2bMHj8dQKRV27dqVNmzasW7cu6GtcLhd2u73W1hBirUbuvrg93z92CZ/dP4RJ/VpjNmjZn1/BHxfuYdDMH3ho7laW7M6jyuNrkBqEEEIIcR6hxu/38+ijjzJs2DB69OgBwODBg7FarTz55JM4nU4cDgdPPPEEPp+P3NxcQO2DMnXqVO6//34uvPDCs/qsvLw8jEYjMTExtfYnJyeTl5cX9DUzZ84kOjo6sKWnp5/rj3pWNBoNF7aL4x/X92bD06P54zXduSDVhtvrZ+HOXO79YAsD/vQ9j32ynWX78nF7f345TgghhBDn7pxDzbRp09i1axcff/xxYF9iYiLz5s3j66+/JjIykujoaEpLS+nXrx9arfpRr776KuXl5cyYMeP8q/8FM2bMoKysLLAdP368QT/vdNERBm4d0o5v/u8ivnpoGHddlEGKzUy5y8sX27K5893NXPinpTzy8TYWbM+m1OlutNqEEEKIcKU/lxc99NBDLFy4kFWrVtG6detaz40ZM4asrCyKiorQ6/XExMSQkpJC+/btAVi2bBnr1q2rdYkK4MILL+Tmm2/mvffe+9nnpaSk4Ha7KS0trdVak5+fT0pKStAaTSbTzz6jsWk0Gnq1jqFX6xieubwbW4+VsHBnLt/+lEtBuYsF23NYsD0HnVZD/zaxjOiayMUdE7kgzYZOqwlp7UIIIURzU6eOwoqi8PDDDzN//nxWrFhBp06dfvU1y5YtY/To0ezdu5cuXbpw7NixWv1bcnJyGDt2LJ999hmDBg36WUiCUx2FP/roIyZNmgRAZmYmXbt2DXlH4XPh8ytsPVbCsn0FLNtbQGZ+ea3nYywGhnaIZ1jHBIZ1SKBtvAWNRkKOEEKIlqcu3991CjUPPvggc+fOZcGCBXTp0iWwPzo6moiICABmz55Nt27dSExMZN26dTzyyCNMnTqVf/zjH0Hf88iRI2RkZNQa/ZSdnc2oUaN4//33GThwIAAPPPAA3377Le+++y42m42HH34YgLVr155V7U0p1PyvEyVOlu0rYNX+ItYfOkmFy1vr+YRII33SY+iTHkPv6s1mNoSoWiGEEKLx1OX7u06Xn2bNmgXAiBEjau2fPXs2U6dOBdQWlBkzZlBcXEy7du145plnmD59el0+Bo/HQ2ZmJk6nM7DvpZdeQqvVMmnSJFwuF2PHjuWNN96o0/s2Va1jLdw2pB23DWmH1+dnx4ky1hwsYvXBIrYdK6Gows33ewv4fm9B4DXtE6xckGaje1o03dNsdEqOJMVmlhYdIYQQLdZ5zVPTnDTllppfUuXxsTvHzvbjpdVbCceLK4MeazXqaJ8YSftEK+3irbSKiSAtJoK0GDNpMRGYDbpGrl4IIYQ4Pw12+ak5a66hJpiiChe7c+zsziljd7advbl2jhY78fl/+T9lnNVIvNVIrNVInKX61mog1mIkzmrEYtQTYdRh1msxG3SYDTr0Og1GnRa9ToNeqw3cN+i0GHQaaRkSQgjRoCTUBBFOoSYYt9fPsWInWYUVHCp0cKzYSU5pJTmllWSXVuJ0N8zEfzqtBg2g1WjQaECjUe9rNer+ml8uRVFQgJrfNgUFRTn1PIBeq1E3nRZd9X2dVg1QNY+tJj0Wow6LUYfVqMdi0mEx6gOPrSY98ZFGEqNMJEaaSIg0EWGUFiohhGiuGqxPjWi6jHotHZMi6ZgU+bPnFEWhrNJDblkVJQ43xU63euvwUOJ0U+xwU+J043T7qHT7qPL6qHL7qPL68fj8eH0KXr8fj+/n+fdU69D5Z+OGmq0n0qQnoTroJESaSIwykR5rIT3OQps4C23iLUSa5H8FIYRo7uQveQug0WiIsRiJsZzfGlSKouD1K3h9Cm6fH6/Pj9df0+Ki4FfAXx1y/Ir6uObilEYDmupHp1+xUlt3NCiKgt8PHr8fX/Vn+PxqmFJvFdxevxq8PF4cLh9Ot3pb6fHhcHlxun2UV3koqnBTWO6iqMKFy+unwuWlwuXlyEknZxJnNdIh0Uq3VBtdU2x0S42iS0oUFqP8LyKEEM2F/MUWZ02j0WDQaTDoIIKmf0lHURTKXV6Kyl21gk6+vYrjJZUcK3ZyvNhJscMd2DYdKQm8XqOBdvFWuqZE0T3NRr82sfROj8EqrTpCCNEkSZ8a0eKVV3k4etLJgYJy9uWWsyfXzr68cgrLXT87VquBrik2+rWNoX/bWIZ2SCDZZg5B1UII0TJIR+EgJNSIuiqqcLEvt5y9uXZ2nChl69EScsqqfnZcl+QoLu6UwPDOiQzMiJOh80IIUY8k1AQhoUbUh9yySrYeLWXrsRI2HSnmp+wyTv8/yKjXMigjjpFdkri8Zyop0dKKI4QQ50NCTRASakRDKHG4WZNVxI/7i1h1oJDc/2nJubBtLFf0SmV8Dwk4QghxLiTUBCGhRjQ0RVHIKnSwIrOAxbvy2Hy0pNbzA9rFcnlPCThCCFEXEmqCkFAjGltuWSWLfsrjm59y2XK09qiqC9vGcnXvNK7qnXbeQ+2FECKcSagJQkKNCKXcskq+/SmPb/8n4Bh1Wi7rnsx1/VtzcadEdFpZdkIIIU4noSYICTWiqcgpreTbn3L5bMsJ9uWVB/Yn20xc26811/VvTfvEn88MLYQQLZGEmiAk1IimRlEUdufY+WzLCb7cnk2p0xN4bkj7eG4Z3JYx3ZMx6LQhrFIIIUJLQk0QEmpEU+by+li2t4B5W06wIrOAmiW1EqNM3DggnZsGtSE1OiK0RQohRAhIqAlCQo1oLrJLK/lowzE+3nScogp1VmO9VsPlPVO566IMeqfHhLZAIYRoRBJqgpBQI5obt9fPkj15vL/uKBsPFwf2D2gXy10XZXDZBSnSsVgIEfYk1AQhoUY0Z7uyy3hn9WG+3pGDt/raVJs4C/dd0p5J/VrL0gxCiLAloSYICTUiHOTbq3h/3RE+3HAs0LE4KcrEPRe356ZBbWQFcSFE2JFQE4SEGlEXfrcbz9GjePLy8OTl4c3Lx5Ofhze/AL/djr+yMrApbjcanQ70OjR6A7pIK7qEBPTxCejj49EnJWJs1w5jRgbG9HQ0BsN511fp9vHxpmO8tepQYGmGGIuBqUPbMXVoO5nQTwgRNiTUBCGhRpyJt6iIqn2ZuDL3qbf79uE6fBi83vr/ML0eY3o6xowMzF27EtG3LxG9e6E7x99Jt9fPl9uymbUyi8NFDgCsRh03D27L3RdlkGST5RiEEM2bhJogJNSIGu4T2Tg3bMC5cQOOjZvw5uYGPU4bFYUhLQ19SjKG5JTq22R00dFoIiLQRljQWiLQGI3g86F4vSheLz67Hd/Jk3iLTuItKsKbl4f7yBFchw+jVFb+/IM0GkwdO2AZPATrsKFYBw5Ea7HU6Wfy+RUW7crl9eVZ7M21A+qK4ddf2Jr7hncgPa5u7yeEEE2FhJogGjLU2BcvJqJfPwxJSfX6vqJ+eHJycGzciHPDRpwbNuDJyal9gEaDsW1bTF27Yu7aBVOXLpi7dkWfkoJGU3+jixS/H29+Pu7Dh3EdzKJy109Ubt+B59ix2uUYDFgGDMB2xRVEXTa6Tq04iqKwIrOQ15YfDCzHoNNquKZ3Gg+M6ECn5Kh6+3mEEKIxSKgJoqFCjevAAQ5dOwmt2UzSE08Qc91kNFqZATaUFEXBtf8A9kXfUr74O9xHjtQ+QK8nokcPLAMHYhk0EEufPmit1pDUCuA9eRLn5i041q7FsXo1nuzswHMag4HIEZdgu+JKIkdcgtZ8dpeTFEVh4+FiXl+Rxar9hYH943uk8OjoznRJkXAjhGgeJNQE0WCh5uBBcp6aQdWuXQBE9O9P6h9ewNShQ719hjg7roMHsS9ajH3RItyHDp16QqfD3L071kEDsQwchKVf35CGmF+iKAruI0co/24JZQu/xn0wK/Cc1mol6rLLiL35JiJ69jzr99x5opQ3lmexeHceoK4SfkXPVB4d3YmOSRJuhBBNm4SaIBry8pPi81EyZw4F/3oFxelEYzAQf999xN97D1qjjEJpSK7Dh7EvWkT5osW4DhwI7NcYDFiHD8c2fjyRIy5BF9n8FohUW5z2Y1/4DWXfLMSbc6rvT0T//sRNvZ2oSy9VR16dhf355fzr+wN885P6PhoNXNM7jf8b1UkW0BRCNFkSaoJojI7Cnuxscv/wBxwrVwFg7NCB1D+8gKV//wb5vJbKfexYoEXGtW/fqScMBiKHDcM2fhyRl16KLip8WiEUv5/K7dsp/eRTyr79FjzqHDWGNm2Iu+02YiZOOOvWp725dl7+fj/f7c4HQKuBiX1b83+jOtI2vmm2YAkhWi4JNUE01ugnRVEoX7yYvD//BV9REQAx111H4qOPoI+Pb7DPDXfuE9mUL16EfdFiqnbvPvWEXo91yBBs48cTNepSdNHRoSuykXjyCyiZO5eSjz/GX1YGgNZmI+6Wm4mbOvWsOxbvyi7j5e/38/3eAkDtUDypXyseGtmJNvEyWkoI0TRIqAmisYd0+8rKKHjxRUrnfQao/SHi772XuNtvO+vOni2dJzcX++LvsC9aRNXOnaee0OmwDhpE1PhxRI0ejT42NnRFhpDf6aT0yy8pfu89PEfVEVTaqCji7phK3G23nfUlt+3HS3n5+/2syFQ7FOu1Gib1a81Dl3aUoeBCiJCTUBNEqOapcW7eTP7MvwZaF/QpKSQ++gjRV18to6SC8BYWqkHm22+p3Lbt1BNarTrMefx4osZchj4uLnRFNjGK30/50u8peu21QL8iXXQ0cXffRdytt551iN56rISXvz8QGC2l12q47sLWPDhCwo0QInQk1AQRysn3FL8f+zffUPDSS4HOnqYuXUh89BEiR4yo17lQmiNvSQnlS5di/3YRzo0bwe9Xn9BosPTvT9T4cdjGjEGfmBjaQps4xe/HvmgRRa+9jvvwYQD0aakkP/EEUePHn/Xv2Zajxbz8/QF+PKBePjXoNEzun85Dl3akVUxEg9UvhBDBSKgJoinMKOyvqqL4gw84+eZb+CsqADXcxN12G7Yrr0BrMoWkrlDwVVRQ8cMPlH37LY41a2stSRDRuze2Ky4nauxYDMnJIayyeVK8XsoWLqTw5X/hzVOHcUf07UvyjKeI6NXrrN9n8xE13Kw+eCrcXH9hOg+OlHAjhGg8EmqCaAqhpoavtJSTb79N8dyPUJxOAHTx8cROmULslBvDtkOxr7wcx48/Yl+0mIqVK1Hc7sBzpm7dsF0+Htv48Rhbtw5hleHDX1nJydmzOfmftwPLM0Rfey1Jv3miTv2QNh4u5uXv97M26ySghpsbBqQzbWRHUqMl3AghGpaEmiCaUqip4Ssro3TePIrnfBj4F7XGaMQ2fjzR116LZcCFzb7fjfvYMSqWL6d8+QqcmzfXapExZmRgu+IKbJePx9S+fQirDG+e/HwK//kSZQsWAKCLiyP56aexXXF5nS59bjh0kpe+38/6Q8UAGHVabhyYzoMjOpISLZ3fhRANQ0JNEE0x1NRQPB7sS5ZQ/N77tUb5GFq1InrCBKInXIMxPT2EFZ49xeulcvt2KlasoHz5CtxZWbWeN7ZvT9SoS7FdcQWmLl1afH+ixuTcuo3c3z0XmKXYeslwUp9/HkNaWp3eZ12WGm42Hj4VbqYMVC9LJcuq4EKIeiahJoimHGpqKIpC1Y4dlH4xH/u33wb63QCYunYlcuQIokaOxNyjR5NpwVG8XlwHDuDcto3KLVtxrF6Nr3ruFAD0eiz9+wdqN7ZtG7JaBfjdbk7+5z+c/PebKB4PGouFpEcfIfbmm896ZmJQf1fXHTrJy0sPsPFIdbjRa7lpYBseHNGBJAk3Qoh6IqEmiOYQak7nr6qi/PsfKPvySxxr154aEQToEhKIvOgiLIMGYR00sM7/0j4fPrudyh07qNy2Dee2bVTt2Im/ul9QDW10NJHDhxM1cgTWiy6q0yrTonG4srLI/d3zVG7ZAoC5dy/S/vpXTBkZdXofRVFYm3WSl5buZ3P1quAmvZabB7Xl/hHtSYqScCOEOD8SaoJobqHmdN6SEipWrqRi+Qocq1fjdzhqPa9LSMDcrRvmrl0wZrTHmNEOU0YGupiYc/o8xe/Hd/Ik7qNHcR85gvvIEVxHjuA+dFgdKvw/vzLayEgievcmom9frIMGEtG3Lxq9/lx/XNFIFL+f0k8/peDFf+CvqEBjNpP81JPE3HBDnS8LKorC6oNFvLR0P1uPlQJquLllcFvuv6QDiVEtZ2SfEKJ+SagJojmHmtMpbjfOzZtxrFuPY+MGqnbtBp8v6LEaiwVdTDS6mBj0MTHoYmLQRtnUyww6HYrbjc9ehr/Mjq+sDJ9dvfWXl/8suJzO0LYNlj59ieirbqaOHep06UI0LZ68PHKemoFz/XoAIi+5hNQ//fGc5gVSFIUfDxTx0vf72VYdbswGLTcOaMNdF2XIJH5CiDqTUBNEuISa/+V3OnEdOEDV3n249mfiOnwY96HDePPzz++NNRoMaWkY27U7bWuLuVs39AkJ9VO8aDIUv5/i99+n8J8vobjd6GJjSf3TH4kaNerc3k9RWLm/kJe+P8CO46WAurbUFT1TuXd4e3q0Cv81uoQQ9UNCTRDhGmrOxO9w4C0sVFtgSkvVrawMn70c/D4Uvx+N3oDOZkMXbUMbHY3OFo0u2la9LxqN0RjqH0M0sqr9+8n5zW9xZWYCED15EikzZpz1CuD/q+ay1FurDgVmKAa4qGMC9w5vz8WdEmQEnBDiF0moCaKlhRohzpXf7abwX/+i+L+zQVEwtGlD2t/+iqVv3/N6313ZZby16hDf/JSLz6/+2emWauO+4e25olcqBl3TGNEnhGhaJNQEIaFGiLpxbNhIzlNP4c3NBa2WhIemkXDffefdf+p4sZN3Vh/mk03HqfSo/cFSbGZuHtSGGwe2kU7FQohaJNQEIaFGiLrz2e3k/eGP2BcuBMAycCBpf/9/9bImV4nDzZz1R3lv3RGKKtQlMww6td/N7UPb0Sc9Ri5NCSEk1AQjoUaIc1f65Zfk/eGPKE4nupgYUmf+haiRI+vlvV1eH4t+yuO9dUcCI6YAerWO5tbBbbmyVxoRRhldJ0RLJaEmCAk1Qpwf1+HDZD/+OK49ewGIve1Wkp94ol47lO88Ucp7a4/y9c4c3F51wskok56r+6Rx44A29Ghlk9YbIVoYCTVBSKgR4vz53W4K//EPit97HwBzz560eumf9b6y+skKFx9vOs4nm45zrPjUjNUXpNqY1L81V/VKlaUYhGghJNQEIaFGiPpTvmw5OTNm4C8rQxsVReqf/4RtzJh6/xy/X2H9oZN8vOk4i3fl4faprTdaDQztkMA1fdIY1yOFKLOh3j9bCNE0SKgJQkKNEPXLk5ND9vTHqNyxA4DYW24h6be/QdtA8xuVONx8tSOHBduzA0sxgLocw8guSYztkcylXZKJtkjAESKc1OX7u04TQ8ycOZMBAwYQFRVFUlISEyZMILN6kq4aWVlZTJw4kcTERGw2G9dffz35/zO77dVXX02bNm0wm82kpqZy6623kpOT84ufPWLECDQaTa3t/vvvr0v5Qoh6ZEhLo+2cD4i7604ASubM4eiUm3AfO9YgnxdrNXL70HZ88eAwVv1mJI9f1pkOiVZcXj+Ld+cx/ZMd9P/TUm55ewPvrztCblllg9QhhGi66tRSM27cOG688UYGDBiA1+vl6aefZteuXezZswer1YrD4aBXr1707t2bF154AYDnnnuOnJwc1q9fj1arZqiXXnqJIUOGkJqaSnZ2Nk888QQAa9euPeNnjxgxgs6dO/OHP/whsM9isZx1q4u01AjRcMpXrCD3yafwlZWhjYwk9U9/wjZubIN/rqIo7M6x893uPJbsziczv7zW8z1bRXNRpwSGdUjgwnaxmA0yikqI5qbRLj8VFhaSlJTEypUrGT58OEuWLGH8+PGUlJQEPrisrIzY2FiWLFnC6NGjg77PV199xYQJE3C5XBgMwZuOR4wYQZ8+fXj55ZfPqVYJNUI0LE9uLtmPPU7ltm0AxN50E0lP/hatqfEm0ztc5GDpHjXgbDlWUmtdVqNOS7+2MQzrkMDQjgn0bBWNUS+zGJ8rl9dHeZWX8iov9koPFS4vbp8fn0/B61fw+RW8fj9en4JOq8Fs0GIy6DDptZgNOsx6HSZDzX311mLUyeg28TN1+f7Wn88HlZWVARAXFweAy+VCo9FgOu2PmNlsRqvVsnr16qChpri4mA8//JChQ4eeMdDU+PDDD5kzZw4pKSlcddVVPPfcc1gswVf9dblcuFyuwGO73V7nn08IcfYMqam0ff89Cl95hZP/eZuSuXNxbt9G65dewti2baPUkJFg5d7hHbh3eAcKy12s2l/Imqwi1h48SZ69ivWHill/qJh/LN2PUaflgjQbfdJj6JMeQ+/0GNrFW1rcl6rb66fY4aaowsVJh5uTFS5OVrgpcriwV3qwV3qxV3mwV3kpr/IEQoyresh9fdJrNcRHGom3moiPNJIYqd4mRZlJj4sgPc5CepwFm3QMF2dwzi01fr+fq6++mtLSUlavXg2oLTcdO3bkjjvu4C9/+QuKovDUU0/x2muvce+99/Lmm28GXv/kk0/y2muv4XQ6GTx4MAsXLiQ+Pv6Mn/fWW2/Rtm1b0tLS2LlzJ08++SQDBw7kiy++CHr873//+8AlsNNJS40QDa9i5UpynnwKX2kpWquV1D/+Advll4esHkVROFzkYE3WSdYeLGL9oZOUOD0/Oy46wkD3NBudk6PomBRJp6RI2sZbSYoyodU2j7CjKArlLi9F5S4Ky10UVVQHlgoXRaeFlpPVQaa8yntenxdp0mMz64k06zHqtei0WvRaDTqtBoNOg1ajwa8oVHn8uLy+WrdVHh8urz8wJ9HZirEYSI+10CbOQpt4C12So+iaGkX7hEhpfQtDjXL56YEHHmDRokWsXr2a1qfNUbFkyRIeeOABDh8+jFarZcqUKezZs4eBAwcya9aswHFFRUUUFxdz9OhRXnjhBaKjo1m4cOFZ/ytp2bJljBo1ioMHD9KhQ4efPR+spSY9PV1CjRCNxJOXR/bjT1C5ZQsAMddfT/LTM9CaQz+/jKIoHD3pZMeJUrYdK2XHiVJ259jP+OVq1GlpFRtB69gIWsVEkBRlIjGwmUmKMpEQacJs0NZrS09NQClzeiir9FDq9FBa6Q7ct1ffFjvd1QFGDTJ1bUXRazXEWY3ER5pIiDQSbzUSZzURYzFgM+uJMhuwRRiIMuuxmatvIwxEmvTo6iHs+f0KLq+f0kq32kpUoYaxk9WtR7llVRwvdnK82MlJh/uM72PQaeiQGEn3tGj6pEfTOz2Grik2CTrNXIOHmoceeogFCxawatUqMjIygh5TVFSEXq8nJiaGlJQUHn/8cX7zm98EPfbEiROkp6ezdu1ahgwZclY1OBwOIiMjWbx4MWPH/nqHROlTI0TjU7xeCl97jZNvvgWKgqlzZ1q9/BKm9u1DXdrPuL1+9uXZ2ZdXzsGCCg7kl5NV6CC7tDKwqviv0Ws1RJr1WI16zAYtOq3aUqHRaNBqQKvRoNWedr/61uPz4/KqLRent2Q43V7O8qN/JtKkV0NX9SWchOrb+EgTCdUBJs5qJCHSiM1saDYtUQ6Xl+MlTo4XV3I8v5SCQycoOnICe3YOVnsJke5KTD43Jr8Ho8+LX6cjMjqSxAQbrZJiaJ0ShykyAn1MDIa0NPRpaegTEtBoJfg0VQ3Wp0ZRFB5++GHmz5/PihUrzhhoABISEgC1RaWgoICrr776jMf6/eq/Kk5vWfk127dvByA1NfWsXyOEaFwavZ6kRx/FMmAAOb99Etf+/RyefB2pz/+O6GuuCXV5tRj1Wnq1jqFX65ha+70+P7llVZwoqeR4iZO8sioKyqsorL68U1C9ub1+vH5FbU0JcmnrfJgNWqIjDMREGImOMBBtMVQ/rr61qv1PEqNMgVajcFovS/H5cB8+TNXu3VTt2YPlYBbtDh+idU5und+rNMg+jcGAIS0NU+dOmLp0xdy1C+bu3THI90uzU6eWmgcffJC5c+eyYMECunTpEtgfHR1NREQEALNnz6Zbt24kJiaybt06HnnkEaZOnco//vEPADZs2MCmTZu46KKLiI2NJSsri+eee478/Hx2796NyWQiOzubUaNG8f777zNw4ECysrKYO3cul19+OfHx8ezcuZPp06fTunVrVq5ceVa1S0uNEKHlKSgg57dP4ly/HoDoiRNJee5ZtGfo7N+cKIpChcuLw+WjwqV2pnV5/fgVBUUBv6KOBqq576+59Sv4FAW9Vou5ZiSQQaeOFNKro4GiIwwtbii64vNRtWcvjnXrcKxdS+WOHSiVwecd0phM6JOTMSQloU9KQhcbi8ZsQmuOQGM0UGKvJLegjPyiMopP2vE4KzH5PMS4K0hylhBfWYaO4F+DhtatsQwciGXAAKwDB2Bo1aohf2xxBg12+elM14pnz57N1KlTAXjqqad49913KS4upl27dtx///1Mnz498NqffvqJRx55hB07duBwOEhNTWXcuHE8++yztKr+hTly5AgZGRksX76cESNGcPz4cW655RZ27dqFw+EgPT2diRMn8uyzz8o8NUI0I4rPR9G//03R62+A34+xQwdavfRPzJ07h7o0EWLu48dxrFmLY906nOvX46seXVtDY7Fg7toVc/fumLt0xti+PcZ27dQQU4d+TMeLnaw/dJJ1h06yLuskBSUOEipLSXUW064sl/7eQjqX52HLOwY+X63XGtu3J+rSkUReeikRvXuj0bWssBkqskxCEBJqhGg6HBs2kvPEE3gLC9GYTCQ/+wwxkye3uOHULZni91O5ZQv2RYupWLUKz4kTtZ7XRkZiGTQI65AhWAcNxNi+fb2HCEVR2JdXzg978/lhXwHbj5cG5jaK8FQxjgLGerPJOLEff+Ze8J4aKaaLjyf6yiuInjABc7du9VqXqE1CTRASaoRoWrwnT5Lz5FM4qqeEsF15JSm//z26SGuIKxMNRVEUqnbuxP7tt9gXf4f39CV09Hoi+vRWQ8zQoUT07IlGf15TqdVZUYWL5fsKWLQrj1X7C/Ge1kt7cLKRKUo2PY7uxLtuDf7T5j4zdelCzKRriZ4wAZ18v9Q7CTVBSKgRoulR/H5OvvMOhS//C3w+jG3bkvbii0T07BHq0kQ98hYVUfrZ55R+9lmtFhltZCRRo0cTNWYM1kED0VqbTqAtdbpZvCuPr3bksO7QyUALjkYDQ9tEc5M2h247V+NetQLFo3YM10REEH3lFcROmYL5ggtCWH14kVAThIQaIZou59ZtZD/+ON7cXNDrSXjgfhLuvRfNr8wyLpouRVGo3LyZko8+xr50KdR88VssRI0cie3y8VgvuqhRl9E4VwX2Kr75KZevd+TUWiHeoNNwZYaVG+37SFi2EPfBg4HnInr3Jv7ee4i89FK5rHqeJNQEIaFGiKbNV1pK7gsvUL5oMQDmnj1J+9vfMLU/89QRounxVVRQtmABpR9/jOvAqS95c+9exN44Bdu4sWirR8s2R8eLnSzcmctXO3LYm3vqElRKlIl74+xcvGcV3hXLAiHO1KULCQ/cT9SYMTIXzjmSUBOEhBohmj5FUbAv/Ia8P/4Rv92Oxmwm6fHHib35JvlCaOKq9u2j5KOPKfv6axSnEzh1OSbmxhuJ6N49xBXWvz05dj7dfJwvt2cH5ibSaODyNAO35m4g5rsFKA4HAMYOHUi4/35sl4+XUVN1JKEmCAk1QjQfnrw8cp9+BsfatQBYhw4h9c9/lsnQmhi/2035d99RMvejwOrsoA59jp0yhehrrm4RHWddXh9Ldufz8aZjrDl4MrA/w+jlUfs2Oq/+BioqADBmZJD46KNEjblMLkudJQk1QUioEaJ5Ufx+Sj76iIK/v4hSVYU2KoqU3z2H7cor5csgxNwnTlD6ySeUfvY5vpISdadeT9To0cROmYJl4IAW+9/oSJGDjzcd57MtxymqUNepivJVMb1iB4M3f4emXL1kZe7Rg6THpmMdOjSU5TYLEmqCkFAjRPPkOnSYnKeeomrnTgAiR44k5dlnZHbXRqb4/ThWr6b4ww9xrPqRmuFA+pQUYq6/jpjJkzEkJYW4yqbD7fWzdE8+H6w/wvpDxQBYPFXcm7ee0bu+R+eqUvcNHkzyjKcwnzZLv6hNQk0QEmqEaL4Ur5eit96i6I1Z4PWiiYggcdqDxN1+u4yQamD+ykrKFnxF8fvv4z50KLDfOmwYsVNuJHLEiEafT6a52Ztr5/11R5i/LZsqj59oVzm3H1rBmINr0Pm8oNUSe+ONJP7fw+hiYkJdbpMjoSYICTVCNH+uAwfIfeEFKjdvAcDUqSMpv/89lv79Q1xZ+PEUFFAydy6lH3+Cr7QUAK3VSszkScROmYKxXbuQ1tcclTrdfLr5OO+vO8qJkkqSHMXcvWchF2errZC6mBgSH32UmOsmS2fi00ioCUJCjRDhQVEUyuZ/ScHf/x7ozxE96VqSnngCfWxsiKtr/qr27KH4vfco+3ZRYFiyoXVr4m69hehJk9BFRoa4wubP51f4YW8+7607wpqDJ+ldeID7d35Ju3J1hmVj126k/u5ZLP36hbjSpkFCTRASaoQIL96SEgr/+U9K530GgNZmI+GBB4i9+Sa0RmOIq2teFLeb8u+/p2TuRzg3bw7sj+jfn7jbbyNq1ChpOWgg+/PLeW/tEb7cfIxR+3/k1r3fEelV+9vor7ia9r97Gl10dIirDC0JNUFIqBEiPDm3biXv9y/g2r8fAEN6OkmPP0bU2LEtdgTO2fLk5VH66aeUzJuHr7BI3anXYxs7lriptxPRs2doC2xByio9zNt8nC+W7WL02i8Ye3QjWhQqrNHwyG+58NaJLfb3WUJNEBJqhAhfis9H2fz5FPzrX4Ev54g+fUh68rdY+vYNcXVNi6IoODdsoOTDuZQvWwY+HwC6xARir7uemBuux5CcHOIqWy6/X2HF/gKWfrKUkV+/RXpFIQDb2/fH9PhvuXx4d8yGltVqJqEmCAk1QoQ/v8PBydnvcvKdd1AqKwGwDr+YhAceaPHhxldaSun8Lyn95BPcR44E9lsGDCD2pilEjR4tI8mamIMnTrLtz/+g24oF6BQ/doOFuQOupd2Nk7llSDsSo5r+uln1QUJNEBJqhGg5PAUFFL36KqVfzA+0RFiHDiH+vvtb1MRwiqJQuXUrpZ/Ow75oEYpbnQxOa7Fgu+ZqdTXpzp1DXKX4NUVbd3LoyRlEHVeH1G9K7sq/+13H0KHduXNYBhekhfd3moSaICTUCNHyuI8do+ittyj7cgF4vQCYunYl7tZbsF15ZbNYIfpcePLyKPtyAWXz5+M+ejSw39StG7E33ojtiivQRVpDWKGoK8XjoeCd/1L0+utoPR6cehP/veByvs0YwoD2Cdw6uC1ju6dg1IffGmkSaoKQUCNEy+U+kc3Jt/9D2ZcLUKrUkSW62Fhibrie2ClTwqIPia/CQcWKFZTNn6+umVX9p11jsWAbO5bYG2/A3KtXi2mlCleuQ4fIfebZwFpbPyV04B99ryffGk9CpIkpA9OZMrANaTHNdyX0/yWhJggJNUIIX2kppZ9/TvGHH+LNyVV36nREXnQR0RMnEDlyZLNqvfGWlFCxbDnlS5fiWLMGpXpeGQDLhRcSfe212MaOQWuVVplwovj9lHw4l4J//hOlshKvycz7fScwL7k/aDRoNTCqWzK3Dm7LRR0T0Gqbd5CVUBOEhBohRA3F66V82TJK3v+g1rws2qgobOPHY7viCiz9+zW56f8Vv5+qvXtx/LiaitU/Urlte6DPEICxbVuiLh9PzMSJGNu0CV2holG4jx0jZ8bTVG5RZ9h29h3IvwfcyNICf+CYdvEWbhnclsn9WxNjaZ7zN0moCUJCjRAiGNehw5QtWEDZV1/hzc0N7NdGRxM5fDjWoUOxDBiAsXXjL6CpKAqe7Bwqt27BsWYtFWvW4CsqqnWMqVs3oi4bje2yyzB27CiXl1oYxeej+L33KXz5ZRS3G210NDz8OB9FdePzrdmUu6r7kum1XN07jVuHtKVX65jQFl1HEmqCkFAjhPglit+Pc+NGyhZ8RcXy5YH1jmro01Kx9L8Qc9eumLp0wdylM/rExPr7fLcb9/HjuA4dwn3oMK7MfTi3bMWbn1/rOK3FgmXIECIvvgjrRReHJGyJpsd18CA5Tz5F1e7dAESNGYNtxjMsPFbFB+uPsjfXHji2d+tobhnclqt6pzWLOW8k1AQhoUYIcbYUr5fK7dupWLkS58ZNVO7aVesyTw1dXBzGNm0wpKWiT0nFkJqKPjERrdWK1hKBRqdDURRQAMWP3+nEZ7fjLSjEW1CANz8fb0EBnoICPNnZQT8DvR5z9wuwDhiA9eLhWPr2QSPLQIggFI9HXc1+1r/B60UXH0/qH14g8tJL2XqslDnrj/LNzlzcPvXyVJRZzxU9U5nYtxUD2sU12b43EmqCkFAjhDhXfocD57btVP20k6rM/bgyM9UJ7Or5z6fWYsHYvj3GjAxMHToQ0bcvEb16oo0In5EsouFV7t5N7lNP4TpwEIDoa64h+Zmn0dlsnKxw8enmE3y4QV0pvEarmAgm9E1jYt/WdExqWouWSqgJQkKNEKI++SsrcR3MwpOTgyc3B29uLp7cPLxFRfgrK1GcThSfDzQa0GjQaDRoLBZ0kZHoExPRJyejT0rCkJyk3qano09Kkj4xol743W6KXnmFk+/8FxQFfUoKqX/+E5HDhqnP+xU2HC5m/rYTLPopL9D3BqBnq2gm9m3FVb3TmsSsxRJqgpBQI4QQoqVxbt1Gzoyn8Bw9BkDMlBtJfuKJWsP8qzw+vt+bz/yt2azcX4jXr8YCrQYGZcRzec8UxvZIISnKHJKfQUJNEBJqhBBCtER+p5OCf/yTkg8/BMDQpg1pM/+CpX//nx17ssLFwp25fLEtmx3HSwP7NRoY0DaO8T1TGN0tmfQ4S2OVL6EmGAk1QgghWjLHunXkPP2MOnWBRkPcHXeQ+Mj/nXHCyePFThbtyuXbn/LYflrAAeicHMnIrklc2iWJ/m1j0esabnkGCTVBSKgRQgjR0vnKy8mf+VfKvvgCAGPHDqT99W9E9Oj+i6/LLq1k8a48vtuVx5ZjJfj8p6JDlEnPoPbxDOsYz0UdE+iYFFmvfcMk1AQhoUYIIYRQlS9bTu7vfqdO5qjTkXD//STcfx8ag+FXX1vm9LDyQCHL9xWwIrOAEuep5TlsZj3bfjcGXT0OD5dQE4SEGiGEEOIUb0kJeX/4A+WLFgNgvuACUmf+BXOXLmf9Hj6/wu6cMtYcPMmag0UkRBp5+ca+9VqnhJogJNQIIYQQP2f/9lvyXvgDvrIy0OuJv2MqCQ8+eE7zIymKUu/TEtTl+7vhevYIIYQQosmzXX45GV9/RdSYMeD1cvI/b3PoqqupWL2mzu8V6nmWJNQIIYQQLZwhKYnWr/yL1m+8gT41Fc+JExy/+26yn/gN3pMnQ13eWZNQI4QQQggAoi4dSfuvvybu9ttAq8W+cCFZl19B6eef0xx6q0ioEUIIIUSALtJK8owZtPvkE0wXdMNfVkbuM89y7LbbcR06HOryfpGEGiGEEEL8TETPHmR8+ilJTz6JJiIC56ZNHL7mGgpffQ2/yxXq8oKSUCOEEEKIoDTVo6Haf/011kuGo3g8FL3+OofGX47922+b3CUpCTVCCCGE+EXG1q1I//e/afXSP9GnpODJySH7scc5euMUnNu2hbq8AAk1QgghhPhVGo0G2/jxdFj0LYmP/B8ai4XKHTs4OuUmsh97DPeJ7FCXKKFGCCGEEGdPGxFBwgMP0GHxIqInTwKNBvu3izh0+eUUvPgi/srK0NUWsk8WQgghRLNlSEoi7U9/ImP+F1iGDEZxuyn//gc0en3IagrdJwshhBCi2TN37Uqb//6XipUr0ZrNZ7UoZkORUCOEEEKI86LRaIgaMSLUZcjlJyGEEEKEBwk1QgghhAgLEmqEEEIIERYk1AghhBAiLNQp1MycOZMBAwYQFRVFUlISEyZMIDMzs9YxWVlZTJw4kcTERGw2G9dffz35+fm1jrn66qtp06YNZrOZ1NRUbr31VnJycn7xs6uqqpg2bRrx8fFERkYyadKkn72vEEIIIVquOoWalStXMm3aNNavX8/SpUvxeDyMGTMGh8MBgMPhYMyYMWg0GpYtW8aaNWtwu91cddVV+P3+wPuMHDmSTz/9lMzMTD7//HOysrKYPHnyL3729OnT+frrr5k3bx4rV64kJyeHa6+99hx+ZCGEEEKEI41yHqtRFRYWkpSUxMqVKxk+fDhLlixh/PjxlJSUYLPZACgrKyM2NpYlS5YwevTooO/z1VdfMWHCBFwuF4Yg49vLyspITExk7ty5gfCzb98+unXrxrp16xg8ePCv1mq324mOjqasrCxQmxBCCCGatrp8f59Xn5qysjIA4uLiAHC5XGg0GkwmU+AYs9mMVqtl9erVQd+juLiYDz/8kKFDhwYNNABbtmzB4/HUCkVdu3alTZs2rFu3LuhrXC4Xdru91iaEEEKI8HXOocbv9/Poo48ybNgwevToAcDgwYOxWq08+eSTOJ1OHA4HTzzxBD6fj9zc3Fqvf/LJJ7FarcTHx3Ps2DEWLFhwxs/Ky8vDaDQSExNTa39ycjJ5eXlBXzNz5kyio6MDW3p6+rn+qEIIIYRoBs451EybNo1du3bx8ccfB/YlJiYyb948vv76ayIjI4mOjqa0tJR+/fqh1db+qN/85jds27aNJUuWoNPpuO222ziPK2E/M2PGDMrKygLb8ePH6+29hRBCCNH0nNMyCQ899BALFy5k1apVtG7dutZzY8aMISsri6KiIvR6PTExMaSkpNC+fftaxyUkJJCQkEDnzp3p1q0b6enprF+/niFDhvzs81JSUnC73ZSWltZqrcnPzyclJSVojSaTqdZlMCGEEEKEtzq11CiKwkMPPcT8+fNZtmwZGRkZZzw2ISGBmJgYli1bRkFBAVdfffUZj60ZGeVyuYI+379/fwwGAz/88ENgX2ZmJseOHQsagoQQQogGoSjgdYGnUr09bWSvCL06tdRMmzaNuXPnsmDBAqKiogL9WaKjo4mIiABg9uzZdOvWjcTERNatW8cjjzzC9OnT6dKlCwAbNmxg06ZNXHTRRcTGxpKVlcVzzz1Hhw4dAgElOzubUaNG8f777zNw4ECio6O56667eOyxx4iLi8Nms/Hwww8zZMiQsxr5JIQQQpwVrxsK90HxISjOgpPVtyVHwWUHtwP4n64SEbEQmwFx7SEuo/p+BiR0BmtCSH6MlqpOoWbWrFkAjPiflThnz57N1KlTAbUFZcaMGRQXF9OuXTueeeYZpk+fHjjWYrHwxRdf8Pzzz+NwOEhNTWXcuHE8++yzgctFHo+HzMxMnE5n4HUvvfQSWq2WSZMm4XK5GDt2LG+88ca5/MxCCCHEKRUFcGAJ7F8MWcvBXVG311eWqFvO1p8/l9AFMi6GjOHqFhFbPzWLoM5rnprmROapEUIIEeAshp8+g52fQPbm2s+ZYyChE8R1UFtf4juorS+WWDBYwWAGjRYUP/g8UJ4HJYeh+LDawlNzv/QYtVp1tHo12HS7CrpeCZFJjfkTN1t1+f6WUCOEEKLlOLEF1r8Be78Cn/vU/rS+0HkcdB4LKb1BWw9LIzqL4egaOPwjHFoBRactK6TRqp834G5oP7J+Pi9MSagJQkKNEEK0UIoCmYtgzb/g+PpT+5N7Qt+b4YIJYEtt+DqKDsLeBbD3a8jZdmp/fEc13PSeAhExDV9HMyOhJggJNUII0cIoitpPZsVMyN2h7tMaoOd1MOg+SOsTutoK98Omt2H7XHCXq/sMFuh1PQx+EBK7hK62JkZCTRASaoQQogU5th4WzzjVeddghYH3wOAHICr4/GYh4SpX+/VsfBsK96r7NFroeT2MeEodRdXCSagJQkKNEEK0AM5iWPo72PaB+thgUcPM0P9r2sOrFUXtf7N+FuxbqO7T6qHvrTBiBkQlh7a+EJJQE4SEGiGECGN+P2z/UA00lcXqvr63wqjnITIxtLXVVfZWWPYnyKqecNYYBZf8FgbdD3pjaGsLAQk1QUioEUKIMFWwF75+9FQn4KTucOU/oU0zn5z1yBpY8sypTsXxHWHc36DT6NDW1cjq8v0tY8iEEEI0T34frHkF3hyuBhqDFcb8Ce5b2fwDDUC7YXD3MrjmdbAmwcmD8OEk+OxOdcJA8TPSUiOEEKL5KTkCXz6o9kMBdc6XK/4B0a1/8WXNVpUdVv5NnWNH8asTBI7/G/S6ATSaUFfXoKSlRgghRHhSFNj6AcwapgYaYyRc/SpM+Th8Aw2A2QZj/wz3LIOUnlBVCvPvg8/uUJdoEICEGiGEEM2F2wFf3AtfPaSuz9RmCNy/GvrdFvatFQFpfeGe5TDyWdDoYPd8NeAd/jHUlTUJEmqEEEI0fUUH4e3R8NOn6pf56N/D1G9a5jwuOgNc8hu4a6m6NpU9G967Sh355XX/+uvDmIQaIYQQTdvehfDWCCjYA5HJMHUhXDQdtLpQVxZarfvDfT+qQ9dR1GUg3hmtzlbcQkmoEUII0TQpCqx+GT65WV1KoM1QuG8VtB0a6sqaDlMkXPMa3DAHImLV5SDeHK4uwdAyxgHVIqFGCCFE0+PzwNePwPfPq48H3gu3f9W0ljhoSrpdBQ+sU1f89lbCN4/DRzdCRWGoK2tUEmqEEEI0LVVl8OF1sPU9dR2kcX+Dy/+u9iURZ2ZLhVu+gLEzQWdUF/OcNQQOfh/qyhqNhBohhBBNR+kxeGcsHFqurtt041wYfH+oq2o+tFoY8qA6QirpAnAUwpzJ6rILfl+oq2twEmqEEEI0Ddlb4D+j1NWqI1PgjkXQZXyoq2qeUnqowWbA3YACq/4O718D5fmhrqxBSagRQggRenu/htlXgKMAknvAPT9AWp9QV9W8GczqLMuT3lGXkDjyI7x5MRxZHerKGoyEGiGEEKGjKLD2VfjkVrWDa8fL4M7F4T07cGPrORnuXQGJ3aAiX53T5sd/qiubhxkJNUIIIULD54VvHoMlzwIKXHiXutyBKSrUlYWfxM5q61evG9W1o354QR0d5SwOdWX1SkKNEEKIxldlh49ugM3/BTQw9i/qpRKdPtSVhS+jFSb+G676F+hMcOA7ePMSyN4a6srqjYQaIYQQjctRBO9erg411keoE8cNmdZy1m8KJY0G+k+Fu7+H2HZQdgz+OzZsJuuTUCOEEKLx2HNg9njI+wmsiXDHt9DtylBX1fKk9oJ7V0LXK8HnVifr++JecFWEurLzIqFGCCFE4yg5Av8dB0X7wdZKHbLdql+oq2q5ImLUVrIxf1IXCf3pU3h7FBRmhrqycyahRgghRMMrzFQDTelRiM1QA01Cp1BXJTQaGPqwukhoZAoU7oO3RsJPn4W6snMioUYIIUTDyt2hXnIqz4XEruqQ7di2oa5KnK7tULj/R2h3MXgc8Pld8M0T4HWFurI60ShKGPQMOgt2u53o6GjKysqw2WyhLkeIs6co6twSRfvV5ntXBbgd6h8exa9OqmW0qFPKm6LUZv3YthCVClpdqKsXLd2JLfDBRHCVQWpvuGU+WONDXZU4E78Plv8FfnxRfdyqP1z3LsS0CVlJdfn+llAjRFNTegyObYDc7eq/cPN2qgv81ZXWAHHtIa2v2m8hfSCk9JKgIxrPic3VgcYO6YPh5k/BHB3qqsTZ2P+d2nG4qhQiYuHa/0Cny0JSioSaICTUiCZLUSBnG2R+C5mLIH/Xz4/RaNXhl3HtwRyjtswYIwGN2mLjdoLHqYafsuNQdgL83p+/jyka2g5R19PpepX8i1k0nOOb1EDjLoc2Q+HmeWCKDHVVoi5KjsK829W/TwDDfwMjZjT6P4wk1AQhoUY0Oa5y2PkJbHxbXcCvhkarNvmm9VWb61N6QUJndR2Xs+XzQnkOFOyDnK3qv5iPb1D/xRz4HB20vwS6T1SHdVri6u9nEy3b8Y3wwbVqoGl7Edz0iQSa5srrgu+eVuexAcgYDpP+C5GJjVaChJogJNSIJqNgn/oHYsfH6h99UPvDdBwNXa+ATmMaJmD4feqlrKxlsPtL9X4NnQl6XQeDHlBX9xXiXB1bD3MmgbtC7XR60yfqTLaieds5D77+P7VFOCoVJs9WW30bgYSaICTUiJA7vhFWzFRDRY34jjDgbug9RZ0zojGdzII9X8KuL2pf8mp3MQx7RA1ZMsOrqIuj6+DDyacFmk/VS6UiPBTsg09vg6JMtaX3shdgyEMN/ndCQk0QEmpEyORsh2V/VKeEB/XyUufxMPBuyBgB2hDPrKAocGITrH8D9nwFik/dn9ZPvX7e6TIJN+LXHV0LcyarfbwyhsOUTyTQhCNXBXz9COyqnsem65VwzWtqZ+IGIqEmCAk1otGVZathZsfHgKL+y6bPTTD8CbXTb1NUdgLWz4JN74C3Ut2X1rc63IyRcCOCO7IGPrxODTTtR8CNH0mgCWeKApvfgcUz1CUWotNh0jvQZlCDfJyEmiAk1IhG4/PA2ldh5f87FQx6Xg8jZ6ijl5qDikJY+4ra98fjVPel9YNxM6HN4NDWJpqWI6urA40T2o+EKR+BISLUVYnGkL0VPrtDnT9Lo4ORT8NF0+t9dJSEmiAk1IhGcXyj2jRbsEd93GYIjP2zOpqpOaoohHWvwsb/nAo3Pa+D0S9AdKvQ1iZC7/AqmHuD+rvRYRTc+KEEmpamyg7fPAY/zVMfZwyH6z+o1z6Cdfn+lmUShKgPlaWw8DF4Z4waaCzxMPHN6gX7mmmgAXXY5mV/gEd2QL/bAI36x+u1C2Hl38FTFeoKRagcWgkfXq8Gmo6j4ca5EmhaIrNNnZjvmjfUUZyKos5sHiLSUiPE+TqyWp15056tPu5zM1z2x/Cc2C5nGyx6Up3zBtTLaVe+rM53I1qOQyvUFhpvldrX6voP6jaPkghPRQfU4fu2tHp9W7n8FISEGlHvfF5Y+VdY9SKgqF/wV70CGReHurKGpSjqCr5LnoWKPHVf75tgzJ/CM8iJ2vYvgU9vrQ40Y+GGD0BvCnVVIozJ5SchGlrpcXXV4VV/BxTocwvc92P4BxpQR0D1ug4e2qjOsYMGdsyF1wfA7vmhrk40pD0L4OOb1EDT5XIJNKLJkVAjRF0dXQtvjYATG8FkU4cyTni95U0Db46GK/4Bdy2BpO7gPAnzpsJnd4GzONTVifq24xOYdwf4PdD9Wrj+fQk0osmRUCNEXWx5F967GpxFkNIT7v8Rek4OdVWhlT4Q7l0Bw3+rDuvc9Rm8MVhd5VeEh82zYf596sSMfW6GSW+DzhDqqoT4GQk1QpwNnwe+eUIdru33wAUT4M7vmu4keo1Nb4RLn4G7lqqLb1bkw9zrYcFD6sKdovla9wYsfBRQYMA9cPVrjb5KsxBnS0KNEL/GcRI+mAib/qM+vvRZuO5dWaQvmNb94b5V6nowaGDbBzBrmLomkGh+Vv0dvpuh3h/6f3D530O/rIcQv0B+O4X4JcWH4O1RcORHMEaqc3EM/40sF/BLDBHqhINTF0J0Gyg9qnaqXvo8eF2hrk6cDUWB71+AZX9SH494Wp2vSH7vRRMnoUaIM8ndAe+MhZLDENMW7v4eul4R6qqaj3YXwQNr1D4YKLDmZfjPKMjfE+rKxC9RFFj8FKz+p/r4sj/CiCcl0IhmQUKNEMEcXgWzrwBHAST3VPuKJHULdVXNj9kGE96AG+aosyzn/wRvXaL20/D7Q12d+F9+H3z9f7Dh3+rjy1+EYf8X2pqEqAMJNUL8r91fwpxJ4C6HdhfDHd9AVHKoq2reul0FD6xTJ2vzudV+Gh9OhvL8UFcmavi86ginre+DRgsTZsHAe0JdlRB1UqdQM3PmTAYMGEBUVBRJSUlMmDCBzMzMWsdkZWUxceJEEhMTsdlsXH/99eTnn/rDdeTIEe666y4yMjKIiIigQ4cOPP/887jd7l/87BEjRqDRaGpt999/f13KF+LXbXlXnWvF51a/iG/+TJ2PRZy/qGS46RN1bhu9GbJ+gFlDIHNRqCsTnkqYd7u6rpdWr8691OemUFclRJ3VKdSsXLmSadOmsX79epYuXYrH42HMmDE4HA4AHA4HY8aMQaPRsGzZMtasWYPb7eaqq67CX93UvG/fPvx+P2+++Sa7d+/mpZde4t///jdPP/30r37+PffcQ25ubmD7f//v/53DjyzEGax9VR2yjQL9p8J178l6NvVNo1FnIb53pXpZz3kSPrpRXQzU7Qx1dS2Ts1ide2nfQtCZ1EuFPa4NdVVCnJPzWvupsLCQpKQkVq5cyfDhw1myZAnjx4+npKQksD5DWVkZsbGxLFmyhNGjRwd9n7///e/MmjWLQ4cOnfGzRowYQZ8+fXj55ZfPqVZZ+0mckaLAipmw8m/q42GPwOgXpGNkQ/O64Ic/wLrX1McJXdRJ3VJ7hbaulqTkCMyZDCcPqC2SUz6GtkNDXZUQtTTa2k9lZWUAxMXFAeByudBoNJhMp6bONpvNaLVaVq9e/YvvU/Mev+TDDz8kISGBHj16MGPGDJzOM//LzuVyYbfba21C/IyiwHdPnwo0lz4ngaax6E3q0O9bvoDIZCjKVIfPr31NOhE3hpzt8PZlaqCxtYY7l0igEc3eOYcav9/Po48+yrBhw+jRowcAgwcPxmq18uSTT+J0OnE4HDzxxBP4fD5yc3ODvs/Bgwd59dVXue+++37x82666SbmzJnD8uXLmTFjBh988AG33HLLGY+fOXMm0dHRgS09Pf1cf1QRrvw++OphWP+G+nj832H4ExJoGlvHUWon4i5XqH2ZljwDc64Fe/C/GaIeHPwe3q0Z3ddDna4gqWuoqxLivJ3z5acHHniARYsWsXr1alq3bh3Yv2TJEh544AEOHz6MVqtlypQp7Nmzh4EDBzJr1qxa75Gdnc0ll1zCiBEjePvtt+v0+cuWLWPUqFEcPHiQDh06/Ox5l8uFy3Vqoi+73U56erpcfhIqnxfm3wu7PldHelzzunSMDDVFUTtqL54B3kqIiIOrX4VuV4a6svChKLDxP+roM78XMi5R+9CY5W+iaLrqcvlJfy4f8NBDD7Fw4UJWrVpVK9AAjBkzhqysLIqKitDr9cTExJCSkkL79u1rHZeTk8PIkSMZOnQob731Vp1rGDRoEMAZQ43JZKp1GUyIAL8PvnxADTRaA0x+By64JtRVCY0GLrwD2g6Dz++CvJ3wyc1qp+2xf5FlKc6Xpwq+fRy2zVEf97pRDY16Y2jrEqIe1enyk6IoPPTQQ8yfP59ly5aRkZFxxmMTEhKIiYlh2bJlFBQUcPXVVweey87OZsSIEfTv35/Zs2ejPYe1RLZv3w5AampqnV8rWjC/H776P/jpU3Xo6nXvSqBpahI7q5dDhlZP+rblXXjzErUPiDg39hz1ctO2OWrL5Jg/wcR/S6ARYadOaWLatGnMmTOHuXPnEhUVRV5eHnl5eVRWVgaOmT17NuvXrycrK4s5c+Zw3XXXMX36dLp06QKcCjRt2rThxRdfpLCwMPA+NbKzs+natSsbN24E1Llv/vjHP7JlyxaOHDnCV199xW233cbw4cPp1UtGSoizpCiw6DewvfoP+6S35dJGU6U3wZg/wm0LICpV7cz69mj48R/qpUNx9o6th7dGQPZmiIiFWz6HoQ9L3zERlurUp0Zzhv8JZs+ezdSpUwF46qmnePfddykuLqZdu3bcf//9TJ8+PfDad999lzvuuCPo+9SUcuTIETIyMli+fDkjRozg+PHj3HLLLezatQuHw0F6ejoTJ07k2WefPev+MTKkW/D972H1S4AGrn0Lel0f6orE2XAWqx269y1UH6f1VWe7lWUrft3m2fDtb8DvgaTucOOHEHfmFnYhmqK6fH+f1zw1zYmEmhbux3/CDy+o9698We27IZoPRYEdH6kLLVaVgc4IlzwJwx4F3Tl1DQxvXjcs+i1sma0+vmCCugaX9EsSzVCjzVMjRLOw8T+nAs1lf5RA0xxpNOrotAc3QOdx6tDvZX9U57XJ3x3q6pqWooPwzujqQKOBUc+rfcck0IgWQEKNCG87PoFvn1DvD/+NrDjc3NlS1VlvJ74F5hjI3Q5vDoclz4GrItTVhZaiwPa56vnI3aEOib95Hlz8mPSfES2GhBoRvvYuVIduAwy8D0Y+E9p6RP3QaKD3DTBtA3S9Up1vZe0r8NoA2PWF+uXe0lTZ4Yt71N93j0NdXf6BNdDpslBXJkSjklAjwlPWcvjsDlB80OdmGPdX+ddquIlKUTu+TvkEYtpCeY763/z9a6Bwf6irazzHN8GbF6srbGt06lIfty0AW1qoKxOi0UlHYRF+jm9Uv9g8Tuh2NUyeLZ1Jw52nEtb8S+0Q7nOpkyoOmaZecjRFhrq6hlFZAj/8ETb/F1Aguo06kWT6wFBXJkS9ko7CouXK+wk+nKwGmg6XqnPRSKAJf4YIGPGUekmq01h1CPOal+H1gbDj4/BaIFNRYPtH8OqFsPkdQIHeU+D+HyXQiBZPWmpE+Cg6CLPHgaMQ0gfDrV/IiI+WKnOROqS59Jj6OKUXXPYCtB/ZvC9DZm9VO0UfXa0+TugCV/4T2l0U2rqEaEAyT00QEmrCXOlx+O84sJ9Qv8CmLgRzdKirEqHkqYT1s9QJF112dV/rAXDxE9B5bPMKNwX7YPmfYO/X6mN9BIx4EgZPk6UORNiTUBOEhJowVlGgBpriLEjoDHcsAmtCqKsSTYWjCFa9qM7b4q1S9yVdoPa56XmduiRDU1V8GFb8FXZ+AiiABnrdAJc+AzFtQl2dEI1CQk0QEmrCVGUJvHsl5O9SO0reuRiiW4W6KtEUlefD+tdh0zvgrp7TJjIZBt4DfW9VR1M1FaXH1Bamre+rQ9YBul2lTksgy0OIFkZCTRASasKQqwI+mAAnNqlfTncsgvgOoa5KNHWVperK3xveVIeBgzoUutMY6HuLemlKZ2j8unxe2L9Yre3g96gtM0CHUXDps9CqX+PXJEQTIKEmCAk1YcZTBXOvg8Or1JWHp34LyReEuirRnHjdsHu+OoLo+IZT+83R0PEydTmGjqPAEtdwNfg8cHSNOlHk3q+gIv/Uc+1HwPDfQrthDff5QjQDEmqCkFATRnwe+PQ2yPwWjJFw+1fQqn+oqxLNWeF+2D5HHSrtKDi1X6OF9EHQZgi0vhBaXQhRyef+OeX5kL1ZbV08sVkdzeRxnHremqhOFtnvNml1FKKahJogJNSECb8f5t8HP30KejPc/BlkXBzqqkS48PvUwLF/MexfAgVBFsuMSoXYDIhtp26WOHXqAKNVXT3cW6W2JFYWgz0HynPBnqv2k7Gf+Pn7WeKhy+XqRJHtR8hoJiH+h4SaICTUhAFFgW8eU2dQ1erhxrlq/wchGkrpMchapraqnNgMhfsI9HU5Jxq1o2/rC9Xh5a0uhMQuoNXVV8VChJ26fH/LVKui+fj+99VTwmvg2rck0IiGF9MG+k9VN1AXjizaDyVHoOQwlByFqjJwO9RZrL0udXZjvVntm2NLU1t2bKlga6UOJTfLP6qEaCgSakTz8OM/1GnvAa56GXpMCmU1oqUy26pbWS4MdSVCiCBk7SfR9G38D/zwB/X+mD+d+lezEEIIcRoJNaJp2/ExfPuEen/4b2How6GtRwghRJMloUY0XXu/hi8fVO8Puh9GPh3aeoQQQjRpEmpE05S1DD67ExSfOm/H2JnNawFCIYQQjU5CjWh6jm2Aj28Gn1udu+OqV0Arv6pCCCF+mXxTiKYleyt8eJ06PLbDKJj0NuhkkJ4QQohfJ6FGNB0529UFKl1l0GYo3DAH9KZQVyWEEKKZkFAjmobcHfD+NepEZumD4eZPwWgJdVVCCCGaEQk1IvTyfqoONKXQeiDcPA9MUaGuSgghRDMjoUaEVt4ueO9qqCxR18K55XOZRl4IIcQ5kVAjQidvF7x/tbqacav+EmiEEEKcFxlWIkLjxBaYc616ySmtL9zyhboAoBBCCHGOpKVGNL4jq9UWmpo+NLd+CRExIS5KCCFEcyctNaJxHfgePrkZvFWQMRxu/AhMkaGuSgghRBiQlhrRePYsgI9uVANN53Fw0zwJNEIIIeqNhBrROLbPhXlTwe+B7teqE+sZzKGuSgghRBiRUCMa3sb/wJcPgOKHvrdUL31gCHVVQgghwoyEGtFwFAVWvQjfPqE+HvQAXPUqaHWhrUsIIURYko7ComH4PPDN47D1PfXx8N/AyGdAowltXUIIIcKWhBpR/6rsav+ZrB9Ao4Vxf4VB94W6KiGEEGFOQo2oX2XZMPd6yN8FBgtMege6Xh7qqoQQQrQAEmpE/TmxBT65BcpzwJoEN30CrfqFuiohhBAthIQacf4UBTa9DYtnqEO2E7qoK23Htg11ZUIIIRqBoihsyNuAX/EzNG1oyOqQUCPOj9sJCx+FnZ+oj7tdBde8IQtTCiFEC+Dxe1h8eDHv73mffcX76BjTkS+u/gJNiAaFSKgR5+5kFnxyKxTsBo0ORv8ehj4sI5yEECLMlbvL+Wz/Z3y490PynfkAmHVmLky+kCpfFRH6iJDUJaFGnJu9C9UJ9Vx2tf/MdbOh3UWhrkoIIUQDyqnIYc7eOXy+/3OcXicA8eZ4bup2E9d3vp4Yc0xI65NQI+rGUwU//AHWv64+bjMEJs8GW2po6xJCCNFgdp/czXu73mPJ0SX4FB8AHaI7cHv327mi/RUYdcYQV6iSUCPOXt4u+OIeKNijPh48DS57QZY8EEKIMLWjcAezdsxiTfaawL5BqYOY2n0qw9KGhazvzJlIqBG/zuuGNS/Dqr+Dzw3WRLjmdeg8NtSVCSGEaADbCrYxa/ss1uWuA0Cn0TE+Yzy3d7+drnFdQ1zdmUmoqQ/5eyCxK2jDcCmtE5vhq4dPtc50uRyuegUiE0NblxBCiHq3JX8Ls3bMYkPuBgD0Gj1XdbiKe3reQ7otPcTV/ToJNefLWQxvj1b7lAx9GHrdCAZzqKs6f85iWDFTXWEbBSzxMP7/QY9JMrpJCCHCzKa8TczaMYtNeZsANcxc0/Ea7u55N62jWoe4urMnoeZ85e8GnR5OHoSvH4Flf1bXORpwF0TEhrq6uvO61CCz6v9BVZm6r/cUGPNnsMaHtjYhhBD1RlEUNuZtZNaOWWzJ3wKAXqtnYseJ3N3zbtIi00JcYd3V6XrJzJkzGTBgAFFRUSQlJTFhwgQyMzNrHZOVlcXEiRNJTEzEZrNx/fXXk5+fH3j+yJEj3HXXXWRkZBAREUGHDh14/vnncbvdv/jZVVVVTJs2jfj4eCIjI5k0aVKt9w2ZjIth+m4YOxOi08FRAMv+CP/sDoufhtLjoa7w7CgK7FkArw+CJc+ogSa5J9y2ACb+WwKNEEKECUVRWJuzlqmLp3L3krvZkr8Fg9bADV1u4NuJ3/K7Ib9rloEGQKMoinK2B48bN44bb7yRAQMG4PV6efrpp9m1axd79uzBarXicDjo1asXvXv35oUXXgDgueeeIycnh/Xr16PValm8eDGffPIJU6ZMoWPHjuzatYt77rmHW2+9lRdffPGMn/3AAw/wzTff8O677xIdHc1DDz2EVqtlzZo1Z3zN6ex2O9HR0ZSVlWGzNdBstz4P7J4Pa/6lLugIoNXDBROgz03QfgRodQ3z2efKUwU/fQrrXofCfeq+yGS49Dm15qZWrxBCiHOiKArrctbxxo432FG4AwCj1sikzpO4s8edpFhTQlxhcHX5/q5TqPlfhYWFJCUlsXLlSoYPH86SJUsYP348JSUlgQ8uKysjNjaWJUuWMHr06KDv8/e//51Zs2Zx6NChoM+XlZWRmJjI3LlzmTx5MgD79u2jW7durFu3jsGDB/9qrY0SamooCmT9oIabw6tO7Y9MgZ6Tofu1kNY3tB2Liw7Czo9h82xwFqn7jFEw+AEY9giYIkNXmxBCiHpT0zLzxo432Fm4E1DDzHVdruOO7neQbE0OcYW/rC7f3+fVp6asTO1zERcXB4DL5UKj0WAymQLHmM1mtFotq1evPmOoKSsrC7xHMFu2bMHj8dR6fdeuXWnTps0ZQ43L5cLlcgUe2+32uv1w50OjgY6j1S1nO2z7AHZ9DhV5sO41dbMmQqex6rDoDiPBFNXwdZXnw+4vYOenkLP11P7odBh0P/S7FczRDV+HEEKIBhcszJh0Jq7rfB139riTREv4jWI951Dj9/t59NFHGTZsGD169ABg8ODBWK1WnnzySf7yl7+gKApPPfUUPp+P3NzcoO9z8OBBXn311V+89JSXl4fRaCQmJqbW/uTkZPLy8oK+ZubMmYFLYCGV1kfdxs6Eg0vhp3lw4HtwFML2OeqmM0KbwZA+CFoPgFYX1k8fFp8HcnfA0bWQtQwOrwTFrz6n0UGHS9VLTN2uVjs7CyGEaPYUReHH7B95c+ebtcLM9V2u547ud4RlmKlxzt9k06ZNY9euXaxevTqwLzExkXnz5vHAAw/wyiuvoNVqmTJlCv369UMb5FJLdnY248aN47rrruOee+4511KCmjFjBo899ljgsd1uJz09hGPs9UboeoW6ed1wbC3s/w4yF0HJYfUy1emXquLaq3PfxLSFmDZgiVNHU9VsNetreJzgqQRXOdizofQYnDygXl7K3a4+f7rWA6Dn9dB9osw1I4QQYcSv+Pnh2A+8tfMt9hWrfSTNOrMaZnrcQUJEQogrbHjnFGoeeughFi5cyKpVq2jduvb49TFjxpCVlUVRURF6vZ6YmBhSUlJo3759reNycnIYOXIkQ4cO5a233vrFz0tJScHtdlNaWlqrtSY/P5+UlOAdm0wmU63LYE2K3qh2Gm4/Asb+BYoOwNHV6kR3JzZB0X4oPqRu5ysiVl2fqc0QNVDFdzj/9xRCCNFkeP1eFh1exNs/vc2hMvV7w6K3cEPXG7jtgttaRJipUadQoygKDz/8MPPnz2fFihVkZGSc8diEBPUkLlu2jIKCAq6++urAc9nZ2YwcOZL+/fsze/bsoK04p+vfvz8Gg4EffviBSZMmAZCZmcmxY8cYMmRIXX6EpkejgcTO6nbhneq+yhLI2aaGmpKjUHZC3RfYSsFVPYeMPgIMEWC0QlQqxKRDfEd1S+4RvjMdCyFEC+fxefgq6yve/ultTlScACDKGMXN3W7m5q43h3zF7FCoU6iZNm0ac+fOZcGCBURFRQX6s0RHRxMREQHA7Nmz6datG4mJiaxbt45HHnmE6dOn06VLF0ANNCNGjKBt27a8+OKLFBYWBt6/ptUlOzubUaNG8f777zNw4ECio6O56667eOyxx4iLi8Nms/Hwww8zZMiQsxr51OxExKr9XTpceuZj/D5AI4FFCCFamCpvFZ8f+JzZu2aT71Tna4s1xXJb99u4ocsNRBkbYeBJE1WnUDNr1iwARowYUWv/7NmzmTp1KqC2oMyYMYPi4mLatWvHM888w/Tp0wPHLl26lIMHD3Lw4MGfXbqqGV3u8XjIzMzE6TzVH+Sll15Cq9UyadIkXC4XY8eO5Y033qhL+eFF5o8RQogWxe6282nmp8zZM4eTVScBSIxI5I4edzCp0yQsBkuIKwy985qnpjlp1HlqhBBCiHpS4Cxgzp45fLr/UxweBwBp1jTu6nkX13S8BpOuifYfrSeNNk+NEEIIIRpGZnEmc/bO4ZtD3+DxewDoGNORO3vcybiMcRi0hhBX2PRIqBFCCCGaCJ/fx6oTq5izdw4b8zYG9vdL6sedPe7k4tYXo9VIX8ozkVAjhBBChFiFu4IvD37Jh3s/DIxk0ml0jG47mlu63UKfpD6hLbCZkFAjhBBChMgx+zE+2vcR8w/OD/SXsRltTO48mSldpzTZRSabKgk1QgghRCNy+Vz8cPQHPj/wea1LTBnRGdzS7RaubH+ljGQ6RxJqhBBCiEaQVZrFZ/s/4+tDX1NWPYGqBg3DWg3j5m43MzRtqPSXOU8SaoQQQogGUlJVwndHvmPhoYXsKNwR2J9sSebaTtcyseNEUiNTQ1hheJFQI4QQQtSjSm8lK4+vZOGhhazJXoNX8QJqx98R6SO4ttO1DEsbhk4mUa13EmqEEEKI82R321l9YjXLjy/nx+wfA51+AbrFdePK9ldyefvLW9TikqEgoUYIIZoQRVHw+D1U+apweV2BW5ev+r7PhQYNOo0OrUaLTqvemnVmIo2RRBrUTVoBGl5ORQ7Ljy9n+fHlbMnbEmiRAWgV2YrLMy7nyvZX0j6mfQirbFkk1AghRCNQFIWiyiKyK7LJdeSSU5ETuD1ZdZLSqlJKXaVU+arwK/7z/jyrwUqUMYpIQyRRxiiijFHEmGKIj4gnKSKJBEsCiRGJJEYkkhCRIKNtzoLH52F74XbW5axj1YlVZJZk1nq+Q3QHRqSPYGSbkfRK6IVGowlRpS2XhBohhKhndredzOJMDpYe5GDJQQ6UHuBgyUHKPeV1eh8NGsx6MyadCbPejFlnxqgzoqDg9/vxKT58ig+/4qfSW0mFuwK33w2Aw+OodQnk11gNVhIjEkmxpgS2ZEuyet+iPo40Rtap/uau0lvJrqJd7CjcwbaCbWzK20SltzLwvFajpW9SX0amj2Rk+kja2NqEsFoBEmqEEOK8KIrC8fLjbC/czraCbWwv2E5WaRYKP18rWKfRkWRJItWaSlpkWuA2yZJEjCmGaFM0Fr0Fk96EWWfGoDXU+V/7bp+bcnc55e5yKjwVte6XVJVQVFlEgbOAosoiCisLKaosotJbGQhBR+xHzvjekYZINexYk0mxnLo9PQhF6CPqegqbBIfHwYGSA+wv2c/+kv3sKtpFZnFmrUtKAHHmOIakDWFo2lAubnUxsebYEFUsgpFQI4QQdZTnyOPH7B9Zm72WbQXbOFl18mfHtIpsRaeYTnSM7Ri4zbBlYNA17CKERp2R+Ih44iPiz+p4RVFweBwUVBZQ6Cwkz5Gnbk71Nt+ZT54jLxCMDpYe5GDpwTO+X7Qp+oyBJ8WSQlxEHBa9pdEvzSiKgt1tJ6ciR90c6u2JihMcLDkYWJrgfyVFJNE7qTe9E3szKHUQnWM7y1wyTZiEGiGE+BVun5utBVtZfWI1q7NXk1WWVet5g9ZA9/ju9Enqo26Jfc46VISaRqNROxgbI2kffeYOrU6Ps1bgyXfkB4JPzeb0OilzlVHmKvtZf5PTGbVGYs2x6mZSb6OMUVgN1sBm0VsC981686mO0RodXsWL2+fG5VM7UNfcP32f3W2npKqE4qriQN+lX7scl2RJonNsZzrHdqZrXFf6JPYhxZoifWOaEQk1QggRhMvnYnX2ahYfXsyqE6twep2B57QaLb0SejGs1TAGpQ7igvgLMOlMIay24VkMFtrHtD/jSB5FUSj3lKutO/8TeGoe5zvyqfJV4fa7yXfmk+/Mb+SfAuLN8bSKbEVqpHrpL82aRoeYDnSK6USMOabR6xH1S0KNEEJU8/g9bMjdwKLDi1h2bBkVnorAc/HmeIa1GsbFrS5mSNoQok3RIay06dFoNNiMNmxGG51jOwc9RlEUKr2VlLhKAq0opa5SSqpKsLvtOD1OHB4HTm/1bfVjl8+ldor2qx2j9Vo9Jp0Jk86EUWcMehtljCLOHEeMKaZWHyaz3tzIZ0Y0Jgk1QogWL7M4k8/2f8biI4spdZUG9idbkhnXbhxj242le0J36UtxnjQaDRaDBYvBQqvIVqEuR4QhCTVCiBapylvFd0e+49P9n7KzcGdgf5w5jjFtxzA+Yzx9kvpIkBGiGZFQI4RoUbJKs5i3fx5fZX1FuVudN0av0TOyzUgmd5rMwNSB6LXyp1GI5kj+zxVChD2P38PSI0v5JPMTthZsDexvFdmKyZ0nM6HjBFmTR4gwIKFGCBG27G47n+//nA/3fhgYaaPT6Lik9SVc1+U6hqYNlctLQoQRCTVCiLCTXZHNnD1z+OLAF4Gh2PHmeG7ocgPXdrqWZGtyiCsUQjQECTVCiLBxsOQg//npPyw+sjiwKGTHmI7cdsFtXN7+8rCfS0aIlk5CjRCi2dt9cjf/2fkffjj2Q2DfkNQh3N79doamDZUZYYVoISTUCCGard1Fu3lt+2uszl4NqKtaj247mnt63kO3+G4hrk4I0dgk1Aghmp3M4kxe2/4aK46vANTOv+MzxnN3z7vpENMhpLWJ5s3n8+Op8uFx+XBXedX71Y89Li8+r4Lf58fnVfD5/Phrbn0Kfq8fn0/B71PQaNTJBmtu0dZ+rNGARqsBDWi1GnQGLXqDDr1Ri776vs6oRa/XqrcGHQaTFoNJjzFCh06vlRbIICTUCCGajYMlB3ljxxssPboUUNdgurL9ldzX6z7a2NqEuDrR1CiKgsvpxVHqwlHmwml3U1XhocrhweXwUuXw1NpcDi8ely/UZZ8VrVaDIUKHsTrkGP7n1mjSY4jQYYrQY4zQn7q11H6s04fX6D8JNUKIJu94+XFe2/Yaiw4vQkFBg4Zx7cZxf5/7f3FlaRG+FEWhqsJDWVEl5UVVlJdU4Sx1U1HqwlmmhhhHqRuf139O76/TazGYdBjMOoxmNSwYTFp0Bh06nQatXqveBu5r0eo1aguKVgOKgqKodSoK6mM/+BUF/Kf2K4rasuP1+PB5/Hg9frxuPz6PD6/Hr+5z+/F6fHjcfrzVocvvV3A5vLgc3vM6j3qj9mehJ2gAsugxmvWYLIZaz+uNTavFSEKNEKLJKnOV8ebON/lo30d4/eof79FtRvNgnwfpFNspxNWJhuau8mIvqsJeVEn5SfXWftqt9yxbVcxWA9YYExabAXOkEbPVgMmqx2w11NpMVj1miwGDWddkWzD8fgVv9aUxd9WpS2Sn37or1Utl7kofrkqvus/pVe9XenE5T7VIed1+vG43zjL3OdWj0WoCoccUoSc6KYKxd/eozx+5TiTUCCGaHLfPzUf7PuLNnW8GljIYkjqER/s/ygXxF4S4OlGffF4/ZQWVlOQ5KMlzUpLvoDTPib2oiiqH55dfrAFrtAlbgpmoODPWGBPWaJN6G2PCGm3EEm1Eb9A1zg/TCLRaDcbqlpLz4ff5cVf5cDmrg85pgSfw2OnF9bNA5AmEJcWvoPiVwOU74JxbxuqLhBohRJOhKArfHfmOl7e+THZFNqDOM/PEhU8wrNWwEFcnzkeVw0NpvpPiXDW0lOQ7KclzYC+qQvErZ3ydyarHFh+BLcF86jYhAltCBFFxZnSGptmi0tRpdVrMVi1mq+GcXq8oCl63H5fTi6uyOug4Peh0of3vIaFGCNEkbM3fyj82/4OdReqK2YkRiTzc92Gu7nA1Om34/Es7nCl+hfLiKjWw5DooyXeqASbPQWX5mVtdDGYdsSlWYlMsxKZYiEm2EJ0YgS0+4rxbJETD0Gg0ap8jk47I2KYzqaX8tgghQupI2RFe3vpyYOK8CH0Ed/a4k9suuA2LwRLi6kQwXreP0gKnermoOrSU5Dkpy3fi9Zz58kNkrImYZAuxqVZiky3VIcaKJdrYpDqbiuZLQo0QIiSKq4r5945/My9zHl7Fi1aj5dpO1zKtzzRZMbuJqKxwq6GlutWlJNdJab4D+8kqOMMVI61eQ0yShdhkCzHVoaWm9cVolq8c0bDkN0wI0aiqvFXM2TuHd356hwpPBQDDWw9ner/pdIztGOLqWh6/X6GiuKpWi0vNbVXFmS8ZmSz6U4HltPBiizejDXG/CtFySagRQjQKv+Lnm0Pf8Mq2V8hz5AHQLa4bj1/4OINSB4W4uvCmKAqV5WpH3dICp3qb76S0oJKyQid+75k76kbFmQOXiWJSLMSlWohJthIRZZBLRqLJkVAjhGhwG3M38uLmF9lbvBeAZEsyj/R7hCvaX4FWI/+qrw9ety8wh0tgTpeiKuwnK7EXVuKuOvOcLjq9luikiEB4CYSYZAsGk3TSFs2HhBohQkTxK7gqvVSWn5q63V3lw1M9qZbH5cNd6cXtUvd5XD583uq1ZmrWmPH61X0+JXCr/O8/un+2Qx3OqdNXz4Qa2NTZULWn3dfpteirRzgYTDoMRl1gltXAfZOu9jEmdQZWrU5LVmkWL215iZUnVgJgNVi5u+fd3NLtFsx6cyOc5fDhrvLiLFNnzA0WXH518jQN2OLNxCRZiE62EJNkISY5gpgkC5FxZrRaaXURzZ9GUYL8xQtDdrud6OhoysrKsNlsoS5HhCm/X6Gy3I2j1EVFiSuw5kxVhYfKCs9pt2qQCef/+xSdjyqNE7fOhVfnIjoqivTYVlgsEeq082YdRrO+VhAymPXqfpP+tOnp1f3h+KXr9yu4nJ7qUOvFWeY6Nc3/6VP+l7p+saWlhsGsU+dwia+Zy6VmbpcIbInmsJqETrQcdfn+lpYaIerAVeml/KT6r+Pyk9VbSRUVJTXrzbh/cSKxYIwResyR6jTtxpov+lq3NevO6NAbtNWtKZpaa83o9Fp1DRqdJng/h9N3KQRadtRVhv34POpKw76alp/q1iB1HZqaFYrVzeuq/TiwudXVjP0+9efX+HREEEWEN0r9XCfk5pcD5ed07vUGrdpCZNafCjsm/amAVB2EagWk0+7XvKZmbR6N9tRKyVqNBo2W6n21z5+iKPj96vo8SvUKzOrj6pWZfYr6s9ecm9Pvu/x4XOosracWTvRWL57oweWs27o9BrMOa7SJqHjzacHlVHgxWfXSz0W0aBJqhDiNoig47e7aHSkLnJQXqwHmbL6ENBqw2IynpmqPMRERZSQi0oA50kBEpIGIKGMgyDTVNWbqwuf38VXWV7y27TWKHCcx+Ez0sPXirq730NHapdYlNY+r+n7NpbaaUHT6ZbfqdWw8VT781SHRW73Y3y9N4lYvNFSHHA3+6mngG5oxQo/Zqsdiq/mdMf5sun9rjEmGRAvxK+T/ENEiuSq9lFWPAinJVycNKy2opDTfGVjo7UzMkQZs8Wai4s1ExUcQFWciMsYc+AKy2Awtakjr2uy1vLjlRQ6UHACgla0Vj/R7hLHtxtZLJ2Cfx4/bVbNY36n+RWoAOi0g1Rzj8p1a4O+04/43JJ2RUrOS8i8fV9MyptVq1D5FxlN9jfSn9UHSm3SYLKcvnlh9vzrUmiz6FvX7IkRDklAjwlZNq0txjoPiXAclueptaUEllfYzd6rUaCAq3kxMcs107RZ1wbx4ddE8+deyKrM4k39u+Sdrc9YCEGWM4r5e9zGl6xSMOmO9fY7OoCXCYCQisn7eT1GU6oX41PBSsyif4lf7uKjPq8dpNJpT4SWwadXLVnKZR4gmR/46i2ZPURQcpW6KcysoyVUXzCvOcVCS5/jFy0UWm1ENLkkRp40GsRCdECGL5P2CfEc+r29/nS8PfomCgl6rZ0rXKdzb815izDGhLu9XaTQaNDoN6EC6zQoRXiTUiGZDURQqSly1Wl2Kc9T7ZxoZotFAdJK6xkxcqlVdcyZFDTCyUF7dODwOZu+azXu736PKVwXA2HZjeaTvI6Tb0kNcnRBCSKgRTZDiV7CfrAoEl8Bt3pn7u2i0GmKSIohNtRJXvcWmWolJjpBhrOfJ6/fyxYEveGP7G5ysOglAn8Q+PH7h4/RJ6hPa4oQQ4jQSakTI+P0K9sLK6sBSE2DUxfPOtNKvVqdRV/lNsRKbagkEmJhkS1iMImpKFEXhx+wf+cfmf3Co7BAAbaLaML3/dEa1GSV9SoQQTU6dQs3MmTP54osv2LdvHxEREQwdOpS//e1vdOnSJXBMVlYWTzzxBKtXr8blcjFu3DheffVVkpOTA8f8+c9/5ptvvmH79u0YjUZKS0t/9bOnTp3Ke++9V2vf2LFjWbx4cV1+BNHIFEWhyuGhNO/0NWcq1RFHv7DmjFavITbZSlyq5VTrS5oVW2IEOhkp0qAURWFD3gZmbZ/F1oKtAMSYYri/9/1c3/l6DDpDiCsUQojg6hRqVq5cybRp0xgwYABer5enn36aMWPGsGfPHqxWKw6HgzFjxtC7d2+WLVsGwHPPPcdVV13F+vXr0WrVLyO32811113HkCFDeOedd87688eNG8fs2bMDj00mU13KFw3IXenFfrKS0vzKny2a90uddfUGrdrPpbrVJTZFDTC2BFnpt7EFCzNGrZGbL7iZu3vejc0oM3ELIZq2OoWa/20Veffdd0lKSmLLli0MHz6cNWvWcOTIEbZt2xaYyvi9994jNjaWZcuWMXr0aABeeOGFwOvrwmQykZKSUqfXiPrhdfuoKHVRXrNAXs2aM9W3VY5fnhAtMs5ETJKF2GR13ZnY6uHSsuZM6CmKwsa8jbyx/Y1aYea6LtdxZ487SbIkhbhCIYQ4O+fVp6asrAyAuLg4AFwuFxqNplYLitlsRqvVsnr16kCoOVcrVqwgKSmJ2NhYLr30Uv70pz8RHx9/Xu/Z0vl9fqoc6qKKjrJT6xVVlLpwlJx6/GuhBcBsNRCdFFE9TNpyap6XpAgMRums2xRtzN3IGzveYEv+FkANM5M7T+bOHneSbE3+lVcLIUTTcs6hxu/38+ijjzJs2DB69OgBwODBg7FarTz55JP85S9/QVEUnnrqKXw+H7m5uedV6Lhx47j22mvJyMggKyuLp59+mvHjx7Nu3Tp0up9/YbpcLlwuV+Cx3W4/r88/k5pQEFjxWKcJun5MQ/H7leop5k+fXfW0Kemr71c5ai+mWLO4Yl3WntEbtUTFV68zU2vRPHWfTErXPCiKwrqcdfznp/+wOX8zIGFGCBEezvlbaNq0aezatYvVq1cH9iUmJjJv3jweeOABXnnlFbRaLVOmTKFfv36B/jTn6sYbbwzc79mzJ7169aJDhw6sWLGCUaNG/ez4mTNnBi5zNST7ySo+/N362js1qIsM6qqDjl6rhh6deluz+OCvBR9FUUOTz6tU3/oDCxH6fQq+6rVwzpsGTBY91mgTkbEmImNMWGPNRMaq0/5Hxqj7jRGyWF5z5vF5WHRkEe/ufjewpIFBa2By58nc1eMuCTNCiGbvnELNQw89xMKFC1m1ahWtW7eu9dyYMWPIysqiqKgIvV5PTEwMKSkptG/fvl4KrtG+fXsSEhI4ePBg0FAzY8YMHnvsscBju91Oenr9TxAWdPSOoq5X4/MA/PI6QvVFo9WcWrm41irG6mrPZqsBc5Sh1qKK5kh1kUVZeya82d125mXOY+7euRRUFgAQoY9gUqdJ3N79dlKs0k9NCBEe6hRqFEXh4YcfZv78+axYsYKMjIwzHpuQkADAsmXLKCgo4Oqrrz6/Sv/HiRMnOHnyJKmpqUGfN5lMjTI6Ki7NyoOzRuL3K/i9aivK6S0pPp9f3e/z4/eqrS41z3MWi/9q9Rp0Oq16W93qo9Wdau1RQ4wOnV4rrSiiluyKbObsmcMXB77A6XUCkBiRyM3dbmZy58lEm6JDXKEQQtSvOoWaadOmMXfuXBYsWEBUVBR5eXkAREdHExERAcDs2bPp1q0biYmJrFu3jkceeYTp06fXmsvm2LFjFBcXc+zYMXw+H9u3bwegY8eOREaqq9Z17dqVmTNnMnHiRCoqKnjhhReYNGkSKSkpZGVl8dvf/paOHTsyduzY+jgP50Wj0aDTadDpwGCSDrEidGpGMn2S+Qk/HPsBv6JenuwU24nbL7idyzMul3lmhBBhq06hZtasWQCMGDGi1v7Zs2czdepUADIzM5kxYwbFxcW0a9eOZ555hunTp9c6/ne/+12tifT69u0LwPLlywPvnZmZGRhdpdPp2LlzJ++99x6lpaWkpaUxZswY/vjHP8pcNUKgXmL66uBXfJL5CUfsRwL7h6QOYWr3qQxJGyIteUKIsKdRFOUsLoI0f3a7nejoaMrKygJz6AjRnPkVP1vyt/B11tcsOrwosMikRW/hqg5XcX2X6+kc2znEVQohxPmpy/e3jMEVopk5UHKAhYcW8u3hb8lz5AX2d4rtxA2db+DKDldiNVhDWKEQQoSGhBohmjhFUThYepDlx5ez5MgSMksyA89FGaK4rN1lXNPhGvom9ZVLTEKIFk1CjRBNkM/vY3vhdpYdW8by48s5Xn488Jxeq2d4q+Fc2eFKhrcejkkn/cqEEAIk1AjRZOQ78tmQt4ENuRv48cSPlLhKAs8ZtUYGpw3m0vRLGd12tAzHFkKIICTUCBECiqKQ48hhZ+FOthVsY0PuBg6VHap1jM1o45LWlzCyzUiGpQ3DYrCEqFohhGgeJNQI0QhKqkrILMlkd9FudhbuZEfhDk5Wnax1jAYN3eO7Myh1EEPShtAvuR8GrcwpI4QQZ0tCjRD1xOv3UugsJM+ZR3ZFNgdKDpBZksmB4gOB5QlOp9fo6RrXlV6JvRiYMpALUy6Uy0pCCHEeJNSIs1blraKwspCTlSep8FRQ4anA6XFS4a7A4XFQ5avC5/fhVbx4/ac2n+LD61dXAzdoDRh0BvQaPQadQX1cs1U/NulMmPVmzDozJp0Jk96k3q++NevV/TX7GrI1Q1EUqnxV2F127O7qzWUn35lPriOXXEcueY48ch25FDgLAjP4BpMelU7XuK70TuxNr8RedIvrhllvbrDahRCipZFQIwLKXGUctR/lqP0oh8sOk+PIodBZSGFlIUXOIso95aEuMSidRqeGn+oAZNKZMOqMmLS1H2tRF+1UTlt0y6f4cPlcuLwu9bZ6c/vcVPmqqPRWBgLZ2dBr9CRbk0mxptA+uj1dYrvQJa4LnWI7ydwxQgjRwCTUtEDl7nL2l+xnX/E+9pfs53DZYY7aj1JcVfyrrzXpTCREJBBljMJqsNbazDozeq3+1KbR13oM6iUaj9+Dx+dRb2u26sc1oaLKVxUIGjX3q3xVgQBSM3suqMHE6XWqiza6Guac6TQ6bEYbUcYobEYbSZYkUiNTSbWmkmJNIcWaQqo1lXhzPDqtrP8lhBChIKEmzCmKwvHy42zK28Sm/E1sL9hOdkX2GY9PsiTRztaOtra2pEelk2hJJDFC3RIsCUQZoprEBG+KopwKQN4q3D63+th/qtUlsK96O72FRoP6M5zeymPUGTHrzWorT/U+s86MzWTDorc0iZ9bCCHEmUmoCUM5FTlsyN3AxryNbMrbRL4z/2fHpFpT6RLbhc5xnekY0zEQZJrLsGGNRqP2u9GbpXOtEEIIQEJNWPD4PWwv2M6PJ35k1YlVZJVl1Xper9XTK6EXA1IGcGHKhXSL6yZBQAghRNiRUNNMVXmrWHViFUuOLmFt9tpanXi1Gi09E3oyMGUgA1MH0juxNxH6iBBWK4QQQjQ8CTXNiM/vY33uer459A3Lji/D4XEEnos1xXJRq4u4uPXFDE0bKi0xQgghWhwJNc3A8fLjfHnwSxYcXFCrf0yaNY2xGWMZ1WYUPeJ7yKgbIYQQLZqEmiaqylvF98e+Z/6B+WzM2xjYbzPauDzjcq5ofwW9Enuh1WhDWKUQQgjRdEioaWKOlx/n430fM//A/EA/GQ0ahqQNYWLHiYxsMxKTzhTiKoUQQoimR0JNE6AoCutz1zN371xWnlgZmE+lVWQrrul4DRM6TCA1MjXEVQohhBBNm4SaEPL5fSw5uoT//PQfDpQcCOwf1moYN3e9mWGthsnlJSGEEOIsSagJAY/Pw9eHvuadn97hWPkxACL0EUzoOIEpXaeQEZ0R4gqFEEKI5kdCTSNy+Vx8tv8zZu+aHRjFFG2K5pZutzCl6xQZhi2EEEKcBwk1jcDj9zD/wHze3PkmBc4CABIjErm9++1c1/m6ZrM0gRBCCNGUSahpQD6/j28Of8Os7bM4UXECgGRLMvf2updrOl4jo5iEEEKIeiShpgEoisKy48t4ZesrHCo7BEC8OZ57et3D5M6TJcwIIYQQDUBCTT3bc3IPf9/0dzbnbwbUyfLu7HEnU7pOkctMQgghRAOSUFNP8h35vLLtFb7O+hoFBZPOxG0X3MYdPe4gyhgV6vKEEEKIsCeh5jw5PU7e3f0us3fNpspXBcAV7a/g0X6PkmJNCXF1QgghRMshoeY8bcnfwqwdswDom9SX31z4G3om9gxxVUIIIUTLI6HmPF3U6iKu7XQtQ9OGMqbtGDQaTahLEkIIIVokCTXnSaPR8MLQF0JdhhBCCNHiycJCQgghhAgLEmqEEEIIERYk1AghhBAiLEioEUIIIURYkFAjhBBCiLAgoUYIIYQQYUFCjRBCCCHCgoQaIYQQQoQFCTVCCCGECAsSaoQQQggRFiTUCCGEECIsSKgRQgghRFiQUCOEEEKIsNBiVulWFAUAu90e4kqEEEIIcbZqvrdrvsd/SYsJNeXl5QCkp6eHuBIhhBBC1FV5eTnR0dG/eIxGOZvoEwb8fj85OTlERUWh0Wjq7X3tdjvp6ekcP34cm81Wb+8rapPz3HjkXDcOOc+NQ85z42moc60oCuXl5aSlpaHV/nKvmRbTUqPVamndunWDvb/NZpP/YRqBnOfGI+e6cch5bhxynhtPQ5zrX2uhqSEdhYUQQggRFiTUCCGEECIsSKg5TyaTieeffx6TyRTqUsKanOfGI+e6cch5bhxynhtPUzjXLaajsBBCCCHCm7TUCCGEECIsSKgRQgghRFiQUCOEEEKIsCChRgghhBBhQULNeXj99ddp164dZrOZQYMGsXHjxlCX1OytWrWKq666irS0NDQaDV9++WWt5xVF4Xe/+x2pqalEREQwevRoDhw4EJpim7GZM2cyYMAAoqKiSEpKYsKECWRmZtY6pqqqimnTphEfH09kZCSTJk0iPz8/RBU3T7NmzaJXr16ByciGDBnCokWLAs/LOW4Yf/3rX9FoNDz66KOBfXKu68fvf/97NBpNra1r166B50N9niXUnKNPPvmExx57jOeff56tW7fSu3dvxo4dS0FBQahLa9YcDge9e/fm9ddfD/r8//t//49XXnmFf//732zYsAGr1crYsWOpqqpq5Eqbt5UrVzJt2jTWr1/P0qVL8Xg8jBkzBofDEThm+vTpfP3118ybN4+VK1eSk5PDtddeG8Kqm5/WrVvz17/+lS1btrB582YuvfRSrrnmGnbv3g3IOW4ImzZt4s0336RXr1619su5rj/du3cnNzc3sK1evTrwXMjPsyLOycCBA5Vp06YFHvt8PiUtLU2ZOXNmCKsKL4Ayf/78wGO/36+kpKQof//73wP7SktLFZPJpHz00UchqDB8FBQUKICycuVKRVHU82owGJR58+YFjtm7d68CKOvWrQtVmWEhNjZWefvtt+UcN4Dy8nKlU6dOytKlS5VLLrlEeeSRRxRFkd/n+vT8888rvXv3DvpcUzjP0lJzDtxuN1u2bGH06NGBfVqtltGjR7Nu3boQVhbeDh8+TF5eXq3zHh0dzaBBg+S8n6eysjIA4uLiANiyZQsej6fWue7atStt2rSRc32OfD4fH3/8MQ6HgyFDhsg5bgDTpk3jiiuuqHVOQX6f69uBAwdIS0ujffv23HzzzRw7dgxoGue5xSxoWZ+Kiorw+XwkJyfX2p+cnMy+fftCVFX4y8vLAwh63mueE3Xn9/t59NFHGTZsGD169ADUc200GomJial1rJzruvvpp58YMmQIVVVVREZGMn/+fC644AK2b98u57geffzxx2zdupVNmzb97Dn5fa4/gwYN4t1336VLly7k5ubywgsvcPHFF7Nr164mcZ4l1AjRwk2bNo1du3bVui4u6k+XLl3Yvn07ZWVlfPbZZ9x+++2sXLky1GWFlePHj/PII4+wdOlSzGZzqMsJa+PHjw/c79WrF4MGDaJt27Z8+umnREREhLAylVx+OgcJCQnodLqf9ejOz88nJSUlRFWFv5pzK+e9/jz00EMsXLiQ5cuX07p168D+lJQU3G43paWltY6Xc113RqORjh070r9/f2bOnEnv3r3517/+Jee4Hm3ZsoWCggL69euHXq9Hr9ezcuVKXnnlFfR6PcnJyXKuG0hMTAydO3fm4MGDTeJ3WkLNOTAajfTv358ffvghsM/v9/PDDz8wZMiQEFYW3jIyMkhJSal13u12Oxs2bJDzXkeKovDQQw8xf/58li1bRkZGRq3n+/fvj8FgqHWuMzMzOXbsmJzr8+T3+3G5XHKO69GoUaP46aef2L59e2C78MILufnmmwP35Vw3jIqKCrKyskhNTW0av9ON0h05DH388ceKyWRS3n33XWXPnj3Kvffeq8TExCh5eXmhLq1ZKy8vV7Zt26Zs27ZNAZR//vOfyrZt25SjR48qiqIof/3rX5WYmBhlwYIFys6dO5VrrrlGycjIUCorK0NcefPywAMPKNHR0cqKFSuU3NzcwOZ0OgPH3H///UqbNm2UZcuWKZs3b1aGDBmiDBkyJIRVNz9PPfWUsnLlSuXw4cPKzp07laeeekrRaDTKkiVLFEWRc9yQTh/9pChyruvL448/rqxYsUI5fPiwsmbNGmX06NFKQkKCUlBQoChK6M+zhJrz8Oqrrypt2rRRjEajMnDgQGX9+vWhLqnZW758uQL8bLv99tsVRVGHdT/33HNKcnKyYjKZlFGjRimZmZmhLboZCnaOAWX27NmBYyorK5UHH3xQiY2NVSwWizJx4kQlNzc3dEU3Q3feeafStm1bxWg0KomJicqoUaMCgUZR5Bw3pP8NNXKu68cNN9ygpKamKkajUWnVqpVyww03KAcPHgw8H+rzrFEURWmcNiEhhBBCiIYjfWqEEEIIERYk1AghhBAiLEioEUIIIURYkFAjhBBCiLAgoUYIIYQQYUFCjRBCCCHCgoQaIYQQQoQFCTVCCCGECAsSaoQQQggRFiTUCCGEECIsSKgRQgghRFiQUCOEEEKIsPD/AaCj0u/knZFnAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAHUlEQVR4nO3dd3hUZfr/8ff0ySST3kkIoXeUIkWqYAQbYENWRSyrrMCqbGX9ubKr30Vd19Vd14Jr76tIEQFF6SK990Do6XWSSaaf3x8nDEQCEkgyyeR+XddcZ+bMmZk7h8B8eM5TNIqiKAghhBBCNHPaQBcghBBCCFEfJNQIIYQQIihIqBFCCCFEUJBQI4QQQoigIKFGCCGEEEFBQo0QQgghgoKEGiGEEEIEBQk1QgghhAgK+kAX0Jh8Ph/Z2dlYrVY0Gk2gyxFCCCHERVAUhfLycpKTk9Fqz98e06JCTXZ2NqmpqYEuQwghhBCX4MSJE6SkpJz3+RYVaqxWK6CelPDw8ABXI4QQQoiLYbPZSE1N9X+Pn0+LCjWnLzmFh4dLqBFCCCGamZ/rOiIdhYUQQggRFCTUCCGEECIoSKgRQgghRFCQUCOEEEKIoCChRgghhBBBQUKNEEIIIYKChBohhBBCBAUJNUIIIYQIChJqhBBCCBEUJNQIIYQQIihIqBFCCCFEUJBQI4QQQoigUKdQM3v2bPr164fVaiU+Pp5x48Zx4MCBGsfk5eUxefJkkpOTsVgsjB49mszMzFrfT1EUxowZg0ajYf78+T/7+a+++irp6emYzWb69OnDmjVr6lJ+g3lx2UFe/PYAJ0sqA12KEEII0WLVKdSsWrWKqVOnsn79epYtW4bH4yEjIwO73Q6oIWXcuHFkZWWxYMECtm3bRlpaGqNGjfIfc7aXXnrpZ1fcPO2zzz7jscce44knnmDbtm0MGTKEMWPGcPz48br8CPXO7vTw9toj/Gv5IYY8v4JJb29kya4c3F5fQOsSQgghWhqNoijKpb64oKCA+Ph4Vq1axdChQzl48CCdOnVi9+7ddOvWDQCv10t8fDzPPfccDz74oP+1O3bs4MYbb2TTpk0kJSUxb948xo0bd97P6t+/P7179+a1117z7+vSpQvjxo1j9uzZF1WvzWYjIiKCsrIywsPDL+2H/gmXx8fSPbl8uvE46w4X+ffHhhm5tU8Kd/ZrTXpsaL18lhBCCNESXez392X1qSkrKwMgOjoaAKfTCYDZbPYfo9PpMBqNrF271r+vsrKSiRMn8sorr5CYmPizn+NyudiyZQsZGRk19mdkZLBu3brzvs7pdGKz2Wrc6ptRr+XmXsl8/MsBrPztcH41vB2xYSYKK1y8sSqLES+s5M45P/LJxuOU2F31/vlCCCGEUF1yqFEUhRkzZjB48GC6d+8OQOfOnUlLS2PmzJmUlJTgcrl49tlnyc3NJScnx//axx9/nEGDBjF27NiL+qzCwkK8Xi8JCQk19ickJJCbm3ve182ePZuIiAj/LTU19RJ+0ovXJjaUP4zuzI8zr+H1u/swolMcGg2szypm5pe76Pt/3zHp7Y38b/MJyirdDVqLEEII0dLoL/WF06ZNY+fOnTVaYAwGA3PnzuWBBx4gOjoanU7HqFGjGDNmjP+YhQsXsnz5crZt21bnz/xp/xtFUS7YJ2fmzJnMmDHD/9hmszV4sAEw6LSM7p7I6O6JZJdWMX/7KRbtyGFvjo3VBwtYfbCAJ3S7GNgulpGd47mmczyp0ZYGr0sIIYQIZpcUaqZPn87ChQtZvXo1KSkpNZ7r06cP27dvp6ysDJfLRVxcHP3796dv374ALF++nMOHDxMZGVnjdbfeeitDhgxh5cqV53xebGwsOp3unFaZ/Pz8c1pvzmYymTCZTJfyI9ab5MgQHhnenkeGtyeroIKvd+bw9a4c9ueW+wPOUwv30DEhjBGd4xnSPo6+baIwG3QBrVsIIYRoburUUVhRFKZPn868efNYuXIlHTp0+NnXZGZm0rlzZ5YsWUJGRga5ubkUFhbWOKZHjx68/PLL3HTTTaSnp9f6Pv3796dPnz68+uqr/n1du3Zl7NixAe0ofKkO5VewfH8e3+/LZ/OxEry+M38MRr2Wfm2iuLp9LIPbx9ItOQKd9uJGiQkhhBDB5mK/v+sUah555BE+/vhjFixYQKdOnfz7IyIiCAkJAeDzzz8nLi6O1q1bs2vXLh599FH69OnD3Llzz1+ERnPO6KeRI0cyfvx4pk2bBqhDuu+55x5ef/11Bg4cyJw5c3jzzTfZs2cPaWlpF1V/Uwo1ZyurdLM6s4CVBwr44VAhuTZHjectRh09WkVwRetIrkyN5IrUKBIjzOd5NyGEECK4XOz3d50uP50eTj18+PAa+9955x0mT54MQE5ODjNmzCAvL4+kpCQmTZrEk08+WbfqgcOHD9do0ZkwYQJFRUX89a9/JScnh+7du7N48eKLDjRNWYTFwE29krmpVzKKonC4wM4PhwpZe6iQ9YeLKHd62HCkmA1Hiv2vSQg30S05gm7J4XRLDqdjgpXW0Rb0OpkkWgghRMt0WfPUNDdNtaXmQrw+hUP5FWw/UcL2E6VsO17KwbxyfLX8qRl0GtJiQmkbG0p6XCgpURZaRZpJjgwhOTKEcLOh8X8AIYQQ4jI1yOWn5q45hpra2J0e9uXY2JNtY092GXuybRwuqMDhvvAsxlaTnliriSiLgehQI1EWo7oNNRJtMWI16zEbdNU3LWaDDoNOi0GnwaDTotdpMGi1GPRa9FoNRp0WrfT1EUII0cAa5PKTaBpCTXr6tommb5to/z6fTyHH5uBwfgVZBRUcLaoku7SKU6VVZJdWUVLpptzpodzp4Ug91qLVgFajQavRgObMYw3qFkBB7WR+Oj0rCigonI7Tp/frNBr0Wg16nQadVg1OuurHeq0GvVZLiFGHxajDYtQTaqrent5nUu9Hh5qIDTMSazURZzVhNekvejkOIYQQzZeEmiCh1WpoFRlCq8gQhnaMO+f5SpeH7FIHxXYXxXYXJZXVW7uL4ur7dqcHh9tHldtLlcuL0+PF5fHh8Sl4vAquWtaz8ingUxTORJOmx6jXEhdmUkNOmJE4q4lWkSGkRltoXX2LDjVK8BFCiGZOQk0LYTHqaR8fdlnvoSgKXp+Cx6fg9vpwexU8Xh8KarDxKdUtMsqZx6djgtqQo/Hf56z9Z94f3F6f/zPObH14vApur0KV20uly0Oly4vdqW7Vmwe700uF002x3UVhhYvCciflTg8uj49T1a1W5xNq1NEmNpTOieF0SbLSJSmczolWYsICO8+REEKIiyehRlw0jab6UpCOZjM5oMPtpaDcSWGFs3rrIr/cwcmSKo4XV3KiuJJcmwO7y1vdR6nm+mDxVhOdk8LpmhTOla0j6d06ijirBB0hhGiKJNSIoGY26EiNtlxwGQqH28vJkioOF1SwL8fG/pxy9uXaOFZUSX65k/xydebn01pHW+jdOpI+aVEMaBtD+/gwuXQlhBBNgIx+EuI87E4P+3PL2Z9rY/epMrYeK+Vgfjk//RuTGG5mSIdYhnSMY3D7WKJDjYEpWAghgpQM6a6FhBpxuWwON9uPl7LlWAlbjpWw6WgxTs+ZDtQaDXRPjmB4pzjGdE+iS5JVWnGEEOIySaiphYQaUd8cbi+bjhazJrOQ1QcL2J9bXuP5trGhXN8jiRt6JtE5UQKOEEJcCgk1tZBQIxpavs3BmsxCvt2by4oDBbjOasVpGxvKDT2TuL6HBBwhhKgLCTW1kFAjGlOF08P3+/L4emcOKw/+JODEhXJjz2Ru7d2KtJjQAFYphBBNn4SaWkioEYFS7nCzfH8+i3bmsOonAeeq9Ghu75PC9T2SCDXJgEQhhPgpCTW1kFAjmoJyh5vv9uXx5dZTrD1U6B9NZTHquL5HErf3SeGq9Gi5PCWEENUk1NRCQo1oanLKqvhy6ym+2HKSI4V2//52caHc1T+NW/ukEBEiq6sLIVo2CTW1kFAjmipFUdhyrITPN5/kq53ZVLq8AJgNWm7ulcykgW3o3ioiwFUKIURgSKiphYQa0RyUO9zM357NR+uP1RgiflWbaO4fnM61XRPQaeXSlBCi5ZBQUwsJNaI5Od1688H6Y3y9MwePT/2r2jrawuRBbbijXyph0rFYCNECSKiphYQa0Vzlljl478ejfLzhOGVVbgCsJj33DEzj/sHpxMpq4kKIICahphYSakRzV+nyMHfrKd5Ze4Ss6o7FZoOWO/u15qGhbUmODAlwhUIIUf8k1NRCQo24WIrPh/vkSdzZOXjycnHn5vm33tJSfFVVKJWV+Kqq8Dmd6vBrvR6NXo/WbEYXG4M+JhZ9bCz62BgMqa0xprfBlJ6O1nL+FcMvls+n8N2+PP6z4hA7TpYBoNdquKV3K6YMa0fbuLDL/gwhhGgqJNTUQkKNqI23wo7z4EEc+/fh3H8Ax4H9OA9molRVNcjn6ZOSMKWnY+rQgZArehFy5ZUYEhMv6b0UReGHQ0X8Z8UhfswqAtRFNa/vkcQjw9vRLVlGTAkhmj8JNbWQUCMAvKWl2DdtonLDRio3bsR58GCtx2lMJgzJyegTEzAkJKrbxER0UdFoLSFoQ0LQhKhbfD4UrxfF7cFXacdbVISnoBBPURGeggJcx47hysrCW1JS62fpExOxXNWPsMGDCR00CH1sbJ1/ri3HSnht5SG+25fv3zeiUxxTR7Snb5voOr+fEEI0FRJqatFQoaZy6zY0BgMhPbrX23uK+uO12ajcvJnKDRuwb9iI88AB+MmvvT4+HlPnTpg7dVa3XbpgTEtDo9PVay2ekhJcR47iyjqMY+8+Krdvw3ngIHi9NY4zde1C+OgxhF9/PcaUVnX6jH05Nl5beZhFO7OpHjDFVenRTB3RnqEdYmWmYiFEsyOhphYNEWp8DgdZN4/FffIk0ffcTdyvf402VBYoDDR3Xj7l33yDbelSqrZtOyfEGNu1w3JVP0L798fSt+8ltYzUF19lJVU7d2L/YR32H37AsXdvjedDevcm/MYbCB89Gn30xbe4HC2088bqw3yx5SRur/rz90yJ4PFRHRneKU7CjRCi2ZBQU4uGCDVem43cp5/B9tVXAOiTk0h66inChg2rl/cXF89TWIjtm28oX7KUyi1bagQZY5s2WPr3V4PMVVehj4sLYKUX5ikqonz5cmxfL6Zyw4YzP4dOR+igQUTefhvWkSMvuhUpp6yK/645wscbjlPlVluErkiNZMa1HRkiLTdCiGZAQk0tGrJPTcWaNeTO+gvuU6cACL9+DAl/+lNAWwBaAk9xMeXfLsO2ZAmVmzaB78zq1yFXXkn4mNFYr70WQ1JSAKu8dO68fGxLFmNb9DWO3bv9+w2pqURPmkTkLeMvumWwqMLJnNVZvPfjURxu9Tz1TYtixrUdGdguRsKNEKLJklBTi4buKOyrrKTg369Q/N574POhDQ8n4fe/I+LWW+ULox55Skoo/+47ypcsxb5hQ43+KOaePQkfM4bw6zIwJCcHsMr65zxyhLJ58yn97DO8Zeowbm14OFF33E7U3Xdf9AiqgnInr686zIfrj+H0qOGmf3o0j1/bkQFtYxqsfiGEuFQSamrRWKOfqvbsIffJP/v7Rlj69SPh/z2BuVOnBvvMYOe12Sj/7ntsS5Zg//FH8Hj8z5m7dVNbZEaPqXOn2ubIV1VF2fz5FL/7Hq5jx9Sdej0RN1xP7K9+hbFNm4t6nzybg9dWHubjDcdxedVwM6hdDI+N6shV6TJaSgjRdEioqUVjDulWPB6KP/iQgn/9S53vRKMh4pbxxP36UQwJ8Q362cHCW1FBxfffY1uylIoffgC32/+cqXNntUVm9HUY09ICWGXgKD4fFStXUfzuu1Ru3Kju1OmIGDuW2Ed+hTEl5aLeJ6esiv+sOMRnm074OxRf3T6Gx0d1lKHgQogmQUJNLQIxT43r5CnyX3iB8qVLAdCEhBBz333EPHC/jJKqha+ykoqVKylbvBj76jUoLpf/OVOHDljHjCZ89BhMbdMDWGXTU7VrN4WvvELFqlXqDr2eyFtvJfaRRy46RJ8qVcPN55vPhJshHWJ5bFQH+qRJuBFCBI6EmloEcvK9ym3byH/+7+rwYkAXE0Psww8TeecEtEZjo9bS1PhcLuxr1mD7ejHlK1bUmMnX2Latv0XG1KFDAKtsHqq2b6fgX//Gvm4dABqLhdhfPkj0ffehNZsv6j1OllRWh5uT/pXBh3SI5fFrO9K7dVSD1S6EEOcjoaYWgZ5RWFEUyr9dRv6L/8B97DgAuthYon4xkag776zTHCTNneJ2Y1+/AdvixZR/9x2+8nL/c4bUVMKvv57w68dg6thROllfgspNm8h/4R9U7dgBqFMNxP/mN4Rff/1Fn88TxWq4+WLLmXAzrGMcj43qwJUSboQQjUhCTS0CHWpOU9xuSud+SeHrr+PJzQVAYzQSMfZmoidNCtoWCcXlonLLFnUumW++rbFkgD4hQW2RueF6zN27S5CpB4qiYPt6Mfn/+AeenBxAncgv6S+z6vQ7dryokldWZDJ36ym81eFmeKc4HhvVkStSIxuidCGEqEFCTS2aSqg5TXG7sX3zLcXvvltjDpLQQQOJuOVWrKNGXvQlg6bKU1KCffVqylesxL52Lb6KCv9zuuhowkdfR/j11xPSuzcarTaAlQYvX1UVxe++S+GcN9VLewYDsb98kJgpU+p06fNYkZ1/Lz/EvG1nws01neN5bFQHeqZENlD1QgghoaZWTS3UnKYoClVbt1L87nuUf/+9fwI5rdVK+PXXEzFuLCFXXNEsWi8URcGVlUXFihWUr1ip9iE6a0I8XUwMYcOHEX799YT2749Grw9gtS2LOyeH3L8+TcWKFYDaXynp6b9i6dOnTu9ztPB0uDnpX1tqZOd4HhvVkR4psiq4EKL+SaipRVMNNWdznTxJ2ZfzKJs/H3d2tn+/PimJsOHDsI4YgaV/f7QmUwCrPENRFNwnT1K1bRuV27ZhX/sD7hMnahxj6tSJsBHDsY4YgblHD2mRCSBFUSj/5htyn/k/vIWFAEROmED8b3+Dzmqt03sdKbTz7+8zmb/9lD/cjOqSwGOjOtC9lYQbIUT9kVBTi+YQak5TfD4qN26ibN48bMuWoVRW+p/ThIQQOmAAoQMHYOnfH1OHDo0WFHwuF449e6jatp2qbVup3Lbd/+Xor89gwDJggBpkhg3D0Cr4J8RrbrxlZeT9/e+UfTEXAH1cHEn/9wxhQ4fW+b0OF1TwyvJDLDgr3GR0TeDRUR3olizhRghx+STU1KI5hZqz+RwOKjdsoHzFCipWrMSTl1fjeW1oKKbOnTF37oyxXVtM6ekY09PRJyRc0iUrRVHwlZfjOnYc17FjuI4eVW9HjuA8eBDlrEnwADAYCOnalZArr8TStw+hAwfKHDzNhH3DRnL//Gf/zMRRv5hI/O9+hzYkpM7vdSi/gn8vz2Thjmz/GpzXdUvgsVEd6ZLUfP6+CSGaHgk1tWiuoeZsiqLg3LePih9+oHLDRiq3bq3RinM2jdGILjISXUSEuo2MRBcZgcZgAK0OfD68NhteWxm+MhvesrLqx7YayxD8lC46Wg0wV15ByJVXYu7evclcDhN153M4yP/Hi5R88AEAxvR0kp9/npAe3S/p/Q7ll/Py94dYtPNMuMnomsDDw9rRJ02Gggsh6k5CTS2CIdT8lOLx4DpyBMf+/Tj278eVdQRXVhaukydrLPR4KXSxsRjbpGFs0wZjmro1d+iAIS2tWXRaFnVTsfYHcmbOxFNQAHo9cdOmEvPgg5fcmftgXjn/+j6Tr3fl+MNN37QoHh7WjpGd49Fq5XdICHFxJNTUIhhDzfkoLhfu/AK8paV4y0rVbWmpurqzx4vi86LRatFaw9GFh6OLCEcXEYE2POLM/Uu4BCGaN09JCbmz/kL5N98AEHLllSQ//xzG1NRLfs9D+eXMWZ3FvG2n/MsvtIsL5aGhbRl3ZStMel291C6ECF4SamrRkkKNEJdKURTKFiwg7+ln8NntaC0WEp74ExG33HJZLXR5Ngfv/HCUj9Yfo9ypXt6Ms5q47+o23NU/jYgQQ339CEKIICOhphYSaoS4eK6Tp8j+4x+o2rwFAGtGBklP/xVdxOWNaCp3uPl04wneWnuEXJsDAItRx/grWzFpYBs6JdZtaLkQIvhJqKmFhBoh6kbxeil6+20KXv4XeDzok5No9cI/sPS+8rLf2+Xx8dWObOaszuJA3pm1vwa0jWbyoDaM6pKAXidzGgkhJNTUSkKNEJematcuTs34jTqxok5H3PTpxPzyQTS6y+8PoygK67OKef/Ho3y7N8+/BENShJm7B6Rxe58U4sOb93IhQojLI6GmFhJqhLh03ooKcmf9BduiRQBYBgyg1d+fRx8XV2+fkV1axUcbjvHJxhMU210A6LQarukcz539UhnWMU5ab4RogSTU1EJCjRCXR1EUyubNJ/fpp1GqqtDFxtLq788TOnBgvX6Ow+3l6505fLzxOFuOnVnNPSHcxC29Uxh3RSvpeyNECyKhphYSaoSoH86sLE49+hjOzEzQaIj91a+InfpIvVyO+qnMvHI+23SCuVtPUlJ5ZjbrzolWxl7RipuvSKZVpEw/IEQwk1BTCwk1QtQfX1UVeX/7G6WffwGA5aqrSH7h7xji4xvk85weL9/vy2fetlOsPJDvn/MG4Ko20VzXPZGMrgmkRlsa5POFEIFzsd/fdbo4PXv2bPr164fVaiU+Pp5x48Zx4MCBGsfk5eUxefJkkpOTsVgsjB49mszMzBrHPPzww7Rr146QkBDi4uIYO3Ys+/fvv+Bnz5o1C41GU+OWmJhYl/KFEPVIGxJC0tNPk/z3v6O1WKjcuJEj42+h4ocfGuTzTHod1/dI4s1Jfdn0xChm39KD/unRAGw8WszTi/Yy5PkVXP/yGl767iB7s220oP+zCSGoY0vN6NGjufPOO+nXrx8ej4cnnniCXbt2sXfvXkJDQ1EUhUGDBmEwGPjHP/5BeHg4L774IkuXLvUfAzBnzhw6d+5M69atKS4uZtasWWzfvp0jR46gO0/z9axZs/jiiy/47rvv/Pt0Oh1xdeikKC01QjQMZ9YRTj3+OM4DB0CjIebhh4ibNu2Sl1ioi+zSKpbuzuXbvblsPFLsXykcICUqhKEd47i6XSwD28UQHWps8HqEEPWvUS4/FRQUEB8fz6pVqxg6dCgHDx6kU6dO7N69m27dugHg9XqJj4/nueee48EHH6z1fXbu3EmvXr04dOgQ7dq1q/WYWbNmMX/+fLZv336p5UqoEaIB+RwO8mY/S+lnnwFg6duX5H/8A0NCw1yOqk2x3cX3+/L4dm8eqw8W4PT4ajzfJSmcq9vFcHX7WPq2icJqllmML5XH66PC6aHc4aGsyk25w4PT48XrU/D4FLw+BbfX5x+ibzboMOm1mA06zAYtJv3ZWx0mg5ZQox6drAkmanGx39+X9d+osrIyAKKj1SZgp9MJgNl8Zk4JnU6H0Whk7dq1tYYau93OO++8Q3p6Oqk/s75MZmYmycnJmEwm+vfvz9/+9jfatm173uOdTqe/JlBPihCiYWjNZpL+MgtLv37k/vnPVG7ezJFx40h+/nnChgxulBqiQ43c3jeV2/umUunysO5QET8cLmTdoSIO5JWzL8fGvhwb/117BI0G2seF0Ss1kl6pkVyZGkmnRCuGFjZk3OtTKKl0UVThoqjCSaHdRXGFkyK7i5JKF7YqD+UONzZH9bb6sd11eQvm1kajgSiLkdgwIzGhJmLCjMSGmYizmkiJCiElykLraAuxYUZZVFfU6pJbahRFYezYsZSUlLBmzRoA3G43HTp04KqrruKNN94gNDSUF198kZkzZ5KRkcE31YvkAbz66qv8/ve/x26307lzZxYtWnTeVhqAJUuWUFlZSceOHcnLy+OZZ55h//797Nmzh5iYmFpfM2vWLP7yl7+cs19aaoRoWM4jRzj1+Ayc1X3lYn75S+Ie/XWjXI46n4JyJz9mFbHuUCHrDhdxvLjynGNMei1dksLpmBBGxwQr7ePDSI8NJTkypFmFHYfbS0G5k4IKJ4XV29OhpcheHWDs6r7iSheX0/UoxKDDatZjNesxG3TotRp0Wg16rRa9TuNveXG6fTg8XhxuL06Pr8bW4fb9zKec+5mp0SGkRllIjbbQISGMzonhdEq0EmYK3O+YaDgNfvlp6tSpfP3116xdu5aUlBT//i1btvDAAw+wY8cOdDodo0aNQqtV/zFYvHix/7iysjLy8/PJycnhhRde4NSpU/zwww81WnkuxG63065dO37/+98zY8aMWo+praUmNTVVQo0QjcDndJL37LOUfvIpACG9e9PqHy9gSEoKcGWqgnInO0+Wsv2EettxohSbw1PrsVoNJIabSYm2kBIZQny4mTir2oIQX72Ns5qwmvT12oKgKApVbi9lVW5KK9VbWZWbsiqXf19ZlZuSSheF5S4KK5wUlDv9C4ZerNMtJNGhRmJC1daRmDAjkRYj4WY94WYD4SF6rGYD4WYDVrOe8BB1Wx9hT1EUXF4ftioPxXb15yisDmKFFU7yy52cKK7kZEkV2WVVFwxhraMtdE0Kr26Bi6BHqwi5zBgEGjTUTJ8+nfnz57N69WrS09NrPaasrAyXy0VcXBz9+/enb9++/Oc//6n1WJfLRVRUFP/973+ZOHHiRddx7bXX0r59e1577bWLOl761AjR+GxLlpDz5J/xVVSgi4gg6dnZWEeMCHRZ5/D5FI4W2dmTbeNQfgWH8ivIzC/neHHlRbckaDQQZtQTZtYTYtSh02jQajRoNOrMyFqNBq0GNBpN9WP1vqIoONzVrRYe75n7bm+Noet1YdRriau+dKNewjkdWs5c1ompvswTZTE0m5maXR4f2aVVHC+u5ERhOXlHs8k/coKyE9noiouIcFZg8roxeV2YvB4UjYaQMAsxMeEkxUeSmhSJNcKKzhqGPjEJQ6tkDAkJaAwSfJqyBulToygK06dPZ968eaxcufK8gQYgonol38zMTDZv3szTTz/9s+99dqvKz3E6nezbt48hQ4Zc9GuEEI0vfMwYzN26cerxGTj27OHkrx4hevJk4mc8jsbYdEYjabUa2saF0TYurMZ+RVEorHBxoqSSE8WVZJc6yC93qJd3zrqVOz0oCpQ7PXVuKfk5eq2GSIuB8BADkSEGIkIMRFqMRPjvG/x9Txqq1SiQFEXBk5ODY+9eqvbsQZeZSausI8QdPw6eup3ryupbDVot+vh4TG3bYurcGXPnTpi7dMHYrh0abfMIe0JVp5aaRx55hI8//pgFCxbQqVMn//6IiAhCQtQZPT///HPi4uJo3bo1u3bt4tFHH6VPnz7MnTsXgKysLD777DMyMjKIi4vj1KlTPPfcc6xZs4Z9+/YRXz1x18iRIxk/fjzTpk0D4Le//S033XQTrVu3Jj8/n2eeeYZVq1axa9cu0tLSLqp+aakRInB8LhcF//gHxe+9D4C5Z09avfgPjGddvm7OHG4vNoebCocHu9NLpcuDTwGfolTf1PuKouD1nbnvU0AD/hFAZ48SCjHoiAgxYDHqgiagXCzX8ePY1/2Ifd06KjdvxltcXPuBOh36uDj0CfEY4hPQxUSjDbGgMZvQmsxUOFzk5ZeRW1hGYWE5leUVGL1urO4q4itLiK8qweCrvdOzLiICy1X9sPTrh+WqqzB17CghJ0AapKXm9GWe4cOH19j/zjvvMHnyZABycnKYMWMGeXl5JCUlMWnSJJ588kn/sWazmTVr1vDSSy9RUlJCQkICQ4cOZd26df5AA3D48GEKCwv9j0+ePMnEiRMpLCwkLi6OAQMGsH79+osONEKIwNIajSTMnInlqqvInvknHDt3cmT8LST93zOEZ2QEurzLpg5V1hEvS1JdEk9JCZXr16tB5scfcZ88WfMAvR5T+/aYu3bF3LkzxnZtMaWno09IuODyHLFAm7Mel1a62HCkmB8PF/F+VhEHcsqIdFaQaC+mTXku3R359HDkEZtzDG9ZGeXLvqN8mTo/mi42lrDhw7Becw2hAweiDZHlOZoaWSZBCNHo3KdOcWrGb6jasQOAqLvuIv73v0NrMgW4MtGYnFlZ2BYvoWL5chz79lGjB7Bej+WKK7AMGkjogIGYu3VtkN+PnLIqvt+Xz/L9+fxwqNA/t5HO56W/O59xmly6FRxGv2cnvsozF640ZjPWa64hYvw4QgcNapB1z8QZsvZTLSTUCNF0KG43BS+/TNF/3wLA1LULKf/8J0ZpfQ1qrhMnsC1egm3JEv+Q/9NMHToQOmggoYMGYenbF231LPSNpcrl5YdDhXyzJ5ele3IpP2s0XHqEkXtCSxiYtxfDj2twZ2f7n9PHxRExbiyRd9yB8WfmWxOXRkJNLSTUCNH0VKxeTfYf/oi3pARtaCiJT/2Z8JtuanF9SIKZz+HAtngJpZ995m+dA0CvJ/TqQYRfN5rQwVc32GKol8Lp8bL6YCELd2Tz3d48qtxn+t10jA/lrshKBh7eAN99g7d6Ilo0GkKHDiFq4kTChgyR1pt6JKGmFhJqhGia3Hl5nPrNb6javAUA63XXkTjrKfRRUQGuTFwO19GjlHz6GaXz5uE7/cWv1WLpfxXhY8ZgvfbaZvFnXOny8P2+fBbuyGbVgQJc3jND/AekhDFZl02njd/h+HGdf7+hVSui751E5B13oL3I+dfE+UmoqYWEGiGaLsXjoXDOHApffQ08HnRxsSQ/8wxhw4YFujRRB4rHQ8XKlZR8/An2dWd9yScnEzlhApG3jEdfh4WIm5qyKjff7Mnlqx3Z/HCo0L+AqsWo4xfJGsae3IBx2df4ytRleXSxscTcdx9Rd05o9MtpwURCTS0k1AjR9FXt3kP2H/6A6/BhACLvuIOEP/xevhCaOHd+PqVffEHp/z7Hk5ur7jx9OebOOwkbOjToLsfk2RzM3XqSzzef5Eih3b+/Z5yZXzkP0G7ZXLw5at8bXWQk0ZMnE3X3XejCws73luI8JNTUQkKNEM2Dz+Gg4J//9M9pY0hNJfm5Z7H07h3gysTZFEWhcsNGSj79lPLvvvNPhKeLiiLytluJnDAhaOYhuhBFUdh0tIRPNx5n0a4cXNUjqMJ08GvfIQZvXITmlDpEXRsRQexDvyTqrrvkslQdSKiphYQaIZoX+/oNZM+ciScnB7RaYh54gNjp09A2oZmIWyKvzUbZ/AWUfPaZv0UN1PW9oibeifW661rsn1FppYt5207x8YbjZOZXAKD1ebnXkcnY3d9iyj4OgD4+ntipU4m8Zbws0XARJNTUQkKNEM2Pt7ycvP/7G2Xz5wNg6tCexKeewtK3b2ALa4EcBw5S8uGHlC1ahFJVBYDGYiHi5puImjgR81kzzbd0iqKw9XgJH/x4jK935eD2KmgVH2MLdnLPvm8IKSkAwJDWmvjf/hbrqFEy4u8CJNTUQkKNEM2Xbdkycp+a5Z8uP+KWW4j/3W+bxeiZ5kzx+bCvWUPxe+9hX/ejf7+pQ3siJ04k4uabpY/Iz8gvd/DxhuN8tOE4BeVODF4PNx5fzz2ZywmpVDsUh159NQl/mompXbsAV9s0SaiphYQaIZo3T0kJBS/+k9LPPwfUtXnif/87IsaPlzV56pmvqoqyBQsofu99XEeOqDu1WqwZGUTffRchffpIy0IduTw+luzO4b11R9l6vJQQt4M7Mldw26FV6H0e0OuJvvtuYqdNlaD4ExJqaiGhRojgULl1K7mz/oLz4EEAQvr0IfGpP2Pu2DHAlTV/7rw8Sj76mNLPPvNPKqcNCyPy9tuJvvsuDK1aBbjC4LDzZCnvrjvKoh05xNjyeWjXQgbk7gVAEx1D4m9/Q8S4sRLWq0moqYWEGiGCh+J2U/z+BxS88orav0OnI2rCHcROnYo+JibQ5TUriqJQtXUrJR9/gu2bb/yjmAwpKURPmkTELbegC5Mh9Q2hsMLJpxuP8+H646RkbuPhXQtJqVD723i79qD983/D3L59gKsMPAk1tZBQI0TwcWdnk/u3v1Hx3fcAaENDiXnoIaLvnSRDZn+Gz26n7KtFlHzyCc4DB/z7Q/r2Ifree7Fec03QzS3TVLm9Pr7Zk8uHaw7RavlCfnHgOyweJx6tnqJb72bAnx7FHNJyf58l1NRCQo0Qwcu+YSP5zz2HY6/ahK9PSiL+8ccIv/FGacL/Cefhw5R88ill8+fjq1CHHWvMZsJvvIGoiRMJ6dYtwBW2bLtPlTF3yWbafvgf+ubuA+BYVAo5D/2Gm28fQUxYy1vNXkJNLSTUCBHcFJ8P26JF5P/zJXVuG9RROjFTphA+enSLbnVQXC5sy5ZR+ulnVG7a5N9vTEsj6hcTiRg3Dl1ERAArFD9VVOFkxSvvk/bx64S5KvFqtMzrOJyqO+/j3hGd6JRoDXSJjUZCTS0k1AjRMvgcDoo/+ICiOW/iKy8HwJieTszDDxFx/fVoWtDEcK6jRymd+yWlX36Jt6hI3anVEjZiBFG/mEjowIHSktXEVeUXsOv3T2JdvwqAk2FxvHTlHUT178cDg9MZ1jEOrTa4R6JJqKmFhBohWhavzUbxhx9S/N77/lWi9XFxRE68k6gJE4K2Q7G3wk75N0sp/XIeVVu2+Pfr4+OJvP12Im+/DUNiYgArFJfCtmwZJ576C9riInxoWJQ+iHe7jiEhMZq7B6RxW58UIi3BGdgl1NRCQo0QLZO3ooKSjz6m5MMP8RSoI0s0BgPhN9xA1D13B0UfEsXtpnLzZsoWLMT2zTf+GX/Ragm9+moib78N64gRMiV/M+ctKyPv+ecpm/slAPmWKP5x5QR2xrXHpNdyc69k7hmYRs+UyMAWWs8k1NRCQo0QLZvicmH75luKP/wAx46d/v3m7t2JGDuW8BuuRx8dHcAK68bndGL/YR3ly5ZRsXy5f14ZAGObNkSMH0/EuLEYEhICWKVoCPZ168h58s+4T50CYFWPa/hn2iicerWlpldKBHcPSOOmXsmYDc2/L5mEmlpIqBFCnFa1YwfFH3yIbelS/7ws6PWEDRtGxE03Ejp4SJOcm8V18hT2tWuoWLOWyh9/xFdZ6X9OFxWFddQoIsaPJ+TKK2TG3yDnrbCT//zzlP7vfwD4UlJZcN2DvFtqxeVVVwqPCDFwR98U7uqfRpvYpvf7fLEk1NRCQo0Q4qc8xcXYvl5M2fz5OPbs8e/XGAxYBgwgbMhgLP36YerUKSAdar2lpVRu20bl+vVUrF5zZsmCavrERKzXXot11CgsfXqj0esbvUYRWBVr1pDzxP/Dk58PWi2We+9jSe8b+WBLNqdKq/zHDe0Yxz0D0rimczy6ZtaxWEJNLSTUCCEuxJmZSdmCBdi+XYb7+PEaz2nDw7H06YO5a1dMnTpi7twZQ0pKvQUdxefDk5ODM+sIriNZODMzqdy2DdehwzUP1OkIufIKwgYPIXTIYMxdu0qLjMBbVkbuM/+H7auvADB16kTi7Nms10bzwY/HWHmwgNPf9q0iQ5h4VSoT+rUmzto85ryRUFMLCTVCiIuhKAqurCzKly+ncsNGqrZurXGZ5zSNxYKpTRv0SUkYqm/6xAR0YWFoQkLQmkygKCg+BVBQHA685RV4Cgvw5OXjyc/Hk5+HOz8f98lTKA5HrfUY27bF0qcPoUMGEzpwIDpry5mfRNSN7ZtvyZ01C29JCRgMxE19hJgHH+REmYuPNh7jf5tOUFLpBkCv1TC8UxzjrmzFqC4JTbrvjYSaWkioEUJcCsXjwbF3L1XbtuE4cBDn/v04Dx1Ccbnq94MMBoxprTGlt8WYnk5Ir56EXHlls+q8LALPU1REzlNP+ZcOMffsSfKzszG1bYvD7WXxrhw+WH+MbcdL/a+xmvRc3yOJ8b1bcVWb6CY3742EmlpIqBFC1BfF48F19CiuEydw5+TgyclVt3l5+Cor8VVVoTidoNGAVgsa0JrMaEND0cfGoo+PR5+QgD4+DkN8PIbkZPVylvSJEfVAURRsCxeS+8z/4SsvR2MyET/jcaLuucd/yfRQfjnztp1i/raafW9aRYYw9opkbundivbxTaNVUEJNLSTUCCGEaEncubnkPPH/sP/wAwCWfv1Imv03jCkp/mN8PoWNR4uZt/UUi3flUO70+J/rlGBlTI9Eru+RRMeEwAUcCTW1kFAjhBCipVEUhdLPPiPv+b+jVFaitViI/+MfiLz99nM6mTvcXr7fl8+8bSdZeaAAj+9MRGgXF8r1PZK4rlsi3ZLDG7WDuoSaWkioEUII0VK5jh8n+09/omqzunRG6NAhJD39DIaE+FqPL6t0s2xfHkt25bAms9A/9w1AvNXEiE7xjOgcz+AOsYSZGvayqYSaWkioEUII0ZIpXi/F739AwT//ieJyoY2IIPH//T/Cb7zhgi0vNoeb5fvyWbJbDTiVLq//OYNOw5WpUQxqH8Pg9rH0So3EoKvfOZ0k1NRCQo0QQggBzsOHyf7DH3Hs3g2ANSODxFlPXdRIO6fHy4asYpbvz2fFgXyOFdWc7mDR9MF0bxVRr/VKqKmFhBohhBBCpbjdFL75JoWvvgYeD7qYGBKf+jPhGRkX/x6KwrGiSn44XMi6Q0Xsy7Xx3ePD6n1IuISaWkioEUIIIWpy7N1L9h/+iDMzE4CwkSNJ/H9PYEhKqvN7KYrSIB2IL/b7u/EXMhFCCCFEk2Hu2pU2c78gZsrDoNdT8f33ZN1wI8Xvf4Di9f78G5wl0Et2SKgRQgghWjit0Uj8Y4/Rdt6XhFx5Jb7KSvL+9jeO3jkRx759gS7vokmoEUIIIQQApg4dSPvoQxJnzUJrteLYtYsjt91O3vN/r3X9s6ZGQo0QQggh/DRaLVF3TqDt14uwjhkNXi/Fb79N1k03U7F6daDLuyAJNUIIIYQ4hyE+npR//pPUN17HkJyM+9QpTjz0MKdmzMCdnx/o8moloUYIIYQQ5xU2bBhtF31F9H33gVaLbfESskaPofD11/E5HIEurwYJNUIIIYS4IK3FQsIffk/6F59j7tUTX2UlBS+9zOEx11O2cCGKz/fzb9IIJNQIIYQQ4qKYu3alzaefkvyPF9AnJ+HJySH793/g6B0TqNy8OdDlSagRQgghxMXTaDRE3HAD7RYvJm7GDLShoTh27+bY3fdwcvqvcZ86FbDaJNQIIYQQos60ZjOxD/2Sdt8sJXLCBNBqKV+5EsXjCVhNDbtWuBBCCCGCmj42lqS/zCLqrl/g2LkTY1pa4GoJ2CcLIYQQImiYO3bE3LFjQGuQy09CCCGECAoSaoQQQggRFCTUCCGEECIoSKgRQgghRFCoU6iZPXs2/fr1w2q1Eh8fz7hx4zhw4ECNY/Ly8pg8eTLJyclYLBZGjx5NZmZmjWMefvhh2rVrR0hICHFxcYwdO5b9+/f/7Oe/+uqrpKenYzab6dOnD2vWrKlL+UIIIYQIYnUKNatWrWLq1KmsX7+eZcuW4fF4yMjIwG63A6AoCuPGjSMrK4sFCxawbds20tLSGDVqlP8YgD59+vDOO++wb98+vvnmGxRFISMjA6/Xe97P/uyzz3jsscd44okn2LZtG0OGDGHMmDEcP378En90IYQQQgQTjaIoyqW+uKCggPj4eFatWsXQoUM5ePAgnTp1Yvfu3XTr1g0Ar9dLfHw8zz33HA8++GCt77Nz50569erFoUOHaNeuXa3H9O/fn969e/Paa6/593Xp0oVx48Yxe/bsi6rXZrMRERFBWVkZ4eHhdfxphRBCCBEIF/v9fVl9asrKygCIjo4GwOl0AmA2m/3H6HQ6jEYja9eurfU97HY777zzDunp6aSmptZ6jMvlYsuWLWRkZNTYn5GRwbp1685bn9PpxGaz1bgJIYQQIjhdcqhRFIUZM2YwePBgunfvDkDnzp1JS0tj5syZlJSU4HK5ePbZZ8nNzSUnJ6fG61999VXCwsIICwtj6dKlLFu2DKPRWOtnFRYW4vV6SUhIqLE/ISGB3Nzc89Y4e/ZsIiIi/LfzhSYhhBBCNH+XHGqmTZvGzp07+eSTT/z7DAYDc+fO5eDBg0RHR2OxWFi5ciVjxoxBp9PVeP1dd93Ftm3bWLVqFR06dOCOO+7A4XBc8DM1Gk2Nx4qinLPvbDNnzqSsrMx/O3HixCX8pEIIIYRoDi5pmYTp06ezcOFCVq9eTUpKSo3n+vTpw/bt2ykrK8PlchEXF0f//v3p27dvjeNOt5506NCBAQMGEBUVxbx585g4ceI5nxcbG4tOpzunVSY/P/+c1puzmUwmTCbTpfyIQgghhGhm6tRSoygK06ZN48svv2T58uWkp6ef99iIiAji4uLIzMxk8+bNjB079mff+3SfnJ8yGo306dOHZcuW1di/bNkyBg0aVJcfQQghhLh0igIeF7ir1Jvv/KN2ReOrU0vN1KlT+fjjj1mwYAFWq9XfchIREUFISAgAn3/+OXFxcbRu3Zpdu3bx6KOPMm7cOH8n36ysLD777DMyMjKIi4vj1KlTPPfcc4SEhHD99df7P2vkyJGMHz+eadOmATBjxgzuuece+vbty8CBA5kzZw7Hjx9nypQp9XIihBBCCBQFig5D8eEz2+Is9VZZAm47+Dw1X2OwQFQ6RKdDVBt1G91WvUWmwQW6SYj6VadQc3o49fDhw2vsf+edd5g8eTIAOTk5zJgxg7y8PJKSkpg0aRJPPvmk/1iz2cyaNWt46aWXKCkpISEhgaFDh7Ju3Tri4+P9xx0+fJjCwkL/4wkTJlBUVMRf//pXcnJy6N69O4sXLyYtgEucCyGECAIuO2StgoNLIfNbKM/5+deczV0J+XvU20+FJUL6EGgzBNoOhyj5zmpIlzVPTXMj89QIIYQA1EtIB5fA9o/h8ArwntX9QW+GmA4QU93aEt1O3YYlgDEUDCGg1amtOj4PVJVA8RG1NafkiHq/pPqx11XzcxN7QtebocvNENepcX/mZuxiv78l1AghhGg5Sk/Axjdg20dQVXxmf2Rr6DgGOl4HbQaDvh4GmbgdcHITHFkNR1ap9xXfmeeTroCrHoLut6hBSZyXhJpaSKgRQogWKncXrHkR9i4ApbpzrzUJet0JPe6A+C4N3/fFXgj7v4Z9C9XLXT63uj8kCq68B/o9oPbJEeeQUFMLCTVCCNHC5O6GVc/Cvq/O7EsfBgMegQ7XqpeRAsFeCFvfh83vQNnpNQw1aktR/4eh7QjpYHwWCTW1kFAjhBAtROkJWPYk7JlXvUOjXuYZ/Dgk9ghoaTX4vHDwG9j0JhxefmZ/64FwzZPQ5urA1daESKiphYQaIYQIcl43rH8VVj6rjkpCA93GwbA/qJeYmrLCQ2q42fIueKpn2G93DYyaBUm9AllZwEmoqYWEGiGECGLHfoSvZ0D+XvVx64Fw/QuQ2D2wddWVLRtW/129POXzABroPQlG/hlCYwNdXUBIqKmFhBohhAhClcXw7ZOw/UP1sSUGrn0arvhF8+6XUnwElj8Nu+eqj00RMGIm9Psl6C5plaNmS0JNLSTUCCFEkMlcBgumQUX12oC971Uv11iiA1pWvTq2Dpb8Xh3BBeqlqJv/3aIuSV3s9/clr9IthBBCBIyzAhY9Dh/dpgaa2I5w/7dw87+CK9AApA2Ch1bBjS+BOQJydsCcEbDsKfDUvmZiSyWhRgghRPNyYiO8Phg2v60+HvAIPLwaWvcPbF0NSauDvvfB1E3Qbbw6184PL8F/R0L+/kBX12RIqBFCCNE8KAqs+ze8PVpdhiA8BSYthNGzW86MvNYEuP1dmPCR2ncodxfMGQYb31TPTwsnoUYIIUTT57DB/ybBt/9PbaXofhv86gdoOyzQlQVGlxvhV+ug3Uh1+Pfi38LHd0BFfqArCygJNUIIIZq2/P3w5jXq8gJagzpM+9b/QkhkoCsLLGsi3PUFjH4OdCZ1hfFXB8KBpYGuLGAk1AghhGi6Dq+At66FokwIbwX3LYGrftm8h2rXJ60WBkyBh1ZCQneoLIRPJsCiGeCqDHR1jU5CjRBCiKZpy3vq6CanTZ1I7+HVkNov0FU1TQld4cHvYcBU9fHmt9S+NtnbA1pWY5NQI4QQomnx+eC7WfDVr9UZdXvcAZMWtNjZdC+awQyj/wb3zIOwRCg8CP8dBT+8rJ7TFkBCjRBCiKbDXQVf3Adr/6k+HvZHuGUO6E2Bras5aXcNPPIjdLkJfG5Y9mf4dKI683KQk1AjhBCiaagogPdugr3z1Q7B415XlwWQ/jN1Z4mGOz5QJ+zTmeDgUnhjGJzaEujKGpSEGiGEEIFXcECdSO7kJjBHwqT5cMXEQFfVvGk06oR9Dy6DqHQoOw5vXQcb5gTtnDYSaoQQQgRW1ir477VQegyi2sCD30GbwYGuKngk9YKHV0HnG9XLUUt+B1/cD87yQFdW7yTUCCGECJxtH8KHt4CzDFL7qyN4YjsEuqrgY46ACR/CdX8DrR72fAlzhkPenkBXVq8k1AghhGh8Ph98/zQsmKqOcOp2i7rkgYxwajgaDQycCpMXq3P+FB2CN0fC9k8CXVm9kVAjhBCicXk9aphZ84L6eMhv4da31CHJouG17g8Pr1FHSXmqYP4UWPhrcDsCXdllk1AjhBCi8Xhc6pDtHR+DRgc3vwIjn1RnxhWNJzRGXWJh+ExAA1vfU2duLj4S6Moui/wWCSGEaBzuKvj0F+oaTjoj3PEe9L4n0FW1XFodDP8j3PNl9YrfO9Vh3/sXB7qySyahRgghRMNzlsOHt8GhZaAPgYmfqpPDicBrd426BEXKVWqH7U8nqhP2eT2BrqzOJNQIIYRoWJXF8P5YOLYWjFa1ZaD9yEBXJc4WkQKTv4YBj6iPf3gZ3r8ZynMDW1cdaRQlSGfgqYXNZiMiIoKysjLCw8MDXY4QF89RBoWZ6mgFRxm4KtQVeL1OMISC0QIGCxhDISxBnesjIhX0xkBXLlo6e6EaaPJ2Q0gU3P0ltOod6KrEheyZDwumgascQuPhtrchfUhAS7rY7299I9YkhLgYVSVw7EfI2aFe487ZAbZTl/BGGvV/X0m9IPlKSOmrNi8bLfVeshC1qihQ/7efv1f9cpy0QF1NWjRt3cZBQnf43yTI36P+GV7zJFz9WJPv0C0tNUI0BSXH4MBi2P81HFsHivfcY6xJENNencfDGKq20OgMaudLlx3cdnVry1FnZnVXnvseWoMabtqPgm7jIaZdw/9somU6vY5TwT51xejJi2RSvebGVQlfz4Ad1fPYdBwN415T15VqZBf7/S2hRohA8XnVReY2vglZK2o+F9sRUvpBYk+1pSWhqzoj6MVSFLAXqJessrepi9gdXw/l2TWPS+yp/q+s23iIbnvZP5IQAFTkVwea/WoYv3cRxLYPdFXiUigKbH0fFv9Ovdwd2Rpuf6/RLyFKqKmFhBrRJNgL1TkhNr8DZSeqd2og7WrofD10GtMwAUNRoOSIus7Ovq8ga2XNFqF216idBNuNbPJNzKIJK89TA03hAbAmqy000iLY/OXsUC9HlRxVh+OPfhb63t9oK6hLqKmFhBoRUKXHYfULalOu16XuC4lW5+noe7/aubcx2Ytg/yJ1DZgjq0Hxqftj2qvh5sq7QW9q3JpE81aeWx1oDkqgCUZVpTD/ETjwtfq4xx1w00vq5fAGJqGmFhJqRECU58Kq59UmXJ9b3ZfcG676pXrZxxAS2PpA/d/Xxjdh6wfqPBWgrg0z+HHoPUnCjfh55bnw7o1QlKn+7tz7lQSaYKQosO7f8N0staU3rrN6OSq+c4N+rISaWkioEY3KVQk/vgJrX1I78QKkD1OnJU8bGNDSzstZoa6a/MPLZ/rfWJNhyAy48h5Zm0fUzpYD792oTjkQngKTv5I+WsHu2Dr4/D6oyFUnUxzznPofoAa6HCWhphYSakSj2bcIlvz+zFDslH4w6i/Q5urA1nWx3A7Y9gGsebFmuBn5JPS8U/rciDNs2WoLTfFhdW6ke7+C6PRAVyUaQ0U+fPnQmYEO3cbDTS/XbVDDRZJQUwsJNaLBlZ1Sw8z+RerjiNZw7SzodkujdairVx7nmXBzOqC16gNjnleHhouWreyU2kJTnKX+rk/+qvH7honA8vlg3b9g+dPg86ijo+78BBK71+vHSKiphYQa0WB8XrVPyvKn1dl+tXq4+lEY+rum0WfmcnmcsP41WP139ecD6DURRj4F4UmBrU0ERtlJtYWm5Ij6RXbvIohKC3RVIlBOblZXX3dXwZQfwJpQr28voaYWEmpEgyg9rjbBHv9RfZzaH258KThnTi3Phe/+Ajs+Vh8brTDqKej7gFySaknKTsK7N6gdzCPT1FFOka0DXZUINEeZ2mqXfGW9v7WEmlpIqBH1bs88WPioOmLIaIVr/wJ97gv+L/iTm9XJuLK3qo9TrlKvpQdjkBM1FR9Rp80vPa5earp3EUSmBroqEeQu9vs7yP/lFaKBuKtg4XT4fLIaaFr1hSlroF8LabFI6QsPfgdj/g7GMDi5Ed4YAitmg9cd6OpEQyk4CO+MUQNNdFt1VWcJNKIJaQH/+gpRz8pOqf+wb30f0MDgGXD/0pY34kOrg/4PwdSN0PlGtZPgqmfhvyMhb2+gqxP1LXe3+ntfnqPOTXLfEnXBVCGaEAk1QtTFiU3w5gh1PaWQaLhnntqnRGcIdGWBE9EK7vwIbnsbQqLU6dTnDFPn5/HVsjCnaH5OblH70FQWquuFTV4M1sRAVyXEOSTUCHGxtn0E714PFXkQ3xUeWgHtRgS6qqaj+63wyHrocJ26DMR3T6n/sy/OCnRl4nIcWwfvjwVHqdp36t6vIDQm0FUJUSsJNUL8HK8Hlv4JFjyifll3vhEe+Fbm46iNNRF+8RmM/Y/acfrEBnhtMGx5V51eXTQvh5fDB7eAqxzaDFFbJkMiA12VEOcloUaIC3HZ4dOJsP4/6uNhf4A7PgCTNbB1NWUajboY5iPrIG2wukTEV4/CJ3eqKziL5uHAEvh4AniqoP21cNfnYAoLdFVCXJCEGiHOp7JYbXbP/FZd2+T292DEn1rG6Kb6ENlavVSR8QzojHBwKbw2EPZ9FejKxM/ZPRc+u1ttmexyk9pnKhgmkRRBT/51FqI2ZSfh7dFwchOYI2HSAug2LtBVNT9aLQyaDg+tgoQeUFmkflkumKounimanm0fwdwH1dFsPe6A296VVdpFsyGhRoifyt8Pb2VA4QF1Ecf7l0Lr/oGuqnlL6Aq//B6ufgzQqCuBvzEETm0JdGXibBvfVPuOKT7ofS+Mfx10+kBXJcRFq1OomT17Nv369cNqtRIfH8+4ceM4cOBAjWPy8vKYPHkyycnJWCwWRo8eTWZmpv/54uJipk+fTqdOnbBYLLRu3Zpf//rXlJWVXfCzZ82ahUajqXFLTJQhhaKendwC74xWF2+M7ah2CI7vEuiqgoPepM64PHkRhKeoo6LeyoA1/5Ch34GmKOqfw+Lfqo/7/0qdIVqrC2xdQtRRnULNqlWrmDp1KuvXr2fZsmV4PB4yMjKw2+0AKIrCuHHjyMrKYsGCBWzbto20tDRGjRrlPyY7O5vs7GxeeOEFdu3axbvvvsvSpUt54IEHfvbzu3XrRk5Ojv+2a9euS/iRhTiPI2vU6d+rStSVqO9bKrOlNoQ2g+FXa6HbePUSx/d/hfdugtITga6sZfJ54evfqH8OAEN+A6NnN89V5UWLd1lrPxUUFBAfH8+qVasYOnQoBw8epFOnTuzevZtu3boB4PV6iY+P57nnnuPBBx+s9X0+//xz7r77bux2O3p97U2ds2bNYv78+Wzfvv1Sy5W1n8T5HfwW/ncPeBzq0NWJn8gIp4amKLDjE3UNKVcFmCPUhUC73xLoyloOd5Xaf2b/IkADo5+FAVMCXZUQ52iUtZ9OXzKKjo4GwOl0AmA2m/3H6HQ6jEYja9euveD7hIeHnzfQnJaZmUlycjLp6enceeedZGVdeFIvp9OJzWarcRPiHLu/VIdtexzQcQzc9YUEmsag0cAVv4CHV6stY44y+OI+mPcrcJYHurrgZy+C925WA43OBHe8J4FGNHuXHGoURWHGjBkMHjyY7t27A9C5c2fS0tKYOXMmJSUluFwunn32WXJzc8nJyan1fYqKinj66ad5+OGHL/h5/fv35/333+ebb77hzTffJDc3l0GDBlFUVHTe18yePZuIiAj/LTVVLiWIn9j6Acx9QL0M0v02mPABGMw//zpRf2Lawf3fwNDfg0YLOz6G1werK4GLhlFyFN7OUBciNUfCpPnQdWyAixLi8l3y5aepU6fy9ddfs3btWlJSzixqtmXLFh544AF27NiBTqdj1KhRaKvn9Vi8eHGN97DZbGRkZBAVFcXChQsxGC5+/Ry73U67du34/e9/z4wZM2o9xul0+luPTn9eamqqXH4Sqg1zYMnv1Pu974Ub/ykdIwPt2Dr48iEoOwEaHQyfCUNmyJ9LfTr6A3x+L9gLICIV7p4LcZ0CXZUQF9Sgl5+mT5/OwoULWbFiRY1AA9CnTx+2b99OaWkpOTk5LF26lKKiItLTa65gXF5ezujRowkLC2PevHl1CjQAoaGh9OjRo8bIqp8ymUyEh4fXuAkBwOa3zwSagdNkpEdTkTYIpqxVW80UL6x4Rl1IseRYoCtr/hRFHbL9/s1qoEnsCQ8sk0AjgkqdQo2iKEybNo0vv/yS5cuXnxNUzhYREUFcXByZmZls3ryZsWPPNG2ebqExGo0sXLiwRh+ci+V0Otm3bx9JSUl1fq1o4bZ9CIseV+8Pmq7OeCsjPZqOkEi49b8wfo66ftTxH9XLUbu+CHRlzZfHCQunq0O2T19qvf8bCJd/P0VwqVOomTp1Kh9++CEff/wxVquV3NxccnNzqaqq8h/z+eefs3LlSv+w7muvvZZx48aRkZEBqC00p4eBv/XWW9hsNv/7eL1n5qoYOXIkr7zyiv/xb3/7W1atWsWRI0fYsGEDt912GzabjXvvvfdyz4FoSXZ9AQumqff7T4Frn5ZA0xRpNNBrAkxZo64M7bSpfZ/mPqguXyEuni1Hbe3a9oHaZ+nap9XQaLQEujIh6l2dpop87bXXABg+fHiN/e+88w6TJ08GICcnhxkzZpCXl0dSUhKTJk3iySef9B+7ZcsWNmzYAED79u1rvM+RI0do06YNAIcPH6awsND/3MmTJ5k4cSKFhYXExcUxYMAA1q9fT1paWl1+BNGSHVgK8x4GFOh7vzp8VQJN0xadDvctgdV/h9XPw67P4chqdeh35+sDXV3Td2KjuixFRZ7aIfi2t6H9yEBXJUSDuax5apobmaemBTuyGj68DbxO6DkBxr0uC1M2Nyc2qVP4Fx5UH/e4A8Y8B5bowNbVFCkKbH0Pvv4t+NwQ31VdlDK6baArE+KSNMo8NUI0Cyc3wycT1UDT6QYY+6oEmuYotR88vEZdP0qjhV3/g//0l1W/f8phU0eQffWoGmi63Kx2CJZAI1oA+ZddBLe8PfDhreqMtenD1OZ3WaCv+TKY1fWjHvgO4jqDPV+9vPLJL2SEFKhrl70xRA18Gh2M/DPc8T6YwgJdmRCNQkKNCF5Fh+H9ceAoVTub3vmxTKwXLFL6wEOrYPAM0OrhwNfwn6tg1d/B7Qh0dY3P54O1L6kT6pUchYjWal+kIb+RfmOiRZE+NSI4lZ2Et8dA2XFI6AGTv4KQqEBXJRpC/n51qPLRNerj6LYw5u/QYVRg62osthyYPwWyVqqPu41XO1KHRAawKCHql/SpES1XRYHaQlN2HGLawz1fSqAJZvGd4d6v4Na3ICwRirPgo1vh07ug9Higq2s4Xg+sfw1e6acGGoMFbv433PaOBBrRYklLjQguVaXw3o2QuwvCU+D+pRApa361GA4brHpO/bJXvKAPgasfVSdZDKZ+JSc2wdePq7/nAK36wrhXZXZgEbQu9vtbQo0IHi47fDAeTmyA0Di4bynEtv/514ngk7cXFv8Ojq1VH4clqOtIXXk36Oq2JEuTYsuGlbNh6/vqY3MkjJqlrl0mI/pEEJNQUwsJNUHM44SPJ0DWCjBHwOTFkNg90FWJQFIU2Dsfvpuldp4FdQHHqx9Vw40hJIDF1ZG9CNa+CJv+C57qjtBX3AXX/hVCYwNbmxCNQEJNLSTUBCmvR111eP8iMITCpAXqnCZCAHhcsPktWPOiOgQc1Ja8fr+Efg9CaExg67sQRxn8+B/48VVwlav7Wg9UW2daDwhoaUI0Jgk1tZBQE4R8PnWW2R2fgM4Id30ObYcHuirRFLmr1MVMf3gZyk6o+/Rm6DURrvolJHQLbH1nc5TB5nfgh5egqkTdl9hTnXem/SgZpi1aHAk1tZBQE2QUBZb8HjbOUScam/ABdL4h0FWJps7rhr0LYN2/IWf7mf3JV6qXpbrfFpjRQ4oCp7bClrdh95fgrlT3x3aEEU+oMwNLvxnRQkmoqYWEmiDz/dOw5gVAA7fMgZ53BLoi0ZwoChz7ATa8DgeWgM+j7tcZoc1g6DgaOmSoi2o2ZA15u2HfIti3EPL3nnkurjMM+jX0uhO0uoarQYhmQEJNLSTUBJEfXoZlf1bv3/Ai9HsgsPWI5s1eCDs/g60fQMG+ms/FdYY2QyClH6T0VSf3u9TLP85yyN4GJzepa5Kd3AT2gjPP60zq5Hl974PU/nKZSYhqEmpqIaEmSGx+GxY9rt4fNQsGPx7QckQQURQozISDSyHzWzi2Tp3v5mzmCIhuB1Ft1FtYAhhD1ZvBAl6X2n/HaYPyHHXG3/JsKDsFxYdB8dV8P70Z2o2ELjdBp9EyUaQQtZBQUwsJNUFg1xcw90FAUdf9GfVUoCsSwayqRJ2t98RGtWUlZ4e62vvliEhVW3xS+qmT5iX1bF7Dy4UIgIv9/pblikXzcWAJfPkQoKjDcUf+OdAViWAXEqVeDuo2Xn3scUHhQXXem5Ij6raySJ340VWpdu7VGdWQYgoDaxJYE8GaDOFJ6qUsa2IgfyIhgpqEGtE8ZK2C/92rXgroeSeMeV76G4jGpzeqkzrKxI5CNEkyPlA0fSc3wycT1Wb/zjfC2P/I0FYhhBDnkG8G0bTl7oYPbwW3XZ1U77a3QScNjEIIIc4loUY0XUWH1QUqHaWQchXc+THoTYGuSgghRBMloUY0TWUn4f2x6lo9CT3U5Q+MoYGuSgghRBMmoUY0PRUFaqApOwEx7eGeeYGZtl4IIUSzIqFGNC2VxfDBOCg6pM7nMWkBhMUFuiohhBDNgIQa0XRUFsP7N6tr4YQlqIEmIiXQVQkhhGgmJNSIpqGyWL3klLsLQuPh3q8gpl2gqxJCCNGMSKgRgVdVoo5yyt0Jllg10MR1CnRVQgghmhkJNSKwqkrhg1sgZ/uZQBPfOdBVCSGEaIYk1IjAqSqFD2+B7K1giYF7F0JC10BXJYQQopmSqVlFYNgL1VFOubsgJFrtFJzQLdBVCSGEaMYk1IjGZ8tWOwUXHoTQOLhnviwQKIQQ4rJJqBGNq+QovHczlB6D8FYwaSHEtg90VUIIIYKAhBrReAoOqC005TkQla5ecopKC3RVQgghgoSEGtE4cnaow7YriyCuC0yaD9bEQFclhBAiiEioEQ3vxEb48DZwlkHSFXD3lxAaE+iqhBBCBBkJNaJhHfoePrsH3HZoPRB+8RmYIwJdlRBCiCAkoUY0nK3vw1ePgeKFtiPgzo/AGBroqoQQQgQpCTWi/ikKLH8G1rygPu5xB4x9BfSmwNYlhBAiqEmoEfXL44QFU2HX5+rjob+HEX8CjSawdQkhhAh6EmpE/SnPg8/vheM/glYPN70MV94d6KqEEEK0ELL2k6gfx9bBG0PUQGMKh7u+kEAjhBAtyJGyI8zLnBfQGqSlRlweRYH1r8K3T6odguM6w4QPIbZDoCsTQgjRwBRFYXPeZt7f8z4rT65Er9EzKHkQCaEJAalHQo24dM5yWDAN9s5XH3e/Tb3kZAoLaFlCCCEalsfnYdmxZby75132Fu0FQIOGwSmDcXgdAatLQo24NPn74X/3qItSavVw3Wy46pfSIVgIIYKY3W1n7sG5fLjvQ3LsOQCYdCZubncz93S9h/SI9IDWJ6FG1I2iwPaPYPHv1Qn1rMlwx3uQelWgKxNCCNFAcu25fLzvYz4/+DkV7goAos3R3Nn5TiZ0mkC0OTrAFaok1IiLZy+CRY/Cvq/Ux+lD4da3ISwusHUJIYRoENkV2by16y2+PPQlHp8HgPSIdCZ1ncSNbW/ErDcHuMKaJNSIn6cosHcBLP4d2PNBa4BrnoBBvwatLtDVCSGEqGenKk7x5s43WXB4gT/M9Enow33d7mNIyhC0mqY5eFpCTX0ozoKwhOBcAsCWDV//Fg58rT6O7QS3vglJvQJblxBCiHp3ovwE/931XxYeWohHUcNM/8T+TOk1hb6JfQNc3c+TUFMf5k1RO8z2exCuejg4Lsd43bD5bXW5A6dN7Qw8eAYM+Q0YmlZzoxBCiMtz3HacOTvnsChrEV7FC8DApIFM6TWF3gm9A1zdxZNQc7nsRWAvgKoSWP13WPdvuOIXMHAaxLQLdHV1pyhwYAksexKKDqn7WvWFm/8FCd0CW5sQQoh6dbTsKG/uepOvs772h5mrk69mSq8pXBF/RWCLuwR1uig2e/Zs+vXrh9VqJT4+nnHjxnHgwIEax+Tl5TF58mSSk5OxWCyMHj2azMxM//PFxcVMnz6dTp06YbFYaN26Nb/+9a8pKyv72c9/9dVXSU9Px2w206dPH9asWVOX8htGaAxM2wx3fACt+oDHobZw/LsPfHYPnNwS6AovXvZ2eO8m+HSiGmhC4+DGf8ID30qgEUKIIJJVlsUf1/yRsQvGsvDwQryKl8GtBvPh9R/y+rWvN8tAA3VsqVm1ahVTp06lX79+eDwennjiCTIyMti7dy+hoaEoisK4ceMwGAwsWLCA8PBwXnzxRUaNGuU/Jjs7m+zsbF544QW6du3KsWPHmDJlCtnZ2XzxxRfn/ezPPvuMxx57jFdffZWrr76aN954gzFjxrB3715at2592Sfismh10PVm6HKTulzADy9D5jewb6F6S7saek+Czjc2vYnpFAUOfw8//gcOL1f36UwwcCoMfhzM4YGtTwghRL3JKs3i9Z2vs/TIUhQUAIalDGNKryl0j+0e4Ooun0ZRFOVSX1xQUEB8fDyrVq1i6NChHDx4kE6dOrF79266dVP/Z+/1eomPj+e5557jwQcfrPV9Pv/8c+6++27sdjt6fe05q3///vTu3ZvXXnvNv69Lly6MGzeO2bNnX1S9NpuNiIgIysrKCA9v4C/r/H3qpaid/wOfW91nsKjBp/tt6nDoQPZNsRfBni9h01tQsE/dp9GqtY18EiIDHBSFEELUm8Olh3ljxxssPXomzAxPHc6UXlPoFtP0W+Iv9vv7svrUnL5kFB2tTrrjdDoBMJvPfFnrdDqMRiNr1649b6g5XeT5Ao3L5WLLli388Y9/rLE/IyODdevWnbc+p9PprwnUk9Jo4rvAuFdhxBOw7UPY+ak6SmrnZ+rNYIG2w6HjddDhOghPaviaXJVwYLEatA5/D9XD9DCGqS1J/R+GqDYNX4cQQohGUVuYGZE6gl/1+hVdYroEuLr6d8mhRlEUZsyYweDBg+neXW2y6ty5M2lpacycOZM33niD0NBQXnzxRXJzc8nJyan1fYqKinj66ad5+OGHz/tZhYWFeL1eEhJqLpCVkJBAbm7ueV83e/Zs/vKXv1zCT1ePIlrB8D/AsN/Dyc1qoDmwGGyn1O2BxepxiT0hbRCk9IOUvhCZdvlLDiiK2jfm2A9wZA0cXAquijPPJ10BPSfAlXeBOeLyPksIIUSTcaD4AP/d9V++OfqNP8yMbD2SKb2m0Dm6c4CraziXHGqmTZvGzp07Wbt2rX+fwWBg7ty5PPDAA0RHR6PT6Rg1ahRjxoyp9T1sNhs33HADXbt25amnnvrZz9T85EteUZRz9p1t5syZzJgxo8bnpaam/uznNAiNBlL7qbfr/w65u+DgN2rQOLUFcneqtw2vq8eHxqudc6PaQFSa2mk3JEq9mSPVrc4I7kpwV6lLFpTnQtlJNcgUZqrvZy+oWUdkGvS8A3rcAXEdG/ssCCGEaEC7C3czZ+ccVpxY4d83qvUopvSaQqfoTgGsrHFcUqiZPn06CxcuZPXq1aSkpNR4rk+fPmzfvp2ysjJcLhdxcXH079+fvn1rTtpTXl7O6NGjCQsLY968eRgMhvN+XmxsLDqd7pxWmfz8/HNab85mMpkwmUyX8BM2MI0Gknqqt2G/g4p8yFoFpzbDyU2Qs1OduTcr//I/S29Wh2SnDYQOGWpLkCw6KYQQQWVL3hbm7JzDumy1S4YGDde1uY4HezzYIsLMaXUKNYqiMH36dObNm8fKlStJTz//apwREerljMzMTDZv3szTTz/tf85ms3HddddhMplYuHBhjT44tTEajfTp04dly5Yxfvx4//5ly5YxduzYuvwITVNYPPS8Xb0BuB1qK0thJpQchdJjUFmszoXjKFW3VSWg+NTWGkOI2kcnLB7CUyCmLcR0gLjOkHwF6JtgsBNCCHFZFEXhx5wfmbNzDlvy1OlDdBodN7S9gQd7PBjwFbMDoU6hZurUqXz88ccsWLAAq9XqbzmJiIggJCQEUEcyxcXF0bp1a3bt2sWjjz7KuHHjyMjIANQWmoyMDCorK/nwww+x2Wz+DrxxcXHodOpaQiNHjmT8+PFMmzYNgBkzZnDPPffQt29fBg4cyJw5czh+/DhTpkypnzPRlBjM6qrXF1r52uerDjUyf6IQQrQkiqKw8sRK5uycw+6i3QAYtAbGtR/H/d3vJ8WacuE3CGJ1+kY8PZx6+PDhNfa/8847TJ48GYCcnBxmzJhBXl4eSUlJTJo0iSeffNJ/7JYtW9iwYQMA7du3r/E+R44coU2bNgAcPnyYwsJC/3MTJkygqKiIv/71r+Tk5NC9e3cWL15MWlpaXX6E4KHVUse5E4UQQjRjHp+HpUeX8vbut8ksUSe1NevM3NbxNiZ3m0xC6Pm7Y7QUlzVPTXPTqPPUCCGEEPWgylPFvMx5vLfnPbLt2QBY9BYmdp7IPV3vISYkJsAVNrxGmadGCCGEEA2joLKAzw58xv8O/I8SZwkA0eZo7upyFxM6TSDCJFNx/JSEGiGEEKIJ2VO0h4/2fsSSo0vwVE+S2iqsFZO7TWZc+3GY9QGcjb6Jk1AjhBBCBJjH52HFiRV8uPdDtuZv9e+/Iu4K7u56NyNbj0Svla/snyNnSAghhAiQMmcZ8w/N5+N9H/v7y+g1eq5Lv467u9wdFItMNiYJNUIIIUQjUhSFzXmb+eLgF3x37DtcPhcAkaZIbu94O3d2vpN4S3yAq2yeJNQIIYQQjaCwqpCFhxfyZeaXHLMd8+/vFNWJiZ0nckPbG6S/zGWSUCOEEEI0EKfXyeqTq/k662tWnViFR1E7/lr0Fsakj+G2jrfRLabbBdcxFBdPQo0QQghRj3yKjy15W1iUtYhlR5dR7i73P9cztie3dryV0W1GYzFYAlhlcJJQI4QQQlwmt9fNptxNrDixguUnlpNfeWZB4gRLAje0vYEb295Ih6gOAawy+EmoEUKIJsbj8+DwOHB4HTi9Tpwe55n7Xic+xYdOo0Or0fq3Bp0Bq8GK1WglzBiGQWsI9I8R9GwuG2tPrmXFiRWsPbWWCneF/zmrwUpGmwxuaHsDfRL6oNXIsjaNQUKNEEI0EpvLxqnyU2Tbs8mpyPFv86vyKXWUUuIsocpd5e93cTnMOrM/4FiNVqwGK+HGcGJCYoizxBEXEuffxobEEm4Ml34dP0NRFA6WHGR9znrWnFrDltwtNf6sYswxDE8dzojUEQxIHoBJZwpgtS2ThBohhKhnLq+LzJJMMkszOVRyyL/Nr8r/+Rf/hElnwqQzYdaZMenV+1qNFp/iw+Pz4FN8eBUvbq+bcnc5VZ4qABxeB44qBwVVBRf1OUatkThLHAmWBBJCE0gMTSTRkqhuq29RpqgWFXw8Pg+HSg+xPX872/K3sTF3I4VVhTWOaRfRjhGtRzAidQTdY7tLi0yASagRQojLVFRVxPaC7ezI38G2/G3sKdqD2+eu9dgYcwzJYckkhiaSHJpMUlgSiZZEosxRRJoiCTWEYtabMelMGHXGOn9Jenwe7G47NpeNClcF5a5yyt3lVLgqKHWWUlRVREFVAQWVBeq2qoByVzkun4tTFac4VXHqvO9t0pnOhJ6fBJ4EixqEmmuLj9vrJqssi4MlB8ksyWRv0V52Fu70h8TTzDozfRP7Mih5EMNShtE6vHWAKha1kVAjhBB1ZHPZWJ+9nh+yf2BL3pYac46cFmWKomNUR9pHtadDZAfaR7WnXUQ7woxhDVqbXqsnwhRRp8UOHR4HhVWFFFQVkGvPJdeeS15lnv9+rj2XIkcRTq+T4+XHOV5+/LzvFaIP8Qcc/+2sABQbEovVaA1Ii0aVp4qcihxOVZwix65usyuyOVx2mCOlR2q97BdmCKNnXE96xfWiT0Ifroy/EqPO2Oi1i4sjoUYIIX6GoijsL97PD9k/sObkGnYU7MCreGsc0z6yPVfEX8EVcVdwZfyVpFpTm02LhVlvJsWaQoo15bzHuLwuf9A5O/Dk2fPIrVTvlzpLqfJUcdR2lKO2o+d9L51GR6QpkihzlL+F6nQrlcVgIVQfSqgh1P84RB+CXqv3d4xWFAWn14nL61I7T/vO3Hd5Xbi8Lspd5ZQ6Syl2FJNrzyXHnkOxo/iC58FqsNIhqgMdozrSKboTPeN60i6iHTqt7lJPrWhkEmqEEKIWPsXHzoKdLDmyhGXHlp3TN6VNeBsGtxrMwOSB9IrrVaeWkebIqDOSak0l1Zp63mMcHsc5LTy5lTWDT7mrHK/ipchRRJGjqBF/ApXVYCU5TL3s1yqsFUmhSaSFp9EpqhOJoYnNJoiK2kmoEUKIaoqisK94H0uPLGXp0aXk2HP8z4XoQ+if2J/BrQZzdaurL9iq0VKZ9WbSwtNIC0877zEur4sSRwklzhJ1W32/zFmG3W2n0lOpbt3q1u62U+Wpwqt4/Z2iNWj8HahP9z366daitxBtjibKHEWCJcEfZMKN4Y14RkRjk1AjhGjxCioLmHdoHgsPL6zRP8aitzCy9UhGp49mQNIA6UtRD4w6IwmhamdjIeqbhBohRIvkU3ysz1nP5wc+Z+WJlf5OoiadiWEpwxiTPobBrQbLAoNCNCMSaoQQLUpRVRHzD83ni4NfcLLipH//FXFXcFvH2xiVNopQQ2gAKxRCXCoJNUKIoKcoClvzt/Lp/k/57vh3eHxqq0yYIYyb2t3E7R1vlzV5hAgCEmqEEEHL7XPz3bHveG/Pe+wp2uPf3yO2B7d3vJ3r2lwnKyULEUQk1Aghgk6Fq4K5mXP5aN9H/hFMJp2JG9veyIROE+gS0yXAFQohGoKEGiFE0Ch2FPPB3g/4dP+n/hWTo83R3Nn5TiZ0mkC0OTrAFQohGpKEGiFEs5dnz+PdPe/yxcEvcHgdALSNaMukrpO4sd2NslqyEC2EhBohRLOVZ8/jzV1v8mXml/4FJLvFdOOhng8xPHW4rJgsRAsjoUYI0ewUVhXy1q63+N+B/+HyuQDoHd+bh3s+zMDkgTLVvbhkik/B7fTicnhxOz3VWy9uh3rf6/Hh8yrq1qPg8/nwehR8Hh9er7r1eRUANBpAq0GjAY3mrK1WffLMYw16gxadQYveoEVv1KHTa9Ebz3ps0GIw6jCYdRhM6k1+z88loUYI0WwUO4p5d/e7fLL/E/9lpt7xvZl25TT6JfYLcHWiKXI5PFSWubCXOrHbnDgqPDjsbhx2N87qrcPu8T92Vp67UndTpNGAwaTDGKI/Z2s06TBUb40heowhekyW6u1P7usM2qAKRxJqhBBNXoWrgrd3v81H+z6i0lMJQM/Ynky9cioDk6RlpqVyOTzYCh3YCqsoL3JgL3Oqt1IXlWVOKkqduB3en3+jWmi0GoynW0XMev99vUGLVqdFq9eg+8lWq9Oi02nQ6jSg0aAoCopPQVEARUHxqXMmKcpZW5+Cz6fgc/vwnL651BYhj0t97HV7q/f7cDs81a8Hl0NtUbocWr0GU8iZkHOhAHTmOQPGEB0miwGjSYdG23T+/kmoEUI0WW6fm7kH5/LajtcodhQD0CW6C9OunMaQVkMkzAQ5r9tHebEaWmxF1dtCB+VF6tZhd1/U+xjMOkIjTIRGGDGHGTCHqjdT6On7enUbZlC/qEPUyz9N8fdLURQ8Lh8uhwe3w4ur+rKYq8qjXjY7a+s6/XyVB2elB2eVet9Vpd5HAZ9HoarcTVX5xZ3Lc2jAaK4ZejIe7EZoRGA650uoEUI0OYqisOLECv655Z8ctR0FoE14Gx7t/SgjW49skl824tIoPoXyYgcluZWU5NopyaukNLeSsoIq7GVOUC78elOonvCYEMJjzYRFmrFEGtUAE6mGmNBIE0Zz8HzVaTQaf58aIi79fU73HToddJyVZ8LO2ffPPOfGWeU96xg3Po8CCv6gdJpWF7i/n8HzJy2ECAq7C3fzwuYX2JK3BYAoUxSPXPEIt3a8FYPWEODqxKXyuLyU5ldSknMmvJTkVlKaV4nX7Tvv6/RGLeGxIYTHmLFWb8Nj1RATHhOCMUS+xi6FRqvx97e5VB63F1eVF2elW91WqVtTAP9M5LdBCNEknKo4xctbX2bJkSWAOgPwPV3v4f7u92M1WgNcnbgYiqJeyijNs6stLzmVlFTfLy92nLfVRavXEBlvISrRQlRiKJEJFiLiQwiPCSHEapCWuSZKb9ChN+iwhBsDXYqfhBohRECVOcv4767/8tG+j3D73GjQcFO7m5h+5XQSQxMDXZ6ohc/rw1boqG5tUUNLafX2QqOHTBY9UYmhRCVZiEoIJSrRQmSihfAYM1qdzCkkLp+EGiFEQLi9bj478Bmv73ydMmcZAP0T+/Obvr+RtZmaCLfTS2leJcU5dkrzKinJqe7zkl+p9qeojQbCY8xEVoeW060vUYkWzGHS6iIaloQaIUSjUhSFZceW8dLWlzhRfgKAdhHtmNF3hoxoCgBFUai0udTQUt1ZtzS3kuJcOxXFzvO+Tm/QEploISrBQmRi6JlLR/Eh6I26RvwJhDhDQo0QotFsz9/OC5tfYEfBDgBizDFMu3Ia49qPQ6+Vf44akrPKQ1m+2jG3NK+S0vyq6m3lBedyMYcZ1MCSFEpUwpmtNdrcpOYnEQIk1AghGsFx23Fe2voSy44tAyBEH8K93e7lvm73YTFYAlxdcPB5fVSUOGud06WsoOqC85BoNGCNMastLYkWoqu3UYkWQsKaTidQIX6OhBohAkRR1HkiqsrdOCrcVFW4akym5XZ4cDm9uKuqt9Xrzqg3BZ/37DVnztxXftrV4ZwdoNGps6Dq9NUzouq11bcz97XVjw1GHXrTmfVmTt/0xtOzrerUNWlMZx4bTer066WOUt7Y+QafHvgUj8+DVqNlXPtxTL1iKvGW+MY50UHC6/Zht6mz5ZYXV2ErcGArOhNcyoudKL4LT+piCTcSmWAhMj6EiAQLkfEWdaRRbAg6g3TUFc2fhBoh6pGiKDjtHipKnepaM6XqtO1V5WpoUcOLG0e5iyq7+/ydLYOBVsGprULRtWW89jeEhBhJiW5FZFU4uw4WYjCX+hfnU6egr56K3qzDaNb7Q5LRrMdgVmd4DTaKouCq8vjXH6q0ufy/M+rvz5nHjoqfn/FVq9eoE9FVz+VirZ7LJTzWTGS8ReZ0EUFPfsOFqAOP20t5kYPyIge26m15sYOKEkf1l4/rghOJ1UZv1PqnbjdZ9Gd9uavb01/4BrMOvVFbvc6MusbM2S0qWp26rbWj7dm7qted8Xp8eN1KdSuPD6/7zOrDp1cgPr0OjdtVvVKx04vHeeb+2TePS12Hxv/z+zSYfBZMnurLS1VQXOykmIJLOvdavQZj9XnwByFz9eJ91fdrDUhnvcZgVufV0GrVlZI1WnWFZK1GA1rQVq+YfLbT6/f4fAo+709vPnw+Ba/bV+v5OH3/7ODiqHDjrDyzkOLPta789ByERpiwRpvPTEYXWz0ZXUwIoRFG6eciWjQJNUL8hLPSTWleFaXVnSrL8iv9AabS5rqo9zCHGtRp2iNNhEUaCQk3EhKmrjsTEmYgxFq9Bk2YAUOQjBTZlLuJf2z+B3sL92HwmkgyJnNvh/u5Om4IXpd6qc19+tKa0+tfu0a978XtPL2WTfV9Z82Q5PMoODzui17v53JoqkMPCvi8Dd+apjdqMYeqvxdn/95Y/NP9mwiLNGEK1cvoMCEuQEKNaJE8bi9lBVWUnRVeTm9/bmE3vUmnNu/HmLHGhGCNNhMWZfJ/GYVGGtEbgiOoXIyssiz+ueWfrDyxEgCLwcIDvR/gnq73EKIPuez393p9Z4UfT3U4Um8up6fmcw5vdf+jcwOTy3GmX9LPUXzqisoXotWqqzFrdBr0Bu25fY1O36++nHb2oolmi+FM61yovkX9vgjRkCTUiKDmrHRTkqtOHlacbfdPHnahKdsBLBHGM50o40OIiA3BGqP2T5D/LauKqop4bcdrfHHwC7yKF51Gx20db2NKrynEhsTW2+fodFp0oWpLRn1QFAVFOR1c1MtK5zz2qcdpNKDVaf0B5nSI0WrPc5lPCBFQEmpEUHDY3ZTk2NXwkqOGl+JsO/ay818uMpp11aFFHbp6dogJplV961uVp4oP937IW7vfwu62AzA8ZTiP93mctpFtA1zdz9NoNGg0gPQ9ESLoyL/collxVLj9weXs8HKhvi6hkSaik0OJPr3mTPWCebJQXt34FB9fHf6Kf2/7N3mVeQB0jenKb/v+ln6J/QJcnRBCSKgRTdDplX79oeWs7YX6u4RFqeElKimU6OpbVFIoJhnGetl+zP6RF7e8yP7i/QAkhSbxaO9HGZM+Bq0m+IZaCyGaJ/nXXgSMoijYS11nLhvlngkvTvv5V/q1xpjVwJJoUVtgksKISpQ5OBpCZkkmL255kbWn1gJgNVh5sOeD3NXlLkw6U4CrE0KImur0LTB79my+/PJL9u/fT0hICIMGDeK5556jU6dO/mPy8vL4wx/+wLfffktpaSlDhw7l3//+Nx06dPAfM2fOHD7++GO2bt1KeXk5JSUlREZGXvCzZ82axV/+8pca+xISEsjNza3LjyACwOXwUHbWOjP+tWfyKnGdb80ZDUTEhpzV6lK95kxiKAaTjBRpaEfKjjBn5xwWH1mMT/Gh1+iZ0HkCD/d8mChzVKDLE0KIWtUp1KxatYqpU6fSr18/PB4PTzzxBBkZGezdu5fQ0FAURWHcuHEYDAYWLFhAeHg4L774IqNGjfIfA1BZWcno0aMZPXo0M2fOvOjP79atG999953/sU4nX25Nhdfto7zYcdbw6CpK8+yU5lVhLz3/Sr8arYaIuJDqS0UW/yWjqASLrPQbAEfLjvLGzjf8YQZgVOtRPNbnMdLC0wJcnRBCXFidQs3SpUtrPH7nnXeIj49ny5YtDB06lMzMTNavX8/u3bvp1q0bAK+++irx8fF88sknPPjggwA89thjAKxcubJuxer1JCYm1uk1on74vD7sZS7Ki88slKdu1fv2MucFh0ibwwxEJViISLAQVb3mTERCCJFxFllzpgk4WnaUOTvn8PWRr/1hZnjqcKb0mkK3mG4Brk4IIS7OZXVCKCsrAyA6OhoAp1P9H7nZbPYfo9PpMBqNrF271h9qLlVmZibJycmYTCb69+/P3/72N9q2bfpDSJsyxafgrFKnbreXOakoUdecqSh1Yi9x+qf/r7S5alsXsQa9SUdErFldMO/sW7yl3uYYEfXrmO0Yc3bOYVHWojNhJmU4U66QMCOEaH4uOdQoisKMGTMYPHgw3bt3B6Bz586kpaUxc+ZM3njjDUJDQ3nxxRfJzc0lJyfnsgrt378/77//Ph07diQvL49nnnmGQYMGsWfPHmJiYmp9jdPp9ActAJvNdlk1nE9VuUtdP0anQWfQNurEXIqi4HH5fjLlvKfGbKsuh1dda6bC7V9QsarCjaPCVae1Z7Q6DWFRpup1ZsyEx6nrzVhjzUTEhmAOkyHSzcXh0sO8vfttvs76Gq+i9muSMCOEaO4uOdRMmzaNnTt3snbtWv8+g8HA3LlzeeCBB4iOjkan0zFq1CjGjBlz2YWe/R49evRg4MCBtGvXjvfee48ZM2bU+prZs2ef07m4IXz2f5vO6Tei1WvUmVD12jP3DVo1+OjVrfZnJv9SFKoX0fPh9Sj4PL7qxQdP31fwuLwXvOxzsYxmHSHhRsKiTIRFmgmNUteaCY00qfuizISEGWSxvGZMURQ25W7i3T3vsubUGv/+YSnD+FWvX9EtVsKMEKJ5u6RQM336dBYuXMjq1atJSUmp8VyfPn3Yvn07ZWVluFwu4uLi6N+/P3379q2Xgk8LDQ2lR48eZGZmnveYmTNn1gg8NpuN1NTUeq0D1P4m5+zzKPg8astJo9CgrlBsOrO6s8F0ZuVis0WvLqZ41kKKIWFGQqrXn5F+LcHL7XPz7dFveW/Pe+wr3geABg2j0kZxf/f76R7bPcAVCiFE/ahTqFEUhenTpzNv3jxWrlxJenr6eY+NiIgA1H4wmzdv5umnn768Sn/C6XSyb98+hgwZct5jTCYTJlPDz6Vx/9+HqK0p3uoWFI+C1+Pzt7B4PT58HgWv11fj+YtpYdHoNOiqW3q0ei06vQat7sxWb6xeSM+ok1YUUUOFq4K5mXP5cN+H5NrVqQ/MOjPj2o/jnq730Dq8dYArFEKI+lWnUDN16lQ+/vhjFixYgNVq9c8RExERQUiIuhrv559/TlxcHK1bt2bXrl08+uijjBs3joyMDP/75Obmkpuby6FDhwDYtWsXVquV1q1b+zsdjxw5kvHjxzNt2jQAfvvb33LTTTfRunVr8vPzeeaZZ7DZbNx7772XfxbqgVanRasDZBiyCLCs0iz+d/B/LDi0gAp3BQAx5hgmdp7IhE4TiDRHBrZAIYRoIHUKNa+99hoAw4cPr7H/nXfeYfLkyQDk5OQwY8YM8vLySEpKYtKkSTz55JM1jn/99ddr9HUZOnToOe9z+PBhCgsL/cecPHmSiRMnUlhYSFxcHAMGDGD9+vWkpcncGUK4fW6WH1/O/w78j425G/3720a05d5u93JD2xtkBmAhRNDTKMrPDdQNHjabjYiICMrKyggPDw90OUJctqzSLBZlLWL+ofkUVBUAoNVoGZYyjAmdJjAweaCszSSEaPYu9vtbFssRopkpqCxgyZElLMpa5O/4C+olpls73sptHW4jKSwpgBUKIURgSKgRohnIr8xn5YmVfHfsOzbkbvBPlKfX6BncajA3truRa1KvwaCTSQ6FEC2XhBohmiBFUThSdoTlJ5az4vgKdhburPF8r7he3Nj2Rq5rc50sMCmEENUk1AjRRFS4Ktict5kNORtYe2otR21HazzfM64nI1JHcF3adaSG1/98S0II0dxJqBEiQEodpews3MmOgh1szNnIrsJd/iULAAxaA/2T+jMidQQjUkcQZ4kLYLVCCNH0SagRohFUuivJLM1kf9F+f5A5Zjt2znGtra3pn9SfAUkDGJQ8iDBjWACqFUKI5klCjRD1RFEUih3F5NpzybHncLj0MAdKDnCw5CDHbcdRaplCuk14G3rF9aJ3Qm8GJA0gOSw5AJULIURwkFAjLprb56aoqoiiqiLKXGVUuiupcFdgd9uxu+1Uearw+Dxnboq69fq8eHwefPjQa/UYtIYaN71Wj0F35rFJZ8KsN/u3Zp255j6dGZP+zHMGbcOuDu72uilzlWFz2Sh3lWNz2iisKiTHnuO/5dpzyanIweVznfd9YswxdI7uTI+4HvSM7UnPuJ5EmCIarG4hhGhpJNQIP4fHwfHy4xwtO8ox2zFOlJ8gvyqfwspCCqoKKHGU1NraEGgaNJj1Zow6IyatCZPehElnwqgzYtZV79eZ0GnUJSzO/hkURcHpdZ7/5nHi8DrqVEtcSByJYYmkWlPpFNWJTlGd6BjdkdiQ2Hr/2YUQQpwhoaYFcnldHCo9xIFi9dLI4dLDHLUdJcee87Ov1Wl0xITEEGGKIMwQhsVgIcwQRqghlBB9CHqNHr32J7fqfRqNxt+K4/a5z9y86tbj8/jDhMPjULdeB06Ps8Z9h1d97vRcLQoKVZ4qqjxVDXrerAYr4aZwwo3hRJujSQpLIilUvSWGJpIUmkSCJUHmihFCiACRUNMCFDuK2Zy7mU25m9iav5Ws0iw8iqfWY61GK+nh6bSJaEOqNZUESwJxljjiQuKIDYklyhzVJKbdVxQFj8/jDzgOjwOX13VOS4vL6/KHIR8+/+s1aPxbo87ov7T109Ydk86E1WglzBCGTiuLlQohRFMmoSYIlTnL2JS7iY25G9mUu4lDpYfOOSbCFKFeFonqSMeojrSJaEOb8DZEmiIbtH9KfdFoNGo/HJ0BK9ZAlyOEEKIJkFATBBRFIbM0kzUn17D65Gp2FOyoMd8JQIeoDvRL6Ee/xH50j+1OgiWhWYQXIYQQ4mJJqGmmfIqPrXlbWXp0KatPrj6nP0x6RDr9E/vTL7EffRP7Em2ODlClQgghROOQUNPMHCg+wFeHv2Lp0aXkVeb595t0Jq5KvIqhKUMZ3GowKdaUAFYphBBCND4JNc1AmbOMJUeW8GXml+wr3uffH2YIY2TrkWS0yaBfYj9C9CEBrFIIIYQILAk1TZRP8bExdyPzMufx/fHvcXqdAOi1ekakjuCG9BsYnDIYk84U4EqFEEKIpkFCTRNjc9mYlzmPT/d/ysmKk/79HaI6cEv7W7ih7Q1EmaMCWKEQQgjRNEmoaSIOlx7mk/2fsPDwQv8kclaDlevbXs/49uPpGtNVRisJIYQQFyChJsC252/nzV1vsvrkav++9pHtuavLXdzQ9gbpJyOEEEJcJAk1AaAoCutz1vPmrjfZlLsJUGe2HZE6gru63EW/xH7SKiOEEELUkYSaRqQoCqtOrmLOzjnsKtwFqB1/b253M/d3v5+08LQAVyiEEEI0XxJqGoGiKPyY/SP/3vZvdhftBsCsM3Nrx1uZ3G0yiaGJAa5QCCGEaP4k1DSwrXlb+de2f7ElbwsAIfoQJnaeyKSuk4gJiQlwdUIIIUTwkFDTQA4UH+CfW/7JD9k/AGDUGpnQeQIPdH9AwowQQgjRACTU1LOCygJe2f4K8zLnoaCg1+gZ32E8D/V8SC4zCSGEEA1IQk09qfJU8f6e93lr91v+eWbGtBnD9N7TSbWmBrg6IYQQIvhJqLlMPsXH11lf8/LWl/0LTPaM7cnv+v2OK+KvCGxxQgghRAsioeYylThKeHr901R5qkgKTeLxPo8zus1omWdGCCGEaGQSai5TTEgM066Yhsvn4u4ud2PWmwNdkhBCCNEiSaipB5O6TQp0CUIIIUSLpw10AUIIIYQQ9UFCjRBCCCGCgoQaIYQQQgQFCTVCCCGECAoSaoQQQggRFCTUCCGEECIoSKgRQgghRFCQUCOEEEKIoCChRgghhBBBQUKNEEIIIYKChBohhBBCBAUJNUIIIYQIChJqhBBCCBEUWtQq3YqiAGCz2QJciRBCCCEu1unv7dPf4+fTokJNeXk5AKmpqQGuRAghhBB1VV5eTkRExHmf1yg/F3uCiM/nIzs7G6vVikajqZf3tNlspKamcuLECcLDw+vlPUXt5Fw3DjnPjUPOc+ORc904GvI8K4pCeXk5ycnJaLXn7znTolpqtFotKSkpDfLe4eHh8pelkci5bhxynhuHnOfGI+e6cTTUeb5QC81p0lFYCCGEEEFBQo0QQgghgoKEmstkMpl46qmnMJlMgS4l6Mm5bhxynhuHnOfGI+e6cTSF89yiOgoLIYQQInhJS40QQgghgoKEGiGEEEIEBQk1QgghhAgKEmqEEEIIERQk1FymV199lfT0dMxmM3369GHNmjWBLqlZW716NTfddBPJycloNBrmz59f43lFUZg1axbJycmEhIQwfPhw9uzZE5him7HZs2fTr18/rFYr8fHxjBs3jgMHDtQ4Rs51/Xjttdfo2bOnf0KygQMHsmTJEv/zcp4bxuzZs9FoNDz22GP+fXKuL9+sWbPQaDQ1bomJif7nA32OJdRchs8++4zHHnuMJ554gm3btjFkyBDGjBnD8ePHA11as2W32+nVqxevvPJKrc8///zzvPjii7zyyits2rSJxMRErr32Wv+6XuLirFq1iqlTp7J+/XqWLVuGx+MhIyMDu93uP0bOdf1ISUnh2WefZfPmzWzevJlrrrmGsWPH+v+hl/Nc/zZt2sScOXPo2bNnjf1yrutHt27dyMnJ8d927drlfy7g51gRl+yqq65SpkyZUmNf586dlT/+8Y8Bqii4AMq8efP8j30+n5KYmKg8++yz/n0Oh0OJiIhQXn/99QBUGDzy8/MVQFm1apWiKHKuG1pUVJTy3//+V85zAygvL1c6dOigLFu2TBk2bJjy6KOPKooiv9P15amnnlJ69epV63NN4RxLS80lcrlcbNmyhYyMjBr7MzIyWLduXYCqCm5HjhwhNze3xjk3mUwMGzZMzvllKisrAyA6OhqQc91QvF4vn376KXa7nYEDB8p5bgBTp07lhhtuYNSoUTX2y7muP5mZmSQnJ5Oens6dd95JVlYW0DTOcYta0LI+FRYW4vV6SUhIqLE/ISGB3NzcAFUV3E6f19rO+bFjxwJRUlBQFIUZM2YwePBgunfvDsi5rm+7du1i4MCBOBwOwsLCmDdvHl27dvX/Qy/nuX58+umnbN26lU2bNp3znPxO14/+/fvz/vvv07FjR/Ly8njmmWcYNGgQe/bsaRLnWELNZdJoNDUeK4pyzj5Rv+Sc169p06axc+dO1q5de85zcq7rR6dOndi+fTulpaXMnTuXe++9l1WrVvmfl/N8+U6cOMGjjz7Kt99+i9lsPu9xcq4vz5gxY/z3e/TowcCBA2nXrh3vvfceAwYMAAJ7juXy0yWKjY1Fp9Od0yqTn59/TkoV9eN0D3s55/Vn+vTpLFy4kBUrVpCSkuLfL+e6fhmNRtq3b0/fvn2ZPXs2vXr14uWXX5bzXI+2bNlCfn4+ffr0Qa/Xo9frWbVqFf/617/Q6/X+8ynnun6FhobSo0cPMjMzm8Tvs4SaS2Q0GunTpw/Lli2rsX/ZsmUMGjQoQFUFt/T0dBITE2ucc5fLxapVq+Sc15GiKEybNo0vv/yS5cuXk56eXuN5OdcNS1EUnE6nnOd6NHLkSHbt2sX27dv9t759+3LXXXexfft22rZtK+e6ATidTvbt20dSUlLT+H1ulO7IQerTTz9VDAaD8tZbbyl79+5VHnvsMSU0NFQ5evRooEtrtsrLy5Vt27Yp27ZtUwDlxRdfVLZt26YcO3ZMURRFefbZZ5WIiAjlyy+/VHbt2qVMnDhRSUpKUmw2W4Arb15+9atfKREREcrKlSuVnJwc/62ystJ/jJzr+jFz5kxl9erVypEjR5SdO3cqf/rTnxStVqt8++23iqLIeW5IZ49+UhQ51/XhN7/5jbJy5UolKytLWb9+vXLjjTcqVqvV/70X6HMsoeYy/ec//1HS0tIUo9Go9O7d2z8kVlyaFStWKMA5t3vvvVdRFHXI4FNPPaUkJiYqJpNJGTp0qLJr167AFt0M1XaOAeWdd97xHyPnun7cf//9/n8j4uLilJEjR/oDjaLIeW5IPw01cq4v34QJE5SkpCTFYDAoycnJyi233KLs2bPH/3ygz7FGURSlcdqEhBBCCCEajvSpEUIIIURQkFAjhBBCiKAgoUYIIYQQQUFCjRBCCCGCgoQaIYQQQgQFCTVCCCGECAoSaoQQQggRFCTUCCGEECIoSKgRQgghRFCQUCOEEEKIoCChRgghhBBBQUKNEEIIIYLC/wfND9J7XN1fnQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -176,12 +176,12 @@ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" ] }, "execution_count": 4, @@ -190,7 +190,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgbV9aHX6FlyZaZOQ4zQ4NNmpQpZWb6ysy73fIWtt0yM6ScLQeaJmmYmc3MIEu2+PvjisYyJo4h1fs8eSJpZq5GsubOuQd+R+Z0Op0ECBAgQIAAAQL0IuQ9fQIBAgQIECBAgADNCRgoAQIECBAgQIBeR8BACRAgQIAAAQL0OgIGSoAAAQIECBCg1xEwUAIECBAgQIAAvY6AgRIgQIAAAQIE6HUEDJQAAQIECBAgQK8jYKAECBAgQIAAAXodyp4+gcPB4XBQXFxMaGgoMpmsp08nQIAAAQIECNABnE4nBoOBxMRE5PK2fSR90kApLi4mJSWlp08jQIAAAQIECHAYFBQUkJyc3OY+fdJACQ0NBcQH1Ov1PXw2AQIECBAgQICOUF9fT0pKiuc+3hZ90kBxh3X0en3AQAkQIECAAAH6GB1JzwgkyQYIECBAgAABeh0BAyVAgAABAgQI0OsIGCgBAgQIECBAgF5HwEAJECBAgAABAvQ6AgZKgAABAgQIEKDXETBQAgQIECBAgAC9joCBEiBAgAABAgTodQQMlAABAgQIECBAryNgoAQIECBAgAABeh0BAyVAgAABAgQI0OsIGCgBAgQIECBAgF5HwEAJECBAgAABAvQ6AgbK35xNudV8vCYXp9PZ06cSIECAAAECeOiT3YwDHDn/21bE638e4kBZAwAROjVnjErs4bMKEODYpcFsQ6OUo1T0vXWh0+nk4KYyYlJCiYjXHfF4pYcOsOCx+5l24eWMP+3sLjjDAMcife9KCdAl3L5gm8c4AVi8u7QHz6YNNn0IO77u6bMIEOCIqDZamPLMH1z+wYY297M7nL3Sm7lzeRFL3t/Dj69sk7y+qmgVb21/C4fDDn88AdsXdGi8X155HrvVyopP3z8KZxvgWCHgQTmGMVlsfLmhAIUMrjguHZlM1uq+h8obWt3WY1TnwM93iMe6GMg83rPJ6XTy0KqH2FW5i89P/Ry9Wt8z5/g3wFpSQtW77xFx2aUEZWT09On0SZbsKcXQZGNNVhVNVjsalcJvn0aLnbkvrWBAbAgfXjWxB87Snz2rizGbbOxYVgBAQ7XZs83hdHDT0psAGCvTMvGvF8SGkRdAG3MNgKGq4uiccIBjioCBcgxS12jl150lvLk8i/xqEwAalYILJ6Z6tjcnu8KI2WYnSOk/cfYYRZu9jxc9DP+3xvP0p+yf+Dn7ZwA2lmxkTtocv8Mr8nPJ2bqJ8aedjVzRiz5XH6P43vswbdpEw19/0X/J4p4+nT5FfZOVGqOFygaL57XcKiPRIUF8tbGASyalEq5VA3CgzEBhTSOldU04nc42FxTdgdVi589P9/m9XpZTz4afc0ia6719GExV3h0ayiE0rtVx7TYbdpvN+z5NTag0mq456WMcW00N5v0H0E6cgEwuAiD2hgZkajVytbqHz67r6VSI580332TkyJHo9Xr0ej1Tpkzht99+82xvamri5ptvJioqipCQEM455xzKysokY+Tn53Pqqaei1WqJjY3l3nvvxebzYw1w5Dzx8x4e/H6nxzgBePKXvTRZ7QBkVfh7Syx2B4U1jd12jh3C10Ap3wPWRijcBLsX8sXuTz2bDlbtafHwzx64g7+++Ih13y9gVdEqlhcs75Xu896OadMmAKwFBT18Jn2Pef9Zycznl7Nkj3cePFTewH3f7uD5Rfu579sdntfL6psAsDmcGMw9PyfWlbc8H3z7703k765i/aeFntdMTTXeHWpy2xy3Ml+6vba8l4aXexmNO3dy6PjZ5F95JYY//gDAWlZO1pwTKLjm2h4+u6NDpwyU5ORknn32WTZv3symTZuYPXs2Z555Jrt37wbgzjvv5KeffuKbb75hxYoVFBcXM3/+fM/xdrudU089FYvFwpo1a/j444/56KOP+Mc//tG1n+pvTn6VMEz0GiUbHppDUngwDWYbKw4It2pWK+GcWpO/Z+VosW9tCXvXlPi9nrerit/e2klNqRFD9kE2aYLYrVYBTvjpdhzvzWH/wmvJqtrrOebg2pfgs3PB4ZCM5bCLSf7gpnXctPQm7vn9dt65+UoWv/3KUf1sfQlrWRnlL7+MOSuLRtd1HKDrKHUZHdsKaj2vLd9fwbJ95QAs3lNGXpUR8BooADVGr8elO8ndWcmXj6+nIt9AXbmpzX0dVSrP4/rGSu+GmhxhpPx0O1Rne14uPrCXwn27Kdon/Z398f6bmOrrPM+rigqoLQsYLc2p/vgTnE3iN9K0RyzK6hYuxF5Xh2njRqwl/vNpX6dTIZ7TTz9d8vypp57izTffZN26dSQnJ/P+++/zxRdfMHv2bAA+/PBDhgwZwrp165g8eTKLFy9mz549LF26lLi4OEaPHs0TTzzB/fffz2OPPYb6GHRR9QT1TcLQeP2SscTqNZw0PJ73V+WwaFcpJw6LbzXfpK6xeybFJqOVPz4WBkb6yCiCQ7x/959f2w5A9rYKFFzDF6NqqdGW8X81tSRk/0x+RBjvhodJxlscouOXktWcULaT14v/QG93cGaBd2KszM1hsiMSo8ZGQ1UVO5ctZu71t/q50B0OO/UVFWj1etTB2qP18XsEp82Gw2RCoZfm6hTfdz+m9eupeuttAILHjkU3eTLRt96Caf16kEnXME6Hw+NaDuCPocnKT9tLOGl4PBFaVYv7fLu5UPJ8yZ4yrp3ez2PMgEiqjdNrWsxVOWqU7+OX14sAGV8/vRFw4F7DWo/binJzJjKz9/fjkNk9j+ubqlmsDUZeq6P2k58ZkfgDgwy/w64f4IE8TIZ6vnz0XgASBw2VvG3Rvt18++QjnHXfPzAbG/jyH/dht1o4/5/PkjRoyNH+1L0CR2Mj5gMH0Iwc2Wpoz1KQ73lszcsDoGHlSs9rxjVrCT9nvt9xfZnDzkGx2+188803GI1GpkyZwubNm7FarZxwwgmefQYPHkxqaipr165l8uTJrF27lhEjRhAX541Pnnjiidx0003s3r2bMWPGtPheZrMZs9mbnFVfX3+4p/23wNAkPAd6jZggTxgSx/urcliTJeLEvqs5X7rLg1Jb5l2Z1ZaasEU6WPbJXmpKjJL97ARx8r7r+XXwO7wR4X1daVcT0RiHVZNLrStn5oHYaG5fcBofRoYDUFxsQ0em55jB+aGUh3tvAE0NBoJDvZOt0+lkwT/uo+TgfvQxcVz5nzdQqYO68mP3KIU330LD6tX0X7IY06bNKONi0U2cKIwQHxq3bKFxyxacFjNV7/lXWNgqKlDFtZ5f8HfnXz/t4dvNhfy+u5S3Lx3XoWNK68TvsqzeO8f9urOEc99ay/0nDeLiSWmEBB3FdEGnE/b+CL89ALzus0EYJxuTf2Oz83fOUd5DjI+BIncqOHPXbQTZtBxIe5lPQhM4d3MSUEtWiYOIkBHMj8wiOmcFO/Z7c1SK94vVf7+xE8jeshGAirwc3r35KslpffvkI0w4Yz6JAwaTNmpsj+fkHE0qX3+dqvfeJ+bOO4m+4XrsBgNVH3yAOiWV8PmiDNta4DVsLXn5NG7bRuOWLZ7XjGuFgWItL8f41yr0p5/W5/NSOr0U2rlzJyEhIQQFBXHjjTfyww8/MHToUEpLS1Gr1YSHh0v2j4uLo7RUuOtKS0slxol7u3tbazzzzDOEhYV5/qWkpHT2tP9W1LuSYEM1YlJLiQwGoKLBzJcb8lmfU93icW4Dpclq572/siUu566kptTo89jEnlXFFO6rwVjn78HRm6M5e9cdKO3eC21y3hmcs/MeZhXMIdXqNao+CBOTp8IO+TZ/D0hsrTcRr7ZM6g6tLSuh5OB+AOoryljz9ec4HQ4cdjvFB/bhbBY+6ms0rFgBNhulTzxJ8b33kn/5FTjbyP1qyTgBsBYVSZ47rVbKnn+ehr9Wden59lXc3pGVByowmKUGf3Azb8jg+FAASurdBor3env3rxzsDidP/7qP4f9cxB97pbl8XcrOb+Hry7HXt/wedRoRGm5UGfy2JRgyiWxMIKT4KqJrvdeo0i7HUBfOxznjePrdZ1n90YeS46wKB3NvvI2Zl17N4KkzW3xfm8XM2m+/5Ltn/sn6H45tqQH39Vbx0ks07dlD3sWXUPXmW5Q89BBZp51G9WefY6/2zttNu3eTd/U14HSidN1DTRs2YG8wUnjzLZQ8/DBVb73VI5+lK+m0gTJo0CC2bdvG+vXruemmm7jiiivYs6flJMWu4sEHH6Surs7zryCQrNcidoeTbQW1ngQ7fbDwoIS5/rc7nDz4/c5Wj691GTbvrszmyV/2MufFFUflPGtKvB6U6o3LKdya47fPcaEf4owTibBBdi3zDlzFGYZwAIaXTQcgvvRs3iuwcnKDMHisNiUnrYvjskVpDNmVAIBR0/JNeM03X9BQU42l0UR9RTm7/lwi2b7pp+/57fX/sPa7BXz56D1s/f2nI/vQPYivcWVc5TUk6n762W9fZUyM57EqOdlvu7VQGp6o/e57qt//gILrrgskIDejoUn625s+IBqF3OsFGJ8u3IJeD0rrC4JrPt7Upef25+f7WPjiZqyNTWz5PYcC80jq7Akt7lsX7DJQlK1LEcTXDybKdX02Jyjb3/tzKLmBkurNjD99PqnDR/ltTxk6AoXSe1zJof1tfZw+hdPppPLtd6hduNDzmsJnYZ8z/xzMBw96nlsOZVH25JMAyLXehZfTZCJo4EDSv/4aFAps5eUcGD+epp1ijq/55puj+0G6gU77DdVqNf379wdg3LhxbNy4kf/+979ccMEFWCwWamtrJV6UsrIy4uPjAYiPj2fDBqlQkbvKx71PSwQFBREUdOy4248Wb63I4vlF3gvZ7UEJCVKikMuwO7w3kP6xIX65KHUm4cHYXigS1hrMNhotdoLVRx4H37OqmPU/ZjP2xDSqfTwo5dnVlFljAO97aJXFrEpawbvhekYF6ZmcfyaptUOh9l/8a56MEryfo6pxHGc2rGCtM5z+hTriq6XlirlpRmJjM4j5S+o1yt22mbdvvNzvPMedehaGqkoOrFvFgfWrsbs8NH9+/C5jTznziL+HnsDR4P07Oy1eL1XJgw9K9pOHhRH34AMU3XU3AKFz5mA+eBDjGm95d+1336M/5RSQyyl7+hlqPvvMs82SlUWQa24IADUmqUdwUHwoe0vrKagW1THj0yL5bF0+m/NqeH7RPkrqjo7HsjmG6ib2/FUMwPLHXuVA3XhgvGe7XJ3POeFP8HTUDCpMIZxo28W3jhCaVMYWxysNySKybD8jalrOuQEonaJgL3kctzEBq9LJ1oG1bPrxRgbcfojIJH+P+JhTzuC0O+6n+OB+/vf8Exgqyo/sQ/ciTGvXUvHSS+KJ3UHI7OOx19X57ScPCZFcuwDq/v1p2iEqv+Q6HRnff4dMqUQzeDBNzZLcneaeSbTuSo44283hcGA2mxk3bhwqlYo/XOVPAPv37yc/P58pU6YAMGXKFHbu3El5uffHtmTJEvR6PUOHDvUbO0DH2F5QS1l9k8Q40ajkHk0TmUyGXiO1RR84abDfOG4PSnyY1xhck1Xpt9/hsGtlEaZ6C6u+OUjeTm88usQ6FCcK6oK871Mj0/JORBhOmYx9setRRXgNkpLF3scOWznLKmeTm/sAp69OYHiOSJ6tS6xh5ahKDiQbyIi3cOtc6Y24LVKHj+K0O+4nNCrGY5y4sdu6r8qpK2lp8muJ4GHD0PhchyEzZ5D0nxcJP+88Ep5+GplWi2n9emp/+AHTunUS4wSg4MabsFV2ze+lL+JOTnezt0QaEsmI1hEa5L2Jj031Jla9/meWJ3esNdwyAYdL3u4qFr60ha2L8jyvHajzz5PZpy/ng2g7f4ZvZkfici4zGPixsIQz9NH+g8rA5NiFw+Kvl+JmXsIBno+Ss7A2h8szNxM7Yh8WlZONKielDSVEJCb5HRObloE2LJzwOLFwrT+GhN1qf1joeVzy8MMcnHIcOJ3INBr6L/PeP5Nfe5Xo/7tJcqw6JYWISy9FHhZG2hefI3N5mXw9n24cjY047Uf2m+lpOmWgPPjgg6xcuZLc3Fx27tzJgw8+yPLly7nkkksICwvjmmuu4a677uLPP/9k8+bNXHXVVUyZMoXJkycDMG/ePIYOHcpll13G9u3bWbRoEY888gg333xzwENymBwsM3Dm66s5/oXlktfdCbKe58He5/fMG8gJQ725QPF64XX437Zi3lqRJUmWbS1fpTM0Ga1UFIjJWqFq+SdXFHbA87he7Z3Ym1RGpt+TyPx7pROp3ZKFxfAZVuPPlDcUoXB4Xecp9lFkJxkpHVzGNYYSopO9KzTDoBDP4/0pBmKuPYk7Pl/IuNPOJmPMeFKHj0Imk5E+yj9huzTrUCc/ee/AXlvb5nZ1v36EzptHwrPPoEpNRTt+PJoRI9COH48iPJyEJx4nfP7ZRF15JQClj/6D/Kuv8RvHWlhIuXtl+DfEXd7vpnkyelJ4MEqF93eaGN45cbL9pf45IJ1h5Zf7Kdpfy84VRW3udyBmA5+HheLAySBNDIk2Owl2O4OGTfbbNzxdRUhdfgujCFL6X02MNpztO7QonJAsNzPBJr6nJTotc7+bxw+F3vBpSFQ0p952L2GxwjDRR4sbr9loxGxqu+y5L+AwmzEsEeHk4PHSOU2VmIgqMZHkN94g7tFH0E6aRMxtt6GdMMGzj2bEcOIfeZiBq1ehGTTI83rExRf5v5nViiWv9b9NX6BTIZ7y8nIuv/xySkpKCAsLY+TIkSxatIi5c+cC8NJLLyGXyznnnHMwm82ceOKJvPHGG57jFQoFP//8MzfddBNTpkxBp9NxxRVX8Pjjj3ftp/obsTlPCCSZLFJL2dcgAW8eCojGgAAfXDmen7eXMHNQDLcv2AbAs7/tY1p/70ppxf4K5DIZd5ww4LBLHosP1oITIuK1nHZNKlVvXEG8+hC/1j9CaaOQTi8KO0B+xB4m5p/Kin6in0ekJhKA9LB0gqOCufH1Wbx183Kcjgaspt894zdfvZnNZ/DnmfcS+d9xyJ12+OEKMkaa+NRpIicxn8kNEeTFN1IY10hWzQ9cKLueWZdJb7hDps1i559LCNJqkcsVNBrqyd2+pU+WPdprpR4UWVAQic89R1D/TEybNhMyaxaquFjP9rTPPm0+BAAhs2dT6XM9+6LOyMCSk0Pdd9+jSkwk6uqrkQcHi0RcheKYqsBoTeU1r5mB0ryceHCCnji9BhB/j842DTxQZmBUSninjgFxvobqJuor2w8hfTDhfixK737HJ8+EvUIwsd/0Ecz640pSVFupsqWyLeY5Mk6QUbpF6jmSKWJw2iuQycOoqArnO54FQCuvYUDwaoaaLSicTuyu7/DZDc/y3Iyr2Ld6Jec98iSRid7cJ3WwFo0uhCZjA/UVZcSkZbD0/TepLS3mjLse7DNyAJb8fBq370CdnoazqQlFRARpH3xA7cKFlP7jnwCeJNjQ2cdLjpWpvLfpsNNOE68ppbfukBkzSP/mG3LPO0/yumnzJipfexWUShL//e8+dx12ykB5//22GztpNBpef/11Xn/99Vb3SUtL49dff+3M2wZoA0creYnNyxJ9DZRIl7T27MFxzB4cx6ZcqZekoMY70e4vM7C/zEC10cxz5/ons3WE3J3C7Z80MAL9tufQB4k8JK1iNyAMlGL9IRrVBnIjRYLXkMghvD33bRxOB8FKUYWkUMiJTNRRevBXcJr93wiQK1OQydSE61KRR2VC5QE4tJQBajWHksWqbPWoaqabGrHYgyhvLGfRyn9x+swnwEffI2XYSG544yOCQkI4sHYVv7/xEoc2rGHq+Zcc1nfQ3TgtFgzLlhEyY4YnxCMLDibm1lvRTpxI8PBhAARlZrY1jATNMGkYVq7XE3H+eQSPGYN20mQOTJwIDgeVr75G5auvETR4MLbKSpSRkZ5YeV9nwYZ8nvp1Lx9dNYFxaZGSbbkuwTWdWoHRZ8EwMT2Sly4cTViwiodPGUJWeQPXTu/X4vhyWevXdNVhirfl7qjk1ze9yfEJqr1M17/HhpAnyc0L9u4XsVNinAAcP/g8CM6AID2KYC3DhjZBTjl6rYmMu8ex9pdv/d5PpTsJhzUHuWqQ5PVi6zAGBK9G63SSZrWRrfbOSSfddAezr7qBIK1/p+TQ6BiajA18ct+tDJt5ArtXLAVgxWcfMPe6Ww7rO+luiu6+h6adO1H3E3/3oMGDkKnVRJx/PhWvvIq9shLN0JYXP2HnnINxzVqCx41DGd1CmM1F8IjhqNPSsOR5Q3ilj3pFUKOuugpkMtQpKch1R96RujsIKC71ccoNLa+K7M1mOX0LHhQ34c0EpZqvBAG+3lTYqn5KW5gbbRzcKBKhB4yPgV3fA1All/NSxnbsMhvFoYcYljIIjcLr8s4MzyRCE0FUcJTnNafTybCpJo/HZMKZXmNBJo9Erb8clU6sMN6+dQXbbV63Z6LNhtxVZTLHaOKF8krONAiX+brdX8Da1/zOPSQyCpU6iMxxk5ArFFQW5FFdXEhNaTEVzeS6exs1C76i6I47KXvuOU+IJ2TGDKKuvspjnHQWmUxG8uuvEX7BBWQuXUrmLz8Te889hM6ZgyJE56fka963D3tlJeYDBzBnZR3pR+oVPPD9TgxNNu74apvnteX7y9mSX+NpIXHTrExumOk1QNKjtSSFB7se61h2zywuniT6Yn1z4xRJZc+pIxO5bnoGb1061u+9qxpaNspbI3dnJZWFDWz+3XvDClbUMT/qIWKmzSNh7HDP678Nepc/+gvPmVImDMl4XTxDIofA2Mth2Flix7PehOHn4Lzqd6xNTeRvEt6VOp3XiyKTR6LUTESukAoqllkGeh43t8Ea7U08ve05zlx4JvUWqc6VzSex222cAOz8Y7FEgbY34rRaMa5b76mssWQLAUnNQK/xlr5gAWHnnkN8K5EE/SmnkPLO26S83X7ZcPJbbxJ+4QWkfvyx37ayfz9HzllnU3DDjYfzUXqEgIHShzE0WcmqaDmz3miRJtxJPCjNDJTm4aDWOOv11RTVdq5fz6FNZdgsDiLig0mo+x+YxYSyWRNESUg5X416ht8Hv8eM5BnE67yVXP3CpCtMq8XMjy8+xZJ3XgRg0JTpTDzTq2w85ZxzGH/qOGRy74pw1b7RVFrTAIhyOHirtJwPS8p4ubwSrdPJ6CYx4S/RaVm96/NWy2Q1ISEkDxGT+cENa/ni4bv55N5b+OODNzv1XXQnja4J0bB4icd1rGimUXQ4hM6ZQ8K/HkOdnOSXmBd9S+ur2cYdO1rd1hex2cVvZVtBLVd+uJH5b6wh23UtZkSHkBLhDT2EBLV+fU1Ij+SlC0Z7nieGaXj41KGcNNy/5LeqoeMelOpiI7+8voOvntyALtyb32d1uK79GfcRl+4VXcuP2INVaebWMbfSP0JUYs1KnuUfEghLgnM/YOUfG3nlinMp3LMTpwwqp7kWErIgZLKWQ8EVtgzMDvG93BkhzfE6VHuI7w9+T3ZdNr/n/C7ZljZydIvjOZ0OP9n83kb5Cy+Q78rd8iVosLdIQZ2cROKTT6JuoawfxMIgZMYMFCEhLW6XjJuRQcJjj6GbNFFU2/lgWrdO/L+pa0vWjyYBA6WPYrM7OP3VVfy0vbjF7Y3NclJCfap4IrRSAyVaF8SwRKkEemvsLur4isVmsYv8EyAzdAeyX+4QG4Ij2B0kzqE+uBKLspGZKTOxObxG1YT4CZKxti/+lUMb1yGTyxk28wTmXHMTGl0Ik+dfwNDpxzPxrFOYclYmCf2lq7Y15ps51HQcjLmUKRNuYfxZH8HM+wEY6SrDa5TLuVFj4odDP7T6WZKHCgNly6//o6lBeF62LfqFRkPvVDW2uDwW9upqIdIGKMLC2jrkiIm6/jpSP/FfuQE07Whdf6cvInfduBdu9Sac7i0Rv4V+MTqSIryGcoim7dBWbKjXgIjVt544W9mJEE9lkTehtqrIW6qaot4BSg1oI0kcGE7CLCXL+n9GYmgCWy7dwnUjruO0fqcRqYnkvEHntTQ0VYUFbPrpe8/zKfMv5I2rv2DEvPsI0l/R4jFBMgMgp8IqQorHT76HbwtLGOlaSP2a4w37FzdI57RJZ1/AtAsv56Z3P2fCGeeQPGS4R9ytcM+uDn8n3Y29tpbqjz9pcVvQwAFH/f2T/vMig7ZtJfP33/y2OSx9owS57weF/6YU1zaR6xOKOX98MlMyo7jzK9HLpnnSrK9PtXlIRy6X8eMt07jliy38tqvtJl3ZlS17bJpTW27iq6c2YjOL84ir+Brcc+/IC9lV/KvnpPqF9SNDn8FJGSfx3s73mD9gPqNjR0vGO7B+NQDTLryciWee63l96gWXSfazNEo/d0HDAAq4l5AR44jv57pBDzwRIjMJ/+F6yb7Pb3yeE9JOQK/2N9aSBomwiKmuVjr+np0MnDS1ze+iu3E6HJhzvOJ3bn2ErvCgtIVcrUY3cSKJ/36Wup9/IfLyy2n4809qvvjimPOgADgcThbt9l4vZpsIcWVE61D6hG1C25Gpj/MxSuLbMFA6GuKpr2ykYLc3r8zdlTguUcZM69ugT8SBk//74/9YbV4NMXBa7GmoFGJeuGLYFVwxrGVDo6a0mE0/C0NeFxHJceddwvBZor3JtPMmU1mwhZpSaYh4zLRQajeuI8c8mT8tDzFlbhz944YyyGZngsnIDnUYn+/93LP/3uq9kuNDIiKZdPb5AMy4RMjh71uzkn2rV5C/e0erScs9TXMhxODRowkeOxZ7TQ2aId2TbC/XaITgokIBPiXH1oKCTuWf9RQBA6WPklctNRQunJjK2NQINufV8Nm6fO6eN1Cy3TcnRdVC9YBCLiM6pOVSb5kMbp8zgJeXHvR0Qi6qbeTeb7Zz9dQMJsbpyd9dzZCpCchkMha/u4usrVLdgliVVxnRPnw+u6uXg83Io5MfZUbyDGQyGTeMvIGZyTMZFSNNxm2orqLkgMg7GTJ9VpvfS0JmmFgxypAYZaXZdV4DRa6AURfAD9dzc00t74aFYZHLaLA2sL5kPXPT5vqP238gcoUCRzNdgZytmxgw8bheM0GaNm7EWlyMs9E/FHe0PShuws48k7AzhaidZvAgar74AvOBA1jy81GnpnbLORxtZDLYXljrJ66WFB6MRqWQeFAc7Sjs+npQdEHe8EhSeLAkpFrZAQPF6XCy4IkNWM3++hcnzq5Et7SG/fqBLN3+JquLVnu2jYltuQ+aLzv/XMzit7ydwOdcdSMDJh3nea7Vq7n4sclUFTfwx0d7GTUnBa1eTfKAUDZufZcc82TqjRoWfV1HxowgFBHpXFeTw161mjVa7/e1u2o3TqeTwoZCYoJj0Cj9jbbU4aNQKJVU5uey688lNBrqGThpKuHxLavhdjfWsjI/ozzyyivQn3RSt5+LTKlEFR8vaVNhycvrEwZKIMTTx1i0u5TrP9nEhmb6JO5J7rHTh7H4zhlcNjlNst3eARnyGJ+J0p3UB6CSy+kfK+Kf7kTAB77bwZqsKq79ZBN/fLSXFV/s5+dXt7Pm+0N+xgmAVlGHUxeL/Y4d7AxSY7QZCVWHMn/AfE/uiUapYXTsaL+bfeFe4caN6zeA0MjWs9gBpszPZOxJaVz6+GQyx3pzJNyryObcWFvP+rwCLqgXLvEtZVta3E+l0ZAxxht2Gn+66Bq6688lvH/bteTv6nkPQcUrr5B32eUU3/8AAMpE6WStSuz+yVsZE4N2/HhwOsmadyJZp51G1fsfYO9DDT+brHacTqckR8nhcPLmcv/E334xojpCq/au/eoa2xb40/l4WNzXGcAHV07ghCGxvHe5UHmtarC0206godbconGCDLT2fKrkcs6VlfDWdmnCZXsGSu6OrRLjBCBhoL/YI0BUYgjnPzSBQZPiSRkSiUypImrMeMk+NaUmkKvQOZ3cXlMr2VZnruPLfV9y6venMv/H+awtXovDKU3A1urDmHiW8KosfvsV/vriI1Z81naVaXdhPniQQ3NOoP4noe8S/9hjpH7yMaEnnthj59S8bYUlJ7dnTqSTBAyUPsb93+1g8Z4yXl0mFQ1zez+UCjkD40L9bvKXugyWeUOlzRpbGgMgVu99LJNBv2i3gWLE6XR6EgIBT55J4b4ati/175M0Uitcnc9nDGPKL+fx3s73AJiaOBWlvH0nXlWhEBuKzWi5NNMXtUbJlLMyCYvRMvuyIYyaI0TaCvfXsHN5IXm7vSq2XPItxI9AOeZSxrkSZjeXbGhpWABOueUuBk+dSfrocRx37sUMP34uqiANdeVlbP39x3bP7WhgWLqUkn8+hjk7h8o3pEm7IdNnEDJTxOq1UyajnTixJ04RvUu7AURfkfLnn+8zgm6ldU2Me2IJ9367g0YfJdfiuiYW7/Fvrtcv2r98c2gH8rsW3zmDr66fTLJPcu2g+FDeu2IC0wcKo9zmcFLf2LbabG15y2JmTqUNRd5fvB7h70WL1caSGd76anr9wm/47qlH/V4PiYhsYe+WiT7xUsnzqqIG6DcLgCEWK1E28d0O0Ag9nmc2PIMTJwWGAq5fcj3XL74ek1X62SaedR6h0d5FyKGN6zp8PkeTmi8XgE8jTs2QwegmTuxRL6sqWarWa8nN7ZkT6SSBEE8fwul0SlRe3QxJ0LcropYZE8K2f8z1U5j1JTrEmzw7vX80W/NrARH+6RejQy4Tq8H8ahMGl6y3qo0FXVL/EObVnYtGbqB26m18WrwQgBWFImlzevL0Ns/ZTWWBMFCikzsXHlAHKxk0KZ7tfxRQW2Zi5YIDIIMTrx1O/3GxMGCu+GcxMfbgIgD21xzg14MLiQ5JJE2fRpwuzmc8Lafedq/n+Yk33s6Aicfxw7//RV1Z27k7R4vCW24FvBn6QYMHk/HN1zTt20dQZib22loaVq4k7MwzkSmOvKfS4aA/7TQali/HWl6GeY/IL2hYsaLX5g748uGaHIwWO99uLuSeeYP8tivlMs4Zm8xXm4RhnuFjoCy5cwZb8ms4pYWKnOYMjAttdVuQUkGoRomhyUZ+tYlHPthJQlgwb13mL1NfW9qKgWKVQfafbEySnsu5A8/l6uFXI5e1vFbN2ryeVV+KxOeRJ5xEXXkZeTu2eqraOoo+Kpj4fnpKs4XnrKqoAU56ALRRyMZdwTcrniF715ckpQ3mFCpwNitEXl+6ngX7F3D18Ks9rylVKk655W6+ekx4DINDO5bofzQxbdzoF9pRp6W1snf30Tz/zHxILHCdViuOxkYU+p7/7loi4EHpQ5Qb/GPQ/71wND/833Et7O1PuFaNXN76DWFkcjgalZyJ6ZHcMtubZa6QydCoFByXKVZyP+8o8QhRRdq94yUNDCcuTUeKehvXxl7C6RkfsDHEzKqETL5PyJC8l0KmYFrStFbPxWoxezQO3B6UqOTOX+jh8c2UJp2wbmEz17xaS9xFX3GysQmHDO5f8yjXLL6Gy36TJuC2hFuSuyI/l40/fsefH7+L1dI5vYrDxeGTZ+IWZ9IMHoxMpSJ4xAjkWi2qxEQiLrwQeXBwa8McdRQhOlLeepN+33/PoK1bkKnV2IpLPJVGvRmTT7jE0OS/OFjzwGzSor2/sX4x3hDNgLhQLpiQ2uY111Hc3s0nf9nD9sI6ft9dSkmdf9jS14MyZl4qJbPX0aQ0sjHlN6xAoVqaZ3ZKximkhPo36wOxIPrjfREKGnfqWcy97hZOv/NBjjv/Ek659Z5Onb9MLuOc+8Yz82Jh5FUVNWCR6SlOugG7JpaY8dcyqclMctZKxmi8qsbvznuX28bcBsChGv9WE8lDhnPTuyLBttFQz9ZFP/PNk4/QUHPkLTo6S8Vrr5N32eU07ZJWFh3t5PSOIFNJF6aNW7dS/NDDZJ99NgemTsPSrEt5byHgQekj/LKjhJu/EPkR4VqVx5MyLi3isCXomxMfpmHzI3PRqBQS8Sj3IveMUYmsOlTJT9uLPUm3UQ5h4yYOCOesu8ZC6U54618ALMlayF3xsYAZNntd+gqZgv/M+o9Hyr4lvnniYcqyDjL+9PnUlpaI90rpfIKlSq0gc0wMFQUG5l49jO+e20x9VRMOuwO5b7Jw0jieTTuLjaW/UOlqslhiLMFoNaJTta66qI/1TqYrP/9QnGdyKiPnHP14szkr2+81zZCW8wJ6C/LgYLQTJ2JctQrj2nW9vvuxbzVc82aAchlEhQQR4xMadeegdDVTMqPIqTRKemNtOFBJQqkVdUYI3x0q58oxyexYJm40sy4ZxLDpSfy+uomPxj8MMidZ/R7Alv0FwcpgLh1yKYUNhW3mnjRUV2GoqkCuUDD1AhGiCdJqmXJOC31fOkh0ijDg8ndX8+6dKwGYdGY/xp80HCLSoSaXKSX72RIRDsDQ8EHUNtUCUNTQcg8hrT7MI4e/7ANhUO1Y+hvHndd9qs+OpqZW20D0BkKmT6fqrbdBLkemUOC0Wqn73lsqbtq4qVUdlp4kYKD0AWx2h8c4AdEF9b6TBlHVYJHErLsCXQslke4V4AlD4+A72OfTtCzG5UGJTNBBxX7Y6u1wu0rrv2r/4zzRrTNWG+u3rTw3my2//cjYk8/wVO1sWPgNABpdCLrwCL9jOsJJN4wQyYVOkCtlOGxOGmrM6KOl5ycffAoj8r7nT6X3O91esZ3jElv3UKnUQejCIzDW1nheqyrIa3X/rsR86KDfa0GDereBAhA0YADGVauwFhVhNxhwNjW12I21N2DyETxsnv+hC1KikMs8yeVBSjmJYUfHU3Xr7P58t7nQU8oMcGBZEYU5wmPyaXgjutVVuANFEcG18MZ52MOCQCYWE2vtIsE9TZ/GbWNva/c9q4uEsRMWG48qqHONDVsjLl1PZKKO6mJvDlt5br1YBQ05Hda8yrmGBr7UhzLYbEFvt5EYkgi0bqAA6GPjaMrx6r3kbtvSrQaKtajIT0lZGRtL9E29Q7VVO24cqR9+gDo1lZzzL8BeVSXZbq/qnV3IAwZKH2Dp3nLJc6VcxuD47osZpkWKG3akTk2UTk2V0UKoQ8ZpRhXJduFtiOunh9elN8eNGqk7+fiU41s0TNys/upTsrdsZPfypX7bhsw4/ojyFWQyGcggNFJDXXkjhqomNCEq1L4iWmlTGW6DP32O21q+tU0DBUAml0ZKKwu7p4OoxRVHDj3xRAxLlyIPCmq1n0dvQhUv8nqspaXkX3kVltxcMhcvQhkV1c6R3Y+vB6V5LxytWvz2hybqCVYpmNwvskvCOS2REBbMh1dOIKuigWC1knu+2Y6pxITblFY7QWcQ55oxMoL4vy6CujzqiQad2Gu1MReAdH16q+/T2GAgf+c2IpNSWP2VkL6PTOq6lbVMJmPS6f347W2vcF9DjSskOuRMWPMq0XYHiwqKUTqdYKoiMVQYKOWmcqx2q0evxRdLs07HJVkHMNXXodV3T2m9pUDkICnj4pDrdASPGU3iU091y3t3FN2UKQAoQkL8DBRrqX/Cd28gkIPSB9ic53XrKuWyVhuNdTVfXDuJqf2jJFLcbhf2cIvCY5wA9BsotXVLFQoKVCrkyFh45kKuGn4V/5jyD9qieX+b6NR0VJpgtGHhTDn34iP7MC70UWIluGVRHu/esZIti328HUo1GZFS/ZiPdn3EmuI1HKg50OqYDdXSiz1/5zZ2r/ijS863LZoOCg+KbvIkMn//jfRvv+m1yW6+KOOEgWLauJGm3btxGI007dnbzlE9g68HpaxeqnniLiWODdWw/uE5vHeFVP24qzmufzSXTUln9uBYQjVKjDav8ZRkkyMH9NEaTpm0A3md+F3X+iRGr68UyZvpYemtvsfqBZ/y88v/5pN7b6Hk0H4AIhKSWt3/cOg3Job5947jrDtFeMlQ7fpek8ZByiTQxaBxOsXqubGaKE0UQYognDgZ+9lYCgz+lYJJQ4SQoj4mltj0THA6WfHJe+xe8Yekl8/RwGEy0eiSjw8eOYLMX3/pdcaJL/GPP44yMYGUd94m7h+iOstaUNAr1WUDBkovxe7w6i4ccomjPXnWcPY/eTITMzpe3nckHNc/ms+vnexJ/HM6nYypgXFNCkId3pVixvhY1LV7JMe6pewHhg8gMzyTu8bdRXRw2xomdqs0xt9vzHiu+s+bXP7cqwSHtF7l0BlCo4QLPn+PMPrWfp8lSSyclXkqZxgauL26lsmNTTTZm7hhyQ2c8+M5LMtf1uKYsy6/FhBVDm5+f+MlNv74HVVF/pNpV2E5KDwoQQMGoE5JIahf9xiuR4rbQPFdxVnyuycs1ll8NUxKm4my+eZ+6TUqSd7W0SRSp+blC0bje7VkWMW5JA2MgHWucvPpd1OrkC4cQlWhnJpxaqtjb1/i32k+MrHrcxMSMsM8+ShNDVasZjsF+2rZnv4uzrsPQLLL2PvoNGSHlkp0UHxVZ93MuPhKJs+/gIuffJEMl+bKnr/+5Pc3XuLje26mIi/H75gjwbh+A4dOmEvDihUU3XsfVe8JDRZVcssJx70J3aSJDHB1Ole5hO0aVqwg+9TTJIn3vYGAgdILsTucnPrKX5z1+mqcTieHXOJo/WNDum0SbInyPANheU3MblIT7co9KVLYGXZKGpRJM9fzVGJizIjomFqhpanRT0Y+PCGR0Kjow849aQl9tH8sfd+aEs9j1cCTeaqymmvr6rmlmYDUy1tebnHMMSedzkVPvMCca26SvL7y8w/55vGH2hXXOhwcRiPWYtGzpLcnmjZHFeevxWPN756wWGfxbdDnFil04w7x9ATHpUQQ5hOeHOI2UMJLoGIvqENg6u3UB0lz1BaetbBND0pUC6X8R0udVR2sRKUR522obuLHV7ax6pssig7UgtYV7nPa4fNzCQvyhmrWl6z3G0sbFs7UCy5DFx5Bv7FSUbjashJ+eunZLr0OC266CWthIQU33EjDH15vaXO9kd6OO9wKwotiXLOmB8/Gn4CB0gupbDCzr9TA9sI68qtNFNYIq9ZXZbInqCn1JrYlucI7e7Tl2JROKN2FQSajQCkmzfxhZwBtx7vd1FeWU1MsEuA0uhBOueVuhkw/3tMQrCvRR/knMVYUeJN+icqEG1eDLoYhZqnLU6NoOVFQrlCQOHAwcrmCudffSlictyuzsbYGs7Fj/Ys6g9lVoquIie4VZYydQRkT4y0Nc2HJ630Gis3uoNrk/Q2syZKG8nrKQKnIN/Dpw2uJafDecLVO8X0mVYm8EcZcijNIT51ThKiuyjybxecsbjMHDJA0vxx36lmMOel0kgcP6+JPIJDJZIRGimtq8++5ntfrKhohWOol/tdx/2JAhJA+OFR7qMUwj5v4/gM9InJn3PUQCqWSmpIiaktbbqzaWcxZWThNLevNqBJ6h9R+R1E2O1/DHy17iXuKQJJsL6TJR7Fy6d5ynE5RWhylU7dx1NGnMr/B77Uvgx+gan0u5K3m8sQ4DqnV/FpQTK5VaJik6tsuDS49dIDPH77L81wfG8eQ6cczZPrxXXrubjJGRTN4SjxKlYKEAWEseX8PFfkGsrdVUFtmYsy8VGTxw2HQKai3SDvz5tXn4XA6WhW1Ahg550RGzjmR9T98zaoFopNpQ00Vmg60Su8MZnd4p495T0BoMiiio7BXVApDxenEfOgQTofDL+G4J6k2WWi+6E6L0jK1fzRfrM/nzrkDWz7wKPHHJ3spy66jpswELTgDmoJkhBT+ggO4yVGEfcl12J1iLrl5ysMEKVruteXGYbd7tIdufPvTLvVctoYuTE11sZED671JmvVVTaCVGigzokYy44zvOe+n89hXvY+1xWtRJilJCPE3CORyBec+8iTG2lpSh48kceAQCvbsJG/HtiPOp2ncuZPc885vcZtMqyV4xIgjGr+7ab64aVi2DNPWrajT01FGHP2/f3v0ntkggAejjzjUEz+L3I6W5Ou7G4mnAVDLjGhk9SRvfg57bR6H1MKA+mDYleQbRdikPQ9KaZa0VLYz8tmHg1KtYM4VQ5l58SD6jYpBJpfRaLDy21s7WfuDy70MImEPuJ1wz7Emm4lCQ8cEjSadfT7RKUJYritFo+z19VS++Sa1Lg2DoAFHv2370UDl8jKFzJoFgLWwkKyTTib/uuup/f6HHjwzL8/8us/vtan9o3nqrOFs+8dcxqZ23wTucDjZt6ZE9LBpJVJh0xrAbiY3JIo1lds9oZBgZXC7xgmAsa4GnE5kcnm3Vb/EpPrnltWWmfwMFP6dBnt+9HiAnlj3BPO+m4fZ3rIoYlRyKqnDRwKQOmI0AHk7tx3x+db9r+WWFglPPkHm77/12nL51pDJZETddCO6adOQ63TYa2vJu+hiiu+9r6dPDQgYKL0So0Wqt6CUy7j3RH+Z7e7E6XRSWSj1oIQqSz2e+nKfaoEcuYaKRtEwsC0Pytbff2LrImlL8s5KaB8JSrWCyARpjL5wn8uYiBfncWV5CQumvcBQlbgZ7aqU5tq0hc5lbBm70EAp+cc/qfjvKzRu3ize47iOqQj3NnTTpiJTq4m+6UaU8cJYsebnY/zrL0oeeqiHzw4qDGZ+2FrUPBJFlE6NTCYjXNu93syG6qZ29+nvFEZrdpTUq+abv9EadpuVjT9+B4AuPKLbPFnjT81g3jXSEFJtmQkULXy/X19GjEaaaJ9f335oMHmouJZLs1qvxOso8pCWhfh002egim07fNZbib39dlLfe5ews87yvGZctapXVPUEDJReiNEsNVCumprOhPTuqdxpDWOtGUszoaphwYs9jwtV3mjhwQbRFyZSE4le3XLZa1VhPss+fJtqV5XLtIuu4PLnXmXcqWd18Zm3Tf/x0oTNwn0uwbWYwYAMpbGCYZ+ez/hKUWWyobT1ZoLNCYkQiX7Ny5APF9PmzRh+/907/uzZnmaAfY3YO+5g4KaNBI8cScb336FsNrk7m4ledTfuhNiUCC3T+ntvit1tmLipq2y9ukKjsRIT+hPnaITnaYVN6pWI0rSvL/PnR++w9TfRfVcX3n1zjUqtYMCEOI47pz/aMPHdVhcb2bm7ZUMgprFO8jynrv3qnJhU0WajobpKkmNzONjKylt8XRXXN40TX8Lmny3JDTs4fQaWHk5eDxgovRBfcSgQMtc9TU2JSAoL0ikJ0ipJ7qdmePASz/bVCm9st94mLuIhUa2LhjVUS70K+ugYYtIykHdzQ7vxJ6dz3cszuPQJIWJUnluPudEGap2Q3nYxuVGsYL87+B0X/3Ixpcb2mwOGRLoMlJquMVCMq0WGfcjs2SS9+gpJ/3mxx8N+R4LcFRJURkYSdvbZkm22ioqeOCUPOZUisTkjWkewTzJspK71ZptHk/qK1g2Ua8LP53zdB57nB1RSr+Dw6Na9kk6Hg2Ufvc32Jb95XrM2dX+p6Zi5qVzxzFSCtGKhs3JzOlZ1rLeax0XMXmkZdEcMlCCtlrBYsRD53wtPUV95+L8tW1nvFDTrCoKHDSPti889YWNHXR3F9z9wVKoQO0rAQOmFNDTzoIzvQe+Jqd5C/u4qql0VPIn9w7nq+WmcPnM/MpmTYmckL1jP4335ZL9jh0W1nv1vrJUaKKFRbWukHE3UGiVhMcGExQbjdELxAZcXJXaoZ59xTd5Y987Kndy45Easdv/mcb6482maG2OHS+P27YAIj+jnzkWu6Rr58d6Adqy0J4y14Ojpx3QEXwPFt1onoqc8KOUdMxpus9xMiVw6f4yOHd3q/gfWr/F4TtzojnIeWGvI5TLOvmes53ndJRvh3iy4ZRPMEF3EY01SD8hr217j6/1ftzt2TJrwohTt283Sd1877HO0lgsDJfHFF4i5+y7P42MF7Zgx6M843fM84akne3QRFDBQeiEmHwPl5uMz0Wt6ZtUGsOzTvfz06nZWfS2SWSMSdCgaSpD/8U8APredwGv2s7Bp/ZNHh0e1vnIzNOv9EBrV88llyYPFxOwJ88R7z1/rdHJ+vQGZazWRVZfFNwe+YWXhSiobW+5joYsU41UW5PL7my9TtG9Pi/u1R/Unn1L1/vueNu7a0aMPa5zejG7GDOIeesjjYrYU9Gx31ewKYaBkxugIVvl6UHpHiCeieZduoFiu5pegeExO6Sp/dMzoVsfdsVR4JMaeciZXvfQ2A6dMZ/aV1x/5CR8mUYkhxGWIsHBtpUX8HqIHgF7I3cfYbX7HPLHuiXZX+fpobwgmZ9tm6itbDtW0hzvEoxk8mKirr6b/8j8JO7V14bu+SMT55xN2znxSP/64x8UfAwaKD5bCQqo++gjD8uU9eh5GV4jn/PHJ3HtizzZ/y9spDU9ExGtFQ0CLgd2yAbxlPx111HKU2lwAbEavMNuw6NY9KIZmeRkhkT2bYwOQPEgkwhbudxkoE2+ACdfCyAsBeLSqhu25BTwcMxWAZzY8w81/3Mz1S1qe0PUuo6u2tITdy5ey4J+dz4y3FhdT9vTTlD//Ag6DAZlWS9DA7i1v7Q5kMhmRl19G+PmihNNa0LOx75xKkYOSER0iCfH0hAfF6XRS1SxBfc4VQ9GH2pgU4lVV/VdMONr0dzHjDWEoZUqSQlourTVUVZK/awcymZxxp55JZGISp99xP9Gp6Uflc3SU8DhhfNWW+WiNuPrxxNrtLR1CvqHt38uI2fPQhoV7nu9e3rlWFE6nk9KnnsZhEJWMyrg4ZAoFqvj4do7seyjCwkh86il0kyb29KkEDBRf6n/+hfJn/03tV8JlaG9ooGmff6nh0cbd/8Pd66M3ERmvhZ2iw/ACTsIuc6COWgGArWEgjYWXEWqbwAWDLmhTFKqhWup1UCh7zkvkJmlQOCCS9CyNNtBFwakvwvS7PfvIgDNkYcjwSSar8e8qDBCTnuFXNt3ZlZtx7TrJc/28eciUve930VWoU4SsulvnpSdwOp0UVAuPRVqU1FPREx6Uspx66ioaUarkTD6rH1POziQuQ89l039ifMi3FCiVPBUVwRqtN+R3QuoJfHfGd/x2zm+tuujLssV3HJ2aJvEw9DTNDRSr2Q6hwhCItHuTp8+t98oe7KjY0eaY0anp3PTOZ8y7UXRxPrRxXZv7N6dpzx5qPv3U81zRxbpGAVomYKD4EHL8LAAa/vyT2u++J/fc88g562xMGzd263m4dVBCgnr+RqRUe38imWNiiAkugqqDoNRwwvyrUIbuQaZowmENo7HgSnBo0NReziOTH2lzXN/KlqkXXHa0Tr9TBIeo0erFDaim1Hf1Jl0laRvKPC3g3eyq3IXNIXU/y+UK0kePk7x2aMPaTp2TcZ13IlWlpBD34AOdOr6voZ00CQDDsmVYcnN75BwazDYsrhthdEgQTVbvTbEn1GP3rRMJ2ZljYxl3UjpjTxT6OhSKBnW3J8SzQC+t3Ll2xLUMjBhIvM772y3LPsTit1/BWCs8hOW52QDEpveuHk7hscJAqSkzsenXHN69YwU7dggdFwVwfr2BiY1NPFRVw+VR4vr6cPeHNNnaL8XOHDcJmUxOeW5WpxYLjVu3eR4HjxrV8Q8T4IgIGCg+BA0c6FHWK3n4Yc8EWffzL916Hu4yY21Qz/X6ALBa7NgsYnKed80wTrx+OLJyVx5Fwihmjshk9nhRfmutG4f751Rrajl5tKa0mJ3LFuN0Oj05KJf9+xUmz7/g6H6QThCRIMobv/33Jtb/KCZwgpqJSdUV0j9cqjVx0S8X8c6Od/zGm3LuxUQlp6IJFXH17K2bOnwuhqVLqf9JJDAm/fe/ZPzwA4qw7hHQ6imCR4wQpdN2OwW33IJh6dJuLzmuMYrfb7BKQbBaIVF27omEwUqXQGL6SFciucMBvz8ErmvxoNI7jTtsOnQVD7YYXv3y0XvYuWwxS997A+i9BkpUkrgGy3PrWf9jDk4n5OzzGh+PVtXwfmk5KmCcXXz2gzUH+eeaf7Y7tlYfRuIgETbP3balw+fUuHUrALrp00l65b8dPi7AkREwUHyQyWSEnnyS/+uK7v2a3GXGuh4M8TQZrez8UyQqyhUy+o+PFZNzlcv1HjWAUmMp60qER8Ba6/UU1Jos2B3+SWufPXA7i99+hc0//+BpDOguxe0tRPokH276NVc8aH5TqitqUSH3ze1v+r2mj47hyhff4MLHngWgaO9urJaW1S8BzNnZFD/wIE37D1D8sPBCaadMJnTObBStiEQda8Q+cD+KsDAsh7IovOVW6n5Y2K3vX2UUfx93OMdsaznvobsw1orzCYl0qcHm/gXrXgfAESYVQnSYEzDUt5zPZbeJhU/h3l3UV5aTtUl452J6mYESEa9j+Exp3ozD3nIS7KzaSu4ZJ0Kwv+X81mq41ZekQaI6zx3iao/C2++g/hexSI288ooWm10GODoEDJRmRN9wAzJVs3yINnqvdDWLdpfyy04hE99TzcgM1U188vAa1v4gGtJpQlTelWOlawKI7s+i3EU4cRJk64/T6jU0HE5pm3oQcX2Lq5X3mm+/BEQH0uDQloXcegq3B8WNpckVton06cpsKCG4JaXLNohMSiEkKhqb1dJmNU/hzbdQt3AhOWeeiaOuDmViAqnvvntM5500Jygjg9SPPkSud1VzfN1+GWlXUuNqEOg2ULpT0t6X4oM1fPLQGhpqXAZKmBo+Px8+OcOzT+m0WyTHOO3BGC32No0qm9nMV4+JUKFcofCU4PYmpp0/gJkXD2LSGcJ4ajS0rGoqz1nBFftXMTdtLk6cHSo5js0Q13J5bla7+zbt24dh0SIAZMHBBI8c2dGPEKALCBgozVDFx5Py9luS1+x1da3s3bVUGy3c8Olmz/OeykHZt7YEa5N3ggsOUYPTCdZGkX8CEDWAvdV7AYiQ+TfIKq2TxoN95d7dQlAJAwb3OqExfYy027GnkuDq3+Hib1wS3E7Ojh7Xof4mbmQyGekjhcbDoQ2ttzS35EiFp8Lnn/O3Mk7caIYMIfOXn0GhoHH7dgx//tkt7/veX9lc/ZEIw0W4DJTLp6TzxJnDWHZ396r2LvzPVgwuiXuZDLRNWXBwkXeHeU+SleDV6rE3xWEuFx7g5mFWh8N7PdusFuorRP7Fqbffh0bX+xI+FQo5w2ckkTFKhLUaDVa44idRVXdfDtzqE5459Aen9TsNgAX7F3Dt4mtbLf0Hb0irIj/X41Vqjdpvhfy/PCyM9AVfogj17x0U4OgRMFBaoHkLaltl6z/2ruSTtbmS59oeMlBqSoyS5xot8PYMeHkklAixMKIHkFUrViCTk4cSrFIwKSPSU/VQWCNtR15Z6F8GmDiwZ0uoWyJ5UAT9Rns1WTwGSkgsDJwHyRMASCzdw7LzlzE4UvoZ2krUGzJN3OD2rV7ZZpjHl5Dp0zpz+scUypgY9KecAkDhbbdjLS4+6u/55C97PY8jtcKTqlbKuWxKOv1iuvdG7ivtEaxXI89tZqQljeNQrQhTWOtHYsq50+PJLKxp5LEfd/PFenHdmWpr/cZP6D+IgZOmHpVz7yqCQ4WR2GSy4kibLqrqtJEQlQnXLRM7NdUyIdYr8La+ZD3fHPim1THD4xJQBwdjt1p5+8bL+fXVFyQGnJvqL76g5rPPAEh89hk0g3q2H9rfkYCB0gKqZgaKveroGih7S+q5Y8FWPl6TK3ld10MhnupSqXGhqN4HpTvA6Mp6lyuxh6V6ZKavm3wcex4/ka9umMKwROGWL6qVCktVtaBr0RsNFIVSzsk3jmDoNFGlU9Psu6D/HPH//t/Qq/Wom4V6io2t30RTho5AHxOH2WQkq4NljurM/u3vdAyT8NSTBA0aBFYrpi1bj+p7Nc+bitR13EPW1TTve6ULC4KsZdKdEkaxpVx4EhyN0pyNc95cw0drcnnoh50iKb3afw5L6IXXX3M0OqWo7XdCU0Oz5Pv4UYAMnA5CbRZCVV7vRkF960rEMrmclGEiVNNoqGfvquWU52T77Vfz+RcARFx6qafrdoDuJWCgtEBzCXFbxdE1UC58Zx0LtxVT08wt2xM6KI0NFmqKpR6UJoP0vMyzHuTxTc9itpsJUgSRFJLkCdUkhYsQSWGN1ECpyJNOAAkDBpE4sPVePT2NW6mzutl3QabLQMn6Axb+H/ePv0/SLba4oXUDRSaXM2TaLAD++FD0P/FVwHQ6neDbi0il+tskxraGXK0meMxoAMz7j64mUXEzo7qn+u4AVOQbJM8dDqenrJhRF8PZb2NXathcJkLCNpM30bV51LTKaGmxYWXCgN7vEZAr5Ghcniy/PBSFEnSuyqaGMp6Y9oRn0/6a/eyv3t9q9/F5N9zGsJlzPM+LD0h/W/YGI5ZsMWdF33hDrwtF/10IGCgdwF5bi9Padt+VI6F5QqkbtbJ7/zz1VY18cM8qMRn6YLW7DKXrl8ONq3hDp+D7g6K1e4IuAYXce1NNjvAP8ZhNRg6sWw3ACdf+H6ff+QAXPv5ctzcG7AzxmcLoyN5WwccPrubgJpd8ePxIGDBPPN72OSPLD/HXBX8xK2UWAEWGojbHHThZuNSbDPUsfe91ivbu9mxzGAzgo5QpD+q5FXxvQjNYrPSb9u3HYTTibCdv4HDJrZIaoxE9JGsPUFEgNVCsJguYRR8a07wnuKd2Ew+vfhiDxYBOpcPRJDx+A2JDOGW41ANcUG3CUCUMFKNCS3loKmkjx9BvzPhu+CRHTnCoy0Bp7kEBCHFV1DSUMSd1DkvOFQ1MD9Qc4NyfzuWiXy7CaDX6HabVh3HS/93JcedfAkDJQamBYt63F5xOlHFxKKN7rk/Y352AgdIKzeXEbV3U8M2N3eHknZVZ7Cis9dt2+ZQ0ThwWR7/o7l09l+d6J0W1RsG08wYgl8N0/fugT4LEMRRow/lk9yee/U5IO0EyRnKE14NitZhZ8dkH/PH+m1jNTUQlpzLyhJMZOHkacnnvNU4A4tL1nomxocbM4vd2i1WtXA6XfONpXsbC/0N2cDH9wsQK1p043BoxaRmEx3tvIDnbxQrYWlbml2OhiOp5+f/eQNBAsdI3rV/PwVnHk3/1NUflfXKrpOG8nizzl8i8A7EJrhW8Nor39n/BotxF/JItSl/Hxo5FSJiBUiHnmunSqpyCmkYMVUL+/qAuk7UDz+Pch59AHezfz6c34s5DWf+/LBY8sYF6375EIS4F3AYRfo7Txkk8mgBVja13E08cILy4xQf2UVWYT2ODmAMbd+wEQDOs9XYdAY4+AQOlFVI//ICkl19G6ap5r3z9jS4d//P1eTz96z7OeG215PVInZrHzxzO25eNRy7vXreiocqb4DnpzExGzUnhuqtLSQnajjOqH/9c809O+eEUbE4bUxKmsPqi1dw25jbJGF4PSiPbF//Kpp++Z++q5QBs0g7xuwn0VmQyGaPmpEhey9rqozw5/W5IGA22Jlj1EqOrRMx7W1HrFTrucU+++W4iEoWke+72LZizczg0cxY5Z8/37hccTOLTT3fNh+njuBcLTosFh8GAacOGo9ICPrdSutJWdPP150utq3vx6LmpDJ+ZxLSpwntiDkvmq/1fSfadnTqb2YPFjfqaaRmMTY3g2fkjULrO/7Yvt5KbLQQV65RhfiGg3o57oVCaXU9VUQPLPt3nel5HrcxV/r/wJijbjUwm8+uiXm+RdkD2JWHAQGRyOfUVZXx09//xywtPYT50iMrXhc6MZnjAQOlJAgZKKyijotCfdCKx99wNcjm1X3+NJS+vy8b/c1/LMsvRIT3TjGzRe7tY872oCBh7Yiojjxc3UGWdeK06Is0T1gG4dOil6NV6v9hsksuDUtdopSRXWjK7pCmJFxbvP2qfo6sZMzeVk28YwZSzxSRYWeDTsE0VDCcJ8TXy1zJq3YcAZJlKqG5q29uWOHAwF/zzGQDKc7Io+cal3eC66WonT2bQpo1ox41rbYi/FYoQHarUZoJkRn+3/ZGSVSH+vpkxOuYOjWPesJ4T5KorF4Z85pgYZl40CJ1NiCYWhsb43XBnp87mzUvH8utt0zlnrEiWvXBiKv93vDfBOvuQuBZr1OH0MfsEbah0TizaX0NFgYHvntvM56tO8VY7vT0D6ooYFSOVoq8zty4ToQ7WeoTbAPL27iLrtNNxGI0oY2OJcDWvDNAzBAyUdgg7/XQ0Q8UPuGlv2+77zlBW33KZqW9r9+7CVG/h0CavwRSql8PaN6A6B4pF5US2LtyzfXjUcKYltVz+GhKkJMKV1FbpE7I4oOuPWRHkl9/Sm5Er5PQbE0NC/3DAKznuwadHT6TDQZorT2nmVzO5+Y+befCvB1td6evCI0h0TYy5tRWSbcqYGGS9OD+nJ9AMkoZc7VWtu+0Pl93F4sb//HmjePfy8QQpu/9v4HQ4Wf9jtkeczd2XhlpRBVeu84rGKWQKTkg9gUhNJEFKBUMTpQuG2FCRwyR32tGZawGoUUX0uYTP1OH+atNulWuARocrpOOwwfo3GR0zWrJvreuzt0bayDGS542u0F7cQw8G8k96mICB0gE0Q9xJel1XRVBuaFkvoyfu324pbTchtWth0YPwymhR2iiTkxUqJompiVP54tQvkLehrjtYVU+UpYq6IjGpZh5/CsujpgOQGB7c6nG9lagkHcjAWGfh66c38sVj67Ba7N4EPRfn1ns9LCsLV/Jz9s8UNbSeNOuuIjhYlIfvn92dFBrAS9Ag6Xdiqzq8nLA1WZV8ts7fE1pe30SFwYxcBkPie07dOH9PtbfFAkLFme1fwZpXAKjUiLy0yQmT+f2c33lm+jOtjjUxQ+QwRVmqUeDAIlPSoNBh9ekI3BdIG+ZvoGRv8xr1tXafxp3lexkRIxWObMuDAjBg4hTJ84Yg4bEJHuEvQBmgewkYKB3APTma93VNeMJqd1DZ0LJ0c0s9bI427tWam1BLM0Nsxn1kOURMfGDkwDZXYJamRsbu+JyLi77G3mQCuRzrmJMxK0Tpdk/3NTkc1BqlZyVbkW+gptREeW49qLUQ5L2ZXVlv4Jom6XdTaixtddxBU6ajDg6m3txIVmy4x0gJHjOm1WP+rmgGS0ti7TWHZ6Bc/O56Hlm4iw053uMtNgcvLT0AQP/YEIJ7SH8IoHB/jedxZKIrSX7lc57Xyl2qwjHBMcTr4tEopZIIvgyMC+X9U2O5sPhbAOpVYSCTUddKM8/eikwu47wHxzN0eiKzL3fNxSZvJVdNxlUw7ynxpPIAoepQzsj0tgOos7RtoEQlp3Lhv54jQikME4NG/K9MTGzrsADdQMBA6QBd7UHJayNRNKoHclCae1BCra4mWknj4IqfeT08lAX7FwCQGZbZ/HAJhsoK5A7vBFipCGdvuTfr3mTuewYKQMpQaUWNR8DNXUXgYoyhRvK8xFjS6phBWi0TzzwPgAMJUWxPFWNphg1t9Zi/K0EDBkie2yqraNy5C6elZUO/PXIqG7DZHdjsDr7ckM+XG0SS87DEnukWXVdhYvsfBWxbIryOGp2KGRcOBIvR26BTHUqlRoiRxWhjWhtKgizLK25XqRaeCIPZ1ue8KLFpeo6/ZLC3o7MPNRGzYdRF4kltAVhMPDXtKa4ZLqq96s2tJ8k6TCZsNTUkDR5KvEUsERo0ahpVCjb//AO2w/x9BegaAgZKBwgaNBiZSoWttJS9g4dQ8cqrhzXO2qwqvlif79enBuDUEQkMSdDzrzO6N2u8qqiBHT7xXJkM1PWuCXH2o5Axnc/2fu7ZnhnetoHS4LOybZRrWBE1nTVZXqE7d6fmvsaIZt1Vq93tAFTSkNUIU4PkeVsGCsAAZTBRBmHAlet1OAnon7SEOi2NqOuu8zyv/ugjcs87j7Lnnu/wGL75T6V1ZiY+/QdXf7yJ7Arv3+z0UQktHXrUKMutZ8NP2Xz7782s+sbbiff8hyeQFFUNO1wVO6GJ8FAh5VaRBxWrjW1pOD9yt4ky9gp1NOvDJ3heb017qbcTHKImPE5aHl1bagJdFARHAk6oFi04woPCAfhs72ctNhF0Op3knH8+WSeehCU3l5CaWgCqQjSsHz+MFZ99wNpvvziaHydAOwQMlA6gCNERdu45nueVb7xxWN6Ui95dx0M/7GTJHn+3/5VT0/nt9und3u/jqyc3eDQX+o2J4ZLHJnkS8ohIp85cR4NVTODnDjyXoVFtr+6NtcKDUKmK5KOUSykOTmRfqTe51Gg5OiJbR5uIeB0jXJVNIJL0Dm4qA7t0oo90OJjU6DVA21KWtdfWUnbvfUzILkbucGBTyIl8961W9/+7E3v3XURddy3gbapY89ln1P/2W4eEFJt8wou/7Sqh2mhh5YEKftohjMh/nj6U2YO7t3Ln+xc2s/GXXI+MuypIQeqQcEIXXQWvjoWf7xQ7JoleM+4meNHB7Sdv1paVUlNShEMm5/uEM6hXecORzZsJ9iViUqUN+2pdFU9EuxKpK0W4zlcP5Yl1T/glrNtra7EcysJRX0/hnXcRWVSGwu6gSa3CZBILkLyd247OhwjQIQIGSgeJvv565GHeH3zVe+936njfi2NbQa3f9qhuVq00m6yU59VLGpL1GxVNWHC90PaQySEs2dMQMEGXwD+n/LPN5Fjwdi2uVEdhk/tLhfdVDwrAjAsGcu4DXvXNPz7ei9Pm7wJ+s7Sch0NFgl1bHhRrqTBU5UBokxjn6/deoyz7UBee9bGFItI/YbLozruoXbiw3WN9f3u+RnO1UXz3cfrW8zmOFg6b9wJMGx7F9f+dyWnT98D+Xz2vO4G6pDEs2LfA03unIx6U3O1i36aIFCxyqVeu1tR3QxexaVIDpa68kd/f2UWxylVZmL0CAH2QNNm5eTWPtdDrOTbv3YvC6SSuQdruIEj792410dMEDJQOokpIYMDyP0n6738BOq2J0mj1To7Ne+4ARIV0n1s/d0clH96/mm+e2SR5Xaeohv+4qiX0SaBQebql9gvv13yYFnF7UKaOyOCeeQP9t5v7pgfFTWSCDoWrBYHd6qAxwttFldmPAqACMmqF56QtD4qtwluJEKYUf39rUyOL3n6li8/62EEZGdHi642bNrd7bHv5T+6y3O7C0iS9FmLSQsFhR5bvEvubeAPcsZN/jz+Ladkf89T6p7z7Brefg5KzTVzfjkT/njstzUF9heYeFICsLeX8sMbVmXnbF9BQQZhamk+UVy+ds60F/g0FM5XSkK3hKDeKDdA2AQOlE8iDg1HFCxewrbJzP1zfmG+FwV8DRa/pPlntnO0V2K3+SXIhO1/zPkkQYkfuZlv9w9rvqlu0bw+bf1kIwPABKVw9LcOjZummL3tQQLjgz3vQ60WpH/sQjDgPrlkCM+6BmzcCkFgm3MzFDcUYLIYWx7KVCwNFERZGxgUXeV6vyM2murjtnj5/V9zKzgDq9HRPl9mOaBSZrG0bx7Gh3etB8ZVsVyjlDByth5eGwzZXzlfGDAhP5Y8mqZGbEZZBvC6etrBZrRTs2gGAPNXblHNsajgAhqa+a6BEp3gNFJWmWcVVRDo4rPDqOEKbpMmx7+963xMiA7AUCA+KKsmbXzbwmusZfeJpnuf1FWU4HH17zurLBAyUTuIW7rFXVnZKbtvXQPH1prjpTvEkU7PuxEqVnBlnRhOe70oIm/0InPoiy/KX8cOhHwBRXtwWToeDBf+8z/NcFxGJVq1kZLJYxehcpZumPpqD4ktUUggJ/cXnyjkI5lPegpSJro39QR1KstlIZkgyFodFosDrpvTJpyh5+GEAQubMYdRZ5zLm5NM9LuV9q5d3y2fpa2jHjyf6//4P/SmnkPDE48Q/9k8AzFlZOJpa1hZyY2zmQUkKD0at8E6Bsfru9aDUVQgDJSJeyyWPTyZCUQAGH2MkeTxOp5PaploA5g+Yz8ZLNvL9Gd+jlLe9oCnevweruQldeASXn3oc0wdE89k1k4gPE0ZYQx/2ZAYFKznnvnGcc984wmKkHg/bqa+J0n9zHfGfXyjZtrxgOc9v9CZVWwpErl3Y2WeT8PTTpLz/HuFnn8XsK6/n0mdeRiaTY7fZaOjiPmwBOk7AQOkkCpeB4rRaRffZDtKbtAeammmwDJocz4hBroswepBohBcaz0e7PwJgQvwETk4/uc0xy3OzJc91YcIVPyVT5AwMTRTx4OY3ib6KPkpMjFsW5bHiCx99HLnI3ZEBl8WLmPib299kY+lGzy5Op5Oazz7zPFfGxqDSaJh95Q1Mu+gKwL/9ewCBTKkk5rZbSfrPi2gnTEAZF4ciMhLsdkyb2w7zNDbz3iVHBBPi47nUdLOKc32FMKiiU0IJjdSA0UcdV6WD0HgqGitosjehkCl4ZPIjaJSado0TgBxX9U76qLGkRev49JpJTBsQTUiQONbQ1HcNFID4fmHE9wsjJELq9arVjIHL/wdAmNXMgqISTjF6PVW/5nhze6wuD4o6JZnw+WcTMlWEiGRyOXH9+hPm8tbVlbeuZRTg6BIwUDqJPCgIeYiotGn4668Oe1FaKuubkN5yPP1o09jMgxKbrhf6AQBholKlzlzH9ortADw59UlUCv+EV19yd2yVPNeFi892/YxMrpuewf0nidyWRqu9R8TouprQaO/EeHBjmXSjSxvl9II9TAwbiNFqlKzc7M3Cg8oYbz5BQn/hqSo9dACno29pVfQEMpkM3eRJABTdfge2NiTwm1eQpURqPTfsnqDOFeLRu39LRm9OkuXiL1l4aCFbykSia4IuAVULSeetketjoPgSqhFj9HUDxU2QVvr3qyk1ioqnqXdA8gSGWayc6bOQDFWL8JDT6cSSLRZVqhRpU1A3YbEijFZXFjBQeoqAgXIYuMM8xXffQ/kLL3TomJYMlGfmj+TqqRn8eMvULj2/9mh0lTSefMMIZlw4kCGZdbDrO7ExPIXKxkrOWHgGDqeDfmH9SAxpW1HR6XRycL23i2/y0OFEJIhjwoJVPHzqUIYneRPWWgpx9TV0YdJwgNPX6HJJ4Kv3/cxTO/8E4EDNARpt4oZkyc+XHOtroESnpqNUqTGbjNSUtp5gG8BL3KOPokpMxNHQQOOOHa3u15IHpX9s95b1u3E6nRTuFV7LqCTXOZhchuuI81hoKePR1Y9y78p7AUjVp7Y0TIsYqiqpLMhDJpP79ZlxG2QN5t7j0T0SHDapEe/RJ5r7L7h2KUy4jimNTTygFYnCBouBJlsTlpwcbBUVyNRqT6+15oTHuQyUgAelxwgYKIeBItpb6lj9/gcd0kRpbqDIZJAepeUfpw9lZHJ4V59iq9itDiyNYvWUODCcETOTkL01GbLFjZSwZL7Z/42nI+/MlJntjrl/zUrKsg+iDArihrc+4YJ/Pou8WbO7IKUcd76sqQ/Hv91ExEvFokz1PmEzH3XZOLudKJkKu9PO/moRCrLktW6gKJRKYjOEGF7Jwb7T+bknUUZEeJRm20peb+5BSY7Q8q8zhjEmNZxXL+re9gIV+QbqKhpRquSkuZvhuT0o2mg2l0nDVckhyXQUd3lxfP8BBIdKS21DXSGthmPEgxIaJQ3xlByqle7Qfw4y4OLC/QS7KnRKjaUYV4sFVfC4scg1LSdHh8UJ0b7agAelxwgYKIeBIixc8tyw9I92j6lvZqBEatUoFd379TvsDjb8LASuZHIZQcFKiVsZgLBUtlVsA2BkzEhuHHlju+NuW/wLABNOP4eQiMgW95HJZOhcXUKNfbySByBpYARzrvBWR/hWZPg2EZQBw03Cxby7ajfgX6KujJFqWiQOEuMW7t3dlad8TKOIEV5N39Lt5jT3oCSGa0iJ1PLD/03l9FHd03fFbnOw6bdcT0PA9JHRqN15MO4cFF20p7zfzfDo4R1+D294Z5zfNq8H5dgwUMaemEb/8bFMPVdUGZZk1YlGnm4yZoIyGFldPglBIuxcairFuEYYKLopx7U6drgrxFNTUswXj97Dl4/eG6jo6WYCBsphYCsvlzyv/f47qr/4os18lOYelJhu1lwA2Px7HlsWiZujJkSFTC6Damlyq0OfyM6KnQA8POlhtCqt3zi+mE1GT0Knuztva2iDhFelr2uhuBk8JYGkgeEA1Ff5VJA063I8zFVdsqpoFV/v/5pGV0KxZvhw4h56EHWyVEY/ZagQeSvcu/Monfmxh291XWs0T9CO7wFhtg0/57D+f9nkbBfnKenx5ArxWILDya4Vv5H/nfU/PjjxA07PPL3dsZ1OJzv/XEzW5vUAZIxuwUBxGUP1x4gHJUir4sRrhzNqTgohkUE4bE6KD9Z6d1Brob+YlxJc/YdKq/MxrlsHgG5q6wZKmCvEU5Z9kJID+yg+sJeGNnKcAnQ9AQPlMFAlSPt12IpLKHv8CYyrVrV6THMDJbobhdnc7FnlzWlQu4wFXwPFCbxWshyD1UCwMpiBEW2XFgPk79yO0+EgIjGZsNi2ZcLdHpS+roXii9vFbPA1UEJ9vgddLMPMIvyzqmgV3y/4F/VLlwIQc/vtRF5+ud+YSYOHIpPJqS0toaow3297AH/cYbK2PChuHRSZDG6fM6Db20oAHNokTaiWiI65vJmH5A5sThthQWFk6DOYED+h3codh8POr6++wOK3XsFus9F/whTiMwf47efxoBwjBoobmUxG6lARKsvaIl1AMvRMAOIrcwFo2rQFZ2MjytjYVvNPgBbns/qq1n9fAbqegIFyGMTedy+h8+aR2CxB1p0V3hI97UExm6yY6rx5Em4NBl8DZXdMBu8eFE21RseM7lA5o3u1lj6q/Ri+24NyLGihuNFHi7h2ayEeRl/sMVAAzlrrRGl3Yp0+Ft1xU1ocM0irIy5TuKw/e/BO9v71Z9ef+DGGMtptoLTuQXGHeG49vj93zm3f+O5qbFY7xjppiX9koo+UulGc+2qjKH8dGjm0w/pIq778hH2rVyBXKJl20RWccdeDyOT+07u7isc3xFNYY2Lav5fx9oqsTn2e3sagycLjcXBTuVSld9jZkDmHFIu4RosX/whA46RhbX6/QVodmmY5PIaK8lb2DnA0CBgoh4E6OZnkV/6L/hSpNoilqHX1T38PSvf23snbXSXp5urBbaDMuJfcEx7xvPzYcY+1O6alqZED61YDMGjy9Hb3d6/eWlLS7atEJYpVeGlOPQV7qln1zUEsSp9+MSmTiHI4ULrCf2kV4v+Vs6KRKVrX3Tjhmv8jKjkVm8XMr6+9GOjP0w4eD0oHQjzaHiotLjlY56fgrPDNQzNVcUil4pUcIY54WuZptEdVYT4f3HEDG38UVXgn33wnk846r0XjBHySZH0MlMd+3ENhTSPP/Na3tXcSMsOIiNdiM9vJ2uLj6VCoYPpdnNlgBKeTcYfENfhbQjllxjI/CXxfMpqVaddXBjwo3UnAQDkCmk8ClpzcVvdt3vuiuz0oua6Yd0xqKEq1nOMvc/XcqRZJsySMptRSC8AZmWe0W1oMcGDtKqzmJiISkjyJnW0xJlUkqf118Njpb5E4IByAmhIjP76yje1/FLB/uxlih0J4GvSbCcjQmuDmn+yEu6ogF8v3tpmzFNevP5c/9yoDJooY+Yb/fXuUP0nfRumTJNva99roCvFo1d0ryOYmb480f2HUHJf+xsEl8NsDVNpMnJMkvACh6lDmpc1rd8zdK5dRUyIWRqkjRjN4attVdy2FePaW1Le2e59CJpMxYILwXuZsb2ZIRA0g2u7ggWwDsXVgUcJ3YQc54dsTOO2H06gz17U45sk338X8Bx4j3qVPZAiEeLqVgIFyhKR+/DFBg0SNvbsFfEuU10tluLszB8Vuc5C3S0yOMy4cyPUvz2ToVJcBUityHBaZS/hsj1A3jdN2rOX8ruVLABg264QOuaJPGCKqVZbvL8dmPzZEyDQhKoJ00hV50cFauGEl3LIR1DoIieM/PzYxc5e4cZaFy8ixlJBvaDu/RK5QcNx5FwNwYN0qXr70bBYHGgm2iDtJ1mk2U/LIIy0aKR4PirpnPCgFe0Tp/rxrh3HOfeOYfFY/sNvg83Nh/ZvsCVLjcF1HT097Go2y/STeep+Qw9zrbml3f3eSrMXuoMmlR1RU29jWIX2KjFHid1Cwp1pazRMSC+pQTtwvDLPc/qE0Kr1zUGtNPWVyORljxjNi9omAMAjrA2GebiNgoBwhukkTSX3vXQCsRUU4LP5tzBvMNr/S2u70oFTkG7A02dGEqIhL14vqHQCbGUyV1Mll3LP9FaqahBHTXiMygOriIor27UEmkzNsxuwOncfolAgitCrqm2zsKGp5xdIXGTxFmjRddKAWp1wJrg7FDl0i+lyvCqhCLV7fWdl+lU50ajox6aKTtN1qZeeyxZ3qAfV3QR4c7GkkWPfd91gLC/32ceeg9IQHpaHGTHWxEZkMUoZEEt8vDKVKAYUbPPscUIuw78npJzMrZVaHxjW4Qg6n3fGAR1isLXQ+xlmD2XZM5YOBEL3TR2uwWR3sXe01OsxZWRz4Rk/FdpFTUjdYquLdZG+7j5PeJQVgM5v53wtPtblvgK4jYKB0AYroaBTh4eB0YliyxO8G0tx7At3rQaksbAAgNjXUa5wAGIQAUX6QtJQ4QSe94bbE/rUrAUgbNYaQyKh29hYo5DKGJIgJIqfC2KFj+gLjT05n6rn9ufLZqShVcpoarF5FS8BYrpPsXzk2DYDcutwOjd9crjzQAr5lkt943fO4cbtXUXZTbjWXf7CBDbnCg6HrgRyU8lwRRolMCkGjcxmrJdvhQ28e2yG1eH1AhH/1TWvUV4rVvN5H7K8tFHKZJMyzr1TaT6yvezZlMhlj5grV3Q0/5VBRID5f1UcfYW/0zstytbT7db257TCXWxMFoDw3C0vTseN16s0EDJQuQCaTEX6R6JxZfPc95F99tWR7uSspNC1Ki0YlFFUTwrpPg6HKZaBEJbvKKku2w5cXw8HFAOSHRkv274gH5dBGoSMwaPK0Tp1LaqQwhvKrTdSZrMz9zwqe/nVvO0f1bjQ6FaNPSEUXHiT6GgHluQacdjsVr71O+VJhCIYmNxJ79dk0XCxuSm0l5/mSNny05Hl1UUHXnfwxRPCwYURccgkAjTu2e16/+5vtrDwgPA0KuYxRyWEtHn80cd8oY33Lipc/63089Q4OxgrDpKMGit1mo6FGGF366Nh29vbiNlCqjBaKm4V3jgUBt6HTEolJDcVssvHTK9uwWezIVNI+RtEh0pzAeks7Bkp8AjMu9c7rlfm5XXa+AVonYKB0EVFXXOG5CExr10lCPW4DJU6v4Y1LxvLKRWMI13ZfFU9VkctAcff8WPEc7P8Ffr0HgPzgUMn+7Rko+9f+RXlOFjKZnH7jJnbqXFKjvAbKZ+vzOFjewDsrWy/P7mtEp4jvuKqwgbqFC6l87TUsLm9RSGITUZYPSDHkApBbn9uhMVOGj2DknJM8z6sKAwZKawSPGglAk48HpcbovRYHxoV267XnpiJfGCgS3ZPyPeL/sVdgnf0wOU3CiOof3r9DYzZUV4LTiUKlQqvvuNGV5roG7/p6G3lVJsm2Y6GJoFwh54zbRxOkU9JoEN5MXwE/TaSFVFvnDBSACafPJ2PMeADKc46dOas3EzBQughFeDj9Vyz3PLeVevs3uEM8cXoNswfHcdrI7pHVBti5vJCSLJHvEe32oNR5b3CPRUfyhlx6cbo7frZEdXERP7/8bwDSR4/t1MQIkBYpwh15VUZJct6x0OEYvN9xZaGB2u++l2zTRFrB1kj62ncA2Fe9r9XqAV/kcgVzr7+FSWdfAAQ8KG0RPEbo8TTu3k3DihXYqquJ9/FWnjy8fe9gV7NzeaEnSd1joFhMUOPyoM1+lD3Ve7E6rIQFhXWogg68Ja/66JhWy4pb4un5IwgNUpJXZWLFAWlVyrFgoIDwakYni++6qsiItVQI5KlCbCQdV0OqVfo5O2KgAMS68sHK8wIGSncQMFC6EGVkJOqMDABKD+Zyw6ebWJddxY5CcROK7ebS4toyEysXHABEW/Jwd4O7xhpAKMd+F+pV05yeNJ13573b5phlOUKPQx2s5ZRb7un0OXlDPI1U+uihVBmPDW0U96RYWWDAtGWLZFvQM7kQmkCSzTs5TlswDYNFmgfQGlFJomFcVcBAaRV1SgraCRPAZqPghhs5OG06YzYL5d5TRsRzw8x+3Xo+VrPdcw3KZD5h1soDgBO0URAS42kOOC52HHJZx6blunJx0w2N6lj+iZvMmBDSo8VCYXtBrWTbsRDicRPlEsGrLm7wLBiT7roQdYidkGZ5gm9se4O7lt/V7pgxaeL3U5EbMFC6g4CB0sW4ZfA/+2kDi3aXceE76/hxu8gm724DZecKUcmgUMo5884xQhTKboO6IsoVCt4Pk6ok3jzmZiYnTG5zTPfqfdCUaWhCOi8V7g7xVDaYPYYbHDvibZEJOuRyGeZGOwcGnI97GtTNnIEsOBRGnIcKmKT25v0071zb6thJQjcj4EFpm8hrfHLAHA4u2fIDyYZy/nXGcIKU3VvBU13sTZY+9eZRqNwVRNnLxf8xQo/IY6DE+ffPaY3SrIMARKekdfq83HOR2SZNijU0WVvavU/iVumtKjR4BPxU826HK34C4KUaaXhrSd6Sdj2asRkuAyUvh7wd27BZj53vqzcSMFC6GGWCcCHX5/mrymZ2c+8Pt5riSTcMJybF5VquLwSnnVvjYvlvZLhn3ykJUzrUe6e6SBg97ptlZwkLVqF3aTGU+lQ3lR8jBopCJWf4LNH8ryhpJpUTLyT9u29JfNaVEKkThskr6n5MSxIJxptKN3Vo7MhE4UFpNNRjqj92yrS7mtBZs0h+601W3vsfNsYOQuWwc3bWSiJ13Z97UlUs8r+SB0eQNtxV7bb/N1j6T/E4ZjA7K3ayrlgknY+L77iBUrxf5LAkDW69n0xrxDZrlBh6jHU5Bm/OXVWhAafTiUylQhEZCQmjADihtpJHJ9wvOWZb+bY2xwyPjUelCcZus/HtU4+w6afv29w/wJERMFC6GFWCiB/Hmmokr88fm8TswR3PtD9S7HYHxjpx049Nc3lKqrPhv+Li3BPkzWofHzeed+a9g0qu8hunOe7Ve9RhGigACWHBfq9V1B8bBgrA9PMHMjJVGBD7tJPQDB2KMsKlu6AVBorWVM2p/U4FYFNZxwwUlUbj0WMIeFHaJnTWLNbIovg1Q/Q7GlWTg0LevphgV+OXoA6QvcL7ePTFPLHuCSwOCzOSZzA0sn1jw+l0svmXhVTkCWHIxEGHYaA08+YOiBPnd6x0OQbxnSuUckwNdhp0SSjj40WuTpAeVMK7ordL9am2lG9paSgPMrmcmNR0z/PVX33a5ecdwEvAQOli3CGemMZayevzhsYh78YJ0lRnASfIFTKCQ1yGx9bPAWiudJAS2jFjo9FQT2WBSOyLdOVDHA5xLZRYVzQcOwYKQKYyC5wOrKjZv74UY63r8+lc+QLGSsbHiYqAvdV7ya/vWNdib5jHX4gsgJS0KC27o0ROWFJdGbaamnaO6HqqikSIR9IU0N3/6rSXsSSM5ECNyFF5dPKjHVJkPrRxLcs/eQ8QHXdDIiI7fV5xPh4UlUJGepQ4v2Opy7EqSEFKplgMlcWNJ3jECLFBJgO9WEjqG6SaQu15UACJlpQuPKKNPQMcKZ0yUJ555hkmTJhAaGgosbGxnHXWWezfv1+yT1ZWFmeffTYxMTHo9XrOP/98ysqkLcbT09ORyWSSf88++yzHAqpEYaCkGMqQOb2mQEhQ+96JrqBofw3fPbeZ/N2iakAbpvZeUIUbAShr1qSuI54Th8POV489AECwPqxTugvNidf75+K0JGbXl3GWlaJ2VQb88dFevn/BlWeic7n5TVXE6+KZnjQdh9PBOzve6dC4nkTZwo4ZNH9nFHIZBrWOvFChMNu4uWO5Pl2F0+GkslAkQEs8KNWursGR/cipy8HutBOqCu1Qiwmn08m677/yPJ952TWHdW6+HpShCXr0wWIOOJZyUACiD/wBQEXSFOL+8ah3Q/pUAMLWvCbZP7c+l1+yf6GmqXVjdsIZ53oeG+tqsVqOrcVVb6JTBsqKFSu4+eabWbduHUuWLMFqtTJv3jyMRrFKMBqNzJs3D5lMxrJly1i9ejUWi4XTTz8dh0O6bn/88ccpKSnx/Lv11lu77lP1IMEjR+LQ6ohrrOXKPb/x5h/PM7LikKcHxtFm119FlGbXseY7UW0TEh4ETif89SLkCNdy3vH3SY4ZEtV+o7/K/DzPTfHMux/uVFljc+L1/h6UPcdIwzI3trIyNE3Vnuf1lS4DzBXiwSg0LK4feT0Ai/MW43C2r+IZ10+IeO1bszKgZtkOJlfvHbcXxbR1a7e+f2VhA2ajDVWQwqOPg93mKS/eLbNx1e9XAZAZntkh74mhsoLynCzkCiU3vfu5p5lkZ/H1oEwbEN1il+O+jjknB92KBShsTTQqQqms9vl+T3wGEkYR2iidd6qbqnngrwe44887Wh03c9xErnzxTVSaYHA62bHkd1Z/9Sl227Hz3fUWOnWX+f3337nyyisZNmwYo0aN4qOPPiI/P5/NrpXJ6tWryc3N5aOPPmLEiBGMGDGCjz/+mE2bNrFs2TLJWKGhocTHx3v+6XS6lt6yzyHX6aiYdQoA5x/8k3RDGbdu+9YzARxt6ivETcvSJCZnXXgQlO6APx4XO6hDyItKByApJIkHJj7A/AHz2x23aN9uANJGjjmspDxffEM80weIG/bG3Boe/H4HFlvfltp2Y21moIBY/bqTZLGbwWxgWPQwlHIljbZGSo2lLYwkZeDkqYTFxWOqq2XNN18cjVM/ZjC6+swcCBdhsabde7r1/Qv3i1V44oBwUUEHIkndYQVFEHdu/jcGq/CwZIZndmhMQ7XwjIZGRXVag8iXWB8v5tTMaI+67B97yz09i/o6xpUrUTisxMtEFeXm3/P4/Z2dQjRPrYW5TxDmaPmztpeLEpWcQnSqqJ5a/sm7rPv+K3Ys/a1rP0CAI8tBqasTiYCRkSIGajabkclkBAV5f/wajQa5XM6qVaskxz777LNERUUxZswYnn/+eWzHkPV5aPqpkudBDqsnS/5oU18lDZXowoOgfB8AFuDD4Sfwwe4PAZibNpdLhlzSId2Fwn1ick8ePOyIz9HXg3LBhBRunJmJXAZfbijgk7W5Rzx+T2NvMAoPillqoJhNNtHdWOXSozFVopKrSNenA5Bd1762gkKp8rj1N//8A+u+WxBoHtgKJteNtv/0CQA07d7drd+VO8yaPDgCzAb47Fz45kqq5XLuTEykxFji2TcpJKlDYxprxJi6iI71v2qN6JAgBsaF0D82hHHpEUzJFOMV1Tby7l/HhsZHwwrRLyxziPBe5e6oJGtLBb++6VIZzphBWL85vFxWwVul5eiaefntrRgvbmJS0iXPc7e3bdQE6DyHbaA4HA7uuOMOpk6dyvDhwwGYPHkyOp2O+++/H5PJhNFo5J577sFut1NS4r0Yb7vtNhYsWMCff/7JDTfcwNNPP819993X2lthNpupr6+X/OvNlAfp+TFjque5ym7rlhCPpclGU4M0hqwLD4JKkSf0y/CT+E/NFoqNxUQERXDuwHNbGkZCwZ6dLH7nVfJcF1/SkCM3UHzdy0nhwTxw8mD+b5aQ995b0jHRst5MxX9exGmxoAuW3gzdVVXeMI+42WSEiRBEVm1Wh8YfMGEKk84+H4DVX38WmBhbwd2pd8iUUcjUahwGA9b87sndKTlUS+G+GmQySB8ZDategkNLoHgr/wvVsVTpvfkFK4OZmza3Q+O6e+8cTmKsLwq5jN9un8Evt00jSKlgZHK4R8TOV5+or2I+dAjjRpFzl3naeJRq762uocaMzWoXybKn/5c5FidTG5uIalbRU2Bou1JuxJwTpfvv3omthW72AQ6fwzZQbr75Znbt2sWCBQs8r8XExPDNN9/w008/ERISQlhYGLW1tYwdOxa5T87CXXfdxaxZsxg5ciQ33ngjL774Iq+++ipmc8vJRs888wxhYWGefykph1/i2h3UGC28N/x03ht2GgDhFiPqJlM7Rx057jwHZZDCkxgbsulZkX8CbFV4Vwifn/I5afr2BZ6+/teD7PxjEWaTyDOKSk494vP0lR53lxynRIr/q/u4oqzDaKT2m28BCD/jNMk2U51r8gp1ya3nLAe87v3P937O2uK1WOztT3JTL7iMtJFC1r0s+1AXnPmxh9uDotNqCBosBNGa9nRPmGf7MnFzG3JcAuHhwLq3PNsqfJLUPz/lc9ZetJb0sPQOjWt0GSi6iCOvHlHIZRLhuin9hBclv7rvdxovfexfYLUSMnMm2oH9iUuXilKWHHQZYWHJcK+4fiKbdXI+WHuwzfeIzxxA/wlTPM+t5iYKdu9o44gAneWwDJRbbrmFn3/+mT///JPkZGm56bx588jKyqK8vJzKyko+/fRTioqK6NevdYnpSZMmYbPZyM3NbXH7gw8+SF1dnedfQUHv1oCoMVmwKpR8N2AW1UFCIM285+h17HW7resrRf5JZJyGoeOCUcsbSWhc5Nlvp01clP89/r+k6Dtv5CmUSoJD9e3v2A5ROjXzxyZx9pgk4lyx8Eid+L/a1LerCIzr1+O0WlElJzPozAmSldtfXx8U5cbjXUqnK18EQymZenFtlBhLuH7J9by27bWWhpYgk8lIculfuCXPA0gxuhI+g9UK1GnCGLcWF3fLe7vLi/uPj4OaHLB6b/q1rkquu8bdxciYkSjkHVe39XpQjizE0xJprlLj/GpTnw4bOsxmT5uJuEceBmD6hQMJi/HqL7l7IwEQFAq6WCKaeVD2Ve9r971Ove1eLvv3K4yaKzqUZ21ef6SnH8CHThkoTqeTW265hR9++IFly5aR4eo70xLR0dGEh4ezbNkyysvLOeOMM1rdd9u2bcjlcmJjWy5dDQoKQq/XS/71Zmp8brKlOuGKzb/ySkxbur6KoMlo5dOH1/LnZ/swuPJPQq0HmZl/EtfGXEKoQlyIRpmMLJNIwhwZM7JDYzd3V4ZERnWo0qA9ZDIZ/zl/NC9dMNozXqROlDn2dQ9Kw0oR9w6ZMQNduIYrn53KgAmifLSmxMjKrw7AqAshcQzYGmHDuxz3032MlGk9Y2wv396h93KLttVXtJ9c+3fE40FRK1HFie/KWnb0jLmmBitOhxO73eFJVo+I13qbAiaMhqt+oyZpNADhQeGdGn/p+2+yZ6UoNjjSEE9LJIUHI5dBk9XRp5WdLdnZ4HCgCAtD5VpARyWGcOkTUzjpepGOkLe7SnqQ1v/7XFW0yu+15ijVamLT+5E5XrQIydq0Hqfj2Ej07w10ykC5+eab+eyzz/jiiy8IDQ2ltLSU0tJSGhu95Y4ffvgh69atIysri88++4zzzjuPO++8k0GDBgGwdu1aXn75ZbZv3052djaff/45d955J5deeikRXeC27A3UmLw39hx9guexYenSLn+v/D1VGKqb2LOq2NO1OKJ+FTKZE5nMKWSdlcHsikzBiZMEXQLRwdHtjCqoq5BO5iGRHTvucPB4UBr6bgzXYbFgWCL+xiEzZwAQpFWhCfHqzGRvqxCx7xHniRf+egF9TT6fZ+/jmxNEo8ZDtYc6tIINixWGT11FeVd+jGMGtwdFG6RA6fqubGXl1P++yK/T9JFSVdTAB/etYunHe6ivaMThcKIMUogcsFpX3kt4KqQdR51dLCQ6Y6CUZh1k++JfPM91R8FAUSvlJIYLL0Ne1dEPSR8tzIdcDU379/dbUCUPiUQul1FbZqKuwqdMXxuF3WdfGTL2VO3pUGUdQMqwkag0wTTUVFOW07FcsgDt0ykD5c0336Suro5Zs2aRkJDg+ffVV17hoP3793PWWWcxZMgQHn/8cR5++GFeeOEFz/agoCAWLFjAzJkzGTZsGE899RR33nkn77zTMaGq3syh8gYOlTdQ6+NB+XzwPPZGCPeyaVPHJM07g690RtYWcaNKVPvE2YedDbduZvOkywEYEzumw2PXlUsvztCoo2igaEWfFKPFTpO1b5Y5Gn77DXtVFcr4eHTHefUp5ArvxKePcuXfDPH3KKbXFCKXyam31FPVVOW3vTlhsSKXxVBZgaOdioO/G06nU+JBUcYJA8VaUEDRHXdQ8vDDWEu7zvO0+69inA4nB9aXUVMqbu4RcVpxg6x1eVBc84BbBCxC0/EF2aaff5A8PxoeFBDquwB5VX0zD8XpdGI+4Org3r+/3/agYCXxmaI8u3CfT5WdNhK5z6JgVIxoCbK6aHWH3lepUpExaiwAWZvWHda5B/Cn0yGelv5deeWVnn2effZZSktLsVgsHDhwgLvuuktixY4dO5Z169ZRW1tLY2Mje/bs4cEHH5SUJvdFTBYbJ/xnBSf8ZwXVRq8XoEaj59kJlwCizNFh7NoLv3nVjlwuI17lip2mTIZxV0JYEhuqhY7JhPgJHR67rkw6gR+NVZsbfbDS0yvF1wPVl6j73/8AiLjwQmQqr9dkzNxU9K74d31lE7+9vZNGRRzMvB+ivJOoJm8dySHCJd2Rih5dRARyhRKH3U5DVfsGzd8Ji92BzSFuONoghSfE45skay3yb+h5uKiDvXkkRQdcBki8Fg4uhXVviA3hwkCpNdeKpx30oDjsdnK2bpS8Fhodc2Qn3Aqpkd48lL6Gcd06sk6YS9W7og1ASwYKQHw/YaAc2FDmDfVoo7i1pg6tTMn/jfo/Txi8I6X/bjLHTwJEmCdA1xDoxdNFbC9ovTSvXBuJMjEB7HYat3csv6CjmAzSm3lMohKV3AyacLhmEQRHcKjmkKede0cNlILdO1j24duS1xTKo1cqLZPJiHB5UXwNvL6C0+GgcbvI4A85fpZkmy4siEv+NdnjScneWsGa7w/B8Q/BrZvhvI/FjgXr6BcuEmafXPckDZaGNt9TLlegjxE3qp//++9A63cffMXGtCqFx4Pii7Ww6/oZWRq977djmavjd4IOPj8HJ2ADCE/DarfSYBV/1456UMpzs7E0NhKk03H5869x2b9fQa3xb7jZFXg9KH3PQKn+9DOJ0Rk8pmVvsVvVt/hgLT+/ul20I9BGMdBqZXX0Cdw0+iZPf7JFuYv44eAPLY7TnIwx45HJ5VTk5/p5nwMcHgEDpQu4++vtXPSu1K2nU0sz87XjRWO4rg7zNPkYKPpoDWPHuuKqLvXMRlsjl/12GQBp+jRSQ9svE87dsZVNvyz0e12uOLpaLlE6YaD8uK24z1URWHJycBiNyIKDCcr0VwWVy2UoVd7LzV3lAUCMKIGlJs/jWs6tz+W7g9+1+76j550GMhklB/ez9fefjuxDHEMYXQaKWilHqZCjjI6GZu0ZLF1ooJjqpEmlCqWcQSPEHHBZQhxnJidQrgnhgb9EPyu5TE6oOrRDYxfs2QlA0uBhxKSmE5veekXkkZIW6TJQ+qAHxXxQlAXH3H0XaV98QfDwljWbYlKl33tFvgGChXdY2Si8X+55ssxUxj/W/IO1xWvbff/gUL1HZTtr84bD+xABJAQMlC7guy3+E124Vs2/zxHdM/9x2lC041wGysauNVBMBrFqnnXJIC7710T61btW4y53cn59vmfF9trs19qtwjm4YQ3fPfUo2a4LbOalVzP25DPQhoUzet4pXXruzdEHCwPo7ZXZ/Lm/byV+Nm4TnjHNsKHIWvE0udsPgCgJd7pCEG5jEnM9V/U7m5nJM4GOdVYdd+qZzL3uZgDWf/8V1qZjq+ni4WJyJci6FwoylQpllLQ011rYdSEeU73U6zd8VhIh5oMYZTK2a4LIV6mY8+cNLM5bDECoOrRNBWen00nR/r2UHjrAZtdiIWXI8C4739ZIdXlQ8vtYDorDZMLqkp8Inz8f7djWc+3CoqXep/rKJtB6m3iSvZyU726Q7FPU0LHfSua4QJinKwkYKEeJ4zKjuGBCKlsfncvV0zLQThAGSuOOHTTu2IE5O6dL3qfR5UEJDlXDxndh389iQ5i46RUahPE0Mnpkh8SgDqyTJoWljhjN8Vdez41vfXLUW4s3mL038LZCZr2Npj17KPv3vwEIHjmq1f36jfbmDZhNNqpLXTcBtc6jLquoL+LKYVcCsKOyY6JPI46fhz4mFrPJSH5AKArwelC0aq+xqE5Pl+zTlSEet0pwkFbJcfP7M+XsTCjbQ7myZY2TOnPbv+/dy5ey4B/38vnDd2GsqSYyMZlhs07osvNtDbcWSo3JSn0f6mxszsoGpxNFZKSfIdocmVxGvzHea7Gm1Og1UIwV8MmZJFRLFYcNlo4pXPd3lRsX7t1Fk7HtEG2A9gkYKEeI3dFyKOLKqekARLjCFuqMDBSRkTjNZnLPv4DsU07BaT+yyoumBivVxeImFxyqhiofRdH+YjIrbBCTcFJox3p9yBXSCTUiURx3JN2LO8q107y6OnWNfWNybFixgryrrsZRX48iOpqIC85vdd9Zlw5i5kUDiU0TLubKAp8JLNwVeju4mKF/CuXfclM5s7+eTVVj2wmwMrmcjNHCAM7Z2vWVYn2R/20TK15dkPf3HHnF5ZJ9LEVdY6A4nU6PSvB5D05gzLxU0RywfC+Vio6LsPmy+qtPJc9PuO7mLhFJbI+QIKUn1Jrfh/JQ3OGdoIEDO7T/nMuHMPVckURbW2aCKFdYtlwIajb3gZabOubRDY9PICo5VSQ2b9vcoWMCtE7AQDlCfNuTr3lgNqeOTOC66RkMS5R2GpXJZGjHjZO8ZjmCviB2u4OvntqA1eV1CA5VgbFSbDzhMRggDBR3Pwl3dUh7NE/uUqm7r7rqnHHJPHa6iOGW1vX+UIVx7VoKbrgRR10dwaNHk/nrLx7F0pYIDlEzfGayJwZeU+LjRncbKMueQLv/VwbbxaVZ0VjB9wfb1+zIGCMMlJ3LFlOa1bZE97HOsn1lfLg6FwCVwjvFhcyZg27mDGSuikFbSSnW8sMLJWZvq2DpR3v45fXtfPfcZmxWUe+vDVN7d6rYS3kzA+WpaU+hkCm4avhVbY4va6YuG9ev5YqUo4E7zLO/tO/0xWraJwyLoAEDOrS/OlhJxijhtawtb8QZlg7qUHB45/NzbN5KvI4aKOBTzbMxUG58pAQMlCPE4HKDukWOXr94LA+fOrTFfd1hHjduq/9wqC010VDjTczThqq9BkqYV8be7UFJDu2YgVJT0j1S4K0R7+rNU1rf+w2U6k/EKjdk5kxSP3gfRQcVjiPiXW70Up8Varg0efnO8lIUMnGTWnhoYbtJw6nDR6KPicVht/HTS8/2uSTjruTdld7w6bT+Xu0emUxGyptvMmjbVoJHjQKnE8Pvi1oaol3W/5jN/nWl5O6soizH27xU5ZscX5Xl6bujlCt5bfZrnJF5BsvPX87tY25vdWxrUxMN1VKv2dGq2mmJqZniO7v7m+08/evePvFbcueABY/smEo2QGhUMAqlHLvVQW1lEyRIj32gqo57xt8DiIVCR0kdJsK85XldE8b/OxMwUI6Q+kZhces70K3YXcnjxnzg8A2UqiJpfFOlUYDJZaDovJPywWrxHh3xoFgaTZjqagFIHz2Oi554/rDP73BxNxIs6+UGirWsjIYVKwCIvf9+5FptO0d4iUhwJSLurvKE6JobKMc1NbHmjP+hUWjIN+STW5/b5piqIA0XPv4cAPUVZdT/TdVlS+uaWJtdhVwGf913PA+cPFiyXSaXI5PJ0J96KgD1v/zS0jDt4k6KjU0LZei0RJBB4oBwnx2qoamWClcOyiWDL2Fmikh+DteEt9l/pyznEE4fBcauaNDZGa6b3o9Q13z2zspsdhX17u7xjsZGj75Na6XFLSGXy4jLEIuKogO1ftegxlTJqAjx++mMB8WtUVNTXMj6H76mvvLveS12BQED5Qhxe1BCNap29oSgQYNQ+zRNrHzttcPuz+NroJx84whRnWN0Wfk6cYE8t/E5yhvFxeGu628Ld2ggWB/GOQ/+i8SBQw7r3I6EeL0wUMoN5lbze3oDpnXrwOFAM2IEQf1a70nVEm4Pis0qwnRNDVYYeKLfftqXR5LsaktQYixpd9zQyGji+4sYfPGBo9ecsjdTXCfK7BPDg0mJ1LZatRZ60okgl9O4ffthlRu7Q6snXj+c4y8dzGVPTOHUm31W4DVi9VwRJP7WMdqOC6ttWySMpsRBQxl+/FzOvv8fnT6/IyFMq+L1i8d6nhfVNraxd89ir6/n0KzjwWZDGRuLKimxU8cnDRKJ/0UHamCwMFoJSwWl8FjFuuagooaiDjUPBAiN9CbprlrwCf97/qlOnVMALwED5QgxNHXcgyJTKMj49huSXn7Z81rhzTdjN3Q+1ltZKFbeMy8eJKpDHHaxagMMKg2Lcxfz2Z7PALh0yKUkhCS0OhaA1WJm8duvANBvzPg29z2aRIeokctE8nFVQ+9sWFb9yacU3y/0LLRjx7aztz8hEd68HofdSUWBQazerlkC6dNB522aGYcwfMuMHWty5zYq/64GSoWryV10SNu5U6rYWLQTJwJQ/+tvnXoPu9WB3ZVzEuQqjddHB6N2zwGmalghvFkVQa4bnbblRqjNqS4uYv/avwA44ZqbOPHG2z0tDbqTGQNjOGmYeN/e7M00LF6MvU5URGknTOh0M9PkQeEAFO2vwTnoVLjgc7j+T9ALQyfG4v3s5/10HiZr+4nDKo2GIK3O87w8N9Cb53AJGChHiMHccQ8KgFyrJeT4WehczeTsNTVUf/hRp97T6XRSVSiMmqgkoYoojBNh7T+z613uXnE3TpyMiB7B/RPvb3fMnK2bqCsvQxcRyawrruvU+XQlSoWcmFBxc+mNeSi2qirKnn7a8zx4VMdj3m5kMhkTTvN6XTzesJSJcOXPcONfnm3xctd30cGmZYkDhUu6eH/HVnvHGm4Dxf0bagv9KScDUP975wwUsyusiwxhlDidsO5NyBYhP5Y/Cwd+F+fjykHpaIPOQxuFIFj6qLHEpHXOM9fVuMOtvfE6dGPO8eZ5xN53X6ePj0sPQxmkoNFgpaKgAYacJkLkLgNF1VBOf7k3fPvylpfZVbmr3XFDItsudQ7QMQIGyhHi9qCEdsCD4kYeFETq228T/8TjAJi2bOnce1Y3YayzIJfLiE52Gyiu/JPgCH7K8cbVT0o/qUNj7l8jbopDps1Cowvp1Pl0NbGhrjBPfe/zoFhycyXPNW3onrTFxNMyPEZK83wiQuNh/DUAxLkKHt/Y/gZ3Lb+r3XHdHpTy3Cw+ufcWCv5muiidMVBC58wBmQzznr1Uvfce9traDr2HxWWgqDVKZHIZlGyH3x+AT86Aos2wUfSCMchk5DtEeCRdn96hsbO3iJ47/cZN7ND+RxOPgdKLK+osuaIRY9yjj3j6LXUGhUpO6hChIpu7o9K7wZ2Psud/fJRzgGRXG4kv933JRb9c1O64R7Nv2d+JgIFyhByOgeJGnSwSV22VHc8QByg5JFyaMWmhqNw6D678k9IQ70ptcsJkzh5wdrvj2axWz8Q4+LgZnTqXo0GkS4ehuhc2DXRPiADqfv06HfP2Jdrl/ZLI3rsJDgcg3icNZ0neEkoa2s5FCY2KJjRK5DtU5Ofy+5v/Pezz64tUuMKCMe2EeACUUVFohgt11vIXXqTilVc69B5mk8tAcTcIrPdRGV38D1CKG/tWTRBOhGx6R3JQmowNntBcvzEdb+p5tHDng/VWA8XeYMS8T3gKm4vwdYb0kcLbkbvTp3IqzqXau+9nwhwOZpik34HZ3vbiSamSetSdDkcrewZoi4CBcoTUuwTF9B0M8fiidDV6sxzKouq997DV1HTouJJDtQAkuNqGU7ARSoXbcVewuOkNjhzMu/Pe7VC/j8q8HGwWM5pQPbEZ/n1kuhu3UFRvbBpoyRMGim7GdNI+/aTTMW9fopJFnLq62EjuzkoM1T6ToCYcgHirVMxvXUn72goRCd58I4etbwjeHSll9U1syq2mshMeFHB5UVzU/fJrh45xe1CCgl3XvNFn5Z23CqxGUKjZPFOUEo+LG9d8iBapzMvF6XCgj4klLNa/uWF3E6fvvSEea0kJh44/3tMcMCjj8MNh7kTZqqIGHHaXIRE/QrJPZrNGnG6F7tawWaQGTGND39GU6U0EDJQjpN7jQTkMAyXa6+0of+FFyp54ss39s7aU8+mja9n9l9AqSegfDhUH4P25sOhBAHa4zmN4dMf7dpTliCSuuIzMI7rhdhWRPgaKxebAZu89qw+PgXLcce1KareHPjoYXXgQdpuDX17fweL3fGLbbg+KVXpz6IiBkjLUmxfTHeqjvYHZLyzn3LfWsvKg8CR21ECJuPgiQk8SYVBHXV2HFgnuHJQgrTspttJvH2fMQP4qF6q+Y+M6lkhdVSREFaOS2q+46w4SfEI8vU0LpeK113D4FBco4w8/kTg0QoNCKcdhd3q1peKl82dGMwMlrz6PtgiPl3pWjbUdW3wGkBIwUI4Qb5lx50M88rAwZD6uwPrFi9vcf/PvedRXiJi2NkxN6tBIKN6COzkWYFOwqBoYHTO6Q+eQvWUjS997Hehetcq2iAwRBkpxbSPHv7Cc+W+u6TUTpNtAaUsxtqPIZDL6jfIaqaXZ9Z7qELcHJcEsLfFcV7IOu6PtFgnjT59PpqsniKm+7/Q0OlwqG8ye3jtNru+vvSoeNwq9nuSXX0LdX3gOG7e2X/ZvNrnEGV0VPBilomq5SiVn6awcrDmIVqllVvKsDp1LdbFYlUcmdUxU8WjjzkFptNo9ek+9AXtDA3UL/+d5rp08+YhaccjkMvTR4rPWlbuut2Bp37ERZguDlV518PYMlKkXXMYgn3B5wEA5PAIGyhFyJDkoMpkMRYz3BiUPblst0m7zehKmntMf5con4Qdv1836mfez2yAunEkJkzp0Dove8uYo9BoDRSsMlOX7KyiqbWRHYV2v6M1jyc3FnCW8TUfiUvYlY7Q0N6Gq2JUw6/KgaBrr+OTkT3h/3vuEqkKpbqpmZ+XONsdUqtWccM1NgJgYv3/mnzTUVHfJ+fZG1mX79yqK7aAHxY12jPBymDa33z/F0iiMIXeJMSbp+78THka2Kzn24iEXE+4yNtuj2uVBiewlHhSNSuGRT6ho6D1hHvPBg2C3o4yNpd+vv5L835ePeMywWFGp8+Mr2ziw0VUxN+UWkU80bD4ap5Nvgodxw0gx37ZnoGj1YZx2+32kjhgNgPEYvv6OJgED5QjJrxZ18bGueG1nUei89fJyTdtjNBnFTXrWJYMYOFQOq/7j3XjSv9mYOQmH00G6Pp14XfsuT1N9nUc5FiCh/6DOnfxRwh3i8e1zlNcLGpeVPvMMWK3ojjsOVRd4UACSB0eIzrcuPA0E3Te1plrGxI5hYsJEpiZNBWBF4Yp2xw3We1d7Ods2s+Td17rkfHsjLRkoHQ3xuAkeJwyUxs1bcDocOEyt/97Mjc08KO4Qz4jzANgXJqpJRkSP4PqR13fo/Qt27yB3u6jm6y0GCni/x3JD76mocytwBw0YQFC/DBRhYe0c0T5hMd7F4ZL394i5dt6TcH+ep/EqxgpPR/h1Jes6pIkS4uoAX1deSnVxUTt7B2hOwEA5TIprG3nw+x3kVIoKjFHJh3eROIzeH7mjqfVVisPuoNElr50+MtrTddNDzEC2V4h+FBPiO1YBUJHr1RC44J/PEhrVMa2Go01UiNrvNbch2FNYCgowrlgJMhnx/3i0y3J1ZDIZY09MY8xcUdZYnu+Kq2tcv6fGWijeCsVbPVLpywuWtzuuQqlE45N/Up59qI29+zY7C6VhrOiQIDSqznURdjfybNy9m4Lrrufg9BnYKqW5JZZGG/vWlWB05Sl4clDcSbLDz8V6xw5ynGL7izNfJFjZfg8dh93Owue9+We9JQcFvAZKRW8yUDrZubgj+IonAmz/owBkMlBpIMRVvmwsZ0byDGK1sRQ1FPHWjrfaHTfapWWz9tsv+fDOGyja//cUUDxcAgbKYfLC4v18uUG4ZPvF6AjX+t9UO4Ld6C0xdRgMra7cTPX/z95Zh7lVpn34jieTmYy7dDp1d6FGW6BQ3N128cVlcZaFxXZhWVx3PyjaYkUKlJYW6k5dpp1px10ykpl4vj9OdJLxjJ/7uno15+TkzZtJzjnP+8jvMeNwCP0jQsKUUN5EiCtmBMf1xwEYHtm2E7c8TzBQhk2fRcrotifVdjWRAf6WPW2g1Cz/FgDtSTM7VdLYHAkZgkGSua1EaP/uDPFgM8F78+HDs5kbOwWZREaWPovC+tZXYw6vXBWzsfclOgaLnCbetZTI9jfWU6SkCOFWiwXDpk3YDQYMmzf7HPPHL7ms+fAwR7YKIQBl0xCPNobjdiNWh5UwRVibvJgghHbMjcJnmH/tjb0qsTnWqUnUGwwUa3U1DTt2eAyUNnYubgtRSVqf7SNbinG4Wm24epvVl6NT6nhwmiAItyZ3TavjjluwyHfcTa17P0U8iAZKO7Da7Lz0Syabsyo46NVAKz6sY+EdAO10X0EmS6mvpHltZSOfP72Nbd8JxkdIuBKJBEEcyoVcDbokjtcIx2SEZ9AWyp3dNntasbIp0Vp/93xeD4Z4HGYz+q++AiD8wou65D0GT4gheUQkVpONnT/lCK3fvTHXE26sZVKc0Aztk0OftGpwmLyMX3NjA3WV7dPb6QtUG8x++UkdMVAkEolfM0+HxTcxNOsP36Zv7hwUlwclJJpjeuHmOSxyWJu9bK4quuSRY5hy1vntnHnX4tKT2VtQQ01Dz+aBFd5zL7nXXEvDtm1AcA2U1FFRzL9qBBc9OAWlWkZ9tYnibD3Zf5SxbpUDm8PZjNVuZ3bSbGQSGXl1ea0uFNShocy98nr3du6+9olyDnREA6UdfLeniDd+y+LK/27zSYq9fHrHXbIJf3uCqD//GZyS2NZS34vgrp9zqSoyuFdt2ggVfHsb7PlUOGDWXfCXLZjsZvfJkhHRtw0UncY/4TirvD7AkV2L6cQJcq66muK/P4W1rAx5bCy6Rad1yXtJpBKmnpkOQMGRKhyBbm5Fuzk1RQjzfHL4E748+mW73uPE7tYTQPsaOZX+IncpkW3vLO2NbpHvatfq1RHabndgqPHS5ZFAXLoOzAawOis/tDEcrT4KCAZKa5SeyGbtB++SvVO44faWJHVvXCGeH/YWcd0H23tsHqbjJ9yGCYAsJgb1iOCFeCQSCWPmJpOQEU7GZCGkk727nJXvHeDAVj3HjCeD3Qr1JYQqQxkfK5Tyr8tv3SMy/byLueODL5DKZFQXF1GRlxO0efd3RAOlHRRUe0o+S+uEfJFHFo/k3AkdVxOVx8YS/+BfCZku5I1YS317rri6proIjVDBvmXubdu4i3ktZwXX/XwddoedMGUY0erW9TlsViuVBUKIKnZQeofn3xVIJBIyYgWX6yVThJLLXbnVfLwlp1vnUfbiSzTu2kXNN98AEHnVVUiUHQvltYWEDB0yuRRDjdlT7ujN8lu4bO/PnDZIMJI+P/J5i+NNO1fw9rgal+1e+UO/C/O4kqeTIzxek454UABC58/32baWCQaKudHKt//+A6vJhlwl4+bXTubGl+cJbSbynTdNhRaUoW4DpS1h1m3Ll7F75Q8c2y6EknqzgQKwJ1/fY40Da5Yv99kOP+ecLjsX00YLMvVFx/TufQ1q53dTegiAeSlCCfFLO19ic6FvKDAQqpAQMiYL3vKNyz4J4mz7N6KB0g7UCs+fK79KuIGcMTYhKAmTLl0NY+ZRn/1Ws6+Boo1UgdSpnTLxKjZaq3l///scrDwIQEpoSovzcTgcVBUVUFmQh91mRakJQRfb86qVTXnvmql8euMM/nXxeKYMEjLhl+7I795JNPk7hp97Tpe+nVwhIyFDyD84sa8CLv9MKHWccr3nmGMr+fvMv6GQKsjSZ3Gs+liz482+7BqufObf3PD6f1GoNVQW5FGSfbTZ4/siriT1qeke3YpAOUxtQarREHufp9+RpawMh8PB0R2lFGcLibgxyaEolDIhvGO3w+q/CQdPugokEo5VCd9HWwyU4izPd6HUaEgdPa6Fo3uGptVQ2090f7msw2ql5ttvAZBFRaEYlEbUn67vsvdLGhYBeFXUAVKdMw+lTLjOXjv6Wk5JOwWL3cL96+6nqL6o1XHnXH4tEqmU7J1b2fzlZ+4FokjziAZKO3BpnngT14n8E280zqZzVf/3fxTcfQ8Os+BOrq3wXbGkDQ8VEicBFv+TdQXr3c/JJDJOHXRqi+9zaP1aPrj3Vr554e+A4D3pDeqxTRkaF8rsoTFIJBIeOkPo0NtoblmgLNjIQn0T5xRJHfeUtZXBEwRdlK3fZVMRejKc/ixE+4YLdKZ6d8nxr3m/NjuWTC4ncdgINKFhpDqToEuy+peB4kqeHpHgydlxed86QszNN5HyxuuAUC2Sveh0cj7/xf386DmeNgLsWwYl+0GlwzL3AV7Y/gJljYLXpS0hHpz9WWZccCk3vvF/vaaKzpuYJhV1PWGgGDZtwlpejiwykmG//8bQX35BEdf+xoBtRRuuIiLeN0xo1TjPfacHRSlT8uK8FxkVNYp6Sz2/5f/W6rjRKamMWyiEEbd89RlfP/+34E68HyIaKO2gafO6MJUcjbJ95YzNoZno6Ypb98svGLZtw+FwUFPh6+pPS3MaSTIlDoWW9U4D5a1T3mLbVdta1V34fcn7gEc4KCatd+WfBELjLBlt6GYDxab3lK8mPvOPbnnPcQtSSBkZid3q4MReZ1Krq7Oqi8os5ibPBWBb8Tbagit8sOvHb/tVqWORXjg/kiM0fHbjDF6+dAKjEjtXBSN33vwsuXlY8vOprBUuk2fcMpZRs5w3KksjrHX+Jubez2+Ve/n0sJAXJpVI0SpaNpLsdhsGZ/fkiYvOQhPaes+snsA7dAawr7D7lYnrN2wEQLf4jC4NsXqTMMRXNsIoc3qZC3fC+heh8A8UMoVbELO13jwuZl1yFXKl4JWqqygfEErPnUE0UNpBdZPmdbG69olBtUTT0lVLUTGNdRaszhyU1FGRXHD/JCRG5womJJoCQyGlDaUopUqmJUxDJWt9PsoQ35VBXHrbEmp7EpcR2GDuXrltW61QqRX/6COEX9Q11TtNkUolpIwUwhX6MmflUmiTEFzhH8xMEC6Me8v3tkkwKj5DWNHXlJXy5T8exdZPmgi6ciISdGpmDY3hwsmdl4mXe63ObVI5Bm0yALFpYaDPhy1vCjep2kIIT4UZt7pDrIA7R6glGvR6HA47EqmUkIiITs+5q4gIUfLFLSfx9HljAKjpgQ7jLj0aZXr3Laaim5QdGyVCXgqVWbD2GfjkQvjmFlIlwjU3v65t4RptRCQ3vfl/KNSC4edSDxYJjGigtIOm3XXb0tK9rUikUsIvvNC9bSnIp9bpPQmNVHHu3ZNIGhbp0VwIiXFX7aSEpaCWty3UpFD5Hpc8cnQQZt+1hDgNlEZLN3tQnAaKaviIbg2DRThlt92JskmTYLCnrwdrniJ150ckahOx2q3csfaOVsuOvRMwbRYLjbW1zR7bV3A4HO5Ou66+McHAuwmkQZuEQypDpZESFqWGzy6DXx6FDf8WDljwGCjU7uTYEZEjuH/K/a2+R32VcB5rIyKRSoPjhe0qpg+OYmaG8DepDRDm7mpslcLfSh7Tueac7SEqsYmBYlHAtBs9OxqrYd9SUv74DGi7gQKCDL7rultV2DbPy0BFNFDaQXWT1UMwL4oAiU8/Rcxf/gKAOb+AqmIhATAizsvN6jZQoiisEwyUpNC250Y0dSlGJfWOxmQt4TJQLDYHlm7sbGyrEf5WsvDuFc4Kd37fbgNFroTrfoCz/+M+RrLhJc4efBYAO0p28M8d/yRL37xabGhkFKljPF2OG+v6toFiszv4dk+huzlgfAdbTQRColAQedVVqEaPokYnrNpjYqSCkVp20PfgDKHs+2iVYKA8PvNxEkMTaQ1Xb6TQyKigzbsr0Tm7pNc2Wrq9EszqNFBkUd1noEQ2NVDqLbDoWZj3oM/+1HJBe6qgroASQ0mbBBQBop0NIStFD0qLiAZKO3B5UM6ZkMSZ4xK4cU5wwyMSuRz1WMGVasnLo9ppoEh+/56y/7wiHNRQyZoQDf+UG8irywMgOTS5TeNbzCYamxgovTFBtineeT7dlYficDiwuw2Uzvf6aA/hsYIHxWiwuPsvATB8MUR7PCG3x0zn4uEXu7dbi4Nf8sSzRDoN0r4a+zaYrFzzv22c8cp67l0miBVGhijaLW3fGglPPE7GN99gSBOE8WLC/EMbZrmGOqWWamN1+5Jj8XhQQrvxptsZXLpPVruj+z2ZLg9KdPcZc02l700NVkH2fuFjEOkJNSVq45FL5JjtZk776jQu+f4Sas2tG/+ufkuuDtYigRENlDZitzuodiopPn7WKN66agrjOth/pyUUKcINxHjoEOVHBU2UkNoCKt99FwCLoZx74mP5xFrGRwc/AtruQamv9PQWkcnlXPDQk8GcepehlEmRSQVDqrsqeRxGIw6L8H1Ldd1roChUMkLChWTAmnKvJGldIty5C8ZdCoDsyAqePOlJTkk7BYCShhK/sbyRSCRonfkOTQ3VvsInW3PZcKyCY2WeEtBgek+aolcJ3pAoRZ3fczckxXPaN6ezu2w3ICwUWkqO9fY81FUJ52JfMVBClDL3ORiomrGrcFgsHk9mTPdVOTVduBnrvRYK8x92P5TXlfp4zOosdewqaV0Q0eW5FnNQWkY0UNpIndGKzdmbISJE0WXvo0zxhFwqjgqy91pDsbDD4WBnjceNb3UIF4q2Gii1FUJVSFRyKvd8+i0Zk9vWVLCnkUgkhCi6Nw/FlX+CTIZU2zFl0s4QmSDc6L55cRd/rGrS2n2UU4/l8A/gcLh7vpQYWjZQAELCBGOrr4Z4mlbSAZitXRP2a6g100AoOOxE2MvBy8CwAHtkdgwWA8syBeHElNDmw6VmYyMf3HcbK996BRA6TAPEpKZ3ydyDjUQiQef0otQ2dl+CtbWqWngglXa7J/OiB6cwYoZwbpkaLJ7ePOMvg2ucwnHWRi5NP9PndTtLd7Y6tsuDUltehqWFJrEDHdFAaSMVBkF7RKuUoZJ3XVJbbR3Un3kjjepoTGrBpaltcBoo/xzEmsL1fq9J1rYtxFN4RKjhD4/tOg2BrsIV5tmRU8WtH+8iu4ul710lxrLw8B4Jg008VbiA2W0OtnyTTVWxgfpqE1aLDYaeAnIN6HOhZD8JIW03UDQ6IZ+moY8myUrw/y66qpFdyXHhN6BtKEGqrwCj3vOeXteAw5VC2XZLuScndu+iuqiAg+t+JXPLBspzjiOVyRl+0pwumXtXEObKQzEKeSgma9cvFixOMTNZVBQSafferhIywllwjaDB5HAIjTwBQcBxyEIIE77v6+NP4rUFrzE1XujltKNkR6tjh+jC3U0hq4rblrcyEBENlDZypFhw8abHdFwEqjXyDlWy7NntbG+YxJaZTwOgaShF4ez1YTfUsFHjL+PdFg/KvjUr2fKVkHE+et7CIM66e3Alyj741T5WHizhL590TdMth8NBxdtvo18mrIplup7pLJs+LobJp3v0T7J2lbHkkU389PZ+UGoFIwXgjyXt8qBodH3bgxKo1Py5C7tGgbX0hPA30tWewFZV5WkKCJTIPP2iqk3CKr+l89Bk8BjUK175JwBDp87otfongXD1yKpttPLKr8cY9cRK/sir7rL3q/35Z3KvuhrwrazqTmRyKWqtYJitWXKYxnovD164swfbp5ewIG4yL8x9AYDM6kwMFv8eUU1xeVF+ePk5qopEIyUQooHSRnY7T8TJaZGtHNlxtn13HKvZ1109/NgX7sdFNgWFCt9GekPChxCtafnkrcjPZfV7bwAQm57BiJPmBmnG3YdG6fu5M0v9cwKCQcO27ZS/+hrVnwnGnLSbK3i8OemCoYycJazSdqwQGjvmH3Lq4My4Rfh/1xISHIJXoU0GinPVtnfVj2z6ou/1BGnqLVl280zOHt961UxHcHlQwmtOUPvjj9T9uhqAGqmE1Wnj/Y5P0jZvoOhLi322IxISOeWG24I4267HVclzosLAq2uOYXfAlzu7JsnTXFBI4b2etgP2hp7rZr7wulHux6XHvQx7l4BiQyVsf494bTzxIfHYHXYOVR5qddxop4FSU1bKyrdeDuqc+wuigdJGdufrAZiUFtEl4zscDqpLhJPw8r9N59Q/jWa6fBvR1Ufcx+yPnQLAIN0g9765Ka0bG97dMy954tlud5UGg5AgKfa2hmHTJp9teQ/Lj0cmNJP/MngeDJoNdgsJ+YI3qayhDIu95fwAjVfC79avl/Y5wbamBsrgGG2XhODsNjtluS4PSg4ARS/9F5tFwt9Th/GJtdTvNS15UPQlvgbK/GtvIiQ8Imjz7Q5clTxv/d58OXuwMGzc4LMt60Exu8HjY9wLBZfRCsD0mzyPD68AcHc53le+r9VxvVsbFB/LpLqk9X4+A42+d6fqAcxWO/udEs8TUyO65D0aas1YTDYkEoiIDWHEjATSkn0vvMdDhCS80wad5laNXTx4catju9yHYxec1qdcyt5oglxG2hzeBkrI1KnE3nVnt7xvczQVjAKwObU/GCYolsYWHyRMGYbVYeXh9Q/7He+Ny4PiovhoZnAm2k2U1/saKFHa4Euf7/zpBP+9bwNWsx1ViJzEBcLCwF7fSPVRLb9KAyc1Jmqb9+Tom9x8Usf0vsaAreHyoFR4hTmKawJ03e4klsJC6lYLPaZ0Zy4m9NRTSHjs0aC/T3tIGCycN8f3lGN3JcumzYQHskAiheI9cOg7xsUI3+srf7zC67tfb3HMEbPn+ZyPhzf83gUz79uIBkobKKkxYrbaUcmlDO6iHJQap6x5WLQambNrctSf/4zMq4KypkJYhY2MGskXZ3/BkjOWMDq6dSXYamcSVmRi25JpeyPB6nnUEraaGoyHBNfssA3rGfTJx6hHjuzy920JVzWPN6ZGZx5GqiB3LyvYznOzn0UqkbIqdxXF9cV+r3Gh1ob6bOce2ENdVQU7vv8ai7lrkk2DSVMPilwW3EuYzWpn2/cnsDhbTKSMiCDlmkkkPXoHANVZWqT2wEJl8drAXcEdDgfVXiGeMSefglLtn0vW29Fp/KsXi/XBrUCxNzZy/IIL3QsF3dnnkPrGG2gmTgzq+7QXV4fj6pIGfvvIq5dVaCwMP0N4/PVNjNd4vGjv7XuPisYKmiMyIYnb3v+UhX8SwrWlx5vvTD5QEQ2UNlBWJ5yEcTpVl1V06J2qoS6ZcwBFmJxh5xYRliI8Z6wQxKDSdelkRGQwOX5ym8Z2ySm7krL6IoFCPMYglxybjgpqoIqkJOSxsUEdu6PootUkDg0nJtVjWJhdBkrSJJAqoL6U+RYHY2OEjsVbirc0O17c4AxGzV1AeJxwMz22bTOfPHwP6z/9gC1ffd51HyQIGEzWLhfqK8/zzW1K0WTCt7cRVvIGshAZ1kYZsw55DJTHZzzO2Rln85cJf0EhDSw/YNBXYzWZkEik3PnhFyy65a4u/QxdhSvEA7gbMrqaNQYLa2kpdq8KM8343uFpikzQMuM8QZjz6PZStwELwIXvgUILNhOTrA5unXCr+6lvs75tcVyJRELsIEH4rTw3J9jT7vOIBkobKK0VVm3xYV0oCFUqeFDCvdt87/8SiRRk4cLNSV4rHJMa1nZDw+FwuD0oUUl914MSyEAJdnmpKUuIrSuHDW3lyO5DIpVwwf2TufTRaUIvGJyqlgAKDQx25iAtu5ZZMRMB2FLUvIEilco48477ufqFV5ErVVQW5NFQoweg4ND+rvoYQaGryom9KTqm99lOyf0XANKGIiIGCc/dvsLOiAIHs5Nmc+7Qc3l+7vPcNrH5hFdXeEcXG4tSE4JU1rt77zSH1eYxzP52tuC5rTNZqTMGL4/JWu2pClKNGoW8G8XZWmPKGYMIjVJhtzsoyfbKRVGFuVseSGsLuH3i7Twz+xkAlhxcQo2pZVFEl4FSV1lOY33XJP/3VUQDpQ24PChdqVjpSpB1991p1MMaodRYPlSor9c1QJwmlhBF24XDNi37BIvJiEKlJjwuIahz7k40TaqXwPO9BAvTMcFAUQ3tPQYKCKssiUSCMkT4G5gavG4IF7wL6ggw1zHTIeQltUUoSq0NZeTseT77QsK7rkItGNQ4BcIiQxTcuXAoK+4MvoZIcZYegCGTYznrci0RtqPu52LG1uFIkyBzwCnH1Lxz2jto5C2HaoqPZbL1G6FkPSKh7T2zeiOzhgjVgnOGxnDSkGi3cFtxTfDOQ1u1HgBpeDhp//e/oI0bDCQSCcnDhXOk8GiT8mpXybFe0G05K+MsMsIz0Jv0fHzo4xbHVYVo0cUKHs2K3BPBnXQfRzRQ2oDLgxIbFrzuxU1xVQzEpjqTWIv3grkewtNQTBWawp2+28GrT5WQf8ut5Fx1Nbb6lsXKaivK2PatUKa84Pqbkcn9b/J9hUAeFNf3EixcHhTV0Lb1U+luVE4dCncOCkBonFtZdlSd0LOkorECvZeoWHNMO/cin+2Gmq7TtAgG9Sbhc8eFqbl/0QjGJgdPWTT3YCUfP76ZnP3C33DCwlTS4wXlZWJHwahzkcqgZv4EADJKWm+Y53A4+Ozx+8ndJ0jhR8R3TTl0d3HSkGhW3zuPD/4kKFAnRQjG2bHS4Ikm2pweFM2E8cgje5/BnDw8AhB+L8d2lGJ2yf5HOA2UTa/A2meQS+XcNF6o8lmTt6bVcePSBS/K3l9Xdnszxt6MaKC0ga72oNRXm2ioMSORSohJcxooFc6VW/wYtHM8K0WZzUH9unU07tpF3S+/tDju/rWrweEgbex4xi1c1CVz7y4CJckG0+VvN5vdOSi9zYPiQuX0oBRmVmPzlndPFG6aIaWH3Y0jW+ps7CIqKYXFt3u0JuqcDex6K64eMKHq4BvaK17fS22FxxMQmaiFWmflTcwwuOxj+Fs1ZTMEr1NioRGHteWeNNXFvpU7EQl920CRSCQMiw9D4UxMnjNUCL+88utRrEHqMm7TCwZKbzROANJGC16kivx6Vv3vILt+drahCPcKu69/EQyVzE2ei0wiI0ufRVF9yyXEkxefi0QqJXPzejI3+6uFD1REA6UNlLlyUHRd40FxeU+iErUoXDfiCiGj2xidwUt5HwZ8ncPS/AXSarGwf61gwIw75YzgTbaH8I5/y51Ny6oD9GXpKBWvv45Nr0cWHY1qeO/2oBzcUMSGZZ7QAwnORMJjvzBEKVzYn9n6DPm1rTciGz1vITe//SEgNJP84qlH/DQ7egsuD0qoqms9gSHhSkE9tNYpQqZz5m5JpRRFOmhQgcJid3vcmqMo01esq6+HeJpy58JhhKnlHCurd8swdBabXg/0rO5JS2gjVOhiPAvV3auFjvJuD4qLFzMI3/gaE2KFxcOGAl9dl6akjhnPjAuEJqB7Vv0UvAn3cUQDpQ2U1natB6U0RzBQ4tPDhAZwvz4FZcLF7V1bOZ8d+Yxlc/2/Kmtl8yVshzf8hqG6itCoaIZNP6lL5t2dDInzlNveMFdwh+obOp+cV/nhhxweOYrK9/8LQOLTTyFVdV0orzO4clBAMFLcxI91PxySK/QBya7J5sZVN7aaoAegjfCsVvMP7eeTR+7plQ3MXMmYwfagNNb5GrphUWpYcR9selXYoRMMi4rGCpYd+4LsBGdn7T17Wxy36Ohhn+2IuMBlyH2V8BAFGU7Zhcr6zi8Wan/6yX0eynqpBwVg6BTP96gJc1Zuhaf5H7jhJabECxo6R6uP+j/fhPGnnoFEKqXwyEEqC8QuxyAaKG2izBlKiOuiHJQiZ8JVfEY4LLsaNr4MOYLFfcwulPF9e5KEp67w/bqsZeXNjrn75+8BmHLW+cjkXdd9ubs4fUwCz5w/li2PLCRGK3wPnfWg1K1ZQ9kL/3Rvh19wAWGnnNKpMbsSlwfF/4lQOO8tAAYbPZLgRYYi3t/3fqvjSqW+4TNTg4HirNYvqN1NvTPEExZkD0p5vm/lhNVshZ1eCZq6JCoaK7j252upNFZyJFUwUBp2tNwUruS44GGRq1SkT5jcp8v8myMiRBDKC9Rluj3Y6uspvO9+97YsovcaKFPPTGf8QkE0s6HGjNFgAW2Mz0LBRapMKGgoqG+9JUBYVAyDJwoGzYbPP6T0eNcr9vZ2RAOlFWx2h7t6oCtUK81GK6U5wgUyZbh/0p/ZaVzYZBIOpkuJ+8dT7ues5YENlKqiAsrzcpDKZIyZf2rQ59wTKGRSrp45iMRwDREhwt+kupMelJpvvxMeSCREXnsN8T2sVtkaLgG/gEy6CpRhLGxoZKLRxAiTcMNoS0VPICryelc1gcPhOQ+DHeKpyPdN8hw7oUmSoi6Zr45+RX5dPsmhyVxyuXAONmzf3mxCo8PhoMYpznb1869w0aNP99ny4paIdJ6L+k4aKPVrfBNJe7MHRaGSMffS4YRGCgul4iw95fn1cNNauPprn2NTGgTveH5d2zwiI2YJOU7ZO7fx+RMPUFPm31JhICEaKK3gintD1yTnFR7V47A70MWo0WmadMAcehonmlje0ZdcSspbwmrZWlbmN15Djd7dLTVt3MQ+K23fEpHOVZvrotjRrHfTMSHPJ/W/75Pw6KPIQkNbeUXPYqj2SgqW4JHcdhESRbjdzsfFpbzi9K5lVmdisrWeTLz4jvtJGTWWsQuEZOqyXlbueNV/t/HfjcKcwtTB8QhaLTbWfnzYnUcwYWEqZ98xgTGpOb4H6pLYU7YHgOvHXM+IuecgUSqxlpdTeNdd2M2+N2er2UzW9i2YGwXvZ3hs/wrteBPpXLR1ZrHgcDjQf+V7Y5dFRnRmWt2Cqw3FT2/v54vndlCab4Ihp8CZL0G0kMeWWi1cv4vri7HaW06qBhgyZQZSZ6dsm9XKjh++6aLZ9w1EA6UVXAaKUi5FJQ/OCshqsfHT2/tY/3kmv30iNANMSzHC+0J4YVlYKK/FJVJ/+rMBO9TK4+KEcQIYKOs//YBy581l5Kx5fs/3ByKd7c8PFNZw4VubWPzqBszW9lUR2I1GzHnCjUk9fHjQ59gVuBqWAeCA/MNVvsZZiKerdbLVRpRSh9Vu5XDl4VaNuNFzF3DZ319g8CTBxezdYLKnMVvtbM72VBgFa6Gwb20BhzcVY6wXbq6xg8IYNDYaSaVvfyJ7aLy7+duE2AlIVSrCThU8k3Wrf6X8376daDcu/YjvX35OmGtUNHJl8D2vvYWmi4WOULtihV+4rLcmyXoTP9i3r1Xm9hKQSIQmgnOF6ri4on0opUqsDmubuo2rQkJYfPu9pIwWwkUHf1uNqcHQyqv6L6KB0gquuLcuiN6TYztKObG3gv3rCmmsNROZEML0ouugJg878ExMFO9rFfxQ+Yf7Nem6dP4z/z8AyOMEGXZrRQUOm0dy2W6zkb1zGwBTzjqPUXPnB23OvQlX3NvugD/y9BwpqSOnsn0nsSk7G+x2ZBERyHqRWmVLxA3Sce1zs1CqBUN5xet72f97oecALwNFAoxTC8J8N6++mflfzKegrvU4eGxaOgCV+XnYbV0rK99Wmt78gpWD4up/5SI81im6Vuqsvpn6Z2pu+Z1zV1xMnaUOjVzDsEhhZZz00oskPC2Eeqo+/hhbnSePZdeP33rG7GeJsU1xhXiqDO03UBoPHuTEhRdR9PAjAETfeov7ud7SaqIlRsz0LRvXl3hdgwbNAkBatJvkUOG4hzY8xE2rbsJgaflaNXL2yVz6t+eJTknDajFzdOumFo/vz4gGSivUm4If93b13XExZEocGqkQq6yTer6Sn44L5WZzk+fywwU/cOogYdUmj44GqRTsdqyVnpVl4ZGDGA31qMN0zLvqz37Jj/0F16rNm7J2iraZjgrhHdXw4V3WX6krCItSExrlqSbbsOwoDleox8tAARiXux2ARmsjVcYqvjj6RavjR8QnIlMosFrM1FY0n4TdnTRNwAyWB6Wh1nfc8FgNHPwWjjn1hUafx4vZX5NbK2hdTImfglwqvLdEKiXy0kuRRUeD3Y45Lw+H3c6x7Zt9xgyL7v032s7gWix0JMSTf8utQnNOpyEcdupppH/1FWkffthrdVC8CY/VuJsIApQcr8Xu0oOJGCRoo9itDCoWqrn2le9ja/FWVueubnVsiUTC6HkLATi0YW3Q595XEA2UZqhptPDJ1lzeXy+ES4KZf1LRpGrAFcsEqPLqzrqnfA8Ak+Im+RwvkclQJApWuflEjnt/7n7h+IxJU/tlQp6L8ABdVdsre1+7YgUA6lE92624IyhUvt+tu39MUwPF6HsDlkla/01IpFJ3SwR9ae/QQ2m6Og/WYqGy0Hclqw5VwDqh9w4p08iPTue7bCGR+qJhF/HkSU/6jaFMEao5DBs2cOCXH/n+38/5PN9YV+v3mv6Eq3CgvSEeh8OBrcJLJkEiQTUkA83YMWhnzgjmFLuUM24ey+JbxqFUy7CYbJ7flEQCqdMBuLq2Du8zb13+ujaNPeIkQaCzKPNwryz77w5EA6UZnllxiMe/PcDKg0LcMFgXRYfD4dY9cRGZ4DFQqgN4PSbGTfTbpx4zBgDjAU+Dt7IT2QAkDut7N932IJP6ezzK2qEqa9i2XWjnrlAQedVVwZxat2DQ+35W9+8pJMpn/1iz73HVxrZJ2bsUT3uLYFtTvZtgLBaObCmmrsr3oi9x2KHSWdp54XvsLBMk6ifHTebvs/5Ogta/l5UiVSgdLn/lVXb/33t+z089+4JOz7U309GKOnNOjs+2NDQUqablvka9EU2YkoxJscSlC/koLtFNAKZcD8AMo4n3y/QsTBEaCm4q2tSmxPXwuATCYmKx22wUHT0S9Ln3BUQDpRkKqn3DMMGqHKgpa8Rk8M3mjojXgLNVe7XM9yuRS+SMjfGvr1ePE/Y1Hjjg3udKjnX1dRhItDXEYyktpW7NrwCEn7kYZVoAgaVeTtNy4y3Ls/niuR3U2uI8O6/9Dl2TKp9iQ9sMjkiXgdJLPSidzQcz1JhYs8RXRG3cghSoyQebCWRKiBjE3nJBiG1C3IRmx1KkeDqEWxo91wyZXM51L75B+oTJnZprb8cVbi2vM7nLwNuCYYOvsqrD1PWdqruSuEFOA8V78Tl4HjypB10K0wy1vJJyNrGaWBqtje6k69ZIGSVc5wsO9+5O412FaKA0Q53J92QLVmKeXxdMQI4Z7ML7VTUxUE4ffHrAjqmascIP13jgICCUF9dXV4FEQowz0bE/40obSQoX8jHaEuKxFBeTtWAh1R8J3UXVo0d32fy6koXXjCQiPoQRMzwr+vK8Or5ZkYjd4fz9JE8FhZabqz1Ksm01UMKdTe2yd2wlZ88uzMbGVl7RtVT7hXg6t1io8grtXProNK59bhZzLhnm8Z5EZaA31/H1MaH0dWLsxGbHUjo9KA6gTu3JjVp8xwMD4jz0zgeb88+1be7JU/Pd9z7b3v3G+iJx6YKcw6FNxeQe8OppJZFAmhCyklRmMTVe6Ey/s6Rt+kQuA6XwyKFWjuyfiAZKM7iqd1wEKwfFlS8wfkEKaWOiWXjtSGjUu5+vHrrQ/ThJm8RD0x4KOI4rxGPJz8dSWsrvHwkS0RHxCSjVfc9V2l5+vHMuj581ir+eMQJoW+NAw9ZtYPdcQJVDemdTwNZIGhbJVU/NdKtZujAYZNTanEaLKhTiRvIXfQ2fjrwZgBJDSZs0YyLjPR6Ur59/kh9fezG4H6CdNA0fdPZcrCoWDJSMibHEpoURFqVGKpVAhWCg2KKGcPmPl7uPd/VTCYQiWfCgNCjl2GRSZDIZ9372nTt/oL+jUcrcYZ46o9XP8xwIU1YWxoMHQS4n/YtlRF13HYnPPtPVU+1SXB4UgJ/e2ufpcgygcYZejXqmJggGyo7SllWI3eOmZwCC+OZARDRQmqGuqYESBA+Kw+6g8KgegPQJMZxz5wRGzUoCo7APTRTViULjt6tGXcXy85YTqQ6czS7T6dxGyqEvlnJ44+8AJAzpG5oenWV0ko4b52aQoBOMsbYYKI4mglqqYX3TQHERERfit69GNhRGnCVsxI1CBgyvE5IRG62N/HPHP/n40MctjttUkj1nz64e1WLwbmmgkksJUXQuAbzaWQ4amej8+5UfhY/Oh02vcFip4K/SKgrrhfLtB6Y+QLQmupmRQJmeDni8J6ENRiy5eZ2aX1/j/Wunuh9nl9e3cKSAYbtQXaadMQPN+PHEP/Jwn6jaaYnQSBVDpwohVrvdQXG2Vw8sTYTwf6PHQNlXvg+LvfWQWGSi0AfKoK/G1NDQytH9D9FAaYamBkowclByDlRi0JtQqGUkZHjJ2rs8KJoIqoxVACRqEwlR+N+AvNHOmwtA3m7BGtdGRDL/2hs7Pc++RJyzw3RLSbLmggIaDx70aw3gErzrqygD9OapO/l1uPxTYSNNaBKpPrGBKLWwivv08Kf8a8e/KG9ovoRYFxvHaTffydn3PExUUgp2m40Te3YF/wO0QlZZPW+sPUahXliVP3rmSLY/eqrg7egELg+Ku3pu5//g+G9QV8wz0VGsNgrGyeLBi7luzHUtjqVISCDtoyXYxgjhwpAGI2X//nen5tfXmJYexdnjnWHBNhgoxkNCuMKVR9cfkEgknH7jWEbOFDyYRc6FKABq57XeqGewbjBahRaTzUROTU6r46pCtISERwBQXVzY8sH9ENFACYDJasPcJJbaWbfy+mVH+ektITFqzJwkFEqvVWCjMy9FE+mutGjOc+Izp7mCUmxJlXCzWXD9zT6daQcCCTo1Eomg+OvqOt2U42efQ85FF9Owdat7nyItrU/pnzTH2HnJKDVyBk8QxOZqq62eBJ0hzsaHhX/w5+GX+bxuV2nLBsf4U05nxElzyJgilErm9ICBcuX7W3lp1VG2nxCM9oyYUMJDOrdQcNgdbgMl0mWguHJPgH1qT0PQBakL2jSmdvp0LGlCuC3EbPXrKzMQGBIrtInILmvd02Y86DRQnB7g/kTS8AgACjK9cg3Vwj72f4lk+a0MDR8CwLHqY20aMzJRCCOKBooI4O89gc4lyVrNNg5vLHJvTzjFy4Wetw2WXiE8VkdQbXIaKKrWDQ3NxAlIhg+jVinMLXlk/zvhW0OrkjM2SVihbM6u8Hve3tCAw6kh0LBTSEzTnjyPQR9+0H2T7EJOvnIEN748l+QRwu+ltsIrB0CX6Oyw6uA6eRxfn/u1W1NnR0nbYuBJzpL1ysLub//e1CsWGYRmnTn7KzAZrCg1ciITnB5Kp4HScLonD2J+6nwWpi0MNERAGpyJuyFmwW1v0+s7Pde+xJA4p4HSigfFbja7e2Bp+miSekukjopCIpVQllPrKYhwhXgA9i1lmF1YQDy04SHe3vN2q2NGJQkGSlWRaKAMaOqMFlYfKmVdpr/7uzNu5aIsPVaLHblKxs2vnUxopBpKDkBtEfx4H3bgB20If5dWc6RKqHeP17YukS2RSjk0dhhIJIQazShr61p9TX9k9lDBe7DxWKXfc5aiIr99kZdfjiIpqcvn1V1IJBJ0MUIuTm1lEy/SEOdNNmsNwyOHu0MWm4o2YbG1HgPvLZooUgkMj+98M8c9vwqG1th5ScgVMrA0QrWgFFuYOg0AnVLH6wtfRyVTNTtOU2rKhb5YYWGCsWw8erTTc+1LZMQI3qjjFS17UEyHD4PViiw8HHk/OgddhEaqGTNX+Fw7f8oRdro8KE6G2T3e87f2vtXqmC4PyqH1awecF0U0ULx4f8MJbvpoJ6+vFSz8BJ1HUtxk6XhfkryDgot62NQ4IbRTngnvzIb3F4Khgk90YTwaF8PXVsEDEBcSx7CIYa2OW11SxInsTCTA2PxyCh98EGtVVYfn2VeZO0wwULYeb5uBIo/t27kngdBFC7/V2opG30qdoUJ7BLJ+Bbud6QnTCVeFU1hfyJt73mx13PB4IaZurK/DWN96fkFXMTJB16k8sJLjNfz87n6hik4C4+Y7K6CO/w44QB1OgV1IQkwOTW5umIA47HZqywRBxwinBpHpSGZLL+l3JDrL/asMZiwtlBrXb9gIQMj06f0ixBqICQsFD3lxVg02i93XgwIMs/vedm32lu8to+YuIDQ6htryUj5++B72rv4Jq6Xj3aP7EqKB4sU8540up1K4UIWp5ajkwp9oyqCO53YUZ+kBSB3pLDc76uz1UVcM9SWsCNX6HD8zcWaLJ++25V/w2eP3U3BYEGmLSkgiRirHuHcfJy64kLybbvZTauzPDHau3srqjH5ltAENlLj+1x8lPE6DVCbB1GClztuLkjYTFCFgKIPS/YT9+Fcelws35x+yf2h1XKVa485r6k7hNofDgbfTMl7Xdm9GINYsOczx3YJnNHFIuODFLN4HnwvlxD/HpnHXb3cDkBKW0uw43uQd2Muh9WspzjqKzWoV+vOMEEJipuPZnZpvXyMyROlWeK6sb172vn6dIPMeOv/kbplXTxAep0ETpsBmtVOWV+fnQRlfW8HkOI+An6swojlCI6O44ukXkStVWIyN/PrftziyqW1y+X0d0UDxYkJqhE85cZhazuaHF/LLPfPIiG2/e1lf1sDKd/dTliuEXlxiPlR4VldVUimHVUJsfVT4EKQSKZcMv6TFcTcu/YjiY5mseuc1ACJTB5H23/cBsJaWYtiwgewzFpN7zbU+XVb7Kzpnbx6LzYHR4lm9OcxmLIUBDJTo5stG+ypyhYzYNOH35VPiKFcJipYAW96CvZ8z5+BKAMoay6gx1TQdyo/w+O5Xlm0w2/AWwj17fMfDARaTDX2pp0Rz8IRY2PYuLPW0OXgv1OOd0Sl1tIa5sYHl/3qan998mc+feACAyIQkVM4eWdZy/3yo/oxUKiHamSNUUR+4os5SVoZxv6CIqp07t9vm1t1IJBISh0QAzsVpEw+KqvI4SxYvIS5E8OSe9+15bC3eSkvoYmKZe8W17u3iYwND+l40ULxQyKScNMRz8wpTK4gOVTEiIaxD463+30Gynas2pUbuzhOgwFMRsVUjuEZHRI7go7OX8uMFPwbsvdMSEQmJaCb6v6Zhxw5qV67s0Nz7ElqlzL16qzU6FXk/+ogjU6aiX74cgNi770J39tnE3H47kn7aSDFhiJD/UJxdg8PhoDyvDpvV7qnm2bcUgFCHg0SV4M3L0mcFHMubyB7IQ9F7yaa/evlELpzcvrCLNyXHPUZY6qhIRo2TwM8PQo1Tr+ScV7EoPV7MloTZXBzdthmrlzy7VCbnzDsfQB4reOealrQPBGJCBS9Xc5pEdc5rkWbCBBR9vMS/NRKHCufi0e0l2KRN5CJqC8BUR0KIED6ts9Rx06qbWh1z8pnnceZdfwU8fdf6O6KB0gRXmAcED0pHsZptbs8JCEI+EokEjLVQ7rF+M5XCym1S3CTUcnWr7mWLyb+UNsK5wo3/2xN+zw2EagKJROLuz+LqB1L63PNgsbg7pirT00l+6UVi77yjx+bZ1SQ6DZTCzGo2fZnFF8/tYPsPx2HoKX7HDjMKHoWs6tYNFJdwW3FWJrXlZWTtaHm1Fwxc3XFjw1ScNzG5U/kKrmqK4TPiOffuSajNvl41y6DZFNYJyYc3jL2BszPObnXMwxvW+mxPOG0x8RlDB7SBEhvmNFCa8aDU/PgjALqzW//79nWGT09ArVVQWWhg328BElv3fOb2oLSHhCFCbmJ5Xg42q3+1aX9DNFCaMHeYJz+hM0l5R7aW+GyHRjoTbk+sAxwgkYIihLJYQc00MTSxTeM21vq3b3cZKJFXXEHGTz8SfvFF7ucC5WD0R1xhntpmGpYphwzpzun0CMnDI1GoZehLG9i7VqhW+eOXPOyRGRDtm3Q9tKYUgGP61rUYXA3v8vbv5f07/sx3Lz1D3oG9QZ69LzVOefsITed1T45uFz5r2mind7TW64YRN4Z8hQyrw4pGruHuyXejkLX8nnWVFeQd9G3eljp2PIDHQKmo8MuHshuNOOxt61XTF2nOg2I8coTCB/6Kce8+kMvRLT6jJ6bXrYTolEw/R0iYPr4ngLG68RViWlAobo6I+ERUIVpsFgsfP3QXNmv/TpYVDZQmDIoOITVKCMV01IOSf7iK9Z8LeSbJwyNIyAhnziVOWfVjqwBwTLuJjdd+zn5n35z4kNbLigEaav1zBiISBFehRCJBlZFBwhNPEPWnPwEDyEBxGpO1RovfjUEWFYVqWOtVUX0dtVbBpNP8uzMXZ+nhTN9+OsOdeh0HKw74Hd+U2EGDCYuOxWr23HiKMg+38IrO4wrxRHRSmC3/SBV1lUZUIXKGTHIuPuqEUJUjbhRfzbmR1TmrARgcPrhFT43FZOTwpnXsX7sKHA73ahYgdZTQokIe4/TAWixYS0qwlArGka2mhqz5C8i/5dZOfZ7ejMuD0jQHpeihh6ldsQKAyEsv8fyN+jmDxgoGSFlOLTvqL2VpxcvUTHgYFFqoK6KxvtTn+ANtOBclEgmDxgtaRpUFeV1+HvY0wemA14+QSCScMjKeDzfnuDvltgdzo5XVHxzC4RBcyqdeNxqJVCLI2ZdnQpagMrk5Jo3b1t7pfl1b3X2NTgMlNj0DXUwcDrsNXYzva6UqFdrZs6n64AOsA8VAccq+1zZasTdJDFYkdy5E0JeYtCgNh91BTGoYJ/aUc2RrCfmHq0g+bwFc+hHsXQqZPzHFKNxEDlUepsZUQ7gqvNkxJRIJw2bM4o+fvnPva6zz9+QFE73TgxKu6Zw4m6vEf+iUOOQu9eZa4ZxYnzyGp3b/x33skPCWvWwbPl/C7p89lU/jTjmdxXc8gMNhRx0qJNFLlEpkERHY9Hpyr78eS2ERg7/8Ant9PTa9HsPmzTgsFiSKzrfO6G3EhArflbcHxW4yYcoUFmsSlYqYv/ylR+bWE4RFqwmNUlFfZWJ7vSDGuTZ7PBckb4KcDYxzyPnO6/grfryCB6Y+wLlDzm1RSfzMOx+gMPMQhuoqyvNySB41Bqm0f+bVtcuD8vzzzzNt2jTCwsKIi4vj/PPPJzPTt94/OzubCy64gNjYWHQ6HZdeeimlpb6WYlVVFVdddRU6nY6IiAhuuOEG6ntQY6Ep9y8azttXTeby6f6r0dYoytLTWGsmNErFgqtGCsaJ3Qbf3AxvThfcyzIl62y+pWWuhKmWsJhNHN8tqKGG6MI5/6+Pc8FDTyKR+n+NimSh6sFcWNSmDrZ9nXBnKKCm0YKl2CuZUy4n4fHHemhW3Y9cIWP6ORlkTIwlKkm4adZWOPOWRp8HZws35ASbjQyzBTt25iydwxeZX7Q47uzLriZtrCd5dN/aX8jetb1rPgSgbxRyUDrqQXE4HOQerHQnyEYnO6vwvrsDtrwBwFZ8O+9eOOzCFsf0Nk4ABk+cSlRSMtFNmiu6wjyW3DywWqn+fClWZy4UNhuWwv4pthXIg2I+fhwAWXg4I/bsHjDeExAM+5QRvoZGUVYd+nCh0/WFZYU8XOl7H3hp50vMWzaP3NrcZseVyeWMnCVUQf324Xt8+uh9/fYa3y4DZd26ddx+++1s3bqV1atXY7FYWLRoEQaDoB5oMBhYtGgREomEtWvXsmnTJsxmM+eccw52r9jrVVddxcGDB1m9ejUrVqxg/fr13HzzzcH9ZJ0gTK1g8bhE1O3omlp0TM+xnaXUlAkXvfhBOmHFtmsJPJ8Cx37xHJw0GVkTlcrYkNa1OTYt/Zg9vwiu0hBd8ytewK2U6mhoGBCJsq4Qj7GoiBMXC2XaquHDGb5xA5oJrVdl9EfCnOJtProoYQlw+3ZInclJjZ79/9j6D5YdWdbsWEq1hosf+weL77gfAKvJxLf/epq6yq4pp+1sDsqJvRWseH0vpScET094rAbMDbDb08l5v0XvfnzN6GvcnWabIzTKkzOgUGsIiw58s3UZKC6MR45grfCICJr6qUZRbKincafDbsdcUIjJqairGjZswHgxvZl8+iC/fVUK4XqkOPYLV9XWExcg2XV7ScvGv0tdFoSKHpMhuN3GN2dX8PzPh1l9qLT1g7uQdoV4VjYpWf3www+Ji4tj165dzJs3j02bNpGTk8Pu3bvR6QQtgSVLlhAZGcnatWs59dRTOXz4MCtXrmTHjh1MnSpcEF5//XXOPPNMXnrpJZL6oPyxw+Fg+b//AIScE4DwOGdp2Q93+b9g0EkU1fuGXtTy1sNJu3781v1Y04qBIlWpkMXGYCuvwJKf3+fbmbeGTqMAh4PyD5aAU2VRqgtDFhHRsxPrQXQxTnXZSl9PAbEjYPBcLtuyk2NKBdm6WCotdby480VmJc0iVZcaYDShtUJKk35Ppcezmr1RdxSjxebuw9PR/js5+30NJ12MBkoPurdNEjjUIHjavjv/OwbrBrc4nsPh8LkJuFoABEKe4OsNNR44gHrUKPe2Jbf51XFfJjFCyKcr1hvZ//r7KN5+xf2cavjwHppVzxKZoOWih6ZwdHsp+tIG8g9VUSvLgJAYaBB+o95mW4wmhorGCg5Xtpxb4m2gABj01e4wYzDYfqKKd9cdp3a6ldNGty0/sivoVJJsTY3gPo2KEjQVTCaTkKip8ngH1Go1UqmUjRsFieMtW7YQERHhNk4ATj31VKRSKdu2bQv4PiaTidraWp9/vYmGGo9yYqGzzXZ4nMbvODtwXWIcF1VtIrumc3XsqpCQ1o/JEGLqpqz+XzMf11jNsp+e5KLs9e59yuSOa2f0B3TRwm+wocaMtWmrhvixDLZY+V9JGb85UpgUNwmTzcTvBb+3OGZoE5G7spzg/rb+yKtmzJO/sHy3EAZJi2r9dx4IeRPvZ1i0Gor3uLczlUosDitR6igG61pOjgVoqNG7S/xDo6I5/da7mz026tprCFt8BtG33oJy8GCw29Ev83in+qsHxSV332ixUb9sqc9zA9VAAUgYHM68y4YTm+oMudZK4Ka1MO0muORDnqmsId5q5d2TnuGh6Q8BsL5gPaWG5r0XkUlNDZTgtjgprRUWCHFhnVNw7iwdNlDsdjv33HMPs2fPZuzYsQDMnDkTrVbLQw89RENDAwaDgQceeACbzUaxMy+gpKSEuCYiPXK5nKioKEpKSvzeB4Tcl/DwcPe/1NTAK7yeotpLpdJFRJz/hfWgUskfajVHG0t8YoxhitaF4GxWK3hdRM1Gfz2UprgqV0xZrWtd9FUcdjv5t97G7MduQGfxfA+yyEii+3HFRFtQaeUoVMKNur6qiTbFqHOFnBRAUn2CWUmzADhUeajFMaVSGUOnneTe3vLV5/z+8f/IO7AXo6HzeWSPfrMfm5eE7KDo9hsoBzcUcmBdgc8+mVzqaTEhkZI5+iwARkaNbFPoobpE8HjqYuO45e0lxA9uPqFWPXIkKf/5D3H33EPsXXf6Pd9fPShqhYxorZLYhmoiq4RrebUqlPIJMwk7fVEPz67nCXMuGPb/VkBuUSic9RKMuYCZqjh+zS9iliqW0VFCh+fShlLO++48Giz+9xaA0MhoHy+KoTq4Bkp5nXB/ietki4nO0mED5fbbb+fAgQMsXeqxlGNjY/nyyy/54YcfCA0NJTw8HL1ez+TJk5EGSORsK4888gg1NTXuf/n53d/6vSX0AQyU8Mpfody3o+nSaP88kxvG3sCSxUtaGLuEd/9yPavffwOciVAh4RFMOv2sVuelGiqUNpuyWte66KtYioqo//13v/2Dv/kaVUbLbvv+jkQiceehVJc0iVFLpXDaP4TH1TmMrhVyJA6V++p7BOLc+x/l0r89597etWI5X/7jMb7919OdnrPB7BuPHxSlbeZIfyoL69m7Jp/fP83EL2dw/YuQJZQTc9knZMYL58aIyBFtGrum1NkMML71ZHZvwk4/3S/kY87JxVpZ2S8TGxMj1Mwv2A3A/ujBXLn472z/88P9PsTcFlwNPQFWvL4Xc6Pztx7hXHDvXUpKaLK7os5gMbC3PLDekEQi4YpnXiJt3EQA6vXVQZljlcHMeW9u4tfDQnfu+LD2V7IGkw5ZDXfccQcrVqzgt99+IyXFV/l00aJFZGdnU1ZWRkVFBR9//DGFhYVkZGQAkJCQQFlZmc9rrFYrVVVVJCQEPvlVKhU6nc7nX2+iqYGiUtkJ+fkGeFNo3+4AHoyN5nu1r9s5IzyDe6bcw7DI5jU6jv+xnfrKCg7+/isAUUkp3PbeJ4THtX6hVA0XxjWs34Ctl4XFgoWlGWPVFtP/GgJ2hPBYYdW29uMjnNhbzuHNxZiNzgtjeArIlGAzM/q3lwA4UZfb7KrNhUQiIWHIcL88qMIjhzB04kLpcDjQG3yFp8LbWMVjs9hZ+sx2Nn7pb4zPCfsfrH1G2Bh5Ngw9lWPVwnEtnXveuNrcR8S3L0dOIpWinTHdZ5+lqIhjs+dQ+d//tmusvkCaGi7K+h2AVYOEz93YiU7w/Ql3qxMnFQVOOYRwZ7XoH0uQ7lvGf+Z7St//KPuj2fE0oWHEpQv31WB5UD7aksPefL17u095UBwOB3fccQfLly9n7dq1DB7c/Ao1JiaGiIgI1q5dS1lZGeeeey4AJ510Enq9nl27PP1o1q5di91uZ8aMGR38GD1LUwNlWsoW72gM34Zq+dnZsXhM9Bhemf8KD017iFcXvBpwvNz9e8jcsgGA6mLfZNrwuLYnLLk8KADHzzkXh63/XSjMzRgo1Q39W2GxrUw7azAyhRRjvYWf3t7P2o8O882Lu7Db7CCVQaRwDsfY7cRZrThom2CUQq3mz6+8S2xaus/+zC0bOzzX3MoG6kwdk+/OO1wlrASacFPclUzQCpVvyJRwyYc4ZEqOVgvezRFRbfOgVBUKIaOo5PaHlzVTpng2vDzJ5f9+ud1j9XamFh0i3NxAkTaatSmCAnGDuf9ddzpCWJSvN6I8zxkSHXmmZ+exVUxLmMYTM4W2JX+UNm+gAGjDIwAhSba+uorfP/ovlYUdjzBYbb4nUbyuZz0o7ariuf322/nss8/47rvvCAsLc+eMhIeHo9EI1uEHH3zAqFGjiI2NZcuWLdx9993ce++9jBghXAhGjRrFGWecwU033cQ777yDxWLhjjvu4PLLL++TFTx2m52yXME7kT4+hrhBYYyvfB2Oe475XCfkmNwjieGGs5cGGgYQDECLychXzzwOCAqerpWbC11s2w0UmU5H5JVXUv3ZZ1hLS2n84w+MmUfBbkN3zjn9wu1qKRD+PqHz5xP3+GN8cMsTrEyYwDP1ZhLD/ROVBxqxaWFMXZzOtu89P8jKQgPFWTUkj4iE6CHu7tozGk38ECbn17xfmRg3EaWs5QoatTaUxGEjKc/Lce8ryjzE5MXndGiuR0o63nk7a1fghEKl1FPBtDtpNCu2v0CDtYF6Sz1KqZLB4S2HARtqa/jiqUeoLBAaC0Ynt9wrKxAhkye7H6uGD8d0pP91oq1d+QvgILFO8I7vixmC3SkeZhQ9KADIFFImnJLK3jWCAVGe7/y9jzwLrvsBlpwDedsgey1TKoXr2r7yfVjtVuTSwLdqbaRQoHJk0zqObFoHQE1ZCec98HhQ5hzdwSq6YNEuA+Xtt98GYP78+T77P/jgA66//noAMjMzeeSRR6iqqiI9PZ3HHnuMe++91+f4Tz/9lDvuuINTTjkFqVTKRRddxGuvvdbxT9GD5B2qorHOgjpUwRk3jxWS8d7xlDhWSqUcVglf8nm0XAa25v/eYe+qH93bFXk56J3JeXOuuI68/bsZt7B9yWYJf3sCa0UFdatWkXuNp1134569JL/873aN1RuxFAgne8iMGahSUvj2tD9xpKSOKoO5lVcOHJJH+Buix/eWC/tjR0LmTwCc0tDAD2FaPj/yORsLN/Ld+d+hkLYcYlE2qSbrjC5KoV4wJqK0SqQS+Pu5Y1p5hYCpwcLx3b79TsKi1Ay1fStszH0AMn/iCZ2S3KMeQbp5KfNa/XyHN/zmNk6gYx4U1dChJPz9SaQaDbW/rPIxUBx2e0Chxb6EtaqKwnvuASDdua9YG83gGC0nKgw0mDvmFeuPzLlkGMkjIvnprX0c3V5K9q4yJp6WxowzpoBUDnVF8PEFDAZCh42g3tpItj67WU+fNiLKb1/u/o73yWrapkAu69nfZrsMlLYkdb3wwgu88MILLR4TFRXFZ5991p637rW4GpENnx4vGCd2O1R6qma2agQX2UiTmRh1y1+2t3ECUJZzglpnV9QxJ5/CjPMv6dActbNmUbdqlc++2lWriC8v9xOV6muY8wXXuzJVWNlGO+W2RQPFQ9wgT5VY2pgo8g5WkbOvgrmXDocZt8JGIdQwq9GIxm6nUSolvy6f/Lp8MsIzWhx70hlns3/tL4THJVB2Ipvayo538S1yGigXT0nhkcVtq64BoTGn1WwnKknLKdcJeiNxump49V3hoj/vAYpm3EDu16f7vO7MjDMDDQcIZcVWi8UvxNpRzZfIyy8HQP/ttz77reXlKOJ7TmeiszgcDhr37PHb/6eL5zBjxFDu/3IvjZb+2yCxI7jKjR12B1a7g50/5TDj3AxInACFQuqDFBijimWbNY8DFQeaNVCiU1KRyuQ4HHZUIVqM9XXYrRbsNhtSWfvl7yvqe9d1s2+b7r2AqmKhOiJ1VBSsfhI+Pg+8kgzXaIUV5kmNRkHyvh1k79yKw2FHodagjeh4OCZ0wXykoaFIFApi77kbzaRJYLWi/+qrDo/ZG7DV1GA+cQIAhbP0PEobuGHZQEYmlzLnkmEMmRzHqdcLvaFqK4zUVxshLB7u2g0Ln0ATP5Y3Sj0GRm5NLrtKd1HZWNns2LqYOO74v2Vc8NCTABiqqrB3MNfJZaAkhavbpTqa6ewcPnZeMnGDdMSFlsOSs4Un40aBQuNW5hwVNYpJcZMYGTWSeSnzAo5ns1r57PH7WfLA7Rz/Y4fPc531dkQ7m3i6aC7Ju69QdP/9FPzldr/96eNHoHH2PjKKOSg+aCNUaMJ8PXc2mx0WPApeHr2xNuG3tr+i+co6bUQkf37lXW57/1P+8v6nyFUqbFYr+tLiZl/TEt7XTbm055V/RQOlkzTUCF9oqMYEm16BEx6hsHy5jDUhQh7EWfUG4QfYDIG8UxX5gl5CdHJKp2SiFfHxDP11NcM2byLm1luJvFJoXFW97AscAWSW+wol/3gGe309irQ0VM4qMVfMVPSg+DLhlFTOuHksmjAlMSnCCq4429kZOyoD5j0AaScx3WhisVrQV1hyaAnXr7ye29f434Caog2PcK/k6qsrsVos7a7ocRkoyZFt1z6przZSnlcHEhgyOQ6MtfDBYtDngSYSThNKn7cXCwbKnOQ5fLT4I74850tUssAVCjl7d1FTVoq5sYE6p0dIFxvvlvnvDKHz5jH42+VoJk4EwHT8eMsv6OXU/vRzwP3KtFS3gdJg6bvXmK5AIpEQm+qrfVVT1ghDT4UbVsGQUwAYWycsDLYVb8Nka37BFR4XjyY0DIlU6u4LVXaiYwKKLgNlUloEy/8yu0NjBBPRQOkg+Yeq+PChjTTWCdUiWpnXxThuDCx6ho91OuwSCbOTZjHiniMwaFaz47XUSyF94pRmn2srsogIZGHCSRF2+unIIiOxlpQE1BDpCzjsdurWrgUg6fnn3N1ho5wGiuhBaZ6EIUJ58Kr/HuTYDq/k0oRxAAwyCr/FXaWCu/lg5cFWw7sSqZQwZyO40uwsltz/F977y/XUVrQ95FOoF8ShkiJarhyorzbx7X92c2xnKTk7hfyQxME6QnRKyPwZ6kspikzjtMEZvFl3GIfDwbYSQaV6euL0loYG4NC6tT7boZFR3Pj6fxk9d0GbP0tLqEeORDVScNmXvfBPTMdPBGXc7sZuapKvkOiR/5fpdGicar6NogfFj4h4XyPcrVOUPBnOfBGA6SVZRKoiKKgv4OktT2N32LHYLRzXN2/URqcIJcs/vvYiZTntM34dDof7uvnqZZMYl9JyO5XuQDRQOsj3r+3B4JS4l0olqG1ObZeYEXDbJvSTrubbKOGCff3YP4G25dh1Y11Ns89lTJ4WnEk7kSqVRFwkdG7Vf/V1UMfuDgxbt5Fz8SU4GhqQKBQ+zQCHxgnegS92FvDw1/tET0oAEod4Ljy7fvFSNXUZKHp/93CxobjFVRx48jO+f/k59KXF2G02qrwSTFvCaLG5L47JES1XX/328WEKM6tZ9d+D5K39XZizYivkboZDQgP7nwaNp6SxnHf2vsP4j8ZT1lCGUqpkYuzEVueSf9i3zHrCorOC3ugu6rrrkCckYG9ooPjRR3E4m6laSkv7jGaRtdyTEC2Ljib1rTeRarXozhbCa6KB0jxh0b5GeHWJl1RFVAZEDUFnNfFC2HikEinfZ3/Phwc/5OH1D3Ped+fx4o4XWXJwid/CYdzCRcjkQmrpxqUftWtODWYbRme+UExYz1bvuBANlA7Q9EcREiZFsvczjioUZOpiQCLh3f3v0WgzMSpqFDMSAuu71JSVsOSB2znw+680NLkonXTxlUikUnSx8SRktE1Mqj2EXygYKPUbNmB1JuIaDx/uE63g866/HuMhQZJdOXgwErkn13v2kBi3Bs3SHfm8tqb/quh2lPTxMcSlC2KHlQX1bPv+OA21ZogdBRIZ6QZ/Y/nZrc8y9ZOprC9Yj8PhCOhR0QVQSm6sb710uKTGyB+5ggcyRCkjvIUOxg6Hg7xDHlGqkhqhN1Bi+SdCaCdTSDQvD/dv5jc0cmirTTlNDQYaa4XPL1Mo0ITpmLioddXm9qIaPJj0zz5FGhJC4549GDZupHH/AbIXnU7utdcF/f26AqtTcFMWFcWQX35BPWoUwzasJ+mfQpFEiDPEIwq1+TNmXjIZE2Pd2ig+Ss8SCZz2FACz9izn/sn3APCfXf9hVa5Q7PDRoY94aedLbCra5DNuyqixXPvimyCRcGL3TneaAAhe54Pr1qAvDdxSxrVA0ChkhCjbVT/TZYgGSjsxG638+NY+n30hDUdoPPAV1ybFc7Ejn7vX3s1nR4Qqpbsm39Xs6mvzF59SkZ/LL2+/QmOdx0CZedHlnHTR5Vzzwqtc9vcXuqQMUZWRgXrCeLDZqF29GktxMScuuJCsU04N+nsFk6Y5M95idCAoj8q8/t77C5v3TA1UFEoZFz80BZVWuAjt/CmHLd9kgUINE69guNlMtNX3prK+UMitun3N7dz1212c+c2ZGCy+YckhU/0NcWN9Hcb6eqzmwJ4si83OKf/+nSv/K4Rg0qJCWvRWlOf5GjyN9kgk2IiVe7mz5RqOW/y/90WDWi/R15cI3qOQ8AhuePV9rv3X60HtEuuNIimJUKdkQ+O+/RT99a84TCZMR47gaObv1ZtwLWyUaWnInEKU0pAQJM7qEbXTgyIKtfmjUMpYfOs4Zl0kXL9qyhrJPVDJqv8dxFhvgRFnCTlUFgMLGpsXncysyvTbF5WUzDBnv6xNyz5x79+z6kdWvvUflj31cMCxXA0CY3u4QaA3ooHSTo5uKyF3v29Vg0JiJFOpwOA0JNbmr8XusHPB0AuYkzyn2bFsXtUO5bnCBXbwpKnMvvRqJFIpsYMGo+tCyfawhUIylmHDRoxe2gz2XnxxNB3z9YjIIiL8jnnkTE9r+1251Tz53QGsNrHU0RuJREJ4rCcOnnvQ+Zs+5zWUi57hm8JiLqutY5TJ/7fwe/7vFNQX+F0ch8+cw7n3PcqY+aeSMUXI9agpK+H9O/7M0icfDDiPnAoDBq8b2OjElttYVBb6NySMkuejkHrCT47wZI7XCOfTx4s/ZsNlG3h61tNcPfrqgGParBbn/1Zy9+8BICIhibDoGEKjogO+Jlgo0wcBUPHGG5i9uhxbKzquJ9NduAwUeZPmry5cHhST1Y7d3rpExUDE1fW+tqKRFW/s5diOUqFdg1QKaULOYsqPf0VrD3z9OlIVWPRv9mVXI5FIydqxhQqnkOLBdWsAqG9Gq6hQL4SZUiJ7j8ClaKC0gYLMarJ3C+7Mslx/l7XZruGgyhOzm5M8hydmPsHfZ/29xXGNXu7vzM2CtH2IrvsSk0LnCsaTYeNGbHrPitNa1nEti66mcZ9vyZ12jn+m+Z9mpbPiTo9huGRLLttzgtvtsz8QovP8ZhvrLCz9x3Zqq8ww6050M+/nkYpaHq5svhKn2uj/3LAZszjjtnuIcSbrHdu+FXNjA6XHszA1+Pf4ySz1PZ9GNWOgOOwOfn53P2s/8r8gxyo8FQsGiYRTdDbKGoTzdXD4YCLUEVww7IKAVTuFmYd5/bpL2PLV52z4fAkbPvsQgMiE7lG1Vg4a5LMtUQlztJQGVsbtDTjsdoxHjmB1epua01JyVfGAGOZpDlevLFexBUD2H2U47A4YJHhBJIC5Ga9icyXI0SlppE8UFIxz9gpy+a2JKBZUCVV0ooHSh3DYHXz3n92sfPcA+YeqKHO6mOdc6skLkeDgkFK42N+atIC3T32bS0dcilTS8p+3pswTC3SpVarDuq8RomrUKORxcTgsFoofecS939qkmWNvovEP4WTTnXsOya+/RugC/8oKqVTC2ORwUqM8J1qN2JvHj5MuGIJc4fmNVhbWs+7zo1hMNj5eOYPlVc8yztR8Ymy1qZoaUw2N1ka/59ShQsVYbbnnRutSRfbmaBN5+9FJgX//tZWNPmqxUUlCSEEhaWB8iNBr51NdKKelJlOOcDPUKrTuzrDN8cfP32OzWjm+ewe7Vix379d1k4Cht4GiSEpCPUrw/vXmRULFO+9w4vwLqPzv/4DmDRS1XDRQWkOplqPR+SakWi12ju0qxZ4+n02115FtnMn5dYLncJLR6HNsYX0hNabAYexBzk7HeQf34XA4aKjRu5+zBZCXKKh2GShtL/PvakQDpRUa6z03tvXLjlJZIPxQDqnWMHdqIXKJkTm6/+OQ04MyOnJ4m8a1223UlvsbAt3pQZFIJCS98LzffpfrtifRL/+W0uefd1c3gJAgadi6FYCI889Hd9ppLeYr/OsiT3VPnVHUYmhKVKKWG1/2FSsrztZTeLSahgYZpZYRSE9+wuf5yXGTmRwnrMyOVh9l8deLuWPNHX5jq8PC/PZVFRX47WuLB2XT11l88sRWn30zzx/CudfouC72JmIVOWQqFLwQHUWdlzT3vZPvbTqUD6aGBo7vFHJfSrKO+jwXmZjc4muDhcLLQFFPGI/cqSpb9dFHvSphvWHHDncIqva7732ea85AkUolqJ0G8J8/3CH25GmG8Bh/j8XGL7M4ciKaPQ3ns1L/EA9U6flrZTWvl1bwfnEp19s0buO7sF74nZQYSrjv9/s4WHkQgNQx4wEoOHyQoqO+nseGWr37scPh4K9f7mXZTkE0sLUquu5ENFBawaD3rCBdXYsb5fU8d+zfHKx5mEsTrkanyuS4U4djTNr8No1bX1nplCOWc9GjT6PWCol4rjr27kI7a5agLOtFT3tQHA4HxY88QtWSj6hfuxa7UyPGfCIHa2kpEqUSjVcDtuY4aUg0504QXPW1RtGDEgiZwvcSYDHaKDjsCd00TLiDV50rq2fG3caSxUuYECcYfp8f+Zw6Sx3bS7b7lSC7PCjeHFy3BmO9bw7J4WKPgXLOhCS3jo0Lg97EntX+pcqR8SGkxlWjkgrn5LuRvob9zxf+zGUjLwv8oZ1k7diC1eKfYzPjgssYPrP53LFg4p1DpcoY4s7naNy1i/zb/tItc2iNxv37yb3mWk5ceBFFjz+OOVeoDFENGwpyOZoJ45t9rasaZF9BDct39x6DqzehUHs8TRc9OIWwKDWNtWb2/OpRGVad9QbX1tYRbrcz02jiflsoqQrhN19sKMbhcPC3TX9jde5qrv5RyLWKTUsnLDoWi7GRpX/7q897Nuj17sdVBjNf7vIsHsQQTx/C20CJGxSGRWlkf+I6kMBzMVHcHx/Nkqho7BIJyepY4uLGtmncKmeX4vC4ONInTObmtz/k+n+/xZAprQtJBZumcfCeNlBslZ4k5II77uT4eedjq63FsHEjAJpJk5Cq29YGPEwtXCBFD0rbObTJE4pprDOzUJ3A7hN5nBc6BIAolX+DsrxaXyNCo/U3UHL37ebbF//BtuVf0FBbw6GiWvKqGlDKpOx9chGvXzHJ7zVHdwTOxdhd9Qt8ITS/dISnsjVMuFj/SV/Ly8OuJiWs9a7Dhzf+7rdvzMmnMufya9xaEl2NRCIh+uabUY8ZQ9Q1VyOP83gjTEePtvDK7qN2hRBCszc0UOPUTQqZMYPB33/P8C2b/SrpvKk3ec67evEcDMioWYlIpRLmXDKMhIxwMiYKv4HqYk+VXLklA7vD63ZduIvEUsErcs9v93DX2rvYU74HAKvDisVuQSKVct4Dj7k7HmvCdO6FcEOtJyx0osK3Gi8lqveEeHpHsXMvwm53YDXbUDpvbAanlH36YBtnPTSNa3+6mt3lnm6ROzRqdjgNzklJgfVOAnH8D0F6O3GooCipUKm73XviwlVJ4MJSWIjD4Qi6OFVbca3Q3PMpKKDg9jto3CeUd4cumN/mscLUgmdLNFCaZ8y8ZA6uL0QXq6G2vBGLyeOK//qfu1g4bAEj2A9Vx6FkP5Fq/75QObU5DIv05GU1V5pbeOQghUcOUpJ9lP0jBS2eU0fHNat90rRLMcCR2G28s/0z9jt7XpXEDafOegy5w8Gd1XoUY69p9TM31NaQ5+z6qo2IdMvyp44Z1+prg03cfffCfUI4Sh7la/w5zGYkyu4VzXI4HGC1IlEocDgc1K9b73dMzG23IZFI3OrUzWG2ekK0+sbeWx3YkwybGk/GxFih2SwwaFw0e9f69mj6eomRqdrLmBH2uXtfvFceye8Fv/scf7jyMONjxxOfMZQbXnuf8pzj6GLiWPn2K+Tu2+2Tj3K83NdAiRfLjHsnB9YX8n9/3cD27wXpaavZhqFMqP7QlvwKldmYa5t3U7ZFpbKhtobiY5nsXysI7gw/qXtcyS3R1INS+9NPlPz9Kfe2vbERczc2NTPn5Prta9ixA4fJBFIp4eed1+axPB4UMcTTHLMvHspFD03hjJv8vX92u4NfMxdQb4uClQ/DO3OILPPXXsipyfHZbprsnTxyjM921o6tbDwqeOpcYbhA711R4JujYjz5OL8PFTSGXGbU0UhBlG1w+GAUt20BXesVOJX5uTgcdiITkwiN8qg8Z/SAB9MbWbRvWbOlWKiUcdjtPvlYXUnJ00+TOWUqhu3bqfnuO5/yZ4BhGzegndn2xZiL4hpj6wcNUFzGCUDSsAjUWn+DfafhUp/tRGvzOT07S3e6HyuUKpKGjyI0KhpteASAT5+s7Aoh7BquUfB/101FLus9ZkHvmUkvQK1VYDJYyT9Sxbbvj/P+vevZsVpYwWllVbD9PUoaArucFVJFs91RXdisVj55+B4+e/x+rCYTSk0Ig8a3nkvR1SjS/D03+mXLKH/9DewGAzmXX0H26Wdgysrqlvk09aAo0tLcglaRl1+GPLLtnZ11YoinVRRKGQmDw4lOCQ14YQRYpb+fRruwWo78/UW/53Nqc3y2Xa5kEEqPL3/qnwwa7xvCGb//cxR2M4NjAntbasoasJp9b8oWtcdg+WnYbC4dOZkv5YLxOTxmDMSPbuZTwqYvPuWD+26jrrKCuiohjBgWHYvWKw9EEyB3pjsJPflkYu70JB2b84XcgOInnuDo9BlYivwroYJJ7c8/o/98KQ6zmeJHH6P0mWcB0J15JigUhC1ahDym5bYdzVGsFw2UtiCTSznpwiEBn7PYPd6NhJD4ZsfIrwu8oAyJEK6dpdnHyN61HbvdxgmnB+XuuSkcf+tRVr37WkenHnREA8WL5BERIIGqIgM7f8rBbvOIC2mllZi2v0OlTOb3OrlExqYrNpEY6i+v7U1R5iF3d9So5FTOvvtB5IrmZb27C+WgdPfjiCsuR+p0z1e8+SaZU6ZiyswEux3D9u1d8v52o9FHOr2pgaI74wxS33mboet+J/6xx9o1tjvEYxI9KK0hlUqYd0XgKrRiy2h21gsruEi7Z+UW5hTAO1hxkP3l+7l+5fVkVmUi9wpLuKTiF1x3EzFp6YQ4V3HxDYVMrNlHdGjgEEZ5nqCuHCv36JwU5Xlc3I9a8zlsqmBd8RYAhrdQQedwONj69edUFebz+5L33ZoQYdExLLj+FgZPnMKVz/y72dd3FxKJhNjbb3eXz5uOHqV25S/UfP0N9vp69MuXtzJC56hd+Yv7saWgAHt9PdLwcJL+9U+GrV1D0ov/atd495zqCfsV1/iXo4sEZtSsROZfNYLIBN98kArrYPfjxMELfZ4bbTLxl2o9gFsHqClap4FydNsmvv3X02xf/iXHnTkouqL91JSVCt794+tg5aNweEWwPlKHEA0ULzShSr822C5UsmqOKQJfSEOVYWjknsxnq9nMhs8+pOjoYZ/jju8W3G6j5y7gTy+/zeBJU4M0884hC9WS/tVXpH/9FYlPPsnwzZuIvMY/jt8VSXvGQ4c4OvMkSp/3lDs3dSkrUoSST0V8vFtGu62ISbLtY9jUeM67dxKDxnpCDaNnC4Z3oWIBtdY4ag2e3+0t+hrUdgfZNdlc+dOV7CrdxQ2rbgDgsidf4Jz7HiFtrFD1E52SxnUvvsFNb/wfQ+cIKsbj6g4SKvMPXfzx80p+ePkv2CwniFNkcW7k31kU/hInQppvpOcqfw6Et0v76LZNZG5aB0BoVAwR8Qlc+MhTJA4b0erfp7tQpApJvmX/+heF99zj3l/x+hsUPvggDlvXlOya84RkZ2+vasjkyUjkcuSxsUhV7ctPuOfU4fz+wHxACPG01hVbREAikTBmbjITT/X1bn9T9Tz153wBJz9M4uz73Pt/yyvg86JSxjiVn5szUIbPnENcusc7s/On78kp1QMQpfCch7bjG2Hrm3BsVbA+UocQDZQmpI32JKkpk4yY5TXYJFZuzIArkhMCvubZOc/6bO/84Ru2f/cVnz/hKe1y2O1k7xI8EL3FMPFGM3YMmjFCnoBEqST+0UdQj/HNGzAd8c896CyFD/wVh9FI9Ucfc3TuXGp/WYX5hG/7eWVK6xUZzSEmybaflBGRDJnsqSYZPVcwECtrtXxc8S6/VT/M9PIhhNjtnF9v4PwmpcM1phocFhOOlHDsw/yl4uVKJRnnXUu9TIvW1sDSx+93GxBGg4XKwnp++/ANcFiwNvxGnCKLVNVe0qfEkKMM7HE8OeVkJsZNxGG38/ObL7Plq899ni/P9f1NlTvlv7tayr6jtFQZU/v9D9Sv909c7SwOhwOL03sZdd217v2ayf7VVe0hyamrYbLaeXrFoU6NNdAYOSuRGedlMHSqp53AwaJhsOARYkITeS7lLF4pLSfGZkcKxDsNVz8D5dD3kLcNXUwsVz//H6576U3ComMx1dcyWb+bMUk6FHZPEnNjgfN7Ck/t6o/YImIVTxMmLUqjNKeWgiPVrNF+y7FJe9BYQqlRemSCLxh6AcuzlvOnMX/iylFXkqD1NVzyD3nkh/evXcXaD99l7PzTqC4qQKnRkD5xSrd9no4ikUhIfvnf6L9ZTui8ueRedTWNe/ZQ9/vvhDnzQTqLw2zGfNzT5M1WXkHh3Xf7Hddcr4+24PKgnKgw8N76bG6ck4FU2jPVSX0J74VuXFoYuhg1tRWeHII/lcQztmEd4XY7Z9UbWKrz9Txm/XQnF+qF0MvKi1aSHOorfFZltPNL3KmcXfErlQV5LPnrIyjCLsfcYMfh8KzklFIzhG9m5eB5vIi/0NttE25D1mjnZLVwThUdPcKh9WsBMNToGTbtJOoqy/nlnVeFz5I+hLIcT8goLLp3Gijh551H3cpfMGzeHPD56s8/JyyAinJnsFVWYm9oAImEiPPPp/QfzwAQMqVzCyqlXMqI+DAyS+v4YFMO189KZ1C0NhhT7vdIpRKmLk7HZrFTW95IWW4dhZnV5GZUMmhMNOeMvAQ2vO0+Pt6ZOFtlrMJsM2O1W8nOWUvyV9cRZbfD32uoNFXxv+KlnHzR+Wx6732m6XchTTyFmkKPUdNw5DdC1UB49wgWNofoQWmCKkTBOXdN4MKHh3MwZgtmeSM1Gk+p47lDzuXp2U+z6qJV3DPlHj/jBMBs9MRaV737GlaTiT2/CLG8yWee55NA2JtRDhpE3L33oJkwwd0jpODW23z6hDisVhr37w/ocjbn5GCr8+9d5KJhz55mn1ONHkXEJZcQtmgRyoyMDn8Gl4EC8NxPR8QVXBvJmBiLNlzJyFmJSKQSkoZG+DzvsGuJsNshJIbRARoK/nJipfvxhqPLuez7S/jn0sU4sn+D7LWM+uUKFBop2dOuQ6nR0lhbQEOV0MbAYfPo4EQpSrgsJYa/WnIoaxTOw6nxUwlXhXPt6Gv5y8S/kLCphh9feJZjO7bQ6NXfau+qH/nq2cfdxgnA8JmzmXj6We5t7wqe3oRUpSL1vXdJ//ILRh7Yz9B163yeN2zY6A7HBAt3eCcxEalWy6BPPyHxhecJ6aQHBWDpzTNROitVtmRXtnK0SFNkCimTTxeqLYuzaljx+l6O7ymHpMkw41ZqrXFYRl9BeGgSSmdjxvwj33HJD5dw5eZHuDA5EZMEMDdw06qb+OTwJ7xv/Z5y3SCkOEirzaY8z5OAbbA60xnCO+69DgaigdIEm93Gqv+9wWcP3crgohBwwNkyT9hndLRQJZAYmthsr536qsAnoCpEy5Qzzw/6nLsaiVxO3AMPuLddgml2k4m8G28i55JL0TsFnFw07NxJ9uIzKXrAE+aym81YvETgWgoZqYYMJfEfT5Py2qtIpB3/mbpCPC4+3JzDcz8d5o+85pvgiQgVbdc9P5tTrhV6w0w8zTcWfqjxVI40LsA2dDGBMrN+D/HkZH149EsOVR/hE1MBX357NXx8AeX5EVxdLyUiIp7UUScDYG1cSxWfE6Lx3HjLHL6jj7UO4tWp/2TDZRv46zTht1WSJfyOjmxc12ynVhASBIfNmE3ScE+367Do3mmggHDeacaNQyKXo4iPY9Cnn5D04oto584Fh4OqJR9R+eGH1G/YQMnT/2i2waDp+HFyr72uWW8MgDk/n9wrrwI8+SchU6YQcf75QfkskVolt84TFhqbsyv5bk8h+VX+zSNFmkcX66vwenRbCUgkHE94gE8q32V1xa1IcBBnszK2eC6f/K+Riko9AJVyGXtUKhz1pWTpsxhWPpWRK85FoowAwJB9gIYaz7mzq24x2+qu4ERh2ysmuwIxxOPF10e/5ssf3mDadsH9ePKeWE46ZGXq4gRW2AQ9lFFRo1oaAmN9fbMGyuQzz2tWwKq3E3XN1diqq6l46y2KH3sc1ZAhNOzaRYOzN45hyxYiL/PU6Zc88yw4HNSvW0fVp58SMm0aVR8uoebbb0n//DNqVvxI9ccfN/t+3oqanSFU5f8Tf2/9cd5bf5ycF84K8AoRFxKvUFh0ciinXD+KNR8Kid9Wh5o1NXdx6JCECxwfM9NooaRhMvOOX8raoZ+QGSEYDXKbguLGGvdS6B8xUWy3zGFwyS0AaHLWcrQqGrk0Goe9ErW+iGp1LhKn2dNo9RgoYQY5U9fB+6tv4P6lPwBgbmygvlo4N0/s3klopL/KLcDYBYs4/da7AFCFCJURUpkMTTc25+wsIVOmwBSQhmoxbNhA9aef+jzfsGMHKW++gbW0lJBp09z7ix97nMbdu8nbvp1RR4Tvr+GPP7BWVKBbtAiA6s+Xuo9XDk7vkvnPHBLNa2uz+H5vEd/vLSIyRMHuvy3qkvfqj+ia9OypqzJiarDw87tCSsGJfVVw8WUojn/OnJyLAZhUeBoWVQ2NEgvbNN8TUyaIE56SJRRBhNpH0cBeKrN9e/UUmjIolUxhTI6UwT0o1SUaKF5oK44R08RrqjTLseWrwRnJGRk1MuBrj2xaR96BvQRKUh9/6hlEp6Qx4bTFQZ5x96KdM4eKt94CIPdPf0bhlRtizvOUBlurqjAd8fzgXbFsF7nXXIvDHFhVMvq2W6la8hHh57ZdjK0lZGK+SdAYOTORpKERfPz4Fve+4gIHNamj+VfpET4ruhGABVlX8fHUv6G0arh431+xS2wsm/g8DomQWyKr9ugFJRYLuSMO3SBqGl5GbZZAo8coUVqlyK0SrHIH8VXOChKHA4vZxNEtG32SXC0mo1sA0cWiW+7CbrP5CCJqIyK5/uW3kSuUPaaW3BlCTz4ZeVIi1qJin/2mY8fIXnQ6AGkffugWUzNle3JuGvcfoHblz1T97/8AMFxyCdrZs2hwSghIw8KIvu66Lpn3xNQIJBJPflO12GG8Xag0vrfrstw69q71zcsyTr6DGQWeUM1Mx3wMucJ5t3n8Bk4cXepzvF2ahFopw2j2DdE77AYc0mJIjgjiJ2g/ooHixVxZJLsq/Xu8aFSRvLLgFawleqz6eg4f3UHyiNHoYoRVfm1FGT+/+TL2Zkr/Trroil5bLdAeNBMnEHH5ZeiXLsPR2OijV2LOysZhtSKRy90hoObwM05kMnD+7eLuvpvYO+/sVFinKS9cOE7oNyGBd9cdb/0FIs0SGulfZlqsO5dRlZ7cHqlDitKqZn72FehMwu8+siGeIdIT7FCriTP4CwOWhmcSK6vGUil4QLKT6kkrDUFhkzJvTwzVYRZSyj0ryPWffODO6/LGYvIVA0scOpyYtHS/46KTe7Y6oTNIpFLi7r2Por/+tdljqpcu9ai9ehlhBXfcgdUrFKT/8kv0X37p3s744XsUCYGrFTtLiFJOSqSG/CpRDyVY7FjhW522+pN8Ig55mmQaSj0J5/mSOPZVH0SGr1HuCPkLu4Z/wMjisYTV6bGbj2AzH8RUvZ2NOxOZv+B/XfshWkDMQfHCEH8aaou/zkajPJIpytEceuUj3r/jz/z02ous/eAdAP74+Xvev/3PfsZJTKqQ0KRQqfuFcQLChTHx739n2OZNyJ0XMWVGBhK1GofZzJGx4zi2cCE1K9og7uN10Ux9712QSom9+y73+wSTy6en8ciZo0iN9Ige6dSibd4RpDIpqaOjUIXI3aWP2/OmU2P1qFo2KOtYfOQWMqomuPcl1w7nkqMXc13OFNRWLTaJhTVDPyYzdhsfTXmCgyPfYYqqyn38M9fcj0UuXFzTykKYkB1OdK3Hs9LUOIlMCpzMF57QsnhiX0V39lmkvPO2O3m9KXUrV5Jz2eUcW7AQe42nMZy1mTwVAMWgtC4zTlwMj+tZpd6+ztSz0pFIJZz6p9FEJvpXQuUdqgrwKgGtOQIcEh4sr8aBx3CRSBTMLryZaPsspHKn4e5oRG6XkhLSetuIrkQ0ULzIOyDE5yoSfeM0tVV6QRbYywjJ3rmNqqJC1n38f+594085w/34wkeeYt5Vf+L6l9+mvyGPiiLltVdRjRxJ9M03IY/15ItYi4oxrN8AgFTrOYES/vE08njPTSz+scdIfOYfpL77DqGzZzN8+3ZibrutS+d91jjPzUoM/XScs/4ynmuencWwqcL3WV8n4bPqd9zPqy0hJNb5Vl7NzrmQ4w2noSkR9DXU8mIqo7bx29DPaFDWEicLYXpYKWPDSzj3ovlETT6HEFPbjchxCxcRFu2ft6RQ9p7GZ8FEIpEQNn8+6cuWoh47lojLL/M7pnHvXqzFxQFeHZjoP98QzCkGZGi8bw6edzNBkdaZcU4GN70yjxEzEjj9xjHI5FI0YQqGTfNcWzU6JYNGh/u99uzDt3Hxkas4q0aBpJlbv0Tqm5N10RX+sg/dibiM9CJt7ARmXngZ0Slp/Piap99I/sF95B/c53f8xw/eid1mJSQ8gnPvf4yEIcOw2ayEx8YTFh3DtHMv6s7pdyua8ePJ+FaQ3baWlQu5KQ6H0NAPSy2l1wAANb9JREFUkIaGkvrO2+Recy2RV15J5CWXEHnJJRi2bcd4YD+Rl1+GxKulvSy063URIrVKNjy4gLn/+o1GS9cocQ4EZHIpMrmU1FFRJGToKDlei5f6PVpLBACh8XJmRvzCr5mn+I1xSBpBWtVkqmKFRUGcKgKF1M7pScdg5lwApl14CTu//Zoz732QZ797mIlZEQHnI1eqGLvgNIZMmcGmpR+hDAkhJDyC5BHN9+XpL6hHjmTwV19iPHoU/dJlAGhnzSLstFNBKqPkySf9XhN96y1EXXMNuddci93YSMjUqWgmTvRJcu8qmnatrjNaiA7tn0ZkV6FQCl7+6ORQLn9iOlKZhD1rPL13Lnt0GtoIFSe+/ISsTcc4ajzZ/VyMfhrfywRvY52yiqUTn+OKvQ8RahKM+zodFEQZGJqnZegp8wnr4TJ80UDxIi49g7h0YeXXWFfL2g/e9TvmupfeZMUr/6SyIA+rxUx4XDyXPPEc4XGCBXvGbfd055R7BTE330T0n/9Ew86d5F3/J0AQmgqZOpVhG9YjC/dY89oZ09HO6LmOsWqFcHIbLXYcDkefTJLsLShUMi56cCo2m50ty7PZ+6tvg7KMMQnEn/wYPLnV77XHZDLM2pMBp4ES4uX9iBByVOZeei0zz70EpSaE4dnTIOuY3zhj5p/KSRddgSY0DE1oGOfc90jwPmAfQpme7n6sSE4i8oorAGjYtZPa73/wOTbquuuQR0aS8d23OBwOpMrALTy6ggUj4vjXSo+8QE2jaKB0hoh4IWw9YkYC+38vYNz8FLQRwt9z8JlnMPjg7YTVlbHLcIn7NbU2wZNsV1Rjk1kwZqzl6oqNXJCuwiS1YZfaOTLOypqr7/N/w25GDPE0w6QzzuG+z7/32ZcxZTrRKWnIvBr8XfTo027jZCAjkcvRTJokJLwCEc7VmDwmBkkvaIjoQqP05BiZRPdyUJDJpMy5eBg3/se3m3fy8Egi4kNYNG0fM0M/Roqn3UC2XMqgcE/ILU7p5ZIOFc4niUSCUiNcgB++6AW/80ypCeH0W+8Wzz/wMTJkXt2GE598kqjrriX59deIvecehq773d0NXKJQdKtxAjAqUcd3t89GIRMWBrViC4qgEJ+u48aX5zH3Ek9zRrQxcNH/0I6eGfA1UdYUjCduZYh2BMmyAuaYarBLhWvirIx5SIOcC9gRen4GvRiJVErKqLFIZXKufv4VLnjwb0gkEsYtFEr5UkePIzKxZ6WAexNSlYr0ZctIW7IE9fDmO8v2JGq55yffaBbDPMFEpZH7tBGITxfi2cNOncGU0G+IV3hWzkYpjIr1VPOEJjvl1KOHQoALo0Kp4roX3+SUP3vylCISEkUPmBeJzz6LdtZJRF9/vXufVKsl/pFH0J12GjG33oIivueNuQmpEQyJFXJRahvFUuNgodLIfbSLABh3MdopZ7o3yybIKXI25yyP02ExpuMIEZLdL6jz9NS6c9KdXT/hNiCGeFrh/Af/hqmhHl2MR/Nj/Cmnow2PIH1C891TByqasWNaP6gHkcukKGQSLDYHRqtooAQbu92TYO5yNTPoJLj+R2b9925WV9/P9NClFM14lmtmDONDIY2JqJiRcNduCGm+4k2hVhOR6KkqGD5jdpd8hr5KxEUXEnHRhT09jTahc+ai1BpFA6WrUXrpp1RoQlgVWscoswyHWgZ1IAkTjNY5jUb+lnIG6WMuDdjCpScQDZRWUIWEuJUnXUhlMobNmNVDMxLpLGqFDIvNKnpQupP0OWyPmcU18tuoCB/LsxeMA+Afs/9BVnUWMxJm+JSeN0fq6HFMO+9iYtPSGTn75FaPF+md6JwtKGobxRBPVxOfriM0UkVkQgjb7BYsEtinskG54DGRhwvGiAS4ZMTlkNB7mtmKBorIgEOtkFFntIqVPF2ATCHFZrEzaKy/J+SrkEtYVRbOWbMux6WpfP7Q89s3vlzOvCuv7/Q8RXoWVzXP/kI9X++ScvaERFRyfw0qkc6jUMm4+pmTkEolLHlni9/zEZExkLEATHWQOCHACD2HaKCIDDg0XpU8IsHl/HsnsX9dAbMvGub3XI1Zynr7SZwfFpw+SyJ9F50z7PD59nw+355Pdnk9D54RuI2ISOeRyYS8LoPJ32M1Oikcxjpjrb0sp0tMkhUZcKgVws/eKHpQgk5CRjin/WkMITr/6hCDM6SmDdDAUWRg0bSJ59Id+ZjEnLAup6FJWDtMJbQfQCLpdcYJiAaKyADE5UERc1C6F9fqLVCHaZGBhdnm8V6GqeRUGcz8nlnegzMaGDSYfT0oUaFKn8q73oZooIgMONxibeKKrVupdxooISox12Cgc8W0NIbHh/LvSyZw8ggh5FdYLTYR7GoMJt9rXm9fLIgGisiAQy16ULodh8MhelBE3KTHaFl178lcNCVFLDnuJmx2h7sw4G9njyYmVOWupuutiAaKyIDDFeLJKq/nlV+PUmUw9/CM+j9Gix2XRIqYgyLijavkuE5Ule1SvMM7V85IY+fjpzIxNaLnJtQGxCuFyIDDlST77rrjABwpruOda3pP7X9/pN6reiBEIYZ4RDyEqYXbkKgq27W4EmSlElDJ+4Zvom/MUkQkiHj34wHYmFXRQzMZOLjCO1qlrFcn5Yl0P2KIp3vwnIPyPtMiQjRQRAYc6iYreJl4w+xyXB4UMbwj0hSd24Mihni6koY+WOYvGigiA46mBoqrs6pIcCmrNZLtlNMWE2RFmkP0oHQPhj5YRSdeLUQGHBrRg9ItTH9uDQC7Hj+Vb/4oBPrW6k2kexCTZLsHg9kT4ukriB4UkQFHUwNFLhVPg2Cjb/BURn3zRyHLduYDEB3qrzArMrAJd8reVxvM1IlelC7jeLkB8PRB6guIV2aRAUdTF6foQQk+eVUN7sc/HSh2P378rFE9MR2RXozbg2KyMvO5NVTWm3p4Rv0Ph8PB0h3CIuH0MfE9PJu2IxooIgOOpAhNT0+h35Nb6TFQdufpAXj18okMjQvroRmJ9FbC1J4VvcFsY9uJqh6cTf/kUHEtWWX1aBQyzpuU3NPTaTOigSIy4EiLCvHZDtThU6RzeHtQQOhDNmdoTA/NRqQ349IlcmF3OHpoJv2X/CqhjcDIxDC3x6ovIBooIgOO5CYelDrRQAk6uZUGn+1EnZroUFUPzUakN9NUk6OiTgzxBJsKZ9gspo+dg6KBIjLgaFpmbLbaxVbvQcY7xAMQE9a3LowiPUel2Hoi6IgGiohIH6Zpl0+RzlFU49uZtq9dGEW6l2itp7qrol40UIKNx0DpW1V0ooEiIoKYhxJs9A2+5aJ97cIo0r0s/8tsTsqIBhCreIKIw+HgpV8y+WRrHtD3FgqigSIyILnn1GE+26JIVPCw2ux+f8++dmEU6V7SokO49qRBgBjiCRZ78vWc8coG3vgty72vr52HooEiMiC5c+Ewvr9jtruip170oASNmgBdafvahVGk+3ElUVeIHpSg8PDX+8gsrfPZ19c8maKBIjIgkUkljE+JICJEKLmrN4kKlsFCH8BAERVkRVrD9RupFHNQgkJBdaPfvr6WrC4aKCIDGlfzunoxSTZoNM0/AYgVPSgireDystWbrBgt4vnYGUxWm9srfPuCIe79fc2TKRooIgOaSGf1QG6FgWox9h0UXH14dGpPU7K+tnIT6X50ajlKuXBLKq019vBs+jZVzmuZXCphclqke7/3OdkXEA0UkQHNkNhQAP69+ijz/vUbZeKFsdO4PCgpkR7F3iitGOIRaRmJRMIgZ05YUx0dkfbhCpNFapXMHxHHuROSuOfUYX6ieL2dvmVOiYgEmWFxoe7HdSYrv2WWcdm0tB6cUd/HlYMyJC6UeJ0KqUTio3MhItIcg6K1HCurdyoRx/b0dPosLg9KtFaJTCrhtSsm9fCMOoZooIgMaIbFh/psF+pFD0pnqXGGeCJDFLzeRy+MIj1DerTgQXniu4NIpRKumjGoh2fUN3EZKH3dcymGeEQGNINjtD7bmSW1PTST/kO1M8QToek7TclEegeDvM7Hx5Yf6MGZ9G0qRQNFRKTvo5L79uXJLKlr5kiRtuIK8YSH9O2Lo0j3Mzjad8EQSFNHpHWqDIKWTF8PrYoGisiA571rpnD6mHgAcqsaqDWKF8XO4KriET0oIu0lPSbEZ7swgJaHSOt4Qjx9u3pONFBEBjyLxiTw7jVTGRoXisMB3+0p6ukp9WlcAlEJ4eoenolIXyMlMoQ7Fw51bxfqRQOlI7iqeKL6uECiaKCIiDi5crpQvfPqr8fEUE8HsNsdHCiscVZg+Ccgi4i0hfsXjeCMMQkAFFaL5cbtxWqzk1VeD0BcH9cfEg0UEREnF01JISJEQUW9iVs/2dXT0+lzvLM+m7Nf34jdAREhClE9VqTDJEdqANGD0l6+31vE0Md+5ni5AZVcyqwh0T09pU4hGigiIk7CNQr+d900AAqqG3A4HD08o76Dw+HgXysz3dvD48L6nCiUSO8hOUI0UDrC917h6ZOHxxKm7tt5YKKBIiLixdhkHQAWm4PaRrHDcVs5WNSkPFu0TUQ6QYrTg7I3v4ZGs9iXp600WjzXrFtOzujBmQQH0UAREfFCJZcR5uxXUS62fW8Vl5dpY1aFz/6zxyf2xHRE+gkzh0QTF6aiUN/Iq2uO9fR0+gwlNYLQ5Gc3zmDKoKgenk3naZeB8vzzzzNt2jTCwsKIi4vj/PPPJzMz0+eYkpISrrnmGhISEtBqtUyePJmvv/7a55j09HQkEonPvxdeeKHzn0ZEJAi4On5WigZKizSYrSx46XfuXbaHijrhb3XJlBReuWyiqAAq0il0agWPnz0agDWHS3t4Nn2H0lrhPIzvJxV07TJQ1q1bx+23387WrVtZvXo1FouFRYsWYTAY3Mdce+21ZGZm8v3337N//34uvPBCLr30Unbv3u0z1tNPP01xcbH735133hmcTyQi0klinKV5lWJ34xbZk6cnp7KB5bsLyXE2d8uIDeX8ScnIpGKMR6RzzMwQPABZ5fXUm8Rwa2vUm6zuv1OCrn8YKO3qxbNy5Uqf7Q8//JC4uDh27drFvHnzANi8eTNvv/0206dPB+Dxxx/nP//5D7t27WLSJE9fjrCwMBISEjo7fxGRoBPtFDeqED0obeZX5yo3MqRvJ+WJ9B7iwtQkhqsprjFysLCGGRl9uyKlq3GFd8JUcrSq/tFmr1M5KDU1NQBERXliXbNmzWLZsmVUVVVht9tZunQpRqOR+fPn+7z2hRdeIDo6mkmTJvHiiy9itTZvIZtMJmpra33+iYh0FdFOD0pFvehBaYlAq9rIPi6tLdK7GJ8SDsC+gpoenknvxWqz8/Lqo3y/pxDoXwKJHTaz7HY799xzD7Nnz2bs2LHu/V988QWXXXYZ0dHRyOVyQkJCWL58OUOHetQB77rrLiZPnkxUVBSbN2/mkUceobi4mJdffjngez3//PM89dRTHZ2qiEi7iBZzUNqEwRzAQBH774gEkfEpEfxysJQDRaKB0hzf7SniNa9EYtFAAW6//XYOHDjAxo0bffY/8cQT6PV6fv31V2JiYvj222+59NJL2bBhA+PGjQPgvvvucx8/fvx4lEolt9xyC88//zwqlb+40yOPPOLzmtraWlJTUzs6dRGRFol1e1BEA6Ul6k3+5Z9RWjHEIxI8RsSHAXC0tB59g5ljZfVMHRQpaux4UVJr9NnuL/kn0EED5Y477mDFihWsX7+elJQU9/7s7GzeeOMNDhw4wJgxYwCYMGECGzZs4M033+Sdd94JON6MGTOwWq3k5OQwYsQIv+dVKlVAw0VEpCtweVDEEE/LGAKEeCJED4pIEBnuNFCyy+s5+/WNFFQ38tlNM5g1JKaHZ9Z7iGiS95UR239aTLQrB8XhcHDHHXewfPly1q5dy+DBg32eb2gQMvmlUt9hZTIZdru92XH37NmDVColLi6uPdMREekSBkULHVWPFNditTX/ux3oBDRQxA7GIkEkJVKDRiHDbLW7m1Buya7s4Vn1LkwW32vU0Lj+Y6C0y4Ny++2389lnn/Hdd98RFhZGSUkJAOHh4Wg0GkaOHMnQoUO55ZZbeOmll4iOjubbb79l9erVrFixAoAtW7awbds2FixYQFhYGFu2bOHee+/l6quvJjIyMvifUESknYxM0BGmllNntHKwqJYJqRE9PaVeiSFAiEcuE7UfRYKHVCphaFwo+ws9OSjRYiK2D00XCv3JQGnX1eTtt9+mpqaG+fPnk5iY6P63bNkyABQKBT/99BOxsbGcc845jB8/no8++oglS5Zw5plnAkK4ZunSpZx88smMGTOGZ599lnvvvZf33nsv+J9ORKQDyKQSpqcLlWnbT1T18Gx6L4E8KCIiwcYV5nFhEKXvfahvkqye6mwT0B9olwelLc3Thg0b5qcc683kyZPZunVre95WRKTbmZERxZojZezKreamnp5ML6XphVFEpCu4amYa+wv1HC2tBwKXtw9kGpp4MvuTF7P/fBIRkSCSFiXkoZTVGVs5cmDy3w3H+XFfMeCptMiI0fbklET6KZPTIll178nctVCQqqg3igaKN96ezFvm9f0Ggd70D7k5EZEg46pG0TdYengmvY/NWRU88+Nh9/btC4ficDiYKSp9inQhoc4mnmJo0ReXR+nRM0dy09z+ZaCIHhQRkQC4BMeOVxiY/cJaNhwr7+EZ9R5eWuXbIFSnlnPexGTi+5H+gkjvI1QlVIjViQaKDy7BxLgwdb/ThxENFBGRAHj3lCnUN3LN/7a3KQdrIHC8wuCzHdpP+n6I9G60KhkgelCa4qqmC1HKengmwUc0UEREAhBIcGzLcVF/AfyT8vpLYzKR3k2YM8QjJsn64jLY+uNCQTRQREQCoJRL0TZZkezO0/fMZHoRZqsdcxPxuv54YRTpfWiVTgNFTJL1wWWg9MeFgmigiIg0Q1MvSqG+sYdm0ntoCFBa3B8vjCK9j1DRgxKQ+n5soPS/TyQiEiQ0TTwoRaKBEvDm4MoNEBHpSlyeurI6E5uyKpg9dGD34/l4Sw7VDRa3cF1/PA9FA0VEpBksTUIZhdWigdLgvBiGqeTE6VREhChR9iNhKJHei3co8ar/bmPzwwtJiug/qqntwW538MR3B332iR4UEZEBhNnqa6AU6RtxOBz9rpSvPbji3eEhClbdezISGNB/D5Huo+kN+ESFYcAaKIFKrV05Ov0JcekjItIMTQ0Ug9lGbePAjn+7Shq1SjkyqQSpVDRORLoHldz3dlWkb2RLduWADL3WNvoKSGoUMmT98FzsfyaXiEiQCFHJqHRKfkRrlVQazBTqGwn30kgZSPywt4g7P98NCH8bEZHupKmn7od9xaw/Wo5SJuXos4t7aFY9Q00TAyU6tH92eBY9KCIizfDq5ZNIClfzxpWTSHZ2CN2dX93Ds+o5XMYJiKXFIj3P+qOCunPTsveBQFMD5aEzRvbQTLoW0UAREWmGyWmRbH7kFM4en8SZ4xIBeOmXTLLK6np4Zj1Pf1StFOn9PHP+2ID7a40Dq2eWd4jnq1tP4pwJST04m65DNFBERNrADXMGMyZJR3WDhYvf2UJJzcDuctwfKwZEej9XzxzE17ed5Ld/oJ2PLg/KKSPjmJoe1cOz6TpEA0VEpA0oZFI++vN0Rifq0DdYePL7Az09pW6lqUBbf6wYEOkbJEeE+O0rHqAGSrimf+fDiQaKiEgbiQ5V8fJlEwD45WDpgFK0LKs1+WyLSbIiPUVcmMrdl8dF8QCo5HE4HFTWC+ehy0DRiQaKiIiIi5EJOnePnvI6ExabnTWHS/2S1vobpbW+K9RQ0YMi0kNIpRLGJYf77BsIHpT/bTzBlGd+5bs9he6cG9FAERER8SE2TAVARb2Jd9dlc8OSndz2ya4enlXXUlbn60FRK0QPikjPMS6lqYHS/z0oz/x4GIC7l+6hxqnHJIZ4REREfIgJFQyU8joTS7bkArA5u7Inp9Sl2OwOth73/XxGi62HZiMiAunRWp/tggHWhmKg5KCIfloRkXbi8qCU15kw9fMbdaG+kSvf30puZYPP/voAXY1FRLqLecNjfbb35uux2uzI+3FfKIkEHA7hsb7BDPR/A6X/fpsiIl2Ey4NSUW/q9yJRH23O8TNOAIbHhfXAbEREBJIjNKy+dx6bH15IuEaBwWxjf2FNT0+rS/HO+zrg/Kw6df/2MfTvTyci0gV4e1Ca9uvpb6xzqnX+86JxzBseS2W9me0nqjh/UnIPz0xkoDMsXjCSZwyOYtWhUrYer2JSWmQPz6prMFvtPg0C7U5PSmJ4/26WKBooIiLtxDsHxXWhAGg029D0I4XVslojR0rqkEjg1FHxRIeqSAzXMLZJBYWISE8y3Wmg7OmnbSiMFhvP/XTYb/+g6BBSo/q3gSKGeERE2onLg5JVXu+zv8oZF+4v7M7XA0JpdbTTKBMR6W0MiQsFCBiK7A+8+EsmHzmT8b2ZMijSr4Fif0M0UERE2onLQGl6Qayq718GSrVB+DxJ4eoenomISPMMihKUZXMrG3A4HK0c3ff4cme++/Hw+FCmDBLCWJdPS+upKXUbYohHRKSdxOsCexP6kwfl1V+P8d2eQgAiQvpnK3eR/kFKZAhSCTRabJTXmYjT9R+DuqbB4qNYXVjdyMaHTiK3qoGJqRE9N7FuQjRQRETaSXyYGqVM6lfB4/I49HWOlNTyn1+PurcjQvp3KaNI30Ypl5IcqSG/qpGcyoZ+ZaDsyKnyyXMzWu1EapVEagfGokEM8YiItBOpVEJKgOS0yn5ioOgbfGX7I0UDRaSX4xJuy6k0AJBbaWBnTlVPTikouBRylTIpIUoZL186oYdn1L2IHhQRkQ6QFhXC8XLhYhiilNFgtlFlMLXyqr5BbZO+QuFiiEekl5PmzEPJc+aFnfzi7wD8et88hvZhzR5Xi4nLpqXy1LljkEr7d1JsU0QPiohIB3Al5gHMHyGoWh4trW/u8D5FU09QRD9XqxTp+yRFCB7N0lojJqtH3XlLH29B4WrSGa9TDTjjBEQDRUSkQ3iX3V44KQWA3Xn6flFF4Grp7iJS9KCI9HJiQoXfaEW9iRKvzsaltX3bq+nyoMSF9Z+8mvYgGigiIh1Aq/JER+cMi0EulVBRb6JQ3/ebllU0KZcWk2RFejvRWlf7CbPPOXikpK6nphQUXAZWXDOVg/0d0UAREekAF09JYXSijjsXDkWtkDE6SQfA4lc3UFHft1dtVU1DPKKBItLLiXFqE1XWmyjSezwomaW1PTWloFBeJ3yWgepBEZNkRUQ6QLhGwU93z3Vvzx8Rx76CGuqMVlYeKOHqmYN6cHYdY/nuAn7PLHdXDrgQdVBEejueEI+ZwmrP7ze/qpEGs5UQZd+71Vlsdnc+WHPaS/2dvvetiYj0Qu49dRjbT1Sy9XgVJyoMPT2dDnHvsr0B92v7UX8hkf6Jqz+W2Wb385rUGfuGgbIrt5qf9hdz32nD0arkZJfX43CAXCoZsHlgvf9bExHpA0gkEs6ZkMTW41UcL+8f1Twu+nu/D5G+j1ohI1Qlp95kZW9+jc9zjWZbM6/qXVz09mZAkC24eV4GZ722EYB4nXpAVvCAmIMiIhI0MmKEpmXHnR6Ukhpjn1GXNVoCX8TPnZDUzTMREekYrjBP00T1xmZ+272VrLJ6duRUYXNKyD521qgenlHPIXpQRESCREasoGaZX9VASY2Rmc+vITJEwSmj4jljTAKnjo7v4Rk2T9PEXoVMwv6/n45KLq5hRPoG0aEqcgJ0NO4LBoq3PIFaIWPbCUEF97KpqZw5LrGnptXjiFcfEZEgERemQquUYXfAR1tyAKhusPDVrgJu/Ghnz04uAEaLjS935lNeZ6KySWnx4BgtaoVMDO+I9BlcHhQXg2OEBYOxD4R4ao2ehoBqhZTtTgNl+uConppSr0D0oIiIBAmJRMKQuFD2FdTw4/7inp5Oq7yzLptXfj2GVOJfxjg0LrSHZiUi0jGSIzzqzrFhKnROBeS+4EFxKcaCUHm0v0DIoxnoBoroQRERCSKjEgQ9lNwArubexsoDJQDYHVDidYEEGBorGigifYuRiZ6eO0kRGjQK4fbWFwwUb/XbjVkVWO0Opg6KJNWrpcZARDRQRESCyNhkXU9Poc3Et9CWPjHCv1uziEhvxrU4AEgKV6NRCOXxfaGKp7TJAgHg1pOH9MBMeheigSIiEkRGJ4U3+1xv69Njttqbfc4VvxcR6SsMi/d4/RQyKRqnfo93hVpvNVYCGSgzh0T3wEx6F6KBIiISREYlNt/a3Whp3iDoCcrq/C+KESEK7jttODMGeOxbpO+hVngEBS02u3vbFeJZeaCEUX9byWfb8npkfi3RtKlhZIiCUJWYIioaKCIiQSREKefCycmMiA/zSzQ1mK3NvKpncHVK9daAuu3kIdx1yjCxekekT3LHgqGo5FJuXzDUHeJ57qcj/LivmFs/2QXAo8v39+QUA1LURLslJXJg5564EE00EZEg8/KlEwG49v+2k1XmUZU1mKxuSe6exmixUecsbdz9t0UcL6/nl4OlXHNS3+shJCLi4oHTR3DnKUNRyWVuAwXg9s/+6MFZtU5elW9SfdOS6YGKaKCIiHQRoSrfHjb1JisV9aZeYaSUOV3KKrkUnVrOpLRIJqVF9vCsREQ6j0ounHeaPtJDyuFwkF/ta6CEqsUO4iCGeEREugxtkwZlr6/JYuozv/LNHwU9NCMPrvyTOJ1KDOeI9Eu8c1J6M+X1JowWu0+oNUwt+g5ANFBERLoMbZMkt5UHBd2R+74I3DW4O3HlnzQVaBMR6S9o+oiBkl8l5J8khntK+9MGuP6JC9FMExHpInpzFn6Zs6wxLqznw00iIl1Bbw7xOBwOvtxVwNikcPKd+SepURruWDiUNYdLue6k9J6dYC+h915BRUT6OE09KD3F75ll/HKwlL+dPdp90fZ4UEQDRaR/0pIHxeFw9Ghoc93Rch78ah8Ady0cCghekyump3HF9LQem1dvo3dcQUVE+iFaVfMXyNkvrGX57bO6JcRy/Qc7AMiI0ZJf3YBSJkXfaAEgrgU1WRGRvkxLOSgmq73HclTe/C2Lj7fkurc/deqyTB0kag81RTRQRES6iJbWZ4X6Rn7YW8wNcwZ36Ry8VTS3naji18OlAExLFyp2YkUPikg/paUQT63R0iMGSnmdiRd/yfTZV2kwkxql4fxJyd0+n96OmCQrItJDNC1D7gqOlNS5Hx+v8GiyZDr3iyEekf5KSyEelwaQiz/yqsnrggafhfpGXl6VSbkzpFrj9Fw25cJJKSjl4u24KeJfRESkh6g3dX1fkAOFNe7Hx8sN7se1zgu0WMUj0l/xNlBGJvi2oKj3MlCOldZx4Vubmffib0GfwzX/28Zra7O4e+luAPQN5oDHTUyLCPp79wdEA0VEpIsYEhva4vP1xq6Xvj9YVNPi83E60YMi0j9RyD1B1lcun8hZ4xPd294elN8zy7tsDq5FwebsSgCqGwJ7UCakRHTZHPoyooEiItJFnDQkmucuGMeFXrHlucNiuHleBgD1psAXq2BSUN3Y7HNyqYSoEFFSW6R/4t08fGhsKG9eOZmpg4Tcqxs/2uEu7y306oPT1R3Hqw2BPShRWvE8DIRooIiIdBESiYQrZ6Tx0OKR7n0ZMVq3PkqgEE+VwRzUi2RlfeALIkBMqAqpVFSRFemfjIgP47TR8Vx70iDkMuFW5yr9N1rsnP/mJgwmq4+BYrJ2vuO4wWTFZg98DlcHCPE8eubIAEeKgGigiIh0OfE6NZsfXsh9pw3n5pOHeBkoviGe1YdKmfyP1bz5W1azY+VWGrj0nS38eqi0Te9d1cyKDSAxQsw/Eem/SKUS3r92Kk+fN9a9zzsnq9Jg5k8f7GC117nkXfXWEaoNZmY+v4Y/fbjD77kXfzlCiVMg0cXrV0zi5nlDOvWe/RnRQBER6QaSIjTcdcowkiM0hDr7bNQbfUM8T3x7AICXVh1lS3Ylj3+7nwazrxHzzI+H2Z5TxY0f7Wz1PR0Oh9tAcbmQkyM8ctrp0dqOfyARkT7IKaPifLa351T5bDd20kD59XApdUYr64+WU1zjG15987dsPtiU47NPpxGbAraEqIMiItLNuDwov2WWs3x3ARdMSgEgxEu34Yr3twIQrlHw19M9LuD2JNbWm6yYbYLL+otbZqJvsLArt5rnfz4CwKBosd+HyMDiwTNGMiYpnPI6E28E8FQ2mm3UGi2sOljK6WPiCWtnV2GplzrtSc+vbfV4ndgUsEVED4qISDfj3aPn3mV7OVRUCwSWxt+dp/fZjg71JNNZbC3Hy13eE41CxtC4MKamRxHplRQrGigiA42YUBXXzUpndJLOvS8ixGOEPL3iEItf2cADX+7lqR8OtTjWtuOVXPO/bWSXe/SFAuWYtER7DaCBhmigiIh0M6FNVk07cwU3c6D4d4PZd5+3l6WwhQodEGLs4Fsh4H0xHiSGeEQGKN7hzfMnJruN9d8zy91Js1/tKqCi3tTsGJe9t5UNxyq4b9ke9z6XIFtb0WlED0pLiAaKiEg3E9bEU7LteBW1RkvAkuATFQafqh6DV+XPiUqD3/HeVDkreLy9Lt7y32IOishAJT3G4z2M16mbVZ2d+syv7CvQtzhWbpVHgbasvQaK6EFpEdFAERHpZpp6UH7cX8z4v68KmKBX02jh4a/3uyt76rwqf3IrWjZQKg3CxdLbgxIT6hFmiwwRL44iA5MQpeccnJAa3mLfnpaq6gAUMs9ttL0elJ5qWNhXEP1LIiLdTGiAXJOWWLYzH4DLp6X6VP7kVQkel8eW72dnTjX/uWyiT2zdFeKJ1nqMklGJOl64cBypUSE92m5eRKSnWf6XWRwrrWfWkBg0iuaNEJW8ZSNCIZXgcDiwO6CsztjisQAyqYQQpcxPfl/EH9FAERHpZrTKlk+7eJ2K0loTi8cm8POBEvf+/OpGH4nuinoTVpvd3a79zNc2cOjp092rw0AhHoDLp6cF5XOIiPRlJqVFMilNUJZtqbFg02R0h8PB2iNl7m2ZTMIdn+9mV051izkrLsYlh7P05pk+nheRwLTrL/T8888zbdo0wsLCiIuL4/zzzycz07d1dElJCddccw0JCQlotVomT57M119/7XNMVVUVV111FTqdjoiICG644Qbq6+sRERkItKbe+vPd8/jnReN49fJJ/O3s0e79eVUNPuJulQaTT/wbYH9BDTUNFqw2O3nO5xLDRUE2EZGWULcQ4inS++aGvfhLJjcs8egQmSx2ftxXTEmtEatTQfapc8c0O156dAhqhQyZqOLcKu0yUNatW8ftt9/O1q1bWb16NRaLhUWLFmEweGLh1157LZmZmXz//ffs37+fCy+8kEsvvZTdu3e7j7nqqqs4+P/t3X1MVHe6B/DvDMMMyMsMIMOAvIiiUF9gFYQd3apbuFptjbVuam/NXrsm1dbBK9XNDc2tpf1jL6Q1bYpSbNJUerNa1O5FU9J6SxUwbZHKCKtYJWqIkhXktizvIpT53T+AwxwEFRmYM/D9JCdhzjkz88yTmeGZ3/m9XL6MoqIiFBYW4uzZs9i2bZvjXhWRizrw0iL4e2mxaUk4tBo1tv4uUlrLp66pUzYPyi/t3bjeKC/sM7++ioS/FGHH4Quo7e+jMushixYSTXX2LSj2a2cB8rV6TlXX46OSG7LjQzvGat3U+ONvI0Z8Lj+uu/PIRnWJ59SpU7LbeXl5MBqNsFqtWL58OQDghx9+QG5uLhITEwEAb775Jj744ANYrVYsWrQIV65cwalTp3D+/HkkJCQAAPbv34+1a9di3759CAkJccTrIlK0/f+6CFV1zbjb04sj/ZdocjcvxpqFwfedG+rfN+KgrqkT7d3ySzxDC5SqumYAwDd203fPms7ROkQPYl+grF0YjP+p/Id0++f2bpyqbkCU0Qs7Dl946GOF+ns+sJVUz9ljH9mYLoK1tPSta+Dv7y/tW7p0KY4ePYqmpibYbDbk5+ejq6sLK1euBACUlZXBYDBIxQkApKSkQK1Wo7y8fCzhELmMdXEh2PvsPNnU80EjXIoJ7y9Qrja0yVZoberoxrU7bQCApbMDhr2vTqOWPQcR3c9+FI+PhwYHXlqEKONgy+Orf7Xio5IbsImRP2sDBj6vI3k29v4fITS8xy5QbDYb0tLSsGzZMixYMLgY07Fjx9DT04OAgADodDps374dBQUFiIqKAtDXR8VolK+HoNFo4O/vj4aGBgzn3r17aG1tlW1Ek0Ggz+AIm5H6ioT59RUYP9XL3/c2AVTc/CcAYOPiUAT66BDm74m/vbZUOkejVnHFYqKHsB/u6+PhjmdjQ/Dt7hVIiPCT9hf0t6r8IT4ULy+dOeJjRYxQoBimuaP4zysRZeTonUf12AWKxWJBdXU18vPzZfv37t2L5uZmfPvtt6ioqMDu3bvxwgsv4NKlS48dZGZmJvR6vbSFhYU99mMRKYnWrid/oN0cJfYGLvF09y8F7zfNXZrDZGByt2iTD0r+vBL/m7Yc8XZfqmxOJno4+xma7Wd3/WjzYqklRYi+gj85Jgh7n52H/96aKGtlGRA2UoHi6Y5IXm4dlccqUFJTU1FYWIji4mKEhoZK+2/cuIEDBw7g008/RXJyMuLi4pCRkYGEhATk5OQAAEwmExobG2WP9+uvv6KpqQkmk2nY53vjjTfQ0tIibXV1dY8TNpHiLInsuzzqpXWDZoRhh0MLF28PDQKG7DP66uCl00hDjL9M/R0WzPBF1sbYcYiaaHKxb2S0Xx/H6OuBfzMPdng1zw6Afpo73NQqLJ8bOGxryUhLSHDUzuiNqpOsEAI7d+5EQUEBSkpKEBkZKTve2dk3rFGtln/Rurm5wWbr+/VnNpvR3NwMq9WK+Ph4AMCZM2dgs9mQlJQ07PPqdDrodMP/uiRyZTMMnji9ZwUMD2jp0GrU8Jvmjn929k3S5q1zh6+HBgNTS2nUKkz3kn8+FobqUbjzyfEKm2hS6ekd7Nw1dCLFecGDkx+uni//Eb0zeQ6q6pqlSRGBvnmMhrNght4RoU4poypQLBYLjhw5gpMnT8LHx0fqM6LX6+Hp6YmYmBhERUVh+/bt2LdvHwICAnDixAlpODEAPPHEE3j66afxyiuv4ODBg+jp6UFqaipefPFFjuChKWn2IwwDNvp4SAWKr4dGNmW90UfHfiZEY/CrXYEytKUjJtgXHu5q9NoEVs0Lkh37TZgBZ//j9/i/tnv49/xKNHf2ILp/hlg3tQq9/fOibE4Kx55V0eP8KiafURUoubm5ACCNyBlw6NAhvPzyy3B3d8dXX32F9PR0rFu3Du3t7YiKisJnn32GtWvXSucfPnwYqampSE5OhlqtxsaNG5GdnT32V0M0SRl9dajpH7EzM8BLtiqx0ZcTsRGNxdDZYu156zT47E+JsInhP2teOg28dBoU7FgGmxDSDLGhfp64+UvfVYW/bFg4PoFPcqO+xPMwc+bMuW/m2KH8/f1x5MiR0Tw10ZRm9Bn8YowM9EKY3+C1bxMLFKIxsV/DajhJsx48tBjoazFxw2Dry8d/jMd/FlRjz7/MHXN8UxXX4iFyAUa769qR070w3+4L1c+LI3WIxmLNAhP+a8NCxIU5rp9IjMlXNuSfRo8FCpELMNrNlzI70Es2+dov7d3D3YWIHpFKpcJLSVxEU2m4nCKRC7DvthfmPw0qlUparn3tMNPjExG5OragELmAOUGDs0/qNH2TSh155bf4e10zls8NdFZYRETjhgUKkQtYOjsA7/4hVjYng7+XFr+PMT7gXkRErosFCpELUKlUeCGBSzwQ0dTBPihERESkOCxQiIiISHFYoBAREZHisEAhIiIixWGBQkRERIrDAoWIiIgUhwUKERERKQ4LFCIiIlIcFihERESkOCxQiIiISHFYoBAREZHisEAhIiIixWGBQkRERIrjkqsZCyEAAK2trU6OhIiIiB7VwP/tgf/jD+KSBUpbWxsAICyMy88TERG5mra2Nuj1+geeoxKPUsYojM1mw+3bt+Hj4wOVSuWwx21tbUVYWBjq6urg6+vrsMclOeZ5YjDPE4e5nhjM88QZr1wLIdDW1oaQkBCo1Q/uZeKSLShqtRqhoaHj9vi+vr58808A5nliMM8Th7meGMzzxBmPXD+s5WQAO8kSERGR4rBAISIiIsVhgWJHp9MhIyMDOp3O2aFMaszzxGCeJw5zPTGY54mjhFy7ZCdZIiIimtzYgkJERESKwwKFiIiIFIcFChERESkOCxQiIiJSHBYo/XJycjBz5kx4eHggKSkJP/74o7NDcnlnz57FunXrEBISApVKhRMnTsiOCyHw1ltvITg4GJ6enkhJScG1a9ecE6wLy8zMxJIlS+Dj4wOj0YjnnnsONTU1snO6urpgsVgQEBAAb29vbNy4EXfu3HFSxK4pNzcXsbGx0sRVZrMZX3/9tXScOR4fWVlZUKlUSEtLk/Yx147x9ttvQ6VSybaYmBjpuLPzzAIFwNGjR7F7925kZGTgwoULiIuLw+rVq9HY2Ojs0FxaR0cH4uLikJOTM+zxd999F9nZ2Th48CDKy8vh5eWF1atXo6ura4IjdW2lpaWwWCw4d+4cioqK0NPTg1WrVqGjo0M65/XXX8eXX36J48ePo7S0FLdv38bzzz/vxKhdT2hoKLKysmC1WlFRUYGnnnoK69evx+XLlwEwx+Ph/Pnz+PjjjxEbGyvbz1w7zvz581FfXy9t3333nXTM6XkWJBITE4XFYpFu9/b2ipCQEJGZmenEqCYXAKKgoEC6bbPZhMlkEu+99560r7m5Weh0OvH55587IcLJo7GxUQAQpaWlQoi+vLq7u4vjx49L51y5ckUAEGVlZc4Kc1Lw8/MTn3zyCXM8Dtra2sScOXNEUVGRWLFihdi1a5cQgu9nR8rIyBBxcXHDHlNCnqd8C0p3dzesVitSUlKkfWq1GikpKSgrK3NiZJNbbW0tGhoaZHnX6/VISkpi3seopaUFAODv7w8AsFqt6OnpkeU6JiYG4eHhzPVj6u3tRX5+Pjo6OmA2m5njcWCxWPDMM8/Icgrw/exo165dQ0hICGbNmoXNmzfj1q1bAJSRZ5dcLNCRfv75Z/T29iIoKEi2PygoCFevXnVSVJNfQ0MDAAyb94FjNHo2mw1paWlYtmwZFixYAKAv11qtFgaDQXYucz16ly5dgtlsRldXF7y9vVFQUIB58+ahqqqKOXag/Px8XLhwAefPn7/vGN/PjpOUlIS8vDxER0ejvr4e77zzDp588klUV1crIs9TvkAhmkwsFguqq6tl15HJcaKjo1FVVYWWlhZ88cUX2LJlC0pLS50d1qRSV1eHXbt2oaioCB4eHs4OZ1Jbs2aN9HdsbCySkpIQERGBY8eOwdPT04mR9Znyl3imT58ONze3+3om37lzByaTyUlRTX4DuWXeHSc1NRWFhYUoLi5GaGiotN9kMqG7uxvNzc2y85nr0dNqtYiKikJ8fDwyMzMRFxeHDz/8kDl2IKvVisbGRixevBgajQYajQalpaXIzs6GRqNBUFAQcz1ODAYD5s6di+vXryviPT3lCxStVov4+HicPn1a2mez2XD69GmYzWYnRja5RUZGwmQyyfLe2tqK8vJy5n2UhBBITU1FQUEBzpw5g8jISNnx+Ph4uLu7y3JdU1ODW7duMddjZLPZcO/ePebYgZKTk3Hp0iVUVVVJW0JCAjZv3iz9zVyPj/b2dty4cQPBwcHKeE9PSFdchcvPzxc6nU7k5eWJn376SWzbtk0YDAbR0NDg7NBcWltbm6isrBSVlZUCgHj//fdFZWWluHnzphBCiKysLGEwGMTJkyfFxYsXxfr160VkZKS4e/eukyN3La+99prQ6/WipKRE1NfXS1tnZ6d0zquvvirCw8PFmTNnREVFhTCbzcJsNjsxateTnp4uSktLRW1trbh48aJIT08XKpVKfPPNN0II5ng82Y/iEYK5dpQ9e/aIkpISUVtbK77//nuRkpIipk+fLhobG4UQzs8zC5R++/fvF+Hh4UKr1YrExERx7tw5Z4fk8oqLiwWA+7YtW7YIIfqGGu/du1cEBQUJnU4nkpOTRU1NjXODdkHD5RiAOHTokHTO3bt3xY4dO4Sfn5+YNm2a2LBhg6ivr3de0C5o69atIiIiQmi1WhEYGCiSk5Ol4kQI5ng8DS1QmGvH2LRpkwgODhZarVbMmDFDbNq0SVy/fl067uw8q4QQYmLaaoiIiIgezZTvg0JERETKwwKFiIiIFIcFChERESkOCxQiIiJSHBYoREREpDgsUIiIiEhxWKAQERGR4rBAISIiIsVhgUJERESKwwKFiIiIFIcFChERESkOCxQiIiJSnP8H618n3rTXN7QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVf6H3+mTSe89JCH03qQjqGBBFHvDrmtBXXct+7P3VXct6+qCvSJiQcSKClJEeu8QAuk9mZRJmf7740y7mTQgpOB9n8fHmTvnnjkTZu79nG9VOJ1OJzIyMjIyMjIy3QhlVy9ARkZGRkZGRqYpskCRkZGRkZGR6XbIAkVGRkZGRkam2yELFBkZGRkZGZluhyxQZGRkZGRkZLodskCRkZGRkZGR6XbIAkVGRkZGRkam2yELFBkZGRkZGZluh7qrF3A8OBwOCgsLCQ4ORqFQdPVyZGRkZGRkZNqB0+mktraWhIQElMrWbSQ9UqAUFhaSnJzc1cuQkZGRkZGROQ7y8vJISkpqdUyPFCjBwcGA+IAhISFdvBoZGRkZGRmZ9lBTU0NycrLnPt4aPVKguN06ISEhskCRkZGRkZHpYbQnPEMOkpWRkZGRkZHpdsgCRUZGRkZGRqbbIQsUGRkZGRkZmW6HLFBkZGRkZGRkuh2yQJGRkZGRkZHpdsgCRUZGRkZGRqbbIQsUGRkZGRkZmW6HLFBkZGRkZGRkuh2yQJGRkZGRkZHpdsgCRUZGRkZGRqbbIQsUGRkZGRkZmW6HLFBkZGRkZGRkuh2yQPmTU1DVwP9WHqa6wdrVS5GRkZGRkfHQI7sZy5w4h0truWPBNjJLTQBszzXy7vVjunhVMjKnLla7A4vNQaCuZ152Cw4acQJJ/cJPeC5zfR0fP3gP0b1Smf3AYye+OJlTEtmC8iflb5/v9IgTgOX7S7twNa1wZBWseQlslq5eiYzMCXHV2xuY+OJvrVornU4nNrujE1fVPuqqzHzz6naWvrodq8XuOX60+iivbHmFioYK2PUlLH8SnM425zu08Q9qykrI2rIRm1W23so0jyxQTmEcDiff7yrkpZ8PYjLbJK9lltb6jTfb7H7Hupwvb4DfnoFfHvV76YuDXzBl0RR2lO7o9GX9mXDabJT869+Y1qzp6qX0WGobrWzJMVJVb2V9VnmL4+7+bDsTXviNmsbucdMuzKxi7ZeZHNhQ5DnWUOPdLFz23WV8sPcD3tjxBnx9C6x9FTJ/bXPeqmLvfDVlJR27aJlTBlmgnILY7A5+2VvMNe9u5K6F23lj5WEeXbJbMqbR6r9L25lX3VlLbB81RdBgFI83vQUmr5UnuzqbZzY8g9FsZNHBRc2ebq6vY92XC6mtbPmGINM21Uu/pfL998n7y21dvZQeh9Xu4EBxDYdKvBuC4upGbHYH7689yr7CGs9xp9PJiv2llNaaOVjsv4HoCr777w52rshjwzdHPMeqSuv5Yd4uMrcUY7abAcgyHvaeZDza5rzFhw955yspamWkjC9Oi4W6detw1Nd7jjnMZuymui5c1cnjmATK/PnzGTp0KCEhIYSEhDB+/Hh++uknz+tOp5Mnn3yShIQEAgICmDp1Knv37pXMYTabufvuu4mKiiIwMJALLriA/Pz8jvk0MgB8s6OQv3yylfVHKiTHtmRXAsKy0hzNWVW6lMJt0ufFu6DyCOz5msW73/ccLq9q/oK44v03Wf/VQr58+mGyqrL44uAX2B12nO0wQct4sWRnex47Hd3P/dCdeeybPZzzn9954lvvdfBwmYmP1+fw9Pf7uOLt9VhdLp1as40Gq7BiGuu6h0vT1sxG5vfPM8neVc4v7+7zHEsOiPYOaGx9o+N0OCjOyvQ8ryouPvGF/gmw19aSNWsWuTfdTOmr/wHEPTf3uuvJmj4dW2Vl1y7wJHBMAiUpKYkXXniBLVu2sGXLFs444wwuvPBCjwj517/+xSuvvMIbb7zB5s2biYuLY/r06dTWem989957L0uWLGHRokWsXbsWk8nE+eefj93eDd0LPZTcCq+aXjp3IhePSATgh91ip1JQ1dDseVX1nWdWLsqqZtN3R7A38bfXVDTw/Rs7KThopHL/fo5q1KwJ0IsXt30C/xtL7je3snuv12qSWbYb/jsSaqUXuqPbNgNgLCpk9tLZPLPhGd558m4+un+u7Pd24bTZKJs3j/qtW6nfth2nzeY/xue3aSsr68zl9XgWbc4DYE+B11JyqNjEO78Li0Rto42lOwoBKKlu9Iwx1neNQDEZG/n8uU3s+6OQRlPzv5Gqknq/Y/W+oqQqR8SMLXsYMpd7DleXlnBw/VrKcrOxNHjnWPXRO5TnZnvnqq6SWFhkBDU//YQ1JxeAxt3CIm4+cICGnTuxG42YVq7qwtWdHI4pnHzWrFmS58899xzz589nw4YNDBw4kP/85z888sgjXHzxxQB89NFHxMbGsnDhQm677Taqq6t57733+OSTTzjrrLMAWLBgAcnJySxfvpyzzz67gz7Wn5uaRnGTmTutN8OSwzh3SDxfby/g5z3FPH7+QA77BMf60pmpxl//eysAAcFahkxN8hzfuPQIOXsqyNlTAYxkfdqF7IzbzAW1JvrmryBOp+KBmFicCoXnnEqViuep5MHfX+HL9JEUmQq4sCQHnVZFo0urnbM+lo2DKqk7mEsdUJZ9hPg+/fzWZaqsQKFUEhh24pkK3Qmn04m9qgp1uPRzVX39NeX/fZ1yXgdAk5RE4IQJxNz3d2ylpVjy8rEc8Zr3rQUFaGJjO3XtPQmn08k3OwoYlBBK39jgZsdsypbudJftKebSUUkU13gFSmWdFbPNjkapRKlUNJ3i5GCpZ+sbH1Fe0I+VnxxgzxfLgFQAKobsIKYsCHtxhuQUhVOJU+Ggxmxkt1bLYYcB9cpswo4+yuSqt2DD/+Af2RAQzqcP/42G2hoS+w+SzOF0Olj0xD+47LHnUGk0LH93HgUH9jJlzk2MmXVx53z2LsbpdNK4axe6vn1RBgQ0O8aal+d5bHF5HWp++cVzrH7TJsIuObX+Xsed72a32/nyyy+pq6tj/PjxHD16lOLiYmbMmOEZo9PpOP3001m3bh233XYbW7duxWq1SsYkJCQwePBg1q1b16JAMZvNmM1mz/Oamppmx8kI3AF2IXoNAJP7RKFTKymsbiSnop4deVXNnlfVSbs2XxdTaU4NDruDlQsOkLevkrpq6RrGH51Dhb6Gb8MOeg86Iaa2F+WB+TiUYne/MDSYuIMLeaVMuBxXWKycXZ2K+yseZ9Qzfk+kZ4raynLikQqU3xd+yKalX6FSq7n6uVeISU3vwE/dtVS+/wGl//43if95FXV0NNaCAkIvuIDGvfsk46z5+VR98QWolFQv/RZnvXS3bC0ogJEjO3PpPYqVB0v52+c7Ach+YWa7zimuERbNkhrvNe5ouYnxz//GiOQwXrtqBIFaFQrFSRQqOeth52dYK0LB9bsoM6cCUBCSyXdBHzC+fDbDkAqUWXvnEtoYxeFeH3N/dBQT/uhFUIMCivaxKWIo5+mLGLD+f5RkXE1DrbhuFxwQFvf0kWM44rJymuvrWPDQvZK51yx4n+qSIhL6DqDP2AlodPqT9/m7mLrffyfvL7dhGDuWXh99iNNup+qLL7CWlhI9dy4KtRpLnjcUwl5ejrWwkOrFX3vnWL8ep9OJ02ql5vsfCJw4EU1sTFd8nA7jmAXK7t27GT9+PI2NjQQFBbFkyRIGDhzIunXrAIhtsruKjY0lJycHgOLiYrRaLeFNdnGxsbEUt+KHfP7553nqqaeOdal/WmoahAUl2CVQ9BoV0cE68o0NLNlewPt/NB+z4eviWbqjgOQIAyNTOt6SYKr07hTtVgcFmVUcWN/yv//5++/km0H/oThErDu9cjgzDt1IfuhBtEn/4uuQIADeCQ0FQOmAUocei0P69Y6p0nke+2YRgNjB7Fvzm1iTzcaK99/k0kefQaPVUZZzlJDoGHSGwBP41F1L6b//DUDBvX/zHNPEx+O0NC9Kqz5rPvDYWlDgd8y4aBFOq42Ia+d0wEp7NpuzjZ7HzcV6BWhUnjiT/nHBHCiupdjl2inxsaB8sUXcjFYcKGX4U79w86Q0HjpvwMlZdH0lfHAOALX2Z/xetqjEuho0/jFqCbVCsPTLvoG9A18gqMHnN1cZyo+EsmTFj+je2uB3buL0iaSNGENdlZENiz9rdmk7f/2Jnb/+xN41v3HZo88e80frKdT8tAyA+o0bqf7ue+q3bqFq0ecAVL73PuFXXYk1N1dyzuEzzgRAHR+PragIW2kp5oMHMa1aRdl/XkPXpw/p333buR+kgznmLJ5+/fqxY8cONmzYwB133MH111/Pvn3eXVhTle90OttU/m2Neeihh6iurvb8l+dj6pKRcqik1hNjEhLgvViEBgix8tqKTGob/eMMAKpcLp4DxTX8ddEOLp63zhPA15FUFnljZKpyCslfscJvTKpuE+nRr3qezzh0MxeVit1AL6MwESdV92NOQQb3V4ibQq1SyYRdkVzzSwpX/OZ1G9UG+Luudvz8AyVHDmO1mKmrMnJ483pMRq/pvfDgPj66706yd2zl4wfvZtm8V/3m6OnU/PwLDdu3S47p+kmtSgEjRkieW5oEtNsqKih+8ilKnnsOi2sj8mfGt4ZJkY/gAIgM1DIkKdTzfHSqEP/lJgtmm10iUCRzOpy8teZIs68dL/v+KGThExsw5lVyeO1B9tQLq7bRnuQ3ttIgYmQaNM27hgH0thD6lgxs9jXd4Qi/Yya9jUzTHwyfcR6Dppzh93pkUgpBEV6LZ1HmwVMquL3m518oe/0N7wbBJ/i88IEHPOIEROZO5Ucf0+i6zyp8XEDK4GCSXn+dgOHDATg6+yLK/vMaAOZMbyByT+WYLSharZaMDKGaR48ezebNm3nttdf4xz/+AQgrSXx8vGd8aWmpx6oSFxeHxWLBaDRKrCilpaVMmDChxffU6XTodLoWX5cR7M6vZtYbaz3P3S4e8AqU1qh2WVBKfUzNW3OMjEuPbOmUdlOWV8v3b+wkdUgUQeHef0tjuQ1FVSUgfY/clPdYFqLCFPsyF++5D4M1GEPWIzwVp6XSZsWMuFgdaZzEpbWbeTsgkihjAH3zgyTzFEQ1YDhnOCw4KDleW1HmZ1IGiM/ox8ApZ7Di/flUl5aw+PknADi8eQM2qxW1pu2/Y0/BuGCB37GU994lc9JkALS9ehE+5xqJiDGtWo21pBRNbAzGL76g5IUXva/98QcRvXqd/IV3Y/KN3gD0nPI6FApv3bLoYB2pkQY2HRVCeHBCKFq1EovNwS0fbaHe0nqiQE2jVfKbPl6cTicrPzkAwMqXFlFk7g/cwfa6i2hwhAFwesx9rA4PZ3vtOELDvifNYqdR3bxAORq+i+QiK4MPtFzssWKQgyPB+SQfiiG6SsfqEWVU7/mYa8bdT0iMvxsiLC6ec+f+HbvVyvy/zMHa2IC5rg59UFAzs/cs7LW1FP7jHzgbG7EWFBD3xOOYs9tOzXajiYvDclSM7/3jD6ijowkYMYKGHTv8xjrq6lAG9lzL7wnXQXE6nZjNZtLS0oiLi+PXX71FeiwWC6tXr/aIj1GjRqHRaCRjioqK2LNnT6sCRaZ18irrOVBcwzc7pOb3kICWBcpfz+zjN09Vg1DzvkWiVuzvmCJKBzcWU19tYd/aQjZ95/0x2px6Sq1iLRaldwc5L0rPEa2G0qBcrCley0bRHxbMRnHFdzpMHKgO4/Pi+czenM6UnVFizsBGfhxXTGaSiZLUCp4664l2rzOuT1+Gnz2TgZOn+b1WktVzdyTKkJB2jVNHRXkea/tkEHLuuUTefhtxTz6Jrk8G9vJyyl59FVt5OcWPPyGJUSl5+hkaDxzo8LX3JHIqvH+PrPI6SVFVvUZFr0jvzSI5wkB8qIir+D2znK05XvdQc+wpOLE6RSZjI0te3saWH7M9x4Q4EdTY4wBoUJt4PrGOVRG1bOz1HVPNRj4uKuG58LRm580J2YytYXWL7zswtIR/Jjn4rDqHB2K2M3bADsrCLWzR66go3ILV6W/RTeo/CJ0hEENoGAHB4rtbU95Nq10fIzXLluFsFNe66m++4eCIkTTu3AVAr88WojQYAIi89VbiX3hecq46Oprov94DGg3xzz+POlqkdwcMG9bse/V0K8oxCZSHH36Y33//nezsbHbv3s0jjzzCqlWruOaaa1AoFNx7773885//ZMmSJezZs4cbbrgBg8HA1VdfDUBoaCg333wz9913HytWrGD79u3MmTOHIUOGeLJ6ZI4Np9PJ5H+t5Jz//E5upTSgMUSv9nnsFSiTMqL42/S+9I2V7kZKasz87fMdVJi8cQkbj3ZMbn3BQXHxVWma/8pV6UspCG0mtVABATMruOmlSYRGe02bDrsRc/X72Op/pdq0HWWdV1SFOIdhDDOzZ3A5tzuKUBmPoA0SN4bcRK8IKohqwHhWPPd++g3n3XUf8X36MWz6eQCkDvMPBM3fv+fYP3g3wdlKWrVCpyP43HNI+fADACL/8hdUkZHEPvAACqWSmHvvJfzKK4h9RFTzrf7mG4+VpSn5d9/T8YvvITidTslvcGuTbB2DVkWvSIPneWJYAFFB7bcM784/MYGye1UBhZlVkg1Cc+xMWMkuvY4DNKJEyZT6BsIcDjISkz1jlHi/T5E1TYWV112vDbmOyTFlbNqbgtkRSIzCxgSHCa3DiVGlYurqu/i/Nf8nOXvKnJsYed6Fnuch0cLCUltxaqS413z/AwABo0b5vaZNSSH1yy+IvP02ou64nbDZs4maO9fzun7IEELOOYf+27cRdtFsz3HDmNEoDAa/+RoPHPQ71pM4JoFSUlLCtddeS79+/TjzzDPZuHEjy5YtY/r06QA8+OCD3Hvvvdx5552MHj2agoICfvnlF4KDvel2r776KrNnz+byyy9n4sSJGAwGvvvuO1QqVcd+sj8JviXsVzYxsUosKAbv4/BALQBvXTuaC4Yl8NXt4z2vLdlewLI93oDVI2V1PPXdXnIr/GsftJdGk5XyfGEevuLhMZyX+inXRM1lZNRvnjEFoZmsS11CRUAhq9JFwFywVnxvJiZOJCBIy5xnxhMUocPpdGCtWwaIz+6wNMlEUQ7kp7MWs4JkJjc0wi+PMjMti219q1g1uIT9fYxs7Wvk19NKWardQFbtEQZMnsbVz75MpOsinDp8FAHBIShVakKihYsye2eTwnE9BIfZjLNBWvsm9pFH6LVwIYn/eZVen35K0quvEjhuHAAxf/8bff9Yi7aJu8YwquXsncDTpwAiFbLosccxu0zQTodDUkflVKClWIjKOovk9/iNq76Jm1unpBPtI0jiw/SeANn2cKik5RiQtmiotWAsbrva6A/932RHord2yYjYEYS74iMCk1I4d9wuLop4mKuj7iGxl5rz7hhCYok0flCpTvE+VkXxY90zbK67ktU1twOgAfr7BGcvz13OjNv/CsDZt/+VMbMuRulzPwiOFFaC6lJhzd2zajmf/OOvlOW03y3S1Tjq6jB+8QX22lpPDZP4J58g+a03JeNUERHoevcm5t57PZYUXUZvz+uhs4VwU6il0RnqyEjSv16Mrn9/yfGG7duoeO89sq+6ukcWcjumGJT33nuv1dcVCgVPPvkkTz75ZItj9Ho9r7/+Oq+//vqxvLVMC5TVeuNFbE2yBoL1/kGyABEusZIWFch/rxrhd8H1LeRmMtv44I9sPlyXzdHn25c22ZScvRXghPA4A+HlPxHe+BWoIdL6GyAC5ApDMqnVV/LlcG9Mww8X/YDJYiI5xLtzGzgxgXVfLcVpb6E8tkKHUp2AvTEGbVR/yFkH2b+TBuzKEBfOjX1qiLbZmFxv5XdDAAt+f4qnz/wvBHrjYAKCQ7jpP28DIgXy3btvpuDAPuqrqzCEhh3X36GzqVu3Dk1yMgqf+K2Yf/wDba8UgqZNO+a0VYVGg2HsWOo3bvQcC7/6KjSJSUTcdCPZV15J485dVH35JVVffommVwpKrRZLQSHpS79Bm5zcyuw9g32FNVz1zgbuPiODWyZL09CzK5oXAAatiiV3TqRfXDBWu4OxaREkRxjQqVUMSgiR/N6UCmih0DMVdebmX2iDuiozCx5fj83iDcScHvoK9XHT+OOgNwi6QW2iMFTqEpiWPA363QQF26D/TNLNiyB7PwCz/zGR8oJ8DHVNBIq2P0ptBkqlCI4taxCFIg83TuJsXgZgqNnMLr33exk1ZjBzT1uEPtA/xiQkSgiUlR++TcH+vRza+AcAi574B3e++ykqdfePCyt/+x0q3nqL8jf+h6O+HoVGgzYtDV2fPkTeegsV77wL+CeZgNR9Ezx1aovvoU1NJeScsynzcbNWL/Vm8VR9+RUhM2ei0Kh7TC0juRdPD6e0tuWLlk7t3YX4WlPcFhQ3TX8UTV1FIAL9fjtQgr2lq2cr7P1dxMb0GRMLexZ7jj+VXEmtrgKzqp7S8KOMiRvjeS3WEEu4PlwiTgBSh6rAvh6AcZdeI3lNG3wl2uA5KBQ6lry8jZ/3T/fEACiADNeuLd5m44OiUuZUi7TJjaXbYNFVfuvWBwWhDwoiNCaW2PQMnE4HmZvWU19TTcHB/Tgc3dcy0HjgALk33Uzebbdjr6oCQBUeTuSNNxB8xhnHXVMj7oknCDn/fNKWfkPvZT8R9/jjRN58EwqFAv0AaRqsNScXc+ZhnPX1VH+z9EQ/UrfgiW/3UN1g5dkf9nuO7S+q4afdRWSVCYEyKSOKD2/0fpejgnT0ixPWQI1Kyee3jeely8RN59nZgxmREuYZGx2s4/mLh3D/jL5cPlqaUePrem0P5fkmcvZUUJRVLREn10TNpW/sURJmeX8/WxN/5quh/8KutBHtU7b+jOQzIG0KTLoXFAoYcimMuRUueQ+rxcqhDUIslIR7LUEKhQa1bhhKjb8gNTuEVaCfRepyzKrOYlnRciYvmsyecqkr1XdD4BYnAJaGeo5s33IMf5GuoWH3birfF605bKXCyq3tk+GxgkTddRcR119H8jvvNHu+JiGB1C+/oPcvP6PQapsd4ybihhsInzOHlA/eR5Mk/f6YVq0i66yzOHz61B7TskIWKD0Ys83O/qL2Fa2TWFACW/+St8RNH27h+12FbQ/0oaqknqLD1SiUCgamFMAREUxXrVSyK0DD14Nf5cth/2J4yhBSQ1I956WH+hdJ2/D153zywF3YzHUER0Yzdvalntdi0vow4dJJKFXeNM6sI3r2NniLAr5UWs7LJWX8kFdIL5uNYWYzCqeTQo2ahVV7PY3PmiNjtHB/5Ozezo+vv8Sixx9g4SP3YTW330TfmTS4zMiWI0eo3yyKYanCwk54Xl16Gokv/Rt9v35oU1Mlr4Wce16L51ma1HDoqZht0gu7ze7g3Nd+545Pt/HDLmHVS4sKJCncGw8QqGvZUB0Toueta72xCFFBOq46LYW7zujjl7FTYTo2C8rnz27i+zd2UphZJTkeoiqGs58jKs2bPVMcfIQ6XTXj4sdxdqoomJkRluG3QUClgZkvcbgxif9efynrv1oIQGW/AJQuS4ZSFdfimgotokTAhJhR6H1ukllVWTz2x2NUmat4YPUDknMik1Joiby9u1p8rTtQu2IF2Zdd7hcDpu/rTedX6nTEPvQQQZMntThPwJAhaFNa/jt45tLriXv0EQLHjyfy5puEqHThm41nK+oZDRplgdKDeXTJHp76bl/bA5EKlHCDv0C5cWJqu+bZnlvVrnEAdruDfFdwbFyclcDFM8FaByotu3ViDQ3aWkw6I6cnnS7ZuZ0Wf5pkrpIjh/nj809wOh2kDBnO7AcfQ63RMOvvD9Fr6AguvP8hRp2TymmzpJkGW603sK/+LKzpM+k94iZmnDcPzRUivTbQ6STDdeF4PiqCJ9c+1uJnSRo4GIDcPTvJ2bXds6buGpdiyfLWzaj+egkAqtDQloZ3CIFjTyP180WoE+L9Xmvc1b1vJO3F0cQd+vthb6fsP1yP06MDSQzzBnS3Vb8jMtDr6lCrWr4kl9dZ2l0LxOxTdDFrmzQ2TalwQGgSSpWSaTf1YXvir+SFHeDHi3/kzbPe5OzUswnWBnP9oOubndtmtbLyI+9uP2nAYN7561Iuf+INtCHXoVD5Z4yFqERcW6lVlKiImXQ/S8pNXFEjrJi+VpPiemnRxvRRY5hyzY1c++J/Of/e/yM6JZUxF1wCQP6+7h24Xvzcc80e16af/CrV4VddRb8d2+m/fx/qJqncPaVmkSxQejBfbvUWzRqTGs6LlwwhIbT5ctBtWVCemDWIx89vvtCSLy352ZvisDv44rnNrF4ooshjlV6TOJoAdqd6TeBKhZKpyVMZFi3M3mmhaVw/UHpxdJt204aP4rJHn/WUoe87diKXPvIMIVHiBxgcIf38poYAVtbMZWfUs3Dev2HwxTBgFly3FAKjSbV6gxq/z/6JLcXNm4zjevdFpVZjrpN+/tw93fPGaz7qFSiNrmaeHWFBaYuAYcNInv8mAaNHkfjf14h9VGT+WHJyPK6mnkxTffDNdm9qvzsGLD06iACt173aVo8rlU+vHV/HW1MpYrE5JEG4LdFYZ5VUZq6vEa4hpVLBxZGPiIMhCczfOZ8r9p/HxpTviQ2MJTk4GZVSxfCY4ay7ah2zM2b7zW2qrGDf6hXUlImA1UlXXc8F9z2MQqkkoU8C6SP6+50TmRTEUIPIXNlefxFb+36DM20KSRH9mFYv4m+WZS/zjLc5bNgc3s+pVKoYc8ElxKSm02/8JK779xuMminWVpabTX3NiWU3nSwaDx7CVii1VCS89BKBE8ZLMnBOJkqdDoVC4WftlAWKzEnFbJPGP0zrH8MVY1J4ZrbY6Z/ZX6qY27KgAMSGtNzr4v4ZfQHIKhOZBHaHk7sWbuO/KzKxWx3sWpnvuRBu+Smb+XNXUVnovZnH1HovQEy+j92RwnR8Zb8r+fz8z4kNjGV8wng+OfcTPj//czQqqXk7c5OIOxnQTNVJX4IjvZ8hIMT7OTO3NElRTJ8K8cO4sqYWtc9d55ecX2gOtVZLbLp/7Zic3Tu6VWdk85EjmFavpmH7Dr/XTrYFxY2+X19SFywgZMYMIuZcg7a3yEKoXbWq2W7JPQlfgWK22Vmx3782R3qUtDDW8TbhjA72WlaCXG6i8nbEoaz85ABrv/SvfzHt0ljiNfswqrUszF/JvB3zPK+NjGm7v1JZbjbv3fsXfn3nDQBGnDOLsbMv89QpUSgUzLxzKLe9fjqJ/cIZfV4qF9wznIvvH0mUWmTc2J0aNqxxkre/EqL7MaGhkVur/AXGkeojVDZWUt5Q7vcaQGBYODGpvcHp5I/PP2HX8mXdyt1jr6qiftMmybGwq64k9PyZpLz/vqd+SWehSUyUPLdk9wyBctzNAmW6hiNlJp7+fh8zBkr9vDHB4sZ8Rv8Ylv99CskR0px435oovtk9vvheEEHUaXBnGIzqJSLy840NNFrtrD9Swfe7ioAiJtm0rF+Sxfpvsph4cW82LvUvyx2rOQyA/fa12CMz2PrFVAAu6nMR/SPErkuhUDA8ZrjfuXVVRoyF+SgUStJHjPF73ZeEPmFMuqwP4fEGqksbWLNI1FZxNhfcGxTHaY1mNmfnsTzQwAMxUWwradll03fcJAoPCUvQqJkXsvXHbzEW5vPmbXMYf8nVjJp5YYvndga1q1ZR8Nd7cfo01tQkJnr65zTneukMQs4+m/J58yj6v4co/de/Cb/yCoLPOQd9375dsp5jxe5w4nA60aiUEqvGok15fhYNrVpJQpi0G21bFWLB25fnohHeG8n141PZnV/NjEGxvPLrIUxmGxUmM2lNBFBTjuxovl5IkKYKB3BdQizZm1+QvDYoalCz57gxFhfyw2v/wubz3Uro628tAVBrVMz+m7RFQuSVj8F8n/mK6kmJzEAB3G6s5p0wqXhednQZSw8vxWQ18cCYB5iZPpMAtfTvOvW6m/ni6YfZtVxsflQaDfcuWNLq5+gMnBYLRy++BGuhiNcLveRiwmbPRjegbQv1yUKT1FSgZHfNQo4R2YLSw3jn9yOsOljGw0t2S467TcMKhYKMmGBJBg9AmEFLVJCO0AANcS24gaKCpJaVxHDvBaF3TCAhejVOp3Dz+KY35+ypAMBmtrP6M/9ia5HqowSrSlmRNJgRP1/DI+sep95WT1RAlEectEZ5nlD7YXFx6JopRuSLQqFg2JnJpAyMZPCURGbcIi68xuJ69q8rYu/vBV6xMu0hiB+OevxdjHJVdjxkPESNpfnA45HnXcDEK64lOjWd4TPOZ+q1NxMYHoG5ro71ixe2+TlOBuYjRyi4734s2dmU/PN5iTjRpqURfrXITlKFhhJx7bVdssaQ873p6fbKSsrnzafgb3/vkrUcK06nkwv/t5bpr6zGandIYkCe+Hav3/i0yECPy2ZShqjKe+7gloNG3Xx6y1jeunYUc8Z5a88EaFX875qRXDg8kUiXW7YtC4rd2nJ2RlD57/wcaCBb5Z/BNTmx+cJ7ANm7trPg/+6lIl8a6JzQr/3NC/XDzpU8ryg0Qaz4bWqBC2qFZTZDKX7f7+x+h9KGUupt9Ty1/ilmLZlFdnW2ZI7kQUMZdLq3wKfdasXSKK330xWYj2Z7xAmI9F/DmDGogrqu5Ly2SUZPTxEosgWlh+Hb68ONTq1kcp+oZkZ7USkV/P6gKN+uaSEQz9eCMiQxFJ3aOy4sQEuf2GC25hjZmVdFndm7K7S2sEMMCNZwccKLBFZtRJFxJvc7j+B0Oj3+5kmJk1Aq2tbI7gtja9H8zaFQKsgYFcOKj/Zjtzr47WNh/agsrGPyFX0hNAluE1lF0eWZpDTsIlej4b9rn+TyEbfjdDrpF+GNtlcoFIy7+ArGXXwFAKNmzmbomefw3+svxVxXR6PJ1Om9QooefYyGbduo+eUXcLma+m7cgLWkBHV4OMqQEBQ6PcFnTEMd4d+0rTPQpacTceON1G/dijkzE2dDA5asLCx5ed2+NorJbGNPgRCsBS7rYVPuPasP/1kuXCq+1o03rh7BdzsLmTUsoc33iQzScfagloVMpKvAW0WdmYe+3s2moxV8dfsEv5IB1WWt3KB3vszmSKnA7xXSixcmv0B6WPNBmzXlZXz3yvNYGupJ7D+Q1GGj+OPzTwBvAbX2MmJ6Ctt/Fb/lioI66H0mnPMCJI7iyZoCpn9/B6cpAri09wDyTN6GsAoUlNSX8OLmF5l/1nzJnFPm3Ejevt2emJiaslKikruuH5QlO5vK96X1wpoWPOwK/Fw8eXk4GhtR6vXYKitRhYcfd+mBk4lsQelhNBUos4YlsOGhM4lpJX7ETYBWJQnea0qQTs2A+BCig3XMu2akJGNBq1YyrZ+4IH2/q8jbEdkprBMAWr2KlEGRhOtKuTrqLq6f+DX5DRv5LVDF+gl/weaUXtxn9JpBSzidTmorhP+5Is8tUI79h65QKFBrpV/zXSvzMRmbpAdf+AbX28XF+/O8X7nk20u49LtLqTa3HoCn0es9dRo2LPmc5e/Oo7Iwv9VzOhKzuyiTS5xoEhJQhYai79sXdXQ0Sp2OiDnXoElo+yZ5Mon9x4OkffE5/bdvwzB6NACm33/v0jW1B9/aIw6n068T+GtXDmdKX++NOj3aK1DCDFquHZ9KWAsxX8eC27r5/c4iPtuUS1ZZHcub6ZNVVeqtYZQ2LIqRfwuhSl9Cbuh+yjQOsiOkgnBw1GAGRw1u8X3XLvoYS0M98Rn9uOyx5xh70eWccdPtXPHUi8d8Q5twSQZXPzkWgMpCE3a7k+KYq2kIG46m/yymEoChvpLzgr1i6S+ps/j43I8BOFx12G9OQ0goN7/2NtEpqQAcXL+WL595mNw9O49pbR2B6fffOXLhbElxNABtr9ROX0tTmtZEweEg+6qryb3lVjInTPSU3+9uyAKlh3CkzMTIZ37laLk0i+TM/jF+u6jjRaFQ8N1dE1n9wFSSIwx+RdncO8E/DpdzsETsKoOdCmxmO0qlgptemsysu4dxdfhthKsLqNj9EdcmxHJ/bDR/WSutbXDDoBuYnNSyWXntoo95+84bWPrSsxS7mvRFJh+bBcXNmPPS0BnUzJw7lNAY4baqLm2y0wyK4fLJT3KOSfr33VnW9oUu1FUKf+v3S9j5649sWLzouNZ5rDidTkmdAwDdgPab3buKwCmiLH79+g1dvJK2KfepPVJvsUsaaYKI/fItX58efXIsaON7Cwvp+iMVnmM78qrYvSqfg9tKefLbvaw/WMam70T8V58xsZx3x1DMBhOLhj/PjwPfpKj3ZLJd3bhvHnwzo2JHce/Ie1t936JDQgBPuGIOKrUGhULBiLPPJ6l/6zErLREaY0CtU2GzOHjzrlUs/tdWfn1/L6jU0F/U0Zm+xxtQPyAghqRgcXMtrS/FavcPOFaqVITGiviqDYs/I3fPLtZ8+uFxre9EKJ83X+JidaNN6XoroW9Qrq6fsAqb9++nbu1aAIyffdYl62oL2cXTQ/jXsoNU1nl3c9sem87vmWWcP7Rjd8ZqldJTi6FpXGmvyED6xgZxqMTE8n0ieyHKLm6QoTEBqCxVsNO7e9io12FrcgP935n/Iy00jeTgZqpM1tez6uN36D/hdI66KkQe3uy9iUUdo4vHzbAzkxl6RhIKhYJdv+VRXdpATUUjiU0H9j6Dob848Mk3YkfpDqYkTWl1/pCYWIoOe5tyuWNmTja2oiIcTdKe21PMqavR9RG1MKwFBTitVqxFRd123b4xH8Z6C1a79EcRE6KTuEbbCmA9Xs4fEs+8lYc5UFzrOZZ5sJI12SIg9sPQBjJX5DPBLARIeJQGPruaKtNh0Io1H9YFUFYjrBA3D7nZ0+uqJWxWq6f/TUe5TZRKBQMmxLN7pdfKWHzEFfM14ALYvoC+NWWMMsSQrdEwRhtNiD4SnUqH2W6muK7Yv3gcEBojLd1eciQTc319mzFrHUlzxQhDL7wAZUBAM6M7F4VKRfp33+Kor6fmxx8xH5Q2EVQGdl18TGvIFpQeQFmt2c+cGxGo5cLhiZIaCh1NXDNuoz4x4qJmtTmYVafh0jpxcY5ND4Uvr4fv/uoZuyVAer5OpWNiwsRmxQnA/rWr2LPyV7567lG/RmBRyb1O6CLpNkcHR4qLRW1FAzaLHYevCtMFMSRCaoHYVtp2IbawWGnsQGVhfqeUwTcfFjcbbUZvdK6MmKDTWxdT3QFNnPh7WUtKKH3lVbJmnN1t3T2+/W9Kavx3xzHBOvQaFYMTQ4gM1NI/rvWb/vGiVCp457rRPHB2P76/W1QcLS33unO0QKpNuG+VagUDal+Dgz9QXesN1lzvEEIgUh/ZojhxOp0c2rAWY1EBqz56G6fTgTbAQGBYeId9lpEzUiRuV6vZjqXBJlL/FUoUwDvFpfySV0CopR6FQkFCkNiIFdQVNDtnUESk37Gc3dubGXlycNTVYa8Q1i3D2LHo+ven3/ZtJLz4Yhtndh66Pn0IGDYMdZw3m89tWbGV+LsLuwOyQOkB7Mqv8hSBCtCoeODsfm2c0TE8MnMAk/tE8bZPKW63jz3WrqC/1WuA63daLBxdIzl/s6sZ2H+m/oe5w+fy7ox3USlbjoGpLpVWkFTrdESnpqNQKjnz5jtQKE/86+quk5K338h7D6zlx/m7JJkZ/dOlcTFbS7bywZ4PyDRmtlgKv+m67FYry9+dh9VyfM3d2os5U7i+dH360OvTBfT6dIGnI3F3Ru1qVGavqKD6m28AqN+0uQtX1DLltV4LSkmNf1sDd32SxXdMYM2D01ota3+iJEcYmDstg8GJoYxJDUflo60j7QriXNbMOffGE3RYVEuu9gmI32ASlr3U0NQW3+Pw5vV89+oLvH/vbez89ScAIhISOzSAMihcz+UPj+Gap8ehM4i/V62xEdQ6mHgvqHRoEKKLBlGJ2i1Qbv3lVpbnLPebMyzWe9Mdcc4sALZ+/w3bfvqOuipjh629OZwOB6Y/RCFJZWgovT76kPRvlnQLy0lzhF54Abo+fYi6805SPhA9gqyFhTgauj4Dqimyi6cbY7M7UKuUHC4VKXjnD43ntStHnFSriS+xIXo+uXms9FilnRn1GvLV3nRGdbCGxHSpKbVaqSDP5e8+Lf40zux1ZpvvV1Murd8QEBzC5Y//k4baGsLjOsaVFeISKMVHRPBrzu4KDm0qod9YsavXZ5zF3za/TLZGQ5Tdzjthobyy9RVe2foKcwbM4R+n/cNvzj6nTWDD4kVEpaRit9kwFuaze8XPOOx2Bk05g+RBQztk7U0xZwoLiq5PH1TBwRhGjWrjjO6BKjwchUaD02rFbhQ3j+7aq8fXglJc7S9Q3DdunVrFSdQmfrx25Qju+afX6tTfokaJgpDoAIIPis649D2XKvNRwGtpUSqUXN738hbnzd/vnzpt6EDriZvwOLHRCYrQY643UVvRiFqjZL9pDiPvewjtun/C2ldh5XOg1hFn8FopH/vjMc7qdZZkvt6jTmPy1TeQNGAw1sZGti/7jsJD+yk8tJ+1n33E2Xf8lX7jW455O1ZsRiM5115LyDnnogoOouR5UVemaTpvd0QdEUH6d8IVb3fF3DlMJg6OGEnaN0vQ92+79ENnIVtQuilPLN3DyGd+pai6wSNQMmKCOk2cNIfT6aR6VTHDLGrGN4qrsQ0nEWcnoqiQ+jRzXY3DogOi2vR1u6kukVpQIhKS0AcGdZg4AQiJ8t/V7FntYzaOGcRNykieLq/kTmM1AUpvRdsF+xc0O2dMajrX/fsNLn/iecJ8fOF7Vy3ni6cfpiI/r9nzThS3i0eXkXFS5j9ZKBQKjxXFTbcVKD4xKO4qyt2BaIOWcXFhnucDrcIymZhugB2fioPj76Q6VuqyfHfGu5yX3nJTx+Y41nTiY5rb1ZrCZDTz1Qtb2boshz8WZ4HBx2Xz6+MEq70bIJPV5FdhVqFUctqFl5LQtz9JA6UBvFZzIz++/hI1Zf5Vf48X4yefYDmcRfkbb3jECfin83Z3VEGBKDTea1zZG2904Wr8kQVKN+Wj9TnUNNp447fDHC7zCpSuxGT07iYjHOKrs1Nfiz3ADMV7sAKHNBqcQE6qaPbXy6dDcUvU11TTaDJR7aplcO7cv9N79Dim3fCXjv4IklL4bsrza72xKEol3PAjpJ2OGhiskoqrRlvz3YujU1IJCApm/KVXkzRAmrZZWdjxAsXpcGDOygJAl+Ffgr+7o46TChRrTk67G+F1JmU+WTzrsipaGdl5WBpsfPHcZgIOeQWTwSk2LomanWCth9jBkDqZapXYSIwPH8An537CmLjWKzHXGSs9j0fNvJC+4yYx/pIrT8KnEASHCzfwgfVFNNaJDJ38g0YIkNbsuTpuAiNivNVpf89vOWZJpdbQb4KIxRp70eXE9e6Dw24ne1fHNPa0FhfTeMi/ICWAo76+2ePdGd9Oy+b9B7rV71B28XRzKkwW9hWK4LauFihlubV+xx7QvYthqwNSUnklIowFoSE8VVZBUXgSlObSK6T1wFarxcwHf7+Dxlpv9daMMeMY2EbPneMlMFTH2AvSMRbX0X98PD++uRub2c7RHWUUHalmzHmp6EITYcS1cHQ1YWaTRMZnVWW1WhY8vk8/rnjyBQ5v2cjSfz8DgMnnot9RWAsLcTY0oNBoukUa47GiiYnF1+PtqK/HVlqKpollpavxTTMGkdX9f+f05/mfDnRaLJibvb8XsOm7o4RE6akqaf5GmFj/IwDzUvrzy9KLMFmFiLlu1D3NtpFoivu7OvOvD9J/wskPuA5ybRhKjnp//2qtSmpBAeLrqvj43I95cdOLLNi/gN3luxkYOVBSSNGXM268jb5jJ5Bx2niUKjXFWZnk7NrB0DPPOaH1OhoayDpvJs4WhEj4NVef0PxdjbWggNqff0E/oH+3KDAnC5RuzrK9wu2hUSlIjezaVLDyPH+BEqXOI7oyGyr/YEGaSBV9JiqW6QbRQKwtgVJTWiIRJwDagJObGjj6vFTP4+ikIIqyqln2tmjbrlQqmHBxBiSK5mnXlRbxa5z3Ynmg8kCbfUsAMkaPZfjZ57Pj5+8lu9ITxelwYFz4GY27RWM0be/eKNQ972esdmXy6Pr2xW6qxVZYxOHTpxJ05ploEhKIe+ThLl4hLNqUy5EyaRp3WlQgt53em8tHJ3dY/aH2supT4UZ1N+VsSqXSQWC5sCzML2/SqE4X1q73qKsS39Wg8M6pOhyZ6L/pqqs2g6HJ+39+DYybS2ySyFb78tCXfHnoSz4+92OJZcWNISSUvuNEtlOvIcNZ/9VCcvfsxOlwnFCwvbWgoFlxEnblFUTeeGO3uKkfK0lvvE75m2/hNJsxZ2ZScO+9KEND6bNqZZcH+sounm5Icya2R2cORK9pOQOmMyjPb+qDdxKqKvYbZ8NOTq2IKWhNoGTv2MpvH74tOZY2YvQJr/NYiEqRunDcfYUITwNNIMMb6vhm/PNcFig68u6p2NPuud0XeVNlxwkU46JFlDz7rKdaZeCECR02d2cSOFGsO+yKyz2VZQFMK1Zg/OQTbBVd705553f/ppfunjidLU7ag0q/H4XFRK3aX+CH6truZH1k+2aqiosACOwkgZIyMIIL7x0uOWaus9HgDPMfvOF/RDdpNbT40OI23yMuoy8qjYZGUy1Vpf7Xq2PBVtp8HIth9JgeKU4Ags86i7SvviTq7rs8xxzV1TTs3t3KWZ2DLFC6IWab9Fc4JDGU6yekds1ifKgolO4m44IOolWKmAxJfUeF09PYK7WVGJTFzz9B7u4dAKQNH8WNr77J+X99sOMW3A7Sh0ej8uk5VFVcj6XRJmJRYkQ0e++F1zAlSxSM21S0qdl5msNdm8Fk7JibraO+nrJXXvU8V8fGEnXnHR0yd2cTNHEi/XbtJPzqq4l/8kmCp0+XvG7NOzmBxe3FaneQUyF2yleP9RaR64iy9ceD3dZyE0AA9Pt4KPhRAJbhn0kSoW9dcBxYt4YlLzzleR4U1jkCRaFQkNQ/gtl/HyGxpvywoBKH0//2FJ39h+S5xd5680QAlVrt6eNVnpN9Quu1ljQvUAKGDz+hebsDQVOnoor0Wotzr7se09o/Wjnj5CMLlG5I0/bso1M7Ps3vWLFZ7dSWi6iB0JgAAsN0TA3xWj+Km3RPrrfVE6AOaNGCYrdJe5oERUYRkZB00t07TUnqF84tr07mtv+eTkiUHofDSWFmlXgxxtsefXRjIyqnk9zaXEZ8MoINRW2XaQ8KdwmUyo4RKA27duMwmVBHR5P05nxSv/gCVSc3J+xIlFotCoUCpcFA+DXXSF6zdLFAyTc2YHM40WuUpPtUh43oIoFSW9F8cDbApREPMjfsEU/XgzUqqUBJD00nUNOye3jfmt9YNu9VyTGNvu3eXh1JYt9wrnzsNNJHiIyhktx68oMvAV0oKLzXlujd30jOq2xsn3UyulcaAMvmv0r+/vZbQZvSUkEzTWLX9rrqCJRaLamfLiDkglmeYwX33IPNeHLryLS6pi57Z5kWqTNLb94D4kK6aCVgtzs4sqOM8nwTTifoDGqueXIcc+6JItIhqr2+ZruYa53+O/kBEQNaLMzWtHhScGTr3ZhPJmqNCrVWRVJ/sWvMP+Bam49ACXI6SXNFu9scNu757R6/9u9NCXJ1D+6oGJSGnaIvUMCoUQRPnYomNqZD5u0OBAwfJnne1QLlaLlwZ6ZGBkqKr3WVa8e3CSCAPsibGqpTemPDFtsns1ydKhnbXIyGG1NlBT+/+Rp2q3+Pm67g9Ku8Qa/G4Y/DP7Lh3t1wpegVE2OTrnNj8Uae3fBsm5knMS6BYmlo4Ovnn8R2nJ/X5ir9H37NNfT6RDQxDLv88m7ZCfh40KamEnHttZ7ncU89iTq86zbIskDphtRZvAJl+sBYLhjedep875pCfnpzN4tf3ApAeJwBBU7U34kU4N/tg3nVdimFAf6BY60Fk5oqpXUMTmathfaS1F/8ED0CJU6aLnxTdQ2BDmFqb7A18N/t/2VP+R4OGZtPOXT78RvrTKz6+B12rfj5uNZl+n0txf/8J3Xr1wP+N/NTAaVeT9K8eZ46Eta8zusI3Rzu4Nje0UEE+MR+RQRqWjrlpFJTLq3y6a4fAqBXCjFlVsCbuv44dVKLXe+w3i3Ou3vlLzjsdmLSenPXB18w5IwZzPrb/3Xgyo8NQ4iWkWcLq2tVWYNwtYYmQpRIpQ9sRoh8fvDzFn+DbqJS0jyPreZGMjcen+vC7eLRZfTGMGYMGWtWE/foI8c1V3dFP3gwkbffRuzjjxE6a1bbJ5xEel74/0nEXlND7W+/4aipJeK6a9s+4SRRZxYunpQIA+9c17lBo005uKFI8jwsLhBy10PRDqzqQB5ovA2VIQtdtCg/batLRx0oggv7R7RckbC2SRBkV1pQ3CT1EwKlosBEfY0FQ69JcPo/hIl51T+ZZarnfFM9h4PCuSQ6hF9zfuXXnF8B2HndTpQKqd7XGQLR6AOwNjaw9YelAPQdOxH9Mbpl8m69VfLcMKLlHXFPJviMaTga6im8734seV1buM3dNTwtKpAArVeghHeRi6eiSYB62rAo9Dobipw/0CnEawtCgimO+JmmEmpyYssVVPet+Q2A0TNnozMYmHHbPR267uMhLFZkjkhSqYPjWhgt2F2+u8WUY4D4Pn2JSe1NabaoHbT7t18YMGnqMa2r+rvvMK1YAXjbNWhiTh0rphuFQkHMvfd29TIA2YIiwXw4i6L/e4iyN97AabPhtNlo2L0bZ5N4iZNNvcuCYtB2bdYOQFicNCYkIi4Qdn8JwJGY6RQTiTZyNQAOayiNxRfRWHIup8WN5YzklmuZNLWgGELDOnbhx0FAsJaIBOGrL8muEbu3aQ/D1H94CkcpgD5ONYOjmhRja8YXrlAoSB8pLYx1ZFv7g2wBLPlSS4ImKQn9wIEtjO75aJNFTRfLkaOd/rvzJbdS3BxTIg2S32FEF7h4bBY7h7eJNhAjz+nF4CmJDJ+ewgXT85gV8QxWBbwcHsZ/IrymeAUKfrzoRxZfsLjF3juNdSZP1k7aiNYLuHUmYbHiN+gWKFaLHac2CFQ66Ti7nVilsCTtKtvV6pwanZ5rX3yNm/8r2gDk799Dg8m/bEJLOB0OCv/vIc9zdUz3qtdzqiILFB8Chg1FFRaGo6aGkhf/RdEjj5J92eWUvfZap67DHYMS1JnNPVrAXOe9SYTFGug/Lhb2ixTX2AnXEBxYhypQNK2rz7kVpyUaa+XpPD/hDYK0LVsKan0CR9NHnUZUUkqLYzuTSJdAMRZJM5Zw+gQuO+x+ZvO1BWuptfhf8AadLu1BlLlp3TGtx+3WAVDo9SS+/JKkNPWphq5vX1Th4dgrK6n+9rsuW0dlncgOiQ7WSQRKV8SgHN1VjqXBRlCEjnEXpHP61f3QaFWQLxosfhzXiw/DpHFq9464n+SQZPqG9/Uca6it4de336Dw0AEAT8fwkOiYY7bqnUzcFhST0cyR7WV88OBafn57DziFe/WZsgp6WywsKCzhUY0QtEsOL6G4ru0U4rDYOKJSUnE6HBzd1v4GlebDh8HuugZoNGiTu3/PnVMBWaD4oFCpPO3qjZ98QvVSYZaveOfdTl2H28Vj6AYCpcEkgsn6j4vjsodGE6CogvoKQEFYvyncdUE1CoUTW30qTqvXTVNV7x+EZjWLJl4NplpMFcKCMvW6W7nowcc7pFNxRxAeLwTK+iVZLP3Pdm8JfKtPFkVDJRnB0uykx/54jDuW+wcK9xo6nLThozwpxzm7dmC3tS9Az3zkKGWv/geAiJtvIuO3FQQMO/XiT3xR6vVE3nILACUvvEDlwoXYTZ3fA8foEigRBq2k/lBXuHjcBRLThkShcPfi2vk5bBJZdEcSh0jG1+ddx1mJl/jNs3bRx+xasYzPHrsfgNKjwhUbk5p+spZ+XOgDNRhCxd/5p7d2Y220k7W9DBxiszTbVMc3BcX0stkYWl2GWiGukzcsu6FdaccZo0UD1KM7trZ7TQ3bdwCgjo8n7YvPUYW2XVdG5sTpHneFbkTQ1KldvQSPiyewC108DruDrG2llOaIKq8DJyei1auhQlhLCEvBqdbx/RFhTbFWSTvpunegvqx4/01+++Atvnv5n9SUi2Az9427u+DusgoiWNYTnGiXljzvrfG/QO0s2+l3TKlUcfFDT/GX/32AITQMq7nRs4NtDkdDA0WPPY5p9WpKXngee2Ul6rg4IubMQR3RObUpuprwa65GP3iwsGQ+/Qwlzzzbqe/vdDqpcAuUQC1qH/HcFWnGpirx3QtyB8ZaG2DpXM/rVWrpmuymgVQ3+LvHynKzPY8tjQ1s+0n8dqN7dS+BolAomHSZf38ph9M/Uyai9ADzznidAHUABaYClmQuaXP+xH7CRVpy5HC71lP50UcUP/EEAKEXXIB+wIA2zpDpKGSB0oTgs84ieMaMLnv/w6W1PLZUtDw3aLvGguKwO/j6pW2i/LvLgBDgTmssdwmUqD7sr9xPdk02KnTYaodK5mhOoOxdJQJp8/btpsxVMCkquXtVX4yIl9aL8ATqjb9LcjzDLxRR0FIzQYVSSa+hIrg1Z9f2Ft/fuHAhVV9+Sd5tt1P3+1oAUj54H018fLvWfyqg1OtJfvstAieJUuU1y5Zhr6lp46yOo8Fq9xRLjAjUEmbw/lsH6zvvN9lQa2HRs5s4tFGktgaG6WDNv+G5OHC4rHAT7uZIfaHfuZX1/r8/jdYrZH59+w1qXM0547phs8k+o2M5744hTL/JG2/VGD/Vf6DdwvgPL+Xe4eL3uejgojbnjkkT7lljcSGWxoZWxzqtVsrf8tZ7Chw/vh2rl+koZIHSBIVGQ8JL/4YuyGt3Op2c9coaz/MgXddYUIqPVEuad4Gr7oKlHipcu47IPuyv2A9AvK4/OKQBbMXVLReWArBZzOgCA4lI6F7tyUNjpL0njMUugXLGY3DVIkgW5uFYUwW9Q/3TNwvr/G8WblKHif4+mRvXtVi3wVrgc77TieG009ClpTU79lRGHRFB8jtvo+vTB6fZLHqFdEKX1Q1HKhj+lMjM0qqVGLQqYkP0zL9mJJ/eMhalsvOuC9t+zpFk7wSGaOA3H2tS33Oon/YwBSbxnXHYgmnIFwXvqpoRKA6HtxrtgT9EYPvAKWd4vpfdjbRh0fQ9LQ69K7W7Yeq/YNQNMHcT3HfI81vE1sDM8MEoUHC46jCzlsxic3HL8SWG0DDRhsLppCz7aKtrqF25ErurVUXyO+8QOG5sh3w2mfYhC5RmUGq1KAOlO2mno41S0x3AxqPSTJCuikGpLPKvaaL75a/wYiqsf0MciMrgcJUQK4Nj+hKsV5MeHcjYNFexM6N0Z2Kz+F8wE/r07zaxJ25UaiWjZ6Z6nnssKBo99DsX0qcCoDi6hi9mfcHj4x+XnF9oalmg9B41FrVOR2VhPkWZB5sdo9BKzfWBkycd+4c4RVAoFIS70v0r33+f2p9+OunveceCrVjsLuuJQespwHXukHgmZnRuKrzbteMmyNbkZpowgiPVIo5E5QimLvMRbLUiHqWoupEFG3J48tu9njiqpgUDFQolZ958B8oWiil2FwKCXQJFEQWzXoPofhAcC1d/7hkTaqlnUKSou5Rdk82zG1p3C7qtKIueeJAvn3m42WrPDbv3UPjgPwCIuPFGgv7Ev8WuonvdHboRCpX0R2uvrj5p72Uy27jvi508+e1eyXFDFzUHNBbX+R1T7PxUGocR1Y+sKlFTYFzSIHY9MYPf7pvKzKHCFVFQJRU5lYX+hbfi+7ZcJ6UrGTsr3WNa9vtbZJwl/p/5C1qFyq9LbGsCRWcw0M/VYXXv6uXNjmn6PdNlZBzDyk89wi+7jLArrgCgbsPGk/5+Rp/g7q5IKfalulQq8t2dij3EDWFbyTYANHZpFtz8VVk8+s0ePlyXzdZcI06nk9oKaWp/VK9UtPqu7VbbHgKCxb9DQ22TTU5AOPSaKB6bSiSp/7m1rdfRSRnsDTbP3bOL/S6Lki9VXy/G2dhIwMiRPbbnVU9HFigt0USg2MrKTtpbvb4ik8Xb8jlQLE1TrW7o/PLTNqud0uw2/P19z+E7eyXri0QKbO+w3p6dZmKYuOA1taCUZks7w2oDAvxScLsT7mBZY1E9ToePayFhJOhDwVoPr49kQtgAkoK8KYcFpoJW5x0waRoAu5YvY8PiRVgapEKu6fdM16cvf3YCx54GQOPBloOLTwa+sSedjd3qoKJAmr2kKXbV0EmfJgoI9j2XzSXClaG1euNI4kP1kmtHSU0j5ro6PytmQp+WC5t1J9zxbw21zVwPg1yF0kylXD/oehICRdVtm8NGVlUWa/LXNOsaHH72+Uy4zNv/qaiZwPXGPWLDGDHnGlTBwX6vy5x8ZIHSEirpn8ZeXt7CwBNnT2Hz1hmb4+T73H1xOp188dxmio+0IFAufgeu/Ya1k+/i4T8e9Rz2rQmSFC4KuzUVKHtWCr/+8LPP59y77uPWNz4gJKr7VmGMiA9EG6Cmsc7KvDtXsn5JlrjQqdQw4W4xyJhN4O8v8+PFP/LA6AeAtgVK0sDBKF3i948vFngqzLqxNfmeaRL+PMGxLaHrLyxt5kOZOC0WHHX+Fr6OoNEqbdJpaauD8EmksqgOh73J77/K1Z9o/Fz+GxrEw3886umurbR4LW13TpXGRuVVNlDrUxjxYGAGsel9GHrWuSdn8R2Mx4JiaiaFOMhVMM1UQlJwEj9f+rNnwzB76WzmrpjLyryVfqep1GrGX3oVVzz5AgCFmQckQsZptWI+KNyw+kEtt+yQObnIAqUFwi+7XPLcVtExHWl9+XF3Ed/vKvTUPXFz6agkRqaE8ZcpnZv+12iyeoNCgVn3DEOpUjA6eLE4kDQae9oUnt/8gmfMsOhhBGu9u4vEcGFBqW6wUtNoZdtP37F6wfsUHNiLUqVi7OzLGDh5WrcqDNUcKo2SjJHe/kDbfs5h9yqX+JjyAFz7jXi85X0UK/9Jepj4t3IHDrc4r1rNwCley1HmZmGFstfUYK+q8rOgdLcYna5Am5KCQqfD2dBA5plnkjntjJOS1ZNvbOKWbCbQtLOQlHl3Uy0Eyg5HHe/sfofvjnxHva2eIE0QmL3B5peOSpaclmesp7ZCfK/KtZH8EjOdOc+/2u3qn7SE3hWDcnRHOQseW0/2Lh8R72NBcdO0xcb6wvW0RGzvPihVKuqMlRQe3E9NmZin8eAhnBYLyuBgNCndo4jknxH56tcCUbffRuJ/XvXURan84MMO3bkZ6yzc+ek27lq4nbJaaTDcX6ak8/WdE0kI61z/cG2lN/Om79hYUgZGcuuTaYwNXABKDV+UbGL4J8PJrc0lVBfKystX8sE5H0jmCNKpCXeZxg8dOsLKD99iy3dfA1AW0Yc/irpH19T2MGCitEnj4S0+rdZ7T4NJfxePf3+JoTWiwWBubS4VDa2L2YlXzGHgZOHqKc/JpqGmhqzzZnJo0mTsPkI45oH7O+BT9HwUajW6PsKFYS8rx1FTQ/3W9hfZai9Hy6WiIDpI18LIk4+7e3H6iGiGTE3ikr8NgMYqAN7O+VEydkrSFG6bIv4+5w2JI0Cr4rNbx9ErUlgzF27MZc3mfWJeddd1Rj9eDC4LSkWBieqyBn6Ytwunw0lNeQOFtS4xtuNT2C8qDzdtUhoR0HL9II1WJwmY/fjBu2koLqboEdEAUD9o0CnTqbgnIguUFlBotYSccw7Rf/sbqrAwGvfto/rHH9s+sZ0cLvP6lwuqpO6Qrrgw7liey5fPbwEgNi2E6TeKH7m6xhU7EpHGGzvnecZfnHExUQFRaJT+fnq3myf7kLQQ0h/KdG77pONvLCeLuPRQZv9tBDPnihov5fkmaTzKmY+LRoJOByGfzyHD5eNvLcURICg8gnPvuo+IxGScTgdH/lgtXIju3jNqNf137yLy5ptPyufqiej6N4mXOAlZdVmu32RUkJYJvSN57qIhbZxx8nALlJhewUy5si9x4VXiBX0Ye43SDLAZvWZwzdgUfrxnMv+5QtTaGd87kucv9q5/1SYRT2HUiH49nZGy3VG4XTy+5Oyt4JNH17Pk2yjKrani4Odz4PByhkVLqy2bbWa/831JHeYtMmmur2PHeecI945SSfTcO094/TLHjyxQ2kDfry+hF18MgHl/6+b7Y+FQScuNqkIDOj8474+vvGIiOEIPOxZC9h9QKIqKWSN6YzQbPWOu6n9Vi3Mludw8pTnetEiTykBuQHJLp3RbEvuFkzIwApVGidVsp7rMR0wqFBDsjREZ1igEygNrHuDuFXdz7Y/XYmw0Np3SQ5/TJgCwb+0qyXF1ZOQp3W/neND3lQoUW6V/c8YTZW+hcBvdNCmNhbeOIyOma9yQmVtKPMXZwmJczTpd8SfW0CRPY0q1Uk2MIYYJiRNQKBQMTAhBq/Ze0pPDvY0+w61VABg1YQDUW6Ru5e5MYt8wv2NHd3rdPPkWnyKRvz3rSTd2U2WuanX+9BHSjvG1OiGIwq+8AsOY7tNE8c+ILFDagX6A8Gk2Hmi+dsXxcKi4ZYHSmcWgwH83Fayvg2/ugA/PgxVPA5CbPBwAg9rAtjnbiA9qOXgzSWsmsaEAU5FILU4ZMpxv4mbhVPTMr5tSpfQ0Efzlvb28fe9qb4ZFkDfQ93wfF+Cq/FXsKNvBJ/s+aXHeQaeLbs95WYdo8Ekp1/fvnunXXUlTC4q94vgESk5FHf9beZjaRn9X494CEaw+OKHr+qyYG2z88q633EBojAGK98DCywCoCI0DhDhZcdkKFs9aTIC6eVdwfKie2BAdKoeNSIv4exm1woJS1QUZgsdLQLCWlEFSN03WNm/MidnhU7Oq9AAGlV4ytsbSerxSbO8M9IFeMWrSC4GiHzK0pVNkOomeecfoZHT9xMXRfPBghxVsO1TS+Q3QWsLSKN1NBaubZCylTiYraTggMnY0qtZ390EbvuDi4m9R5e0BIP3MWRi14gLjtq70NKJSRCBwWW4t1kY7W3/KFi8Ex3nGjG4081ZRqeQ8m8O/J4qb8PhEkgcOwel0sjcxGrvL1x0wYkTHLv4UQN+viUAxHp9AuWjeOv7980Ge+0FqDf11XwlHyoXAHJTQdXEaRYerJM9DYwJg20ee56UBYQBEBUQRoY8gTB/W4lxqlZIvbx7JrbkfEuAQ8WVuC4qxmVYU3ZmzbhzI4NMTmXWPcN+Y672/q+q4mTB7Pqi0YGuAmnxJAcVqc+s1rJRKFVc9+zK9E1MBMOnF9U0/aGArZ8l0BrJAaQe6tDQUWi2Oujqs+f4Fx46HzNLuI1BMRmlZer3DlUmiUMLlH7Nm2t+4b41Io00PbTvy31bgdRc5ULCt1itKHJ2cOt1RpAyU7uA8KaBB0lTpIWapv7st8/LEK68DoDQ0kDX9knEoZIHSHE27x9oqKjEfPYrN2LILrTncPaJWHyrD6XRisTk4WFzLrR+74q9CdER2QQyYucHGvrWF/OxjPZl6TT80WhUUbPMcK3NtFGIC2peib849iMYprCW1qiCsSmEd6IoaSydCQJCW06/qR8rASCITm/TLssbB8KshwpVeXX6Iy/pexptnvQm0LlCcNhvWklIiEhLpHSS+Y7V6LQ5g78E9VJUUn5TPI9M+ZIHSDhQaDfqBQk1nzTibvNvvwGk99h94bkU981dlUVVvodwkvZFNzIhkQHwI867p3L4YDSYLm7+XltCOVrkExqS/w8AL+TbbW2Lct+ZJc9htUovB2ogJLN5X5Xleb+05vm9f0oZKy5y7gxgJipMcD27iLiuqK2p13ohGC/0LReZOg05DrV5LwJDBrZ7zZyXhpZc8jxu2b+foBReSe8ONxxXwabU7uPLtDZz+75VszvZaY2YP79zeUA21FtZ9fZgf/reTlQsOYHOVHDjrxoEMGq6G/K1QIMQTd2+jLFikvkcboluaUkL2dm9Q+q/RZ3geG7swhfpEiUuXilVjcZ0IXo9yFatzNTR1V3k+aDzIcxuea/Z7UvLPf3J42jRqfvyRoBoTOJ00ajXsmTaOVQve5+vnH/c7R6bzkAVKO4m4/jrPY9OqVRg//+KY57jgf2t5cdkBHvhql99r49Ii+emvkzlvSOcW5lr5yQGytgmLSXicgUseHEWYVaQkEp4K4On3EaGPYFbvWa3OV19d5Xn8TsoN7AwdKqmQW2/umQJFqVIy42Zv8F1FQR0bvz2C010oCiBatGGfa6zyHGpLoOTddjvpZVVE1grBo7zhOpQGQ6vn/FkJPX8mye+IzrLWggJPMa3y19845qDZcpOFjUcrKapu5MWfRBXRswfF8tB5Azp83a2x9stMtv+SS9Fh7y4/MExHSvVCeGUAvOsSFRoDRKRT1iB+q1EBbfcFcjqdHN0pBMq3sedREOAVX1X1PcuC4kt0irSqq83ioL7GAlGuqsvlhwAI0XlddYsOLmJvhbSVCIBx4WfgcFDw9/twHDhEpEkEwedXir+zsajl1hUyJx9ZoLST4LPPRj/MGzRV8fbbrYxuHvdF4dd9JX6vdbZZ2W5zUJZXK4mGj0sPFbsTY7Y4EN4Lm8NGdrV4/ul5n7Z5YXQ3JDOpAmlU+cebWOyOLq3QeSL0GRPLnfOmeZ5v+TGbsmqf3VyIEJd/qarhK1dcXpGpCIez5c9rr6oSpzaIHe3v61ayv0lWj4wXVYR/TYvyefMoef6FZka3j1qzsPrFhujbGNnx+AoTpVrBHf+byvUPxBOw7ilwesV8VepENpds4e1d4roTY2jbxVNZkE9teRmo1BTopTV9mut23FOI6eUfI/T9/3ayt2y4eHJ0DTidhOqklpamfbKcTif4ZMtZsrNJqPJ3vfeklOxTDVmgtBOFUknqp5/S5/c1ANhKS3HUN1Pt8TiJDOq8xmS1lY188sg6vnhOWq9DgRPemwGVogkg4ank1eZhdVgJUAeQEJTQzGxS6qpFTEB8fAyvXjEMdTMZSQ09KMWxKQqlgqT+4Z7n1Y0+F0FX4TYlkF5ZgAIFFofFkxbaFEejN/YnpMHr8vvx9Zcw15+ccu49HXUzAgXAtNK/nPmxEhPc+bEnukBvx3KlQoFSqUCRu861oEHwUAHLT7+bybaD3PTzTZ6x0QFtu3iO7hCuIUOvvtia1Csy9mALSkRCoN+x8jwTq1YF4lQHQsVhOPijqLDrQ9MGgvaKCmjiqo+r8v/d1VUdW5yTTMchC5RjQKFWo4qKQqETF7KOLH8f1YkWlMLMKuqq/XdQwY27Ic/VMTYgAoIT2FMuMnHSQtNQtpEmXFNexqqP3wUgOjaai0YkMSw5zG9cnaXlzJaewFk3DiQoXPx71aozYMwtcMEbkDYZnqiCoFg0Tjsxbh94ZfPp6b59dwY2sQAcXP970+EygCoyUtSfcRF9770AOEymYw6YbUpMcOdbUGorvCL19Kv7iWJjS+eKA2lTQBfEpiYuP41Sw/CY4W3Onb1TBNfGDvCOPXuQcEk2l2bdU1CplSjV4jug0UmbutZlXC0eLLoa5QFpYc2vDn3FIeMhz3NLnqgtowoNRRkoRE/UhRdy/r3/JzmvWg6U7TJkgXKMKBQK1FHCzdG0sdux4itKojrRguLXthwYeXYKw00viicDZsEN31PQUMJzG58DoG942111f3z931QVi5iLoDCx0x2b5t3xGrTiYlLfwwVKYKiO/uOFOyf/oJHa8c/ByGvFiwoFJIgsnKkBomnZogOL/Oao/u57ss6aDoAmKYmEaWdy+pybCE8Q58hunuZRarUkvPgCIeedS9zTTxF1+22eXinHU0jRV0DHhHSuBaWxzupJl73sodH0GxcHB773DkgSBcTyasWNNCogihWXrWDj1RtJC01rdW5rYyP5+3YDMHHqJM4fGs/D5/VnYoa4dpnMPfs3eM2T4zj3tiEMbNKOwphxmycWjM+vIVrpFZ0FpgJu/eVWz3OrS6Do+vUjaf484p55mvjnnqXf+Enc+OqbxPUWQbfVpbJA6SpkgXIcqKIiASR9U9qiufTaxDDvj6czLSgNJv/d0/hZKd6y9jNfhdhBLD60mDprHTEBMdw+7PZW53TY7RQc2Od5bnClhY7vLf5W8aF6wg1ChDVtjtgTCY4U/3Z5+4189eIWaQn8UFExd44uCQUKVuWv4qO9H0nOL3zgAc9jdYyIJxg962IuvE/0ACk+nOmXESUjCL3gAhJfeYXwy0VDT3eGXd3GTa2eZ7VLY4GUCpjo+n5C51tQaspFQKYhVEtMrxAUNmm6P0miiqlboPxryr+IMcS0WYcIIG//buw2GyHRMcQkJ/PG1SP5y5TeBOmES6m2sWd/t0KiAkgfEU1QhPS6WVmjh1tXgEEIsYXZWTxQ4bWsVTZWYrKIOBO3BUWTnETgaacRftllnuacEQlJRPcSIlBONe46ZIFyHKgjxZe/bsPGdsehmJqxGmTEeKPR3daFzqCxiQUlZVAk1BQATlDrIVB8vj8K/wDgnpH3kBjUevplcVam5Lk7sGxSRhQPnN2Pf148xPMZe7qLB8QF0k19tUVkEbhxZfakZq/jlpjxALy69dUW6zGoo73xBBEJiegMgdgsZsrzck7Cyk89AseNBaDirbcw/d6ya6xpeffQAA1pUd54hs62oLjbJoS6v0t1PhbZC+exsvYIe8r3UFArumgnB7e/VcRRV3px6rCRkmZ3wa4iZD1doLgJDJP+mxmL60EbCDNfgvhhxNntXFwrDXwtrhOCw3JElFfQJjf/dw2NESUEZAtK1yELlOPA7eIxLlhA7o034bS3bRGobiYobUpfcfN+7crhndox021BGX9xbyZcnMFZl8XApnfEi6FJOHDyyNpH2FchLCITEye2OeehjX94HodExzDkjLMB4RKbOy2Daf1iMLh2bz011diXkMgm5bR9Ygk8xduKd3PPxkUkaUKwO+2eNMem3xd1pHcXr1AqiXWZlosPH0KmbcIuvZSgs84EoG7d+hbHNQ3ODtZriAv1/jtGGDrPzQqQv18ET0cmuoI5610CJTieI2njuWflPVz1w1XYnDa0Sm27MnfcZLvSi9OGS/vMuC0oPd3F4yYoXPo7NBa5glwHXQS3rYHLPiLI6eS9eu+/bXF9MU6nk7qNIt4uYHjzhRFDY2WB0tXIAuU4UEd5bygNO3diXOQfY9CU5io3RgfrmDstgwu7oDgUQGh0ACNmpBCw7FbY8D/xYmgSW0u28m3WtwAMiRrSZmpxdWkxO34WvvPZDz7GrW+8T2hMrN+4wFPIguIOknVTW+HTRDBI+tkHV4vy927BZy2SXvCaWuHiM0S8T1Fmx/V+OpVRqNUYRogCh63FhTX93gXr1YxPj2T6wFhum5LeqT2w7DYHWdtFrY3eo1zCw21BMUSxs2ynZHyILqTNIHU3xuJCqoqLUKpUpAyW9pMJ1rsEyiliQTGESEVlSXYNNt9ikOmng0LJaSWHmRIrXGZFdUWYD2ViLy9HodcTMLJ5gRIWK+LMZBdP1yELlONA5bPjBaj9+Zc2z6lpTqB0QUntw1tLKT4iinQEuANzs33M4qHJkovjy6e/3Oace1b+it1qJXnQUNJHntbiOIPWZUHpwWnGbpQqJRfeOxx9oDCZ15Q3Y0FxMbhBiBd3RpQlJ1vyujZNGvCY0FcE+RUc8C8sJdM86mhX4HpZWYtj/C0oatQqJe9cN7pTC7TtX1fEuq8PY663YQjRktAnTLzgFiiBURw0SsXp+Pjx7Z7fnb2T2G8g2gBpBtCpZkEJjQ5g+PQUxl6YTmCoFrvVQVGWjys1IBxSRNfw+EaxESiuK6ZunUjlNowejVLbvOXMbUGpM1ay4v35zP/LHGrKW/5+yXQ8skA5DtTh4ZLn9Zs2UT5/PvbaljsUt2RB6UzK82v5+Z09nucBwRpwNBELocnsLBUC5f7R97fatdjN0R3igjhwyhmtuqoCXSmBdafIxTGpfwRDpomsm9YsKAMtwmK1u2w3X2d+TekhUUlYFR1F5K23EHHtHMn4xP4DUSiUVJUUUVt5Yplifxa8mXUt30Cafu+6omtxWW4tv328n12/iZ5eSQPCvZabeq9AOVApqts+O/FZPjj7Ax4a+1C75i88dIDNSxcDkDp8lN/rQXqvQLH30L5YTZl4SQajz00laYDIGHS7zjwMENWv44wiKLa4rhjTmtUABE5s2X2tDwxCZxAxSjt+/oH66ir2rGx7MyrTccgC5ThQNFOKvOy1/1L6r3+1eE5TgaJRKQgNaDsavyPJ3iW92QUEaV3BsV62NhSzKn8VQLtqLdTXVFNyVPTuSR3Weh+hU8mC4sYdi9JsDAqAQsVAswWF00lpQymv/vI4BfNfByBs9kXE3HefX2l7nSGQmDTR8yhzwx/ItI070NhW1rKg8+0DdemoJO6d3nbqfEeT1+TmGZPiUxW1TogrhyHKUztnQOQARseNJlgrLe/eHNt//p7PHn+A2ooywuLiGTxtut8YtwUFTg1Xqy/uhp6Ht5VJq78OOB9QEFcushQrKvKo3yyK2AVPm9rifAqFwhMo63O04xYs0yayQDkOgiZNIvSii4h75mnUcd4vsGlNyxkETQVKVJCuUwNjAUlZewCdQQ2VRzzP7UoNd1SsFa+pdAyIaNvsfWTbZnA6iU5JJSi8+SqfbgI9dVBOIYES5RIo5T4WFN800LTJBCrUpLsqVk7b5SSqxkldfBgRN1zf4rzu2IGVH73D6gXv42hHIPafGZXLguKorsZhab6Mu9vFc1pqBC9dNkxys+4scvdJBYqkr0ydKFuwS+XAZDURoA5os96JmyPbN/Pb+2+C08mASVO55p+vYgjxtxDpNSq0KnHZd8eh2B1Ornp7A7d8tKVHl3VPGxaNRq+ipqyBgkNV3hdCk2Daw6S40vZtG7aCzUZ9fDja1NRW5wyNlVpDTbJFs1ORBcpxoFCrSXj+n4RfdhlOn3LlqpCWdznNCZTOpK7KTGmO1AWlUCq8AiXtdMrvXEuDXXyet6a/hVbVdlbD3tXLAeg7fnKbY93m5bJacxsjew4R8SIDo6a8kaLDVfz++SEqi3zKZWuDICSeQWZx00wpFTeA1cNVkuydppx24WWkjxRBfVu++5rty747SZ/g1EAVFubpq2JvIVDW7eIx6Dovpd8XS6ONosNVkmNRyT7l2OvLqVAqebJS1HM5O/VsNMrWraxWi5mlLz3LkheeAmDY9HM596770AcGtXiOr5sHYEeekfVHKli+vwRzD+2TBaKqbN8xQlAcXN+kSeekvzHE6mCA2cLIw+I3uCK5impzNXsr9rYozFKHSd1kcgxK5yILlBMkYNgwz2NLXj5OR/M/8KbtzTs7/uSoy70TEqXHEKql/wRXbEmlqAVAzECKnUI4xAfGMyrW33/dlKriIvL37QGFgoFTzmhz/IgUEbuz9nBZj96p+aIP0njSRL9+aRu7Vuaz6bsjMOZWUGrgjEchJIlYq52L/3Awcb/43DuCjRSZWu50rA8K4qJ/PMHU624BhEixWXtuefKTjaTCcwuBsg0uF09n1hzypeBQFQ6793sfmRiIVq+Giiz46f+gcDu3xcWQZRaWlEv7XtrmnPn79nB48wYA9EHBTL76hjYts02LtR0u9dYJ6en1UfqeJgTK0d3lOHwL86k0KMLTeKDCyMgs8W+wLUPBpEWTuPL7K1mZ13wvp6Fnns2c5//DoNPPAhDNF2U6DVmgnCBxTz9N6IUXAuBsbMRW3HxKWmmN1GrQmaXtweveGTgpgRuen8iZ17ncN1WigdZuvZ5/bRYxNHGBTf2uzeO2nqQOHUFIVNvNy8alR2DQqiipMbO3sOZYP0K3JSFDakrP3VuJ89x/wT+yIWYAhCRw7m47V67xXjDzohWeQnitMWzGTILCIzAZK3ltzkV89MBdslBpAXccSvYVVzYbsO6uYOyOheps8vYK4TF4SiJXPT6WC/7qSm9dfAtsnE9dXSkHdeK6cNPgmxgaNbSlqTzUlJV6Hp939/2eoM7W8AoU8T3aU+D9LfbkHj0gOrLrAzWY62ySTtEARGYwuNBBaD1YAzQcSPIKOXdZheaITc9g7MWianFlYb5cn6gTkQXKCaKJjSHhxRc8qaKW7Oxmx5XUSstYd6YFxeFwUnhIlHtOHRIlXDtuasUu/urcxewqE9klcYa2BYrDYWfv6t8AGDT1rHatQ6dWMcnVC2RN5qmzE0keJHXVWM12KovrQecys4cmojsiFaQVwd6049ZQazQS91l5bjblOUdPfNGnINpevTyPa3/xz7ZocAWFdpUFxR1/kjwwgoiEQFHDw9oIhSIL7rBWuHOiAqL426i/tStGrbZC/I6GzZhJWjNZO83R1MWzu8B7I+/p6cdKlZLUoeL3uGtVvue4w2zmyHvZZP8qRGzjgBjsKp8Ku20EIQdHejdgnz7yd+qrqzpw1TItIQuUDkLXR1T/rPn112Yry/pbUDpPoFSX1mOzOlBrlITHN9lh1RTR1NkSF9S2QCk8uJ/aijJ0gYFkjB7X7rUMThTWhqNl/m3NeyqpQyI5/ep+XPHoGJL6CzdWoU+Qnk0ZQV2J99/bkhILCgVHq9snNJpmR1UW5rcw8s9NzP33oQwWN5qGnbs8x411Fm74YBOfbhTWwsAuCI5trLN6Stt76p7UV8JbXvF52BVD0yesT7vndVtQ2mPBdBPiU6zN4XCyv8jXgtKzBQrA8LNSUCjgyPYyDm4QGzDz/v2YfYSYXiOtMxOoad3ypNZoCAzzlpcoOXK4A1cs0xKyQOkgwq+6EoCqzxZxaOw47FVVntfsDiflJiFQ+seJC2hiWIDfHCeL8nzhY45IDBI1F8y18MV1sOtLqC2iTCXdUbbHguL2e/ceNRZ1C4WOmiMlQqTU5laKoklzF27j0vnrsNl7bnCeQqFg8JREopKCie8tBFhptrjoV3/7LQXzl4NTgSbIRuw1U1D/U9S0yKlpX6+dpAGDJM8rCvI6cPWnDprYWOKffRaAhl1egfLJhhxWHSyjok7EgY1KCW/2/JNJWZ5wOYVE6T3F/dj5GZS73AUDZpHZfwYAfcKPQaC4YiJCottfBt/t4qmos1BZb5EExvZ0Fw+I1gFDp4n+Oss/3E9pTg3WJnFJsVENkucNNunz5pj+l7s9j0uzj7QyUqajkAVKB2EYN47ACaLao8NkomGvtwpoRZ0ZhxMUCnj1iuE8OnMA0/q3/4JyolQUCIESlejaJez7FvYtha9vAYeVXI00UyAyoOXsEhA7+J3LfwIgY0z7rScAKZFegVJZZ+GHXUVsyTGSdYpYVKKShQAtLzBhLS6m8MF/UL8nCwBDlIUI+yJ6FS8DoKKxglpLy8X93Gh0eqbdcJvneUW+LFBaImCYiNswHzrkaSHQtIvxxIzWWzecDMpyxb9ztG/dk1JX9++gOLjgDTI1YqOQEZbR7nlryo/dgtIrUlwHXlueyZpD0hv3qWBBAZhwaYbHmllwsApbk/YS0UFSIVZjbjsmrveo05hyzY2ALFA6C1mgdBAKhYKk//0PTZKoLGor8mZouN07UUE6BsSHcMvkdDSqzvnT5x80svUnsVOPTHL5Wau9LoKlQYHcGC8VS611LnY6nXz59MPYzGb0wSGkDm29OFtTerksKMU1jRLfd9Msp55KVJKIO6ksrKPi8y8lr+kjxEUxaMv7RCuE1WlL8ZZ2zTvy3Flc+oiwDlTKFpQW0cTFoY6PB4cD48KFWHJzJSn+Q5NCCejkGJT8A5Ws/1qI1OgUn/TfUlEtlnOex6oLZHf5bgAGRg5s17wOux1TpQi8DYlq/4bn1inpDE0KxWJ3sGiz9Lt0qggUpVLhcaVVFpqw+vTTSZlaTtO2SzWW9gXtR6emA1CWIwuUzkAWKB2IMiDAUzrZXFDI/y3excfrs9nnyliJ6eTUYofDyYqP9nmex6W7dm9VXtfCvyPCPI8zwjJ4YvwTDI4a3OKcdVVGTEYR7Hf5Y8+h0etbHNscEYFaArUqnE5Ysb/Ec7z0FKmNEhypR6tX4bA7Kf5NKj4CHvgRBl8CQC+n+Onds/IedpTuaNfcES7xW1VShN3W803xJ4uwiy8GoPSll8macTajPn4ZnE5C9Gr+d/WxCeqOYMNS780sNtX1G3Q6ocwVBxEzgAMVB2iwNRCiDWm3i6e2ohynw4FSpZbER7RFkE7N2DRRVHFnXpXktZ4eJOtLZIIQgxWFddiKxbUm5i9XERgnNkOBPiUhNhVv4vwl57dp0YxxCRRjcRGWhvpWx8qcOLJA6WA08aK+SM7+oyzanMfjS/fy4GLhD+9sgZK9qxxTpbjxn3PbYGJ6uS6OxhxswFfBgdQqvV+BKUlT2qy94N69h8XFE92rfVUufVEoFKS4TMy/7vMKlFOleJtCoSDSZUXZGTIdq1rEGilDQtAN6A9DRazSOB998WvOr+2aOyg8Em1AAE6HA2NRYccu/BQi/OqrUPgI5757NzA9dzPPXTSE5Aj/NhUnE6fDSUWhcF8OnZZEYj+XkCg7AJZaUKohojdbS7YCMDJ2ZLu7FhdnZQIQmZSMQnlsl/KYYPH3aVqY7VSIQXETkSCuM5VFdVhcAkUzYAw8eBT0oXxUWMKAEO81LKcmh2XZy1qd0xASSlBEJDid7Fm1XM7mOcnIAqWD0cSLAFNzof8NpHd0y9UdTwZZ24R/esT0FHqP8DEBV+XwfmgIT0VF4nClMqoVai7re1mbc1YWCPdQRGLyca8rOVzctIuqvanXpU3SsHsyQ6clo1CCKTCBQ32uIP3770hb/BVKvR4CRXzPzTV13D1CBN1tKWmfm0ehUHj+7rKbp2XUkZH0WrAAXnyN9weeB8BlmSs7vXozQE1FAzazHZVaycRLM0TqcG0xzHPFbkX0pspWz5eHhDtwdOzods9deFBYRxP7t88l5EtMiPRvEXyKdTkGCIkOQKVRYrc6qKkQGyB1bBwYIiAshX5WKy+mXy45J7s6u8153VaUlR++zQ//bbn/msyJIwuUDkbtsqBoKkolx6ODddw3o1+nrqW2Utz0o3u5Yk9sFvhoFlTn8VugN4tIpVCyac4mkoKT2pzTnUESeQICJT7U3y1UVnNqWFAAMkbFcO7FkSicdkpix1Crj0Ob7Pp7GUSAprqujAt7XwDAgcoD7QqWBe/fXc7kaZ2AwYOoGTKKn1LH4UBBsqmMKGv7/sYdSUWBsJ6ExxtQuuPO8n0E6bg7eGf3O+TW5hIfGM8Fru9EW+Ts2sG2n0RxsYR+xyFQgqW/wT6xrpYNp0gMCog4lBjXta/EITZo7g0kwQkAhDRKY0/a426N7pXueZy7Z1eL1cNlThxZoHQwmgTxxTdUVwg/s4uZQ+I7PTivrkrc9APDXLulvI1wdI1Yn0+rdbvT0WbPDxBBeTm7RFGpiIS2xUxLxDYnUEynjkABiNZUEVKTDUDm5hJPFgeBrgwSu4VYlYGU4BQcTgfLc5a3a16vBUWuhdIWVrsTk9ZAToi4KQVl7mvjjI7HnUHnjocAvP2vBl8Ko2/0FOy7e8TdhOvbjiUxVVaw5MUnPc8T+7Xd1LMpsU0sKH1ixI3cdAoJFIDew4TFsiRqBOrYWE+1YUJcAqU8SzJ+X+U+zPbWr0VRySmS57WuQGWZjueYBMrzzz/PmDFjCA4OJiYmhtmzZ3PwoLTgTUlJCTfccAMJCQkYDAbOOeccMjMzJWOmTp2KQqGQ/HfllVee+KfpBmhiYkChQGOzEl/v/eJ2VufU+hoLS17exsGNxdRViWCwILdAyd3gGVeob7skdlNWfvSOJ/Yhtnf7azU0JS7EX6A0LWTX07EWl6BvFMHE237O4Yt/bsZudYA2EDSuOIj6ck/Mzzu738HmaPvm4BYoFfm5J2fhpxB1rsqxeyJFnIFi145OX4NbmEYk+vzeKl03xYh0nE4nh6tE0a/2Bsdu+X4Jdldn3omXzzmmDB43MU1+g2NcQbOnUgwKQOTRNeB0UBOSRti/56FQu67DqZMA0Gx+VzLe5rDx1aGvyKrKajqVh6SBQ9DovH8/2d168jgmgbJ69Wrmzp3Lhg0b+PXXX7HZbMyYMYO6OmHGdDqdzJ49myNHjrB06VK2b99Or169OOusszxj3Nx6660UFRV5/nvrrbc67lN1IQqtFt1ppwFwzf5feHnN61ySucpTXvpkc2RHGYWZVaz57CB2VwBcYKgO9n8PK0WaqmXMLRQpvRaUCQkT2pzX6XBwYO0qMf7ya4hOST3uNTYnUA6W1PboYm1NsZV4BYqbOrcIc7l5qKvgin5XEKwJJq82jwOVB9qcNyY1HRQKynKOeoIkZZqn3iVQ9roESsOOHZ36/g6Hk8LMKsCneix4LChVIXHc89s91FhqUCqUpIW2L+g8c9N6AC584DHGXXJ8GzvfDVNUkNbjdj2VYlCcTicNC94jvEoUw8ut9AmQHnwJjL6p2fNe2PQCs5fObnHeoPAIbnhlPkkDRbZj9q7t/PbBW56Ub5mO45gEyrJly7jhhhsYNGgQw4YN44MPPiA3N5etW0UEemZmJhs2bGD+/PmMGTOGfv36MW/ePEwmE5999plkLoPBQFxcnOe/0NDQ5t6yR+K49CoAzszfxsDKHG7Z+z3BnSRQalzltC2Noty+PkiDSq2Ab+70jMnvNx2HU4iBv478K/+c9M82563Iz6WxzoRap+O0C9sOpm0NXxfPmNRwtGrxNbzsrfWnTLCstaTYT6DUV7tqvbjdPHVlGDQGBkQKE31ruzY3IVHRDJw0FYDfPnhTTjduBXdzwENhwupkPngQZyc2WizPq8Vcb0OrVxGT4tPrxdVB/H9VO1mVvwoQ1Zt1qraDeJ1Op+dGGJN67Fl0zdE3NtgjWA6VmMirPDXSZ80HDmArLSXWKLIoD6wvZuWCAxzcWCyqZp75OOhCWjzfZDG1+FpIVDQJfcXvduv3S9i+7Dt+eP3fHfsBZE4sBqW6WhTaiogQ5kGzWewQ9T4pfiqVCq1Wy9q1ayXnfvrpp0RFRTFo0CDuv/9+apvpPtpTqRkymqMh8ZJjwYrOsQ7UVEhLNgeG6aCmEMzi3+qn3uN4KnMhAIMiB3HLkFvarBwLkH9A+O8T+vRHpT4xseVrQUkKN/DyZcMI0avZnlvFw1+33UCvu+N0OrEczUZvbkOg1IsO0+mhIujuSHX7ij9NvOJatAEGijIP8v1/XpTrMbSA24IS2jsVRVAwTosF8+HO66GS6+penNA3XATILnsIPrkIR3Ueb4eGsKhgpWdsexoDAjTU1uCwi891LLVPmmPOuBQMWhVPXziIjJggT5bTPxbvauPMnoFptYi3S03XoVQpqCqpZ9/aQpZ/sA+H3QEB4TD573xZUMRj5ZVMrZP+jtyut5aIamJFzt+3B4fDvw+bzPFz3ALF6XTy97//nUmTJjF4sDB19e/fn169evHQQw9hNBqxWCy88MILFBcXU+RTWfWaa67hs88+Y9WqVTz22GMsXryYi13FlZrDbDZTU1Mj+a87U9Vo46MB50iOhVWXtjC6Y6kpl1oggsJ0UC7ihPKiM3jQUci20u0oFUpuHnJzm/PVVpTz85uvsctV2j6x/6A2zmgb32ZtKqWCWcMSmHeN6MTq27isp1L78880bNuG3ipt915X3dTF4xIoYS6BUtU+gRISHcPMvz6AQqHk8OYNbFjyRccs/BSj3iJuFqPTIggYLL63DXs6RwCbG2zsXCECmdOHR8OR1bBhHmT9xj6tltd9CiQCzB0+t13z1rmKJAaEhKJStx3Y3hrPXDiYbY9NJyMmmECdmlevGAbA7vxqnM6mLUR7Fo6GBqqWfA1AxOnjSBkYIXm9+KjrOjP+bvrHj+XyWhORTbJxMqtad6FmjB7rd6wo89AJrFqmKcctUO666y527dolcd1oNBoWL17MoUOHiIiIwGAwsGrVKs4991xUPg3pbr31Vs466ywGDx7MlVdeyVdffcXy5cvZtm1bs+/1/PPPExoa6vkvOfn4U1w7A2OdlY3xg3h2zHWeY4Hlxa2c0XHUlAsLijZAiIDAirXwyUUA7Aj1BtO9O+Ndpvea3uZ8y+a9yp6Vv1KWI8zSkUkpbZxxbLh3bckRIu25sq7nl7yv/PgTABKulqaMegRKsCvV8ehqcDrpHdobgFX5q1iTv4aqxqo23yN9xBgmXH4NIHdWbQm3QAnUqj0CpXFf52TyHNpYTGOdlfA4A/3GxsLvL3leK1N7r4WPjn2UHdfuYFbvWe2a1y1Qgk7QegLCaqPXeNcyJtUVKGu2Yazv2a7DinfexZqTizomhpCZM+k9ShpInLvHFS+iUsP130L8MCKadKHPNLYuUESPrL9IjmVt2dDCaJnj4bgEyt133823337LypUrSUqSppuOGjWKHTt2UFVVRVFREcuWLaOiooK0tJb9pSNHjkSj0fhl+7h56KGHqK6u9vyXl9e9o6bdfWX+SBzK6sThAAQcPXkBjU6nE6fTibnBhrneFd1/lh6lwkGvhqWecbv1ov/LnAFzGBM3pl1z5+3bLXkeFNG2O6g9PH3hIEakhHHbFGE9iAgUa2uw2mmw9Fwzqb2qyhOMGX3FpUT7xB5s/SmH4qPVMGIOqLRwZBUc/Mnj4gGYu2Iud664k/aQ5LJm1ZSWtDHyz0mdK+AzQKtC06sXANZmCiieDNzpxekjooV7p9j7O6rSCFE+OXEyV/S/ApWy/eUH3G0mAjvod+iLXqPypB/nVPTs5p1160UgcfRf70EVEkLvETHEZ4SiVAlXWs5en4BWpQoiehPZRKAcrJRmqDbHiHNmMeeF1zh37t8ByNqysYM+gQwco0BxOp3cddddfP311/z222+tio7Q0FCio6PJzMxky5YtXHjhhS2O3bt3L1arlfj4+GZf1+l0hISESP7rzvg2vit0VQ5VfPweFe++29IpJ8SP83fz+bObMRaJi0pAgIOBm6dzW8xlpOu9P5jddlfJ7eih7Z67aRGi4MiOuTBeNz6VJXdOJNwlTIJ0ajSui0dlD24cWLduHTgc6PpkoElI4JIHRjHpMm/66Nf/2gqRveE0185rx6dEfn07s80KDK6y+Hsr9mKxt/03CIkRu8Ka8jLZ990MvhYUTWwsALaSk+dqtTTasLre01gs4hnC4wKhsQYajGLQLb9hHHe7eK0dNU982bt6BT+/+RogMklOBr0iRDp0bg8OlHU6nZ5YI/3gIQBodCouvn8UN7wwERRQnmfyWjQBDBFENski3Fm2k2qz1E3bFIVCQWxab3qPHotSpaayMJ/KwoKO/UB/Yo5JoMydO5cFCxawcOFCgoODKS4upri4mIYGb2Dml19+yapVqzypxtOnT2f27NnMmDEDgKysLJ5++mm2bNlCdnY2P/74I5dddhkjRoxgoqvRXk/H1zzqLhIFUPPjTx3+Xnabg+xd5VQUmNj6UzYAYRrhTlK6A3NjBmFWqjhgFruGIVFDjvv9AsNOzoVRoVB4rCiVpp4rUKp/+BGAwClTAFBplITFetMbnU7Rn4WhrhLbB75HcfhXninMYcOw/yNYE4zD6SDbVeStNYIiIlGq1DjsNkyVlW2O/7PhtqAYdCrUHoFSQsPevZTNm4fD0nHfM7vdwWdPbeSzJzficDgxlrgFigGqXDVrAiIgaRRVWmGlCNW1P3PRam5k2bxXPc9PlkBJiRTf1ZyKnitQbKWlOGprQaVCm5YqeS0gWOvJqMr1taIYIiUuHq1Si91p5/eC39v1njpDIMmDxHU1a6tsRekojkmgzJ8/n+rqaqZOnUp8fLznv88//9wzpqioiGuvvZb+/ftzzz33cO2110riVLRaLStWrODss8+mX79+3HPPPcyYMYPly5dL4lR6IuUmM1tzKqlyWQB0aiV/JAxhYb+zAGg8cAC7qWNNp40mrxjK3u3KGggv8w6IHQw3/cSuK97H5rQRExBDYlBiu+a2Nvqn/J5oBk9rhBtcAqWHWlAs+fmYVorMjDCfoG9DiFYyrq7aDHFDIVxqgVTkrqd3mIhHaU/KsVKpIiRKVMaU3Tz++FpQ1C5rk91oJPuSSyn/7+sYP/mkw97LVGnGZDRTW9lIaXYNDTXiOxwWa/B2Dw8XbiZ3jFG4rv0WlH1rVkqeK47BLXQs9Iro+QLFfEgEqmpTUlBqtX6vpwwWVuC8/UbvQUMkAT7Vta/ofwUAawuk2aet0dsVNCvHoXQcx+ziae6/G264wTPmnnvuIS8vD4vFQk5ODs888wxany9JcnIyq1evpqKiArPZzOHDh3nttdc8qco9mSvf3sAl89fz425hwQgzaLAp1Xwy4Bw0iYngcNCwfXuHvmd9rf/NPEHtkyZ4weugD2VTgzA7jo4b3e6UxurSzgnsdRMZ5BIodT2zqmzN99+Dw0HghAnoevf2HI9KCqLv2FjP8y/+uZmirGqY8QzE+lizjv5+TAIFREYPQFVJURsj/3y4K8katCpUYWEomtysOrJwW32N93d4eItwIwWG6dCajsLiW8ULYSLA3GgWN8YwfVi752+6K3fv1jsatwUlt7LnxaBYS0rIvuJK8m4V7lNdRkaz4+LTheUq/6CRgxuLsdsdYIikn8VCL6ea0+JO47Q4UWyzvZl1AL1HiXMKDx6gvqZ115BM+5B78XQQjVY7h0ulhX3cFgEAw2jRpbR+a/s617aXhiYCRaFUEGd3Kfjb/4DEkdRaavnm8DcA7Q6Ora+p5qMH7urIpbaJx4JS1zMzCBp27AQgaOpUyXGFUsH0GweR1F/smBtqrSx5eRsMmAV3rIUHXGKkbD/pBhGH9dautzhafbTN9wyNEcJnxQdvUi1bUSS4g60NWjUKhcLj5vHSPqHeHup94hl2/iaC+CMSAkXtE2sdVoCw47OgOOx2Clx1iC55+GkueeQZkgeeHIHSK1LEoPREC0rtsmU07NzpeR4wcmSz46KShYunocbC8g/2sXNFHhgi0AJLGwJ4d8a7JAeLTNH9lfv5aO9H1FnbFmwhUTFEp6bjdDo4sm3ziX8gGVmgdARfbMmj/2PL/I6HGbx1CgxjXAJlS0cLFO/NPCBYw6jpCWgbXZkKrgqa9626j+K6YtRKNeMTxrc5Z8nRLLb+8I3f8ZPp3gGIdMWgfLujoMeV3HY6nTTsFpkaAUObv3kER+p9xotS6IAo3OaqjTJMF+UZ8/KWl9t834GTz0AbYMBmNvPbB28e7/JPSTwWFJ1wh2iaCBR7B9ZTqqv2t2QOmpQAh3/ltfBQxvdK4qBaybu732VH2Q4AwnRh7Zq7NPsIloZ6dIZAUoYMI3XoiA5bd1PcLp7SWnOPy6ZrdGWBBs+YQfI7bxMx55pmxxlCtOgM3mtZ5uYSER8EqOorUSgUJAUnoXAJ2Je2vMQrW15p1xoyPG4eOQ6lI5AFSgfw/I/7mz0+d5owMZ7RP4aAUaIQWePOXTjMHefCcFtQ+oyJ5aZ/T2Zsqku560PFf8CeClGc6v/G/F+b8ScNtTUs+L+/sumbLwFIGTyMmX99EG2AgQvvf7TD1t0cEYEieHBnfjX/XdGz+sxYCwqxV1SARoNuQPPdZZUq6c/NnYoKeMz/w9Dx8NiHAZFF0FbBrKSBg7n62ZdQqlQc2bbZs9OWgXqzNwYF8LOgWPM7riN0fZNml9EpwaQPCgKFknfDQjErlVya9zWvbXvNM6YtgVKel4OxqICVH74NQGL/gShPUuyJZ00GjactR0/L5DG7BErIuecQNHkyCk3Lhezc5RgANFoVGFzZifUVUFOE7u0ziFV7g9vbG4vSe5QQKNm7tmHrwCDsPyuyQOkA0qOD/I4lhgUwsXcUOx+fwbvXjUabmooqKgqn1UrtL79Sv61jYlHcFpSAYI2otbDUVZEyRNSnqTZXU2sRbQQuyLig2Tl8qSyQXrR7jzqN/hOmcNf7i0gbMbpD1twSgTrvxffbHZ1Tr6IjsFdVUXDPPQDo+/VDqWu+p0pcmjQ9vjjLx0/tEihU5XJpn0vRKrVUmavIq2275k9kUgr9J4isoczN64/jE5ya+MagAGhTUyWvW4uLcdo6xlJX72NBGTItiVn3DENRcQicLbe4aC0Gpaq4iI/un8v7995G4aH9aAMMjL3o8g5Za2soFAp6eeJQeo5AcTocWDJFarGuT9tdoSdf4R1jLKn3ChS7Bb67B0r2oGmo8oyJD2q+BEZTYtJ6ExQZhc1sJnfPzrZPkGkVWaB0ACqlvy979ogElEoFoQYNSqUChULhiUMpfOABcq6+moa9e0/ofW0WO6U5wkwdEKyFCp+Kon1Eldh8kxAc0QHRBLjqbLRG02DLiEThJlIoT/5XZWo/b7VHX/dYd8aclUXOjTfRuG8fCo2GyFtuaXFsv7FxTLu2P31PEzv5sjyf/lNugVK6D83Su+gfIMbMXDKT7aVti9l0V4De0e0d60LsqWzLNdJodXXzdrVWCLu8yQ3ebsda3DGB4G4Xz7Rr+zPlir4EBGmhdD+tyZ/W0oyzd0qrao+aOdvTnO5k466F0pOKtVkLi3DU16PQaNC6ivK1xuDTk7joPhGj0miy0mjVQLBLhGT+AkCFT1Zpe2JQQAg8txVFdvOcOLJA6QBqG8Vl6MVLhvDA2f04s38Md0z1jyA3uNw8buo3nFg62m+fHCD/gMgIMARrPb1dyJgOZz0JQH6tECjtTS2uKpZaLtwCpTPIiAli2b2TASiu6f5djW1GI9lXXY15/35UERGkLv6KkHPObnG8Qqlg4MQEUoeIOBNjkc8O1S1Qtn8CuxYxtNArXufvmN/mWnoNGYFCqaSyII9dy/3jof5MVJjMXDxvnee524KiiY0h5v77JNk8jbuOrzFeZVEdKz7ax7K3drPk5W2emhqSlPKy/VQ2KZ1wz4h7iNBHMCRqCBplyyK8slBqyYzP6Htc6zwe3Jk8B4t7TgNX8wHhZtemp7fq2nGjVCpI6BNGULiwdlaV1EP8MMmYx8q9tYVK69tf4M8Th7J1o1+hS5ljQxYoHUBto3Cz9IkNZu60DN67YYynfbkv7kBZN9ai49+9OZ1OEdzlQh+k8QqU0CTRThyvQEkKTvKbozmMRVKBEhwZ1cLIk0N8iLDyVNVbabR27yC96m+W4qipQZOQQNqXX6Dv276bSHi8uAEYi+u8MSZh0l3fNTW1jI4SF8wNRRsoMrWeRqwPCqLvuEkALH93HlXFf9604wUbcj2PhyWFolN7L3ORt9xCvx3bibxVpP7W/HR8xRP3rMrnwPpisraXUZhZ5TkeGOrj3qvIosxHoDwy9hFuHnIzP1z0Ax+e82Gr8xdnSZvOxfZu223RUUzsLX7zX27N55p3N/SI/ljulPGAoe2vkg14iiiW55v8BMrMuno+GfcsAJWNlVjt7csuTBo4BIVCSV2VUU43PkFkgdIB1DSIL26IvvUsl6a+UXdBoeOhvknWQGCYDupdAiXQKyoOGcV7tFeguF08wVHRzLjtnnbXTOkoQgLU6DXia1nSja0oTqeTqi9FIHHkbbeJOjftJCzGAAoRqJe1rUyIlDBpE8Ykm50PUi9hVOwonDjbVdHy3Ll/Jyw2HqfTQf6BE3Mf9mSWbBei/LUrh/P1nRP9vsMKpZKQ82cCYFq9BnvtsVsKGn1S4Uee3QuNToVGpyI02seNasz2CJSBkQO5sv+VKBVKgrRBaFX+BcTc2G1WyrKlKeaGkPZXnT1RJmZEclqayGr543AFi7d2XDDxycId0xcw4tgynOJ7i79r4SGjn0BRAMOUgR5LV1lDWdPTm0Wt0WAICwPg94UfyoHrJ4AsUE4Qp9PpSYkN1rduWlSoVIRddpnnef2mTVR/++1xvW+5TwbIhIsziOkVDHWuH1CgqC76S/Yv/HhUlF535/W3RmOdydNH4pKHnmLIGTOOa20ngkKhIC5EpOMWV3dfgWIrLsZy5AioVITMPO+YzlVrVR5XwM/v7CFvXyVE9YGIdOnAL2+gj1V8t4rr2ra2qdRq+oydAEDhoeYzy051nE4nha7vzahe4c3GhwHo+vZF27s3TouF2l+XH/P7mBvEv8uZ1w9g/EW9ue6fE7jmqXGeLuI4nVB5lFJX5+KYgJiWpvJjz8pfsVktBASHMPK8C7n4oaeOeX0ngkKh4KVLvTfrgqqGVkZ3LU6nk+Knn6Fhm4jZMYw8NoGS2E/Uosk/VIUzYRQoXLfEBDGPoraQGIP4t/su67s2s+rcBIWLoNu9q1ew6IkHj2lNMl5kgXKC1FnsuMtZhLQhUADiHn+MjJW/eZ4XPviP48roqcgXAiVjdAwjZqSIXWKd8IPbA8LZVLSJV7eK3h1Do4YyNXlqm3OueG8+1sYGwmLjCY9vv0Wgo4l1C5RuakEx/f472VeLGgu6fn1RBflncbWFryug4JBRdFS96Wfodx5EeV1FsXVVQPsECuAJpCw8+OcUKDWNNiw24fePCmo+mwrETdgtLGt+/PGY38edpuoWJPpAjbBiAjgcsGEeWOsod9UOijZEt2tep8PBxiXCMjfukquYdv2tpA0f1cZZHU9KpIEnZw0Eurcl05qXh3HhQgDUMTGertXtJS4tFJVGSUONBWNdsPgN3rFOtKIAqCn0FNR7Y8cbbC3Z2q55m3Z9b6+wkZEiC5QTxB1/olYqPK6J1lBoNGji44n8y188x8peaV8RIF/KXQIlMtHn5uiyoHxrOsLNv9zsyeCZP30+IdrWO0DXVRk5uE64Ec67536UXdgXKS5UCJTuemHMu/Uv2IqEK+xYfd5uxpzv7cNT6Q6WDYqBqz6D29dCorgpxbnSYIvr2ytQ+gNQkZ9LY52pjdGnHmW1oh5JsF6NXtP6dzj0PCFQ6tavx15VdUzvY3FZUHRui8nBZbDlA2E5OfA9/Cxq2ZTqxe8zOqB9AqU4K5PaijK0AQaGntlywHVn4P4ddteNAoDlqNcVljRv3jG7pFUaJQkZws2Ts6cCkk+D2EEQ4tqg1RQw2OndeL635z1W5Kxoc96mAsXa2H2tUN0ZWaCcIO4MnmC9+ph+HDF//xu9fxbZFvXbtx9ztHfxERF8FdvLR3i4YlDW1HiLnE1ImNCmOAHI3LgOp9NBXO8+xGf0O6a1dDQxwWInWlrT/XryOO3SwN2AIcdXcjxtaBSz/y7MyJKCbQBqHYwXbQbiXMWeNhdvZvY3s9ts/24IDSMsVqRLzrvlarb+sPS41tdTcQuU6OCWrSdutKmpIi7MbqfoqacwH2m7tYAbt4tHa1ALUfL5HPj+Xlj7CmR744X2K8XvuldI+3b2R7aLQoupQ0egbqbRXWcSFyriabqzq9WSnQ1A8NlnEzB40HHN0cuVVZe9q9x70FWFm7JDPLh1KTNcTV7XFqzl3lX3thm0HtxEoNRVGVsYKdMaskA5QdwWlLbiT5pDk5Agsm3s9mPawZmMjdRWNKJQKohNd4kPhx3qRVrcQZM3qO2vI//arjkzN4m0zH7jJ7d7HScLd0XZ7tjV2Frkc2HSaAgcN+6453Jbv2orGj03PA8BYQDEmb31F7KqszwxRa3htqI4HQ5WffzOca+vJ1JmcgmUVtw7vgRNmwZA7U/LyL/n7na/j6Xex4JirgGHK2h2xdNQKtxrJoWCA1pxXRgZ23xfmKa469ikjWxfz6yTiTsWrLTWjN3R/VwUDouFht2iSnbTInzHQtpQIVCKsqq9wc+xg8X/8zagAc6tkxatO1rTupgNDJc2v5UFyvEhC5QTpMZ1YwkJaD2DpzkUGg2qcOHfLP33SzS2M6un6LDYRUclBaHVq6HyCBxdDTipUirJqxOpwmuvXMvAyIFtzud0OCg6LN47dVj7LqQnE3dPnu6Y3mjJzgFAFRlJ7x++P6bsnaboAzWeOgwH1hd5iu6JF8MAiK2X9ovZU76nzXkT+kkLev0Z/N/1FhtrDpVR5ArobI8FBaSNHS2Hs7CVtZ2pYbc5sLmKwGkD1N70fjcuC8qOc57EgZOkoCTiAuPanNdht1OWkw1w0poBHgtRQVqUCrA7nJSbupc102m3k3vtdaKDOKBNSz3uuUKiAgiO1ON0OKksdG0IovuDT52a3lZpinFuTS6tERQmbQRZd4wuRBmBLFBOkBq3BUV3fJVP1VFCvVcvWcLRC2e3Ora6rJ6FT23kl/dECml8RqgwL38wEz65CIDdYaICaWpIaquVKn0xFhdibWxArdV1amG2lojwEShOp7Nb1UOxuG4gAcOGoU1JaX1wO4jPCANg7ReZLP73Vsz1rguhy4KicXW+dbOhcEObgqNpxVFzXc+pCHq8PPjVLq57fxP//vkg0H6BEjBiOFF3e7t2tydg3eJj7dIGqEX/lmZYYxO75vZaT6pKinDYbah1OkKi2hezcjJRq5TEBHfPjLqa77+XdC7WnYAFBSAsRrizqstclhK1FkISPK8nW6UWzpyanFbn0wdL3eqyBeX4kAXKCeIbg3I8uAUKIMRGK2RtK8NY5L3ZDJgQDzUFUOstrra5l7gYDose5nd+c1QU5LHocZEGF52a1qXBsW4igoRAqTBZuPuz7Yx+dnm3CZi15IgLU3vKabeH9OHeG5HD5qQs11WTw92nxVovSVEtbSjlcJVPS4NmiO6VxvS/+Nx0a6o6ZK3dme93CdebzeWKaC2DxxeFQkH03LmEX30VgCddtTXcGTwavQqlUuFnQWlUKHg4IZnPDn8NwMy0me1ai7sPVkR8Uqe0lmgPsa5A2aJuJlAqP13oeawMDkab4V+5+1gIjRYF26pLfYJZfa7HauASu/c71ZZAiU3PYMS5szzP66tlgXI8dI9fQQ/GK1CO04ISLd0ptbY7dncuBhg4OYEo48/wP58YiP7ns1Ep1jM2fmy73n/j15/TUCvcCDGpvdu77JNKhMElUOrMfL+rCJPZxtIdBV28KuHzrvtddDU9EZOyLymDpL7qsjxXwKzea/36cMrLvHz6y0xOFPFBq/NXtznv0DPPITxe7AA/ffhvp3TjMndgrC/ttaC4CRghhH19OwSKpbFJBk8TC8pPgQa+04mA+WHRwxifML5da6goEI0hIxLbV1SxM4h1/R3LupGLx2m3Yz4oLGW9PvmY9G+WHFeqvy+hLgvK1mU5rFvs2gCc+6L4//A5ADxZ1cC7M94FILe2dRePQqHgjBtuY+IV1wJgMla2Ol6meWSBcoLkVgqLRkzIsV0Q3aijpaXk7caWlba7IVnvkdFMubIvLL4ZXJ2K6X8+1RfNY3/lAQDGxbcveDNn9w7P46QBxxcF39G4LSjuZm/g3Rl3JcZPPsFy9CiqyEhCzu6YFFCtXs05tw1GqxeWq3J3A0GlClwuumR1IDNSZ3hq2azKW9WuuQ2hYQBYGhr48plHOmS93ZGNR/1dLDHHKFAMo1yN4/btw1Ffj6MVt1jTGiieCs59zgZdKAdCYz1jn5/0fLuy+4zFhaz97CMAIruBm9WNW+g1JwK7CktuLk6zGYVeT8DIkScUB+bGtwLw9l9zyT9QCf3Pg0dK4HRXobW6MlJd2Vh5tXlkGjObm0pCoCvG0FRZQXleDg5H93FX9wRkgXKc2OwOXv31EJ9tErue4clhxzWPKkoqUGwlJS2MhLoqcZHoPSIGlbNJX4jofuwq24UTJ6khqe0qDGWzWDzWk2nX30o/Vy+XriZYp0ajkl7UC4xdW0fA6XBgXPgZADF/uxdVaMeVHu89IobpNwtx6HHxgNeKUrofDi5jisuCsqtsFxUNzcc9+OIWKG5O1cZlu/P9U6+Twg3HNIcmIQF1fDzY7RT8/T4OjjmN2lWrJGOcTieZW0o8Xah1BpdAcbt4ovrAvTs5lCQCXJ+b9BzJIe0TG6s+8mZbRSadeGxTR9EdBYo5UwgDXe/eKDrIJe128bjZ9L0rS0ej91Tmxm4mVhXA6Umn43A6eGLdE23OG50i6h3l7NrOR/fPZfO3X3fIev8syALlOPllXwmvrfAq6BHHKVAUSukPzNqKQDG5BEpgmA4qmsQhhCZzpPoIAH3D29e0riI/F6fDgT4omBHnXtBt/N4KhYL/Z++sw+Oo1zZ8z2qSjbsnTZu6e6GFlpbiUNxdDlLcXT44wMHOAQ7OKU5xWqzQlrq7e5rG3XY367vfH7MebzY+93VxkZ2dnf0l3Zl95pXnjQrx9YDIq6pvYu/OoX7jJiyFhchCQwk/q3U1BW0hITMcQSZQXVLPwY1OU7Zgp0D59mr4+lISK3MZEj2k1bN5QiJ8OwlcYwx6G7mVDaMdqVHBjezZPCHOOS665cvBbqfs1Vd9ni/YV81fH+1h3Y9HgEZSPJpYHEGRHKwRn2/teehwOCg6JKYsEgcMJGtc17cYu+hOAsVhtaJbtRrjHnG2jf9ss/YQHhfk87j4cC01Zc5rjioEVM4Ukq6cZ054BpkgY1fFrhYdnhP7ZxPfz5M63/LbzwFbc1+ge3wj9SC+3ZzP5+uPUeQ3nyI+PKiJVzSPMjnJ57G11Hest93uYOGb21nyyV53BEUTqYZiv5qCjBPcAiUr0m+mSxOUHxPvEuIy+nX6UMCWcHXyuOhqgVL9tRg9CT/zTGTBbf/ya4ngMBXjz8wEYN1PR8RaJFehrIvS3e40z7cHvm1xuqoqyPcz6T8ht7eQW+H72WiNi2xj+E8bl/sN6Cs85Jt+dad4XBGUkFjK6suoM9chF+RkRbTuPNRWlmPU1iGTy7n06ZeQK46vnq0jcPnJHCrTUlzbtVHMivffJ//mm6l8/30gsAJFoZRz9p2jOOPWEaQNFevCDm0qpbJQx9JP9lKndIpNfTmxwbEMixEjnuuL17d47BnX3Oz+2VBXi7aqopm9JbyRBEobMFltPPT9Tp78eTcHSjyh+MsnHn9INvSUU4idOxdlmhgK9k/xVBXpyN9bxYH1JdicNRmao9/Dz7eJO/SfCTf9DXGDyKlxCpRWXhi9BUp3w98D5VhlPVZb56YoHGYz+XPnUvLc/6FdvBiAqKuu7LD3Gzs7HZlCQFdtErsJ/NtXy/ZxSsJEAHZV7OLx1c3XlfiPej+6vXVzRHoSdruDY1W+EZTjEScAoTNn+jwW1L4iuTzP1/E3McspYLymiLumh2eGZzY7sRjAoNPy97z32bZI9PKIScvocvdYf1wRlGOV9cx+fWWXRVIcNhsVb73ts00zNbAp6YxhMWSNjmPgRLGG6Mi2cn54ZQv715ewuPQGcadaMaXvqvFbWbCyxeOmDh3OffN/cTt0H964LqDr7s1IAqUNVHuNWN9RUAPAqUMTeOKsIU28omUEmYy4uXcQeYHoY2Ip9Q0Z6qp8LwhBGiWKvGWeDdmnstBUyGOrHmN7+XagDQIlLxeAuPTM41p7RzJrqHiRmD4ozj3j6PYvW+6wCCS61WvQLVkqDiOz29GccAJBA1sXtj8eFCo5if3EL73Cg9UQ4dfNsfljBn95BY+PewCAP4/9SYWh6buxIVOnAyCTi3f6hzas6XV3b2VaE0aL3WdqcWtmYjWGMt534rC3advGX4+St0cUjBc+PI4bXp3K8JNTRPfmCmeqNzTBLVBak97Zv2YF2xb9wuZfxLqEhH7ta5XtCLy7obQmK8sPlDWzd8ehX+v7pS4LCyNoUMeci2lDxAhKZaEOi1Esai2vdxrtlYoeVCennQzA4mOLeXfHuy0eUxAEBk8VX7Ph5++wGLtX23Z3RRIobaBS7xELB0vFu6lZQ+LRqI/PA8Ubl6+G6YBvGL623DesqolSg9HpLqoKpXbwmTy15il+yfnFvU9Lcz/qKsowGw3dOoLywOxBvHfVWD68ZjwPny5at/+1t9Q9WqAzcNh8zZkizju3w9/TNf49d2cFjlnPwdhr4fSXPDvoSrksfBAjY0did9hZfGxxk8dKHz6Kq176D7d/9BWpQ4Zjt9nYt2p5x/4CnczRCjF6kuZVcxKkOP7CyfRPPnH/bC0rx+FwUFWsZ5OraBKISw0jOFQlpkVX/AvMOkgYAUmjPAIluuUvz1rvmxFBoP+4ice97o7C309me35Nl6yj5scfAJBFRCCPiCD1zf902HtpItREJoSAV+Og3FW0XybWv4yKG8V94+4D4J3t77A0r+UBgiNnnUFEfAL66ir+fP9N8vfsDPjaexuSQGkD3hEUFy6nxfYSNFI0VjPu3k3upZe5DcHqKnwFSsawaE/o/8KPWFu9F5tDVPlhyjAmJ00mSNH0mmrLSvjwjhv46M6bMOq0CDJZt+oacBGtUXH68CSUchnXnZDp3m4wd16bnr3O12beNbelI+k3MhYEyN1Vyd6D4XDum5Du56NRnctpmWKb85JjS5o8liAIJPTrjzokhCznl19vq0Nxtfmnx2jcIxJc0bfjQTN5EgM3bgDEf//8m25m962Pup8femIScleEpvIIbHJ238z+PxYe/c09K6k1ERSXu2jSwMHc+J8PGTDh+Oc6dRT+6bKNRzvfz8NWU4NuiSgAMub9j4Eb1qOZ0jpvmeMleWCkz2P3v3npXve264dfz+WDRYO/X4/82uIxFUolUy+7BoADa1fy7XOPUVPS/NDBvo4kUNpAY8Pr2moI1RTKlGT3XB7Djh1UvCOGDWv9BMrwk1M9AiUkxm3adf3w61lx6QreP/X9Zt/nyJaN4ns46xOik1O7Xd7bH0EQ0KjEC2V9JwoUW42nhiP83HOQh7c8Fbq9xKWHMeEsMaJ1aLOzHinST0BWHmZaqthyvL1sO0Zry+HixCwxfXBow1oOrFvVa+bzFNWIv3tKZDA/3HYCT5w1hLtntq94UhYWhuAsMNavWUONNQyAETNSmXG1Vzp36bNgt8KAU6lIHuFTE9QqgeI07xpz2tlEJrQ8q6eriArxFO0eKtN16k0CgH7jRhwWC6oB/Qka2vJssUCQ1N+3QFqmdP4N6gpg7VuwW0zLTU0R62DytfmtOu6gKdNIGezxmyo9eiQAq+29SAKlDVQ3MrzueA3a/BEEwX1RBLBpxSLcOmeKJzRazbRLswmLDnJPLSYkhi2lYuHj1OSpKOVKZEIL/6R+X0zxma2rV+lqglViGq1TBYozghJ2xukkPf98p71vurOLwG27HezbLkzxDjI1qcSHxGO2m9lW1vL8mHiv+oZf//0yxc621p6OawRCYngQmbEabpqWddxFsi4EQfBxeK4LE1Om8elhYDHA+ndhx3zYuwAEGZz6HAeqPH/P6KBoEkJajuLoqsUbjdDomHatt6P5+Y4T+d91493eRLWGzkuzAlgrxLopdb/OS0XHJPs60woyGUQ53/+vJ+D76+HHf5BaLjYm5GvzWyX6BZmMCx9/zj0MsqqodcKmryIJlDbQ2HTdGE1gBApA3N13uX+2VlbgsDuoqxQvwHPuHcvIGWlgNbndYy3qcEr14l12/8jW2dTXVfoWSaYM7pw7kvYS4oygGPyGdnUkNmeUSd0vC1knRpki40XTKF21CavZBoIAJ9zp2eHQXwifnePuJHhyzZO8s/0d6sx1jR0OAHWIrxFVdXHv8EQpcQmUiMCdhwAKZ8GsAwFdqFisHJceBuvehkWPwE//EHccdQUkDOVAtUegvHnKmy227TscDrRVPUOgZMRoOGVwgnucR10n1oEB2CrFGzJ5TOf9nSITfc8XY70VZvkZs+2cT+qCuxEQqLfWU2VsXfpLqVKTOXoc4Jm/JNE4kkBpA9V+KZ6EcLVP90B7iTjvPNI+Fmc9WPILqKs0YrPYkSsEQiOdIUZXekeQU2yrx4GDIHkQ0UHRTRzVF22F7zj51CHDA7b+jiSkC1I89lpRoMgjOj61441ao3C7lLqLpGc/D3O92oTz1nFm9EgASutLeXfHuy3mwadcdIX7Z1N9z59wvOVYFVtyxTqOxIjAetNEXnwRqgH90WuSsCmCUMjsRCVp4KifQV6W2JnhiqDcNeauVg3qNBvqsZrEovvQqNadu11NuHMgal1nR1CcN1WKThRySpVvFM5qsmEbeB6c91+f7SpwR8sOVh9kv3PUSEu4psa75i9JNI4kUNpApTOCMiY9krNGJPHoGcffXtwYgiAQPFL80rFVVVHpnDESoi8h/xqxuIr6SnKUCh5PSGRruRjaTw5NbrXRmrbSV6BEd6O5H80R3BU1KLViREIWQFv71iAIgns2iE8XV3QWDDzD/fDEinyemvKU+3GBrvm7sRMuvoKRs04HPDVIPZFnFu7honfXcuG769CaxIha4nEaJTZF5Jw59P/1V2xnicPeopRacXKx1xBHB1AVKo6qcHXvDIoe1Krj65zRE7VGg1Id2LV3FF0fQelaIWest8CYq+BMX4fhNKdAuWXxLVz8y8VsLN7Y4rFinAMhq4sKe+0IikAgCZQ24KpBue6ETP575VjmjGn/kCp/5GFh7jkvhX+sASCkJg/Dtm3YTSaor+Ti5CQWBst5cs2TgChQWot3BGXCeRd1OwfZpnCneLqgBsXfUbQziHCmedx22wAyGVwxH855U3y87xcuHngxj0x8BKBF220ATaRYz+Jv4tZT0JusfLI2l83HfF1dAy1QXFQ5xC/FKLvzvJF7Ckbfiorg5FV3s6ZwDbm1uQBkRzZfoOuqU9A6owKhUd07veNNuNM51zXBvbOwVopiThET28KegSU5O9LnsVHnFGYDZvlsT1P5Rlh/O/pbi8eOiE9ErlBgNZuo84tqS3iQBEobcNWg+M+JCTTKdLFro2ybWICl0YutaLaqKvTaIsx+aaWU0NYJJZvVgs7Z2njbB19w0hXXBWjFHU+wUrw4GiydKVC6JsUDEOXMga/78Qhrvj+EyeD1pTDoTLE4s3g71OSRGCJ2gLjqkZoj2Cm2XEMiexpNOZm6vjwDTVW9GMmKqHeG4r3cfT+MFP+Wd/59J1aHFYWgID4kvsExXPz25it8+sAdWExGt6tvbDc0SWyKcFcEpZNTPDa3QOncCMrsG4cxamYaOC+3RpfNRHQ/uHUNRIjR5/PCsn2aE/ZV7mvx2DK5nMhE8caySkrzNIkkUNpAZScIFKPeQs2Jl2EIikGnEef0aOqdAuU/J7Pqr/sbvKa1EZSig/vB4UChVru/qHoKrghKaZ2RuV9tZfHelr+M24u9xiVQOv9vNfTEZPesl+1L8jm0sQSTwYpBa4bQOEg/Qdxx368kakSB0poISnCYKLYMdT1UoOgaFygdEQk06i3U6sXPXViVczinvqETr8UufnElaBKQyxrvILJZLexfs4LKgjx2Lf2TnUsWATB0Wsd76wSKMFcNijOCYrJ2/M2C3WjEUia613ZmkSyIM8+mXpxNYj/xnNn021EcdmenTuJwSBeL1MfaZMw/az5XDBZrvPZX7W+2YN1FjDO9XlUkFco2hSRQWkmFzkS51oQgQEZs20a5txZtlZHvXtzE2v2RrJv8HLqwdHDYCdPmAWCtrmFNcMNQdmsESsHe3fz675cB8aLYU1I7LlwC5d9LDvHrzmJu/mxzh71X3e+/U/Huu9icRbKyTvA/8UcTqeaUawa7H1cU6vniyXV8+fR6LGYbDDlHfGLrZyQEi3ft5YbyFgcIhvTCCMqVkzrGaLAsV/wbBRvKUVQ4u570Yji+saqB5iKZdeUei/hln36I1WxCExlFxsgxAVtvR+MdQVlxsJzhT//J+ys6zsfDlJPDoWkn4TCIdViKThYoLjTODrHCAzUc3eklUJ0RFBY/xRCLjUcnPUp6WDoOHOwo29HIkXyJThVfv/yzj8jthXOyAoEkUFrJ9rwaAAbEhbpP1ECza1kBdRW+plsZeX8SZBLf22aSsSmooUAZnzC+wTZvHA4HC994kfraGmRyOZPOvzRga+4sglXt87ZoLXaDgcL77qf8P2+6t3VFBAWg/5h4Zl4nFmIf2FCCUWfBVG9FV2WEUZeCOgLK9xF9ZDkqmQoHDsoMzc9KcUVQKgvy+PHFp7HbOtd0q734C5T7Tx3Ic+d1TCdaSY4oUMNrj2ItL6f8v/8FfQU24M/0kQ32T9IkNdjmwt8xVJDJmPPgk8gVHZOa6gjCgz1Fstf+byMWm4MX/2hd10pbcdjtFNx5F3atZyhrV9woAEw42+O/Uny4xvOEt4HiX6JJ38g48XOxq2JXi8f1blD44cWnMRu7dlp0d0QSKK1kW75YuzEmPbLD3qO6RGz9PPnygcy5bwwTR5jpl/u7+/lKWTSFSgUKwfeiFhvcfPFYfW2Nu2vjihdeJzw2rtn9uyMhjQgUuz3wbqj1m33vZGShocjUgfXYaAtRiRpAbHN0YTbYRPO2ybcCINv9PQkasZOgSFfU7PG8U3tHt2/pcYZt/gIlPSYkoK3+3pQcFSMoEdpcACreepv6Mjk/hIXykLymwf7NRTKr/QTK2DPPI3FAxw2e7AhcKR7v9Kq3y2wgMefmYj7iG53pqqhvTEqo+0ahJMcr8jj4LIhzdnLmrgZDNSNiRQO2nRUtz9mJTvYdBnpg3aom9uy7SAKllWxzRlBGp0U1v2M7qHE6h0YkhJAyMIpR5wxF5vAEk4sTJwEwLHYYM9PF0fBzR89t8biuHGdEQiIJ/Vpn6NbdCG7EHdTflyYQ6Nescf+sysrqVAfZxohKbJhONLmKFLNni//P30h/5wTrp9c+jdasbfAaF8FhYT6P83a3HIruTvgLlLjQwIvHY7srmf9/G8jfK7a3Zpw5wf1cxe4wPolsPKLWbASl1Fc4Zvag1I4LV+S4Quc57wwWW8DHJthqa6n96WcA1EOHEHHBBSS90LXnoWvKeElOraebJzQe7lgP8UPFkQdLn2OkU6CsKVzDzX/djNXedMdTbFo6if09XV/7Vi5rct++iiRQWkmuc2rq4KSwFvY8Puw2u9vW3uUkqkxLIzjDE9bUO305BkcP5qkpT/GfGf/hlpG3tHjs6iIxfx6dFPi26M7CZXXvTVkTHR3tQb9BHBSX8vpr9P/9N8JPPy3g79EWVEENf29TvfOilzgS5GowVPHAgEuID44nX5vPsvymL3Ryhe8d77Fd27FZrWz5bQHVJc1HX7oD/kWygZqF5c0f7++islA834NClWSf14/+HzwJMgF9qZoxFY2nG5uLoHineKKSUnqMQaI3rhSPN0aLnZr6wHb1FN7/AJUfikMYNRMnkfzPF4i88MKAvkdbiYgPJiRcbI747qVNosOzizFXif/f/D8GlRxALRc/k+uL17tnpTWGXKHkyn++wbWvvA1A6dHDkieKH5JAaQV2u8N9YUzoIL8FbZURu92BXCkjNFL8gAuCQMa5MhLGiukZq9PcKTM8k+igaE5JP6VVYU/XvIfolNQW9uy+NJbicc1hCRQOiwXTYbFbwzVdujsw9vQMgsNV7q4es6vlWKGClLEAZBxcwjn9xcLZdUXrmj3eSVdeT9IA0VCs6OA+fn/7NZZ/9iE//vPpZl/XHfCPoMQGOIJis9mxWTxfEtGxAsIX56P6+zZCB4ltrsO34p5pNSpuFHePvZtTM05lbPzYJo/rEigXPvYc17zydrcf0NkYYV5iOSFc7U7vFNYEtnZCv3q1++fgkSMCeuzjRRAETr1RHPJXV2Gk+LCXj9Ck2yBTHN6pLN7Bsyc8637q2wPftnjsqORU5AoFZoOB2vLma8j6GpJAaQXV9WYsNvGC1BEhZYCaUlf0JBjBlVMv3olQsR9FkFOt14ih+/TwtnUtVDkjKFFJvUugBDqCYs7LA4sFISQEZXLT4frOZsqc/lz/8olkjRJrjdwRFIDsU8X/r/kPJzjEz+a6onXNht0nnHshV7zwGskDh+Cw2znozH3XlHb/0e/+AiWikbv69lCRp/N5nK382/1zVLzoFjt6h5VzN4h/36emPMVNI27i9emvo5Q3vha73UZtmVi3EZ2SikLZMXUbHY23QLlxaj9So8RIb3Ft4G4U/D+3weOabwDoTFIHRTFostjSX3jQyyhQJoNBTofn2nzOyjqL3y/4HZkgY23RWvdA16aQKxTEpIoDKcuP5XTI2nsqkkBpBa4vwhiNCpWiY/5krgJZl4MoAH88DA478oGi54VKawCHg8zwzFYf9+i2zeTu2ApAXEbrX9fdaKwGpSnTruPFdEiMnqj79xenl3YjBEFA5ZzP4yNQptwJGeLI99GlhwmSB1FprCS3LrfFY4469YwW9+luuCbp3jytH/+9YqxoPx9AipxdGrFpoUy/chBDDe+7nwtNMhEzTLxJmLrHzu/n/87AqOYLXbVVFaz4/H/YbVbkSiVh0Z3rhhpIUqNCCFUrCFUruHpyJkkRYjS5uDZwERS73uOc3G/BApQJTRvfdQUpAyMBKDxY4/uEq+W4RoxWp4WlcUH2BQC8ufVNWiIuQ+wUKj92NCDr7C10r6twN8WVSuiIfLeLsmPihS8uzVnjYjVDvlgPoTzzQQBSKhx8+5IN+51PknPBBRh2Nd/K5nA4+PuT93HY7QydNoOk7MHN7t+dCWmkBiXQKR5Xekc9YEBAjxso1M4Uj4+rrEIFY8U5TarSPe6p1kdqWvanGDhlGsog3yF7VnPgC48DhdVmdzsJ3z59AGeNDFyUS1dt5OvnNrD2B/Ez0H9MPMPGa5BZnRGVE+8GRRCqU8WC2bRyiKJlP6QFr7zA1t8XAKK9eXcTvm0hIljJ4vtOYtVDMwhWyUmOFD87h0p1Lbyy9dicTtdCUBBBg7pfl1PKQLFJoiy3jkObSj2zsiKdAqVwM3x7DVgM/GOkOPF6W9k2Kg2VjR3OTXymKFD2r1mJUR+4v2dPp+eeLZ2IK4LSUfUn4DGFis90CpSqHHDYQBWGcvhkbMme1mDDho2Y9u6j5Nnnmj1m/p5d1JQUowoOZuZNt/c4czZvGvNBCXQExbh7N9CNBYoz51+WW+fpJABIcnpylOxigFOgHKo51OLxFEollz37MqFeM05cQ+y6I3qvVmuNOrD+IZt+y6WqyDPhOTpZA3XOouHgaDj1OXi8hOpLX6VaA3IHyA7nNXtMh8NBaY7n3yEysfukDY+XpIhgojRi/czUAeLn5pvN+eRX1Tf3slZjqxYFijyq47ol20N4bDCRCSHY7Q7++ngPf30kXjOI8Eq7710Au74nUZPIkOghOHCwunB14wd0MvjEkwmNiqa6uJBVX33Scb9AD0MSKK2gzHmnnhDeMREUo97iVuLxrq6dCjHfTWw2n+79jD2JDSvl7Xp9g23ebP/rVwCGTJ2Oyu9OuafhXYOicIb1A9lmrFu5Et3y5eJ7TZ4UsOMGEleRbHmelu9e9nLSjckGRRCYdQwoF0PE72x/p1VTVeMzs/jHO5+4vzw/vvtm95yY7obWJJ4DaoUs4KnW+jrfz1J0kgbqnO6x4c7uN0GgwlTFkSTx82fc3XwEs67cdxxDWHTPGQzYGmYOiWdSv2jMVju/7gxM/ZKtpgYAeWRkQI7XEWSO9Aj6smNa7DY7hPjNCVo4Fz49h5NSxOLZVYXNe5yERERyxlxxjMm+Vcsx1QdG8PV0JIHSCkrrOjaCUnbMaQgVF0yQ/jD8cg8cE/04cqLTeG3La/wwpKG3RXPjx6uKCjm0UezmGH3a2YFfdCcTE+rpevi/OWKLZiDaG/Xr13No2knk3yKGY6OvvYbgYcPafdyOQB3iiRrUlRs8BYVyBSSK3Q79Dy517/OPJf9gZ3nLhlGAT23Ejy8+TWnO4QCsOLC4puiGNdJ63V7qKnzrKMILfoIvL3I+ENuHLXYLH+/62C1QDNub95ApOuA7NE4m7zmusa1BEARGp0UCUNnEjKS2YNy/n4K5dwKgiIps9/E6in4jfYVmXYURGotOH13JOLUY+T5YfbDF46YNG0l0ShoWk5H9a5YHYqk9HkmgtIIyrRhBie+gGhRXwVViVgR8fwNsmQcb3gMgN1QMde5LF3j0WjnWME/e21ZZ1eQxt//1KzgcZI2bSGxaRoesuzOJDwvig6vH8cNtUxieLJomtTeCYikqomDunVjLxfkqqqws4u69t91r7SjUfhN7fYplTxfnLA0we0Sb1W7lhQ0vtOrY/rURhzdvOM5Vdhw6k/j7hgY4vWMx26gu9o1Gyn653fMgPBm7w859y+9jTdEa9qaLX0b1mzY12y1V4hR5giAjOjmV8edcENB1dwcinYNTqwIQzTw653wcJlHoyCO7Z4oHIGlAJCdd5qmPqXJ9dib+o8G+aTpxdk+hthC7o3mPE0EQGDFD7Mrb8tvPHN22OeAmeD0NSaC0gmrnnXq0poMEygEx75o6OArK9vo8l+PVkngkWcD0+iMIznk8ri9Wfxx2O4fWixGYkTNP74gldwmzhyUyLiOaSGctRnW9pV0nsHbp39h1YkFaxHnnkvr228gamXXUXVCF+H4x+6QlUsfBwDNItNk4T6tjrFEU1fsq96Ezt1x0J5P71vhU5HW/boJa53kYGuAISmWhDu+PUeYIv1RMeArbyraxPH85armaGy55EUGlwlpejjk3t8njutq2Z954K9e/8V6PHDHREi4vlPZGMy1FviaB3bUGBZxCYnoqgyaJLceVhTqKDtVgP/Wf8JDveZNYdhiFoMBsN1NW37LHycApYkdedXERP770DPvXrgz8L9CDkARKK+jI0LJRb3EXyKYMioJI32hHjtw3dJg29iSynUZGdp2uQR2KzWplycfvoKuuQhUc0qOmpbYWV5Ge2Wpvl9W26ZBYwBjzj3+Q/PLLqLP6tfCKrsXfVdbgVzdBSAwC8HxFFZ8Wl5GkjsaBgz2Ve1o89slX3UBi/2z3IMnu1u74nyWHuMk5wTpMHTgfkS2Lcvn7UzEVk5wdydlzRzHrAj8re7mSbWXbADg59WROH3QOwaNEI79jV16FpbCwwXGLDx2gLFf0tIiITwzYersbrnOxvdHMmu9/8HncVQM620JUkhjN3vjLUX56bSs7lhWJtShXfg/9TwFAUbSNpFCxvqtAW9DiMcNj40nKHuR+vOHHb/q0u6wkUFqBzhT4O7f1Px9h0Qe7+e2/O3E4ICpeRdifN0DNMTYFqXkyNpq6iz/hiM63UyA+JB55qAZZiHhy+EdR9q1ezs4liwDInnhCjzWFag6NSo7SKdxu+nQz459fwqHSpufPNIXpoJgXVg/MbmHP7kFopNqnDiV/XxUWb8ttv0K9ESrx8a6KXS2KuNj0TK785xuMPfNcAGrLSrtVod4bSzw5/ECdh/paE+t/zqG6RPw9I+KDyRgeg1rvV3+TOY0dZWK9yag4UZiEn3UWALaqKgruvQ+HxRNBOLptM189cT+6SjG8H5HQiwWKM8XTngiK+dgxKj/6yGebtRt3k7lwzedxsfZH5+cm+1Q45z/iz6W7SdOINUz52vxWHfeU629l2MnirLXKgjyO9bB5WYFEEiitQOeMoIQH6MJoNljZsugYR7aWUZJTi0IlY2bGAjjwGwA3JCXwc1gor9Vu52iteCcbExTD9cOvd7cKK+JFAyNLmW/Y8PAmsTA2ccBApl97U0DW290QBMGd+157pJJKvZl1OW27oDkcDncERZ3dMwSKXCnjyucmkzZEDH9vWXSMpfO8UoIhvqmJkc4Slf9u+y8nfn0ii48tbvE9QsIjCI0ShU1FXm5A1h1owgJUg1JZ6Jv6iohzdrqVOv+maZNxXP8nLxctYXnBcgBGx48GIOqyS8n8Zj6ysDCMO3ei8xoyucN5g+CiN6Z2XLhSPFX6tkdQbFotx66/nqMXX4LDbCZk0iR3907I+AnNv7gbkJwd6btBEEclAKJxW0Qa2K2kIn5eP9v7GZf8cgkHqpqfIJ7YP5vTb7+XUbNFEbx35d/N7t+bkQRKCzgcDq/ivMBEI8ryfO/24zPCSZDva7Dfj4d+xGA1oFFqWHrxUu4bd5/7OZdAsZZ5IigWk5FjO7cDcOrNcwnShAZkvd0R/zHvZXVt6yKwFhWJ6TGlEnVmZgBX1rEEh6rcwyQBjmwrp67S2YHiJ1BGHBG/NK0OK1qLlodWPNSq94hxFlVXFbccku4KAhVBcQ0EdBERFwIVh2Gp01+o3zQWWkr5Yt8XAIQpwxgSPcS9f/CoUWimngiA+WguAIX791Jd7Jvy8R/Q2Jtw3SjUGS3Y7G1LtVZ9+hn169ZjrxNT3KEnn0y/n38i5d9vEH5G96+dE2QCE8/xSgs7vEYlCAJkivUk6XtEu4fDNYfZV7WPt7e93arjDztJTBMd2rgWizGwppQ9BUmgNIHVZue3ncW8s/yIew5PoC6MrpoTF1FJGghrOgw8MnYkcplvEaMyRfRmMB/11AoUHtiH1WwiLDbObZ3cW3GNfnfh6rRqLbW/itEq9YABCD1scFtwuO969691elD4CZQhZjNyr9SO1dH06HdvIhPEnHltaUk7Vhk4/L/4AtXFU9VYBGXjB2C3gCoMx7gbeHu7+GUyJHoIH572YYN5O6pU0UHUsHUr5du3Mf/ph6gqbF0ovzfgKlh3ODxjCFqLK4LpQp09AGViIuGnn44gb2jM2B0Zd0Ymp98ynKQBYrqn+EiN50mnQDlTryfO6jn3tpZtxWa30RKJAwYSFhuH1WSi8GDDG9i+gCRQmmDB9iLu+Gorr/wphuMEAUIamQdzPJT6C5TEEPd01MbuQcbENyx0DXJ6dRi8zKLKjor25knZg3u0a2xrqPG7GLZlcKBNq6Xygw8AiLn+ukAuq1NQ+0WPSnOdETlvgaIIJtjhIMbmuRBGBzXtm+ONy7StuqR7DA/0/+ILxI1CeZ6W/et9BVhEXLDHIHH2/1Eos1OiL0EhU/DZGZ8xLKahP44yTRzAqV28mJ233tLg+QnnXdTutXZnlHKZu3mgLYWyDocDw9atPtt6SqrVG5lMoP/YeNKHiueWa2QJAANPh4g04mx2Pi0u5fq02QDUmevYUd5yXYkgCKQNFf2NCvbuDvziewCSQGmCgmpf46ZQtSIgg8kcDgclObU+26KTNGCsAaCukfdw5b29CR4hmpUZd+9xF0C6Oi/ie3n0BKDIb8R7a1M8ttpadMtXYNfrUSYnE352TzSx85WxeXsq+eLJdRwr8JoNc+a/ICIdpdeuOrOuRS8GgMhEsaivtptMN/avbwhEDcrieb7t/DEpGtGpt9JZ6Bg32P0lMiR6CEGKxtvPVameCeHaIN/I1jX/eosTLr6y3Wvt7rgKZQ+UtL5Q3XTgQIMCf0VCQkDX1Zm4HMB9ouOaWLhnF4y8jDSrjfuswZyRKQ7oXF+8vlXHTR0iXucL9jXvWtxbkQRKE2iNvndtgSrMqy0zUF/re8GNSgwBg+iFUi1rGKUZlzCuwTb1oEGgUGCrrMRaIt4JugRKXGbvFygzh4gXM7lT0LU2gpJ7xZUUPSgOX1QPGdIjh7cNnJBITGoow09KcW+rLTfw62fl1FidqcLgKIgfzNMVnuJhs91MlbFpcz8Xkc6uk9Kcw+Rs3YS2qiKwv0Ab8b8zN9vaZ15lNduocU4PP/mKQdzwylQufGg8WAxQK6ZnLNGZfL73c8DTudMYyrQ09891wR6BMvaMc4nL6Ncru+j8CVKK59DtX27lcFnrRErtgoUNtvXkqK9LoNSWG9iyKNfTNScIkO4cnVFxmPGJ4wHYXLq5scM0IHWoKFBKDh/EZm2/c3ZPo+ddnTsJV2Gsi0DVnxQdqgEgaUAEI6anMmJ6KppINRjE7dUpnnSOWq5m3mnzUMkb1kjIgoLcIVHDtm0c3ryBygKxJbm3158APHPOUB45YzAL54pFilV6U4tFejadHvMRz5Rfdf/+HbrGjiIoVMllT0zkpMsHNojqFZrFkDByFcQPYYrRxKroGcQGi1b2JfqW60q822J/evlZPn/47i6dclztF0FxddUdLzVl9Tgc4uiAYdOSCQ5ToVTLodL52QiK5Jkdb7v9YxqLYLpQJnr+Vtog0cjx0mdfZsZ1DdM9vZX+cZ5i/M251S3u77DZqP31FwBS3nidmJtvJvO7bztsfZ1BUKiS0Cjx33/9zznk7/O6EQh2plaNNUxIFLuTdpTtwGRr+aYqMiEJpToIm9VKbVlpi/v3NiSB0gRav4tgoArzCpyusSkDozjpsoGcdNlA8c7BmeKpGnc1AMNihrH04qVuxd0YmsmTAahcvpwFr/yfuM6oaEKjetdQssaICVVz68n9GZwYjkwAu6PleSDWct+WbHV295xa3FoEQcDuJ8rqQidAWJJYoBc/FIDIsgMkh4ppm0/2fMLz65/HbGtacChVasLjPOF2Q10teXu6zovBP4Jy1sj2+YpUF4u+J9FJGvHcsxjhm6vgx1uoksl4Oz6JhUfEO/ypKVOZkTajyWMJSiXIZFhkMowq8RoRUtS3vkgeO3OIO4pypLxl12Lz0aPYyisQQkIImzmT+PvvI3jEiI5eZoczepZnorHLHRyA4Ejx/4YaMsMziQ2OxWw3s6eiZQNFQRCIShIjpVVFDQ0BezuSQGmCOr8UT7Cq/QWy9XVmcraLede0oV4Fiw6HJ4LiEN83NjiWCHXzboqhJ4mTMvO2bXJvO/+RZ3p0qLStyGUCMaHinUtTaR5bXR36det8WrJB7ODpbdQlngl37wCVBtJFAUvhZpKCxAjKn7l/8s2Bb1iat7SZo8Dpt93NSVfdwHDnbJCcLS1PRg40dUYLb/99iO35NQCcPTKJdY+ewoD4sHYd1zU7JSpJI244ugL2/QJle/giIoz35c7n1VH8d+Z/G41gepP16y8oL78EAJXFSvmDD/Up98+06BCeOEsUw0fKm5+wDmDcK9b/BA0e3OM66Jpj1Mw0TrlGbEN3zVcDIMh5HTfWIAgCw2PEtM3+qv2tOm5Uknhz4d++3heQBEoT+Kd4TJb2XXAObSpl3kOrsVnsxKWHkdTfS3yYtOAQuy2qHeLdYlRQy7MogseNQxYSQoVNFDWjTj2T+Mysdq2zJ5IcKRpsNXX3VvzEk+RdfwPlr7/us13Vr+enwmbfNAwEGDxZjCrUVRpB4ZwZFZUJMQPAbuXy0P4EK4Ldr9tUsqmRo3lIGzaSCedcQPakEwA4un1Lh6y/Of6z5BCv/nWQrzeKdSGJ4UEkRQS38KqWqSoSv0SjXQKl3GOctSXMc+NwYsqJyISWL5HqrCyYLNYZhJit2PX6Ru3vezOuNE9rIijGPWLkIKibTg1vDykDIwEoP6bFbHB+hwSJ29AWw/wrGeC8WThUc6jhARohKlmMoEgCRcKNf4rHYGm5b7059qz2fLgmntPPE+Wor4I3nCeqXE2VWSwya41AkalUhJ93HlUa8aKdMnhou9bYU5mYKf6t1h5u3E1W+9dfABh2iGkKZWoqmd99160HA7aW7PEJ3P7ODEY5w8t1FX5+MANmATCu9Ai/nv8rlw4SZ+20tkgvKXuweNzysk43i9pyzLeewTX3pT3U15k5tlv8nCRkiYWNVDgFyrALMMV55qDcPup2/5c3ibZe/GIOcU6TNu5v3d1xb6F/vCj28qvqMbZwrTTucUZQhva+61VYTBBRiSHY7Q62L3X64bhSPAD7fyV7v3g9+v7g99y+5PYWPVGinSmeainF07ex2Oxsyq3ij13FDbp4WjrpmsNstFJ8WGwtvvjR8WSOiIWafCjbB3t+BFMd29UqnosK5dcc0XUwIaR1LXdFIwZRF6JGcDiIyC9q+QW9kBMHiHckqw9XtGpwYNipp7rbtHsDgiAQHiuKLaPe4rlzA+gvzvTg8N/EB8dx55g7ERA4WnuUvLq8Ro7mS3BomNuRuKasc43bkiJ8BeTQpPB2H3P3igJsVjsJ/cJJyHQer9zpfTL4LAr14jn0/Tnfkxae1sRRGlLr/NtE9RMjmKYDB5vbvdcRF6omTK3A7oC8qqZnODksFk+KZ+iQJvfrqQiCwMRzxM/A9sV5WM02UEcAnrR7doknYreqcBVF+uav264alJLDBznSBanWrkQSKF5syq3i4vfW8eSCPQ0iKMZ2pHgKD1RjtzkIjwsW29EcDnh7ArwzGQ7/zW6ViquTE/kuTEONqQYQi/Naw+bFvwMwqLgK3Vv/xbCr7xn6TOoXg0ouo7DG0MC/xm4wNNhfEdf7ZqOoghQEacSW1toKr98580SQq6E2DyoOEaGOYFKSmI54bPVjrRJ0EU5n2ZpO9kWR+3Uojc1oOarYFPV1ZpZ/dYBNv+UCMHJGqhjFNFRDgXjR10Wluc+/1LDUJo7UOK4Oi0jnmADTgb4VQREEgUSnoGzOk6h+2zbs9fXIo6J6ZQ0YQP+xcYREqLCYbJQdqwOZDII84jrT4nvzW6pvvqg6IWsAGSPHYLWY+flfz7H2uy/R9YBhioFAEihejMuIIlgpp0Jnot45JXZylpiTvmna8dcruKInaYOdF9jKI2B1fokc+I0/QkMavCYjPKPJ4+Xu2Mon99/O0e1b3B/U/lFx2KqqyL30UvJvvQ3tkiXHvd6eRrBK7rk4+lneW4obfqm65hj1Nlzj3yvyvbwoVBrImCL+fHgJrH+PZ4vyUclU7CjfQZ625SiKy1m2ppOdZf0dZCOCj99TZOufx9iz0hMizxwZK3bv/Fv0OMlXKJiyVByuGamORKPUtHjMmtISNi74HoNOS55z4mx0tpgiMh3JOe619lRincXqFc100+lWrADEAv+eYmffVgRBIHlAJABFzmu/u1AWUAJXDfYY+JXV+3YXNjieTMYFjzxDfKZoi7Du+69ZPf+zgK65uyIJFC/UCjmTsnztwD+8Zjw/3X4C107JbPPxrGYby7/cz7bF4pdAvCukXOib/18bLH65DgkVQ8r3jru32eOu+vpTKgvy+PHFpwEI0oSS/dVXyKOjwW5Ht3w5BXPv5OhFF7vrLno74cFii2edV3rDYTZjKWwYPu2NERTAXXhdfMTXqdhVh8LhJbDoYZJz19FfIXbCHK4+3OJxPbN5Oleg1NR7BMrsoe1zGfX2pUjMikCVvxy+uBBM4t9q6WBPK7EritISf777b1Z99Qnv3Hi5u2sndqAoUPxdUvsCcWHNCxSHw4Fu2XIANCed1FnL6hISXeeiS6D4RSofzr6Us7LEacUPr3qYT/d82uzxZHI5p9xwq/tx0cG+EaGTBIof07I9X15qhYywICVj0qOOy+Z+14pC9qzyfEHGpTnbIws8AqVMLuewSoWAwAdnfcWCOQu4bth1zR5XofQtFoxISEIeGkrYzFN8tht376b0X6+0ed09EdfwQFd7uGHnTg6Mn0Dxk08CoDn5JOLuvZewU2cRMmZ0Vy2zQ0nsHwlAiVOg1JTWY9RbPHUoRzytxdkKsa6kNZ0EXTWbp8YgdrRdPC6VNy4dfdzHsZht1JSIdREh4SqmXpINX14Ix1aLO4y4mIJUz/HPzmp5/EFtWQkF+3zTqafddg8R/cW0hV2rxd7HJtC6IijlTbT7mw4cwJyTg6BSEdrLBYo7gnKwmroKA1j86nLKD/jUGb66+dUWj5kyaAj/eE+MnFSXFGE2NF3r01uQBIofJ2XHun8OC2qfTbWrW8BFdLIzbFzgafE8qBLfo39kfyKDIsmKyGqxtdFu862PcX2BRF1xBfhZazu60AG0M3GF/11pgYp338NhNrvHACiTk4n9xy2kvvVWr/Je8CYpS7xrqy6pZ9fyAr58Zj2/vr0D4odAWLLPvtnlYgricE3LEZSYFDGyV5ZzGLPRwL7Vyzulo8cVQbl1en807TBKLDlSi93uIDRKzXUvn0hCeqjvDv1OIqdW/HuMiR/D3WPvbvGYe1ct83kcm5bB8OmzkIWFIajFL+q+FkVxRVDKm4ig1P0mThAPPflk5GHt87Lp7sSmhZKcHYnVYmflNwfB7Ccmtn9BfIhvqrneX8Q0QmhUNKHRMeBwUHbsaIv793QkgeLHgPhQEsPFlEt4O+ztKwt1blt7F3KFDPSVUOxMuwRFUhYpVmgnalrvjllf5zsNOSJeVOJBQ4Yw4M9FJD77rPs5e33vV9ngFUFxChTBaTvuQt2/dxbkeRMUqnSPfV85/yA4oPRoHVUl9TDwNJ99B2hF8Xy4suVQcUL/AQSFhmHU6/jg9uv4/a1XWffj/MD/Al5YbXZ3oXpkO2pPAA5uEEVq2tBosTC23uvGQZBD/5nk1IgC5aEJD7V4LjocDvb5CZSwWDHyKgiCO4XoL1AcNht2U+unbvc0YkNF4e8fQbFWVVH+3/9S+eFHAISf0xMHdLYNQRA4+XIx3Ze/pwqL2bvJQoB9v5Bg9e0Mbc0YChCLZgG+efrhXu8uKwkUPwRBYJozinK883f0tSYW/Gc7DruDqMQQUgZFiYZa4AyzOyBhOHtv/J3lA8RZMq1tKwbRetwb75SPMjmZyEsuJvXttwCwFBW1qlOjp+OuQXF+qTmMvhfJ0JN7d0jZxeTzGhr1Hd5SBtMf8dk20OnXkavNR2du3lxLJpPTb4w4csGkF03Oti/6NRDLbZI6ry669hTHmuotHNoiFiEOPdEZRdJ60q6rL36XXyu3UWkURUu/iOaL4Y9s2cjB9aupLi5CoVYT5zRGHHP6Oe593AKlrBxzXp77/Mu78SYOnzITm7b1U397Ep4aFN+obcW771Hx1tsAqLOzCZs5s9PX1hVEJYUQGq3GbnewRXYHX5T/l1xmQtZ0AOKrjvnsv7JgZbMjKFxkjhzr/nn/muWBXHK3QxIojTBziBh6Sz5O18q/P9uPoc5MdLKGCx4cx5x7x5A9JhqKtsGhxQAYsqZz6e+XsaxgOdB6gWIxm7CYxPD6xDkXE52SxshZp/vsIwgCmmmiDb7DYMBWU3Ncv0dPwj+C4t+9o0prvadFTyY5O4rpVw5i6sXZzLhKNFkr2FcFYYlw62o44S4A4m020i0WbNhbdJUFGDjpRJ/H4XEd2wlV45y/E6ZWoJAf/2Wq6FANNoudyIQQEvo5i9TrRIFSmzSS2zY9z6OrHgXEKGZz3Tu5O7by87+e49d/vwzAgPGTuejx/+Oy516h32jPxHGXQCl743WOzD6N6q++wmGzUb9pE7bKSox79x3379OdaaoGxeUcC5DwxBO9tnvHH0EQSBkodm5uKZlGrS2Z30rmYk0Wu+qSyo/47P/altd4aOVDlNc3nxocNftMhp0sFr5X5uf16inHbTrzX3zxRSZMmEBYWBjx8fHMmTOHAwcO+OxTWlrKddddR3JyMiEhIZx++ukcOuRbiGcymbjzzjuJjY1Fo9Fw7rnnUlBQ0P7fJkCcNiyR968ex3Nz2m7FbDZaydsj3o2ddtNw0ZvCboONH8AH02GXOLWzMNl3OFaCpnUCJXebaDkuVyiYetk1XP/6u2giG/pDyNRq94XSUtC7w4AAESG+NSjeAiX+4Ye7ZE1dxbBpKYyamUZsmlhrUefyRUkcAbP/zz1EcIpBFLp3LburxQGC/cdPYsJ5F7kfVxbksWPx7x02c6bG+e/o+nc9HsqO1XF0RwUAMSmhYnpn6+fw9WUA7Aj1nXV1YfaFzR7Pvyg2a8x4QsIjSBnkazjmPu+Oid17pf/3vHiTYBND+uZjucf1+3R3XBEU78niDocDk/P632/Bz2gmTeyy9XUFqYMaXpsP1oliNq5wG69o7aR5+aIszVvKKd+dwoLDC5o8piAIDJgoipyDG9bw3xsu77W+KG0SKCtWrOCOO+5g/fr1LF68GKvVyuzZs9E7w74Oh4M5c+aQk5PDggUL2LZtGxkZGcyaNcu9D8A999zDTz/9xPz581m9ejU6nY6zzz4bm619dvKBQhAEThuWSHxY663Q6yoM7FxW4B5EFqRRikWxpXvgpXT48zHPzjIlBaG+H1z/gqnGyNm6iYWv/xOA4PCIFocCKpPFkLalqPc7zLojKHojhfc/gL1WTIP1/3MR0ddd25VL6zLCYsTPr77WjM3baPDqn2DCzW6BAvDNgW94dNWjTaYDBUHgpCuu4+a3/+fetuSjd9i9omP8dmqdBbKRxylQTAYr3724mX1rRaEaEeeMhi6c695nm9Jz+RsZO5Ibh9/Y7DHNRl/Tv7RhIxvdr7E2dvMxTzjfnHuswfO9gRiNCsE1WVxvwlJSgqWgALtWCwoF6l4w+6qt9B8XT2i0bz1cpcF5M1qdy+kVBZyvbThgcU3hmmaP6xogCGAxGQPuMFtaZ+TZX/Ywb03XFuK2SaAsWrSI6667jmHDhjFq1CjmzZtHXl4eW7aId/WHDh1i/fr1vPvuu0yYMIFBgwbxzjvvoNPp+PrrrwGora3l448/5rXXXmPWrFmMGTOGL774gl27drGkB5uL/fzGNlZ9c5DlX4hFhxHxzgviokfAP8cfnkyBwTeM15oUz7Y/PXn/oNCWq+CVKWIBriW/ZTOunk54sAIcDrQbN7u7BQBUGRl9arqzN0EaJUq1GE7XVnl13YQlwpCzmWowMFNfT39lJAB/HfuLP47+0ewx/VM7+Xt2BXTNACarjeJacb1RIcfXcVVX7ismwmODxEimF9vt4hfDU1Oe4vMzP0cpb14M+RvVhUbHNLqfIrHhuVz3q+fc9RYrvQmFXEa8M4pyePVmDs44hSOnzgZA3S+z13bPNYdSJeeih8cz8pRUhk4TRUVdrQOyPL47cjw3BadmiNPD91U1nwaMTPAt5A50neHRCj3z1uTy+bqu/ay2qwal1nmXGh0tmpuZnBXqQV5D2ORyOSqVitWrRc+BLVu2YLFYmD17tnuf5ORkhg8fztq1axt9H5PJRF1dnc9/3Q1tpXhBrSwUL3qR8U53WLOvOn4zKoKpUQLLnbUnLloTQQn2EiV15c3bIwOo+jvnghw+0sKePZ8ItZw3Vr7Jy2vec2+TaVp2A+3NCILgjqLUVfpZ/scNRu2Af5dV8HPuUW4eIbqoLspd1Kb30FYGtpW2zmjhpH8t47GfROGTHt3QZbk1+AgynBGUCs98HBuwxyyat42NH9uqqcU1pZ4ui1NvntvkfmGzTiVizhwiL7uU0FliQWj1V1+7nzfn5rbmV+iRuKZN587/AZnXl6Y6e2BXLanL0USomXbJQLJGi5E1baUBLv0Cpj8GM57gvOhR9DNbuD1hGo9NEiPtuXW57K5oemyJXOErpvU1VU3seXyU1onnjytt11Uct0BxOBzcd999TJ06leHDxcFrgwcPJiMjg0cffZTq6mrMZjMvvfQSJSUlFDtrAkpKSlCpVERF+aY4EhISKClpvM3qxRdfJCIiwv1fWjcreLRZG+bh3REUqyevbwE+jIygFjsbijf47B+uankQmraywnMsY8vtiursbABMh1v2uujJVLz7LiFnTGNwdb7P9uRX+oZJXXOEOwWKS0C7CUuES5x22WYtJ0aL9VZ7K/e2eMwZ193i/rlg726+efYRig8fCIgV/sqD5ZR6zXLJiGm7QMnfV8Xq73zr3sJjg+HQX559hp6FwWElSB5EZnhmi8e0223UOgXKTW993KAw3Rt5qIbkl14k6ZlnSHz8cQQ/byJLXh6ObpLODjQpkcHgcJC021N4nZc6iOjrr+u6RXUTXOdiZaGePRtrcZz8EJz8IDGR/VhYWMxtwZnEBscSqhRrxy7/7XK2l21v8ngjZnqsA/TVgRUorkLn+PCunfh+3AJl7ty57Ny50526AVAqlfzwww8cPHiQ6OhoQkJCWL58OWeccQbyFiq3HQ5Hk6H4Rx99lNraWvd/+fn5je7XVdRVGBpsiyQX8jaAV+HhYk3Di+2s9Fm8OePNJn93m9XK/Kcf4ocXn6amxFNLctbdD7W4LvUAp0A5cqTDihm7A+X/ebPBNvsjTxN2yoxG9u5bhMWIQrm6uBE/nKHnQUQ6AEPKchAcUFpfSqWh+YK7sWecy12f/+B+XLB3N189fj8f330z1nYaAx4p8404pke3PgpWX2fm0OZSFv5newNBFlq2DBY/JT6YfDsHJop1SQMiByCXtdxVoqusxG6zIpMrCIuNbXF/F8qkJMJO8/WgcVgsGPfvx2Hpfd0XSRFBDK7OI1FfiUmmYM7ZL/DhhQ8RPGJEyy/u5biimQDLvzxA7k7nDWekeA6y/Ssw1rmHeYLYetwUM667hUnnXwqAvqY6IGt0OBzc9fU2nv9NTDEl9MQIyp133snChQtZtmwZqam+Uz/HjRvH9u3bqampobi4mEWLFlFZWUk/Z4FUYmIiZrOZ6mrfP2hZWRkJCY3XYajVasLDw33+607UlDa8+EetvRv+NxsMorL9OiyUh+N9L2wyQcajkx5lRnrTX6RVhfkU7t9L7vYt6Jwq+db3P2fQlJanHavS0xBUKhwGA/WbN7e4f0+kKafcmvi2TaPtrbiKQ3f8nc/BjSXsWl6ArtrryztGTAOG/P6ge8pqa6IoSpWarLETGmw/uq19n7Ndhb4eP21J8fz54W7++mhPg+1Z6nXIvr1cfBCdBZNv52C1mO4ZGN261ENVsdgJFxGfgKwVgsYbzZTJDbblXngR+bff0abj9ASSIoO5Yr8YqVqROhqTQo3B0jujRW1FofT93JQcdZYqRDgzAtVHYdEj3D/ufrcfz9ayrU0eT6lSkzxQtBLQBSiCUqEzs3CH50Y4PrwHCRSHw8HcuXP58ccf+fvvv92iozEiIiKIi4vj0KFDbN68mfPOOw8QBYxSqWTx4sXufYuLi9m9ezcnnHDCcf4aXUu1n0CJTxKIUTiLi/Tl5CgVvBIjprTClGG8NO0lHhz/IB+e+mGjtSfVxYVs/WMhNquF6hLfDhyFSk1IRGSr1iUoFKiyxC+gvGuuxZTT+yasNtWhVB7VvuFyvYUhJyS5042L/7eXlfMP8vkT66gtd35mo/u79x3qFHs7K3a26tjn3v+YT5gZYN/q5e1a725/gdLKFI9RZ2ng3AxwZuQ/OT3yX54NF34MkWkcrHIKlKhWCpRC0QYhOqXt6eWQCQ2FHIB+1apeZ6KY7tAzoewANgS+HiQWfBrMkkBpjGpnxyf9vEwkD/1FWlgq/5nxHwB2le9qtv3fZTGhr6nGZrWw7vuvydnWsq9RU1TqfUsHEro4xdMmq9Q77riDr776igULFhAWFuauGYmIiCA4WLwIfvfdd8TFxZGens6uXbu4++67mTNnjrsoNiIightvvJH777+fmJgYoqOjeeCBBxgxYgSzZs0K8K/XOZQ5lXB8ZjhxaaFM7rcBwZPu5vuwUCyCwIn1Bt69dWezXSUWo5H5Tz9MfW0NZoOhwb7hcfFt6kqJvuYaih8TC6+0S5diOnQYc94xwqZPd9eo9GTMTo8XRVwc6V9/xTf/9y6bqu2MsvYNM6iWUAUrmHnNEH581XMnZrc5OLC+hInnZEGMR6BMMhj5LVTDsmNLuGH4DQQrmjcqlCuUZIwYw66lf7q3FR5oOfrSFDX1Zkrq/FIzrZzBk7Oj8WLdMHkZrtOlRC7n08LFULiYVYWrABgcPbjZ4zocDha+9k8Ob1oHQExK2yNzSq+aOVVmpk+RrK2yEkUbUkbdFcOu3Ri2bSUhXOwuKdVEU6IRu5ykCIqHWdcPZck88Rwpz3c6CkekwOOl8GIq6MvhyFIyC7cSHRRNlbGKvZV7GR0/utHjuQVKdRXz7ruN2tISZHIF937183Gtr0LrK4a6uki2TQLl3XffBWD69Ok+2+fNm8d1110HiNGQ++67j9LSUpKSkrjmmmt40jlR1sUbb7yBQqHgkksuwWAwMHPmTD755JMW61S6I0a9haO7xFzi9CsHiROLF33ms8+6YFGFnq/VNSsu9q9dyW9vvuIezX1w/Wri+4lfIKNOPRNtVUUDR8+WiLzgfOz19ZQ+/zzlr73u3l795VcMWPxXgwK+noalQKxHCho+HHVqKjlnXcEva3NJ0/eNIYmtIT6zYUo0Z0eFKFDiPF/Q0+vFWqoDNYeZ+OVEFsxZQFZEQ+t8b+IyfKOo9bU1WC0WFMfxuSqsEd9fECA1KpjZQ1s/n2r/Wt8CXWWQnPigAqIUBTD2WijZyXuJKfyw7wv3PtFB0YyKG9XscevKy9ziBI4vgiIIAunz/kf95i0o4mIpecYzK8ucn98rBErxE09gOnAA1796sSaGfrEajlboqZciKG4GTUokc2QsH927El2ViY8fWEVUYgjn3z8WIWUs5G+ALy5EAEYOO5HlVLG7YneTAsU7mu4q4rbbrBh1OoJCQxt9TXNU6HpwBKU14ci77rqLu+66q9l9goKCeOutt3jrrbfa8vbdkiNby7BbHcSkhoriBHzaGUvlcg6rVAgOB5Nb6Lz54+3X3OIERGMoV2FsypBhDDnx5ONao6aR1Jm1pATtsmWEe7V790TMzoJpZZp4ZxujEb0WqiSB4kau8GRyw2OD0FYaqSzQUVdpIDxrOiSOhJKdRNntTDIY2eAU1JtLNrcoUCITE0nIysZmtVBVmI/dZkNXWeGesN0WimrE6MmIlAgW3HFiqyOFFQU6io/UIpMJXPDQOAxaM5kjYuG1IaC1wfAL4Nw3Wf+Db+fNjLQZKGSNXwItZhN1ZaVU5Pv6QEQfRwQFQDNlCpopU9Ct8TXgshQUwJgxx3XM7oKtthaTn6P48PFD+eyGiUz71zIpguKHOlhBeFwwdeUGjDoLxYdrMWgthKRPFgWKk2GGepYDuyubbjeWyeXEpmdSkZdLVHIq1UViKrKi4Bipg9vuhO4vUOJ7YpGshAeXc2z6kGjY9T18dSkc9tTXLA0Rw+TDzGYiWuikUah8PwxGnZbqYlGgRCUmN/aSVqHql0mQsxU8dOZMom+4AYBqrw6snojD4cC4Q6yXUKWKd7bRzomq/gPL+jpz7htDyqBIzrlztDuiUny4FmRyuP53mPUsDJ3DsxWeDp7culwOVx8mp7bp2iWZTM5VL77Bta+8TUS8GPGoqzg+b5QiZwQlOSK4TWnM/evF6Em/0bEkZIaTOTAIvr3GMxQwaRQF2gIKdYUoBAWXDLyECHUE1wy9psljLv7gbT65/3bW/+A7tTk6uX0WB0FDh/o8NnezjsS2Uj1/PgcnNSwCThs+EI0zPWe22t3W9xIi7ptZJ9XFeph4C4SnuLeN0IulA835oQBc+vRL3PTWR9zwxntkOmdCVR6nOaf/dbO1KdaOQhIo7aS+VvwH1USqYcXLcNBjdGUDvogQP4hn6/SiMU8zBPt1J5n0eupraxAEGVFJKU28qmUEQSDjs0/JXr2KtP++TfSVV4BMRv269T26cLbmu++o37wZQalEM1VMfXkiKL13rP3xkDIwijn3jiUyIYTE/uIMmuIjzoJUdRhMvQeGX0CK1caTFrEwdVf5Ls5feD7n/Xxeq6ashsW6jKjKcTgc1JWXtakI1CVQUqJaP6TT4XC45+1kj3cWRn9/PexdAIIcZj0DwVHugYjDY4fz5JQnWX3ZarIiG48O1dfVsm/VMgCfCMq4s+agDjk+4zgXiqgo+i9ZTNQVVwBgzulaK/H2UvLCPxvdrkpPI0TlSdlLURRf4tJ90y/VJXqISIWblsK0+wEYVp4LwLG6Y+TW5jZ5rKDQUPfNQUyq2LJccuRQk/s3hyuCEqZW8NblY7rchVsSKMeJvsbE189tEEfZ4xQoXqkdznmTv0PDyFcqiVBFcP6N6+Hk5r1LlKrGw2nJg4a0+8IoCwlx57qVKSmEOuuIqufPb+ZV3Rvt0qUAxN5+G2pnt1K0pvGR7xIekpwCZc/KQtb+4GXilyh6VWRWiWHi7eXb3U81F0VxEe4UKLVlpSx87QU+nHsDB9atavW6XDUoyZHNCxSbzc7ieXtY99MRqou01JUbkMkF0oZGQ00+HPoLKwLXj57BzfV7sdqtbCgRQ+cTk1oeVtfYmm/49/tMv+amVv8uzaFKTSVkvHinW/frr9T99VcLr+i+KBM9dULeRffK1FTUXqlFqZPHF/8ISlWJs6suPAlmPgVhyUTabUyJHATAfSvuo84sRlRyanKw2Br30Il1CpTdy/5iz4qlbV6XS6A8efZQzhl1/FH7QCEJlONkw8Icqoo8plIhoV5K84FDOMZewycDxdDnpYMvJSQiDVpQo0adttHt/caMb/+C/Yi6TDT4qVuwEHs7zbU6G0tZGflz56JfIZoYebdx9o8Tjb3yquq57YstbM0LjIFRbyKpf6T7522L8zDqnRe7yExQhZFhamg8eLD6IGabGbuj6TRlWIwogNd9/xWHN60HoPjQgSb398cdQYlsvjDv2K5KDm4oZeufx8j5VYxYpgbtQ5W/HHaLBnLH0sezueYg64vXM+bzMfyWI85nmpQ4qYmjeijY6xtSj05ObVcEszFCZ80iZLx4Xhc//gSWMvFGx6bT+0zi7vZ4OeImPvsM6kGDUKamourXD0EQCHZ6f0gCxZdYP4FSU+I3MDBb7Gh9vqKGmKAYDlUf4uGVDzN//3zOW3Aej6x6hH9v+Td6i+/rssZOcNd/Lf/8YywmPwfpFqh03tjFhnWPuUmSQDlOav2GkWlyvqNcLmNDSCiOkFiW5S9jZ/UBVDIVlw++vNFj2KxWfnjxaZZ89F8cDgf1XjOGssZOIDQ6BplcTvbEwPvDaE48EUV8PLbaWnR/i+FsS2kpht0Nja66G6UvvohuiefuQD1ggPvnmFA1w5LFVNkfu0uY+2XTRkd9lZBwFeNOz3A//vuzfZQdqwOZDBKGEW+zEexXL/XroZ+Z9NUk/r3l30DjBfOuFI83rblAao0WDpZqWx1BydnuqXHZt0f8AkwStsCXF8KSpwE4mja60deOim++awfw8R4SBBmzbrq9xde0FZlKRfon8wgaNgy7Vkv1Z59h02o5esEFHDntdLdg6c44HA6s5eK/ReZ33xEydiyZ335D1u+/IVOLkUxXmkdK8fgSEq5i7GkZxKaJqZ7qEj+zz5MfAUUw8fmbeHeEOPdpdeFqXtjwAiAO9vx498f8c4Nvii0kIpLrX3+PsNg4jNo69qz42+f53J3bKNjXdE2LK4ISo+na4lgXkkA5Djb/ntvAFEqz/mkejYvlpoRorlp0Nc+tew6Aq4ZeRWxw422EJUcOkbt9CzsW/0F1cRF2mxWAkbNOZ/Y/7uKK51/jyn++QXRyYO/eAAS5nIjzzgWgbpF4F3p4+gxyL7qo29elmA568quCSoU8MtLn+QmZ0e6fi2qNUoFeI0ye05+sMaKgOLqjggVvbBOfGHcdAjBL7yvA15Vuwmq3Mm/PPD7a9RFT509lR/kOn30yho9u8D5GnRarxYJB2/SAz3vmb2f2GyvdM3iac4+12x0c9RIodWbRByJe6TtvKieooUX+iSknopY3f+F1OBzumUJXPP8a173+DmnDRjb7muNFUCiIvPhiAIyHDlH6/PPinB6zGXMPmJ9lq6lx2/WrB4mGdzK1GpnX1OIgZwSl3mzt/AV2c6ac359z7x4NgK7aRHWJnj/e3yXeLESkwABx0OSQsiMk0njb/vL85Q22yeRyxp99AQAbfpzvvknQVlbwwwtP8s0zj2C3NxSMNrvDLVC62v/EhSRQ2khVsZ4NCxv5AhfM7vbMneU7qTRWMiByALeNuq3JY3lPgj3ozHsr1GpOvXkumsgowmJiic9svs2zPYSecgoA+rVrxQuN8664fsuWDnvP9uKw2913bdC41f0FY30F3QXvrqWgupFZNH2cuDRPoZ7ZaBOjIqMvh0u/5NmKSu6uquGE+obpnv9s/Q915jqW5S3z2R4eF881/3qLoSedwpjTzwHAqNPxwz+f5IM7rm9yXsjS/Z5oQXJEEJEhTYeXdVVGzMaGF9d4pe/E7iOWGgDuGnMX267exsvTXuaZKc80ekyb1eKOCBUd3I/FaEAQZMRlZhGd3LEjE1SZYiRLv2IltQsWurf3hAiK6zyUR0b6iBJvpAhK8wRplKiCxU6ZX97aQc62cr570TkuIsPpebX8nwzT1zb6epvD1mg0c+Ss0wmPi0dXXcXu5UsAKM3xiF6jtmE5QZnWiMXmQCETutz/xIUkUFpBTWk9u1cUYLPZKT/W+J1gjpcx1eSkydw4/Ea+OPMLghRN/0PXeo1v37/WWU8RHhGgVbdM8MiRyCIisNfVofUaPYCt+w4WNB87ht0rFRZ5ySUN9hmZGsnKB2eQ5axH2ZFfw2frjjXYr68TnezbSfC/B1dzdGcFDDkbxdU/c221ibdKyxuke1wYbQ3TN3EZ/TjjjvvIctZN1dfWULB3N1aTycfwzIW/78KQpKbnbG1ZlMvnTzQ8Rri8hCCZ54L7UHw8v+eLoe2siCwUMgVnZp1Joqah8ZtBp+Xju2/hu/97nCNbNjL/qQcBMV11PGZzbUWVkeHzWHCmRqyl3VugmHKOYj6aC4guzk0RrJJqUJpDEAT3vCzvAZc1ZfWQMcX9OKuJwZJ6i54SfUmD7QqlktGzzwIgd7t4w1l+zNMxpq+tafCagmpPilUu69ruHReSQGkFf3++jxVfH2TlVwcoyxMvhNnj44lM8ISi96rFO4hxsjA+nP0h94y7B42y+UmstWWeD1Zlgdi3HhzWeYMQBbmc0Kni0MHC++53b7fV1HTaGtqKYauYiggaNozkf71M/EONd0alx4QwbYAntVYpdfU0IH1otNj54sSos/D7O6KvzO9/hDOv/H9YbRGMNDX+t6s2VlNvqafW1PDuLihULAJ0fa4BzIZGim9LfO/kBieFNdjHxfqfPZHLqCTPuTVO8z0AG4LUXJMUzx8az02Ba+haUxxYuwptRTn5e3ay+dcf3dsdzRQDBxKF34DUMOe4D2s3jqDoN24k56yzKLz7bqAFgaKUIigt4ZqV5c22xXmQMIK9tjls0l3MaC+Tz6EmX1Hf1HDP9BGjASjYtxu7zUbpUU8Epb6Ra7wrypzahjb/jkYSKK2g+LB4Ad67ppidf4stmJuUfzNrwn6UMhMnhs1jrzPEOdTe+j+pt0Bx0ZkCBSD+vnuRRfhGbbxTKF2FYccOih55tEGoW79e7A7RTJtKxLnnIg9tWgTeOt0zZ6a3DWULBAqVnHPvGk1ilu+/f225gdzdtVgcIeTE3UWG0vOZHB4znFMzxCFw1cZqbv7rZs766awGIiWokc+x/+BLgAOlvgKlsdDyka1lfP7EWp9tmcNjuOjh8VydfD9DQ5ZiEuDe+Di2BXlef2H2hS0KFO/hhgX7PAXiKYOGNrJ34BFkvteL4LGiq2zdb79h2Nm6oY2dgenIEeqdNwd1v/7m43gtj2w66uuKoMz9ahuHShvvUuzrRMQ2FAR7VxVRfFTHsvJr2ai7gmF1cfxfeSXfFxbz79IKLq7TMjpuNAAFOvE7yWK38H/r/o8FhxcAEJ/RjyBNKGaDgbxd2328UeprfdOtn68/xr3fiDVlKS0UqXcmkkBpBQp1wxlBf9b/wtIDjzMz+RpGaxayK0gUKMMyTmn1cWtKSwE4864H3QY7rv93FsqUFKIuu8xnW3e4e8u99DJqf/6Z0hf+ibVaPJkcDgf69WKIXzN5SnMvByApIph/ni96e9QZpSK9pggJ960f2LWiwP2zbNwV3KjpT5jNznkRg/n67K85f8D5AByoPsDOip3UmmrZWurbLdXYHJAjmzdQU+oryvcVe9J1gxPDOG+0b/2Qw+Fg0Qe7qavwTSdFxAeTkKok3C5GVX4IDUUr91zOnj/xeZ454ZlmjaZqy0op8h5u6PzSHXrSKUy74tomX9dRyEJDUcSL081tNTXkXnIpDmvXf24dZjM5Z53NsSuuoPzNN6n59lsAlMmiT0bIlKbPRW+ztge+29Hkfn2Z8DiPIJh6STbZ48XPwPoFnoih/txvmKPTM8hsIclm46nKasaEZQJQoivE4XDwZ+6ffHvwW55Y8wRWuxVBJnNbVPzw4tPoq6s8x/NL8Tz5s6ezJzWqfZ5bgaRrfWx7AGajFatJDE+mDYmiKLeaHPUeqoNLeTFEDI+/WVrObmfueMzYW1p1XIvZhNZpCZ42ZDiDX5lGeV4usWkZLbwy8PjnwbuDQHGh/fNPdCtWkPHJPITgYGzlFQhqNcFjRrfq9WFB4kdca2w8hysBpnrfv83eVUVez1lJjuzPyv1/Ik+ZA4hD9gCqjJ4LXrHe17tDHRyCIMh8UiX1tTV8+fh9TD7/ElKHDCc6I4sl+8TP2ifXT2D6oPgGayvPa/yue3X1Mob9stL9eF3GGNAf4wydnmHqWM7OOrvF33v/mhUNtoXHJXDGHfe1+NpAkvrftyl98SVSXvedxQVgKSlBldqxhbotod+w0f1zxTviwFghKIis33/DYbEgD2s6Lefq4gHIKdc3uV9fJnVQFAq1nIxh0YycnsrR6CAObS7z6RStqtOQLAtFYde5tyVu/QoiQ/hi/9cszV/O1JSp7uf2Vu5lZNxIZlx3C7XlZaIQFwQiExKpKSmmvs4T8fTvckxqwYeoM5EESiOYDFbUzspql5W9Umnn3DtHMv/gd/yx4QOf/e9KEHOwCSEJJIW1riU4d/sWHA47YbFxaKKiEQShQzt2msPVSeDCUlqKw2pFUHTNx8Nh881XO4xGci+7HHW26HeiOfFEt89CS3gEStffiXZXRs5Io/BgDZoIFfpaMxaT5++/9ofD6IeM5UQHCHWFULKLqKCGX0i5dbk+jwWZDHVoKEa/9mKjto7ln32ETK5g+OPvUaU3ExuqZuqAxlvxc7Y1TDdWhBTwc8V/mFN4FFcFxyFB/Pe9WKtjwokviDOGWsBVmK6JinbfXaYNHdHi6wJN2MyZhM0UW0r9Tdos+fldIlAcFot70rlPAb2TuLvvRhYUBEHNf5kJeCJYUZruYf7V3QiPDeam16YhkwsIgkDq4ChkCgG71SMc1vyQQ07I/3FB+L3ubYkmPSBGO4r1xXx38Dv3c5tKNjEybiTBYeFc9sxLlOflIlcoOLxpPavnf+ZTg1JY7Vsb1lybf2cjpXi8KD1ax+dPrOXn18VwtdVsQ++csKqxF8HWTykqbroFNz08vcXZBRazidKcw2z+9WcABk5q/dTWjqJBBKWkhKMXX4LdWdTocDgwHTmCo4Vhh4GiKSdN0yGxyCvykotbfaywIOdF1iRFUJoia0wcFz0yniuemexuefRmx74YjpomwZ6f4L2pRK57t8E+jc0K8e6CScga4POc3WZl7SaxxuLskUko5I1fivwjKAkjg/l+1CtY5WYKnQJalzGFQl0hANkXfw0jL23mt3W9v809UG3EjFPd2wdMbDl12JG4xlG4MBd40m3+wr2jqP3lF/aPGUvFhx9iysmhdsECn+dT/v1vYq6/rlXHyqvyRE0kP6KmkStk7u8BVZCCjGExDfYprs/EYPfcHCQ1k/7bXLrZ/bMgkxGfmUVMajohTs8o7xqUIxWeqMz/nTeMiZlRx/17BBpJoHgRFhNEXYWRinwdBzeW8MHdK1jw7+0AaOTVsPNbio80PTfjisFXtPgef777H7549B537nvg5KktvKLjkUdHN9hm2rePwgcexFpdTclTT5Nz1tnUfPd9p6zHnNuwJTjq6qtBoUCdnU3otGmtPla4FEFpFQmZ4aiCFaQMjGz0+ZV1N1NuESN8IRvea/C8fwQFQFflmYx85Quvc+bc+32eD178PlHmKvrFNl3oXJFb4XtMvScisyMqiWuHTua5FFFgx4fEE9l/puiI2whHt23m/duuJXfHVvQ11TgcdmRyBbHpme59MkaObnItnYGgVJL8yivux5Z8UaDU/Pwz+4cNd8+f6ijMBQUUPfgQWK2Uv/Y6hffci8NkImTCBBTJSSiSkgg9+aRWH69K7+kAK6mTTBNbywkXDGh0e7nFU/ifaG1asBZoCxrdrokQxUd1cRFHtmzEqNNx1Jl6O31YIhFrv+KzB+dibaKtubORBIoXIeEqYlLE4r7F8/bicHhSwhpZJeSto8jWsFUSYOnFS5mVMavZ41tMRo44Z5QAnHTl9SQPHByYxbcDQRCQacQvidBZM91Dv3RLl3JoygnUfCeGDut+/71D3t9uNvtEZ8zHcn2eDxo1ksTHH2PgmtVkfP01grzl8L0LdwTFaJU6eVrBlPP7N7pdb49hae3cJl9XrC8mtzaXW5fcysIjouFYymCxE2bEKbMRZDIGTJhC+ojRRMSLiRm51cTJlauICW089K+rMVBfLwM8nw1TnSeM/Xqwna2GIv4oFjt8BkYNbPZ3++uDt9BVVfLDP59CWykKn9DoaAZMmMzQaTM49ea5TQ7s7Ewizjmb+IcfBsCcn4d+7VqKH3kUgKKHH+nQ99at8K3LMR0UB6AmPPoIWT//TNaCn5EFt77L4+lzhqFyRsdsdgflWmnKeGuITAjhvHtGM3CSbxt6mcUjXCIjfBsqom02nisXbwpK60sbvd5pIkWBUlNazM//eo5f3niRHGcEJStazaGNa6ksyKNkx1r47X5Y905Af6+2IgkUP1KHOMNbfv+2dsGOFdgZ1PgFLD7Et8Bv+1+/N5gmmb93F1aLmbCYOO6b/wsTzr0wUMtuN1m//UraB++T+tZbZP2ykORXX22wT0e0H9vr68k55xyOXniR+4Tyj6DIneJJHhHRbFtxY7hqUGx2h+TF0AqiEjVc+exkRp7iqXsYcoI4fKzS2g+dLZoDhpNR2ERRkWKxMtLp0XDOz+ewpnANj69+HIfDwem33cvMG29n5o3iLBtlUBAXP/E8N775EWc4oylpxiKC6hq225fnHePD26/CYlhDpLyIK2LvYGrYx5TELmuwr4txCeOa/d0sRk8n0PLPPgQgNDoWuULJGXPvZ+Ss01v8+3QWqjTx76/9YxF5N9zo3m7X6Th29TUd5jRryRPTXsp0z5efLCwM9aBByMPDkYe3zQbhpIFx7H3uNHfralFt4zd4Eg1JHRzNtIt9RfcG3ZUUnfILTJmLcMOf7u3PlVfyV34hp+tFLxOD1YDOosOfuIx+DDrBEwHL272D/bvEaH5WiCfKbKvKg00fif91IZJA8SNjqG/uryZC/Md7PzWfU9IbL1a7bth1Po9ry0pZ+vE7LHrnDSxmzx3DkU3iyPd+Y8Z1ed2JP8rEREJPOsm9roizzyLmpht99jHn5mI3NnQPbQ91f/2F5Vgepn37ODhhIqWvvIL5iK9tOe1w9AxRyd2uiFKap3VEJoQw5lTPF1RydiRRiWLh3OdVH7Ok9h6uOnwaAM9WVHJtbUN35dyijQhRIZhHxCLzi3gJgsDQaTPIDRPvBvd+9DIF+0UPEqvZRkWBjl/eeBO7zYTNuIF45RGiFEWMil7FrqTGC8lDlaFcOeRKALb+voCFr/8Tm9UTprYYjZgMnnEHrinLodENc/3dAe8BmP7Ub9pE+Rv/7pD3NR8TBYq39YA8PLxNUUt/FHIZSRFiMe0tn22R5vK0gaBQJafeMNTnfNywKRROewHCEvn8xJd5oLKa83R61A4IdjgIczqBl9V7idjCrbDre2RyOWff/RA3vvmRewht6uGlyAUYEuo5X+rznB48EV3bQSYJFD9Sh0QxelYaALqsQr4Z8iHfjfwXh2K2Ue0MVV46SCzCGxE7giUXLeGusXf5HKOy0OOembNlE29ffylLPnqHPSvFiMqgKa3P4XYlsbffTuztt9Pv55/EOhW7ndIXXghosax2kecuwK7TUfXx/9Cv87UzV8Yn+L+s1QiCQKhajKI8+uMuauu7R261uxPsNW49JELlNnNzzRgLqprF0rxCJhlNnFJvINjvUrLup+t4aOmd3PjXjfx88IcGxzdabPwdOYUSdTwWg54fXniGTx/5g/fvWsE3z2+kutiTQx8a8SXfxSTx5MTzOWDwjbac0e8M5o68g9fSHkNpF79El336IYc2rGX+0w+z9Y+FVOTl8ua1F4HDgUKp8pm6HNZNBYoqM5PY25uZ47VkScBvFgDMzghK0OBB7ihK+Bntjyy5JoxX6Ez8sqOhYZ9E0wycmMgJFw5g8hxRnFcW6ji8pQyrxcborNO51ujwOfsSnENnS+tLsdqt7K/aT968U+GHG6FgM1a7la+KfyRy9jhQqEgzFnG6Kg9bnZdPyg5nOl8SKN0LQRA48aJsLn18OHsG/YFDsFOpKQRBTD8kaZJ4YvITLLtkGfNOn0eCJgGlzPcOvyLPk6L4/a1XMdXr2bH4d2wWCymDh5E2rPNbGY8HWUgIcXfdSdDgwQQNHgRAzXffo3VOPwaxw8e4bx92fUOPA0tZGRanGV1jOMxm9GvWNPKE+LeOf+ghgkaMIPbOpmsfWoMrzfP3/jLOfnsVZmv3nTXUXZArZKQPiyEqMYTk7EiSBkT6PB8mKyPe2VWiAEbYfbt/tggm1paLzqPztv6Hx1Y9xk3fnIpu7dtQkwefX8BU1T5+TTmPhP7ZWM0GqgoW43A4xFSfw/N5uiFVyXPhSn4uEOfrKAQFmeGZjI0fyzNTnmFCSTLr3n6fVV99gtnoSSGUHD7Isk8+4MvHPL4mcf2ymH61JzIYFtN4e3N3IO6uu+i34GcGbt7MgJUrCB4zxv2cXaul7rfA1oQ5bDYs+fkAKNMzyPhkHvEPPkDsnXe2+9iPnzWUCc7ukHVHKlvYW6Ixhk0VLSxM9Vb+/HA3q745JBaEn/UaBlki9WEjYOgcEpzFs2VbP+Xx1Y9z8S8Xc3ZqEntVSig/wKd7PuXdHe9yx9YHqB8yHYAs7WFqva7VpWanXYYkULoXDoeDbSsW8dlDNxG5thwccI7BE5IcGiMW/sUGxzY5ur0i3yNQ7DbfcOaJl1zZ7dI7rSHmln+4f/YupCv/9384ev4FFD/1tM/+Np2enHPO5ej5F7jblQEsRUXuCIzp6FH3uHZ/ZOHhxNxwPf2++xZlfEMDr7ZQZ/C8R36Vgfu+3c6PWxuvcpfwcPbckVz+1CQUSjkDxvn+G2jt8ezQn0V9+EgABvpNWz2i8oj2fHMNv+T8wgZjCU9tfwO+uIjqw8Wcro1ikDKUsaeKEUm75SB6/UckDfatdaq2e84zjUHO/AkfsnDOQj45/RNClCHudM3+tSupK2soiK0WTyfJ2DPOJXXIcPdjRRNTeLsLQYMGIQ/VoIyPJ/mVV0h47FG3YK/+6itqf/kF3cqVlL74EvWbNzd6DLvZTP7td1D5v3lNvo/dbCb34kvc56MyKRFlcjIxN97Yas+h5lApZNw7S6ynWJdTyfqcSjblVrXwKglv1BqFjw3A3tViJKou9Ty+rP6A+SX/xBo9hHibjXhtBnuWTGfnNjFd7hAE/g4JAYeN5fnLiaxP4OrNzyE3i+e1UHKEMq/avwJjFuu1V7Ajb1Dn/YKNIAkUL3aV7+LiL8/h73fexmG3k5Gr5vIlqZxf4UkxJGmSWjxORV5uo9vTho4gbdjIQC23U9FMnkT6J58AULtgIXW//45h1y4q338fEGeHeFP36y/Ya2uxVVVR/tbb6Favoebnnzl8ykyqPv2Mmh9+4Oh5c5p+wwB23Pjb3P+6s5j7vt2BpRtPbe4OCIKA4KzfUarlXPLYBOIzPD4Mq7U38UXus+gVaQw16Ak1RXHVlmcYWzCbI84vfsEhQ7B5vuAWa0K4DBU/Vr1EkWUEE7QVLPz7V+TqUQAoLFr27fYtzAs2eeofLl6Wyq/PPENdealb6FcXix4o9bU1HFi3qtHfJTIxifvm/8LgE04iJCLSPSsoZfCwdv2NOhNVagrR11xD1BVXIKhUGPfsoejBh8i/5R9Uffopx666GmtFBdqlS308U7SLFqH7+2/K/vUv9zZLYSFVX37pFiT6tWsx7hXr7VT9+7er5qQpxmZEoZLLKK0zcdkH67n4vXXSOdgGBEEgLMbXGM9ssLLs8/2YDDYMWiu1mgnE2mycte9WIo0JnLXvVgbVjWFqzkVsVGuw68rIqc1hTOEsNJYIwkvjCFWYcNis5O7Y4D5uvU3NFv3F7DkQ2cm/pS+Sk6wXicZ6hCOVgCcvrbbIWb07FNLEsOTo+NGNvrbkyCF2Ll1ESHiET4oHIH34SDJHjWPI1OkdtPLOIWTsGISQEBz19RTedz/qIUN8nrdptW7b62rnvA6Aqv/9j6r//c/9uOzllxG87lwFlQqHWbzLjX/oIcrfeov4Bx8I2LrDghSNFsgaLDaUTRiESTQkLj2Mix+dwH9v/du9zWKGXM2lnFX7KseqzkMwRzEx/yy2pv4FDph94HrSa4by7aiXqA0WIyPKugnu10ca4sBwCoRAefBhomv0BOt8L8IhRjlVEaCweiKPZceOUlmYT0RcAlVFhe7tW37zNRUbfdpZJPYfSGL/bJ/I5XWv/hdddVWXjJZoL4qoKCLOP5+ab75p8NyhqaJHUPT115PwsDjp21btMeUyHT1K7Y8/UvmhKAK1i/5Ec9I0bJWeaEbCIw93yLqDlHKGJIezI7/Gva3OYCEmtOtbu3sMfjdu25bkUbDf8+9bGzSC/sNvIXefWNQuIGPGnusAWKkp4MOyddSZ63AIojAUBIGgoAR0uhrft7HX47AbcAwIfJ1TW5AEihdxSg1DyhueLHYHfHP2N+zM2cQYssnduY0gTSiJ/UW/EIfdzh9vv0ZVUeNpgxEzT2fwCT2jMLY5BJWK+Afup/SfL4LVimnfPp/nTYcOEzxmNNaSEkx79zVxFBGXIAEIHjnSHZ6OvupKoq+7tsGU1/Yw77oJfLUxj5Oy47jnm+3u7UazjfCg4+8QkhApcYxmGJCgDcXVNyA4BEYXzaRftRgxzKgeTgi/sz44mHhdw4GYteoKspXHqKwRa0J0wVZqQi2klgdz0o5Y9mXWEaHz/FsVHdjH5l9+bHAci8n3ghqdnMqwk2c22E8TGeX2hOiJxNx8EzU//ghNpEir5s1zCxTvluTCe+/DtH+/+3H9pk3Ub9rkfpz8yr/aZITYVgbGh/oKFKNVEihtwL8/YfNvuT6Pd/xdQNGhExp9rdIWzNt60ddG7vB89WsV15PXbzHY9WSVJmM1rsFhq6Be+y75u+xcaDidoOC22TsECkmgeOGIH0pkXQQOfP0yZHIZQ6IGs/bz1/m8VDSKCtKEctuHX1J0aD/fPN3wjiMpe5A7N95/3MSOX3wnEX3FFURddhn5t96KfqUYTlcPHYJp7z6OXXEFglpN+Oltq/qPvvEGTIcOoR46xCeyEijGZ0YzPjO6gUmU5ItyfEyek8X6n3MYdlIKe1YWsv+ghjFJg9DbPY7EE/LPZGzhbPfjmPokTq2ZzVi1EaE2FRuwOvN7ErVZ7ExaTlnYMX49VM73iALlwlmTeW/nagBUVhmjDkf6rOHoNt96i9CYWIxaLVaz779xZGJyAH/z7oMqNZXMr76kat4nTRoo5pxzLna9HkuR1/BHL3HSGCETJjT7fHsZmOA7x8m7PkyiZaZdnM0vb+9g/BkZVBXrObLVt17Le8CgP2qrBsEhMKteT1q9599BEAQG1ojnql1VDcY1gAW5HZKIAWXg032tRRIoXpTl5uAw2bApQR6kBK148jgcUHr0CLVeo+KNeh0V+cf467033dtGzjydnUvFDpexZ5yLfbaN8Lh4lOruMx0yEAgyGckvv0zh3fegHjgQQaFwR0wcJpN7dkfI+PHuyEjyyy9R/uZbWArFcHzY7NlEXXE5piNHCJ0+nQHLl3WIOPEmLkzNjEFxLDsgntRGi5T/Ph7Gzs4QOwoE2LNS/Pf8uvgln30Glvt+0Q0qn0Qek7y22EnULGdJklPkCnLSFQZOjMvFkTSGYVc+zdjSh6k+trfRNVQW5Pk8TujXH1VQMPtWL/fZHh7XvgLr7kzwiBEkPvcsttpa1IMHUfXx/3yeNx061KbjhZ95JsrExEAusQEDEkJ9HtdJU8bbRNrQaG7+90koVXIsZhsV+RuprTAwckYqO/8WI/iCTCB1UCTlh0swWjzRqbGFpzKgciRXRj3IL5bIRo8vyDQg4DYqPeOSfxCk6LrvL0mgeKGJiubkq2/EbDCQs3UjpVpxOJ3DbufLx+5tsP/nD3v8T86860EGTZ5KZFIypTmHGTBhSrfvEGgPiqgoMj77FAD9xo1Uf/018shIrF6tarG330bhQw+jiI4m/NxziTjvPMwFhdR8/x3R11yDIjoaWkc6VwAANGxJREFUzeTJAAhtsM9uD/Oun8iJL/1NYY1BiqAcJ4JMIChUTLcMm5bMvrXF2G2+ufFQs5g+ueS0PXz7Z8NCVItcT175RRD+EwCxynAEYHJsPky7DgSBWaddyXcbH2fcuRfwQsm7nL6xaT+cSXMuITollaCwMCoL8skaMwG73UZMSlpgfuluijw0lPSPxXoSb4GS/OqrWMvLqf35Z0wHDvi8JmTSJFJefYXyN9+k9tffCD/tNGRhYQGt+2qKhhEUybStrShVcvf/L3x4HNpKI3abwy1QZt84jAHj4qnatYNtH39Hnnk09c7oZrgxgeVlr4BNPJfmj/onI4unM7RMTAtZ5Q4ODbPTby8EJ8aRPamLh2d26bt3M0Kjohl/9vkA9Bs9jp/+9RyGOt/2yVNuuJXKgnx2/CV2rSjUas6991H6jRkPwIRzLujcRXcDNBMnMmjLZhwWCwfGjAXEepWQKVPo//tvIJN7JnWmphB/zz1duFoIUor1LQazJFDay/QrBzP9ysEcWF/Miq8PYjF5/qYxqaHEzpmLZs1S9DrfmqIqhZ4t5nGEIQoUldJLoEaKhavpw0dx5yffogoOoXy3hryNnzd4/+jkVGbdfAdJ2WI75CnX/aPBPn2RiLPPAiBo0EAfq3yA+HvvQREXR+Izz5Dw2GNtmq3TXpIjfO/Ga6UUT7sIDlURHKrCbLQSEq4iJEJF1mgxTRo9YhQzB95Gfv4KFlY/636N1uYR+nVBFeyJPsBTtp+4L03HPlUYFrmJ9SkCX5/9CjJZ16V3QGozbpKk7EHc9sEXPtsiE5IYOOlEn8r/U67/h1uc9GUEhQJZcDAhE8V6m7h770UQBHF+Rxvn53Q0wc47EGMz00Al2sagyUnc+Oo0Evp5ZrWkDIxEEAROvyqZSaFfkqLa5X4uX2ElWOlVHOltdqjxdNGpgsVuhIuHX+ozQ8TFmXc9SNrQnmF82NHI48QvJnlkpHtbyJQpxD/4AEkvvED8gw+S+e03BI8eDYAgl3eqOAGx3mHVQzMYmiR+TqQUT2BQBSm4+oUpXPjgOGTenYnnvYVm7BlNvk5x7ArCjGeToDzMOXodFrlYw5UYkczA2K4fZCsJlGYQBIHJF14OiJGTG9/8EE1kFKlDPCHrIVNndNXyuiXJ/3qZlDdeJ/q6a7t6KU0SpHAKFCmCElDkShkh4Z60pkusJI4cxPjQ7xkW7HEgPiBXMjYj0v3YIQigFu30SRzV6PHPuONern75TZ9tkQkt+xL1FdLeeZeQCRNIe+9d9zZBEIi58UYiL7yAmBtvIHhk1/swpUWHMLGfmHKQimQDh0IpR6Hyi3ikjENz9kPuh+HDVCwPEv/mRo2cSuMwhBAxonKGvh7B2cb8wPgHkHdx9ASkFE+LTL7gEoZMPZnoZI/lb2xaBpc8/SJhMXEo2jHIrjeiTExEeUbTir07IEVQOg51iOeSEp/ujKbI5HDHJsy/vE3CtgPEK48wa8o1nDc2jeuWi7sMiR4Cd38KZp1PBMUbuUJJVHIKgiDD4bCTPnwk6pCQDv6Neg7BI4aT8flnXb2MVhEeLF43pQhKx6MK8ggNY0gYm9S1aGUOQuODoRrCQoKgCiLsdt41ayg/5VFmpjdsze8KJIHSAnKF0kecuJDCyj2XIGfbnMEsdfEEGoPW84UTEe+VPogbyIGks7go7xIATjr/VQC+OPMLvj/4PfeMvQeCoyEkmuZQqtTMuul2DNo6xp01J9DLl+gkwp3zsaQi2Y5HEAT6j4mj6EgthtQgOAT7VTao1gEQGeyJep4YkQ0D5nTRShsiCRSJPodboEhdPAEnNNpTBOk/c6pAlcW15ocZPXwYrp64UXGjGBXXeEqnKUbOav90XYmuJcIZQSmoruenbQVMzoohKaJz62H6EqfdMhy73cHrSw42eC4uTA0znoCNH8Cp/9cFq2saSaBI9DmCnV08RkmgBJyJZ/fDarYxbGpDgzS9ycoK+yiyw/t1wcokuhOuFM/WvBq25tUwNj2SH28/sYtX1XsRBAG5XEBvanjNG5oUDhMehJMegG42yFYqkpXoc7giKJJACTwh4SpmXTeUpAGRDZ7Tm8VwvkYt3Rf1dfxHTGzNq2F3YW0Te0sEinpzw5Ta0GRnrVg3EycgCRSJPkiwuwZFEiidievuLVQSKH2esCDPZyDJ6Y3yw9bGZ5lJBA59I9e8bD933+6EJFAk+hzuCIrUxdOp6Ezi3VuIuuvbFyW6lkGJYUzLjuWqyencMWMAAIXVhi5eVe+n3tQwgqJWdN/zUbqVkehzSF08XYPeeXGUIigSSrmMz28UZzMt3CEOM5RajjseVwTl3lkD+WZTHjeflNXFK2oe6Uoh0edwFcnWGiy8tfQQM4ckePKwEh2GS6BoVNJlR8KDq+VYa5Rajjsa1zk4Mi2Cu2d1D6+T5pBSPBJ9DlcEZcm+Ul5bfJAz31zVxSvqG7hSPFKRrIQ3YUGSaVtnUe+MoPSUmwRJoEj0OYL97aAlOgWpSFaiMSKCJdO2zsIVQQnpIddASaBI9DlcERSJzsWd4pGKZCW8cLUca40W7HZHF6+md+OKoPSUmwRJoEj0OSSB0jnUm63sLKjB4XDgcDjcPig95eIo0Tm4TNvsDo9XjkTg8T4He0onnXSlkOhzBEsCpVO48ZPNrMup5L9XjCUmVIXr5liqQZHwRq2QoZLLMNvsaI1Wd02KRGAxWGw4XOdgD6lB6RmrlJAIII0JFJvdgVzW/ZwUezLrcioB+HRdLtvzagDxby8JRAlvBEEgPFhBhc5MflU9yZHSTJ6OIKdcD4BKLusx56CU4pHoczQW3pRCy4HF4fDUEhws1WK2iZ4z71w1FpkkBCX8cNWhXPrBepYdKOvi1fRO5m/KA+DUoQk95hyUBIpEnyO5kamp+kYcFiWOnwqd2f1zTb3YPnr5xDRmDIrvqiVJdGO8re9fWXSgC1fSO3E4HCzYLhriXTEpvYtX03okgSLR5whWycUR417oJJOogJJXpW+w7eSBcV2wEomegHfrf7RG1YUr6Z3UGaxuI7xxGVFdvJrWIwkUiT5JapRvFEUrRVACyrHK+gbbhiZFdMFKJHoCZXUm989SG3rgKdeJf9+wIEWP6mKUBIpEnyQqxPcuTYqgBJbGBEpsmHRnLNE4uZWeiFuV3tzMnhLHQ4VToMSFqlvYs3shCRSJPklEsG8ro06KoASUohrfybQhKjkhPaS1UaLzuXSCpy6iUicJlEDjEigxoT3rJkESKBJ9kvAg3y9LSaAElhqD71yV2B525ybRuTx25mDumNEf8HyZSgSGX3YUMferbUDPOw8lgSLRJzl/bKrPYynFE1hq6n3vgmN72J2bROcSFqTkpqlZANQZrZit9i5eUc+npNbIfd9u586vt7m3SQJFQqIHMDotkkX3TOPskUmAFEEJNK7WYhdSZ4ZES0QEK91miZV6KYrSXt5bcYQftxb6bJMEioRED2FwYrjbtVISKIHFP8WjVvSczgGJrkEmE9xCVqpDaT8F1YYG23paobokUCT6NK7BdZJACRwOh4NavwiKUt4znCsluhbXHb5Uh9J+qpxRqPtOHejeFtPDIpmSQJHo00Q5T9jiGgOldcYuXk3voN5sc1vbu1AppEuNRMu4DBSlc7H9VDrbtSf2i3Zv62mRTOmqIdGn6R+nAWDZgXIm/XMpy/ZLc0Daiyu9o5J7Li/+bd0SEo2RER0CNO6jI9E2qpxpsrgwNY+eMZjThiUwNTu2i1fVNiRjAok+TXZ8mM/jpxbuZtXgU7poNb0DVwdPZIiSa6Zk8OPWQv5xcv8uXpVETyAjRhIogcBktbndsWM0qh57/kkRFIk+jX/7a08LgXZHXPUnkSFK5p6Szd8PTO9x3QMSXUNmjBjR/G1XMc8s3OMzFVui9VTrxXNQLhPck6J7IpJAkejTCIJv8Wa51iRdFNtJtUugBPesgjyJriczNsT98ydrc9lVWNuFq+m5uNq0o0JUyGQ9t0BdEigSfZ5BCZ40T63BQmmd1EHQHmoMYoonIqTn3rlJdA1p0SE+j4trpWLZ48E1z6inde34IwkUiT7Pu1eN5ZxRye6izj1F0l1be6hxR1AkgSLRNvxTrIWNeHlItIxLoPR0g0RJoEj0ebLiQnnr8jFcMkG0v/9xW2ELr5BojoJqscAxMSKoi1ci0RN58/Ix7p8LaySBcjy4jO6ie/iICUmgSEg4uWJiBgC/7Szm913FXbyankleZT078sUIVHZCWAt7S0g05NxRyTxzzlBAiqAcD1abncPlOgDiw3p2cbokUCQknAxNDuekgXEA3P7lVoprpYtjW9icW8XJry5jb3EdAAMTQrt4RRI9lZQosRZFiqC0jbzKeoY9/SdfbcgD4JTB8V28ovYhCRQJCS/eu2osrsYe6e6tbby97DDeDVD9YjVdtxiJHk2Kc0aWJFDaxvqjlZi8JkGf0L9nGbP5IwkUCQkvQlQKxqRFAlAhDSxrNRabne35NT7bJE8ZieMlJUoUKFV6M4dKtV28mp5DqVfX0xNnDXFPh+6pSAJFQsKPGGlgWatxOBw4HA72FNW5u3cAZvbw0LJE1xIRrHSnJx78fmcXr6bnUOKcYXTXKQO4aVpWF6+m/bRJoLz44otMmDCBsLAw4uPjmTNnDgcOHPDZR6fTMXfuXFJTUwkODmbIkCG8++67PvtMnz4dQRB8/rvsssva/9tISAQAl7usNPK9Ze6av51T31jJsUo9AMNTwnnz8jG8dOHILl6ZRE/nxQtGIAiwPb9GulloJa4hiwm9pIOuTQJlxYoV3HHHHaxfv57FixdjtVqZPXs2er3evc+9997LokWL+OKLL9i3bx/33nsvd955JwsWLPA51s0330xxcbH7v/fffz8wv5GERDtx2bK73BglmuaXHUUcLtPx0aqjAMRo1Jw7Ktk9lVZC4nhJCA8iy1nHtKtA8iZqDa4ISmJ47xAobRoWuGjRIp/H8+bNIz4+ni1btnDSSScBsG7dOq699lqmT58OwC233ML777/P5s2bOe+889yvDQkJITExsZ3Ll5AIPC73RemurXlsdk9FrMuSPEpyj5UIICNTIzlSrmdnQS0zpLRhi5TUiteshF4iUNpVg1JbK16UoqOj3dumTp3KwoULKSwsxOFwsGzZMg4ePMhpp53m89ovv/yS2NhYhg0bxgMPPIBW23QhlMlkoq6uzuc/CYmOwlODIqV4mkNvtjbYFtXDnSsluhcjUyMA2FlQ07UL6eZ8v6WAz9cfc99UJfWSFE+bIijeOBwO7rvvPqZOncrw4cPd2998801uvvlmUlNTUSgUyGQyPvroI6ZOnere58orr6Rfv34kJiaye/duHn30UXbs2MHixYsbfa8XX3yRZ5999niXKiHRJmLcNShSBKU59KZGBEqIJFAkAodLoOyWxk80idFi44Hvdrgfq+SyHm9x7+K4BcrcuXPZuXMnq1ev9tn+5ptvsn79ehYuXEhGRgYrV67k9ttvJykpiVmzZgFi/YmL4cOHk52dzfjx49m6dStjx45t8F6PPvoo9913n/txXV0daWlpx7t0CYlmiZMiKK2iUYHSSy6MEt2DgU434tI6E5U6EwdKtIzNiCJIKbWwu/A/DxMi1A2mtPdUjkug3HnnnSxcuJCVK1eSmprq3m4wGHjsscf46aefOOusswAYOXIk27dv59VXX3ULFH/Gjh2LUqnk0KFDjQoUtVqNWi0V3Ul0Dq4UT63BgtlqR6WQuvEbQ2eyNdgm1aBIBJKwICXJEUEU1Rq5/pNN7Cyo5Y4Z/XnwtMFdvbRug97vPMyK7T0Ozm268jocDubOncuPP/7I33//Tb9+/Xyet1gsWCwWZDLfw8rlcux2O02xZ88eLBYLSUlJbVmOhESHEBmsJDxI1O4u23aJhjQWQYmWUjwSAcY102mns5Pnv8uOdOVyuh06v/NwQHwfFSh33HEHX3zxBV999RVhYWGUlJRQUlKCwSDaEYeHh3PyySfz4IMPsnz5co4ePconn3zCZ599xvnnnw/AkSNHeO6559i8eTO5ubn8/vvvXHzxxYwZM4YTTzwx8L+hhEQbkckEJvYTC7835FR28Wq6L40JlEhJoEgEGP+ZTqOcdSkSIv7F6n1WoLz77rvU1tYyffp0kpKS3P9988037n3mz5/PhAkTuPLKKxk6dCgvvfQSL7zwArfeeisAKpWKpUuXctpppzFo0CDuuusuZs+ezZIlS5DLpbyiRPdgUr8YADYererilXRfGuvi6S3FeRLdh4F+U7HDg6U0ojf+EZTsXiRQ2lSD4vCeBNYEiYmJzJs3r8nn09LSWLFiRVveVkKi05mUJUZQtuRVd/FKui+uGhRBwD0kMFKqQZEIMLOGJDAlK4Z1zmim/xdyX6ferwalz0ZQJCT6CunR4rj3mnqxUFbCl1WHynny590ATMjw+CBJ3RUSgSZKo+LrWybz1U2TANAZJYHijXeqdVRqRK9Ksx53m7GERG8mPEiJTAC7A2rqzcT3EmfGQFClN3P1xxvdjwcnhXHnzAGSB4pEhxLqLFxvrPapL+OKKM0aksB7VzXsgu3JSBEUCYlGkMkEIpy57on/XMrbfx/q4hV1Hz5alePzOESlYFp2HMNTpOJFiY4jVC0KFK0kUHxwCbbYUBUKee/6Su9dv42ERADxjgi8+tdByrTGLlxN9yGnXO/zOFQtpXUkOh6XQNGbrK2qh+wr6M1iDUqIqvclRCSBIiHRBP4Fn1+sz+uilXQv/Lt3NOred2GU6H64Ujx2BxgsDU0C+yquCEpvvFGQBIqERBP411Rskzp6gIY1AJJAkegMgpVyZE4Hd6lQ1oPrfOyN56EkUCQkmiDCL4JSWGPoopV0L+rNfnevUrRdohMQBMH9JSy1GnvQSQJFQqLv4R9BKaoxSLlvGn451BktXbQSib6Gqw7lm835WG19u/1/3ZFKHv1xJ2Vaceq6phemeHqf5JKQCBD+g++MFjtVerN7mGBfxRVBGZ0WSW6lnnNHJ3fxiiT6Ci6B8v6KHDJjNFw+Mb2LV9R1XP7hep/Hml5YJNv7fiMJiQAR0YivR1GNsc8LFFfO++0rxpAQHoSyl7U2SnRfvNMYf+4p6dMCxZ9QKcUjIdGH8ErnDEsOB6Q6FKvNjsnprKtRKSRxItGpVOnN7p/Dg5QcLtOys6Cm6xbUjZBqUCQk+hCCILh/zozRAGIdSl/lUKmW2W+sdD8O6YU5b4nuTV5Vvfvnkjojs15fyblvr6FSZ+rCVXUPYkJ7n5OzJFAkJJrgvNHJZMeHctPUfqREBQOwLb+maxfVhTzw3Q5yKkSTNqVcQK2QBIpE5xLjNS17V0Gt+2dv4dIX8C8QvnR8GqlRIV20mo5DEigSEk0QFqRk8X0n88TZQzl9eCIAv+wo4redxV28sq6hoNoTPeqNrpUS3Z/3rx7H4MQwwNesrVzbtyIoWi8fmDcvH8OLF4zowtV0HJJAkZBoBWPTo7h2SgYAc7/eyrL9ZV28os7Hu8G6NxbkSXR/xmdG8/td01D51T6V1PWtMRS1BrG1X6OSc+6oZGQyoYVX9EwkgSIh0UqePHsoF45NxeGAx37a1eemqnp7wASrpPSORNcgkwkkR/pOFy+u7ZsCxTXQtLciCRQJiVaikMt4fs5wkiKCKK41sj6nsquX1Kl4R1AkwzqJrmRAfKjP4+I+UrxepTdjtzvcAiVcEigSEhIuglVyhiaJLccuB8eNR6s4Vqlv7mU9Hpvd4ZP31pukYW0SXcfI1Eifx30hgrKzoIbxzy/m8Z93ud2bJYEiISHhQ1yYaNRWoTVxoETLJe+v4+RXlnftojqYKr0Zm90TNfGfaCwh0ZmMSI3wedwXBMqHq45id8DXG/OlFI+EhETjxDqdZMt1JjYfq3Jv781pj61+k5wbDAyUkOhERvlFUEpqjb1+No/36I0SpyCTBIqEhIQPrghKudaEyeK5KOp74Ze22Wrnxk828Y/Pt/hs946mSEh0NtEalU8nmdlmZ3dRXReuqOPxPuc25Yo3RpJAkZCQ8MEVQanQmdyhVoBqLxvu3sKawxUsbaSlelp2bBesRkLCw98PnMwfd0/j1KEJgDjdtzdT4eWWu/GoKFDCg3q3QJHMDCQk2oh3BKXUy3+hUm8mLbp3uTmuOFgOwMXjUrlv9kAAFmwv4qJxqV25LAkJ4sOCiA8LYkpWDIv3lrI+p5Lbpvfv6mV1GBU6zw2QK5iSFBHUxN69A0mgSEi0kVjnzIsKndmnOK83RlBWHhIFyimD40mKEO3+bz25934JSPQ8JvaLBmB7Lx5D8e3mfLYcq26wfWovj2RKKR4JiTbiiqDoTFZyvdqLq3qZQKk1WMgpF3+/Ewb07guhRM8lK04c5FlrsFBT37vOQRDrTR76fmejzyVHBnfyajoXSaBISLSRULWCIKV46hyr9Awp620CxRUR0qjkvb4YT6LnEqJSEO+8acit7H1DA1c606wurnGO3Lj/1IFdsZxORUrxSEi0EUEQSAgP8hEnAFW96O7t913FfLImF4DIkN43xl2id5EZo6FMa+JYpZ7RaZFdvZyAsuyAb5H6U2cP5fRhie7UVm9GiqBISBwH6Y0Uw/amGpTbv9zKRmcrY2SIFD2R6N5kxIjno/9NQ0+nzmhhd6Fv+7RCLuOEAbEo5L3/67v3/4YSEh1AY906lb1EoPgbzkVJERSJbk5mrFiH4qoJqzVY+Ht/aY83byv1KsKPDVVx9eSMLlxN5yOleCQkjgPvCEqISk692dZralC0flOaI6QIikQ3x3U+5jkjKPfM38ayA+U8duZgbjmp53adueZ9ZceH8uc9JyGTCV28os5FiqBISBwHGV4CZfqgOAAOlWqx9wKH1Uqdr9CKlApkJbo5yZGiH0ipVow4LDsgFpa+vyKny9YUCFw+SwnhQX1OnIAkUCQkjgvvFM8Zw5MIUsqoM1rJqej5U40rvRwrQUrxSHR/3O7OWl9x7Zr621NxRVBcXUp9DUmgSEgcB+kxHoHSL1bDiBRxumpvMIuq8I+gSCkeiW5OjFOgGCw2n/ETFpujRw/xdEVQ4sN7t2NsU0gCRULiOAgPUjJndDLTsmMZkhTOmPQoAB74bgdbvCYc90T8a2mkNmOJ7o5GJXd7E+0pqvV5rsir0LSnIUVQJCQkjot/XzaGz2+chFwmMH1gnHv7PKd/SE9jV0Ett3y22T0p1YVUgyLR3REEwZ3m2VngK1AOlmq7YkkBobxOFCgJUgRFQkLieDlhQCxPnDUEgKM9tA7l8g/X89feUn7aVuizXerikegJxLgFSo3P9jpDz6hDKasz8szCPRwu0wFgttrdXkTx4VIERUJCoh3MGBwPiAKlJ+a9dX7txS5kQt/rHpDoecQ5h3juyPeNoBjMtq5YTpu5e/52Plmby5UfrQfgps82u59LlCIoEhIS7SE9OgS5TKDebKOkzojOZCW/qmc7W6ZFBzMsObyrlyEh0SKuFE9hjcFnu8HSMwTKupxKAErrTNQZLax2ThK/cWq/Ro0h+wKSUZuERIBQymWkR4dwtELP0XI9j/y4i7yqei6bkEZadAh3zBjQ1UtsE9/cMpmxGVEo+4CltkTPJya08WLuniJQvNlyrBq7Q7Twf/LsoV29nC5DuvJISASQLKfl9s7CWvKc0ZP5m/J55c8D6JtIoXQli3aXsK+4rtHnshPCJHEi0WNwRVBcZMWJ56Kxh6R4vNl4VKw9mZjZ+wcCNocUQZGQCCD940NZur+M77cUNHiu3mxDo+4+p9zuwlpu/WILABeOTfV5ThAgWiO1F0v0HFIig30e948LJadc3yMjKH/vEycY94WJxc0h3R5JSASQIUlhAO5KfG+6WwTFNVgN4IetvoIqVNV9hJSERGsYkuRbK+WKoPQEgWKy+q7xQKkWjUrO7KGJXbSi7oEkUCQkAsjw5Igmn2uqS6ar0BqbXk93ivRISLQG/whKtNNg0GDu/hONy+pMDbZdPjG9z7f4SwJFQiKAZMWFNvlcfTfLhTd2UXQxNTu2E1ciIdF+/IfpBavkABi9IihGi61bWgC4LO29mdI/pgtW0r2QBIqERACRNzNxtLuleMq0jVuAX3dCJk+e1Xc7ByR6LmqF5ystSCkKFFeKp6TWyOjn/uKeb7Z3xdKapbSRm4XUqL7ZWuyNJFAkJALMC+cPJzZUzYkDfO+A9ObuJlAaXhSHJoXzzLnD+nxoWaJn8t7V41DKBf5vznCCnQLl7/1lvLX0EF9uOIbRYmfB9qIuXmVDivy8WwBSooIb2bNvISWaJSQCzJWTMrhyUgbvLD/MmsOV7u3dL4IiCpT3rx7HmPRIPliRwxWT0rt4VRISx8+MQfHsfvY01Ao5S/aWure/tvggYd24riqvEUPH0G683s5C+gtISHQQ/hcYvclGpc5EVIiqQb68Kyh3jXIPUxMfFsQTfdgQSqL3oFaIkRNXDYoLrdcNgsPhQOhGIxzyq3u243RHIaV4JCQ6CI1fq+76nErGPb+Eh3/Y2UUr8uBwOCjXOUe599E5HxK9G1cNSmPou1nBemMRFAlJoEhIdBj+rbp/OUPO3zVi4tbZVNdbsNjEboa40L45KVWidxPcjEDRGrvPhGO73UFBtW8NSlKEdNMAkkCRkOgwmsshd3Wro6uDJypEiUohXQYkeh/+KR5vmvMA6izWHK5gyd5SyrQmzFY7cpnAd7dOYeqAWOZdP6Grl9ctkK5MEhIdhEbd9AWyUm/utHUcq9TzwHc7OFymdW9zeaDEh0l3ahK9k+4cQbHbHVz50QZu+mwza49UAKLR3ITMaL64aRKDE6UJ4iAVyUpIdBjNRVDGP7+ET66fwPRB8R2+jhs/3czhMh27C2u5/sRM/tpTyvRBcQDEh0vpHYneSXMCpa4LIyh/7SlhwQ5Pq/NTC/YAMD4jqquW1G2RBIqERAfRkl38kwt2s+qhUzp8Ha65QPtLtDz8wy4AdhfVAhAXJgkUid5JkKrpBEFXpnhu+XyLz2OdyYpMgDtOGdBFK+q+SCkeCYkOoiWB4j8eviOw2RuvdSmVUjwSvRyV3PP1Fhbkey76p3jyKuvZmlcd8DWYrDbeXHqIXQW1ze43ITOa/s2MyeirSAJFQqKD0DRTpAedI1COVuibfT5eiqBI9FK8fU4yYzQ+z+n8IignvbKMC95ZS36A233nrcnl9cUHOeft1UDTxfGj0yMD+r69BUmgSEh0EAp586eX/0WyI9hT1Pydm1SDItEXmD4ojmunZLgfe6d4aus90RT/dt/2sqeozudxUxPNR6dGBvR9ewuSQJGQ6EC+uHESc2f45pb/d914oOmLVSBp6YIrpXgk+gLRGhXPnjfcfS6+vewwaw+L3TOHy3Xu/QJt8Ox/uGp9491DUgSlcSSBIiHRgUzNjuX+2QMZEC/mlwclhBGqFgfxNTabp9ZgwWqzB+z9K3XNtzNLKR6J3syDpw1iYmY0l00QZ0x516Jc8dEG9hbVcaTMI1Bck4/bg9Vmx+B0qvV306+ub3g+zh6aQKLk5twoUhePhEQHIwgCv945lc/W5TI2PYoQpwW+1k+glGmNnPyv5YzLiOKLmyY1eiyrzc5tX25lREoEd83MbvG9q/QNJxZ7kyg5Vkr0Yu6YMYA7vCKY/hUgc7/aSo5XnZYxAALl8g/Xc6Rcz4oHp/tEUF78Yx+pUSE++145KZ0Xzh/R7vfsrUgCRUKiEwhSyrnlpP4A7kI8/xqUJXvLMFhsrD5cQX5VPe8sP8wNJ/YjOyHMvc/6nCoW7y1l8d5S5s4Y0OLQQZchXLRGRZXe7P4/iHbazc0rkZDobWTG+AqEHL8i8vZGUKw2O5tyxW6g33cVY7R4oqHvr8hpsH94sLJd79fbkVI8EhKdjKv92GCx8fbfh7A4UzreNbWXf7ierzfmc/XHG31e6x0yLnXa1TeHS4w8c+4w5l0/gY+vHe9+LsPvYi0h0duZPTSR5+cM541LRzX6vMFsx+FwsHBHEXmVbe/oqfJyiH74h10s2lPS7P7hQZJAaQ4pgiIh0cl4W+C/+tdBtCYrj54xhHKtJx3jKm4tqfMVIQavKay5FfUkRQQ3+16uC2ZGdAij0iJ9LroZ0ZqmXiYh0SuRyQSumpzhIyQAYjQqKvVm3ltxhL/3l7FkXylhQQp2PXNak8cq15p44LsdXDEpndOGJQJQpm0+peqPvz+LhC9SBEVCopNRK+Q+A/p+3lYIeMzT/DFbPWFircnTBXCssnmPE4fD4ZPiAYjUeO7YpPoTib5KVIjnPBAEmDUkAYC8qnqW7BOnjmuNVsq0xia9S176Yz8rDpbzDy9n2HJJoAQUSaBISHQB3nNCSutMGMy2Jk3Vjni1QXrXrRxtQaDozTa3uIkJFQVKmJe7bYSU/5boo3ibuKnksiYnH098YSkfrz7a6HN5VQ3Pv7JWpF0lWo8kUCQkuoB6s2+B7JCnFrHa6cvgzxuLD/LgdzswWmw+nT/HKprPkVfqxLu5IKXM3TnkfWEenhJxXGuXkOgNjHB+/i8al9qkQAF4/rd9jW632BpGVtoaQWkiOCPhRIovSUh0AY1d3Jrir71iyPmkgXE+EZQ8ZzfQ91sKeGPxQR46fRDnjU5xP+9K78RofL1Ovrp5ErkV9UzsF33c65eQ6Ol8cM04ft9VwqUT0vhfE1GS5rDaPalXh8OB3dH6GpRojQqjxeaeKi7ROJJAkZDoZswYFMeyA+VM7BfN5twqXPP+CqoNPhbdFc4IyefrcimsMXD3/O2kR4cwJl0c217lNGlzpXdcnNA/lhP6d8IvIiHRjUmKCObGqf0A35Rra9hdWMsxr4Lzt/8+zLsrjrQ4INTFqodmIBOEZiM3Em1M8bz44otMmDCBsLAw4uPjmTNnDgcOHPDZR6fTMXfuXFJTUwkODmbIkCG8++67PvuYTCbuvPNOYmNj0Wg0nHvuuRQUFLT/t5GQ6AW8e9U4Xrt4FG9eNobPbvAYtuVX1/vY41fpzdjtDgprPHb2Kw9WUG+2YjDb3BGWJKkYVkKiWYJaEAreKdkVB8s5+63VPjcLry0+SL3Z5k7xXH9iZrPH06gVkjhpBW0SKCtWrOCOO+5g/fr1LF68GKvVyuzZs9HrPcVC9957L4sWLeKLL75g37593Hvvvdx5550sWLDAvc8999zDTz/9xPz581m9ejU6nY6zzz4bm639Ln4SEj2BkCYuTrdN70+QUs6F41JJjAhianYs/7pwJCAavHlfFK12BwXVBiq87Ox/3FbAya8sZ+Zry9ldKA4KzJLGuEtINIt3BCU7PpTUKN/2/SLnTcDhMi13z9/W4vHOHpnEKYPjA7vIPkibBMqiRYu47rrrGDZsGKNGjWLevHnk5eWxZYunzWrdunVce+21TJ8+nczMTG655RZGjRrF5s2bAaitreXjjz/mtddeY9asWYwZM4YvvviCXbt2sWTJksD+dhIS3ZRv/zGFS8en8eTZQ93brp2SwcOnD26wb2q0eLEsqDagM/kOG1t/tNLn8bHKesq1JopqjfzobF/OipX8TiQkmsNboJw8MI7BiWE+z/932RGMFhvXfLyRmvrGB/55kxYdIrUQB4B2dfHU1op3aNHRnmK7qVOnsnDhQgoLC3E4HCxbtoyDBw9y2mmi4c2WLVuwWCzMnj3b/Zrk5GSGDx/O2rVr27McCYkew/CUCF6+aCSj0zydNAlNpGLSo0XH18JqA7UG3+6f9TmiQJmQGdXke0kRFAmJ5glWeb4Kw4KUPHrmELLjPefNT9sKeeLn3RTV/n979x4T1ZXHAfw7bxBmRh4yw2QoHcXHIo9GqAqLxRZkda2rabraxt210aZRGRci2hT9A/+wgZiWpmitadpQ3azFbMTKPyZOVhxtumQRIUyxaUx8lGxBYrRCqDyEs38I17nyUGSYuYPfT3ITOPcyHL4ZZn4598w5PYiYocOicXYfDtVpMCvcgPAx5qPsW5M4ajuN9MwFihACO3fuRFZWFpKSkqT2iooKJCYmwm63Q6/XY+XKlTh8+DCysrIAAO3t7dDr9YiIkL+gWiwWtLePvixwb28vOjs7ZQfRdGD1WgnWYhy9QIk1h0KrVqFvYFBaE2V4C57/Xr8DAFhoMyNnQQxCdGqceG+pbCGqObM4gkI0Hu89qYwhWsyZFQ7Xzmw4vTYaPHn54TzJFYkWFOTOG/OxXoicAZVKNerE2zMFy/C3jBd91/Fp7pkLFKfTiebmZnzzzTey9oqKCtTV1aGmpgYNDQ34+OOPsX379ifevhFCyNZo8FZaWgqz2SwdcXFxz9ptIkWJMT76CLD36rLeNGoVYmc+LF6GF157cei2zfCS+PaIUBz5axrqinOwZHYU/pgcK/38zBl6ENHYhtcJAuQb+OW/moA30+wAHq1ZsjLJiux5s3ByWyb+lGob8VgRQ6s1azUj/59/F2t64gaf9MgzFSg7duxATU0NamtrYbfbpfb79+9jz549KC8vx5o1a5CSkgKn04kNGzbgo48+AgBYrVb09fXh7t27ssfs6OiAxWIZ9fcVFxfj3r170tHa2vos3SZSHJ1GLU2YTYsf+zZNzGOjKy9GyUdFYkwh0GnUUjGy+w/z8fuEKLy/cr6Pe0w0/YQ+NoIites1eO+V2dL3YXoNMudEA3j4/5o8ymKHuqHCRMtCZNImVKAIIeB0OlFdXY1z587B4XDIzvf396O/vx9qtfxhNRoNBocWtUlLS4NOp4PL5ZLOt7W14YcffkBmZuaov9dgMMBkMskOouni4vuv4t9F2bDNHHvjP++RFmDkTsRWk7yAmTlDj3++uxTblyeAiMY3VoECPJxkPjy6+eqCGNntoPXpcVhok78fDZ/XsECZtAlNM87Pz8fx48dx+vRpGI1Gac6I2WxGaGgoTCYTsrOzsXv3boSGhiI+Ph5utxvHjh1DeXm5dO2WLVtQVFSEqKgoREZGYteuXUhOTkZubq7v/0IihYsKNyAq3DDuNd4Filr1cHdib48XKET09EK8JsmaQuR7VGk1aqTazai/cRervW6dAoB5hg6n83+Pa7e78a9LrTj6n5vYlfdw1NJ7BOUvS1/AhvQXpvAvmJ4mVKAML7i2fPlyWXtlZSXeeecdAEBVVRWKi4uxceNG3LlzB/Hx8fjwww+xdetW6fpPPvkEWq0W69evx/3795GTk4Ovv/4aGg0XriEaTYxXARIXOQPxI27xjF/gENHYvEdQDKPMBTvwZio8/7uHlUnWEee0GjXmWYzYuzoRRXnzpRGUmV4T1fevS56CXk9/EypQxtp22pvVakVlZeW414SEhODgwYM4ePDgRH490XPLewTFER2GFPuje99atUo27ExEE+NdoESGjZxU7ogOg+Mp1hPy/j/8c3oczl65hex53G/nWXElGaIg4D2C4ogOk90SejDILVGJJkOrUePo5sXo7R944u3WpxWi0+AfW5Y8+UIaEwsUoiDgPYLChdeIfI8jHcozqZVkicg/vAuU4X1ChheRWvvSyLUYiIiCHUdQiIJAhNdiawlDIyh/z5mLl+JmYsnsyLF+jIgoaLFAIQoCarUKx99dgs6efsQNfcRYr1UjN3H0xQ2JiIIdCxSiIJGZEB3oLhAR+Q3noBAREZHisEAhIiIixWGBQkRERIrDAoWIiIgUhwUKERERKQ4LFCIiIlIcFihERESkOCxQiIiISHFYoBAREZHisEAhIiIixWGBQkRERIrDAoWIiIgUhwUKERERKU5Q7mYshAAAdHZ2BrgnRERE9LSG37eH38fHE5QFSldXFwAgLi4uwD0hIiKiierq6oLZbB73GpV4mjJGYQYHB/HLL7/AaDRCpVL57HE7OzsRFxeH1tZWmEwmnz0uyTFn/2HW/sGc/YM5+89UZS2EQFdXF2w2G9Tq8WeZBOUIilqtht1un7LHN5lMfPL7AXP2H2btH8zZP5iz/0xF1k8aORnGSbJERESkOCxQiIiISHFYoHgxGAwoKSmBwWAIdFemNebsP8zaP5izfzBn/1FC1kE5SZaIiIimN46gEBERkeKwQCEiIiLFYYFCREREisMChYiIiBSHBcqQw4cPw+FwICQkBGlpabh48WKguxT0Lly4gDVr1sBms0GlUuHbb7+VnRdCYN++fbDZbAgNDcXy5cvR0tISmM4GsdLSUrz88sswGo2IiYnBunXr8NNPP8muYdaT9/nnnyMlJUVauCojIwNnzpyRzjPjqVFaWgqVSoXCwkKpjVn7xr59+6BSqWSH1WqVzgc6ZxYoAE6cOIHCwkLs3bsXjY2NWLZsGVatWoWff/450F0Lat3d3UhNTcWhQ4dGPX/gwAGUl5fj0KFDqK+vh9VqxYoVK6S9lujpuN1u5Ofno66uDi6XCw8ePEBeXh66u7ula5j15NntdpSVleHSpUu4dOkSXnvtNaxdu1Z6wWbGvldfX48vvvgCKSkpsnZm7TsLFy5EW1ubdHg8HulcwHMWJBYvXiy2bt0qa1uwYIH44IMPAtSj6QeAOHXqlPT94OCgsFqtoqysTGrr6ekRZrNZHDlyJAA9nD46OjoEAOF2u4UQzHoqRUREiC+//JIZT4Guri4xd+5c4XK5RHZ2tigoKBBC8PnsSyUlJSI1NXXUc0rI+bkfQenr60NDQwPy8vJk7Xl5efj+++8D1Kvp7/r162hvb5flbjAYkJ2dzdwn6d69ewCAyMhIAMx6KgwMDKCqqgrd3d3IyMhgxlMgPz8fq1evRm5urqydWfvW1atXYbPZ4HA48NZbb+HatWsAlJFzUG4W6Eu3b9/GwMAALBaLrN1isaC9vT1AvZr+hrMdLfebN28GokvTghACO3fuRFZWFpKSkgAwa1/yeDzIyMhAT08PwsPDcerUKSQmJkov2MzYN6qqqnD58mXU19ePOMfns+8sWbIEx44dw7x583Dr1i3s378fmZmZaGlpUUTOz32BMkylUsm+F0KMaCPfY+6+5XQ60dzcjO+++27EOWY9efPnz0dTUxN+/fVXnDx5Eps2bYLb7ZbOM+PJa21tRUFBAc6ePYuQkJAxr2PWk7dq1Srp6+TkZGRkZGDOnDk4evQoli5dCiCwOT/3t3iio6Oh0WhGjJZ0dHSMqBzJd4ZnijN339mxYwdqampQW1sLu90utTNr39Hr9UhISEB6ejpKS0uRmpqKTz/9lBn7UENDAzo6OpCWlgatVgutVgu3242KigpotVopT2bte2FhYUhOTsbVq1cV8Zx+7gsUvV6PtLQ0uFwuWbvL5UJmZmaAejX9ORwOWK1WWe59fX1wu93MfYKEEHA6naiursa5c+fgcDhk55n11BFCoLe3lxn7UE5ODjweD5qamqQjPT0dGzduRFNTE2bPns2sp0hvby9+/PFHxMbGKuM57ZepuApXVVUldDqd+Oqrr8SVK1dEYWGhCAsLEzdu3Ah014JaV1eXaGxsFI2NjQKAKC8vF42NjeLmzZtCCCHKysqE2WwW1dXVwuPxiLffflvExsaKzs7OAPc8uGzbtk2YzWZx/vx50dbWJh2//fabdA2znrzi4mJx4cIFcf36ddHc3Cz27Nkj1Gq1OHv2rBCCGU8l70/xCMGsfaWoqEicP39eXLt2TdTV1YnXX39dGI1G6b0v0DmzQBny2Wefifj4eKHX68WiRYukj2jSs6utrRUARhybNm0SQjz8GFtJSYmwWq3CYDCIV155RXg8nsB2OgiNljEAUVlZKV3DrCdv8+bN0mvErFmzRE5OjlScCMGMp9LjBQqz9o0NGzaI2NhYodPphM1mE2+88YZoaWmRzgc6Z5UQQvhnrIaIiIjo6Tz3c1CIiIhIeVigEBERkeKwQCEiIiLFYYFCREREisMChYiIiBSHBQoREREpDgsUIiIiUhwWKERERKQ4LFCIiIhIcVigEBERkeKwQCEiIiLFYYFCREREivN/mv7MA3+j9pIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -255,7 +255,24 @@ "metadata": {}, "outputs": [], "source": [ - "zones = [physics.RCNode(C=nn.Parameter(torch.tensor(5.0)),scaling=1.0e-5) for i in range(5)] # heterogeneous population w/ identical physics" + "# Define the states\n", + "states = {}\n", + "states['T_1'] = 0\n", + "states['T_2'] = 1\n", + "states['T_3'] = 2\n", + "states['T_4'] = 3\n", + "states['T_5'] = 4\n", + "states['T_6'] = 5\n", + "states['T_7'] = 6\n", + "states['T_8'] = 7\n", + "states['T_9'] = 8\n", + "states['T_10'] = 9\n", + "states['T_11'] = 10\n", + "\n", + "# Model construction\n", + "keys = list(states.keys())\n", + "zones = [physics.RCNode(in_keys=[keys[i]], state_keys=[keys[i]], \n", + " C=nn.Parameter(torch.tensor(5.0)),scaling=1.0e-5) for i in range(5)]" ] }, { @@ -271,7 +288,7 @@ "metadata": {}, "outputs": [], "source": [ - "heaters = [physics.SourceSink() for i in range(5)] # define heaters" + "heaters = [physics.SourceSink(state_keys=[keys[i+len(zones)]], in_keys=[keys[i+len(zones)]]) for i in range(5)] \n" ] }, { @@ -287,38 +304,12 @@ "metadata": {}, "outputs": [], "source": [ - "outside = [physics.SourceSink()] \n", + "outside = [physics.SourceSink(state_keys=[keys[-1]], in_keys=[keys[-1]])]\n", "\n", "# join lists:\n", "agents = zones + heaters + outside" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Before we connect our agents together in a graph, we need to define a mapping between our agents in the list and the indices of their respective states in the dataset. For this, we use a quick helper function:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[OrderedDict([('T', 0)]), OrderedDict([('T', 1)]), OrderedDict([('T', 2)]), OrderedDict([('T', 3)]), OrderedDict([('T', 4)]), OrderedDict([('T', 5)]), OrderedDict([('T', 6)]), OrderedDict([('T', 7)]), OrderedDict([('T', 8)]), OrderedDict([('T', 9)]), OrderedDict([('T', 10)])]\n" - ] - } - ], - "source": [ - "map = physics.map_from_agents(agents)\n", - "# Let's take a look at this 'map':\n", - "print(map)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -330,14 +321,13 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Assuming new for each element in edge list.\n", "14\n", "DeltaTemp()\n", "[array([0, 1])]\n" @@ -346,28 +336,18 @@ ], "source": [ "# Helper function for constructing couplings based on desired edge physics and an edge list:\n", - "def generate_parameterized_edges(physics,edge_list):\n", + "def generate_deltaTemp_edges(physics,edge_list,agents):\n", " \"\"\"\n", " Quick helper function to construct edge physics/objects from adj. list:\n", " \"\"\"\n", - "\n", " couplings = []\n", - " if isinstance(physics,nn.Module): # is \"physics\" an instance or a class?\n", - " # If we're in here, we expect one instance of \"physics\" for all edges in edge_list (homogeneous edges)\n", - " physics.pins = edge_list\n", - " couplings.append(physics)\n", - " print(f'Broadcasting {physics} to all elements in edge list.')\n", - " else: \n", - " # If we're in here, we expect different \"physics\" for each edge in edge_list (heterogeneous edges)\n", - " for edge in edge_list:\n", - " agent = physics(R=nn.Parameter(torch.tensor(50.0)),pins=[edge])\n", - " couplings.append(agent)\n", - "\n", - " print(f'Assuming new {physics} for each element in edge list.')\n", + " for edge in edge_list:\n", + " agent = physics(in_keys=[*agents[edge[1]].in_keys,*agents[edge[0]].in_keys],R=nn.Parameter(torch.tensor(50.0)),pins=[edge])\n", + " couplings.append(agent)\n", "\n", " return couplings\n", "\n", - "couplings = generate_parameterized_edges(physics.DeltaTemp,list(adj.T)) # Heterogeneous edges of same physics\n", + "couplings = generate_deltaTemp_edges(physics.DeltaTemp,list(adj.T),agents) # Heterogeneous edges of same physics\n", "\n", "# What do we have so far?\n", "print(len(couplings))\n", @@ -386,23 +366,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# Couple w/ outside temp:\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[0,5]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[1,5]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[2,5]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[3,5]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[4,5]]))\n", + "outside_list = [[0,5],[1,5],[2,5],[3,5],[4,5]]\n", + "out_couplings = generate_deltaTemp_edges(physics.DeltaTemp,outside_list,agents)\n", "\n", "# Couple w/ individual sources:\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[0,6]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[1,7]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[2,8]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[3,9]]))\n", - "couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[4,10]]))" + "source_list = [[0,6],[1,7],[2,8],[3,9],[4,10]]\n", + "source_couplings = generate_deltaTemp_edges(physics.DeltaTemp,source_list,agents)" ] }, { @@ -414,19 +388,18 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "model_ode = ode.GeneralNetworkedODE(\n", - " map = map,\n", + " states = states,\n", " agents = agents,\n", " couplings = couplings,\n", " insize = s.nx+s.nu,\n", - " outsize = s.nx,\n", - " inductive_bias=\"compositional\")\n", + " outsize = s.nx)\n", "\n", - "fx_int = integrators.RK2(model_ode, h=1.0)\n", + "fx_int = integrators.Euler(model_ode, h=1.0)\n", "\n", "dynamics_model = System([Node(fx_int,['xn','U'],['xn'])])" ] @@ -445,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -453,7 +426,7 @@ "output_type": "stream", "text": [ "None\n", - "Number of parameters: 29\n" + "Number of parameters: 19\n" ] } ], @@ -503,1061 +476,884 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 0\ttrain_loss: 0.01284\tdev_loss: 0.05561\teltime: 0.25205\n", - "epoch: 1\ttrain_loss: 0.01278\tdev_loss: 0.05536\teltime: 0.57704\n", - "epoch: 2\ttrain_loss: 0.01272\tdev_loss: 0.05510\teltime: 0.84812\n", - "epoch: 3\ttrain_loss: 0.01266\tdev_loss: 0.05485\teltime: 1.12015\n", - "epoch: 4\ttrain_loss: 0.01260\tdev_loss: 0.05460\teltime: 1.37500\n", - "epoch: 5\ttrain_loss: 0.01254\tdev_loss: 0.05435\teltime: 1.67538\n", - "epoch: 6\ttrain_loss: 0.01248\tdev_loss: 0.05410\teltime: 1.93220\n", - "epoch: 7\ttrain_loss: 0.01242\tdev_loss: 0.05385\teltime: 2.20841\n", - "epoch: 8\ttrain_loss: 0.01236\tdev_loss: 0.05360\teltime: 2.49175\n", - "epoch: 9\ttrain_loss: 0.01231\tdev_loss: 0.05335\teltime: 2.87653\n", - "epoch: 10\ttrain_loss: 0.01225\tdev_loss: 0.05310\teltime: 3.13448\n", - "epoch: 11\ttrain_loss: 0.01219\tdev_loss: 0.05285\teltime: 3.37705\n", - "epoch: 12\ttrain_loss: 0.01213\tdev_loss: 0.05260\teltime: 3.66636\n", - "epoch: 13\ttrain_loss: 0.01207\tdev_loss: 0.05236\teltime: 3.92337\n", - "epoch: 14\ttrain_loss: 0.01201\tdev_loss: 0.05211\teltime: 4.16764\n", - "epoch: 15\ttrain_loss: 0.01196\tdev_loss: 0.05187\teltime: 4.45761\n", - "epoch: 16\ttrain_loss: 0.01190\tdev_loss: 0.05163\teltime: 4.73752\n", - "epoch: 17\ttrain_loss: 0.01184\tdev_loss: 0.05138\teltime: 5.01089\n", - "epoch: 18\ttrain_loss: 0.01178\tdev_loss: 0.05114\teltime: 5.28018\n", - "epoch: 19\ttrain_loss: 0.01173\tdev_loss: 0.05090\teltime: 5.53978\n", - "epoch: 20\ttrain_loss: 0.01167\tdev_loss: 0.05066\teltime: 5.81230\n", - "epoch: 21\ttrain_loss: 0.01161\tdev_loss: 0.05042\teltime: 6.09818\n", - "epoch: 22\ttrain_loss: 0.01156\tdev_loss: 0.05018\teltime: 6.35454\n", - "epoch: 23\ttrain_loss: 0.01150\tdev_loss: 0.04994\teltime: 6.62604\n", - "epoch: 24\ttrain_loss: 0.01145\tdev_loss: 0.04970\teltime: 6.88568\n", - "epoch: 25\ttrain_loss: 0.01139\tdev_loss: 0.04947\teltime: 7.14948\n", - "epoch: 26\ttrain_loss: 0.01133\tdev_loss: 0.04923\teltime: 7.42847\n", - "epoch: 27\ttrain_loss: 0.01128\tdev_loss: 0.04900\teltime: 7.73237\n", - "epoch: 28\ttrain_loss: 0.01122\tdev_loss: 0.04876\teltime: 8.00197\n", - "epoch: 29\ttrain_loss: 0.01117\tdev_loss: 0.04853\teltime: 8.24394\n", - "epoch: 30\ttrain_loss: 0.01112\tdev_loss: 0.04830\teltime: 8.50300\n", - "epoch: 31\ttrain_loss: 0.01106\tdev_loss: 0.04806\teltime: 8.76868\n", - "epoch: 32\ttrain_loss: 0.01101\tdev_loss: 0.04783\teltime: 9.04321\n", - "epoch: 33\ttrain_loss: 0.01095\tdev_loss: 0.04760\teltime: 9.35119\n", - "epoch: 34\ttrain_loss: 0.01090\tdev_loss: 0.04737\teltime: 9.62027\n", - "epoch: 35\ttrain_loss: 0.01085\tdev_loss: 0.04715\teltime: 9.88775\n", - "epoch: 36\ttrain_loss: 0.01079\tdev_loss: 0.04692\teltime: 10.14805\n", - "epoch: 37\ttrain_loss: 0.01074\tdev_loss: 0.04669\teltime: 10.43815\n", - "epoch: 38\ttrain_loss: 0.01069\tdev_loss: 0.04647\teltime: 10.69076\n", - "epoch: 39\ttrain_loss: 0.01063\tdev_loss: 0.04624\teltime: 10.93361\n", - "epoch: 40\ttrain_loss: 0.01058\tdev_loss: 0.04602\teltime: 11.16591\n", - "epoch: 41\ttrain_loss: 0.01053\tdev_loss: 0.04579\teltime: 11.42002\n", - "epoch: 42\ttrain_loss: 0.01048\tdev_loss: 0.04557\teltime: 11.69303\n", - "epoch: 43\ttrain_loss: 0.01042\tdev_loss: 0.04535\teltime: 11.93455\n", - "epoch: 44\ttrain_loss: 0.01037\tdev_loss: 0.04513\teltime: 12.24176\n", - "epoch: 45\ttrain_loss: 0.01032\tdev_loss: 0.04491\teltime: 12.51075\n", - "epoch: 46\ttrain_loss: 0.01027\tdev_loss: 0.04469\teltime: 12.82642\n", - "epoch: 47\ttrain_loss: 0.01022\tdev_loss: 0.04447\teltime: 13.08317\n", - "epoch: 48\ttrain_loss: 0.01017\tdev_loss: 0.04425\teltime: 13.34523\n", - "epoch: 49\ttrain_loss: 0.01012\tdev_loss: 0.04404\teltime: 13.59660\n", - "epoch: 50\ttrain_loss: 0.01007\tdev_loss: 0.04382\teltime: 13.83879\n", - "epoch: 51\ttrain_loss: 0.01002\tdev_loss: 0.04361\teltime: 14.11305\n", - "epoch: 52\ttrain_loss: 0.00997\tdev_loss: 0.04339\teltime: 14.36309\n", - "epoch: 53\ttrain_loss: 0.00992\tdev_loss: 0.04318\teltime: 14.61886\n", - "epoch: 54\ttrain_loss: 0.00987\tdev_loss: 0.04297\teltime: 14.89964\n", - "epoch: 55\ttrain_loss: 0.00982\tdev_loss: 0.04275\teltime: 15.18928\n", - "epoch: 56\ttrain_loss: 0.00977\tdev_loss: 0.04254\teltime: 15.44572\n", - "epoch: 57\ttrain_loss: 0.00972\tdev_loss: 0.04233\teltime: 15.74823\n", - "epoch: 58\ttrain_loss: 0.00967\tdev_loss: 0.04213\teltime: 15.98673\n", - "epoch: 59\ttrain_loss: 0.00962\tdev_loss: 0.04192\teltime: 16.24532\n", - "epoch: 60\ttrain_loss: 0.00957\tdev_loss: 0.04171\teltime: 16.51833\n", - "epoch: 61\ttrain_loss: 0.00953\tdev_loss: 0.04150\teltime: 16.80284\n", - "epoch: 62\ttrain_loss: 0.00948\tdev_loss: 0.04130\teltime: 17.07744\n", - "epoch: 63\ttrain_loss: 0.00943\tdev_loss: 0.04109\teltime: 17.36433\n", - "epoch: 64\ttrain_loss: 0.00938\tdev_loss: 0.04089\teltime: 17.63546\n", - "epoch: 65\ttrain_loss: 0.00933\tdev_loss: 0.04068\teltime: 17.92005\n", - "epoch: 66\ttrain_loss: 0.00929\tdev_loss: 0.04048\teltime: 18.22104\n", - "epoch: 67\ttrain_loss: 0.00924\tdev_loss: 0.04028\teltime: 18.52142\n", - "epoch: 68\ttrain_loss: 0.00919\tdev_loss: 0.04008\teltime: 18.78927\n", - "epoch: 69\ttrain_loss: 0.00915\tdev_loss: 0.03988\teltime: 19.10708\n", - "epoch: 70\ttrain_loss: 0.00910\tdev_loss: 0.03968\teltime: 19.37584\n", - "epoch: 71\ttrain_loss: 0.00905\tdev_loss: 0.03948\teltime: 19.66826\n", - "epoch: 72\ttrain_loss: 0.00901\tdev_loss: 0.03928\teltime: 19.95548\n", - "epoch: 73\ttrain_loss: 0.00896\tdev_loss: 0.03909\teltime: 20.20967\n", - "epoch: 74\ttrain_loss: 0.00892\tdev_loss: 0.03889\teltime: 20.49080\n", - "epoch: 75\ttrain_loss: 0.00887\tdev_loss: 0.03869\teltime: 20.78600\n", - "epoch: 76\ttrain_loss: 0.00883\tdev_loss: 0.03850\teltime: 21.04587\n", - "epoch: 77\ttrain_loss: 0.00878\tdev_loss: 0.03830\teltime: 21.35855\n", - "epoch: 78\ttrain_loss: 0.00874\tdev_loss: 0.03811\teltime: 21.64326\n", - "epoch: 79\ttrain_loss: 0.00869\tdev_loss: 0.03792\teltime: 21.89392\n", - "epoch: 80\ttrain_loss: 0.00865\tdev_loss: 0.03773\teltime: 22.15631\n", - "epoch: 81\ttrain_loss: 0.00860\tdev_loss: 0.03754\teltime: 22.44438\n", - "epoch: 82\ttrain_loss: 0.00856\tdev_loss: 0.03735\teltime: 22.67984\n", - "epoch: 83\ttrain_loss: 0.00851\tdev_loss: 0.03716\teltime: 22.98433\n", - "epoch: 84\ttrain_loss: 0.00847\tdev_loss: 0.03697\teltime: 23.25885\n", - "epoch: 85\ttrain_loss: 0.00843\tdev_loss: 0.03678\teltime: 23.51535\n", - "epoch: 86\ttrain_loss: 0.00838\tdev_loss: 0.03660\teltime: 23.83182\n", - "epoch: 87\ttrain_loss: 0.00834\tdev_loss: 0.03641\teltime: 24.11719\n", - "epoch: 88\ttrain_loss: 0.00830\tdev_loss: 0.03622\teltime: 24.35816\n", - "epoch: 89\ttrain_loss: 0.00825\tdev_loss: 0.03604\teltime: 24.66478\n", - "epoch: 90\ttrain_loss: 0.00821\tdev_loss: 0.03586\teltime: 24.91851\n", - "epoch: 91\ttrain_loss: 0.00817\tdev_loss: 0.03567\teltime: 25.17670\n", - "epoch: 92\ttrain_loss: 0.00813\tdev_loss: 0.03549\teltime: 25.48013\n", - "epoch: 93\ttrain_loss: 0.00809\tdev_loss: 0.03531\teltime: 25.75203\n", - "epoch: 94\ttrain_loss: 0.00804\tdev_loss: 0.03513\teltime: 26.02120\n", - "epoch: 95\ttrain_loss: 0.00800\tdev_loss: 0.03495\teltime: 26.26277\n", - "epoch: 96\ttrain_loss: 0.00796\tdev_loss: 0.03477\teltime: 26.53731\n", - "epoch: 97\ttrain_loss: 0.00792\tdev_loss: 0.03459\teltime: 26.80352\n", - "epoch: 98\ttrain_loss: 0.00788\tdev_loss: 0.03441\teltime: 27.07217\n", - "epoch: 99\ttrain_loss: 0.00784\tdev_loss: 0.03424\teltime: 27.33856\n", - "epoch: 100\ttrain_loss: 0.00780\tdev_loss: 0.03406\teltime: 27.60444\n", - "epoch: 101\ttrain_loss: 0.00775\tdev_loss: 0.03388\teltime: 27.86886\n", - "epoch: 102\ttrain_loss: 0.00771\tdev_loss: 0.03371\teltime: 28.14076\n", - "epoch: 103\ttrain_loss: 0.00767\tdev_loss: 0.03353\teltime: 28.44152\n", - "epoch: 104\ttrain_loss: 0.00763\tdev_loss: 0.03336\teltime: 28.72652\n", - "epoch: 105\ttrain_loss: 0.00759\tdev_loss: 0.03319\teltime: 28.95264\n", - "epoch: 106\ttrain_loss: 0.00756\tdev_loss: 0.03302\teltime: 29.22797\n", - "epoch: 107\ttrain_loss: 0.00752\tdev_loss: 0.03284\teltime: 29.51104\n", - "epoch: 108\ttrain_loss: 0.00748\tdev_loss: 0.03267\teltime: 29.75755\n", - "epoch: 109\ttrain_loss: 0.00744\tdev_loss: 0.03250\teltime: 30.00679\n", - "epoch: 110\ttrain_loss: 0.00740\tdev_loss: 0.03234\teltime: 30.28352\n", - "epoch: 111\ttrain_loss: 0.00736\tdev_loss: 0.03217\teltime: 30.59267\n", - "epoch: 112\ttrain_loss: 0.00732\tdev_loss: 0.03200\teltime: 30.85618\n", - "epoch: 113\ttrain_loss: 0.00728\tdev_loss: 0.03183\teltime: 31.11472\n", - "epoch: 114\ttrain_loss: 0.00724\tdev_loss: 0.03167\teltime: 31.37679\n", - "epoch: 115\ttrain_loss: 0.00720\tdev_loss: 0.03150\teltime: 31.62363\n", - "epoch: 116\ttrain_loss: 0.00717\tdev_loss: 0.03133\teltime: 31.89021\n", - "epoch: 117\ttrain_loss: 0.00713\tdev_loss: 0.03117\teltime: 32.16729\n", - "epoch: 118\ttrain_loss: 0.00709\tdev_loss: 0.03101\teltime: 32.46698\n", - "epoch: 119\ttrain_loss: 0.00705\tdev_loss: 0.03085\teltime: 32.71818\n", - "epoch: 120\ttrain_loss: 0.00702\tdev_loss: 0.03068\teltime: 32.99366\n", - "epoch: 121\ttrain_loss: 0.00698\tdev_loss: 0.03052\teltime: 33.25502\n", - "epoch: 122\ttrain_loss: 0.00694\tdev_loss: 0.03036\teltime: 33.53812\n", - "epoch: 123\ttrain_loss: 0.00691\tdev_loss: 0.03020\teltime: 33.81944\n", - "epoch: 124\ttrain_loss: 0.00687\tdev_loss: 0.03004\teltime: 34.11512\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 125\ttrain_loss: 0.00683\tdev_loss: 0.02988\teltime: 34.37020\n", - "epoch: 126\ttrain_loss: 0.00680\tdev_loss: 0.02972\teltime: 34.67126\n", - "epoch: 127\ttrain_loss: 0.00676\tdev_loss: 0.02957\teltime: 34.97128\n", - "epoch: 128\ttrain_loss: 0.00672\tdev_loss: 0.02941\teltime: 35.25646\n", - "epoch: 129\ttrain_loss: 0.00669\tdev_loss: 0.02925\teltime: 35.55663\n", - "epoch: 130\ttrain_loss: 0.00665\tdev_loss: 0.02910\teltime: 35.86611\n", - "epoch: 131\ttrain_loss: 0.00662\tdev_loss: 0.02894\teltime: 36.15563\n", - "epoch: 132\ttrain_loss: 0.00658\tdev_loss: 0.02879\teltime: 36.45009\n", - "epoch: 133\ttrain_loss: 0.00655\tdev_loss: 0.02864\teltime: 36.73547\n", - "epoch: 134\ttrain_loss: 0.00651\tdev_loss: 0.02848\teltime: 37.03905\n", - "epoch: 135\ttrain_loss: 0.00648\tdev_loss: 0.02833\teltime: 37.29043\n", - "epoch: 136\ttrain_loss: 0.00644\tdev_loss: 0.02818\teltime: 37.57691\n", - "epoch: 137\ttrain_loss: 0.00641\tdev_loss: 0.02803\teltime: 37.82912\n", - "epoch: 138\ttrain_loss: 0.00637\tdev_loss: 0.02788\teltime: 38.12300\n", - "epoch: 139\ttrain_loss: 0.00634\tdev_loss: 0.02773\teltime: 38.41006\n", - "epoch: 140\ttrain_loss: 0.00630\tdev_loss: 0.02758\teltime: 38.69509\n", - "epoch: 141\ttrain_loss: 0.00627\tdev_loss: 0.02743\teltime: 38.96360\n", - "epoch: 142\ttrain_loss: 0.00624\tdev_loss: 0.02729\teltime: 39.23777\n", - "epoch: 143\ttrain_loss: 0.00620\tdev_loss: 0.02714\teltime: 39.50323\n", - "epoch: 144\ttrain_loss: 0.00617\tdev_loss: 0.02699\teltime: 39.79718\n", - "epoch: 145\ttrain_loss: 0.00613\tdev_loss: 0.02685\teltime: 40.08118\n", - "epoch: 146\ttrain_loss: 0.00610\tdev_loss: 0.02670\teltime: 40.35503\n", - "epoch: 147\ttrain_loss: 0.00607\tdev_loss: 0.02656\teltime: 40.60685\n", - "epoch: 148\ttrain_loss: 0.00604\tdev_loss: 0.02641\teltime: 40.90355\n", - "epoch: 149\ttrain_loss: 0.00600\tdev_loss: 0.02627\teltime: 41.16744\n", - "epoch: 150\ttrain_loss: 0.00597\tdev_loss: 0.02613\teltime: 41.45799\n", - "epoch: 151\ttrain_loss: 0.00594\tdev_loss: 0.02599\teltime: 41.76317\n", - "epoch: 152\ttrain_loss: 0.00591\tdev_loss: 0.02585\teltime: 42.02012\n", - "epoch: 153\ttrain_loss: 0.00587\tdev_loss: 0.02571\teltime: 42.30261\n", - "epoch: 154\ttrain_loss: 0.00584\tdev_loss: 0.02557\teltime: 42.57850\n", - "epoch: 155\ttrain_loss: 0.00581\tdev_loss: 0.02543\teltime: 42.82713\n", - "epoch: 156\ttrain_loss: 0.00578\tdev_loss: 0.02529\teltime: 43.07637\n", - "epoch: 157\ttrain_loss: 0.00575\tdev_loss: 0.02515\teltime: 43.34481\n", - "epoch: 158\ttrain_loss: 0.00571\tdev_loss: 0.02501\teltime: 43.62029\n", - "epoch: 159\ttrain_loss: 0.00568\tdev_loss: 0.02488\teltime: 43.87355\n", - "epoch: 160\ttrain_loss: 0.00565\tdev_loss: 0.02474\teltime: 44.12959\n", - "epoch: 161\ttrain_loss: 0.00562\tdev_loss: 0.02461\teltime: 44.40306\n", - "epoch: 162\ttrain_loss: 0.00559\tdev_loss: 0.02447\teltime: 44.64264\n", - "epoch: 163\ttrain_loss: 0.00556\tdev_loss: 0.02434\teltime: 44.91766\n", - "epoch: 164\ttrain_loss: 0.00553\tdev_loss: 0.02420\teltime: 45.19228\n", - "epoch: 165\ttrain_loss: 0.00550\tdev_loss: 0.02407\teltime: 45.47876\n", - "epoch: 166\ttrain_loss: 0.00547\tdev_loss: 0.02394\teltime: 45.73261\n", - "epoch: 167\ttrain_loss: 0.00544\tdev_loss: 0.02380\teltime: 46.01464\n", - "epoch: 168\ttrain_loss: 0.00541\tdev_loss: 0.02367\teltime: 46.27719\n", - "epoch: 169\ttrain_loss: 0.00538\tdev_loss: 0.02354\teltime: 46.53388\n", - "epoch: 170\ttrain_loss: 0.00535\tdev_loss: 0.02341\teltime: 46.78501\n", - "epoch: 171\ttrain_loss: 0.00532\tdev_loss: 0.02328\teltime: 47.08215\n", - "epoch: 172\ttrain_loss: 0.00529\tdev_loss: 0.02315\teltime: 47.33464\n", - "epoch: 173\ttrain_loss: 0.00526\tdev_loss: 0.02302\teltime: 47.65063\n", - "epoch: 174\ttrain_loss: 0.00523\tdev_loss: 0.02290\teltime: 47.91676\n", - "epoch: 175\ttrain_loss: 0.00520\tdev_loss: 0.02277\teltime: 48.21801\n", - "epoch: 176\ttrain_loss: 0.00517\tdev_loss: 0.02264\teltime: 48.48294\n", - "epoch: 177\ttrain_loss: 0.00514\tdev_loss: 0.02252\teltime: 48.76672\n", - "epoch: 178\ttrain_loss: 0.00512\tdev_loss: 0.02239\teltime: 49.00845\n", - "epoch: 179\ttrain_loss: 0.00509\tdev_loss: 0.02227\teltime: 49.30598\n", - "epoch: 180\ttrain_loss: 0.00506\tdev_loss: 0.02214\teltime: 49.59772\n", - "epoch: 181\ttrain_loss: 0.00503\tdev_loss: 0.02202\teltime: 49.91553\n", - "epoch: 182\ttrain_loss: 0.00500\tdev_loss: 0.02190\teltime: 50.20521\n", - "epoch: 183\ttrain_loss: 0.00497\tdev_loss: 0.02177\teltime: 50.47385\n", - "epoch: 184\ttrain_loss: 0.00495\tdev_loss: 0.02165\teltime: 50.75443\n", - "epoch: 185\ttrain_loss: 0.00492\tdev_loss: 0.02153\teltime: 51.01947\n", - "epoch: 186\ttrain_loss: 0.00489\tdev_loss: 0.02141\teltime: 51.32971\n", - "epoch: 187\ttrain_loss: 0.00486\tdev_loss: 0.02129\teltime: 51.57544\n", - "epoch: 188\ttrain_loss: 0.00484\tdev_loss: 0.02117\teltime: 51.84062\n", - "epoch: 189\ttrain_loss: 0.00481\tdev_loss: 0.02105\teltime: 52.10615\n", - "epoch: 190\ttrain_loss: 0.00478\tdev_loss: 0.02093\teltime: 52.38730\n", - "epoch: 191\ttrain_loss: 0.00475\tdev_loss: 0.02081\teltime: 52.68876\n", - "epoch: 192\ttrain_loss: 0.00473\tdev_loss: 0.02069\teltime: 52.93109\n", - "epoch: 193\ttrain_loss: 0.00470\tdev_loss: 0.02058\teltime: 53.18597\n", - "epoch: 194\ttrain_loss: 0.00468\tdev_loss: 0.02046\teltime: 53.45846\n", - "epoch: 195\ttrain_loss: 0.00465\tdev_loss: 0.02034\teltime: 53.70891\n", - "epoch: 196\ttrain_loss: 0.00462\tdev_loss: 0.02023\teltime: 53.97107\n", - "epoch: 197\ttrain_loss: 0.00460\tdev_loss: 0.02011\teltime: 54.22778\n", - "epoch: 198\ttrain_loss: 0.00457\tdev_loss: 0.02000\teltime: 54.54548\n", - "epoch: 199\ttrain_loss: 0.00454\tdev_loss: 0.01988\teltime: 54.78830\n", - "epoch: 200\ttrain_loss: 0.00452\tdev_loss: 0.01977\teltime: 55.04613\n", - "epoch: 201\ttrain_loss: 0.00449\tdev_loss: 0.01966\teltime: 55.32758\n", - "epoch: 202\ttrain_loss: 0.00447\tdev_loss: 0.01955\teltime: 55.62937\n", - "epoch: 203\ttrain_loss: 0.00444\tdev_loss: 0.01943\teltime: 55.89905\n", - "epoch: 204\ttrain_loss: 0.00442\tdev_loss: 0.01932\teltime: 56.16408\n", - "epoch: 205\ttrain_loss: 0.00439\tdev_loss: 0.01921\teltime: 56.46441\n", - "epoch: 206\ttrain_loss: 0.00437\tdev_loss: 0.01910\teltime: 56.72161\n", - "epoch: 207\ttrain_loss: 0.00434\tdev_loss: 0.01899\teltime: 56.98602\n", - "epoch: 208\ttrain_loss: 0.00432\tdev_loss: 0.01888\teltime: 57.26744\n", - "epoch: 209\ttrain_loss: 0.00429\tdev_loss: 0.01877\teltime: 57.55179\n", - "epoch: 210\ttrain_loss: 0.00427\tdev_loss: 0.01867\teltime: 57.80301\n", - "epoch: 211\ttrain_loss: 0.00424\tdev_loss: 0.01856\teltime: 58.06852\n", - "epoch: 212\ttrain_loss: 0.00422\tdev_loss: 0.01845\teltime: 58.31946\n", - "epoch: 213\ttrain_loss: 0.00419\tdev_loss: 0.01834\teltime: 58.63033\n", - "epoch: 214\ttrain_loss: 0.00417\tdev_loss: 0.01824\teltime: 58.91003\n", - "epoch: 215\ttrain_loss: 0.00415\tdev_loss: 0.01813\teltime: 59.18584\n", - "epoch: 216\ttrain_loss: 0.00412\tdev_loss: 0.01803\teltime: 59.43834\n", - "epoch: 217\ttrain_loss: 0.00410\tdev_loss: 0.01792\teltime: 59.70126\n", - "epoch: 218\ttrain_loss: 0.00407\tdev_loss: 0.01782\teltime: 59.97240\n", - "epoch: 219\ttrain_loss: 0.00405\tdev_loss: 0.01772\teltime: 60.22234\n", - "epoch: 220\ttrain_loss: 0.00403\tdev_loss: 0.01761\teltime: 60.48571\n", - "epoch: 221\ttrain_loss: 0.00400\tdev_loss: 0.01751\teltime: 60.77302\n", - "epoch: 222\ttrain_loss: 0.00398\tdev_loss: 0.01741\teltime: 61.04516\n", - "epoch: 223\ttrain_loss: 0.00396\tdev_loss: 0.01731\teltime: 61.31943\n", - "epoch: 224\ttrain_loss: 0.00394\tdev_loss: 0.01720\teltime: 61.58989\n", - "epoch: 225\ttrain_loss: 0.00391\tdev_loss: 0.01710\teltime: 61.85239\n", - "epoch: 226\ttrain_loss: 0.00389\tdev_loss: 0.01700\teltime: 62.11789\n", - "epoch: 227\ttrain_loss: 0.00387\tdev_loss: 0.01690\teltime: 62.36818\n", - "epoch: 228\ttrain_loss: 0.00385\tdev_loss: 0.01680\teltime: 62.64029\n", - "epoch: 229\ttrain_loss: 0.00382\tdev_loss: 0.01671\teltime: 62.90289\n", - "epoch: 230\ttrain_loss: 0.00380\tdev_loss: 0.01661\teltime: 63.19197\n", - "epoch: 231\ttrain_loss: 0.00378\tdev_loss: 0.01651\teltime: 63.49260\n", - "epoch: 232\ttrain_loss: 0.00376\tdev_loss: 0.01641\teltime: 63.73646\n", - "epoch: 233\ttrain_loss: 0.00373\tdev_loss: 0.01632\teltime: 64.03679\n", - "epoch: 234\ttrain_loss: 0.00371\tdev_loss: 0.01622\teltime: 64.32738\n", - "epoch: 235\ttrain_loss: 0.00369\tdev_loss: 0.01612\teltime: 64.61310\n", - "epoch: 236\ttrain_loss: 0.00367\tdev_loss: 0.01603\teltime: 64.88408\n", - "epoch: 237\ttrain_loss: 0.00365\tdev_loss: 0.01593\teltime: 65.14467\n", - "epoch: 238\ttrain_loss: 0.00363\tdev_loss: 0.01584\teltime: 65.40775\n", - "epoch: 239\ttrain_loss: 0.00360\tdev_loss: 0.01575\teltime: 65.68002\n", - "epoch: 240\ttrain_loss: 0.00358\tdev_loss: 0.01565\teltime: 65.94563\n", - "epoch: 241\ttrain_loss: 0.00356\tdev_loss: 0.01556\teltime: 66.22458\n", - "epoch: 242\ttrain_loss: 0.00354\tdev_loss: 0.01547\teltime: 66.50338\n", - "epoch: 243\ttrain_loss: 0.00352\tdev_loss: 0.01537\teltime: 66.76657\n", - "epoch: 244\ttrain_loss: 0.00350\tdev_loss: 0.01528\teltime: 67.03268\n", - "epoch: 245\ttrain_loss: 0.00348\tdev_loss: 0.01519\teltime: 67.29542\n", - "epoch: 246\ttrain_loss: 0.00346\tdev_loss: 0.01510\teltime: 67.59916\n", - "epoch: 247\ttrain_loss: 0.00344\tdev_loss: 0.01501\teltime: 67.88395\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 248\ttrain_loss: 0.00342\tdev_loss: 0.01492\teltime: 68.18342\n", - "epoch: 249\ttrain_loss: 0.00340\tdev_loss: 0.01483\teltime: 68.48374\n", - "epoch: 250\ttrain_loss: 0.00338\tdev_loss: 0.01474\teltime: 68.81218\n", - "epoch: 251\ttrain_loss: 0.00336\tdev_loss: 0.01465\teltime: 69.16226\n", - "epoch: 252\ttrain_loss: 0.00334\tdev_loss: 0.01456\teltime: 69.41832\n", - "epoch: 253\ttrain_loss: 0.00332\tdev_loss: 0.01448\teltime: 69.72552\n", - "epoch: 254\ttrain_loss: 0.00330\tdev_loss: 0.01439\teltime: 70.01123\n", - "epoch: 255\ttrain_loss: 0.00328\tdev_loss: 0.01430\teltime: 70.35928\n", - "epoch: 256\ttrain_loss: 0.00326\tdev_loss: 0.01422\teltime: 70.63747\n", - "epoch: 257\ttrain_loss: 0.00324\tdev_loss: 0.01413\teltime: 70.88626\n", - "epoch: 258\ttrain_loss: 0.00322\tdev_loss: 0.01404\teltime: 71.16334\n", - "epoch: 259\ttrain_loss: 0.00320\tdev_loss: 0.01396\teltime: 71.44031\n", - "epoch: 260\ttrain_loss: 0.00318\tdev_loss: 0.01387\teltime: 71.71130\n", - "epoch: 261\ttrain_loss: 0.00316\tdev_loss: 0.01379\teltime: 71.94129\n", - "epoch: 262\ttrain_loss: 0.00314\tdev_loss: 0.01371\teltime: 72.21940\n", - "epoch: 263\ttrain_loss: 0.00312\tdev_loss: 0.01362\teltime: 72.51744\n", - "epoch: 264\ttrain_loss: 0.00311\tdev_loss: 0.01354\teltime: 72.77098\n", - "epoch: 265\ttrain_loss: 0.00309\tdev_loss: 0.01346\teltime: 73.03715\n", - "epoch: 266\ttrain_loss: 0.00307\tdev_loss: 0.01337\teltime: 73.31669\n", - "epoch: 267\ttrain_loss: 0.00305\tdev_loss: 0.01329\teltime: 73.61914\n", - "epoch: 268\ttrain_loss: 0.00303\tdev_loss: 0.01321\teltime: 73.91963\n", - "epoch: 269\ttrain_loss: 0.00301\tdev_loss: 0.01313\teltime: 74.23619\n", - "epoch: 270\ttrain_loss: 0.00300\tdev_loss: 0.01305\teltime: 74.48635\n", - "epoch: 271\ttrain_loss: 0.00298\tdev_loss: 0.01297\teltime: 74.74629\n", - "epoch: 272\ttrain_loss: 0.00296\tdev_loss: 0.01289\teltime: 75.04660\n", - "epoch: 273\ttrain_loss: 0.00294\tdev_loss: 0.01281\teltime: 75.33538\n", - "epoch: 274\ttrain_loss: 0.00292\tdev_loss: 0.01273\teltime: 75.65915\n", - "epoch: 275\ttrain_loss: 0.00291\tdev_loss: 0.01265\teltime: 75.93561\n", - "epoch: 276\ttrain_loss: 0.00289\tdev_loss: 0.01258\teltime: 76.22460\n", - "epoch: 277\ttrain_loss: 0.00287\tdev_loss: 0.01250\teltime: 76.51010\n", - "epoch: 278\ttrain_loss: 0.00285\tdev_loss: 0.01242\teltime: 76.79458\n", - "epoch: 279\ttrain_loss: 0.00284\tdev_loss: 0.01234\teltime: 77.11095\n", - "epoch: 280\ttrain_loss: 0.00282\tdev_loss: 0.01227\teltime: 77.37985\n", - "epoch: 281\ttrain_loss: 0.00280\tdev_loss: 0.01219\teltime: 77.63774\n", - "epoch: 282\ttrain_loss: 0.00279\tdev_loss: 0.01212\teltime: 77.94368\n", - "epoch: 283\ttrain_loss: 0.00277\tdev_loss: 0.01204\teltime: 78.23514\n", - "epoch: 284\ttrain_loss: 0.00275\tdev_loss: 0.01197\teltime: 78.49823\n", - "epoch: 285\ttrain_loss: 0.00273\tdev_loss: 0.01189\teltime: 78.77297\n", - "epoch: 286\ttrain_loss: 0.00272\tdev_loss: 0.01182\teltime: 79.02222\n", - "epoch: 287\ttrain_loss: 0.00270\tdev_loss: 0.01174\teltime: 79.29986\n", - "epoch: 288\ttrain_loss: 0.00268\tdev_loss: 0.01167\teltime: 79.59965\n", - "epoch: 289\ttrain_loss: 0.00267\tdev_loss: 0.01160\teltime: 79.86749\n", - "epoch: 290\ttrain_loss: 0.00265\tdev_loss: 0.01152\teltime: 80.21911\n", - "epoch: 291\ttrain_loss: 0.00264\tdev_loss: 0.01145\teltime: 80.50824\n", - "epoch: 292\ttrain_loss: 0.00262\tdev_loss: 0.01138\teltime: 80.79797\n", - "epoch: 293\ttrain_loss: 0.00260\tdev_loss: 0.01131\teltime: 81.08590\n", - "epoch: 294\ttrain_loss: 0.00259\tdev_loss: 0.01124\teltime: 81.37365\n", - "epoch: 295\ttrain_loss: 0.00257\tdev_loss: 0.01117\teltime: 81.65277\n", - "epoch: 296\ttrain_loss: 0.00256\tdev_loss: 0.01110\teltime: 81.93741\n", - "epoch: 297\ttrain_loss: 0.00254\tdev_loss: 0.01103\teltime: 82.22241\n", - "epoch: 298\ttrain_loss: 0.00252\tdev_loss: 0.01096\teltime: 82.48100\n", - "epoch: 299\ttrain_loss: 0.00251\tdev_loss: 0.01089\teltime: 82.77010\n", - "epoch: 300\ttrain_loss: 0.00249\tdev_loss: 0.01082\teltime: 83.02386\n", - "epoch: 301\ttrain_loss: 0.00248\tdev_loss: 0.01075\teltime: 83.28156\n", - "epoch: 302\ttrain_loss: 0.00246\tdev_loss: 0.01068\teltime: 83.57306\n", - "epoch: 303\ttrain_loss: 0.00245\tdev_loss: 0.01061\teltime: 83.88830\n", - "epoch: 304\ttrain_loss: 0.00243\tdev_loss: 0.01055\teltime: 84.16289\n", - "epoch: 305\ttrain_loss: 0.00242\tdev_loss: 0.01048\teltime: 84.47463\n", - "epoch: 306\ttrain_loss: 0.00240\tdev_loss: 0.01041\teltime: 84.71538\n", - "epoch: 307\ttrain_loss: 0.00239\tdev_loss: 0.01035\teltime: 84.99287\n", - "epoch: 308\ttrain_loss: 0.00237\tdev_loss: 0.01028\teltime: 85.27187\n", - "epoch: 309\ttrain_loss: 0.00236\tdev_loss: 0.01022\teltime: 85.59135\n", - "epoch: 310\ttrain_loss: 0.00234\tdev_loss: 0.01015\teltime: 85.86070\n", - "epoch: 311\ttrain_loss: 0.00233\tdev_loss: 0.01009\teltime: 86.13019\n", - "epoch: 312\ttrain_loss: 0.00231\tdev_loss: 0.01002\teltime: 86.43046\n", - "epoch: 313\ttrain_loss: 0.00230\tdev_loss: 0.00996\teltime: 86.69317\n", - "epoch: 314\ttrain_loss: 0.00228\tdev_loss: 0.00989\teltime: 86.94992\n", - "epoch: 315\ttrain_loss: 0.00227\tdev_loss: 0.00983\teltime: 87.21466\n", - "epoch: 316\ttrain_loss: 0.00226\tdev_loss: 0.00977\teltime: 87.47804\n", - "epoch: 317\ttrain_loss: 0.00224\tdev_loss: 0.00970\teltime: 87.73593\n", - "epoch: 318\ttrain_loss: 0.00223\tdev_loss: 0.00964\teltime: 87.99056\n", - "epoch: 319\ttrain_loss: 0.00221\tdev_loss: 0.00958\teltime: 88.24943\n", - "epoch: 320\ttrain_loss: 0.00220\tdev_loss: 0.00952\teltime: 88.54607\n", - "epoch: 321\ttrain_loss: 0.00219\tdev_loss: 0.00945\teltime: 88.80871\n", - "epoch: 322\ttrain_loss: 0.00217\tdev_loss: 0.00939\teltime: 89.09848\n", - "epoch: 323\ttrain_loss: 0.00216\tdev_loss: 0.00933\teltime: 89.40051\n", - "epoch: 324\ttrain_loss: 0.00215\tdev_loss: 0.00927\teltime: 89.69141\n", - "epoch: 325\ttrain_loss: 0.00213\tdev_loss: 0.00921\teltime: 89.97478\n", - "epoch: 326\ttrain_loss: 0.00212\tdev_loss: 0.00915\teltime: 90.22428\n", - "epoch: 327\ttrain_loss: 0.00210\tdev_loss: 0.00909\teltime: 90.49699\n", - "epoch: 328\ttrain_loss: 0.00209\tdev_loss: 0.00903\teltime: 90.79055\n", - "epoch: 329\ttrain_loss: 0.00208\tdev_loss: 0.00897\teltime: 91.07307\n", - "epoch: 330\ttrain_loss: 0.00207\tdev_loss: 0.00892\teltime: 91.34343\n", - "epoch: 331\ttrain_loss: 0.00205\tdev_loss: 0.00886\teltime: 91.62558\n", - "epoch: 332\ttrain_loss: 0.00204\tdev_loss: 0.00880\teltime: 91.91769\n", - "epoch: 333\ttrain_loss: 0.00203\tdev_loss: 0.00874\teltime: 92.15715\n", - "epoch: 334\ttrain_loss: 0.00201\tdev_loss: 0.00869\teltime: 92.42897\n", - "epoch: 335\ttrain_loss: 0.00200\tdev_loss: 0.00863\teltime: 92.72955\n", - "epoch: 336\ttrain_loss: 0.00199\tdev_loss: 0.00857\teltime: 93.01849\n", - "epoch: 337\ttrain_loss: 0.00198\tdev_loss: 0.00852\teltime: 93.30708\n", - "epoch: 338\ttrain_loss: 0.00196\tdev_loss: 0.00846\teltime: 93.58260\n", - "epoch: 339\ttrain_loss: 0.00195\tdev_loss: 0.00840\teltime: 93.86981\n", - "epoch: 340\ttrain_loss: 0.00194\tdev_loss: 0.00835\teltime: 94.14817\n", - "epoch: 341\ttrain_loss: 0.00193\tdev_loss: 0.00829\teltime: 94.41543\n", - "epoch: 342\ttrain_loss: 0.00191\tdev_loss: 0.00824\teltime: 94.70181\n", - "epoch: 343\ttrain_loss: 0.00190\tdev_loss: 0.00818\teltime: 94.98229\n", - "epoch: 344\ttrain_loss: 0.00189\tdev_loss: 0.00813\teltime: 95.25833\n", - "epoch: 345\ttrain_loss: 0.00188\tdev_loss: 0.00808\teltime: 95.50680\n", - "epoch: 346\ttrain_loss: 0.00186\tdev_loss: 0.00802\teltime: 95.75301\n", - "epoch: 347\ttrain_loss: 0.00185\tdev_loss: 0.00797\teltime: 96.02582\n", - "epoch: 348\ttrain_loss: 0.00184\tdev_loss: 0.00792\teltime: 96.32583\n", - "epoch: 349\ttrain_loss: 0.00183\tdev_loss: 0.00786\teltime: 96.57142\n", - "epoch: 350\ttrain_loss: 0.00182\tdev_loss: 0.00781\teltime: 96.85227\n", - "epoch: 351\ttrain_loss: 0.00181\tdev_loss: 0.00776\teltime: 97.11763\n", - "epoch: 352\ttrain_loss: 0.00179\tdev_loss: 0.00771\teltime: 97.36648\n", - "epoch: 353\ttrain_loss: 0.00178\tdev_loss: 0.00766\teltime: 97.61851\n", - "epoch: 354\ttrain_loss: 0.00177\tdev_loss: 0.00760\teltime: 97.86667\n", - "epoch: 355\ttrain_loss: 0.00176\tdev_loss: 0.00755\teltime: 98.13807\n", - "epoch: 356\ttrain_loss: 0.00175\tdev_loss: 0.00750\teltime: 98.37226\n", - "epoch: 357\ttrain_loss: 0.00174\tdev_loss: 0.00745\teltime: 98.70241\n", - "epoch: 358\ttrain_loss: 0.00173\tdev_loss: 0.00740\teltime: 98.98973\n", - "epoch: 359\ttrain_loss: 0.00171\tdev_loss: 0.00735\teltime: 99.24087\n", - "epoch: 360\ttrain_loss: 0.00170\tdev_loss: 0.00730\teltime: 99.50717\n", - "epoch: 361\ttrain_loss: 0.00169\tdev_loss: 0.00725\teltime: 99.77462\n", - "epoch: 362\ttrain_loss: 0.00168\tdev_loss: 0.00721\teltime: 100.04245\n", - "epoch: 363\ttrain_loss: 0.00167\tdev_loss: 0.00716\teltime: 100.34034\n", - "epoch: 364\ttrain_loss: 0.00166\tdev_loss: 0.00711\teltime: 100.62524\n", - "epoch: 365\ttrain_loss: 0.00165\tdev_loss: 0.00706\teltime: 100.90943\n", - "epoch: 366\ttrain_loss: 0.00164\tdev_loss: 0.00701\teltime: 101.20362\n", - "epoch: 367\ttrain_loss: 0.00163\tdev_loss: 0.00697\teltime: 101.49990\n", - "epoch: 368\ttrain_loss: 0.00162\tdev_loss: 0.00692\teltime: 101.79143\n", - "epoch: 369\ttrain_loss: 0.00161\tdev_loss: 0.00687\teltime: 102.10151\n", - "epoch: 370\ttrain_loss: 0.00160\tdev_loss: 0.00682\teltime: 102.39032\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 371\ttrain_loss: 0.00159\tdev_loss: 0.00678\teltime: 102.71918\n", - "epoch: 372\ttrain_loss: 0.00157\tdev_loss: 0.00673\teltime: 103.05053\n", - "epoch: 373\ttrain_loss: 0.00156\tdev_loss: 0.00669\teltime: 103.35064\n", - "epoch: 374\ttrain_loss: 0.00155\tdev_loss: 0.00664\teltime: 103.65029\n", - "epoch: 375\ttrain_loss: 0.00154\tdev_loss: 0.00660\teltime: 103.95542\n", - "epoch: 376\ttrain_loss: 0.00153\tdev_loss: 0.00655\teltime: 104.27494\n", - "epoch: 377\ttrain_loss: 0.00152\tdev_loss: 0.00651\teltime: 104.57393\n", - "epoch: 378\ttrain_loss: 0.00151\tdev_loss: 0.00646\teltime: 104.88587\n", - "epoch: 379\ttrain_loss: 0.00150\tdev_loss: 0.00642\teltime: 105.22287\n", - "epoch: 380\ttrain_loss: 0.00149\tdev_loss: 0.00637\teltime: 105.59353\n", - "epoch: 381\ttrain_loss: 0.00148\tdev_loss: 0.00633\teltime: 105.89910\n", - "epoch: 382\ttrain_loss: 0.00147\tdev_loss: 0.00629\teltime: 106.25237\n", - "epoch: 383\ttrain_loss: 0.00146\tdev_loss: 0.00624\teltime: 106.55005\n", - "epoch: 384\ttrain_loss: 0.00146\tdev_loss: 0.00620\teltime: 106.91189\n", - "epoch: 385\ttrain_loss: 0.00145\tdev_loss: 0.00616\teltime: 107.25027\n", - "epoch: 386\ttrain_loss: 0.00144\tdev_loss: 0.00611\teltime: 107.52015\n", - "epoch: 387\ttrain_loss: 0.00143\tdev_loss: 0.00607\teltime: 107.83653\n", - "epoch: 388\ttrain_loss: 0.00142\tdev_loss: 0.00603\teltime: 108.10526\n", - "epoch: 389\ttrain_loss: 0.00141\tdev_loss: 0.00599\teltime: 108.38204\n", - "epoch: 390\ttrain_loss: 0.00140\tdev_loss: 0.00595\teltime: 108.74573\n", - "epoch: 391\ttrain_loss: 0.00139\tdev_loss: 0.00591\teltime: 109.08013\n", - "epoch: 392\ttrain_loss: 0.00138\tdev_loss: 0.00586\teltime: 109.37557\n", - "epoch: 393\ttrain_loss: 0.00137\tdev_loss: 0.00582\teltime: 109.71101\n", - "epoch: 394\ttrain_loss: 0.00136\tdev_loss: 0.00578\teltime: 110.00834\n", - "epoch: 395\ttrain_loss: 0.00135\tdev_loss: 0.00574\teltime: 110.33736\n", - "epoch: 396\ttrain_loss: 0.00134\tdev_loss: 0.00570\teltime: 110.63314\n", - "epoch: 397\ttrain_loss: 0.00134\tdev_loss: 0.00566\teltime: 110.92998\n", - "epoch: 398\ttrain_loss: 0.00133\tdev_loss: 0.00562\teltime: 111.30864\n", - "epoch: 399\ttrain_loss: 0.00132\tdev_loss: 0.00558\teltime: 111.59903\n", - "epoch: 400\ttrain_loss: 0.00131\tdev_loss: 0.00555\teltime: 111.86600\n", - "epoch: 401\ttrain_loss: 0.00130\tdev_loss: 0.00551\teltime: 112.21511\n", - "epoch: 402\ttrain_loss: 0.00129\tdev_loss: 0.00547\teltime: 112.57534\n", - "epoch: 403\ttrain_loss: 0.00128\tdev_loss: 0.00543\teltime: 112.89820\n", - "epoch: 404\ttrain_loss: 0.00127\tdev_loss: 0.00539\teltime: 113.21014\n", - "epoch: 405\ttrain_loss: 0.00127\tdev_loss: 0.00535\teltime: 113.47807\n", - "epoch: 406\ttrain_loss: 0.00126\tdev_loss: 0.00532\teltime: 113.79427\n", - "epoch: 407\ttrain_loss: 0.00125\tdev_loss: 0.00528\teltime: 114.14307\n", - "epoch: 408\ttrain_loss: 0.00124\tdev_loss: 0.00524\teltime: 114.47023\n", - "epoch: 409\ttrain_loss: 0.00123\tdev_loss: 0.00520\teltime: 114.75666\n", - "epoch: 410\ttrain_loss: 0.00122\tdev_loss: 0.00517\teltime: 115.08440\n", - "epoch: 411\ttrain_loss: 0.00122\tdev_loss: 0.00513\teltime: 115.45455\n", - "epoch: 412\ttrain_loss: 0.00121\tdev_loss: 0.00509\teltime: 115.76710\n", - "epoch: 413\ttrain_loss: 0.00120\tdev_loss: 0.00506\teltime: 116.10036\n", - "epoch: 414\ttrain_loss: 0.00119\tdev_loss: 0.00502\teltime: 116.38407\n", - "epoch: 415\ttrain_loss: 0.00118\tdev_loss: 0.00499\teltime: 116.64438\n", - "epoch: 416\ttrain_loss: 0.00118\tdev_loss: 0.00495\teltime: 116.94100\n", - "epoch: 417\ttrain_loss: 0.00117\tdev_loss: 0.00492\teltime: 117.22231\n", - "epoch: 418\ttrain_loss: 0.00116\tdev_loss: 0.00488\teltime: 117.48037\n", - "epoch: 419\ttrain_loss: 0.00115\tdev_loss: 0.00485\teltime: 117.77690\n", - "epoch: 420\ttrain_loss: 0.00114\tdev_loss: 0.00481\teltime: 118.00971\n", - "epoch: 421\ttrain_loss: 0.00114\tdev_loss: 0.00478\teltime: 118.26940\n", - "epoch: 422\ttrain_loss: 0.00113\tdev_loss: 0.00474\teltime: 118.51871\n", - "epoch: 423\ttrain_loss: 0.00112\tdev_loss: 0.00471\teltime: 118.79889\n", - "epoch: 424\ttrain_loss: 0.00111\tdev_loss: 0.00468\teltime: 119.05159\n", - "epoch: 425\ttrain_loss: 0.00111\tdev_loss: 0.00464\teltime: 119.31617\n", - "epoch: 426\ttrain_loss: 0.00110\tdev_loss: 0.00461\teltime: 119.65120\n", - "epoch: 427\ttrain_loss: 0.00109\tdev_loss: 0.00458\teltime: 120.00050\n", - "epoch: 428\ttrain_loss: 0.00108\tdev_loss: 0.00454\teltime: 120.26798\n", - "epoch: 429\ttrain_loss: 0.00108\tdev_loss: 0.00451\teltime: 120.56793\n", - "epoch: 430\ttrain_loss: 0.00107\tdev_loss: 0.00448\teltime: 120.87181\n", - "epoch: 431\ttrain_loss: 0.00106\tdev_loss: 0.00445\teltime: 121.23655\n", - "epoch: 432\ttrain_loss: 0.00106\tdev_loss: 0.00441\teltime: 121.56866\n", - "epoch: 433\ttrain_loss: 0.00105\tdev_loss: 0.00438\teltime: 121.88621\n", - "epoch: 434\ttrain_loss: 0.00104\tdev_loss: 0.00435\teltime: 122.17071\n", - "epoch: 435\ttrain_loss: 0.00103\tdev_loss: 0.00432\teltime: 122.45458\n", - "epoch: 436\ttrain_loss: 0.00103\tdev_loss: 0.00429\teltime: 122.77155\n", - "epoch: 437\ttrain_loss: 0.00102\tdev_loss: 0.00426\teltime: 123.11916\n", - "epoch: 438\ttrain_loss: 0.00101\tdev_loss: 0.00423\teltime: 123.46509\n", - "epoch: 439\ttrain_loss: 0.00101\tdev_loss: 0.00420\teltime: 123.81840\n", - "epoch: 440\ttrain_loss: 0.00100\tdev_loss: 0.00417\teltime: 124.18154\n", - "epoch: 441\ttrain_loss: 0.00099\tdev_loss: 0.00414\teltime: 124.52046\n", - "epoch: 442\ttrain_loss: 0.00099\tdev_loss: 0.00410\teltime: 124.87686\n", - "epoch: 443\ttrain_loss: 0.00098\tdev_loss: 0.00408\teltime: 125.22423\n", - "epoch: 444\ttrain_loss: 0.00097\tdev_loss: 0.00405\teltime: 125.59538\n", - "epoch: 445\ttrain_loss: 0.00097\tdev_loss: 0.00402\teltime: 125.91798\n", - "epoch: 446\ttrain_loss: 0.00096\tdev_loss: 0.00399\teltime: 126.24339\n", - "epoch: 447\ttrain_loss: 0.00095\tdev_loss: 0.00396\teltime: 126.56009\n", - "epoch: 448\ttrain_loss: 0.00095\tdev_loss: 0.00393\teltime: 126.91895\n", - "epoch: 449\ttrain_loss: 0.00094\tdev_loss: 0.00390\teltime: 127.29926\n", - "epoch: 450\ttrain_loss: 0.00093\tdev_loss: 0.00387\teltime: 127.63383\n", - "epoch: 451\ttrain_loss: 0.00093\tdev_loss: 0.00384\teltime: 127.99070\n", - "epoch: 452\ttrain_loss: 0.00092\tdev_loss: 0.00381\teltime: 128.29867\n", - "epoch: 453\ttrain_loss: 0.00091\tdev_loss: 0.00379\teltime: 128.62842\n", - "epoch: 454\ttrain_loss: 0.00091\tdev_loss: 0.00376\teltime: 128.97306\n", - "epoch: 455\ttrain_loss: 0.00090\tdev_loss: 0.00373\teltime: 129.29358\n", - "epoch: 456\ttrain_loss: 0.00090\tdev_loss: 0.00370\teltime: 129.65337\n", - "epoch: 457\ttrain_loss: 0.00089\tdev_loss: 0.00368\teltime: 129.99743\n", - "epoch: 458\ttrain_loss: 0.00088\tdev_loss: 0.00365\teltime: 130.32597\n", - "epoch: 459\ttrain_loss: 0.00088\tdev_loss: 0.00362\teltime: 130.69106\n", - "epoch: 460\ttrain_loss: 0.00087\tdev_loss: 0.00360\teltime: 131.00182\n", - "epoch: 461\ttrain_loss: 0.00087\tdev_loss: 0.00357\teltime: 131.34848\n", - "epoch: 462\ttrain_loss: 0.00086\tdev_loss: 0.00354\teltime: 131.68203\n", - "epoch: 463\ttrain_loss: 0.00085\tdev_loss: 0.00352\teltime: 132.04056\n", - "epoch: 464\ttrain_loss: 0.00085\tdev_loss: 0.00349\teltime: 132.38604\n", - "epoch: 465\ttrain_loss: 0.00084\tdev_loss: 0.00346\teltime: 132.73614\n", - "epoch: 466\ttrain_loss: 0.00084\tdev_loss: 0.00344\teltime: 133.08751\n", - "epoch: 467\ttrain_loss: 0.00083\tdev_loss: 0.00341\teltime: 133.42607\n", - "epoch: 468\ttrain_loss: 0.00082\tdev_loss: 0.00339\teltime: 133.71465\n", - "epoch: 469\ttrain_loss: 0.00082\tdev_loss: 0.00336\teltime: 134.05114\n", - "epoch: 470\ttrain_loss: 0.00081\tdev_loss: 0.00334\teltime: 134.37621\n", - "epoch: 471\ttrain_loss: 0.00081\tdev_loss: 0.00331\teltime: 134.74688\n", - "epoch: 472\ttrain_loss: 0.00080\tdev_loss: 0.00329\teltime: 135.06656\n", - "epoch: 473\ttrain_loss: 0.00080\tdev_loss: 0.00326\teltime: 135.34458\n", - "epoch: 474\ttrain_loss: 0.00079\tdev_loss: 0.00324\teltime: 135.61272\n", - "epoch: 475\ttrain_loss: 0.00079\tdev_loss: 0.00322\teltime: 135.91252\n", - "epoch: 476\ttrain_loss: 0.00078\tdev_loss: 0.00319\teltime: 136.19335\n", - "epoch: 477\ttrain_loss: 0.00078\tdev_loss: 0.00317\teltime: 136.46699\n", - "epoch: 478\ttrain_loss: 0.00077\tdev_loss: 0.00314\teltime: 136.73467\n", - "epoch: 479\ttrain_loss: 0.00076\tdev_loss: 0.00312\teltime: 136.99428\n", - "epoch: 480\ttrain_loss: 0.00076\tdev_loss: 0.00310\teltime: 137.21037\n", - "epoch: 481\ttrain_loss: 0.00075\tdev_loss: 0.00307\teltime: 137.49593\n", - "epoch: 482\ttrain_loss: 0.00075\tdev_loss: 0.00305\teltime: 137.74027\n", - "epoch: 483\ttrain_loss: 0.00074\tdev_loss: 0.00303\teltime: 137.99740\n", - "epoch: 484\ttrain_loss: 0.00074\tdev_loss: 0.00300\teltime: 138.28409\n", - "epoch: 485\ttrain_loss: 0.00073\tdev_loss: 0.00298\teltime: 138.54957\n", - "epoch: 486\ttrain_loss: 0.00073\tdev_loss: 0.00296\teltime: 138.79242\n", - "epoch: 487\ttrain_loss: 0.00072\tdev_loss: 0.00294\teltime: 139.02814\n", - "epoch: 488\ttrain_loss: 0.00072\tdev_loss: 0.00292\teltime: 139.27103\n", - "epoch: 489\ttrain_loss: 0.00071\tdev_loss: 0.00289\teltime: 139.57234\n", - "epoch: 490\ttrain_loss: 0.00071\tdev_loss: 0.00287\teltime: 139.87716\n", - "epoch: 491\ttrain_loss: 0.00070\tdev_loss: 0.00285\teltime: 140.13803\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 492\ttrain_loss: 0.00070\tdev_loss: 0.00283\teltime: 140.39838\n", - "epoch: 493\ttrain_loss: 0.00069\tdev_loss: 0.00281\teltime: 140.65523\n", - "epoch: 494\ttrain_loss: 0.00069\tdev_loss: 0.00279\teltime: 140.90967\n", - "epoch: 495\ttrain_loss: 0.00068\tdev_loss: 0.00276\teltime: 141.17639\n", - "epoch: 496\ttrain_loss: 0.00068\tdev_loss: 0.00274\teltime: 141.41587\n", - "epoch: 497\ttrain_loss: 0.00068\tdev_loss: 0.00272\teltime: 141.68151\n", - "epoch: 498\ttrain_loss: 0.00067\tdev_loss: 0.00270\teltime: 141.95799\n", - "epoch: 499\ttrain_loss: 0.00067\tdev_loss: 0.00268\teltime: 142.21123\n", - "epoch: 500\ttrain_loss: 0.00066\tdev_loss: 0.00266\teltime: 142.49338\n", - "epoch: 501\ttrain_loss: 0.00066\tdev_loss: 0.00264\teltime: 142.74029\n", - "epoch: 502\ttrain_loss: 0.00065\tdev_loss: 0.00262\teltime: 143.03596\n", - "epoch: 503\ttrain_loss: 0.00065\tdev_loss: 0.00260\teltime: 143.28625\n", - "epoch: 504\ttrain_loss: 0.00064\tdev_loss: 0.00258\teltime: 143.55206\n", - "epoch: 505\ttrain_loss: 0.00064\tdev_loss: 0.00256\teltime: 143.87128\n", - "epoch: 506\ttrain_loss: 0.00063\tdev_loss: 0.00254\teltime: 144.11950\n", - "epoch: 507\ttrain_loss: 0.00063\tdev_loss: 0.00252\teltime: 144.39353\n", - "epoch: 508\ttrain_loss: 0.00063\tdev_loss: 0.00250\teltime: 144.65642\n", - "epoch: 509\ttrain_loss: 0.00062\tdev_loss: 0.00248\teltime: 144.92940\n", - "epoch: 510\ttrain_loss: 0.00062\tdev_loss: 0.00246\teltime: 145.17600\n", - "epoch: 511\ttrain_loss: 0.00061\tdev_loss: 0.00245\teltime: 145.48796\n", - "epoch: 512\ttrain_loss: 0.00061\tdev_loss: 0.00243\teltime: 145.81223\n", - "epoch: 513\ttrain_loss: 0.00060\tdev_loss: 0.00241\teltime: 146.10382\n", - "epoch: 514\ttrain_loss: 0.00060\tdev_loss: 0.00239\teltime: 146.43535\n", - "epoch: 515\ttrain_loss: 0.00060\tdev_loss: 0.00237\teltime: 146.76399\n", - "epoch: 516\ttrain_loss: 0.00059\tdev_loss: 0.00235\teltime: 147.12653\n", - "epoch: 517\ttrain_loss: 0.00059\tdev_loss: 0.00234\teltime: 147.46697\n", - "epoch: 518\ttrain_loss: 0.00058\tdev_loss: 0.00232\teltime: 147.81232\n", - "epoch: 519\ttrain_loss: 0.00058\tdev_loss: 0.00230\teltime: 148.11862\n", - "epoch: 520\ttrain_loss: 0.00058\tdev_loss: 0.00228\teltime: 148.39395\n", - "epoch: 521\ttrain_loss: 0.00057\tdev_loss: 0.00226\teltime: 148.66981\n", - "epoch: 522\ttrain_loss: 0.00057\tdev_loss: 0.00225\teltime: 148.95298\n", - "epoch: 523\ttrain_loss: 0.00056\tdev_loss: 0.00223\teltime: 149.19662\n", - "epoch: 524\ttrain_loss: 0.00056\tdev_loss: 0.00221\teltime: 149.46296\n", - "epoch: 525\ttrain_loss: 0.00056\tdev_loss: 0.00219\teltime: 149.74691\n", - "epoch: 526\ttrain_loss: 0.00055\tdev_loss: 0.00218\teltime: 150.03951\n", - "epoch: 527\ttrain_loss: 0.00055\tdev_loss: 0.00216\teltime: 150.30038\n", - "epoch: 528\ttrain_loss: 0.00054\tdev_loss: 0.00214\teltime: 150.54823\n", - "epoch: 529\ttrain_loss: 0.00054\tdev_loss: 0.00213\teltime: 150.78566\n", - "epoch: 530\ttrain_loss: 0.00054\tdev_loss: 0.00211\teltime: 151.05798\n", - "epoch: 531\ttrain_loss: 0.00053\tdev_loss: 0.00209\teltime: 151.28617\n", - "epoch: 532\ttrain_loss: 0.00053\tdev_loss: 0.00208\teltime: 151.55603\n", - "epoch: 533\ttrain_loss: 0.00053\tdev_loss: 0.00206\teltime: 151.78479\n", - "epoch: 534\ttrain_loss: 0.00052\tdev_loss: 0.00205\teltime: 152.06189\n", - "epoch: 535\ttrain_loss: 0.00052\tdev_loss: 0.00203\teltime: 152.31409\n", - "epoch: 536\ttrain_loss: 0.00052\tdev_loss: 0.00201\teltime: 152.55054\n", - "epoch: 537\ttrain_loss: 0.00051\tdev_loss: 0.00200\teltime: 152.89085\n", - "epoch: 538\ttrain_loss: 0.00051\tdev_loss: 0.00198\teltime: 153.20821\n", - "epoch: 539\ttrain_loss: 0.00051\tdev_loss: 0.00197\teltime: 153.50740\n", - "epoch: 540\ttrain_loss: 0.00050\tdev_loss: 0.00195\teltime: 153.85389\n", - "epoch: 541\ttrain_loss: 0.00050\tdev_loss: 0.00194\teltime: 154.15028\n", - "epoch: 542\ttrain_loss: 0.00049\tdev_loss: 0.00192\teltime: 154.49211\n", - "epoch: 543\ttrain_loss: 0.00049\tdev_loss: 0.00191\teltime: 154.82491\n", - "epoch: 544\ttrain_loss: 0.00049\tdev_loss: 0.00189\teltime: 155.12935\n", - "epoch: 545\ttrain_loss: 0.00048\tdev_loss: 0.00188\teltime: 155.43550\n", - "epoch: 546\ttrain_loss: 0.00048\tdev_loss: 0.00186\teltime: 155.75982\n", - "epoch: 547\ttrain_loss: 0.00048\tdev_loss: 0.00185\teltime: 156.08975\n", - "epoch: 548\ttrain_loss: 0.00047\tdev_loss: 0.00183\teltime: 156.40898\n", - "epoch: 549\ttrain_loss: 0.00047\tdev_loss: 0.00182\teltime: 156.70955\n", - "epoch: 550\ttrain_loss: 0.00047\tdev_loss: 0.00181\teltime: 157.03165\n", - "epoch: 551\ttrain_loss: 0.00047\tdev_loss: 0.00179\teltime: 157.32779\n", - "epoch: 552\ttrain_loss: 0.00046\tdev_loss: 0.00178\teltime: 157.58592\n", - "epoch: 553\ttrain_loss: 0.00046\tdev_loss: 0.00176\teltime: 157.85565\n", - "epoch: 554\ttrain_loss: 0.00046\tdev_loss: 0.00175\teltime: 158.11452\n", - "epoch: 555\ttrain_loss: 0.00045\tdev_loss: 0.00174\teltime: 158.38945\n", - "epoch: 556\ttrain_loss: 0.00045\tdev_loss: 0.00172\teltime: 158.65390\n", - "epoch: 557\ttrain_loss: 0.00045\tdev_loss: 0.00171\teltime: 158.94740\n", - "epoch: 558\ttrain_loss: 0.00044\tdev_loss: 0.00170\teltime: 159.27390\n", - "epoch: 559\ttrain_loss: 0.00044\tdev_loss: 0.00168\teltime: 159.56069\n", - "epoch: 560\ttrain_loss: 0.00044\tdev_loss: 0.00167\teltime: 159.81370\n", - "epoch: 561\ttrain_loss: 0.00043\tdev_loss: 0.00166\teltime: 160.09948\n", - "epoch: 562\ttrain_loss: 0.00043\tdev_loss: 0.00164\teltime: 160.37548\n", - "epoch: 563\ttrain_loss: 0.00043\tdev_loss: 0.00163\teltime: 160.64044\n", - "epoch: 564\ttrain_loss: 0.00043\tdev_loss: 0.00162\teltime: 160.94463\n", - "epoch: 565\ttrain_loss: 0.00042\tdev_loss: 0.00160\teltime: 161.22833\n", - "epoch: 566\ttrain_loss: 0.00042\tdev_loss: 0.00159\teltime: 161.47850\n", - "epoch: 567\ttrain_loss: 0.00042\tdev_loss: 0.00158\teltime: 161.74346\n", - "epoch: 568\ttrain_loss: 0.00041\tdev_loss: 0.00157\teltime: 161.97096\n", - "epoch: 569\ttrain_loss: 0.00041\tdev_loss: 0.00155\teltime: 162.23826\n", - "epoch: 570\ttrain_loss: 0.00041\tdev_loss: 0.00154\teltime: 162.47980\n", - "epoch: 571\ttrain_loss: 0.00041\tdev_loss: 0.00153\teltime: 162.74398\n", - "epoch: 572\ttrain_loss: 0.00040\tdev_loss: 0.00152\teltime: 162.99426\n", - "epoch: 573\ttrain_loss: 0.00040\tdev_loss: 0.00151\teltime: 163.25548\n", - "epoch: 574\ttrain_loss: 0.00040\tdev_loss: 0.00149\teltime: 163.54271\n", - "epoch: 575\ttrain_loss: 0.00040\tdev_loss: 0.00148\teltime: 163.78596\n", - "epoch: 576\ttrain_loss: 0.00039\tdev_loss: 0.00147\teltime: 164.05321\n", - "epoch: 577\ttrain_loss: 0.00039\tdev_loss: 0.00146\teltime: 164.30049\n", - "epoch: 578\ttrain_loss: 0.00039\tdev_loss: 0.00145\teltime: 164.53363\n", - "epoch: 579\ttrain_loss: 0.00038\tdev_loss: 0.00144\teltime: 164.80784\n", - "epoch: 580\ttrain_loss: 0.00038\tdev_loss: 0.00142\teltime: 165.09750\n", - "epoch: 581\ttrain_loss: 0.00038\tdev_loss: 0.00141\teltime: 165.36310\n", - "epoch: 582\ttrain_loss: 0.00038\tdev_loss: 0.00140\teltime: 165.62412\n", - "epoch: 583\ttrain_loss: 0.00037\tdev_loss: 0.00139\teltime: 165.90294\n", - "epoch: 584\ttrain_loss: 0.00037\tdev_loss: 0.00138\teltime: 166.14798\n", - "epoch: 585\ttrain_loss: 0.00037\tdev_loss: 0.00137\teltime: 166.38941\n", - "epoch: 586\ttrain_loss: 0.00037\tdev_loss: 0.00136\teltime: 166.66958\n", - "epoch: 587\ttrain_loss: 0.00036\tdev_loss: 0.00135\teltime: 166.94479\n", - "epoch: 588\ttrain_loss: 0.00036\tdev_loss: 0.00134\teltime: 167.18611\n", - "epoch: 589\ttrain_loss: 0.00036\tdev_loss: 0.00133\teltime: 167.43743\n", - "epoch: 590\ttrain_loss: 0.00036\tdev_loss: 0.00132\teltime: 167.69360\n", - "epoch: 591\ttrain_loss: 0.00035\tdev_loss: 0.00131\teltime: 167.93772\n", - "epoch: 592\ttrain_loss: 0.00035\tdev_loss: 0.00129\teltime: 168.19972\n", - "epoch: 593\ttrain_loss: 0.00035\tdev_loss: 0.00128\teltime: 168.46281\n", - "epoch: 594\ttrain_loss: 0.00035\tdev_loss: 0.00127\teltime: 168.75916\n", - "epoch: 595\ttrain_loss: 0.00035\tdev_loss: 0.00126\teltime: 169.01811\n", - "epoch: 596\ttrain_loss: 0.00034\tdev_loss: 0.00125\teltime: 169.26216\n", - "epoch: 597\ttrain_loss: 0.00034\tdev_loss: 0.00124\teltime: 169.52722\n", - "epoch: 598\ttrain_loss: 0.00034\tdev_loss: 0.00123\teltime: 169.77626\n", - "epoch: 599\ttrain_loss: 0.00034\tdev_loss: 0.00122\teltime: 170.02945\n", - "epoch: 600\ttrain_loss: 0.00033\tdev_loss: 0.00122\teltime: 170.40900\n", - "epoch: 601\ttrain_loss: 0.00033\tdev_loss: 0.00121\teltime: 170.69378\n", - "epoch: 602\ttrain_loss: 0.00033\tdev_loss: 0.00120\teltime: 170.97318\n", - "epoch: 603\ttrain_loss: 0.00033\tdev_loss: 0.00119\teltime: 171.23091\n", - "epoch: 604\ttrain_loss: 0.00033\tdev_loss: 0.00118\teltime: 171.51041\n", - "epoch: 605\ttrain_loss: 0.00032\tdev_loss: 0.00117\teltime: 171.76813\n", - "epoch: 606\ttrain_loss: 0.00032\tdev_loss: 0.00116\teltime: 172.06609\n", - "epoch: 607\ttrain_loss: 0.00032\tdev_loss: 0.00115\teltime: 172.34687\n", - "epoch: 608\ttrain_loss: 0.00032\tdev_loss: 0.00114\teltime: 172.66125\n", - "epoch: 609\ttrain_loss: 0.00032\tdev_loss: 0.00113\teltime: 172.96278\n", - "epoch: 610\ttrain_loss: 0.00031\tdev_loss: 0.00112\teltime: 173.24233\n", - "epoch: 611\ttrain_loss: 0.00031\tdev_loss: 0.00111\teltime: 173.49786\n", - "epoch: 612\ttrain_loss: 0.00031\tdev_loss: 0.00110\teltime: 173.75729\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 613\ttrain_loss: 0.00031\tdev_loss: 0.00110\teltime: 174.02928\n", - "epoch: 614\ttrain_loss: 0.00031\tdev_loss: 0.00109\teltime: 174.30111\n", - "epoch: 615\ttrain_loss: 0.00030\tdev_loss: 0.00108\teltime: 174.55258\n", - "epoch: 616\ttrain_loss: 0.00030\tdev_loss: 0.00107\teltime: 174.81226\n", - "epoch: 617\ttrain_loss: 0.00030\tdev_loss: 0.00106\teltime: 175.06884\n", - "epoch: 618\ttrain_loss: 0.00030\tdev_loss: 0.00105\teltime: 175.35346\n", - "epoch: 619\ttrain_loss: 0.00030\tdev_loss: 0.00104\teltime: 175.66118\n", - "epoch: 620\ttrain_loss: 0.00029\tdev_loss: 0.00104\teltime: 175.92931\n", - "epoch: 621\ttrain_loss: 0.00029\tdev_loss: 0.00103\teltime: 176.18870\n", - "epoch: 622\ttrain_loss: 0.00029\tdev_loss: 0.00102\teltime: 176.46677\n", - "epoch: 623\ttrain_loss: 0.00029\tdev_loss: 0.00101\teltime: 176.76456\n", - "epoch: 624\ttrain_loss: 0.00029\tdev_loss: 0.00100\teltime: 177.00998\n", - "epoch: 625\ttrain_loss: 0.00028\tdev_loss: 0.00100\teltime: 177.23793\n", - "epoch: 626\ttrain_loss: 0.00028\tdev_loss: 0.00099\teltime: 177.50067\n", - "epoch: 627\ttrain_loss: 0.00028\tdev_loss: 0.00098\teltime: 177.74370\n", - "epoch: 628\ttrain_loss: 0.00028\tdev_loss: 0.00097\teltime: 177.99557\n", - "epoch: 629\ttrain_loss: 0.00028\tdev_loss: 0.00097\teltime: 178.26123\n", - "epoch: 630\ttrain_loss: 0.00028\tdev_loss: 0.00096\teltime: 178.53035\n", - "epoch: 631\ttrain_loss: 0.00027\tdev_loss: 0.00095\teltime: 178.78042\n", - "epoch: 632\ttrain_loss: 0.00027\tdev_loss: 0.00094\teltime: 179.03811\n", - "epoch: 633\ttrain_loss: 0.00027\tdev_loss: 0.00094\teltime: 179.28773\n", - "epoch: 634\ttrain_loss: 0.00027\tdev_loss: 0.00093\teltime: 179.55019\n", - "epoch: 635\ttrain_loss: 0.00027\tdev_loss: 0.00092\teltime: 179.82175\n", - "epoch: 636\ttrain_loss: 0.00027\tdev_loss: 0.00091\teltime: 180.09196\n", - "epoch: 637\ttrain_loss: 0.00026\tdev_loss: 0.00091\teltime: 180.34886\n", - "epoch: 638\ttrain_loss: 0.00026\tdev_loss: 0.00090\teltime: 180.60994\n", - "epoch: 639\ttrain_loss: 0.00026\tdev_loss: 0.00089\teltime: 180.89110\n", - "epoch: 640\ttrain_loss: 0.00026\tdev_loss: 0.00089\teltime: 181.14049\n", - "epoch: 641\ttrain_loss: 0.00026\tdev_loss: 0.00088\teltime: 181.41821\n", - "epoch: 642\ttrain_loss: 0.00026\tdev_loss: 0.00087\teltime: 181.67571\n", - "epoch: 643\ttrain_loss: 0.00025\tdev_loss: 0.00086\teltime: 181.95450\n", - "epoch: 644\ttrain_loss: 0.00025\tdev_loss: 0.00086\teltime: 182.20964\n", - "epoch: 645\ttrain_loss: 0.00025\tdev_loss: 0.00085\teltime: 182.48513\n", - "epoch: 646\ttrain_loss: 0.00025\tdev_loss: 0.00084\teltime: 182.72826\n", - "epoch: 647\ttrain_loss: 0.00025\tdev_loss: 0.00084\teltime: 183.01287\n", - "epoch: 648\ttrain_loss: 0.00025\tdev_loss: 0.00083\teltime: 183.31795\n", - "epoch: 649\ttrain_loss: 0.00024\tdev_loss: 0.00082\teltime: 183.59497\n", - "epoch: 650\ttrain_loss: 0.00024\tdev_loss: 0.00082\teltime: 183.85624\n", - "epoch: 651\ttrain_loss: 0.00024\tdev_loss: 0.00081\teltime: 184.10508\n", - "epoch: 652\ttrain_loss: 0.00024\tdev_loss: 0.00081\teltime: 184.37585\n", - "epoch: 653\ttrain_loss: 0.00024\tdev_loss: 0.00080\teltime: 184.64109\n", - "epoch: 654\ttrain_loss: 0.00024\tdev_loss: 0.00079\teltime: 184.89564\n", - "epoch: 655\ttrain_loss: 0.00024\tdev_loss: 0.00079\teltime: 185.16642\n", - "epoch: 656\ttrain_loss: 0.00023\tdev_loss: 0.00078\teltime: 185.43767\n", - "epoch: 657\ttrain_loss: 0.00023\tdev_loss: 0.00077\teltime: 185.67925\n", - "epoch: 658\ttrain_loss: 0.00023\tdev_loss: 0.00077\teltime: 185.99536\n", - "epoch: 659\ttrain_loss: 0.00023\tdev_loss: 0.00076\teltime: 186.24054\n", - "epoch: 660\ttrain_loss: 0.00023\tdev_loss: 0.00076\teltime: 186.52205\n", - "epoch: 661\ttrain_loss: 0.00023\tdev_loss: 0.00075\teltime: 186.78078\n", - "epoch: 662\ttrain_loss: 0.00023\tdev_loss: 0.00075\teltime: 187.03366\n", - "epoch: 663\ttrain_loss: 0.00023\tdev_loss: 0.00074\teltime: 187.30331\n", - "epoch: 664\ttrain_loss: 0.00022\tdev_loss: 0.00073\teltime: 187.56493\n", - "epoch: 665\ttrain_loss: 0.00022\tdev_loss: 0.00073\teltime: 187.82171\n", - "epoch: 666\ttrain_loss: 0.00022\tdev_loss: 0.00072\teltime: 188.07430\n", - "epoch: 667\ttrain_loss: 0.00022\tdev_loss: 0.00072\teltime: 188.35261\n", - "epoch: 668\ttrain_loss: 0.00022\tdev_loss: 0.00071\teltime: 188.60662\n", - "epoch: 669\ttrain_loss: 0.00022\tdev_loss: 0.00071\teltime: 188.88160\n", - "epoch: 670\ttrain_loss: 0.00022\tdev_loss: 0.00070\teltime: 189.16919\n", - "epoch: 671\ttrain_loss: 0.00021\tdev_loss: 0.00070\teltime: 189.43772\n", - "epoch: 672\ttrain_loss: 0.00021\tdev_loss: 0.00069\teltime: 189.70768\n", - "epoch: 673\ttrain_loss: 0.00021\tdev_loss: 0.00068\teltime: 189.97267\n", - "epoch: 674\ttrain_loss: 0.00021\tdev_loss: 0.00068\teltime: 190.23698\n", - "epoch: 675\ttrain_loss: 0.00021\tdev_loss: 0.00067\teltime: 190.48670\n", - "epoch: 676\ttrain_loss: 0.00021\tdev_loss: 0.00067\teltime: 190.75193\n", - "epoch: 677\ttrain_loss: 0.00021\tdev_loss: 0.00066\teltime: 191.01167\n", - "epoch: 678\ttrain_loss: 0.00021\tdev_loss: 0.00066\teltime: 191.26433\n", - "epoch: 679\ttrain_loss: 0.00021\tdev_loss: 0.00065\teltime: 191.57545\n", - "epoch: 680\ttrain_loss: 0.00020\tdev_loss: 0.00065\teltime: 191.84669\n", - "epoch: 681\ttrain_loss: 0.00020\tdev_loss: 0.00064\teltime: 192.07126\n", - "epoch: 682\ttrain_loss: 0.00020\tdev_loss: 0.00064\teltime: 192.31809\n", - "epoch: 683\ttrain_loss: 0.00020\tdev_loss: 0.00063\teltime: 192.56391\n", - "epoch: 684\ttrain_loss: 0.00020\tdev_loss: 0.00063\teltime: 192.82075\n", - "epoch: 685\ttrain_loss: 0.00020\tdev_loss: 0.00062\teltime: 193.08845\n", - "epoch: 686\ttrain_loss: 0.00020\tdev_loss: 0.00062\teltime: 193.35700\n", - "epoch: 687\ttrain_loss: 0.00020\tdev_loss: 0.00062\teltime: 193.63522\n", - "epoch: 688\ttrain_loss: 0.00020\tdev_loss: 0.00061\teltime: 193.90498\n", - "epoch: 689\ttrain_loss: 0.00019\tdev_loss: 0.00061\teltime: 194.16190\n", - "epoch: 690\ttrain_loss: 0.00019\tdev_loss: 0.00060\teltime: 194.42627\n", - "epoch: 691\ttrain_loss: 0.00019\tdev_loss: 0.00060\teltime: 194.67562\n", - "epoch: 692\ttrain_loss: 0.00019\tdev_loss: 0.00059\teltime: 194.98323\n", - "epoch: 693\ttrain_loss: 0.00019\tdev_loss: 0.00059\teltime: 195.23478\n", - "epoch: 694\ttrain_loss: 0.00019\tdev_loss: 0.00058\teltime: 195.48248\n", - "epoch: 695\ttrain_loss: 0.00019\tdev_loss: 0.00058\teltime: 195.77381\n", - "epoch: 696\ttrain_loss: 0.00019\tdev_loss: 0.00057\teltime: 196.05528\n", - "epoch: 697\ttrain_loss: 0.00019\tdev_loss: 0.00057\teltime: 196.36369\n", - "epoch: 698\ttrain_loss: 0.00019\tdev_loss: 0.00057\teltime: 196.61578\n", - "epoch: 699\ttrain_loss: 0.00018\tdev_loss: 0.00056\teltime: 196.90795\n", - "epoch: 700\ttrain_loss: 0.00018\tdev_loss: 0.00056\teltime: 197.15986\n", - "epoch: 701\ttrain_loss: 0.00018\tdev_loss: 0.00055\teltime: 197.42186\n", - "epoch: 702\ttrain_loss: 0.00018\tdev_loss: 0.00055\teltime: 197.70065\n", - "epoch: 703\ttrain_loss: 0.00018\tdev_loss: 0.00055\teltime: 197.97255\n", - "epoch: 704\ttrain_loss: 0.00018\tdev_loss: 0.00054\teltime: 198.21412\n", - "epoch: 705\ttrain_loss: 0.00018\tdev_loss: 0.00054\teltime: 198.48185\n", - "epoch: 706\ttrain_loss: 0.00018\tdev_loss: 0.00053\teltime: 198.74639\n", - "epoch: 707\ttrain_loss: 0.00018\tdev_loss: 0.00053\teltime: 199.01358\n", - "epoch: 708\ttrain_loss: 0.00018\tdev_loss: 0.00053\teltime: 199.26166\n", - "epoch: 709\ttrain_loss: 0.00017\tdev_loss: 0.00052\teltime: 199.54418\n", - "epoch: 710\ttrain_loss: 0.00017\tdev_loss: 0.00052\teltime: 199.79376\n", - "epoch: 711\ttrain_loss: 0.00017\tdev_loss: 0.00051\teltime: 200.04793\n", - "epoch: 712\ttrain_loss: 0.00017\tdev_loss: 0.00051\teltime: 200.31656\n", - "epoch: 713\ttrain_loss: 0.00017\tdev_loss: 0.00051\teltime: 200.59027\n", - "epoch: 714\ttrain_loss: 0.00017\tdev_loss: 0.00050\teltime: 200.85276\n", - "epoch: 715\ttrain_loss: 0.00017\tdev_loss: 0.00050\teltime: 201.12997\n", - "epoch: 716\ttrain_loss: 0.00017\tdev_loss: 0.00050\teltime: 201.40574\n", - "epoch: 717\ttrain_loss: 0.00017\tdev_loss: 0.00049\teltime: 201.67191\n", - "epoch: 718\ttrain_loss: 0.00017\tdev_loss: 0.00049\teltime: 201.90755\n", - "epoch: 719\ttrain_loss: 0.00017\tdev_loss: 0.00049\teltime: 202.17410\n", - "epoch: 720\ttrain_loss: 0.00017\tdev_loss: 0.00048\teltime: 202.44673\n", - "epoch: 721\ttrain_loss: 0.00016\tdev_loss: 0.00048\teltime: 202.66546\n", - "epoch: 722\ttrain_loss: 0.00016\tdev_loss: 0.00048\teltime: 202.90143\n", - "epoch: 723\ttrain_loss: 0.00016\tdev_loss: 0.00047\teltime: 203.15817\n", - "epoch: 724\ttrain_loss: 0.00016\tdev_loss: 0.00047\teltime: 203.40177\n", - "epoch: 725\ttrain_loss: 0.00016\tdev_loss: 0.00047\teltime: 203.66760\n", - "epoch: 726\ttrain_loss: 0.00016\tdev_loss: 0.00046\teltime: 203.95237\n", - "epoch: 727\ttrain_loss: 0.00016\tdev_loss: 0.00046\teltime: 204.22076\n", - "epoch: 728\ttrain_loss: 0.00016\tdev_loss: 0.00046\teltime: 204.46680\n", - "epoch: 729\ttrain_loss: 0.00016\tdev_loss: 0.00045\teltime: 204.73311\n", - "epoch: 730\ttrain_loss: 0.00016\tdev_loss: 0.00045\teltime: 205.00915\n", - "epoch: 731\ttrain_loss: 0.00016\tdev_loss: 0.00045\teltime: 205.25787\n", - "epoch: 732\ttrain_loss: 0.00016\tdev_loss: 0.00044\teltime: 205.48369\n", - "epoch: 733\ttrain_loss: 0.00016\tdev_loss: 0.00044\teltime: 205.74064\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 734\ttrain_loss: 0.00015\tdev_loss: 0.00044\teltime: 206.02104\n", - "epoch: 735\ttrain_loss: 0.00015\tdev_loss: 0.00043\teltime: 206.30315\n", - "epoch: 736\ttrain_loss: 0.00015\tdev_loss: 0.00043\teltime: 206.54920\n", - "epoch: 737\ttrain_loss: 0.00015\tdev_loss: 0.00043\teltime: 206.83912\n", - "epoch: 738\ttrain_loss: 0.00015\tdev_loss: 0.00043\teltime: 207.12326\n", - "epoch: 739\ttrain_loss: 0.00015\tdev_loss: 0.00042\teltime: 207.38113\n", - "epoch: 740\ttrain_loss: 0.00015\tdev_loss: 0.00042\teltime: 207.65434\n", - "epoch: 741\ttrain_loss: 0.00015\tdev_loss: 0.00042\teltime: 207.91924\n", - "epoch: 742\ttrain_loss: 0.00015\tdev_loss: 0.00041\teltime: 208.20083\n", - "epoch: 743\ttrain_loss: 0.00015\tdev_loss: 0.00041\teltime: 208.43994\n", - "epoch: 744\ttrain_loss: 0.00015\tdev_loss: 0.00041\teltime: 208.68937\n", - "epoch: 745\ttrain_loss: 0.00015\tdev_loss: 0.00041\teltime: 208.94244\n", - "epoch: 746\ttrain_loss: 0.00015\tdev_loss: 0.00040\teltime: 209.18879\n", - "epoch: 747\ttrain_loss: 0.00015\tdev_loss: 0.00040\teltime: 209.57858\n", - "epoch: 748\ttrain_loss: 0.00015\tdev_loss: 0.00040\teltime: 209.83091\n", - "epoch: 749\ttrain_loss: 0.00014\tdev_loss: 0.00039\teltime: 210.08871\n", - "epoch: 750\ttrain_loss: 0.00014\tdev_loss: 0.00039\teltime: 210.33922\n", - "epoch: 751\ttrain_loss: 0.00014\tdev_loss: 0.00039\teltime: 210.59087\n", - "epoch: 752\ttrain_loss: 0.00014\tdev_loss: 0.00039\teltime: 210.85168\n", - "epoch: 753\ttrain_loss: 0.00014\tdev_loss: 0.00038\teltime: 211.09440\n", - "epoch: 754\ttrain_loss: 0.00014\tdev_loss: 0.00038\teltime: 211.34063\n", - "epoch: 755\ttrain_loss: 0.00014\tdev_loss: 0.00038\teltime: 211.59371\n", - "epoch: 756\ttrain_loss: 0.00014\tdev_loss: 0.00038\teltime: 211.84795\n", - "epoch: 757\ttrain_loss: 0.00014\tdev_loss: 0.00037\teltime: 212.09584\n", - "epoch: 758\ttrain_loss: 0.00014\tdev_loss: 0.00037\teltime: 212.34989\n", - "epoch: 759\ttrain_loss: 0.00014\tdev_loss: 0.00037\teltime: 212.59702\n", - "epoch: 760\ttrain_loss: 0.00014\tdev_loss: 0.00037\teltime: 212.84405\n", - "epoch: 761\ttrain_loss: 0.00014\tdev_loss: 0.00037\teltime: 213.09969\n", - "epoch: 762\ttrain_loss: 0.00014\tdev_loss: 0.00036\teltime: 213.34692\n", - "epoch: 763\ttrain_loss: 0.00014\tdev_loss: 0.00036\teltime: 213.60796\n", - "epoch: 764\ttrain_loss: 0.00014\tdev_loss: 0.00036\teltime: 213.89581\n", - "epoch: 765\ttrain_loss: 0.00014\tdev_loss: 0.00036\teltime: 214.16350\n", - "epoch: 766\ttrain_loss: 0.00013\tdev_loss: 0.00035\teltime: 214.41845\n", - "epoch: 767\ttrain_loss: 0.00013\tdev_loss: 0.00035\teltime: 214.69594\n", - "epoch: 768\ttrain_loss: 0.00013\tdev_loss: 0.00035\teltime: 214.97209\n", - "epoch: 769\ttrain_loss: 0.00013\tdev_loss: 0.00035\teltime: 215.23084\n", - "epoch: 770\ttrain_loss: 0.00013\tdev_loss: 0.00034\teltime: 215.48987\n", - "epoch: 771\ttrain_loss: 0.00013\tdev_loss: 0.00034\teltime: 215.75693\n", - "epoch: 772\ttrain_loss: 0.00013\tdev_loss: 0.00034\teltime: 216.04591\n", - "epoch: 773\ttrain_loss: 0.00013\tdev_loss: 0.00034\teltime: 216.30458\n", - "epoch: 774\ttrain_loss: 0.00013\tdev_loss: 0.00034\teltime: 216.56604\n", - "epoch: 775\ttrain_loss: 0.00013\tdev_loss: 0.00033\teltime: 216.81738\n", - "epoch: 776\ttrain_loss: 0.00013\tdev_loss: 0.00033\teltime: 217.09249\n", - "epoch: 777\ttrain_loss: 0.00013\tdev_loss: 0.00033\teltime: 217.34136\n", - "epoch: 778\ttrain_loss: 0.00013\tdev_loss: 0.00033\teltime: 217.60394\n", - "epoch: 779\ttrain_loss: 0.00013\tdev_loss: 0.00033\teltime: 217.86276\n", - "epoch: 780\ttrain_loss: 0.00013\tdev_loss: 0.00032\teltime: 218.11185\n", - "epoch: 781\ttrain_loss: 0.00013\tdev_loss: 0.00032\teltime: 218.38750\n", - "epoch: 782\ttrain_loss: 0.00013\tdev_loss: 0.00032\teltime: 218.66657\n", - "epoch: 783\ttrain_loss: 0.00013\tdev_loss: 0.00032\teltime: 218.89393\n", - "epoch: 784\ttrain_loss: 0.00013\tdev_loss: 0.00032\teltime: 219.14198\n", - "epoch: 785\ttrain_loss: 0.00013\tdev_loss: 0.00032\teltime: 219.36964\n", - "epoch: 786\ttrain_loss: 0.00013\tdev_loss: 0.00031\teltime: 219.60679\n", - "epoch: 787\ttrain_loss: 0.00012\tdev_loss: 0.00031\teltime: 219.85862\n", - "epoch: 788\ttrain_loss: 0.00012\tdev_loss: 0.00031\teltime: 220.11124\n", - "epoch: 789\ttrain_loss: 0.00012\tdev_loss: 0.00031\teltime: 220.35867\n", - "epoch: 790\ttrain_loss: 0.00012\tdev_loss: 0.00031\teltime: 220.60761\n", - "epoch: 791\ttrain_loss: 0.00012\tdev_loss: 0.00030\teltime: 220.89104\n", - "epoch: 792\ttrain_loss: 0.00012\tdev_loss: 0.00030\teltime: 221.14813\n", - "epoch: 793\ttrain_loss: 0.00012\tdev_loss: 0.00030\teltime: 221.39559\n", - "epoch: 794\ttrain_loss: 0.00012\tdev_loss: 0.00030\teltime: 221.65317\n", - "epoch: 795\ttrain_loss: 0.00012\tdev_loss: 0.00030\teltime: 221.94883\n", - "epoch: 796\ttrain_loss: 0.00012\tdev_loss: 0.00030\teltime: 222.19317\n", - "epoch: 797\ttrain_loss: 0.00012\tdev_loss: 0.00029\teltime: 222.44784\n", - "epoch: 798\ttrain_loss: 0.00012\tdev_loss: 0.00029\teltime: 222.70061\n", - "epoch: 799\ttrain_loss: 0.00012\tdev_loss: 0.00029\teltime: 222.94552\n", - "epoch: 800\ttrain_loss: 0.00012\tdev_loss: 0.00029\teltime: 223.19943\n", - "epoch: 801\ttrain_loss: 0.00012\tdev_loss: 0.00029\teltime: 223.44653\n", - "epoch: 802\ttrain_loss: 0.00012\tdev_loss: 0.00029\teltime: 223.68320\n", - "epoch: 803\ttrain_loss: 0.00012\tdev_loss: 0.00028\teltime: 223.93951\n", - "epoch: 804\ttrain_loss: 0.00012\tdev_loss: 0.00028\teltime: 224.22418\n", - "epoch: 805\ttrain_loss: 0.00012\tdev_loss: 0.00028\teltime: 224.48169\n", - "epoch: 806\ttrain_loss: 0.00012\tdev_loss: 0.00028\teltime: 224.72855\n", - "epoch: 807\ttrain_loss: 0.00012\tdev_loss: 0.00028\teltime: 224.98704\n", - "epoch: 808\ttrain_loss: 0.00012\tdev_loss: 0.00028\teltime: 225.25790\n", - "epoch: 809\ttrain_loss: 0.00012\tdev_loss: 0.00028\teltime: 225.50544\n", - "epoch: 810\ttrain_loss: 0.00012\tdev_loss: 0.00027\teltime: 225.76138\n", - "epoch: 811\ttrain_loss: 0.00012\tdev_loss: 0.00027\teltime: 225.99996\n", - "epoch: 812\ttrain_loss: 0.00012\tdev_loss: 0.00027\teltime: 226.24466\n", - "epoch: 813\ttrain_loss: 0.00011\tdev_loss: 0.00027\teltime: 226.54566\n", - "epoch: 814\ttrain_loss: 0.00011\tdev_loss: 0.00027\teltime: 226.82285\n", - "epoch: 815\ttrain_loss: 0.00011\tdev_loss: 0.00027\teltime: 227.05176\n", - "epoch: 816\ttrain_loss: 0.00011\tdev_loss: 0.00027\teltime: 227.32363\n", - "epoch: 817\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 227.58586\n", - "epoch: 818\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 227.84117\n", - "epoch: 819\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 228.10692\n", - "epoch: 820\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 228.38069\n", - "epoch: 821\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 228.66521\n", - "epoch: 822\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 228.91646\n", - "epoch: 823\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 229.19450\n", - "epoch: 824\ttrain_loss: 0.00011\tdev_loss: 0.00026\teltime: 229.45996\n", - "epoch: 825\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 229.68646\n", - "epoch: 826\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 229.95467\n", - "epoch: 827\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 230.20611\n", - "epoch: 828\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 230.45279\n", - "epoch: 829\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 230.70107\n", - "epoch: 830\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 230.96011\n", - "epoch: 831\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 231.21613\n", - "epoch: 832\ttrain_loss: 0.00011\tdev_loss: 0.00025\teltime: 231.45311\n", - "epoch: 833\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 231.71016\n", - "epoch: 834\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 231.94529\n", - "epoch: 835\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 232.22842\n", - "epoch: 836\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 232.50798\n", - "epoch: 837\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 232.75478\n", - "epoch: 838\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 233.01051\n", - "epoch: 839\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 233.28246\n", - "epoch: 840\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 233.54090\n", - "epoch: 841\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 233.78897\n", - "epoch: 842\ttrain_loss: 0.00011\tdev_loss: 0.00024\teltime: 234.05728\n", - "epoch: 843\ttrain_loss: 0.00011\tdev_loss: 0.00023\teltime: 234.31188\n", - "epoch: 844\ttrain_loss: 0.00011\tdev_loss: 0.00023\teltime: 234.58296\n", - "epoch: 845\ttrain_loss: 0.00011\tdev_loss: 0.00023\teltime: 234.85240\n", - "epoch: 846\ttrain_loss: 0.00011\tdev_loss: 0.00023\teltime: 235.12116\n", - "epoch: 847\ttrain_loss: 0.00010\tdev_loss: 0.00023\teltime: 235.35618\n", - "epoch: 848\ttrain_loss: 0.00010\tdev_loss: 0.00023\teltime: 235.59364\n", - "epoch: 849\ttrain_loss: 0.00010\tdev_loss: 0.00023\teltime: 235.85887\n", - "epoch: 850\ttrain_loss: 0.00010\tdev_loss: 0.00023\teltime: 236.11636\n", - "epoch: 851\ttrain_loss: 0.00010\tdev_loss: 0.00023\teltime: 236.39345\n", - "epoch: 852\ttrain_loss: 0.00010\tdev_loss: 0.00023\teltime: 236.66996\n", - "epoch: 853\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 236.92180\n", - "epoch: 854\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 237.17004\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 855\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 237.43531\n", - "epoch: 856\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 237.67844\n", - "epoch: 857\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 237.92329\n", - "epoch: 858\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 238.15753\n", - "epoch: 859\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 238.41388\n", - "epoch: 860\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 238.67046\n", - "epoch: 861\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 238.93211\n", - "epoch: 862\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 239.18363\n", - "epoch: 863\ttrain_loss: 0.00010\tdev_loss: 0.00022\teltime: 239.44034\n", - "epoch: 864\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 239.70462\n", - "epoch: 865\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 239.97068\n", - "epoch: 866\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 240.22337\n", - "epoch: 867\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 240.47104\n", - "epoch: 868\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 240.73506\n", - "epoch: 869\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 241.00083\n", - "epoch: 870\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 241.26129\n", - "epoch: 871\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 241.52901\n", - "epoch: 872\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 241.78357\n", - "epoch: 873\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 242.02083\n", - "epoch: 874\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 242.27210\n", - "epoch: 875\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 242.51018\n", - "epoch: 876\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 242.75507\n", - "epoch: 877\ttrain_loss: 0.00010\tdev_loss: 0.00021\teltime: 243.02455\n", - "epoch: 878\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 243.29121\n", - "epoch: 879\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 243.52641\n", - "epoch: 880\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 243.77855\n", - "epoch: 881\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 244.01718\n", - "epoch: 882\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 244.27079\n", - "epoch: 883\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 244.52623\n", - "epoch: 884\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 244.79276\n", - "epoch: 885\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 245.07230\n", - "epoch: 886\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 245.31822\n", - "epoch: 887\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 245.58464\n", - "epoch: 888\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 245.84160\n", - "epoch: 889\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 246.08772\n", - "epoch: 890\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 246.34466\n", - "epoch: 891\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 246.62060\n", - "epoch: 892\ttrain_loss: 0.00010\tdev_loss: 0.00020\teltime: 246.89760\n", - "epoch: 893\ttrain_loss: 0.00010\tdev_loss: 0.00019\teltime: 247.12218\n", - "epoch: 894\ttrain_loss: 0.00010\tdev_loss: 0.00019\teltime: 247.36006\n", - "epoch: 895\ttrain_loss: 0.00010\tdev_loss: 0.00019\teltime: 247.59492\n", - "epoch: 896\ttrain_loss: 0.00010\tdev_loss: 0.00019\teltime: 247.84934\n", - "epoch: 897\ttrain_loss: 0.00010\tdev_loss: 0.00019\teltime: 248.11643\n", - "epoch: 898\ttrain_loss: 0.00010\tdev_loss: 0.00019\teltime: 248.37474\n", - "epoch: 899\ttrain_loss: 0.00010\tdev_loss: 0.00019\teltime: 248.62867\n", - "epoch: 900\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 248.88389\n", - "epoch: 901\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 249.15156\n", - "epoch: 902\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 249.40741\n", - "epoch: 903\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 249.65525\n", - "epoch: 904\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 249.90827\n", - "epoch: 905\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 250.15555\n", - "epoch: 906\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 250.40947\n", - "epoch: 907\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 250.63577\n", - "epoch: 908\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 250.87005\n", - "epoch: 909\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 251.10412\n", - "epoch: 910\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 251.34985\n", - "epoch: 911\ttrain_loss: 0.00009\tdev_loss: 0.00019\teltime: 251.60520\n", - "epoch: 912\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 251.84999\n", - "epoch: 913\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 252.08473\n", - "epoch: 914\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 252.34118\n", - "epoch: 915\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 252.61104\n", - "epoch: 916\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 252.86370\n", - "epoch: 917\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 253.11196\n", - "epoch: 918\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 253.34835\n", - "epoch: 919\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 253.57589\n", - "epoch: 920\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 253.82339\n", - "epoch: 921\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 254.08891\n", - "epoch: 922\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 254.36709\n", - "epoch: 923\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 254.62460\n", - "epoch: 924\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 254.87234\n", - "epoch: 925\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 255.11640\n", - "epoch: 926\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 255.37858\n", - "epoch: 927\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 255.62664\n", - "epoch: 928\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 255.90377\n", - "epoch: 929\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 256.14694\n", - "epoch: 930\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 256.41634\n", - "epoch: 931\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 256.69236\n", - "epoch: 932\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 256.95940\n", - "epoch: 933\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 257.23920\n", - "epoch: 934\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 257.50669\n", - "epoch: 935\ttrain_loss: 0.00009\tdev_loss: 0.00018\teltime: 257.75145\n", - "epoch: 936\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 258.00630\n", - "epoch: 937\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 258.28147\n", - "epoch: 938\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 258.53492\n", - "epoch: 939\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 258.77811\n", - "epoch: 940\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 259.03206\n", - "epoch: 941\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 259.29890\n", - "epoch: 942\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 259.56382\n", - "epoch: 943\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 259.81014\n", - "epoch: 944\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 260.04305\n", - "epoch: 945\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 260.30038\n", - "epoch: 946\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 260.55571\n", - "epoch: 947\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 260.81316\n", - "epoch: 948\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 261.08389\n", - "epoch: 949\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 261.33792\n", - "epoch: 950\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 261.61021\n", - "epoch: 951\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 261.88937\n", - "epoch: 952\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 262.15877\n", - "epoch: 953\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 262.40457\n", - "epoch: 954\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 262.65960\n", - "epoch: 955\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 262.90570\n", - "epoch: 956\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 263.18603\n", - "epoch: 957\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 263.45879\n", - "epoch: 958\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 263.70546\n", - "epoch: 959\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 263.98477\n", - "epoch: 960\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 264.25210\n", - "epoch: 961\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 264.51828\n", - "epoch: 962\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 264.76347\n", - "epoch: 963\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 265.04079\n", - "epoch: 964\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 265.30870\n", - "epoch: 965\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 265.56573\n", - "epoch: 966\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 265.79816\n", - "epoch: 967\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 266.02896\n", - "epoch: 968\ttrain_loss: 0.00009\tdev_loss: 0.00017\teltime: 266.26537\n", - "epoch: 969\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 266.51101\n", - "epoch: 970\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 266.78468\n", - "epoch: 971\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 267.04137\n", - "epoch: 972\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 267.29710\n", - "epoch: 973\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 267.56106\n", - "epoch: 974\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 267.82660\n", - "epoch: 975\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 268.08507\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 976\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 268.35431\n", - "epoch: 977\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 268.63941\n", - "epoch: 978\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 268.89738\n", - "epoch: 979\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 269.17488\n", - "epoch: 980\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 269.45078\n", - "epoch: 981\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 269.70418\n", - "epoch: 982\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 269.96026\n", - "epoch: 983\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 270.21789\n", - "epoch: 984\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 270.49751\n", - "epoch: 985\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 270.73008\n", - "epoch: 986\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 271.00640\n", - "epoch: 987\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 271.26856\n", - "epoch: 988\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 271.57694\n", - "epoch: 989\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 271.84506\n", - "epoch: 990\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 272.09982\n", - "epoch: 991\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 272.36507\n", - "epoch: 992\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 272.64258\n", - "epoch: 993\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 272.90798\n", - "epoch: 994\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 273.17319\n", - "epoch: 995\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 273.43967\n", - "epoch: 996\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 273.71024\n", - "epoch: 997\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 273.97709\n", - "epoch: 998\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 274.23435\n", - "epoch: 999\ttrain_loss: 0.00009\tdev_loss: 0.00016\teltime: 274.49947\n" + "epoch: 0\ttrain_loss: 0.00167\tdev_loss: 0.01835\teltime: 0.32760\n", + "epoch: 1\ttrain_loss: 0.00166\tdev_loss: 0.01826\teltime: 0.47660\n", + "epoch: 2\ttrain_loss: 0.00165\tdev_loss: 0.01817\teltime: 0.57573\n", + "epoch: 3\ttrain_loss: 0.00165\tdev_loss: 0.01808\teltime: 0.66589\n", + "epoch: 4\ttrain_loss: 0.00164\tdev_loss: 0.01800\teltime: 0.76179\n", + "epoch: 5\ttrain_loss: 0.00163\tdev_loss: 0.01791\teltime: 0.92630\n", + "epoch: 6\ttrain_loss: 0.00162\tdev_loss: 0.01782\teltime: 1.02886\n", + "epoch: 7\ttrain_loss: 0.00162\tdev_loss: 0.01773\teltime: 1.11748\n", + "epoch: 8\ttrain_loss: 0.00161\tdev_loss: 0.01765\teltime: 1.20747\n", + "epoch: 9\ttrain_loss: 0.00160\tdev_loss: 0.01756\teltime: 1.29653\n", + "epoch: 10\ttrain_loss: 0.00159\tdev_loss: 0.01747\teltime: 1.38722\n", + "epoch: 11\ttrain_loss: 0.00159\tdev_loss: 0.01739\teltime: 1.48290\n", + "epoch: 12\ttrain_loss: 0.00158\tdev_loss: 0.01730\teltime: 1.57239\n", + "epoch: 13\ttrain_loss: 0.00157\tdev_loss: 0.01721\teltime: 1.65758\n", + "epoch: 14\ttrain_loss: 0.00157\tdev_loss: 0.01713\teltime: 1.74639\n", + "epoch: 15\ttrain_loss: 0.00156\tdev_loss: 0.01704\teltime: 1.83556\n", + "epoch: 16\ttrain_loss: 0.00155\tdev_loss: 0.01696\teltime: 1.92904\n", + "epoch: 17\ttrain_loss: 0.00155\tdev_loss: 0.01688\teltime: 2.04048\n", + "epoch: 18\ttrain_loss: 0.00154\tdev_loss: 0.01679\teltime: 2.14561\n", + "epoch: 19\ttrain_loss: 0.00153\tdev_loss: 0.01671\teltime: 2.25254\n", + "epoch: 20\ttrain_loss: 0.00153\tdev_loss: 0.01662\teltime: 2.34336\n", + "epoch: 21\ttrain_loss: 0.00152\tdev_loss: 0.01654\teltime: 2.43079\n", + "epoch: 22\ttrain_loss: 0.00151\tdev_loss: 0.01646\teltime: 2.51844\n", + "epoch: 23\ttrain_loss: 0.00151\tdev_loss: 0.01637\teltime: 2.60469\n", + "epoch: 24\ttrain_loss: 0.00150\tdev_loss: 0.01629\teltime: 2.69078\n", + "epoch: 25\ttrain_loss: 0.00149\tdev_loss: 0.01621\teltime: 2.77849\n", + "epoch: 26\ttrain_loss: 0.00149\tdev_loss: 0.01613\teltime: 2.86501\n", + "epoch: 27\ttrain_loss: 0.00148\tdev_loss: 0.01605\teltime: 2.95339\n", + "epoch: 28\ttrain_loss: 0.00147\tdev_loss: 0.01597\teltime: 3.04084\n", + "epoch: 29\ttrain_loss: 0.00147\tdev_loss: 0.01588\teltime: 3.14506\n", + "epoch: 30\ttrain_loss: 0.00146\tdev_loss: 0.01580\teltime: 3.25502\n", + "epoch: 31\ttrain_loss: 0.00145\tdev_loss: 0.01572\teltime: 3.35959\n", + "epoch: 32\ttrain_loss: 0.00145\tdev_loss: 0.01564\teltime: 3.44864\n", + "epoch: 33\ttrain_loss: 0.00144\tdev_loss: 0.01556\teltime: 3.53785\n", + "epoch: 34\ttrain_loss: 0.00143\tdev_loss: 0.01548\teltime: 3.63021\n", + "epoch: 35\ttrain_loss: 0.00143\tdev_loss: 0.01541\teltime: 3.71812\n", + "epoch: 36\ttrain_loss: 0.00142\tdev_loss: 0.01533\teltime: 3.80936\n", + "epoch: 37\ttrain_loss: 0.00141\tdev_loss: 0.01525\teltime: 3.90466\n", + "epoch: 38\ttrain_loss: 0.00141\tdev_loss: 0.01517\teltime: 4.01434\n", + "epoch: 39\ttrain_loss: 0.00140\tdev_loss: 0.01509\teltime: 4.10437\n", + "epoch: 40\ttrain_loss: 0.00139\tdev_loss: 0.01502\teltime: 4.19296\n", + "epoch: 41\ttrain_loss: 0.00139\tdev_loss: 0.01494\teltime: 4.28119\n", + "epoch: 42\ttrain_loss: 0.00138\tdev_loss: 0.01486\teltime: 4.37752\n", + "epoch: 43\ttrain_loss: 0.00138\tdev_loss: 0.01478\teltime: 4.46734\n", + "epoch: 44\ttrain_loss: 0.00137\tdev_loss: 0.01471\teltime: 4.55592\n", + "epoch: 45\ttrain_loss: 0.00136\tdev_loss: 0.01463\teltime: 4.64388\n", + "epoch: 46\ttrain_loss: 0.00136\tdev_loss: 0.01456\teltime: 4.74461\n", + "epoch: 47\ttrain_loss: 0.00135\tdev_loss: 0.01448\teltime: 4.84204\n", + "epoch: 48\ttrain_loss: 0.00134\tdev_loss: 0.01441\teltime: 4.93980\n", + "epoch: 49\ttrain_loss: 0.00134\tdev_loss: 0.01433\teltime: 5.04145\n", + "epoch: 50\ttrain_loss: 0.00133\tdev_loss: 0.01426\teltime: 5.12805\n", + "epoch: 51\ttrain_loss: 0.00133\tdev_loss: 0.01418\teltime: 5.21683\n", + "epoch: 52\ttrain_loss: 0.00132\tdev_loss: 0.01411\teltime: 5.30203\n", + "epoch: 53\ttrain_loss: 0.00131\tdev_loss: 0.01404\teltime: 5.39211\n", + "epoch: 54\ttrain_loss: 0.00131\tdev_loss: 0.01396\teltime: 5.49048\n", + "epoch: 55\ttrain_loss: 0.00130\tdev_loss: 0.01389\teltime: 5.58243\n", + "epoch: 56\ttrain_loss: 0.00130\tdev_loss: 0.01382\teltime: 5.69645\n", + "epoch: 57\ttrain_loss: 0.00129\tdev_loss: 0.01375\teltime: 5.79292\n", + "epoch: 58\ttrain_loss: 0.00129\tdev_loss: 0.01367\teltime: 5.89546\n", + "epoch: 59\ttrain_loss: 0.00128\tdev_loss: 0.01360\teltime: 5.99639\n", + "epoch: 60\ttrain_loss: 0.00127\tdev_loss: 0.01353\teltime: 6.10818\n", + "epoch: 61\ttrain_loss: 0.00127\tdev_loss: 0.01346\teltime: 6.20946\n", + "epoch: 62\ttrain_loss: 0.00126\tdev_loss: 0.01339\teltime: 6.32701\n", + "epoch: 63\ttrain_loss: 0.00126\tdev_loss: 0.01332\teltime: 6.44000\n", + "epoch: 64\ttrain_loss: 0.00125\tdev_loss: 0.01325\teltime: 6.55848\n", + "epoch: 65\ttrain_loss: 0.00125\tdev_loss: 0.01318\teltime: 6.64857\n", + "epoch: 66\ttrain_loss: 0.00124\tdev_loss: 0.01311\teltime: 6.73902\n", + "epoch: 67\ttrain_loss: 0.00123\tdev_loss: 0.01304\teltime: 6.82575\n", + "epoch: 68\ttrain_loss: 0.00123\tdev_loss: 0.01297\teltime: 6.91367\n", + "epoch: 69\ttrain_loss: 0.00122\tdev_loss: 0.01290\teltime: 7.00589\n", + "epoch: 70\ttrain_loss: 0.00122\tdev_loss: 0.01284\teltime: 7.11184\n", + "epoch: 71\ttrain_loss: 0.00121\tdev_loss: 0.01277\teltime: 7.26457\n", + "epoch: 72\ttrain_loss: 0.00121\tdev_loss: 0.01270\teltime: 7.38469\n", + "epoch: 73\ttrain_loss: 0.00120\tdev_loss: 0.01263\teltime: 7.48538\n", + "epoch: 74\ttrain_loss: 0.00120\tdev_loss: 0.01257\teltime: 7.58997\n", + "epoch: 75\ttrain_loss: 0.00119\tdev_loss: 0.01250\teltime: 7.68262\n", + "epoch: 76\ttrain_loss: 0.00118\tdev_loss: 0.01243\teltime: 7.77455\n", + "epoch: 77\ttrain_loss: 0.00118\tdev_loss: 0.01237\teltime: 7.86249\n", + "epoch: 78\ttrain_loss: 0.00117\tdev_loss: 0.01230\teltime: 7.95398\n", + "epoch: 79\ttrain_loss: 0.00117\tdev_loss: 0.01223\teltime: 8.04245\n", + "epoch: 80\ttrain_loss: 0.00116\tdev_loss: 0.01217\teltime: 8.16357\n", + "epoch: 81\ttrain_loss: 0.00116\tdev_loss: 0.01211\teltime: 8.29838\n", + "epoch: 82\ttrain_loss: 0.00115\tdev_loss: 0.01204\teltime: 8.39683\n", + "epoch: 83\ttrain_loss: 0.00115\tdev_loss: 0.01198\teltime: 8.49374\n", + "epoch: 84\ttrain_loss: 0.00114\tdev_loss: 0.01191\teltime: 8.59167\n", + "epoch: 85\ttrain_loss: 0.00114\tdev_loss: 0.01185\teltime: 8.68285\n", + "epoch: 86\ttrain_loss: 0.00113\tdev_loss: 0.01178\teltime: 8.77211\n", + "epoch: 87\ttrain_loss: 0.00113\tdev_loss: 0.01172\teltime: 8.86254\n", + "epoch: 88\ttrain_loss: 0.00112\tdev_loss: 0.01166\teltime: 8.96021\n", + "epoch: 89\ttrain_loss: 0.00112\tdev_loss: 0.01159\teltime: 9.05547\n", + "epoch: 90\ttrain_loss: 0.00111\tdev_loss: 0.01153\teltime: 9.14747\n", + "epoch: 91\ttrain_loss: 0.00111\tdev_loss: 0.01147\teltime: 9.23686\n", + "epoch: 92\ttrain_loss: 0.00110\tdev_loss: 0.01141\teltime: 9.32314\n", + "epoch: 93\ttrain_loss: 0.00110\tdev_loss: 0.01135\teltime: 9.41029\n", + "epoch: 94\ttrain_loss: 0.00109\tdev_loss: 0.01129\teltime: 9.50079\n", + "epoch: 95\ttrain_loss: 0.00109\tdev_loss: 0.01122\teltime: 9.58765\n", + "epoch: 96\ttrain_loss: 0.00108\tdev_loss: 0.01116\teltime: 9.67714\n", + "epoch: 97\ttrain_loss: 0.00108\tdev_loss: 0.01110\teltime: 9.76323\n", + "epoch: 98\ttrain_loss: 0.00107\tdev_loss: 0.01104\teltime: 9.85001\n", + "epoch: 99\ttrain_loss: 0.00107\tdev_loss: 0.01098\teltime: 9.93787\n", + "epoch: 100\ttrain_loss: 0.00106\tdev_loss: 0.01092\teltime: 10.02710\n", + "epoch: 101\ttrain_loss: 0.00106\tdev_loss: 0.01086\teltime: 10.11823\n", + "epoch: 102\ttrain_loss: 0.00105\tdev_loss: 0.01081\teltime: 10.20644\n", + "epoch: 103\ttrain_loss: 0.00105\tdev_loss: 0.01075\teltime: 10.29211\n", + "epoch: 104\ttrain_loss: 0.00104\tdev_loss: 0.01069\teltime: 10.37843\n", + "epoch: 105\ttrain_loss: 0.00104\tdev_loss: 0.01063\teltime: 10.46576\n", + "epoch: 106\ttrain_loss: 0.00103\tdev_loss: 0.01057\teltime: 10.55529\n", + "epoch: 107\ttrain_loss: 0.00103\tdev_loss: 0.01051\teltime: 10.64398\n", + "epoch: 108\ttrain_loss: 0.00103\tdev_loss: 0.01046\teltime: 10.73096\n", + "epoch: 109\ttrain_loss: 0.00102\tdev_loss: 0.01040\teltime: 10.81702\n", + "epoch: 110\ttrain_loss: 0.00102\tdev_loss: 0.01034\teltime: 10.90397\n", + "epoch: 111\ttrain_loss: 0.00101\tdev_loss: 0.01028\teltime: 10.99111\n", + "epoch: 112\ttrain_loss: 0.00101\tdev_loss: 0.01023\teltime: 11.07751\n", + "epoch: 113\ttrain_loss: 0.00100\tdev_loss: 0.01017\teltime: 11.16544\n", + "epoch: 114\ttrain_loss: 0.00100\tdev_loss: 0.01012\teltime: 11.25433\n", + "epoch: 115\ttrain_loss: 0.00099\tdev_loss: 0.01006\teltime: 11.34157\n", + "epoch: 116\ttrain_loss: 0.00099\tdev_loss: 0.01001\teltime: 11.42851\n", + "epoch: 117\ttrain_loss: 0.00098\tdev_loss: 0.00995\teltime: 11.52294\n", + "epoch: 118\ttrain_loss: 0.00098\tdev_loss: 0.00989\teltime: 11.60901\n", + "epoch: 119\ttrain_loss: 0.00098\tdev_loss: 0.00984\teltime: 11.69508\n", + "epoch: 120\ttrain_loss: 0.00097\tdev_loss: 0.00979\teltime: 11.78410\n", + "epoch: 121\ttrain_loss: 0.00097\tdev_loss: 0.00973\teltime: 11.87236\n", + "epoch: 122\ttrain_loss: 0.00096\tdev_loss: 0.00968\teltime: 11.95920\n", + "epoch: 123\ttrain_loss: 0.00096\tdev_loss: 0.00962\teltime: 12.04839\n", + "epoch: 124\ttrain_loss: 0.00095\tdev_loss: 0.00957\teltime: 12.13698\n", + "epoch: 125\ttrain_loss: 0.00095\tdev_loss: 0.00952\teltime: 12.22345\n", + "epoch: 126\ttrain_loss: 0.00095\tdev_loss: 0.00946\teltime: 12.31309\n", + "epoch: 127\ttrain_loss: 0.00094\tdev_loss: 0.00941\teltime: 12.40022\n", + "epoch: 128\ttrain_loss: 0.00094\tdev_loss: 0.00936\teltime: 12.48750\n", + "epoch: 129\ttrain_loss: 0.00093\tdev_loss: 0.00931\teltime: 12.57700\n", + "epoch: 130\ttrain_loss: 0.00093\tdev_loss: 0.00926\teltime: 12.66536\n", + "epoch: 131\ttrain_loss: 0.00092\tdev_loss: 0.00920\teltime: 12.75238\n", + "epoch: 132\ttrain_loss: 0.00092\tdev_loss: 0.00915\teltime: 12.83952\n", + "epoch: 133\ttrain_loss: 0.00092\tdev_loss: 0.00910\teltime: 12.92866\n", + "epoch: 134\ttrain_loss: 0.00091\tdev_loss: 0.00905\teltime: 13.01578\n", + "epoch: 135\ttrain_loss: 0.00091\tdev_loss: 0.00900\teltime: 13.10603\n", + "epoch: 136\ttrain_loss: 0.00090\tdev_loss: 0.00895\teltime: 13.19229\n", + "epoch: 137\ttrain_loss: 0.00090\tdev_loss: 0.00890\teltime: 13.27953\n", + "epoch: 138\ttrain_loss: 0.00090\tdev_loss: 0.00885\teltime: 13.36956\n", + "epoch: 139\ttrain_loss: 0.00089\tdev_loss: 0.00880\teltime: 13.45772\n", + "epoch: 140\ttrain_loss: 0.00089\tdev_loss: 0.00875\teltime: 13.54531\n", + "epoch: 141\ttrain_loss: 0.00088\tdev_loss: 0.00870\teltime: 13.63443\n", + "epoch: 142\ttrain_loss: 0.00088\tdev_loss: 0.00865\teltime: 13.72402\n", + "epoch: 143\ttrain_loss: 0.00088\tdev_loss: 0.00860\teltime: 13.81332\n", + "epoch: 144\ttrain_loss: 0.00087\tdev_loss: 0.00855\teltime: 13.90376\n", + "epoch: 145\ttrain_loss: 0.00087\tdev_loss: 0.00851\teltime: 13.99308\n", + "epoch: 146\ttrain_loss: 0.00086\tdev_loss: 0.00846\teltime: 14.08142\n", + "epoch: 147\ttrain_loss: 0.00086\tdev_loss: 0.00841\teltime: 14.17336\n", + "epoch: 148\ttrain_loss: 0.00086\tdev_loss: 0.00836\teltime: 14.26212\n", + "epoch: 149\ttrain_loss: 0.00085\tdev_loss: 0.00832\teltime: 14.34900\n", + "epoch: 150\ttrain_loss: 0.00085\tdev_loss: 0.00827\teltime: 14.43833\n", + "epoch: 151\ttrain_loss: 0.00085\tdev_loss: 0.00822\teltime: 14.52593\n", + "epoch: 152\ttrain_loss: 0.00084\tdev_loss: 0.00817\teltime: 14.61340\n", + "epoch: 153\ttrain_loss: 0.00084\tdev_loss: 0.00813\teltime: 14.70174\n", + "epoch: 154\ttrain_loss: 0.00083\tdev_loss: 0.00808\teltime: 14.78840\n", + "epoch: 155\ttrain_loss: 0.00083\tdev_loss: 0.00804\teltime: 14.87626\n", + "epoch: 156\ttrain_loss: 0.00083\tdev_loss: 0.00799\teltime: 14.96597\n", + "epoch: 157\ttrain_loss: 0.00082\tdev_loss: 0.00794\teltime: 15.05479\n", + "epoch: 158\ttrain_loss: 0.00082\tdev_loss: 0.00790\teltime: 15.14286\n", + "epoch: 159\ttrain_loss: 0.00082\tdev_loss: 0.00785\teltime: 15.23384\n", + "epoch: 160\ttrain_loss: 0.00081\tdev_loss: 0.00781\teltime: 15.32863\n", + "epoch: 161\ttrain_loss: 0.00081\tdev_loss: 0.00776\teltime: 15.42834\n", + "epoch: 162\ttrain_loss: 0.00081\tdev_loss: 0.00772\teltime: 15.52065\n", + "epoch: 163\ttrain_loss: 0.00080\tdev_loss: 0.00768\teltime: 15.60847\n", + "epoch: 164\ttrain_loss: 0.00080\tdev_loss: 0.00763\teltime: 15.69611\n", + "epoch: 165\ttrain_loss: 0.00079\tdev_loss: 0.00759\teltime: 15.78834\n", + "epoch: 166\ttrain_loss: 0.00079\tdev_loss: 0.00754\teltime: 15.87762\n", + "epoch: 167\ttrain_loss: 0.00079\tdev_loss: 0.00750\teltime: 15.96722\n", + "epoch: 168\ttrain_loss: 0.00078\tdev_loss: 0.00746\teltime: 16.05527\n", + "epoch: 169\ttrain_loss: 0.00078\tdev_loss: 0.00741\teltime: 16.15542\n", + "epoch: 170\ttrain_loss: 0.00078\tdev_loss: 0.00737\teltime: 16.24424\n", + "epoch: 171\ttrain_loss: 0.00077\tdev_loss: 0.00733\teltime: 16.33382\n", + "epoch: 172\ttrain_loss: 0.00077\tdev_loss: 0.00729\teltime: 16.42200\n", + "epoch: 173\ttrain_loss: 0.00077\tdev_loss: 0.00724\teltime: 16.50905\n", + "epoch: 174\ttrain_loss: 0.00076\tdev_loss: 0.00720\teltime: 16.59806\n", + "epoch: 175\ttrain_loss: 0.00076\tdev_loss: 0.00716\teltime: 16.68401\n", + "epoch: 176\ttrain_loss: 0.00076\tdev_loss: 0.00712\teltime: 16.77072\n", + "epoch: 177\ttrain_loss: 0.00075\tdev_loss: 0.00708\teltime: 16.86227\n", + "epoch: 178\ttrain_loss: 0.00075\tdev_loss: 0.00704\teltime: 16.95286\n", + "epoch: 179\ttrain_loss: 0.00075\tdev_loss: 0.00700\teltime: 17.04103\n", + "epoch: 180\ttrain_loss: 0.00074\tdev_loss: 0.00696\teltime: 17.13377\n", + "epoch: 181\ttrain_loss: 0.00074\tdev_loss: 0.00692\teltime: 17.22457\n", + "epoch: 182\ttrain_loss: 0.00074\tdev_loss: 0.00688\teltime: 17.31188\n", + "epoch: 183\ttrain_loss: 0.00073\tdev_loss: 0.00683\teltime: 17.40287\n", + "epoch: 184\ttrain_loss: 0.00073\tdev_loss: 0.00680\teltime: 17.48976\n", + "epoch: 185\ttrain_loss: 0.00073\tdev_loss: 0.00676\teltime: 17.57659\n", + "epoch: 186\ttrain_loss: 0.00072\tdev_loss: 0.00672\teltime: 17.66440\n", + "epoch: 187\ttrain_loss: 0.00072\tdev_loss: 0.00668\teltime: 17.75040\n", + "epoch: 188\ttrain_loss: 0.00072\tdev_loss: 0.00664\teltime: 17.83859\n", + "epoch: 189\ttrain_loss: 0.00072\tdev_loss: 0.00660\teltime: 17.92701\n", + "epoch: 190\ttrain_loss: 0.00071\tdev_loss: 0.00656\teltime: 18.01555\n", + "epoch: 191\ttrain_loss: 0.00071\tdev_loss: 0.00652\teltime: 18.10378\n", + "epoch: 192\ttrain_loss: 0.00071\tdev_loss: 0.00648\teltime: 18.19438\n", + "epoch: 193\ttrain_loss: 0.00070\tdev_loss: 0.00645\teltime: 18.28143\n", + "epoch: 194\ttrain_loss: 0.00070\tdev_loss: 0.00641\teltime: 18.36928\n", + "epoch: 195\ttrain_loss: 0.00070\tdev_loss: 0.00637\teltime: 18.45711\n", + "epoch: 196\ttrain_loss: 0.00069\tdev_loss: 0.00633\teltime: 18.54566\n", + "epoch: 197\ttrain_loss: 0.00069\tdev_loss: 0.00630\teltime: 18.63511\n", + "epoch: 198\ttrain_loss: 0.00069\tdev_loss: 0.00626\teltime: 18.72250\n", + "epoch: 199\ttrain_loss: 0.00068\tdev_loss: 0.00622\teltime: 18.81219\n", + "epoch: 200\ttrain_loss: 0.00068\tdev_loss: 0.00618\teltime: 18.90253\n", + "epoch: 201\ttrain_loss: 0.00068\tdev_loss: 0.00615\teltime: 18.99146\n", + "epoch: 202\ttrain_loss: 0.00068\tdev_loss: 0.00611\teltime: 19.07979\n", + "epoch: 203\ttrain_loss: 0.00067\tdev_loss: 0.00608\teltime: 19.16789\n", + "epoch: 204\ttrain_loss: 0.00067\tdev_loss: 0.00604\teltime: 19.25413\n", + "epoch: 205\ttrain_loss: 0.00067\tdev_loss: 0.00600\teltime: 19.34071\n", + "epoch: 206\ttrain_loss: 0.00066\tdev_loss: 0.00597\teltime: 19.42823\n", + "epoch: 207\ttrain_loss: 0.00066\tdev_loss: 0.00593\teltime: 19.51942\n", + "epoch: 208\ttrain_loss: 0.00066\tdev_loss: 0.00590\teltime: 19.60960\n", + "epoch: 209\ttrain_loss: 0.00066\tdev_loss: 0.00586\teltime: 19.69636\n", + "epoch: 210\ttrain_loss: 0.00065\tdev_loss: 0.00583\teltime: 19.78445\n", + "epoch: 211\ttrain_loss: 0.00065\tdev_loss: 0.00579\teltime: 19.87099\n", + "epoch: 212\ttrain_loss: 0.00065\tdev_loss: 0.00576\teltime: 19.95673\n", + "epoch: 213\ttrain_loss: 0.00065\tdev_loss: 0.00572\teltime: 20.04706\n", + "epoch: 214\ttrain_loss: 0.00064\tdev_loss: 0.00569\teltime: 20.13442\n", + "epoch: 215\ttrain_loss: 0.00064\tdev_loss: 0.00566\teltime: 20.22065\n", + "epoch: 216\ttrain_loss: 0.00064\tdev_loss: 0.00562\teltime: 20.30882\n", + "epoch: 217\ttrain_loss: 0.00063\tdev_loss: 0.00559\teltime: 20.39637\n", + "epoch: 218\ttrain_loss: 0.00063\tdev_loss: 0.00556\teltime: 20.48358\n", + "epoch: 219\ttrain_loss: 0.00063\tdev_loss: 0.00552\teltime: 20.57133\n", + "epoch: 220\ttrain_loss: 0.00063\tdev_loss: 0.00549\teltime: 20.66089\n", + "epoch: 221\ttrain_loss: 0.00062\tdev_loss: 0.00546\teltime: 20.74307\n", + "epoch: 222\ttrain_loss: 0.00062\tdev_loss: 0.00542\teltime: 20.82998\n", + "epoch: 223\ttrain_loss: 0.00062\tdev_loss: 0.00539\teltime: 20.92133\n", + "epoch: 224\ttrain_loss: 0.00062\tdev_loss: 0.00536\teltime: 21.01259\n", + "epoch: 225\ttrain_loss: 0.00061\tdev_loss: 0.00533\teltime: 21.10548\n", + "epoch: 226\ttrain_loss: 0.00061\tdev_loss: 0.00530\teltime: 21.20239\n", + "epoch: 227\ttrain_loss: 0.00061\tdev_loss: 0.00526\teltime: 21.29591\n", + "epoch: 228\ttrain_loss: 0.00061\tdev_loss: 0.00523\teltime: 21.39918\n", + "epoch: 229\ttrain_loss: 0.00060\tdev_loss: 0.00520\teltime: 21.49016\n", + "epoch: 230\ttrain_loss: 0.00060\tdev_loss: 0.00517\teltime: 21.58085\n", + "epoch: 231\ttrain_loss: 0.00060\tdev_loss: 0.00514\teltime: 21.67881\n", + "epoch: 232\ttrain_loss: 0.00060\tdev_loss: 0.00511\teltime: 21.77026\n", + "epoch: 233\ttrain_loss: 0.00059\tdev_loss: 0.00508\teltime: 21.86239\n", + "epoch: 234\ttrain_loss: 0.00059\tdev_loss: 0.00505\teltime: 21.95624\n", + "epoch: 235\ttrain_loss: 0.00059\tdev_loss: 0.00502\teltime: 22.04531\n", + "epoch: 236\ttrain_loss: 0.00059\tdev_loss: 0.00498\teltime: 22.13621\n", + "epoch: 237\ttrain_loss: 0.00058\tdev_loss: 0.00495\teltime: 22.22891\n", + "epoch: 238\ttrain_loss: 0.00058\tdev_loss: 0.00492\teltime: 22.32338\n", + "epoch: 239\ttrain_loss: 0.00058\tdev_loss: 0.00489\teltime: 22.42873\n", + "epoch: 240\ttrain_loss: 0.00058\tdev_loss: 0.00486\teltime: 22.52859\n", + "epoch: 241\ttrain_loss: 0.00057\tdev_loss: 0.00484\teltime: 22.62542\n", + "epoch: 242\ttrain_loss: 0.00057\tdev_loss: 0.00481\teltime: 22.71901\n", + "epoch: 243\ttrain_loss: 0.00057\tdev_loss: 0.00478\teltime: 22.81251\n", + "epoch: 244\ttrain_loss: 0.00057\tdev_loss: 0.00475\teltime: 22.89820\n", + "epoch: 245\ttrain_loss: 0.00056\tdev_loss: 0.00472\teltime: 22.98838\n", + "epoch: 246\ttrain_loss: 0.00056\tdev_loss: 0.00469\teltime: 23.08031\n", + "epoch: 247\ttrain_loss: 0.00056\tdev_loss: 0.00466\teltime: 23.16952\n", + "epoch: 248\ttrain_loss: 0.00056\tdev_loss: 0.00463\teltime: 23.25870\n", + "epoch: 249\ttrain_loss: 0.00056\tdev_loss: 0.00461\teltime: 23.34796\n", + "epoch: 250\ttrain_loss: 0.00055\tdev_loss: 0.00458\teltime: 23.43604\n", + "epoch: 251\ttrain_loss: 0.00055\tdev_loss: 0.00455\teltime: 23.52326\n", + "epoch: 252\ttrain_loss: 0.00055\tdev_loss: 0.00452\teltime: 23.61146\n", + "epoch: 253\ttrain_loss: 0.00055\tdev_loss: 0.00449\teltime: 23.69908\n", + "epoch: 254\ttrain_loss: 0.00054\tdev_loss: 0.00447\teltime: 23.78722\n", + "epoch: 255\ttrain_loss: 0.00054\tdev_loss: 0.00444\teltime: 23.87717\n", + "epoch: 256\ttrain_loss: 0.00054\tdev_loss: 0.00441\teltime: 23.96730\n", + "epoch: 257\ttrain_loss: 0.00054\tdev_loss: 0.00439\teltime: 24.05516\n", + "epoch: 258\ttrain_loss: 0.00054\tdev_loss: 0.00436\teltime: 24.14525\n", + "epoch: 259\ttrain_loss: 0.00053\tdev_loss: 0.00433\teltime: 24.23387\n", + "epoch: 260\ttrain_loss: 0.00053\tdev_loss: 0.00431\teltime: 24.32267\n", + "epoch: 261\ttrain_loss: 0.00053\tdev_loss: 0.00428\teltime: 24.41321\n", + "epoch: 262\ttrain_loss: 0.00053\tdev_loss: 0.00425\teltime: 24.50094\n", + "epoch: 263\ttrain_loss: 0.00052\tdev_loss: 0.00423\teltime: 24.58778\n", + "epoch: 264\ttrain_loss: 0.00052\tdev_loss: 0.00420\teltime: 24.67980\n", + "epoch: 265\ttrain_loss: 0.00052\tdev_loss: 0.00418\teltime: 24.77074\n", + "epoch: 266\ttrain_loss: 0.00052\tdev_loss: 0.00415\teltime: 24.85882\n", + "epoch: 267\ttrain_loss: 0.00052\tdev_loss: 0.00412\teltime: 24.94906\n", + "epoch: 268\ttrain_loss: 0.00051\tdev_loss: 0.00410\teltime: 25.03725\n", + "epoch: 269\ttrain_loss: 0.00051\tdev_loss: 0.00407\teltime: 25.12367\n", + "epoch: 270\ttrain_loss: 0.00051\tdev_loss: 0.00405\teltime: 25.21137\n", + "epoch: 271\ttrain_loss: 0.00051\tdev_loss: 0.00402\teltime: 25.29869\n", + "epoch: 272\ttrain_loss: 0.00051\tdev_loss: 0.00400\teltime: 25.38336\n", + "epoch: 273\ttrain_loss: 0.00050\tdev_loss: 0.00397\teltime: 25.47407\n", + "epoch: 274\ttrain_loss: 0.00050\tdev_loss: 0.00395\teltime: 25.56156\n", + "epoch: 275\ttrain_loss: 0.00050\tdev_loss: 0.00392\teltime: 25.65039\n", + "epoch: 276\ttrain_loss: 0.00050\tdev_loss: 0.00390\teltime: 25.74270\n", + "epoch: 277\ttrain_loss: 0.00050\tdev_loss: 0.00388\teltime: 25.83354\n", + "epoch: 278\ttrain_loss: 0.00049\tdev_loss: 0.00385\teltime: 25.92135\n", + "epoch: 279\ttrain_loss: 0.00049\tdev_loss: 0.00383\teltime: 26.00907\n", + "epoch: 280\ttrain_loss: 0.00049\tdev_loss: 0.00381\teltime: 26.09587\n", + "epoch: 281\ttrain_loss: 0.00049\tdev_loss: 0.00378\teltime: 26.18456\n", + "epoch: 282\ttrain_loss: 0.00049\tdev_loss: 0.00376\teltime: 26.27295\n", + "epoch: 283\ttrain_loss: 0.00048\tdev_loss: 0.00373\teltime: 26.36226\n", + "epoch: 284\ttrain_loss: 0.00048\tdev_loss: 0.00371\teltime: 26.45478\n", + "epoch: 285\ttrain_loss: 0.00048\tdev_loss: 0.00369\teltime: 26.54230\n", + "epoch: 286\ttrain_loss: 0.00048\tdev_loss: 0.00367\teltime: 26.63050\n", + "epoch: 287\ttrain_loss: 0.00048\tdev_loss: 0.00364\teltime: 26.72073\n", + "epoch: 288\ttrain_loss: 0.00048\tdev_loss: 0.00362\teltime: 26.81140\n", + "epoch: 289\ttrain_loss: 0.00047\tdev_loss: 0.00360\teltime: 26.90426\n", + "epoch: 290\ttrain_loss: 0.00047\tdev_loss: 0.00358\teltime: 26.98610\n", + "epoch: 291\ttrain_loss: 0.00047\tdev_loss: 0.00355\teltime: 27.07263\n", + "epoch: 292\ttrain_loss: 0.00047\tdev_loss: 0.00353\teltime: 27.16222\n", + "epoch: 293\ttrain_loss: 0.00047\tdev_loss: 0.00351\teltime: 27.24792\n", + "epoch: 294\ttrain_loss: 0.00047\tdev_loss: 0.00349\teltime: 27.34431\n", + "epoch: 295\ttrain_loss: 0.00046\tdev_loss: 0.00347\teltime: 27.43698\n", + "epoch: 296\ttrain_loss: 0.00046\tdev_loss: 0.00344\teltime: 27.52863\n", + "epoch: 297\ttrain_loss: 0.00046\tdev_loss: 0.00342\teltime: 27.63886\n", + "epoch: 298\ttrain_loss: 0.00046\tdev_loss: 0.00340\teltime: 27.76657\n", + "epoch: 299\ttrain_loss: 0.00046\tdev_loss: 0.00338\teltime: 27.85454\n", + "epoch: 300\ttrain_loss: 0.00045\tdev_loss: 0.00336\teltime: 27.94536\n", + "epoch: 301\ttrain_loss: 0.00045\tdev_loss: 0.00334\teltime: 28.03417\n", + "epoch: 302\ttrain_loss: 0.00045\tdev_loss: 0.00332\teltime: 28.12562\n", + "epoch: 303\ttrain_loss: 0.00045\tdev_loss: 0.00330\teltime: 28.22352\n", + "epoch: 304\ttrain_loss: 0.00045\tdev_loss: 0.00328\teltime: 28.31179\n", + "epoch: 305\ttrain_loss: 0.00045\tdev_loss: 0.00326\teltime: 28.40077\n", + "epoch: 306\ttrain_loss: 0.00044\tdev_loss: 0.00324\teltime: 28.48992\n", + "epoch: 307\ttrain_loss: 0.00044\tdev_loss: 0.00322\teltime: 28.57807\n", + "epoch: 308\ttrain_loss: 0.00044\tdev_loss: 0.00320\teltime: 28.66879\n", + "epoch: 309\ttrain_loss: 0.00044\tdev_loss: 0.00318\teltime: 28.77598\n", + "epoch: 310\ttrain_loss: 0.00044\tdev_loss: 0.00316\teltime: 28.86447\n", + "epoch: 311\ttrain_loss: 0.00044\tdev_loss: 0.00314\teltime: 28.95509\n", + "epoch: 312\ttrain_loss: 0.00044\tdev_loss: 0.00312\teltime: 29.04156\n", + "epoch: 313\ttrain_loss: 0.00043\tdev_loss: 0.00310\teltime: 29.14136\n", + "epoch: 314\ttrain_loss: 0.00043\tdev_loss: 0.00308\teltime: 29.23397\n", + "epoch: 315\ttrain_loss: 0.00043\tdev_loss: 0.00306\teltime: 29.32992\n", + "epoch: 316\ttrain_loss: 0.00043\tdev_loss: 0.00304\teltime: 29.42373\n", + "epoch: 317\ttrain_loss: 0.00043\tdev_loss: 0.00302\teltime: 29.52022\n", + "epoch: 318\ttrain_loss: 0.00043\tdev_loss: 0.00300\teltime: 29.61036\n", + "epoch: 319\ttrain_loss: 0.00042\tdev_loss: 0.00298\teltime: 29.70230\n", + "epoch: 320\ttrain_loss: 0.00042\tdev_loss: 0.00296\teltime: 29.79736\n", + "epoch: 321\ttrain_loss: 0.00042\tdev_loss: 0.00295\teltime: 29.88905\n", + "epoch: 322\ttrain_loss: 0.00042\tdev_loss: 0.00293\teltime: 29.98098\n", + "epoch: 323\ttrain_loss: 0.00042\tdev_loss: 0.00291\teltime: 30.07406\n", + "epoch: 324\ttrain_loss: 0.00042\tdev_loss: 0.00289\teltime: 30.16866\n", + "epoch: 325\ttrain_loss: 0.00042\tdev_loss: 0.00287\teltime: 30.26056\n", + "epoch: 326\ttrain_loss: 0.00041\tdev_loss: 0.00285\teltime: 30.36615\n", + "epoch: 327\ttrain_loss: 0.00041\tdev_loss: 0.00284\teltime: 30.48751\n", + "epoch: 328\ttrain_loss: 0.00041\tdev_loss: 0.00282\teltime: 30.58959\n", + "epoch: 329\ttrain_loss: 0.00041\tdev_loss: 0.00280\teltime: 30.68399\n", + "epoch: 330\ttrain_loss: 0.00041\tdev_loss: 0.00278\teltime: 30.77715\n", + "epoch: 331\ttrain_loss: 0.00041\tdev_loss: 0.00277\teltime: 30.87955\n", + "epoch: 332\ttrain_loss: 0.00041\tdev_loss: 0.00275\teltime: 30.98008\n", + "epoch: 333\ttrain_loss: 0.00040\tdev_loss: 0.00273\teltime: 31.07469\n", + "epoch: 334\ttrain_loss: 0.00040\tdev_loss: 0.00271\teltime: 31.17845\n", + "epoch: 335\ttrain_loss: 0.00040\tdev_loss: 0.00270\teltime: 31.27897\n", + "epoch: 336\ttrain_loss: 0.00040\tdev_loss: 0.00268\teltime: 31.38891\n", + "epoch: 337\ttrain_loss: 0.00040\tdev_loss: 0.00266\teltime: 31.49578\n", + "epoch: 338\ttrain_loss: 0.00040\tdev_loss: 0.00265\teltime: 31.59357\n", + "epoch: 339\ttrain_loss: 0.00040\tdev_loss: 0.00263\teltime: 31.68764\n", + "epoch: 340\ttrain_loss: 0.00039\tdev_loss: 0.00261\teltime: 31.78429\n", + "epoch: 341\ttrain_loss: 0.00039\tdev_loss: 0.00260\teltime: 31.87914\n", + "epoch: 342\ttrain_loss: 0.00039\tdev_loss: 0.00258\teltime: 31.97009\n", + "epoch: 343\ttrain_loss: 0.00039\tdev_loss: 0.00256\teltime: 32.06628\n", + "epoch: 344\ttrain_loss: 0.00039\tdev_loss: 0.00255\teltime: 32.16257\n", + "epoch: 345\ttrain_loss: 0.00039\tdev_loss: 0.00253\teltime: 32.28205\n", + "epoch: 346\ttrain_loss: 0.00039\tdev_loss: 0.00252\teltime: 32.38471\n", + "epoch: 347\ttrain_loss: 0.00039\tdev_loss: 0.00250\teltime: 32.48614\n", + "epoch: 348\ttrain_loss: 0.00038\tdev_loss: 0.00249\teltime: 32.58288\n", + "epoch: 349\ttrain_loss: 0.00038\tdev_loss: 0.00247\teltime: 32.67580\n", + "epoch: 350\ttrain_loss: 0.00038\tdev_loss: 0.00245\teltime: 32.77404\n", + "epoch: 351\ttrain_loss: 0.00038\tdev_loss: 0.00244\teltime: 32.86528\n", + "epoch: 352\ttrain_loss: 0.00038\tdev_loss: 0.00242\teltime: 32.95848\n", + "epoch: 353\ttrain_loss: 0.00038\tdev_loss: 0.00241\teltime: 33.05828\n", + "epoch: 354\ttrain_loss: 0.00038\tdev_loss: 0.00239\teltime: 33.14766\n", + "epoch: 355\ttrain_loss: 0.00037\tdev_loss: 0.00238\teltime: 33.23938\n", + "epoch: 356\ttrain_loss: 0.00037\tdev_loss: 0.00236\teltime: 33.33010\n", + "epoch: 357\ttrain_loss: 0.00037\tdev_loss: 0.00235\teltime: 33.42124\n", + "epoch: 358\ttrain_loss: 0.00037\tdev_loss: 0.00233\teltime: 33.51445\n", + "epoch: 359\ttrain_loss: 0.00037\tdev_loss: 0.00232\teltime: 33.60582\n", + "epoch: 360\ttrain_loss: 0.00037\tdev_loss: 0.00231\teltime: 33.69184\n", + "epoch: 361\ttrain_loss: 0.00037\tdev_loss: 0.00229\teltime: 33.78368\n", + "epoch: 362\ttrain_loss: 0.00037\tdev_loss: 0.00228\teltime: 33.87368\n", + "epoch: 363\ttrain_loss: 0.00037\tdev_loss: 0.00226\teltime: 33.96382\n", + "epoch: 364\ttrain_loss: 0.00036\tdev_loss: 0.00225\teltime: 34.05344\n", + "epoch: 365\ttrain_loss: 0.00036\tdev_loss: 0.00223\teltime: 34.15233\n", + "epoch: 366\ttrain_loss: 0.00036\tdev_loss: 0.00222\teltime: 34.26311\n", + "epoch: 367\ttrain_loss: 0.00036\tdev_loss: 0.00221\teltime: 34.36292\n", + "epoch: 368\ttrain_loss: 0.00036\tdev_loss: 0.00219\teltime: 34.45768\n", + "epoch: 369\ttrain_loss: 0.00036\tdev_loss: 0.00218\teltime: 34.55180\n", + "epoch: 370\ttrain_loss: 0.00036\tdev_loss: 0.00217\teltime: 34.64298\n", + "epoch: 371\ttrain_loss: 0.00036\tdev_loss: 0.00215\teltime: 34.74038\n", + "epoch: 372\ttrain_loss: 0.00036\tdev_loss: 0.00214\teltime: 34.85565\n", + "epoch: 373\ttrain_loss: 0.00035\tdev_loss: 0.00213\teltime: 34.95210\n", + "epoch: 374\ttrain_loss: 0.00035\tdev_loss: 0.00211\teltime: 35.05311\n", + "epoch: 375\ttrain_loss: 0.00035\tdev_loss: 0.00210\teltime: 35.14321\n", + "epoch: 376\ttrain_loss: 0.00035\tdev_loss: 0.00209\teltime: 35.23120\n", + "epoch: 377\ttrain_loss: 0.00035\tdev_loss: 0.00207\teltime: 35.31741\n", + "epoch: 378\ttrain_loss: 0.00035\tdev_loss: 0.00206\teltime: 35.40855\n", + "epoch: 379\ttrain_loss: 0.00035\tdev_loss: 0.00205\teltime: 35.49711\n", + "epoch: 380\ttrain_loss: 0.00035\tdev_loss: 0.00203\teltime: 35.58798\n", + "epoch: 381\ttrain_loss: 0.00035\tdev_loss: 0.00202\teltime: 35.68612\n", + "epoch: 382\ttrain_loss: 0.00034\tdev_loss: 0.00201\teltime: 35.79179\n", + "epoch: 383\ttrain_loss: 0.00034\tdev_loss: 0.00200\teltime: 35.88567\n", + "epoch: 384\ttrain_loss: 0.00034\tdev_loss: 0.00198\teltime: 35.97908\n", + "epoch: 385\ttrain_loss: 0.00034\tdev_loss: 0.00197\teltime: 36.07456\n", + "epoch: 386\ttrain_loss: 0.00034\tdev_loss: 0.00196\teltime: 36.16714\n", + "epoch: 387\ttrain_loss: 0.00034\tdev_loss: 0.00195\teltime: 36.26086\n", + "epoch: 388\ttrain_loss: 0.00034\tdev_loss: 0.00194\teltime: 36.35944\n", + "epoch: 389\ttrain_loss: 0.00034\tdev_loss: 0.00192\teltime: 36.45970\n", + "epoch: 390\ttrain_loss: 0.00034\tdev_loss: 0.00191\teltime: 36.55731\n", + "epoch: 391\ttrain_loss: 0.00034\tdev_loss: 0.00190\teltime: 36.64732\n", + "epoch: 392\ttrain_loss: 0.00033\tdev_loss: 0.00189\teltime: 36.74396\n", + "epoch: 393\ttrain_loss: 0.00033\tdev_loss: 0.00188\teltime: 36.84403\n", + "epoch: 394\ttrain_loss: 0.00033\tdev_loss: 0.00186\teltime: 36.93928\n", + "epoch: 395\ttrain_loss: 0.00033\tdev_loss: 0.00185\teltime: 37.03350\n", + "epoch: 396\ttrain_loss: 0.00033\tdev_loss: 0.00184\teltime: 37.12946\n", + "epoch: 397\ttrain_loss: 0.00033\tdev_loss: 0.00183\teltime: 37.21982\n", + "epoch: 398\ttrain_loss: 0.00033\tdev_loss: 0.00182\teltime: 37.32399\n", + "epoch: 399\ttrain_loss: 0.00033\tdev_loss: 0.00181\teltime: 37.42090\n", + "epoch: 400\ttrain_loss: 0.00033\tdev_loss: 0.00180\teltime: 37.51685\n", + "epoch: 401\ttrain_loss: 0.00033\tdev_loss: 0.00179\teltime: 37.60539\n", + "epoch: 402\ttrain_loss: 0.00033\tdev_loss: 0.00177\teltime: 37.69374\n", + "epoch: 403\ttrain_loss: 0.00032\tdev_loss: 0.00176\teltime: 37.78779\n", + "epoch: 404\ttrain_loss: 0.00032\tdev_loss: 0.00175\teltime: 37.88419\n", + "epoch: 405\ttrain_loss: 0.00032\tdev_loss: 0.00174\teltime: 37.98387\n", + "epoch: 406\ttrain_loss: 0.00032\tdev_loss: 0.00173\teltime: 38.07583\n", + "epoch: 407\ttrain_loss: 0.00032\tdev_loss: 0.00172\teltime: 38.16235\n", + "epoch: 408\ttrain_loss: 0.00032\tdev_loss: 0.00171\teltime: 38.25459\n", + "epoch: 409\ttrain_loss: 0.00032\tdev_loss: 0.00170\teltime: 38.34381\n", + "epoch: 410\ttrain_loss: 0.00032\tdev_loss: 0.00169\teltime: 38.43438\n", + "epoch: 411\ttrain_loss: 0.00032\tdev_loss: 0.00168\teltime: 38.52596\n", + "epoch: 412\ttrain_loss: 0.00032\tdev_loss: 0.00167\teltime: 38.61512\n", + "epoch: 413\ttrain_loss: 0.00032\tdev_loss: 0.00166\teltime: 38.70578\n", + "epoch: 414\ttrain_loss: 0.00031\tdev_loss: 0.00165\teltime: 38.79897\n", + "epoch: 415\ttrain_loss: 0.00031\tdev_loss: 0.00164\teltime: 38.90374\n", + "epoch: 416\ttrain_loss: 0.00031\tdev_loss: 0.00163\teltime: 38.99783\n", + "epoch: 417\ttrain_loss: 0.00031\tdev_loss: 0.00162\teltime: 39.09145\n", + "epoch: 418\ttrain_loss: 0.00031\tdev_loss: 0.00161\teltime: 39.18689\n", + "epoch: 419\ttrain_loss: 0.00031\tdev_loss: 0.00160\teltime: 39.28674\n", + "epoch: 420\ttrain_loss: 0.00031\tdev_loss: 0.00159\teltime: 39.38378\n", + "epoch: 421\ttrain_loss: 0.00031\tdev_loss: 0.00158\teltime: 39.47824\n", + "epoch: 422\ttrain_loss: 0.00031\tdev_loss: 0.00157\teltime: 39.56942\n", + "epoch: 423\ttrain_loss: 0.00031\tdev_loss: 0.00156\teltime: 39.66246\n", + "epoch: 424\ttrain_loss: 0.00031\tdev_loss: 0.00155\teltime: 39.76540\n", + "epoch: 425\ttrain_loss: 0.00031\tdev_loss: 0.00154\teltime: 39.87304\n", + "epoch: 426\ttrain_loss: 0.00031\tdev_loss: 0.00153\teltime: 39.98319\n", + "epoch: 427\ttrain_loss: 0.00030\tdev_loss: 0.00152\teltime: 40.09237\n", + "epoch: 428\ttrain_loss: 0.00030\tdev_loss: 0.00152\teltime: 40.18945\n", + "epoch: 429\ttrain_loss: 0.00030\tdev_loss: 0.00151\teltime: 40.27969\n", + "epoch: 430\ttrain_loss: 0.00030\tdev_loss: 0.00150\teltime: 40.37053\n", + "epoch: 431\ttrain_loss: 0.00030\tdev_loss: 0.00149\teltime: 40.46056\n", + "epoch: 432\ttrain_loss: 0.00030\tdev_loss: 0.00148\teltime: 40.55115\n", + "epoch: 433\ttrain_loss: 0.00030\tdev_loss: 0.00147\teltime: 40.64170\n", + "epoch: 434\ttrain_loss: 0.00030\tdev_loss: 0.00146\teltime: 40.73515\n", + "epoch: 435\ttrain_loss: 0.00030\tdev_loss: 0.00145\teltime: 40.83267\n", + "epoch: 436\ttrain_loss: 0.00030\tdev_loss: 0.00144\teltime: 40.92487\n", + "epoch: 437\ttrain_loss: 0.00030\tdev_loss: 0.00144\teltime: 41.01105\n", + "epoch: 438\ttrain_loss: 0.00030\tdev_loss: 0.00143\teltime: 41.09916\n", + "epoch: 439\ttrain_loss: 0.00030\tdev_loss: 0.00142\teltime: 41.19473\n", + "epoch: 440\ttrain_loss: 0.00029\tdev_loss: 0.00141\teltime: 41.28695\n", + "epoch: 441\ttrain_loss: 0.00029\tdev_loss: 0.00140\teltime: 41.38056\n", + "epoch: 442\ttrain_loss: 0.00029\tdev_loss: 0.00139\teltime: 41.48115\n", + "epoch: 443\ttrain_loss: 0.00029\tdev_loss: 0.00139\teltime: 41.58213\n", + "epoch: 444\ttrain_loss: 0.00029\tdev_loss: 0.00138\teltime: 41.69288\n", + "epoch: 445\ttrain_loss: 0.00029\tdev_loss: 0.00137\teltime: 41.81245\n", + "epoch: 446\ttrain_loss: 0.00029\tdev_loss: 0.00136\teltime: 41.90503\n", + "epoch: 447\ttrain_loss: 0.00029\tdev_loss: 0.00135\teltime: 41.99503\n", + "epoch: 448\ttrain_loss: 0.00029\tdev_loss: 0.00135\teltime: 42.08303\n", + "epoch: 449\ttrain_loss: 0.00029\tdev_loss: 0.00134\teltime: 42.16937\n", + "epoch: 450\ttrain_loss: 0.00029\tdev_loss: 0.00133\teltime: 42.25590\n", + "epoch: 451\ttrain_loss: 0.00029\tdev_loss: 0.00132\teltime: 42.34112\n", + "epoch: 452\ttrain_loss: 0.00029\tdev_loss: 0.00132\teltime: 42.42868\n", + "epoch: 453\ttrain_loss: 0.00029\tdev_loss: 0.00131\teltime: 42.51714\n", + "epoch: 454\ttrain_loss: 0.00029\tdev_loss: 0.00130\teltime: 42.60399\n", + "epoch: 455\ttrain_loss: 0.00028\tdev_loss: 0.00129\teltime: 42.69715\n", + "epoch: 456\ttrain_loss: 0.00028\tdev_loss: 0.00129\teltime: 42.79421\n", + "epoch: 457\ttrain_loss: 0.00028\tdev_loss: 0.00128\teltime: 42.88683\n", + "epoch: 458\ttrain_loss: 0.00028\tdev_loss: 0.00127\teltime: 42.98165\n", + "epoch: 459\ttrain_loss: 0.00028\tdev_loss: 0.00126\teltime: 43.07789\n", + "epoch: 460\ttrain_loss: 0.00028\tdev_loss: 0.00126\teltime: 43.17543\n", + "epoch: 461\ttrain_loss: 0.00028\tdev_loss: 0.00125\teltime: 43.26994\n", + "epoch: 462\ttrain_loss: 0.00028\tdev_loss: 0.00124\teltime: 43.36155\n", + "epoch: 463\ttrain_loss: 0.00028\tdev_loss: 0.00123\teltime: 43.45322\n", + "epoch: 464\ttrain_loss: 0.00028\tdev_loss: 0.00123\teltime: 43.54495\n", + "epoch: 465\ttrain_loss: 0.00028\tdev_loss: 0.00122\teltime: 43.63832\n", + "epoch: 466\ttrain_loss: 0.00028\tdev_loss: 0.00121\teltime: 43.72994\n", + "epoch: 467\ttrain_loss: 0.00028\tdev_loss: 0.00121\teltime: 43.82589\n", + "epoch: 468\ttrain_loss: 0.00028\tdev_loss: 0.00120\teltime: 43.92094\n", + "epoch: 469\ttrain_loss: 0.00028\tdev_loss: 0.00119\teltime: 44.01694\n", + "epoch: 470\ttrain_loss: 0.00028\tdev_loss: 0.00119\teltime: 44.10810\n", + "epoch: 471\ttrain_loss: 0.00028\tdev_loss: 0.00118\teltime: 44.20472\n", + "epoch: 472\ttrain_loss: 0.00027\tdev_loss: 0.00117\teltime: 44.30063\n", + "epoch: 473\ttrain_loss: 0.00027\tdev_loss: 0.00117\teltime: 44.39695\n", + "epoch: 474\ttrain_loss: 0.00027\tdev_loss: 0.00116\teltime: 44.49370\n", + "epoch: 475\ttrain_loss: 0.00027\tdev_loss: 0.00115\teltime: 44.58958\n", + "epoch: 476\ttrain_loss: 0.00027\tdev_loss: 0.00115\teltime: 44.69431\n", + "epoch: 477\ttrain_loss: 0.00027\tdev_loss: 0.00114\teltime: 44.79517\n", + "epoch: 478\ttrain_loss: 0.00027\tdev_loss: 0.00114\teltime: 44.89503\n", + "epoch: 479\ttrain_loss: 0.00027\tdev_loss: 0.00113\teltime: 44.99215\n", + "epoch: 480\ttrain_loss: 0.00027\tdev_loss: 0.00112\teltime: 45.08802\n", + "epoch: 481\ttrain_loss: 0.00027\tdev_loss: 0.00112\teltime: 45.18400\n", + "epoch: 482\ttrain_loss: 0.00027\tdev_loss: 0.00111\teltime: 45.27670\n", + "epoch: 483\ttrain_loss: 0.00027\tdev_loss: 0.00110\teltime: 45.37199\n", + "epoch: 484\ttrain_loss: 0.00027\tdev_loss: 0.00110\teltime: 45.47457\n", + "epoch: 485\ttrain_loss: 0.00027\tdev_loss: 0.00109\teltime: 45.56489\n", + "epoch: 486\ttrain_loss: 0.00027\tdev_loss: 0.00109\teltime: 45.65688\n", + "epoch: 487\ttrain_loss: 0.00027\tdev_loss: 0.00108\teltime: 45.74622\n", + "epoch: 488\ttrain_loss: 0.00027\tdev_loss: 0.00108\teltime: 45.83513\n", + "epoch: 489\ttrain_loss: 0.00027\tdev_loss: 0.00107\teltime: 45.92086\n", + "epoch: 490\ttrain_loss: 0.00026\tdev_loss: 0.00106\teltime: 46.00949\n", + "epoch: 491\ttrain_loss: 0.00026\tdev_loss: 0.00106\teltime: 46.09907\n", + "epoch: 492\ttrain_loss: 0.00026\tdev_loss: 0.00105\teltime: 46.18806\n", + "epoch: 493\ttrain_loss: 0.00026\tdev_loss: 0.00105\teltime: 46.27338\n", + "epoch: 494\ttrain_loss: 0.00026\tdev_loss: 0.00104\teltime: 46.36287\n", + "epoch: 495\ttrain_loss: 0.00026\tdev_loss: 0.00104\teltime: 46.46221\n", + "epoch: 496\ttrain_loss: 0.00026\tdev_loss: 0.00103\teltime: 46.60247\n", + "epoch: 497\ttrain_loss: 0.00026\tdev_loss: 0.00103\teltime: 46.85415\n", + "epoch: 498\ttrain_loss: 0.00026\tdev_loss: 0.00102\teltime: 46.97251\n", + "epoch: 499\ttrain_loss: 0.00026\tdev_loss: 0.00101\teltime: 47.06224\n", + "epoch: 500\ttrain_loss: 0.00026\tdev_loss: 0.00101\teltime: 47.15055\n", + "epoch: 501\ttrain_loss: 0.00026\tdev_loss: 0.00100\teltime: 47.23669\n", + "epoch: 502\ttrain_loss: 0.00026\tdev_loss: 0.00100\teltime: 47.32602\n", + "epoch: 503\ttrain_loss: 0.00026\tdev_loss: 0.00099\teltime: 47.42068\n", + "epoch: 504\ttrain_loss: 0.00026\tdev_loss: 0.00099\teltime: 47.50769\n", + "epoch: 505\ttrain_loss: 0.00026\tdev_loss: 0.00098\teltime: 47.60465\n", + "epoch: 506\ttrain_loss: 0.00026\tdev_loss: 0.00098\teltime: 47.69674\n", + "epoch: 507\ttrain_loss: 0.00026\tdev_loss: 0.00097\teltime: 47.78660\n", + "epoch: 508\ttrain_loss: 0.00026\tdev_loss: 0.00097\teltime: 47.88329\n", + "epoch: 509\ttrain_loss: 0.00026\tdev_loss: 0.00096\teltime: 47.98055\n", + "epoch: 510\ttrain_loss: 0.00026\tdev_loss: 0.00096\teltime: 48.06840\n", + "epoch: 511\ttrain_loss: 0.00026\tdev_loss: 0.00095\teltime: 48.15651\n", + "epoch: 512\ttrain_loss: 0.00025\tdev_loss: 0.00095\teltime: 48.24656\n", + "epoch: 513\ttrain_loss: 0.00025\tdev_loss: 0.00094\teltime: 48.33373\n", + "epoch: 514\ttrain_loss: 0.00025\tdev_loss: 0.00094\teltime: 48.42365\n", + "epoch: 515\ttrain_loss: 0.00025\tdev_loss: 0.00094\teltime: 48.50914\n", + "epoch: 516\ttrain_loss: 0.00025\tdev_loss: 0.00093\teltime: 48.59659\n", + "epoch: 517\ttrain_loss: 0.00025\tdev_loss: 0.00093\teltime: 48.68781\n", + "epoch: 518\ttrain_loss: 0.00025\tdev_loss: 0.00092\teltime: 48.77488\n", + "epoch: 519\ttrain_loss: 0.00025\tdev_loss: 0.00092\teltime: 48.86242\n", + "epoch: 520\ttrain_loss: 0.00025\tdev_loss: 0.00091\teltime: 48.95255\n", + "epoch: 521\ttrain_loss: 0.00025\tdev_loss: 0.00091\teltime: 49.04025\n", + "epoch: 522\ttrain_loss: 0.00025\tdev_loss: 0.00090\teltime: 49.13293\n", + "epoch: 523\ttrain_loss: 0.00025\tdev_loss: 0.00090\teltime: 49.22320\n", + "epoch: 524\ttrain_loss: 0.00025\tdev_loss: 0.00090\teltime: 49.31289\n", + "epoch: 525\ttrain_loss: 0.00025\tdev_loss: 0.00089\teltime: 49.40219\n", + "epoch: 526\ttrain_loss: 0.00025\tdev_loss: 0.00089\teltime: 49.48995\n", + "epoch: 527\ttrain_loss: 0.00025\tdev_loss: 0.00088\teltime: 49.58113\n", + "epoch: 528\ttrain_loss: 0.00025\tdev_loss: 0.00088\teltime: 49.67395\n", + "epoch: 529\ttrain_loss: 0.00025\tdev_loss: 0.00087\teltime: 49.76239\n", + "epoch: 530\ttrain_loss: 0.00025\tdev_loss: 0.00087\teltime: 49.85078\n", + "epoch: 531\ttrain_loss: 0.00025\tdev_loss: 0.00087\teltime: 49.93830\n", + "epoch: 532\ttrain_loss: 0.00025\tdev_loss: 0.00086\teltime: 50.02745\n", + "epoch: 533\ttrain_loss: 0.00025\tdev_loss: 0.00086\teltime: 50.11491\n", + "epoch: 534\ttrain_loss: 0.00025\tdev_loss: 0.00085\teltime: 50.20493\n", + "epoch: 535\ttrain_loss: 0.00025\tdev_loss: 0.00085\teltime: 50.29296\n", + "epoch: 536\ttrain_loss: 0.00025\tdev_loss: 0.00085\teltime: 50.38476\n", + "epoch: 537\ttrain_loss: 0.00025\tdev_loss: 0.00084\teltime: 50.47321\n", + "epoch: 538\ttrain_loss: 0.00025\tdev_loss: 0.00084\teltime: 50.56411\n", + "epoch: 539\ttrain_loss: 0.00024\tdev_loss: 0.00084\teltime: 50.65349\n", + "epoch: 540\ttrain_loss: 0.00024\tdev_loss: 0.00083\teltime: 50.74154\n", + "epoch: 541\ttrain_loss: 0.00024\tdev_loss: 0.00083\teltime: 50.83392\n", + "epoch: 542\ttrain_loss: 0.00024\tdev_loss: 0.00082\teltime: 50.92545\n", + "epoch: 543\ttrain_loss: 0.00024\tdev_loss: 0.00082\teltime: 51.01373\n", + "epoch: 544\ttrain_loss: 0.00024\tdev_loss: 0.00082\teltime: 51.10483\n", + "epoch: 545\ttrain_loss: 0.00024\tdev_loss: 0.00081\teltime: 51.19428\n", + "epoch: 546\ttrain_loss: 0.00024\tdev_loss: 0.00081\teltime: 51.28384\n", + "epoch: 547\ttrain_loss: 0.00024\tdev_loss: 0.00081\teltime: 51.37554\n", + "epoch: 548\ttrain_loss: 0.00024\tdev_loss: 0.00080\teltime: 51.46340\n", + "epoch: 549\ttrain_loss: 0.00024\tdev_loss: 0.00080\teltime: 51.56216\n", + "epoch: 550\ttrain_loss: 0.00024\tdev_loss: 0.00080\teltime: 51.65628\n", + "epoch: 551\ttrain_loss: 0.00024\tdev_loss: 0.00079\teltime: 51.74764\n", + "epoch: 552\ttrain_loss: 0.00024\tdev_loss: 0.00079\teltime: 51.83655\n", + "epoch: 553\ttrain_loss: 0.00024\tdev_loss: 0.00079\teltime: 51.92819\n", + "epoch: 554\ttrain_loss: 0.00024\tdev_loss: 0.00078\teltime: 52.02040\n", + "epoch: 555\ttrain_loss: 0.00024\tdev_loss: 0.00078\teltime: 52.11475\n", + "epoch: 556\ttrain_loss: 0.00024\tdev_loss: 0.00078\teltime: 52.20706\n", + "epoch: 557\ttrain_loss: 0.00024\tdev_loss: 0.00077\teltime: 52.29876\n", + "epoch: 558\ttrain_loss: 0.00024\tdev_loss: 0.00077\teltime: 52.38654\n", + "epoch: 559\ttrain_loss: 0.00024\tdev_loss: 0.00077\teltime: 52.47804\n", + "epoch: 560\ttrain_loss: 0.00024\tdev_loss: 0.00076\teltime: 52.57026\n", + "epoch: 561\ttrain_loss: 0.00024\tdev_loss: 0.00076\teltime: 52.66003\n", + "epoch: 562\ttrain_loss: 0.00024\tdev_loss: 0.00076\teltime: 52.75307\n", + "epoch: 563\ttrain_loss: 0.00024\tdev_loss: 0.00075\teltime: 52.84238\n", + "epoch: 564\ttrain_loss: 0.00024\tdev_loss: 0.00075\teltime: 52.93354\n", + "epoch: 565\ttrain_loss: 0.00024\tdev_loss: 0.00075\teltime: 53.02216\n", + "epoch: 566\ttrain_loss: 0.00024\tdev_loss: 0.00074\teltime: 53.13928\n", + "epoch: 567\ttrain_loss: 0.00024\tdev_loss: 0.00074\teltime: 53.23504\n", + "epoch: 568\ttrain_loss: 0.00024\tdev_loss: 0.00074\teltime: 53.32647\n", + "epoch: 569\ttrain_loss: 0.00024\tdev_loss: 0.00074\teltime: 53.41499\n", + "epoch: 570\ttrain_loss: 0.00024\tdev_loss: 0.00073\teltime: 53.50466\n", + "epoch: 571\ttrain_loss: 0.00023\tdev_loss: 0.00073\teltime: 53.59324\n", + "epoch: 572\ttrain_loss: 0.00023\tdev_loss: 0.00073\teltime: 53.68252\n", + "epoch: 573\ttrain_loss: 0.00023\tdev_loss: 0.00072\teltime: 53.77330\n", + "epoch: 574\ttrain_loss: 0.00023\tdev_loss: 0.00072\teltime: 53.86190\n", + "epoch: 575\ttrain_loss: 0.00023\tdev_loss: 0.00072\teltime: 53.95006\n", + "epoch: 576\ttrain_loss: 0.00023\tdev_loss: 0.00072\teltime: 54.03855\n", + "epoch: 577\ttrain_loss: 0.00023\tdev_loss: 0.00071\teltime: 54.12558\n", + "epoch: 578\ttrain_loss: 0.00023\tdev_loss: 0.00071\teltime: 54.21290\n", + "epoch: 579\ttrain_loss: 0.00023\tdev_loss: 0.00071\teltime: 54.30239\n", + "epoch: 580\ttrain_loss: 0.00023\tdev_loss: 0.00071\teltime: 54.39165\n", + "epoch: 581\ttrain_loss: 0.00023\tdev_loss: 0.00070\teltime: 54.48232\n", + "epoch: 582\ttrain_loss: 0.00023\tdev_loss: 0.00070\teltime: 54.57560\n", + "epoch: 583\ttrain_loss: 0.00023\tdev_loss: 0.00070\teltime: 54.66534\n", + "epoch: 584\ttrain_loss: 0.00023\tdev_loss: 0.00070\teltime: 54.75446\n", + "epoch: 585\ttrain_loss: 0.00023\tdev_loss: 0.00069\teltime: 54.84228\n", + "epoch: 586\ttrain_loss: 0.00023\tdev_loss: 0.00069\teltime: 54.93125\n", + "epoch: 587\ttrain_loss: 0.00023\tdev_loss: 0.00069\teltime: 55.01888\n", + "epoch: 588\ttrain_loss: 0.00023\tdev_loss: 0.00069\teltime: 55.10774\n", + "epoch: 589\ttrain_loss: 0.00023\tdev_loss: 0.00068\teltime: 55.19872\n", + "epoch: 590\ttrain_loss: 0.00023\tdev_loss: 0.00068\teltime: 55.28926\n", + "epoch: 591\ttrain_loss: 0.00023\tdev_loss: 0.00068\teltime: 55.37936\n", + "epoch: 592\ttrain_loss: 0.00023\tdev_loss: 0.00068\teltime: 55.47085\n", + "epoch: 593\ttrain_loss: 0.00023\tdev_loss: 0.00067\teltime: 55.55838\n", + "epoch: 594\ttrain_loss: 0.00023\tdev_loss: 0.00067\teltime: 55.64448\n", + "epoch: 595\ttrain_loss: 0.00023\tdev_loss: 0.00067\teltime: 55.73403\n", + "epoch: 596\ttrain_loss: 0.00023\tdev_loss: 0.00067\teltime: 55.82466\n", + "epoch: 597\ttrain_loss: 0.00023\tdev_loss: 0.00067\teltime: 55.92144\n", + "epoch: 598\ttrain_loss: 0.00023\tdev_loss: 0.00066\teltime: 56.01088\n", + "epoch: 599\ttrain_loss: 0.00023\tdev_loss: 0.00066\teltime: 56.09888\n", + "epoch: 600\ttrain_loss: 0.00023\tdev_loss: 0.00066\teltime: 56.18590\n", + "epoch: 601\ttrain_loss: 0.00023\tdev_loss: 0.00066\teltime: 56.27568\n", + "epoch: 602\ttrain_loss: 0.00023\tdev_loss: 0.00065\teltime: 56.36465\n", + "epoch: 603\ttrain_loss: 0.00023\tdev_loss: 0.00065\teltime: 56.45705\n", + "epoch: 604\ttrain_loss: 0.00023\tdev_loss: 0.00065\teltime: 56.54848\n", + "epoch: 605\ttrain_loss: 0.00023\tdev_loss: 0.00065\teltime: 56.63993\n", + "epoch: 606\ttrain_loss: 0.00023\tdev_loss: 0.00065\teltime: 56.73455\n", + "epoch: 607\ttrain_loss: 0.00023\tdev_loss: 0.00064\teltime: 56.83108\n", + "epoch: 608\ttrain_loss: 0.00023\tdev_loss: 0.00064\teltime: 56.91905\n", + "epoch: 609\ttrain_loss: 0.00023\tdev_loss: 0.00064\teltime: 57.01095\n", + "epoch: 610\ttrain_loss: 0.00023\tdev_loss: 0.00064\teltime: 57.10755\n", + "epoch: 611\ttrain_loss: 0.00023\tdev_loss: 0.00064\teltime: 57.20305\n", + "epoch: 612\ttrain_loss: 0.00023\tdev_loss: 0.00063\teltime: 57.30036\n", + "epoch: 613\ttrain_loss: 0.00023\tdev_loss: 0.00063\teltime: 57.40312\n", + "epoch: 614\ttrain_loss: 0.00023\tdev_loss: 0.00063\teltime: 57.49304\n", + "epoch: 615\ttrain_loss: 0.00023\tdev_loss: 0.00063\teltime: 57.58601\n", + "epoch: 616\ttrain_loss: 0.00022\tdev_loss: 0.00063\teltime: 57.67762\n", + "epoch: 617\ttrain_loss: 0.00022\tdev_loss: 0.00063\teltime: 57.76737\n", + "epoch: 618\ttrain_loss: 0.00022\tdev_loss: 0.00062\teltime: 57.86436\n", + "epoch: 619\ttrain_loss: 0.00022\tdev_loss: 0.00062\teltime: 57.95906\n", + "epoch: 620\ttrain_loss: 0.00022\tdev_loss: 0.00062\teltime: 58.04820\n", + "epoch: 621\ttrain_loss: 0.00022\tdev_loss: 0.00062\teltime: 58.14457\n", + "epoch: 622\ttrain_loss: 0.00022\tdev_loss: 0.00062\teltime: 58.23944\n", + "epoch: 623\ttrain_loss: 0.00022\tdev_loss: 0.00061\teltime: 58.32914\n", + "epoch: 624\ttrain_loss: 0.00022\tdev_loss: 0.00061\teltime: 58.42416\n", + "epoch: 625\ttrain_loss: 0.00022\tdev_loss: 0.00061\teltime: 58.51801\n", + "epoch: 626\ttrain_loss: 0.00022\tdev_loss: 0.00061\teltime: 58.61866\n", + "epoch: 627\ttrain_loss: 0.00022\tdev_loss: 0.00061\teltime: 58.70919\n", + "epoch: 628\ttrain_loss: 0.00022\tdev_loss: 0.00061\teltime: 58.80216\n", + "epoch: 629\ttrain_loss: 0.00022\tdev_loss: 0.00061\teltime: 58.89364\n", + "epoch: 630\ttrain_loss: 0.00022\tdev_loss: 0.00060\teltime: 58.98301\n", + "epoch: 631\ttrain_loss: 0.00022\tdev_loss: 0.00060\teltime: 59.07097\n", + "epoch: 632\ttrain_loss: 0.00022\tdev_loss: 0.00060\teltime: 59.15759\n", + "epoch: 633\ttrain_loss: 0.00022\tdev_loss: 0.00060\teltime: 59.24974\n", + "epoch: 634\ttrain_loss: 0.00022\tdev_loss: 0.00060\teltime: 59.33965\n", + "epoch: 635\ttrain_loss: 0.00022\tdev_loss: 0.00060\teltime: 59.42645\n", + "epoch: 636\ttrain_loss: 0.00022\tdev_loss: 0.00059\teltime: 59.51611\n", + "epoch: 637\ttrain_loss: 0.00022\tdev_loss: 0.00059\teltime: 59.60640\n", + "epoch: 638\ttrain_loss: 0.00022\tdev_loss: 0.00059\teltime: 59.69259\n", + "epoch: 639\ttrain_loss: 0.00022\tdev_loss: 0.00059\teltime: 59.78101\n", + "epoch: 640\ttrain_loss: 0.00022\tdev_loss: 0.00059\teltime: 59.87180\n", + "epoch: 641\ttrain_loss: 0.00022\tdev_loss: 0.00059\teltime: 59.96241\n", + "epoch: 642\ttrain_loss: 0.00022\tdev_loss: 0.00059\teltime: 60.05394\n", + "epoch: 643\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.14407\n", + "epoch: 644\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.23422\n", + "epoch: 645\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.32430\n", + "epoch: 646\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.41187\n", + "epoch: 647\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.49723\n", + "epoch: 648\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.58576\n", + "epoch: 649\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.67474\n", + "epoch: 650\ttrain_loss: 0.00022\tdev_loss: 0.00058\teltime: 60.76089\n", + "epoch: 651\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 60.85195\n", + "epoch: 652\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 60.94225\n", + "epoch: 653\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 61.03196\n", + "epoch: 654\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 61.12193\n", + "epoch: 655\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 61.20979\n", + "epoch: 656\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 61.29793\n", + "epoch: 657\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 61.38651\n", + "epoch: 658\ttrain_loss: 0.00022\tdev_loss: 0.00057\teltime: 61.47477\n", + "epoch: 659\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 61.56070\n", + "epoch: 660\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 61.64737\n", + "epoch: 661\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 61.73253\n", + "epoch: 662\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 61.82142\n", + "epoch: 663\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 61.90743\n", + "epoch: 664\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 61.99600\n", + "epoch: 665\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 62.08290\n", + "epoch: 666\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 62.17150\n", + "epoch: 667\ttrain_loss: 0.00022\tdev_loss: 0.00056\teltime: 62.25832\n", + "epoch: 668\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.34649\n", + "epoch: 669\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.43476\n", + "epoch: 670\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.52304\n", + "epoch: 671\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.60947\n", + "epoch: 672\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.69703\n", + "epoch: 673\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.78577\n", + "epoch: 674\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.87272\n", + "epoch: 675\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 62.96248\n", + "epoch: 676\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 63.05095\n", + "epoch: 677\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 63.13823\n", + "epoch: 678\ttrain_loss: 0.00022\tdev_loss: 0.00055\teltime: 63.22599\n", + "epoch: 679\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.31444\n", + "epoch: 680\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.40096\n", + "epoch: 681\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.48818\n", + "epoch: 682\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.57436\n", + "epoch: 683\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.66259\n", + "epoch: 684\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.75029\n", + "epoch: 685\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.83460\n", + "epoch: 686\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 63.92061\n", + "epoch: 687\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 64.00827\n", + "epoch: 688\ttrain_loss: 0.00022\tdev_loss: 0.00054\teltime: 64.09709\n", + "epoch: 689\ttrain_loss: 0.00021\tdev_loss: 0.00054\teltime: 64.19136\n", + "epoch: 690\ttrain_loss: 0.00021\tdev_loss: 0.00054\teltime: 64.28134\n", + "epoch: 691\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.36720\n", + "epoch: 692\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.45411\n", + "epoch: 693\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.54213\n", + "epoch: 694\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.62945\n", + "epoch: 695\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.71334\n", + "epoch: 696\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.80167\n", + "epoch: 697\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.88891\n", + "epoch: 698\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 64.97527\n", + "epoch: 699\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 65.06393\n", + "epoch: 700\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 65.15028\n", + "epoch: 701\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 65.23530\n", + "epoch: 702\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 65.32188\n", + "epoch: 703\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 65.40951\n", + "epoch: 704\ttrain_loss: 0.00021\tdev_loss: 0.00053\teltime: 65.49310\n", + "epoch: 705\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 65.58172\n", + "epoch: 706\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 65.67029\n", + "epoch: 707\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 65.75727\n", + "epoch: 708\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 65.84520\n", + "epoch: 709\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 65.93287\n", + "epoch: 710\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.02068\n", + "epoch: 711\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.11078\n", + "epoch: 712\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.19914\n", + "epoch: 713\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.28518\n", + "epoch: 714\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.37400\n", + "epoch: 715\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.46002\n", + "epoch: 716\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.54652\n", + "epoch: 717\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.63364\n", + "epoch: 718\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.72050\n", + "epoch: 719\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.80776\n", + "epoch: 720\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.89670\n", + "epoch: 721\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 66.98694\n", + "epoch: 722\ttrain_loss: 0.00021\tdev_loss: 0.00052\teltime: 67.07652\n", + "epoch: 723\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.16707\n", + "epoch: 724\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.25375\n", + "epoch: 725\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.34057\n", + "epoch: 726\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.42846\n", + "epoch: 727\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.51459\n", + "epoch: 728\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.60047\n", + "epoch: 729\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.68678\n", + "epoch: 730\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.77427\n", + "epoch: 731\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.86104\n", + "epoch: 732\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 67.94941\n", + "epoch: 733\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.03667\n", + "epoch: 734\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.12314\n", + "epoch: 735\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.21134\n", + "epoch: 736\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.30055\n", + "epoch: 737\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.38642\n", + "epoch: 738\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.47867\n", + "epoch: 739\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.56689\n", + "epoch: 740\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.65467\n", + "epoch: 741\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.74288\n", + "epoch: 742\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.82980\n", + "epoch: 743\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.91196\n", + "epoch: 744\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 68.99730\n", + "epoch: 745\ttrain_loss: 0.00021\tdev_loss: 0.00051\teltime: 69.08634\n", + "epoch: 746\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.17436\n", + "epoch: 747\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.26103\n", + "epoch: 748\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.34748\n", + "epoch: 749\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.43254\n", + "epoch: 750\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.51996\n", + "epoch: 751\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.60714\n", + "epoch: 752\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.69450\n", + "epoch: 753\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.78274\n", + "epoch: 754\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.87162\n", + "epoch: 755\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 69.95962\n", + "epoch: 756\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.04813\n", + "epoch: 757\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.14055\n", + "epoch: 758\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.23158\n", + "epoch: 759\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.32227\n", + "epoch: 760\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.40975\n", + "epoch: 761\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.50353\n", + "epoch: 762\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.60400\n", + "epoch: 763\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.69375\n", + "epoch: 764\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.78404\n", + "epoch: 765\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.87587\n", + "epoch: 766\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 70.96505\n", + "epoch: 767\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.08079\n", + "epoch: 768\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.19725\n", + "epoch: 769\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.29194\n", + "epoch: 770\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.38111\n", + "epoch: 771\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.46982\n", + "epoch: 772\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.55963\n", + "epoch: 773\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.65371\n", + "epoch: 774\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.74619\n", + "epoch: 775\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.83685\n", + "epoch: 776\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 71.92417\n", + "epoch: 777\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.01252\n", + "epoch: 778\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.10069\n", + "epoch: 779\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.18694\n", + "epoch: 780\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.27351\n", + "epoch: 781\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.36104\n", + "epoch: 782\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.44737\n", + "epoch: 783\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.53582\n", + "epoch: 784\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.62272\n", + "epoch: 785\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.70811\n", + "epoch: 786\ttrain_loss: 0.00021\tdev_loss: 0.00050\teltime: 72.79672\n", + "epoch: 787\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 72.88356\n", + "epoch: 788\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 72.96834\n", + "epoch: 789\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.05698\n", + "epoch: 790\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.14387\n", + "epoch: 791\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.22972\n", + "epoch: 792\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.31759\n", + "epoch: 793\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.40444\n", + "epoch: 794\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.49043\n", + "epoch: 795\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.57750\n", + "epoch: 796\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.66141\n", + "epoch: 797\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.74335\n", + "epoch: 798\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.83212\n", + "epoch: 799\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 73.91791\n", + "epoch: 800\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.00285\n", + "epoch: 801\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.08783\n", + "epoch: 802\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.17474\n", + "epoch: 803\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.25996\n", + "epoch: 804\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.34729\n", + "epoch: 805\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.43836\n", + "epoch: 806\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.52474\n", + "epoch: 807\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.61159\n", + "epoch: 808\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.69917\n", + "epoch: 809\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.78369\n", + "epoch: 810\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.87217\n", + "epoch: 811\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 74.96016\n", + "epoch: 812\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.04261\n", + "epoch: 813\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.12951\n", + "epoch: 814\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.21515\n", + "epoch: 815\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.29865\n", + "epoch: 816\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.39113\n", + "epoch: 817\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.48787\n", + "epoch: 818\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.57619\n", + "epoch: 819\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.67257\n", + "epoch: 820\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.77356\n", + "epoch: 821\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.86331\n", + "epoch: 822\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 75.94968\n", + "epoch: 823\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.03629\n", + "epoch: 824\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.12586\n", + "epoch: 825\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.21897\n", + "epoch: 826\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.30928\n", + "epoch: 827\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.39813\n", + "epoch: 828\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.48662\n", + "epoch: 829\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.57712\n", + "epoch: 830\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.66597\n", + "epoch: 831\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.75932\n", + "epoch: 832\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.85684\n", + "epoch: 833\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 76.94061\n", + "epoch: 834\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.03340\n", + "epoch: 835\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.12204\n", + "epoch: 836\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.21010\n", + "epoch: 837\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.29851\n", + "epoch: 838\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.38835\n", + "epoch: 839\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.47646\n", + "epoch: 840\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.56769\n", + "epoch: 841\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.65771\n", + "epoch: 842\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.74871\n", + "epoch: 843\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.84223\n", + "epoch: 844\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 77.98524\n", + "epoch: 845\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.08419\n", + "epoch: 846\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.17234\n", + "epoch: 847\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.25872\n", + "epoch: 848\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.34576\n", + "epoch: 849\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.43512\n", + "epoch: 850\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.52258\n", + "epoch: 851\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.60983\n", + "epoch: 852\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.69777\n", + "epoch: 853\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.78408\n", + "epoch: 854\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.87119\n", + "epoch: 855\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 78.95963\n", + "epoch: 856\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.04573\n", + "epoch: 857\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.13295\n", + "epoch: 858\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.22003\n", + "epoch: 859\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.30772\n", + "epoch: 860\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.39578\n", + "epoch: 861\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.48253\n", + "epoch: 862\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.56786\n", + "epoch: 863\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.65590\n", + "epoch: 864\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.74112\n", + "epoch: 865\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.82837\n", + "epoch: 866\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 79.91862\n", + "epoch: 867\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 80.00419\n", + "epoch: 868\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 80.08961\n", + "epoch: 869\ttrain_loss: 0.00021\tdev_loss: 0.00049\teltime: 80.17640\n", + "Early stopping!!!\n" ] } ], @@ -1576,26 +1372,26 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" ] }, - "execution_count": 15, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+3UlEQVR4nO3deXhb9YE3+q9k2ZYt77sd74733YntOAlxNrJB2NpCKWVKYdoXJvQCXZ7SzuVtuTO3TG+n7zvTzrzQeTqEAqWUAiGEQBKIE2dz4iy24yV2vMf7vi+yJZ37xy86lmw5sR0vsvP9PM/vOUfSkXSkxNJXv1UhSZIEIiIiIiuiXOoTICIiIpqMAYWIiIisDgMKERERWR0GFCIiIrI6DChERERkdRhQiIiIyOowoBAREZHVYUAhIiIiq6Na6hOYC4PBgObmZjg7O0OhUCz16RAREdEMSJKEgYEBBAQEQKm8dR3Jsgwozc3NCAoKWurTICIiojloaGhAYGDgLY9ZlgHF2dkZgHiBLi4uS3w2RERENBP9/f0ICgqSv8dvZVkGFGOzjouLCwMKERHRMjOT7hnsJEtERERWhwGFiIiIrA4DChEREVkdBhQiIiKyOgwoREREZHUYUIiIiMjqMKAQERGR1WFAISIiIqvDgEJERERWhwGFiIiIrA4DChEREVkdBhQiIiKyOgwoJkb7+nDRxwdnX3oJ46OjS306REREdy0GFBOX/6//C+kdHdjwb/+GG87O+PzrX0d3a+tSnxYREdFdhwHFRORPf4rc7Gz0KhSI0Omw56OPMBwQgA82bED55ctLfXpERER3DQYUEz5xccg+eRIO7e249Nhj6FCpEChJePTcOXiuXYs/RUXh+IcfQpKkpT5VIiKiFY0BxQJ7Ly+sff99ePX34/oPf4hWR0d4A/hOZSXSv/EN/LeXF/a/9hr6+vqW+lSJiIhWJIW0DKsD+vv74erqir6+Pri4uCz8E+p0aPuP/4D+n/8ZAV1dAIBRAG+rVKh++GF87cc/Rnp6OhQKxcKfCxER0TI1m+9v1qDMhEoF3xdfREB7O4bffx8toaFQA/i+Tof/929/Q0VmJr4eG4s33ngDAwMDS322REREyx4DymwolXB87DH419RAyslBT3o6VACeBPBRRQWCn3sO3/Lxwfe/9z1cZqdaIiKiOWNAmQuFAootW+Cenw9cugTt3r2QFArsAXBodBTP//GP+I+1a7E+LQ1vvPEGenp6lvqMiYiIlhUGlDu1Zg3sP/0UiuvXIT3/PPRqNZIA7AdwoKAAzc89h0Q/Pzz66KM4fPgwdDrdUp8xERGR1WMn2fnW0wP88Y/Q/9u/waa5GYDoUPsOgH8D0OnjgyeeeAJ/93d/h+TkZHasJSKiu8Zsvr8ZUBbK+Djw0UeQfvtbKC5dkq8+CuA/ARwGEBkdjUcffRSPPfYY4uPjl+pMiYiIFgUDijWRJODsWeB//29IBw5AcfPtbgDwXwD+CKAVQHx8PB577DE89thjiIqKWsITJiIiWhgMKNaqpgZ44w3gzTeBm/Op6BQKHATwfyQJJwBIAFJSUvDoo4/i4YcfRkxMzFKeMRER0bxhQLF2o6PARx8Br78ualduanFwwB+0WrxlMKD+5nVRUVF46KGH8OCDD2LdunVQKtmvmYiIlicGlOXk6lXgD38A3nkHMJnkrdDDA7/r68Nf9XoM37zO19cXe/fuxYMPPojt27dDrVYvzTkTERHNAQPKcjQ8DBw4AOzfD+TkiL4rAMbVapwNCMCv29pwZGhIPtzR0RFbt27F7t27sXv3boSFhS3VmRMREc0IA8pyV18valTeeguorpavHg4IQG5AAH7T0IATbW1md4mOjsbu3buxa9cuZGdns3aFiIisDgPKSmEcAfTWW8Bf/woMDso3jURGIj8sDH/o6cEHV65Ar9fLtzk4OGDLli3Yvn07tm7disTERPZdISKiJceAshINDQGffAK8/z5w9KiYZ+UmXWoqyhIS8GetFn8+exZNTU1md/X09MSWLVuwdetWbN26FVFRUZwgjoiIFh0DykrX0yP6q7z/vuivYlJ7IiUno33dOhxVq/F+RQVOnT6NIZO+KwAQEBCALVu2IDs7Gxs3bkRMTAwDCxERLTgGlLtJe7sYsvz++8CZM4DBMHFbUBD099+P8shIHOzrw1enTuHcuXPQarVmD+Hp6YkNGzbgnnvuwcaNG5GWlgY7O7tFfiFERLTSMaDcrTo7gcOHgYMHRTPQ8PDEbU5OwObNGM/OxhVPT3xWXY0zZ8/iwoULGBkZMXsYtVqNzMxMbNy4Effccw+ysrL4PhMR0R1jQCFgZAQ4flyElUOHgEmjfhAQAGzfDt2WLbjq7Y0T5eU4ffo0zpw5g66bs9waKZVKJCUlYePGjdiwYQOysrIQHBzMZiEiIpoVBhQyZzAARUXAl18CX30FnD4tZrM1lZAAbN0Kaf16VPv54WRlpRxYampqpjykn58fsrKysG7dOqxbtw5r166Fo6PjIr0gIiJajhhQ6NZGRsTw5a++EqGloECeGE4WHAxs2ACsX4+OyEjk9vTg1LlzyMvLQ2FhIXQ6ndnhNjY2SE5OlgNLVlYWIiIiWMtCREQyBhSanc5OMRro1Cng3DlR22La2RYANBogMxPYsAGjaWkosLfH2dJS5OXlIS8vDy0tLVMe1tPT0yywpKen89+LiOguxoBCd2ZgAMjPF2Hl7FkgLw/o7596XGgokJoKKTUVncHBOK/V4kR5Oc6fP4/Lly9jbGzM7HCFQoGEhASsX78eGzZswPr16xEeHs5aFiKiuwQDCs0vgwEoKxNhxRhaTKbgN+PnB6SmQpeUhFpXV5zv68PRmhqcvXgRdXV1Uw738fHB+vXr5bJmzRpO009EtEIxoNDC6+kBCgtF/5UrV8S2vHxq0xAA2NgAkZEYCQ9HvaMjLg0P41hjIz65dg0DJjPiAoCtrS3WrFkjB5asrCwEBAQszmsiIqIFxYBCS2N4GLh6dSKwlJQApaWiycgCSanE6KpVaHRxwdXxcRxvbcWl/n5UAegxOS40NNSsliUxMREqlWpRXhIREc0fBhSyHpIENDWJJiLTUloK9PZOe7che3vUKpUoGhlBFYAqAJU3t6OOjshavx7Z2dnIzs5GRkYG7O3tF+f1EBHRnDGgkPWTJDF53OTgUlUlAs0t9MI8sNTb2sIhIQFBW7di7e7dWJeVxTlZiIisEAMKLW9DQ0BNjQgrVVVAZeXEfkPDLe/aC6BKoUCPpyeU0dHwXr8eq3fvhmNyMuDhsSinT0REljGg0Mo1MmIWXqTr1zF89SoM169D090N5S3uOuzoCEN4OBxTUqCMigIiIycK/x8RES04BhS6O42MQKquRtvp02jIycFwURHsb9xAkFaLVbe7r6+veWCJiRHT/4eHi1FIRER0xxhQiEzU1tYi59AhlB48iM7z57FqeBiRgFz8bnVntRqIixNhJSEBiI8X26AggBPMERHNCgMK0TR0Oh3y8/Nx7NgxHDt2DBcuXIDGYJDDSoyNDdZ7eSHR1ha+nZ1QTl5U0cjFZSKsJCQAKSlAairg7LyIr4aIaHlhQCGaoZ6eHuTk5ODYsWM4evQo6uvr5duUADaHhOCJ5GRs9vZG6OAglKWlYkK6SYslAhA1KjExwNq1EyUlBeCIIiIiAAwoRHMiSRIqKytx9OhRHD58GDk5ORg3menW3d0du3fvxkN79mBXeDic6+vFZHTFxWJyusbGqQ+qVIomosxMYP16UaKj2TxERHclBhSieTAwMIBjx47h008/xeHDh9HV1SXfplKpkJ2djb179+Khhx5CSEgI0NoKXL4MXLokthcviusm8/AAsrJEWNmwAUhPZy0LEd0VGFCI5pler0deXh4+/fRTHDp0COXl5Wa3Z2Rk4NFHH8XXv/51EVaMmptFUDl/Xiy0mJ8PTO7XolKJpqB77gG2bQM2bWJfFiJakRhQiBZYZWUlDh06hIMHD+L06dMw/TPKzMzEN77xDXzjG99AcHCw+R3HxoCiIhFWjCtDT545V6UCMjKA7dtFYFm3DrCzW4RXRUS0sBhQiBZRS0sLPv74Y/ztb3/DqVOnpoQVY83KlLBi1NAAnDkDnDgBHD8uJqIz5egoaleMgSU5WfRtISJaZmbz/T2rT7nXXnsN6enpcHZ2ho+PDx566CFUVFSYHVNdXY2HH34Y3t7ecHFxwaOPPoq2trYpj3X48GFkZmbCwcEB7u7ueOihh2ZzKkRWw9/fH/v27cPJkyfR1NSE//iP/0B2djYUCgUuXLiAH/3oRwgJCcGGDRvwf/7P/0FHR4f5AwQFAY8/DvzXfwHV1UBtLfDHPwLf/Cbg4yNWiT56FPjJT4C0NHHd448Df/4zYNIvhohoJZlVDcquXbvwzW9+E+np6dDpdPj5z3+OkpISlJWVQaPRYGhoCElJSUhOTsarr74KAHjllVfQ3NyM8+fPQ3nzV99HH32E733ve/jVr36FrVu3QqfToaSkBI8++uiMzoM1KLQcGGtWPvjgA7NmIJVKhR07duCJJ57Agw8+CI1GM/2DSJIYKfTVV6J2JTcXGBycuF2pFB1u77tPlMREjhAiIqu1aE08HR0d8PHxQW5uLjZt2oRjx45h9+7d6OnpkZ+4r68P7u7uOHbsGLZv3w6dTofQ0FC8+uqreOaZZ+b0vAwotNw0Nzfjr3/9K/785z/j8uXL8vUajQYPPfQQnnjiCdx7771QqVS3fqDxceDCBeDzz4HDh4GrV81vDwoSQeX++4EtWzg6iIisyoI18UzW19cHAPC4uUqsVquFQqGAvb29fIxarYZSqcSZM2cAAFeuXEFTUxOUSiVSU1Ph7++P3bt3o6SkZNrn0Wq16O/vNytEy0lAQABeeuklXLp0CdeuXcMrr7yC8PBwDA0N4c9//jP27NmDgIAA/OAHP8D58+cx7e8GW1tg40bgV78SnW3r64HXXxehRK0W/VneeEMEFE9P4KGHgHfeAXp7F/PlEhHdOWmO9Hq9dN9990kbNmyQr2tvb5dcXFykF154QRoaGpIGBwel559/XgIgff/735ckSZL+8pe/SACk4OBg6cMPP5QuXbokPf7445Knp6fU1dVl8bl+8YtfSACmlL6+vrmePtGSMxgMUl5envT8889L3t7eZv+3IyIipFdffVWqra2d+QMODUnSZ59J0nPPSVJQkCSJBiJRbG0lafduSfrjHyWpo2PBXhMR0a309fXN+Pt7zgHl2WeflUJCQqSGhgaz648ePSqFh4dLCoVCsrGxkb797W9LaWlp0rPPPitJkiT9+c9/lgBIf/jDH+T7jI6OSl5eXtIbb7xh8blGR0elvr4+uTQ0NDCg0IoyNjYmff7559ITTzwhOTo6moWVLVu2SG+//bY0ODg48wc0GCSpsFCS/uf/lKS4OPOwYmMjSdu2SdIbbzCsENGimk1AmVMTz/PPP4/PPvsMJ06cQGBgoNltO3bsQHV1Ndrb29HZ2Yl33nkHTU1NCA8PByBGPABAXFycfB97e3uEh4fjxo0bFp/P3t4eLi4uZoVoJbG1tcXu3bvx7rvvor29He+88w62bdsGhUKBEydO4O/+7u/g5+eHZ555Zsq8KxYpFGI48quvAqWlQFkZ8E//JCaE0+tFh9tnnwX8/ICdO4H9+4GenkV5rUREMzGrgCJJEp5//nkcOHAAOTk5CAsLm/ZYLy8vuLm5IScnB+3t7XjggQcAAGvWrIG9vb3Z8OTx8XHU1dWZz8BJdJfSaDT49re/ja+++gq1tbX4p3/6J0RERGBwcBBvvvkmNm3ahMjISPzzP//ztKF+ithY4P/+v4GCAqCqCviXfxFDlvV64Ngx4OmnAV9fYO9e4N13gYGBhX2RRES3MatRPP/wD/+A9957DwcPHkR0dLR8vaurKxwcHAAA+/fvR2xsLLy9vZGXl4cXXngBTz31FH7729/Kx7/44ov48MMP8eabbyIkJAS/+c1v5OnD3d3db3seHMVDdxtJknDmzBm89dZb+OCDDzB4c6ixQqHAtm3b8NRTT+Hhhx+G42xH7VRWAh98ALz/vhjObKRWA3v2iLlY7r8fuPn3TUR0J2b1/T2btiNY6KgKQNq/f798zE9/+lPJ19dXsrW1lSIjI6Xf/va3ksFgMHucsbEx6Uc/+pHk4+MjOTs7S9u3b5dKSkpmfB6zacMiWmkGBgakP/3pT9LmzZvN/g6dnZ2lv//7v5fy8vKm/M3NSGmp6LMSHW3eZ8XFRZKeflqScnIkSa+f/xdERHeN2Xx/c6p7omWstrYWb7/9Nt566y3U1dXJ18fFxeGZZ57Bk08+CW9v79k9qCSJIczvvw/85S+AaTNSYKCYxfbb3waSkubnRRDRXYNr8RDdZQwGA06dOoU333wTH374IUZGRgCIzrcPPPAAnnnmGezYsQM2NjazfWCxTtC77wJ/+5v5fCqJiSKoPP64mCCOiOg2GFCI7mJ9fX34y1/+gv/+7//GpUuX5OsDAwPx1FNP4emnn75lB/dpabViBtt33wU++0yszAyIEUPZ2SKsfP3rgKvrPL0SIlppGFCICABQVFSEN998E++++y66u7vl67du3YpnnnkGjzzyCNRq9ewfuKcH+PBDEVZOnZq4Xq0GHnwQePJJYMcOMfMtEdFNDChEZGZ0dBQHDx7Ef//3f+Orr76S51Fxc3PDE088gaeffhqpqalQzGWhwfp64L33xJT6165NXG9cdfnJJ8WQZi5iSHTXY0AhomnV1dXhrbfewv79+83mUUlOTsbTTz+NJ554Ap6enrN/YEkCrlwB3n5bdK7t6Ji4LS5OBJUnnmB/FaK7GAMKEd2WXq/H8ePHsX//fnz88ccYu9mnxM7ODg8++CCefvpp3HvvvbPvWAuIVZePHRNh5eBB0X8FELUoW7aIsPK1rwHOzvP4iojI2jGgENGsdHd34y9/+QvefPNNXLlyRb4+MDAQ3/nOd/Dd734XERERc3vwvj7RX+Xtt837qzg4AA8/LMLK9u2ASnWHr4KIrB0DChHNWWFhodyxtsdkfZ7s7Gw8/fTTeOSRR+Dk5DS3B6+rEx1r33kHuH594no/P9Ff5VvfAtasYX8VohWKAYWI7tjo6Cg+/fRTvPnmmzh27JjcsVaj0eDhhx/Gk08+iW3bts2tCUiSgPx8EVTefx/o6pq4LTJSBJXHHwdMltQgouWPAYWI5lVDQwPefvtt7N+/H9XV1fL1/v7++Na3voUnn3wSycnJc3vwsTHgiy/ESKBDh4Cbk8wBEKN/vvUt4LHHxCy2RLSsMaAQ0YKQJAnnz5/HO++8g7/+9a9mc6skJibiySefxLe+9S2sWrVqbk8wMCA61b73nuhkq9eL6xUKYNMmEVa+9jVgLqOMiGjJMaAQ0YIbGxvD559/jnfffReHDh2SRwEZV1h+8skn76y/SkeH6Fz7l78Ap09PXK9SAbt2ibCydy8w18cnokXHgEJEi6qnpwd/+9vf8M477+DMmTPy9Y6Ojmb9VVRzHalz48bE4oWFhRPX29sDO3cCjzwiwoqHx529ECJaUAwoRLRkampq8Oc//xnvvPMOKisr5et9fHzwyCOP4Bvf+AY2bdo097By7ZoIKn/5C1BVNXG9jY2YY+WRR4CHHgL8/e/shRDRvGNAIaIlJ0kS8vPz8c477+D9999Hl8lIHW9vbzzyyCN49NFH5x5WJAkoKQE+/liUq1cnblMogPXrRVh5+GFgLosjEtG8Y0CZI4NWi9L330fcN78JG3v7eXtcorvd+Pg4cnJy8Le//Q0HDhww61xrDCvf+MY3kJ2dPfealaoq4MABEVbOnze/LTVVhJX77weSkznPCtESYUCZo/J330XMk09iEECdtzd0GRkI/MY34HX//Rw1QDRPxsfHceLECTmsTK5Zefjhh/HII49g8+bNsJ/rD4WmJuCTT4CPPgJycwGDYeI2f39g925gzx4xg62r6529ICKaMQaUOTr/058i7v/7/2DpEdvc3TGeng6fr38ddvfeC4SGztvzEt2txsfHcfLkSXzwwQdTwoqTkxN27NiBvXv34r777oO3t/fcnqSzE/j0UxFYjh8HhocnblOpgA0bJgJLQgJrV4gWEAPKHdCNjaHkgw9w469/hfLCBazu6ECMpXNwd4dh40a4PvAAFJs3AxER/GAjugPGsPLhhx/i0KFDaGlpkW9TKBTIysrC3r17sXfvXsTFxUExl783rVYMWf78czE5XHm5+e2BgWII8/btwObNgK/vnb0oIjLDgDKPuru7cfqTT1D3l79Adf480gYHsRaA7aTjBl1doV+/Hi4PPADFzp3slEd0BwwGA65cuYJDhw7h0KFDKCgoMLs9JCQEO3bswL333ott27bBY67Di2trRVD5/HMgJ8d8FlsAiIsDtm4Vo4Oys9nUS3SHGFAWiCRJKCsrQ86nn6L5o4/gWliIDXo9MgBMbinv9fKCfutWuD/2GJTbtrGdm+gONDQ04LPPPsOhQ4eQk5MDrVYr36ZQKJCeni4HlnXr1sHOzm72TzI6KvqrHD0KnDhhPt+KeCIgPl6MDjKW1atZc0o0Cwwoi2R0dBT5+fk4+9VX6PjsM3gUF2OTTocsmNew6BUKtIWEQHHfffB95hkoU1L4oUY0R0NDQzh16hSOHTuGY8eOoayszOx2JycnZGdnIzs7G5s2bUJaWhpsbSfXec5AV5cILDk5oly7NvUYLy8RVNatE6swp6WJ64jIIgaUJTI2NoaLFy8i79gx9H/6KfxLSrBVp8Pk9Vg71Go0paRA9fDDCH/6aTjyA41ozpqamvDll1/KpaOjw+x2jUaDDRs2yIElPT19bqODWluBvDzg3DlRLl0SCx1OFhwswooxsKSlsS8L0U0MKFZifHwcly9fxpUDB6A7fBgR5eXYotfD0eSYEQAXXVzQkJwM2wcfRMLu3YiJiYFSqVyq0yZatgwGA4qKinDy5Enk5ubi1KlT6OnpMTtGrVYjMzMTGRkZSE9PR0ZGBoKDg2ff6VarBa5cEWHl4kXg8mXzmW1NeXmJ5qGEBLE1FvZpobsMA4qV0ul0KMzLQ91bb0Fz4gQSb9xAoHG11puKAHxpZ4f6pCS4bt+OjKwsZGZmwpe/wIhmzWAwoKSkBKdOnUJubi5yc3On1LAAYv6V9PR0ObCkp6fPbVhzXx9QUCDCypUrYnv9upj11hI/P9GPJSICCA+f2IaHAz4+bAqmFYcBZZmQDAa0HT+OjrfeglNuLoKbmmBjcnsHgM8BHAZQHhyM6IwMrFmzRi5zHrlAdJeSJAnl5eXIy8vDxYsXkZ+fj6tXr0Kn0005NiQkRA4saWlpSEhImNsPheFh0X+ltFSUkhKxra+/9f00GhFUgoLE8OdVqyZKYKCYcM7dHWBtKy0jDCjLVWcn9IcPo/+99+B4+jTsTYY8jgM4BeBTAAcB1AMIDQ01CyxpaWnwYn8WolkZHR1FUVER8vPzcfHiRVy8eBHlk+dHucnb2xuJiYlISEhAYmIiEhMTER8fDycnp9k/8cCAmIelpgaorjbfNjRMX+tiysZGNBP5+ADe3mLr5SWCi5ubGD3o5ja1uLoCc+k4THSHGFBWgvFx4OxZ4PBh6D/9FDbXr5vdfBUiqHwK4DIA4z9iQEAAkpOTzUpUVBRsbGxARDPT19eHy5cvy4GlqKgI1dXVmO7jMiQkBFFRUYiMjERUVJS8HxoaOre1hbRaUcNSUwM0Noqp+41b477JekZz4uAgamkcHSfK5MvTXTfTws8dmoQBZSWqqhLTdX/6qZgJ02RtkW4HBxy1tcXb/f04AUA76a5qtRqJiYlyYDH+AvRkBz2iGRsaGsK1a9dQXFyM4uJilJSUoLi4GK2trdPeR6VSISIiQg4uERERCAkJkYuzs/PcT2hsTEzj39EBtLeLrbH09QG9vRPF9PLAwNyfc7bs7OYebhwdARcXUUNkWhwcFu/8ad4xoKx0XV1i5suDB4EjR4ChIfkmvYMD6mJicMrNDe/39+PMtWsYNl17xISvry8SEhIQHx8vb+Pj4+HKSeWIZqyzsxPl5eW4fv06Kisrcf36dVy/fh1VVVUYHR295X3d3d3NAsvk4uXlNbcp/W9FpwP6+0VoGRkRfWSGhsTWWKa7PDQ0cZ9blYXk4DA1tBiLvz8QEDBR/PzYlGVlGFDuJqOjYtZLY+1Kc/PEbUolpI0b0bl+PS4GBOBcWxuKiopQUlKCurq6aR8yKCjILLQkJCQgNjYWGo1m4V8P0QphMBjQ2NhoFlpqa2tRX1+P+vr6KcOfLXF0dMSqVasQEBBgsfj7+yMgIMC6/jYlSXwu3S7E3K4MDYkan64uUbq7gUmjHm9LoRD9cgICRGfjsDCx0GtY2MT+3f4dssgYUO5WBoMY2njwoAgrV6+a3x4TI1Zs3b0bg6mpKKuuRmlpKUpKSuRtU1OTxYdWKBQICwubElyio6OhVqsX4cURrSz9/f24ceOGHFgmF9PFEm/HxcVlSmgx3TduHR0db/9g1kqSRM2PMbBMLp2dYjK9pibxQ62lRdQW3Y6HhwgrERHiMzImBoiOFsWagt8KwYBCQm0tcOiQCCy5uea/PjQasQjazcCCkBAAQG9vL0pLS6cEl/b2dotPoVQqERkZOSW4REZGzm16cSICAGi1WjQ0NKC5uXna0tTUNG0TriWurq63DDDG4rAS+nkYDCK0NDeL0HLjhvhMrK0F6urEtqvr1o8RFDQRWOLigORkICkJmMuoLQLAgEKW9PYCX34p+q4cOSJ+aZiKjZ0IKxs3ApOmAu/o6JgSWkpLS6etpra1tUV0dPSUPi7h4eEcUUQ0TyRJwsDAgBxYWlpapuwbt7MJMl5eXggKCkJgYKDZ1rgfGBg4t+UCrE1//0RYqaoSw77Ly4GKCtHZ2BKFQkyul5wMpKRMlIAATqw3AwwodGsGA1BUNLHMfF6e2aggaDTAtm3Ajh1imfnYWIt/eJIkoaWlxWJwGRwctPjUarUacXFxSE5ORkpKijyyyM3NbYFeLBFNF2Qmb5uamjBiMv/SrQQEBCAiIgLh4eEIDw+X9yMiIuDt7T3/nXsXW3e3CCrG0FJSIj43p2kGh6enCCppaWIByawsrsFkAQMKzU5Pj6hd+eILy7Urvr4iqGzdKrYREbf8pSBJEm7cuDEluFy7dm3aD7/Q0FA5tBhLSEjI8v+QI1pGJElCb28vGhoa0NjYiIaGBov7twsxGo1mSmgJDw/H6tWrERYWtrxrUTs6RFApLJwo5eWWO/BGRAAbNojAsn69aCZazq99HjCg0NwZDOIP7sgRscT82bOiR76poCAgO3viDy8+fkZ/dHq9HrW1tbh69SqKiopQVFSEwsJC1E8z5berq6tZTUtKSgri4+NXRtUy0TIlSRK6urpQW1uL6upq1NTUoKamRt5vaGiYdkI7ALCzs0NUVBRiY2PlEhMTg+jo6OXb92V0VCxfUFAgFo48e1ZcnszFBVi3biKwZGbedaOIGFBo/mi1wPnzYihzTo7YHx83P8bZeeof3SzmUunp6TELLIWFhSgtLcX45OeBmPgqNjbWrLYlOTmZU/wTWQmtVov6+nqz0GLcr6qqmrb2RaFQIDQ0FLGxsYiPj0dqaipSU1MRGRm5PGtcenvF5+W5c6JcuABMbvpWKIDERPGDb+tWsXV3X5LTXSwMKLRwhofFr4OzZ8Uf3fnzU2emVChEv5W0NCA1VWxTUsQaIDM0NjaG8vJyObAYw0v3NNN7r1q1yiywpKSkICIiAkoupEZkNQwGA+rr63Ht2rUpZboO946OjkhOTpYDS0pKChISEpbf9AY6nejHYgws586JzrmmlErxebl1q+gHuGHDihvqzIBCi0evF1WZ585NhJaaGsvHhoVNhBZj8fef8VNJkoTGxkazwFJYWIjq6mqLx2s0GiQlJcnBJTU1FcnJybCzs5vLKyWiBSJJEjo6OuSwcvXqVRQUFKCoqMhijYtKpUJ8fDwyMjKQmZmJzMxMxMbGLr+alpYW8blprKGevEilra2ond62TYSWzEyxfMAyxoBCS6u1Fbh8WUwaV1AgynQz13p5AVFRokRGTuyvXi3W4piB/v5+FBcXm9W2FBcXW5xmXK1WY82aNVi3bh2ysrKwbt06rFq16g5erJUzGESTnE43UYyXJWmis7NCMVFsbAC1WkwprlJx6CQtGb1ej+vXr6OgoMCsWKpJdXJyQnp6uhxa1q1bB/9Z/ACyCs3NIqjk5ADHj4u5W0w5OgL33CPCytat4kfeMgtlDChkfbq7RefbgoKJ4FJRYT68ebLAQBFWwsPF/qpVE9tVq0Rb7TRfnjqdDtevX5drWgoKCnD58mWLH2xBQUFmgSUtLW3xO+LqdKJ9enBQNJmZbifvW7rNdO0U41opIyOiD9GdUCpFWJlcHB3FDJyenhNbYzG97OMj+igRzRNJktDQ0IBLly7hwoULyM/Px8WLFzFksiaZUUREBO655x5s2rQJ99xzDyIiIpbPyEBJErXRxrCSkzN1bhY3NzGycscOYOdOUUtt5RhQaHkYGgKuXxelsnJiv6JCdDC7HQcHMTmSt7eoiTFu3dzETI/OzmZbSaNBXVcX8svKcPbqVZy6eBHFJSUwTApJdnZ2SE1NlQNLVlYWggIDodDpxBf+2Jgoxn2tVrwW02Axef9Wtw0OijCxmFQqET4kybwAtw6Nc+HqCgQHixISMrFvLAEBy+5XIFkXvV6PsrIyObBcuHABJRb+tv38/OSwsmnTJiQkJCyffmqSJJrTjWHl5Ekx0ZypyEgRVHbuBDZvtsoZbxlQaHmTJDEFdWWlCCv19WJypMZGsW1quv0U1TOhUEBSqSAB0EsSDAYDdAYD9AAkAAYAKgD2ABat1VelEoHKGK5Mg9at9jUaURwcRO2GcatWizZrlUq0ZxuDya1+RRoMIniNjk4tIyNiOzgoasW6u83XQzG93N1tttL2tGxsRFAxNu9FRYmpxaOixJD25fIFQlalr68PeXl5OHXqFE6fPo38/HyMjY2ZHePm5oZ77rkHW7duxdatW5dXYNHpRG30l18CR4+K/n+mc7HY2opZwY2BJSnJKv6WGFBo5RsZmVgQrKNDrLnR0SFKf/+tm0pm8qV5GzoAOqUSBpUKSrUaNi4uULm7Q2FaazOXfTu7ldXnY3AQaGgQIfPGDfNSXy9C560WdHNwEPPsJCaKD1hj4bBymqXR0VHk5+fLgeXcuXNTZrz29vbG1q1bsW3bNmzbtg1hYWHLp0mov1/UrBw9KsrkEUK+vqIpyFh8fJboNBlQiKZnMIiQMjgofnEYDBNNHMZ941alwohej6Jr13C+oADnr1zB6QsX0NzWNuVhfXx8sHHjRmRnZ2PTpk1ITExcfqMKFpteLzpVV1dP1JgZm/qqqqbOuWPk7y+CSlqaGNmQkTGrEWFEOp0OhYWFOHnyJI4fP45Tp05NWa8oJCREDitbt26Fn5/fEp3tLEmS+PsxhpUTJ6b+MEtNnahdWb9+0UYHMaAQLSDjVP55eXk4f/488vLyUFBQMGViOTc3N2zcuBGbNm1CdnY2UlNTucLzbOh04ldgcTFw9epEmWZYOQIDJ8JKRgawdq1VtsGTdRobG8OFCxdw/PhxHD9+HOfPn4duUu1eXFwc7r33XuzatQvZ2dnLZ+ZbrVY0ARkDS2Gh+e1OTqKzrTGwrF69YKfCgEK0yEZHR3Hp0iWcPn0aubm5OHv27JTqY41Ggw0bNmDTpk3YtGkTMjIyOG3/XAwOis6ChYViWvH8fHF5cudepVKsfWIMLRs3TrvwJdFkg4ODOHPmjBxYCgsLzabwV6vV2Lx5M3bv3o1du3YhMjJy+TQHtbUBx46JsHLs2NTRQeHhIqjs2QPcf/+8PjUDCtES0+l0KCgowKlTp+Q278kzZdrb22PdunXIzs5GdnY21q1bB8cZzv1CkwwOirl38vNFuXBB9H2ZzMsL2LRpoiQlcQQRzUhXVxdOnDiBo0eP4osvvkDTpFWNw8PDsWvXLuzevRtbtmyBZrnMAGtcf80YWM6enWhaXb9eXJ5HDChEVsZgMKCkpASnTp1Cbm4uTp06hfb2drNj7OzskJmZic2bN2Pz5s0MLHeqpUXUsFy4AOTliWUZJg/ndnUVNSubNol1UNLSxOgHoluQJAmlpaU4cuQIvvjiC5w+fdqsidfOzg6bNm2SA0tsbOzyqV0ZGBBDmI8eBRISgGefndeHZ0AhsnKSJOH69evIzc2Vy+RfZLa2tmaBJSsri4HlToyNiVqW3Fzg1CngzJmp60g5OopfjdnZIrRkZgJshqPbGBwcRE5OjhxY6ibNnB0cHIxdu3Zh165d2LZt2139vcWAQrTMSJKE6upqnDx5Ui4MLAtMpwOKikRYMZbJMw2r1SKwbNkiSnr6sl8LhRaW8ceHMaycPHkSWpMZnVUqFTZs2CAHluTk5OVTuzIPGFCIljkGliVgMABlZSKo5OaKMnk4uaOjWGHWGFjWrGGTEN3S8PAwcnNz5cBSWVlpdrufn58cVu699154eHgs0ZkuDgYUohVmNoElOzsbmzdvxvr16xlY7oQkidVlT5wQ5eRJMSGgKScn0YfFGFhSU8VsvUTTqK6uxtGjR3HkyBHk5OSYrSGkVCqRkZEhB5a1a9euuLmUGFCIVjhjYMnNzcXJkydx4sQJi4ElIyPDrIZl2YwssEbGGhZjWDl5cmqTkIuL6LuyebMILMnJHCVE09JqtTh79iyOHDmCI0eOoLi42Ox2Dw8P7NixA7t27cLOnTuXz0Rxt8CAQnSXkSQJNTU1OHnyJHJzc3HixAk0NjaaHWNra4v09HR5ptsNGzbAmSsNz53BICaRMwaW3Nypi1y6uYkOt8bAkphoFeuhkHVqbGyUa1e+/PJL9PX1md2empoq165kZWUty4kfGVCI7nKSJKG2tlZuDrIUWJRKJdLS0uSZbjdu3Lji278XlF4vOt0aA8upU1NXm/XwEIHF2CQUH8+J48ginU6HCxcuyLUrly5dMrvd2dkZ27dvlwNLcHDwEp3p7DCgEJEZY2AxzsGSm5uL2kmLiSkUCiQmJsoz3d5zzz0rokp5yeh0QEHBRGA5fVpMKGfK29s8sMTEMLCQRe3t7fjyyy9x5MgRHD16FB2TZn+NjY2Vw8qmTZugVquX6ExvjQGFiG6roaFBnuk2NzcXFRUVU44JCwtDVlYW1q9fj6ysLCQlJUHFTqBzMz4u5mExBpYzZ4BJi9PB21tMy2+cnj89XdS6EJkwGAwoKCiQRwbl5eXBYLLUg4ODA7Zs2YJdu3Zhx44diIqKspqhzAwoRDRrbW1tZoGlpKQEkz8eHB0dkZGRIQeWdevWwcvLa4nOeJkbGxMz3RoDy9mzwOjo1ONWr55YADEjA0hJAZbLInW0KHp6enD8+HG5OWhyh3l/f395dF92djaio6OXLLAwoBDRHevr68OFCxeQl5eHc+fO4fz58+if3KcCQFRUlFktS1xc3IobGrkotFqxJopxPaH8fOD69anHqVRiDSHTlZujozlayFrpdGLGYmPp7zffGsvYmDh2fFxsTfcnX2cwiBmO1eqJ7c0i2dmhtbcXV+vqcPHaNVysqEC3TocBAP0AugGofXyQfXN0X3Z29qJOxc+AQkTzzmAwoKysDHl5eXJosdQs5OLigszMTDm0ZGZmws3NbfFPeCXo6ZlYsdm4COKkNZwAAM7OYtK4pCSxfkpCguiAy8/H+SVJIli0topJ/Izbrq6J0t1tftlCqF9qYwDaTUq/Wg11UBA84uKwKiMDQevXQxUSAgQEzPtSDwsWUF577TV8/PHHKC8vh4ODA9avX49f//rXiI6Olo+prq7Gj3/8Y5w5cwZarRa7du3C73//e/j6+k55PK1Wi8zMTBQVFaGgoAApKSnz/gKJaOF0dXXhwoULOHfuHPLy8nDhwgWziacA0fk2Li4OWVlZyMjIQGpqKhISEqy2E59VkySxSrMxrOTnA5cuTe3LYhQUJMJKTAwQFTVRAgI43NnU0JB56LjVvsm09bNiby+CpLOzCI6m+05O4naVSsxMfKutSiX+7cbGRJPg6Kg4J9P9kRHLNTb9/dP/X7GgMSQEgZPWFbpTCxZQdu3ahW9+85tIT0+HTqfDz3/+c5SUlKCsrAwajQZDQ0NISkpCcnIyXn31VQDAK6+8gubmZpw/fx7KSX8QL7zwAiorK/HFF18woBCtADqdDiUlJXINS15eHqqrq6ccp1KpEBsbi9TUVKSmpiItLQ0pKSn8e54LnQ64dk0ElZISoLRUbCf1QzDj4ABERk4ElrAwIDBwori6Lu/RRMaajq4uoKNjao3H5NAxKVTflrMz4Ocnio8P4OUFeHqaFw+Pia2rq/Ws4TQyIt6T9nagvR265mY0FhSgtagIIzU1sG1vh59ej1UALvr5YVNLy7w+/aI18XR0dMDHxwe5ubnYtGkTjh07ht27d6Onp0d+4r6+Pri7u+PYsWPYvn27fN8vvvgCP/zhD/HRRx8hPj6eAYVohWpvb5ebha5cuYIrV66gq6vL4rERERFyaDEGF0u1rzQDvb0irJSWAhUVoj/L9etATY0INbei0YigEhAw9Yt38pewRjNR5uNLWJJELcDwsCgjIyJADAwAfX0ieBi3PT1i+QHTJhVjud1rnMzBYSJ0+PkBvr7mW+O+r69Yk2mFMjblnj1zBgEeHtj76KPz+viz+f6+o/GCxlnujJM7abVaKBQK2Ju0WanVaiiVSpw5c0YOKG1tbfje976HTz75ZEZrhWi1WrPVIC111CMi6+Tj44MHH3wQDz74IAAxJ0tjYyMKCgrkcuXKFTQ0NKC6uhrV1dX48MMP5fv7+fkhISEB8fHxiIuLk7fu7u5L9ZKWBzc3sbDhhg3m14+PA/X1E4Hl+nVxubFR1Lp0dYlAUFEhymyoVCKo2Ntbbpowznw6Pm7eAXR8XDRZjIyIMl9dIx0dRe3GdKHDdOvktLxrjeaJUqlEQkICEhISlvpU5h5QDAYDXnzxRWzYsEF+IevWrYNGo8FPf/pT/OpXv4IkSXj55Zeh1+vRcrOaSJIkPPXUU3j22Wexdu1a1M2gfeu1116Tm4yIaHlTKBQICgpCUFAQHnjgAfn6rq4us9BSUFCAiooKtLa2orW1FV999ZXZ4/j7+yM+Pl4OLHFxcYiMjISPj4/VzPlglWxtxdDl1auBPXum3j4yIoJKYyPQ0mK5dsK0Q+jQ0ERthU4najfm81wdHETQcHERxdV1YuvmNlGbY6mZhcOxl7U5N/E899xz+OKLL3DmzBkEBgbK1x87dgzPPfccamtroVQq8fjjj6OsrAwZGRl4/fXX8bvf/Q4ffPABcnNzYWNjg7q6OoSFhd2yicdSDUpQUBCbeIhWuMHBQbmfW2lpKUpLS1FWVoaGhoZp7+Pi4oLVq1cjMjJyytbb25vhZSGMjYmgYiy3GjIrSSJ4mNawGIujoygODqIsw7Vm6NYWvA/K888/j4MHD+LUqVMICwuzeExnZydUKhXc3Nzg5+eHH/3oR/jJT36Chx56CIcOHTL7kNDr9bCxscETTzyBP/3pT7d9fvZBIbq79ff3o6yszCy4lJeX48aNG1MmlzNlGl4iIiIQGhqKkJAQhISEIDg4GA78xU20oBYsoEiShB/84Ac4cOAATp48icjIyNveJycnB9u3b8e1a9cQHR2NGzdumPUhaW5uxs6dO/Hhhx8iMzPTrDZmOgwoRGTJ6OgoamtrUVlZicrKSlRVVcnb24UXAPD19UVISIhZcAkNDUVgYCD8/f3h5eU1ZTQiEc3cgnWS3bdvH9577z0cPHgQzs7OaG1tBQC4urrKvzz279+P2NhYeHt7Iy8vDy+88AJeeuklea6UySsuOjk5ARC992cSToiIpqNWqxEbG4vY2Ngpt42OjqKmpkYOLTU1Naivr0ddXR3q6+sxODiItrY2tLW1IT8/3+Ljq1Qq+Pn5wd/fXy4BAQFTLvv4+HA2XaI7NKsalOnabvfv34+nnnoKAPDyyy/jrbfeQnd3N0JDQ/Hss8/ipZdemva+M+mDMhlrUIhoPkmShO7ubtTX15uFlrq6OtTV1aGpqQmdnZ0zfjylUgkfHx85sPj5+cHb21suXl5eZpdnMpqRaCXgVPdERPNsbGwMbW1taGlpkUtzc7PZ5ZaWFrS1tZmtLDsTjo6OZoHFUjGGGi8vL7i6urKzLy1LDChEREtEr9ejvb3dLLS0traio6PDrHR2dqKjowNjY2Ozfg6VSgUvLy+zYgwv011mB2CyBos2URsREZmzsbGR+6PcjiRJGBgYmBJepiudnZ0YGhqCTqeT54eZKY1GYzHUeHt7w8/PTy6+vr7w8fGBLYf40hJjQCEiWiIKhQIuLi5wcXFBRETEjO4zMjKCrq4udHZ2yrUwxv3prhsfH8fQ0BCGhoZQX18/o+fx8vKSA8vkAGPcDwwMhJubG5ubaEGwiYeIaAUzraWxFGTa29vR2tqKtrY2eavX62f8+BqNRp4ZODAwUN43Lc7Ozgv4Cmk5YR8UIiKaE4PBgK6uLrkJyRhcTEtbWxuam5vR3d09o8d0dXW1GF5CQ0MRERGBVatWcX6ZuwQDChERLbjh4WE0NjaioaFB3pqWxsZG9Pb23vZx7O3tERYWhvDwcERERCAiIkLeDwsLYwffFYQBhYiIrMLAwIBZeDHu37hxA7W1tairq4POuNjgNFatWoXw8HCsXr0a0dHRiImJQUxMDMLDw9mZd5lhQCEiomVBp9OhoaEBNTU1qK6ulovxsunSKJOpVCqsXr1aDizGEh0dDTc3t8V7ETRjDChERLTsSZKErq4uObBUVlaioqIC5eXlKC8vx/Dw8LT39fPzQ0xMDOLj45GQkID4+HjEx8fDw8NjEV8BTcaAQkREK5rBYEBTUxPKy8vNQkt5eTmampqmvZ+/v/+U0BIfH8/vkkXCgEJERHetgYEBlJeX49q1aygtLUVJSQlKS0tvOQdMUFCQWWhJSEhAXFwc10maZwwoREREkwwMDKCsrMwstJSWlk5b46JQKBAREYHExEQkJiYiISEBiYmJWL16NVQqznM6FwwoREREM9TT0zMluJSUlKC9vd3i8fb29oiLi5sSXAICAjir7m0woBAREd2h9vZ2FBcXo7i4GCUlJfJ2us657u7uU0JLQkICXF1dF/nMrRcDChER0QIwGAyora2Vg4sxtFy/fn3aJQKCg4OnBJeYmBjY2dkt8tkvPQYUIiKiRTQ6Oory8nKz4FJcXDxt/xaVSoXo6Giz0JKYmIiQkJAVPe0/AwoREZEV6OnpkZuHTGtc+vr6LB7v5ORk1jxkDC5eXl6LfOYLgwGFiIjISkmShMbGxim1LdeuXcP4+LjF+/j5+U0JLctxGDQDChER0TIzPj6O69evT6lxqa2tnfY+ISEhiI6OltcoMm6tdUQRAwoREdEKMTAwgNLSUrPRRMXFxejs7Jz2Pk5OTnJwiYqKQnh4OMLDwxEWFgY/P78l6+fCgEJERLSCSZKEzs5OeZr/iooKeb+mpmbaEUUAoFarERYWhrCwMLPgYtw6Ozsv2HkzoBAREd2lxsbGUF1dLYeWqqoq1NTUoKamBg0NDbcMLwDg5eWF8PBwbN68Gb/+9a/n9dxm8/3NuXqJiIhWEDs7O8TGxiI2NnbKbePj42hoaJADS21trdl+V1cXOjs70dnZCR8fnyU4+wkMKERERHcJW1tbuVnHkr6+PtTW1qK2tnbJZ8BlQCEiIiIAgKurK1JSUpCSkrLUp4KVO10dERERLVsMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1VEt9AkRERHNiMAA6ndhOV/R6wMYGUKsBe3tApQIUiqU+c5oBBhQiIloao6NASwvQ1QV0d09sTUtXF9DTAwwNAcPDwMiI2A4Pi/vPlkIxEVaMW+O+RgO4ugIuLlO3bm6Al5d5cXFh2FlADChERDRrkiRhcHAQ/f39GB4enlJGe3uhbGiAXXMz7Nrb4djdDU1fH5x6e+Hc3w+XgQFoRkaW4sRFyJmP51apzAOLtzfg5yeKv//Evp+fuE3Fr9zZmNW79dprr+Hjjz9GeXk5HBwcsH79evz6179GdHS0fEx1dTV+/OMf48yZM9Bqtdi1axd+//vfw9fXFwBQV1eHf/qnf0JOTg5aW1sREBCAb3/72/jHf/xH2NnZze+rIyKiW9Lr9eju7kZ7e7tcOjo60NHRgd7eXvT19U279TAYEAUg3KSEAUgFEDjD5x8B0AGg+zZlEMDwzeOHTfa1AAy3KIDobGkPwF2thodGA08nJ3g4OsLNwUEUtRou9vZwt7WFp60t3JVKuABwNhig0euhHhuDengYqv5+KDo7gc5OUaOj0wGtraLcjkJhHmAmBxnTrbMza2Ywy4CSm5uLffv2IT09HTqdDj//+c+xY8cOlJWVQaPRYGhoCDt27EBycjJycnIAAK+88gr27t2L8+fPQ6lUory8HAaDAX/4wx+wevVqlJSU4Hvf+x6Ghobwr//6rwvyIomI7iaSJKG7uxtNTU1obGxEU1MT2trapoSQ9vZ2dHZ2wmAwTPtYCgBBAGIBbL65NRav25zHsI0NOjUa9Dg5odfJCf3OzqK4uGDIzQ1Dbm4Yd3KCrZ0dlEolJEmCwWCAwWCAJEmwNRjgbTDA8+Z1BoMBOp0OWq0Wo6OjFsvIyIi8Pzw8jIGBAWi1WowAGBkdRfPoqGg2mgOFQgFXV1e4+/jAz9UVwRoNghwcEGBnB18bG/hIEjx1OriNjsJ5aAiO/f2w6+mBTWcnFAYD0N4uytWrt34iBwfLwWXy1sdH9K9ZoRSSJElzvXNHRwd8fHyQm5uLTZs24dixY9i9ezd6enrg4uICAOjr64O7uzuOHTuG7du3W3yc3/zmN3j99ddRU1Mzo+ft7++Hq6sr+vr65OchIrob6PV6tLW1ycGjsbHRbN+4HZ1l/wwPd3fEe3oiU61GMoBIrRaBAwPw7uqC3fj4tPeTQkKgiIgAwsKA8HBRjPteXlZREzA2NoaBgQEMDAygv79f3je93N/fj76+PvT09KC7uxs9PT1mZWhoaM7Pr4QIc1HOzojQaBCiViNIpYIfAB+9Hp7j43AbGYHT0BDsZ/PvplSKWpnpQoyvL+DpCbi7Ax4eop/NEpvN9/cdNYj19fUBADw8PAAAWq0WCoUC9vb28jFqtRpKpRJnzpyZNqD09fXJj2GJVquFVquVL/f399/JaRMRWaXx8XE0NzejoaFBDh6Tg0hLSwv0ev2MHs/LywuBgYFYtWoV/Pz84OPjAx8fH/h6eCBUq8Wqjg54NjbCobISyqIioKrK8gPZ2gKRkUBsrHmJjobC0XEe34GFYWdnB09PT3h6es75McbGxqaEFtNiKdQYrx8ZGUE7gPaBAZwZGLjl8zgC8AXgD8DPZBsAYJVKhQCFAj4GA7z0etgYDEBbmygzoLOzw7hGg3FnZ+icnaF3coJBo4HB2RkGR0foNRroNRpxnYMD7CIiEPL443N+z+7UnAOKwWDAiy++iA0bNiAhIQEAsG7dOmg0Gvz0pz/Fr371K0iShJdffhl6vR4tLS0WH6eqqgq///3vb9m889prr+HVV1+d66kSES05nU6H1tZWNDQ0yKWxsdFsv6WlBTOp1FYqlQgICMCqVasQGBgohxDT/YCAAKjVaqCvDygsBAoKxPaLL4CyMmBszNIDA1FRQHIykJQExMWJIBIRcdd38LSzs4Ovr6/cn3I2tFrtlODS29srl8n9e3p7e9HV14fqm/vyD3SdTn5MY63M5CBjuvUF4A7AA4ANANXYGFRjY3Do6ZnReV/29FzSgDLnJp7nnnsOX3zxBc6cOYPAwInuUMeOHcNzzz2H2tpaKJVKPP744ygrK0NGRgZef/11s8doampCdnY2Nm/ejD/+8Y/TPpelGpSgoCA28RCRVTA2u1gKHcb9mdZ82NraIjAwEEFBQXLgmBxAfH19YWOp70F7uwgiV65MbKurLT+Ri4sIIcnJQEqK2MbHA7eqETGOgBkcnFqGhwGtVgz9Nd1aus641etFMc5XYjp3yXT7kiSClI2NKKb7ky9P3rezE0OKjVvTMh/XLVB/kNHRUfT19aGvrw+Dg4MYGhqatgwPD5vtj4+PQzc2BtXICBxGRuAwOgrHm0U9Ngb1+DgcdTo4Ggxw0uuhMRjgZDDAwWBAz+rV2F1SMq+vZcGbeJ5//nl89tlnOHXqlFk4AYAdO3aguroanZ2dUKlUcHNzg5+fH8LDw82Oa25uxpYtW7B+/Xr813/91y2fz97e3qzZiMgSnU6HgYEBDA4O3rKMjo5ibGwMWq0WY2NjU4pWq5W/SIz53TTHm+7b2NjA1tYWdnZ2ZsXSdQ4ODnB0dJSLRqMxu2x6na2t7eK+eWSRwWBAV1cXWlpa0NzcjJaWlimlqakJTU1N0Jn8up2OSqXCqlWr5PARFBQkF+Nlb29vKJW3meRbkoAbN6aGkaYmy8cHBwOpqSKQREQAgYGiI2ZPz8R8I599Brz99sRl0/AxNDSxP/duiyufjY3lEHOHl9V2dlDb28N38u1eXsCqVbd/vNv9f7JSswookiThBz/4AQ4cOICTJ08iLCxs2mO9vET/7pycHLS3t+OBBx6Qb2tqasKWLVuwZs0a7N+///Z/jHTXGR8fR0dHB1pbW+XS1dWF7u5uuRjbd41l4DZtu8uJSqWSA4uTkxOcnJzg7Ows75uWmV7v6OgIhRV0WFxKxrk7TIfSmhbT69va2tDa2jqj4AFMNLtYCh3G4uPjY7nm41YMBtE3xDSMXL4sQoQlHh6iaDTiC1OvB/r7gZMngYMHZ/fct6LRAE5OcjGo1Ri3scG4UgmtQgGtQoFRgwEjBgOG9HoM6/UYkSSMGAwYvnndqE4H7dgYtDoddAYD9AAMkgSdJEF/s6ZEaWsLGzs72KhUsLG1hcrODvYqFexsbKC2t4eTWg0nBwdo1Go4OjhAY28PR7Uajvb20KjVcNZoYKtUivdhbGyiVsd0f7bXGa+f3Eym109MImdNjMHpVs10lj4btm0DPvpo4c7rNmYVUPbt24f33nsPBw8ehLOzM1pvjv12dXWFg4MDAGD//v2IjY2Ft7c38vLy8MILL+Cll16S50ppamrC5s2bERISgn/9139FR0eH/Ph+fn7z9brISo2Pj6OpqUmu9m5ubjYLIcYvhc7Ozjk/h729vdkXu2kx1lBMrt2wt7c3u2xjY2P2ZT7dvl6vx9jYGMbHx81qYSZfHhsbw+joqFztaqyGNZ3YamhoSB7uqdPp0N/fP68dwhUKhcX3ZDYhR6PRyO+VsZbItLbI1tZ29l/A05AkSVRP63QYGxu75fs2PDyMwcFBszb8yW36xjLTDqamvL294e/vL5eAgACz/aCgIPj5+UE1234ao6Pms6a2twOlpcC1a6JpprER6OgQX3wzZXysW3F1nQgynp4T+8bi7i7m4nBygqTRoHN0FA09PWjq7UVTXx8aurrQ3No6UZPU3IzOzs4Z9Z9ZCu7u7vDz84Ovry/8/PzMSkBAAIKDgxEcHCx/j82YJE0ElVuFmsW+PHnUlTE4zdYdjFyaD7PqgzLdr6/9+/fjqaeeAgC8/PLLeOutt9Dd3Y3Q0FA8++yzeOmll+T7vvXWW/jud79r8XFmeiocZmydDAaD3A7f0NCAGzdumHUIvHHjBlpbW2f872xjYwMfHx/5g8Xb2xseHh5mxd3d3Wzf1dV12TaPSJI05YvYWKZrurJ0vaXrFpNSqTQLLqZhz9JWkiTodDqMj4/LgWR8fPyWc3PcKUdHR3h7e5sVHx+fKZf9/f3h6+t760kkDQZRQ9HTA/T2iq1p08l0pbNzblO1GykUE8NHLRVLwcPDQ0zZPilIjY6OorKyEhUVFaitrZVLXV0d6urqZjxkWaFQwM3NDW5ubnB3dzcrLi4u0Gg0cHBwkJs7jVu1Wg2VSgWlUmlW9Hq93AfR2PxqWoaGhuS+GcZAarrf1dWF8VsMkZ7M29sbISEhCAkJQXBw8JR9Dw+P5VELaQxOkwPMbMO5o6NoQppHs/n+vqN5UJYKA8rSGRwcRG1tLWpqauRivFxbWzujDzJ7e3u56ts4/NFYTH/heHp6LmzznySJXxqjo+IP2FgF3Nkpfsl2dIgvnN5e8QXU1ye2AwNiOzIijh8fn7q11Cxg/GBTKEQbsbGYthlrNPIvVzg5Wd53dhZfMqZfQrf4AjUYDBgZGZlVyLnV9aY1ROPj43OqkZgLGxsbi/12TPvvGL8cJxdXV1ezyxqNZuKB9fqJ/hXGf1vToGEsk68zXu7rEyFl/l6o+HcNCBDzicTEiJE03t7m4cPVdVZ9CyRJQkdHB8rLy1FRUYHy8nK51NbW3vKHg1KplP9mTWuSJpcF/5udJUmS0NPTI9fMWipNTU2or6+fUZDXaDQIDQ1FREQEwsPDERERIZfQ0FDOhj4DDCg0Z3q9Hk1NTVPCh7G0t7ff8v6T2+GDg4PN2uCDg4Ph7e09818hWu1ESOjtFV8gph32brU/NCTCh3HEgHGRsdFRESJm8cvK6tnYTIQctVp0gHR0FEWjESM2jAufGcONRiPuY2trHpgmX57uGJUKUCqhNxgwrtNhXKfDmE6HsfFxsT8+jnG9HrppOhxLkiRCol4POxsbqBQK2CoUUCmVYgvAVqmErVIp7yt0OvHvaPx3Ne7f6jpj8DCWyZfnq7+Avb14v401eOPj4v+gpeG8gAgXq1dPDOlNSgISE4GQkDvu1NjV1YWrV6/K5dq1aygvL0fPLYaXurq6IiYmBhEREQgLC0NoaCjCwsIQFhaGoKCgZVszOROSJKG3txf19fWor6/HjRs3puy33WauEYVCgaCgILPQYhpi3NzcFufFWDkGFLqlkZER1NTUoLq6GtXV1Wb7dXV1GJvuA/UmDw8PhIeHTynTfpDpdKJWoqNDbDs7zUOH8Zfo5Ot6e+dnQa+5UipFbYdSOXUoo3HYojFoTf4zMn75SpL4dW3c1+kmygI2YVgl43upUIhiHD5qLWxsRO2Us7NoOnFzE1vjvq2tOOeRERFsurvF/+nmZlFu9VEaEiJqQhITJ4JITMwdz+w5NjaGiooKszBy9epVNDc3WzxeoVAgNDQUMTExiI6ORkxMjFx8fHyWR/PFEhkdHcWNGzdQW1s75XOzuroaw7cJusbPTUsBZtWqVVZV87SQGFDucpIkoaury+yPx/SPaboPLyNbW1uEhoZOG0Jc7ezEB7MxcBj3TYvp9TOcFOiWXF0nlj13cJhonhkbE79SBwZEoLnNf+che3v0ODqiy8EBbfb2aLW3R7NSiVaFAu0KBXpsbdGnUsGgVFrsL6FUKqFWq+Hg4DBl6+rqOqVvjOl2SvWvwTBRk2NadDrL108uY2OihqCvzzzUGZuhJtcmGZeqHxlZHkNFFYqJMKhSia2trfj3N9YSqdXT7zs4iFoNY7OYsZg2l6lU4n00ho7OTjFU11iam8W2pcVys50pjQaIjhbBIzp6Yj8y8tZzi8yAJEloa2ubEkTKysqm7WMRHh6OpKQkJCYmIiEhATExMYiMjJx9R1C6LUmS0N7ePu1n7u1qX+zt7REWFmYxwISFha2ofzMGlLuAVqtFQ0MD6urq5OYX0z+O243+cHV1FX8E4eGICwpCnJcXIlxdEaRWw0uSoOzqmj5wzKVnt0Ih2s2Ny5Ibf5Uaf6Ua902LRiOet7YWUkkJxq9cgVRcDPtpZiUGxAqn12+WSgC1AG4AqL+5vYMuiXdMo9HAw8MDvr6+8iiQyaNB/P395zYUdTYkSYQa039fY5+b6a67Ta3atOzsJpqXXFwmQoKxCUqjMS9OTuJ6e3sRRibXWtnYTNREmYY5061Wax7QJpe+PrFY3Gw7qSoUYv6QyevNGPd9fedl3Znx8XFUVFSgqKgIhYWFKCoqQlFR0bTNqy4uLkhKSjIrCQkJcHZ2vuNzoflh7LtnKcDU1dXddij7qlWrLPZ7CQ8Ph6en57Kq+WJAWQGM1Yn19fVyT3pjqa+vR3Nz87Sd2lwA+ACI8/JCvI8PIt3dEergAH9bW3hJEly0Wtj29EBxJ18+trai0563twgcxn3TYnq9h8etZ1kcG4O+qAg9X36JkbNnYV9cDI+mJqimaQJoBFACoBxABSZCSRMAhVIJLy8veHh4yJ0jTbdOTk7ySALTWhA7Ozt5VInF/hIQfXRMV0wdGRnByMgIhoeHpyw0Ztz29vbOavilUqmEn58fgoKCzEYQmI4qcHV1XbwPJUkSX/i3CzHGYuwrtFwYJ7wyloAAUVatMi9+fvM+3Xtvb++UIFJSUmKxmVWpVCIyMnJKGAkJCVlWX1BkTqfToaGhYcqPTOPl2/3YdHFxQUhICPz9/eHn52ex87KPjw+cnZ2t4v8JA4qVGxgYmLLy6OSt8deSA8Q6CqbFE4A3gAAbG4RqNAiwtYW3QgH38XE4DA3BZoYTS5nRaG4dMCZf5+Iy51+Lw319qPv8c/R+9RVw5Qq86uoQ2tcHOwv/FfshgshVAMUAmtzdMRgaCrfwcAQHByMwMFAe/ePj4wNfX194enoubA3ELBkMBvT19aG7uxtdXV1ovTl/hHFmUtNte3v7jIbXOjs7y2HF2JnRdOvu7r60H0Z6vQgpxuanvr6J0ts7MZmVseOyaRkaEjUhplOgm06JDkx00p28ValE4DAd/TS5uLiI/8fGGj2NZsFX3B0dHUV5eTlKS0vlUlRUhPr6eovHOzs7IykpCSkpKUhOTkZycjISEhLguAwW5qP5M7m5fnKIuV1zvSmlUmk2BNzS1sXFxWxGa39/f6xdu3ZeXxMDyiLT6/Xo7u5Ge3u7XIyzUna3tGCwuRkjbW3QdnRgrLMTNsPDcIGo6TAu5DRdmXMXOieniVDh43P7/QVo4zQYDKi8dg3Vhw9j+PRpOJSUIKClBTFaLSw9WzeAAoUCNR4e6AoLgyElBV5r1yI8IgIhISEICgoSi5+tYDqdDu3t7fJkdpZGFXR1dd32cVxcXKaEFuOIjNDQUFb/LxCtVouKigqzIFJaWorq6uppg2dISIhZEElJSUFoaOhd02mS5m5kZAS1tbXyQpPG0mo6iV5LC4bmOOHavffei2PHjs3rOTOgzNFAUxOaT5/GcGcnRrq7oe3pgba3F+N9fdANDEA3OAhpcBCG4WEohoehGB2FYmQESq0WagAaQA4exjIvX6cq1dTJliYHjEUIHLcyPj6Oa6WlqDpyBEMnTkBdXIzAtjYkGQzQWDi+X6FAlaurCCKpqXDctAlBmzYhKDjYqmo/rNHQ0BBu3LiBGzduyM1+xkm1amtrbzsUHAA8PT2nDS+hoaErqlPefDN2iKyqqkJVVRUqKyvl2pHKyspp54Xx8PBAfHy8XIxNNBx+SgttZGQEvb29cpPzdNv+/n65yXp4eBiZmZn493//93k9FwaUOcr/5S+R8eqr8/Z4psbVahhuVi+rPDxg4+YmqqEnTy9taeZHJ6cFr4KejdHRUZSUlODaiRMYPH4c6qtXEdzaijRJgruF44eUSjT5+mIoJgZ269fD7/774ZmRsWwXsLJ2w8PDFoOLcb/7dtOgA/D19TULLcbtqlWrEBAQsLh9YJZAf3+/2SzINTU1ciCpqqq65aRerq6uZkHEWPz8/Fb0e0Y0Ewu+mvFK5eDrixalElobG4yrVNDb2kJnbw+DvT0ktRpwdITS0RFKJyeonJ2hcnWFg4cHNN7ecPLygo2z88RQ2EkjF2yXaa3A0NAQioqKUHz2LPqOH4fdzTCSLkmw1DKpVSrR7OuL0aQkuGzZAr/774cmNhZRDCOLxtHREXFxcYiLi7N4e39//5TwYhpiBgYG0NbWhra2Npw/f97iYzg4OMgjjyaPSDJ2UDYOsXZzc5v9GjULQJIk9Pf3y82vpqWxsdFseYa+vr5bPpZCoUBISAhWr16N1atXIyoqSg4iAQEBDCJE84A1KCTr6+tDQUEBCvPz0XXiBGwLChDS1oZ0ADEAJkcMPYB2b2+MJCTAaetWeO3eDWVS0sRMmrTsGKcGtxRe6urq0NzcjN7e3lk/rqurq9mcMM7Ozmad8SZvbW1t5XlnjMU4wsq4Zo9p0Wq1GBgYmFL6+/vlbUdHx20nITTl5uYmz4AcGhqKyMhIOZCEhYXB3t5+1u8D0d2OTTx0W52dnbhy5QquXLqEltOnYXvlCkLa25EOIBWApY/eHldXDMfHw3HzZrjt2AHFmjWi+YnuKiMjI3Lnu+bm5imjkbq7u+Uyn6sxzxcnJyd5YUDjdtWqVVOWZmBHYqL5xyYekkmShBs3bqCwsBDFV66g49Qp2Fy9ipDubqQB+AeIzryTDTs4YDAuDg6bNsF52zYgPR3uPj4W+5jQ3cXBwUGeWfh2xsfH0dvbazY3THd3t7xKs+nKzaYrOOv1ehgMBkiSBIPBIBeFQgFbW9spxc7ODs7OznJxcXGZctnLywve3t4cqku0TDCgrCBarVaeX6H8wgUMXrgA+4oKxIyMIBXATlgeVTSuUmEoOhr2GzfCITsbyMiAY3g4HNmOTnfI1tYW3t7e8Pb2XupTIaJlhgFlGdJqtaisrERZWRkqr15FX34+lGVl8GxuRpwkYSuA7053X7UaIzExcFi/Hvbr1gGpqbCNiYGbFXRiJCIiMuK3kpUyziBYVVWFmspKNF+4gOGCAiirquDW0YEoSUIGgK9jaudVoyF3d+hjY6HZuBE2a9cCaWmwDwuDPUfUEBGRlWNAWSLGIY+NjY1oqq1FV2kp+ouLMVZZCZuGBjh1diJgfBwhmL7TqtGIgwNGwsNhu2YNnDIzoUhMBBISoHFnjxEiIlqeGFDmkSRJGBoaQndHB3rr6jDY0IChxkaMNjdjuLERhqYmKNvboe7thfPgIHwMBvgBiJ/BY48rlej38YE+IgIOKSlwSk2FIjoaiIqCg7c3HNhfhIiIVhAGFBP1x4+j9p/+CZLJImWm+wqDARgbg3J0FEqtFjZjY7AdG4OtTgc7nQ6OOh3cAATfLLOhUyjQ4+yMEV9fICQE6uhouKWkwC4qCggJgW1gIDyX6WRvREREs8WAYqLj/Hlszs2dt8cbUioxaGuLYXt7jDs7Q+fpCYW/P+xCQqCJiIBbbCzUoaGAvz9UHh7wZt8QIiIiAAwoZtwSE3EqLg6SjQ0USqVYK8bGRi4KpRIKOzsonJxg4+wMG2dnqFxcYOvmBnt3dzj5+sIlJASOq1ZB4eEBja2txYXyiIiI6NY4kywREREtitl8f7NNgYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjqqpT4BIiIiWgKSBPT0AK2tQFvb1G1cHPCTnyzZ6TGgEBERrRSSBPT1WQ4ck7dtbcD4+PSPtX07AwoRERFNQ5KAwcHbBw7jVqud3eO7uwO+voCfn/k2Lm5hXs8MMaAQEREtheHhmYWO1lZgZGR2j+3iMjVwWNr6+AD29gvz+u4QAwoREdF80emAjg6gpWUiXLS2Tr3c2ipqRWZDoxGh4nbBw9cXcHBYmNe3iBhQiIiIbkerBZqagMbGibBhGjqM+x0doklmptTqmYcOJ6eFe31WiAGFiIjubqOjInw0NIgAYiyml9vbZ/54SqVoOvH3nwgfpvumgcTZGVAoFu61LWMMKEREtHJJkqjVqKkBamuBurqJ4GHcdnbO7LHUamDVKlEsBQ/jvpcXYGOzoC/rbsCAQkREy9vgoAgfxhAyeX94+PaP4eAABAYCQUFiayymlz09WduxiBhQiIjI+g0NAVVVwPXrolRUiG119e1rQBQKUesRFiZKcPDUAOLuzvBhZRhQiIjIOhgMQH09cO3aRBAxhpHGxlvf18NjIoCEh0/sh4UBISFWO5SWpseAQkREi0uSxKiXkhLzUlYmakqm4+EBREcDUVETZfVqEUJcXRfv/GlRMKAQEdHC6ewESkunhpHeXsvH29mJ4GEMIqaBxNNzUU+dlhYDChER3TlJEh1SCwuBgoKJ0txs+XgbGyAyEkhIAOLjxTYhQdSIqPjVRAwoREQ0W+Pjop9IQcFEICksFIvUWRIWNhFAjGEkOloM26UlpdPpMDAwgP7+fnlrLF5eXti6deuSnRsDChERTU+rBa5eBS5eBK5cEWGkpAQYG5t6rJ2dCB8pKUBqqihJSWIyMppXWq3WLEzMtQzfYgj2nj17GFCIiMgK6PVixEx+vggkFy8CRUWWw4iLi3kQSUkBYmNFSCGLJEnC0NDQrEPE5JqN/v5+jFn6N7kDarUaLi4uZiUxMXFen2O2GFCIiO5GkiSG9BqDSH4+cPmy5QXsPD2B9HRgzZqJQBIWdtfNGyJJEgYHB9Hd3Y3e3l709PTMaGsaNAwGw7yek7OzM5ydnaeEi9kUZ2dn2FlhsGRAISK6G/T1iRCSlwdcuCBCSUfH1OM0GhFE0tNFycgAQkNXZBgxGAzo7u5GR0cHOjo60NnZKe9Pd1mr1d7x89rY2NxRoDAWJycnKJXKeXgnrBMDChHRSmMwAOXlwPnzIpDk5Yk5RiavsmtrK/qIGINIerpoplnm68hIkoSenh7U19ejsbERLS0tZqW5uRktLS1oa2uDTqeb9ePb2dnB3d0d7u7ucHNzm7JvunVzc4Orq6tZsHBwcIBiBQa++caAQkS03PX2ilqRvDwRSi5csDzPSFgYkJUFrFsnAkly8rIcSaPX69HS0oL6+nrU19fjxo0b8r7x8qClpqppuLq6wtvb26x4eXlNuc54vUajWcBXR0azCiivvfYaPv74Y5SXl8PBwQHr16/Hr3/9a0RHR8vHVFdX48c//jHOnDkDrVaLXbt24fe//z18fX3lY7q7u/GDH/wAhw4dglKpxNe+9jX8+7//O5ycnObvlRERrUQGg6gNMa0duXZt6nGOjqJGZN26iVBi8jls7YaGhlBZWYnr16/j+vXrqKqqQl1dnVwrMpOaDx8fHwQFBcHf33/a4uvra5X9L2iWASU3Nxf79u1Deno6dDodfv7zn2PHjh0oKyuDRqPB0NAQduzYgeTkZOTk5AAAXnnlFezduxfnz5+X28qeeOIJtLS04Msvv8T4+Di++93v4vvf/z7ee++9+X+FRETLWU+PCCPGQHLhAtDfP/W4iIiJIJKVBSQmiiYcK6bT6VBdXS2HEGOprKxEU1PTLe+rUqkQGBiIkJAQBAcHIyQkxKwEBQXBwcFhkV4JLQSFJE1ulJy5jo4O+Pj4IDc3F5s2bcKxY8ewe/du9PT0wMXFBQDQ19cHd3d3HDt2DNu3b8e1a9cQFxeHixcvYu3atQCAI0eOYM+ePWhsbERAQMBtn7e/vx+urq7o6+uTn4eIaNkzGERtiLFm5Nw50ZdkMkdH0USTlSVKZibg47P45ztDBoMBtbW1KC0tRUlJibwtLy+/5XBZT09PREVFISoqCpGRkQgNDZUDSEBAAGyWeV+Zu9Fsvr/vqA9K381ZAz08PACIiWMUCgXsTVaNVKvVUCqVOHPmDLZv3468vDy4ubnJ4QQAtm/fDqVSiQsXLuDhhx+e8jxardas53S/pV8PRETLjWnfEWPtiKXZWFevnggjWVliMjQrnA5ekiQ0NjaahZCSkhJcu3Zt2gnBHB0dER0djcjISDmMGAOJ8buF7k5z/h9uMBjw4osvYsOGDUhISAAArFu3DhqNBj/96U/xq1/9CpIk4eWXX5Y7NAFAa2srfCYlfZVKBQ8PD7S2tlp8rtdeew2vvvrqXE+ViGjpGQxiEjRjGJluZM3k2pF16wBv76U551sYHx9HWVkZCgsLUVBQgMLCQhQWFso/XCezt7dHbGws4uPjkZCQIG9DQkJW9FBZmrs5B5R9+/ahpKQEZ86cka/z9vbG3/72Nzz33HP43e9+B6VSiccffxxpaWl39B/wZz/7GX74wx/Kl/v7+xEUFDTnxyMiWnD9/RPzjhhH1/T0TD0uPHwijKxfL/qOWFntSH9/P4qKiszCSGlpqcXmGZVKhaioKLMQEh8fj4iICKis7HWRdZvT/5bnn38en332GU6dOoXAwECz23bs2IHq6mp0dnZCpVLBzc0Nfn5+CA8PBwD4+fmhvb3d7D46nQ7d3d3w8/Oz+Hz29vZmzUZERFZFkoDKSvO+IyUlU2tHHByAtWtFELHSkTXDw8O4cuUK8vPzkZ+fj0uXLqG6utrisa6urkhJSUFKSgpSU1ORkpKC2NhYjoqheTGrgCJJEn7wgx/gwIEDOHnyJMLCwqY91svLCwCQk5OD9vZ2PPDAAwCArKws9Pb24vLly1izZo18jMFgQGZm5lxfBxHR4mlvn5ge3li6u6ceFxpq3nckOdmqRtbo9XqUlZXJYSQ/Px/FxcXQ6/VTjg0MDJRDiHEbGhrKCcdowcwqoOzbtw/vvfceDh48CGdnZ7nPiKurqzyca//+/YiNjYW3tzfy8vLwwgsv4KWXXpLnSomNjcWuXbvwve99D2+88QbGx8fx/PPP45vf/OaMRvAQES2qoSGxiq9pGKmrm3qcvb2oHTENJP7+i36605EkCQ0NDWZh5NKlSxgaGppyrL+/PzIzM5GRkYG1a9ciNTVV/tFJtFhmNcx4uqS8f/9+PPXUUwCAl19+GW+99Ra6u7sRGhqKZ599Fi+99JLZfbu7u/H888+bTdT2u9/9bsYTtXGYMREtCJ1ONM0YV/PNzxeXJy/wplAAMTGiM6uxJCVZ1Uq+vb29uHjxolkgsTQQwcnJCenp6cjIyJDL5KZ7ovkym+/vO5oHZakwoBDRHTMYgKoq89qRK1eAkZGpx65aZR5G1qwBXF0X/5ynodVqUVRUZBZGKioqphxnY2ODpKQkuXYkIyMDMTExnE+EFs2izYNCRLQs6PViiO/lyyKEXLkCFBQAAwNTj3VxmVg8z7iA3qpVi3/O0zAYDKiqqsKFCxfkMFJYWGhxRE14eDgyMjLkQJKamsrZVWnZYEAhopVlfFzML3LlykQgKSoCLE0Uplabr+abkQFERQFWNC9HW1sb8vPz5UBy8eJF9FpYCNDT09MsjKSnp7PfCC1rDChEtHwNDADFxcDVq0BhoQgjV68CJjNPyzQaIDUVSEubKLGxVjXnSH9/Py5fvoyLFy/K/Udu3Lgx5Ti1Wo20tDSzQBIWFsYRNbSiWM9fJhHRdAwGoKZGhI+rV0WNyNWr4jpLXF3Ng0haGhAZCVhRX4vR0VEUFRXJYeTixYsoLy/H5G6BCoUCcXFxcp+RzMxMJCQkwNaKhisTLQQGFCKyLv39E0HEGEaKi8VwX0tWrRLNNElJovNqWhoQFmZVzTTG+UZMa0aKi4sxPj4+5djg4GCkp6fLI2vWrl0LZ2fnJThroqXFgEJES0OnA6qrxTBeY41IUZHlOUYAMc9IQoIIIsnJYpuYCFhZPwtJklBTUyMHkYsXL+LKlSsWF8vz8vKSg0h6ejrWrl0LXyubWZZoqTCgENHC0utFECktNS8VFYCFkScAgMDAiRBi3EZGWlV/EUAs01FeXo4rV66goKBAXqfG0oJ5Tk5OWLt2rVw7kp6ejpCQEPYbIZqGdf21E9HypdcDtbVTg0h5ueVOq4BYuTcuzjyMJCYCHh6Le+4zMDIyguLiYhQUFMiBpLi4GKOjo1OOtbOzQ0pKilkYiY6O5nwjRLPAgEJEs2MwTB9ELHxZAxCL5MXFiRIfP1FCQqyqrwgg5hmpr69HSUkJiouL5VJeXm5xjRonJyekpqbKJS0tDbGxsezESnSHGFCIyDKDAaivnxpErl2zPNsqIOYViY01DyHx8WLRPCsLIgDQ1dVlFkKKi4tRUlKCwcFBi8d7e3vLIcQYSCIiIqC0wtdGtNwxoBDd7SQJaGwU4aOkZCKIlJVNP3LG3l6sRTM5iISFWdVQXkB0Wm1qakJFRQXKy8vlUlpaipaWFov3sbW1RWxsLBITE5GQkIDExEQkJydj1apV7DNCtEgYUIjuFpIEtLZODSKlpWJoryV2dkB0tBg9Y9o8ExFhdUFkdHQUlZWVcgAxBpKKioppa0QAICwsTA4hxhIVFcUmGqIlxoBCtBJ1dEwNIiUlQE+P5eNVKjHFuzGAJCSI7erVVjVyRqvVor6+HtXV1aipqUFVVZUcROrq6qZMcmZkY2OD1atXIzo6GjExMYiJiUFsbCzi4+M5xwiRlbKeTx4imr3hYRE8CgvFZGbGINLRYfl4pVKEDtMQEh8vwomd3aKe+nR6enrkAFJdXW2239DQMG0IAQA3Nzc5gJiGkfDwcNhZyesjoplhQCFaLlpbRRApKhLbwkLg+nXRmXUyhUL0B5kcRGJiREfWJdTb24v6+voppba2FjU1NeiZrpbnJkdHR0RERCAiIgLh4eFyEImOjoaPjw/7iBCtEAwoRNZGpxPBwzSIFBUBbW2Wj/fxAVJSxDwixjASGysWx1tkBoMB7e3tFgOIsfRP19/FhJ+fH8LDw82CiHGfIYTo7sCAQrSUhodFACkomAgixcWW5xNRKkVTTEqKmNAsJUUUP79FO93+/n7cuHEDDQ0NU7bGMjbd7LAmvLy8EBISYlZCQ0MRERGBsLAwaJYgXBGRdWFAIVos4+MifFy8OFFKS8UMrJNpNBMhxLhNSBAzry4QrVaLxsbGKaHDNIjMpPZDqVQiICBgSgAxluDgYAYQIrotBhSihaDXi7VmLl2aCCOFhZanfPfzE6vwGmtEUlKA8PB5ndhMkiR0dXWhrq5ObmqZHD7apmtCmsTDwwNBQUEIDg62uA0ICOAQXSK6YwwoRPOhqwvIywPOnhXby5cBS3NvuLkB6emirF0rtqtWiU6td0CSJHR0dMgBpK6uTi7Gy0PTTbpmQq1WTxs8jFvWfhDRYmBAIZotSRKdWM+dE4Hk7FmxDs1kjo5AWtpEIElPFxOczTGMjI+Po76+HlVVVWalpqYGdXV1GJlu+nkT/v7+Zk0tkwOIp6cnO6ASkVVgQCG6ndFRUSNiDCPnzgGdnVOPi4kB1q8XJSNDjKSZ5SRn4+PjqK6unhJCqqqqUFdXZ3GxOiOFQoGAgACEhobKnU5N94ODg6Fe4iHGREQzxYBCNNnQkAghJ0+KcukSMHlkilotakTWrwc2bACysgAvr1k8xRAqKipw7do1uZSVlaGqqgo6nW7a+zk4OCAiIgKrV6+WS0REBEJDQxEUFAR7e/u5vWYiIivDgEI0PCz6jZw4IQJJfr4YcWPK11cEEWMgSUub0cyrw8PDKC0txdWrV1FWViYHkfr6+mnvo9FoEBUVZRZAjPv+/v5cOZeI7goMKHT3GRkBzp+fCCQXLkytIQkKArZsATZvBjZtEqNqbtE3Q5Ik1NfX4+rVq3IpKipCZWXltFOze3l5IS4uDrGxsWYlMDCQ/UCI6K7HgEIrn8EAXL0KfPklcOwYcPr01OG+q1aJQGIMJWFh0wYSg8GA8vJyXLx4EZcuXUJhYSGuXr067RwhPj4+SEpKQkJCglkQ8ZpFkxAR0d2GAYVWpubmiUDy1VdAe7v57f7+5oFkmtE1kiThxo0byM/Px8WLF3Hx4kVcvnwZAwMDU461tbVFbGwskpOTkZSUJG99fX0X6EUSEa1cDCi0MgwPA6dOiUBy7JiYodWURiOCyI4dokRHWwwkXV1duHDhAi5evCiHkg4LKwM7OjoiLS0N6enpSEtLQ3JyMqKjo7liLhHRPGFAoeVJkoCyMuDwYeDoUeDMGfN+JAqFmAhtxw7g3nvFKJtJ4UGSJFRWVuLs2bNyKbcwn4lKpUJSUhLS09PlEhcXB9UshxATEdHM8ROWlo+REdGx9fBhUSaPhAkOnqgh2boV8PQ0u3lsbAyXL182CySWakeio6ORkZEhh5GUlBTOH0JEtMgYUMi63bgxEUhyckRIMbK3F31I9uwBdu4EIiPNmm1GR0eRl5eHnJwc5Obm4uLFixidtEqwnZ0d0tPTsXHjRmzYsAHr16+H56RgQ0REi48BhayLXi8mSTOGkpIS89sDA4H77hNl61bRt+Sm8fFxXLx4ETk5OcjJycG5c+egnTRax9PTExs2bMCGDRuwceNGrFmzhpObERFZIQYUWnpjY8Dx48DHHwMHDwKmzS5Kpeg/YgwliYlyLYler0fh5cvIycnBiRMncOrUqSkL4vn7+2Pr1q3YvHkz7rnnHkRFRXGOESKiZYABhZbG8DBw5IgIJYcOAaZziLi7A7t3i0Cyc6fcl0SSJJSVlck1JCdPnkRvb6/Zw3p6emLLli3YunUrtmzZgujoaAYSIqJliAGFFk9fn2i2+egj4IsvzPuT+PkBDz8MPPIIkJ0N2NoCEMN+v/rrX3H06FEcO3YMTU1NZg/p4uKC7OxsOZQkJiZyKngiohWAAYUWVkcH8OmnIpR89ZX5GjehoSKQPPKIaMZRKqHT6ZCfn4+jR4/i6NGjyM/PN5sqXq1W45577sHWrVuxdetWpKWlcbgvEdEKxE92mn9NTcCBA6L5JjdXTDVvFBMDfO1rIpSkpgIKBRoaGnD0zTdx5MgRHD9+fEqzTXx8PHbt2oWdO3finnvu4ZBfIqK7AAMKzY/qahFIPv5YLMRnKi1toqYkNhbj4+M4d+4cDv/0pzh8+DDKysrMDnd3d8e9996LnTt3YseOHQgMDFzEF0JERNaAAYXmRpLEdPLGUFJUZH77+vWipuThh4GwMHR2duKLL77A4VdfxZEjR9DX1ycfqlQqkZmZiZ07d2Lnzp1IT0+HjY3NIr8gIiKyJgwoNHOSBFy+LPqTfPwxcP36xG02NmKtm699DXjwQUj+/igqKsLh997DZ599hgsXLpj1JfH09MSePXtw3333YceOHXB3d1/810NERFaLAYVuzThxmjGUNDRM3GZnJ6aV/9rXgL17MaRW4/jx4/jsl7/E559/PmXETXJyMu6//37cd999yMjIYC0JERFNiwGFphofF2vefPwx8MknQFvbxG0ajZha/pFHgD17UNPZicOHD+PwE0/g5MmTZjO3Ojo6Yvv27bjvvvuwZ88e9iUhIqIZY0AhYWQEOHZMhJJPPwVMR9K4uQEPPAA88gjGt2zB2StXRCj5f/4fXLt2zexhQkND5VqSzZs3c8QNERHNCQPK3WxgQEyc9vHHwOefA6bTxPv4yBOndSQk4IuvvsLh997D0e98x6yDq42NDTZu3Ij77rsP9913H2JjYzlzKxER3TEGlLtNV5eoIfn4Y1FjMjY2cVtwMPDII5AefhjFzs747Isv8Nkvf4nz58+bdXD18vLC7t272cGViIgWDAPK3aClZWLitJMnRcdXo6go4Gtfw+iePcjp68Nnhw/js29/Gw2mnWHBDq5ERLS4GFBWqtraiTlK8vLEEGGj5GTgkUfQtnEjDlZW4rPDh/HVv/0bRkzWxlGr1di+fTvuv/9+7NmzB0FBQUvwIoiI6G7FgLKSXLsmAslHHwEFBea3rVsHw8MPo3j1anxUWIjPPvkEBb/4hdkhgYGBuP/++3H//fdjy5YtcHR0XMSTJyIimsCAspxJkggixlBSXj5xm1IJZGdjZM8enHB1xYd5eTj829+ivb1dPkShUCAzM1MOJUlJSezgSkREVoEBZbkxGESTjbH5pq5u4jZbW0j33ovG9HR8rNPhwJkzOPuzn0Gn08mHODs7Y9euXbj//vuxe/dueHt7L/5rICIiug0GlOVgfFysCvzxx6Kza2vrxG2Ojhjbtg2XQ0LwTnc3DuTkoPXzz83uHhkZKdeSbNy4EXZ2dov8AoiIiGaHAcVajYwAX34pAsmnnwLd3fJNkqsrurKycNzNDa9XV+P04cMwGAzy7Y6Ojti6dSt2796NnTt3IiIiYileARER0ZwxoFiT3l7gs89EKDlyBBgelm8yeHigOjERHwH49+JitB45YnbXhIQE7Nq1C7t27cLGjRthb2+/uOdOREQ0jxhQllpzM3DwoAglJ04AJv1FRn19cSUoCG/19eHNykroc3Pl21xcXHDvvfdi165d2LlzJ4cBExHRisKAshSuXxeB5MAB4MIFs5s6fX1xzMkJ/9nUhHNtbWYL9aWlpWH37t3YtWsXMjMzYWtru9hnTkREtCgYUBaDJAGXL4tA8sknQFmZ2c3XPT3x/ugo3hkaQpVJKPHx8cG2bduwe/du7NixA76+vktw8kRERIuPAWWhjI0Bp06JDq6ffAKYTB2vVyhwVq3GeyMj+BRAS1cXAECj0WBPdja2b9+O7du3IyEhgfOSEBHRXYkBZT51dYlVgQ8dAo4eBfr75ZtGFAocliQcAHBYktA3MgIbGxusW7cO378ZSDIyMjgEmIiICAwod66iQtSSHDoE6exZKEyG+7YB+AzAQQBfShJGIUbbfPdmINm0aROcnZ2X6MSJiIisFwPKbOl0wJkzkD79FLoDB2BrMpOrAsBVAJ8COATgIoDYuDhs3rwZf8rORnZ2NvuREBERzQADykz09sLw+efoe/ddOJw8CfXICBQAbAGMATgBEUg+A+CSmIjs7Gz8JDsbmzZtgo+Pz1KeORER0bLEgDINbVkZGl9/HTaff47A2lqoJAnuN2/rBHAYwOdKJTrT0pC2eTN23HMPfrl+Pby8vJbwrImIiFYG5WwOfu2115Ceng5nZ2f4+PjgoYceQkVFhdkxra2tePLJJ+Hn5weNRoO0tDR89NFHZsdcv34dDz74ILy8vODi4oKNGzfixIkTd/5q7lDVZ5/h5Lp1qHV0hH18PCL+4z8QWlMDlSShDMD/trXFD9PT8YdXX0XIiRPYPzCA4xcv4je/+Q0eeOABhhMiIqJ5MqsalNzcXOzbtw/p6enQ6XT4+c9/jh07dqCsrAwajQYA8Hd/93fo7e3Fp59+Ci8vL7z33nt49NFHcenSJaSmpgIA7r//fkRGRiInJwcODg74t3/7N9x///2orq6Gn5/f/L/KGeo5dw6bb06cpgNw3s4O1bGxwN69SHrkEfwgMREqFSudiIiIFppCkiRprnfu6OiAj48PcnNzsWnTJgCAk5MTXn/9dTz55JPycZ6envj1r3+Nv//7v0dnZye8vb1x6tQp3HPPPQCAgYEBuLi44Msvv8T27dtv+7z9/f1wdXVFX18fXFxc5nr6U3TfuIHrW7dCe++9CP7+9xGaksJ5SIiIiObJbL6/76g6oK+vDwDg4eEhX7d+/Xr89a9/xX333Qc3Nzd88MEHGB0dxebNmwGIsBIdHY23334baWlpsLe3xx/+8Af4+PhgzZo1Fp9Hq9VCq9WavcCF4BEcjHVVVQvy2ERERDRzcw4oBoMBL774IjZs2ICEhAT5+g8++ACPPfYYPD09oVKp4OjoiAMHDmD16tUAAIVCga+++goPPfQQnJ2doVQq4ePjgyNHjsDd3d3ic7322mt49dVX53qqREREtMzMqpOsqX379qGkpATvv/++2fWvvPIKent78dVXX+HSpUv44Q9/iEcffRTFxcUAAEmSsG/fPvj4+OD06dPIz8/HQw89hL1796KlpcXic/3sZz9DX1+fXBpMpo0nIiKilWdOfVCef/55HDx4EKdOnUJYWJh8fXV1NVavXo2SkhLEx8fL12/fvh2rV6/GG2+8gePHj2PHjh3o6ekxa3+KjIzEM888g5dffvm2z79QfVCIiIho4SxYHxRJkvCDH/wABw4cwMmTJ83CCQAMDw8DAJRK84oZGxsbGG5OAT/dMUqlUj6GiIiI7m6zauLZt28f3n33Xbz33ntwdnZGa2srWltbMTIyAgCIiYnB6tWr8T/+x/9Afn4+qqur8dvf/hZffvklHnroIQBAVlYW3N3d8Z3vfAdFRUW4fv06fvKTn6C2thb33XffvL9AIiIiWn5mFVBef/119PX1YfPmzfD395fLX//6VwCAra0tPv/8c3h7e2Pv3r1ISkrC22+/jT/96U/Ys2cPAMDLywtHjhzB4OAgtm7dirVr1+LMmTM4ePAgkpOT5/8VEhER0bJzR/OgLBX2QSEiIlp+ZvP9PedRPEREREQLhQGFiIiIrA4DChEREVkdBhQiIiKyOgwoREREZHUYUIiIiMjq3NFqxkvFODJ6oVY1JiIiovln/N6eyQwnyzKgDAwMAACCgoKW+EyIiIhotgYGBuDq6nrLY5blRG0GgwHNzc1wdnaGQqGY18fu7+9HUFAQGhoaOAncAuL7vDj4Pi8evteLg+/z4lmI91qSJAwMDCAgIGDKmnyTLcsaFKVSicDAwAV9DhcXF/7nXwR8nxcH3+fFw/d6cfB9Xjzz/V7frubEiJ1kiYiIyOowoBAREZHVYUCZxN7eHr/4xS9gb2+/1KeyovF9Xhx8nxcP3+vFwfd58Sz1e70sO8kSERHRysYaFCIiIrI6DChERERkdRhQiIiIyOowoBAREZHVYUAx8Z//+Z8IDQ2FWq1GZmYm8vPzl/qUlp1Tp05h7969CAgIgEKhwCeffGJ2uyRJ+J//83/C398fDg4O2L59OyorK82O6e7uxhNPPAEXFxe4ubnhmWeeweDg4CK+Cuv22muvIT09Hc7OzvDx8cFDDz2EiooKs2NGR0exb98+eHp6wsnJCV/72tfQ1tZmdsyNGzdw3333wdHRET4+PvjJT34CnU63mC/F6r3++utISkqSJ6rKysrCF198Id/O93lh/Mu//AsUCgVefPFF+Tq+1/Pjl7/8JRQKhVmJiYmRb7eq91kiSZIk6f3335fs7OykN998UyotLZW+973vSW5ublJbW9tSn9qy8vnnn0v/+I//KH388ccSAOnAgQNmt//Lv/yL5OrqKn3yySdSUVGR9MADD0hhYWHSyMiIfMyuXbuk5ORk6fz589Lp06el1atXS48//vgivxLrtXPnTmn//v1SSUmJVFhYKO3Zs0cKDg6WBgcH5WOeffZZKSgoSDp+/Lh06dIlad26ddL69evl23U6nZSQkCBt375dKigokD7//HPJy8tL+tnPfrYUL8lqffrpp9Lhw4el69evSxUVFdLPf/5zydbWViopKZEkie/zQsjPz5dCQ0OlpKQk6YUXXpCv53s9P37xi19I8fHxUktLi1w6Ojrk263pfWZAuSkjI0Pat2+ffFmv10sBAQHSa6+9toRntbxNDigGg0Hy8/OTfvOb38jX9fb2Svb29tJf/vIXSZIkqaysTAIgXbx4UT7miy++kBQKhdTU1LRo576ctLe3SwCk3NxcSZLEe2prayv97W9/k4+5du2aBEDKy8uTJEkESaVSKbW2tsrHvP7665KLi4uk1WoX9wUsM+7u7tIf//hHvs8LYGBgQIqMjJS+/PJLKTs7Ww4ofK/nzy9+8QspOTnZ4m3W9j6ziQfA2NgYLl++jO3bt8vXKZVKbN++HXl5eUt4ZitLbW0tWltbzd5nV1dXZGZmyu9zXl4e3NzcsHbtWvmY7du3Q6lU4sKFC4t+zstBX18fAMDDwwMAcPnyZYyPj5u9zzExMQgODjZ7nxMTE+Hr6ysfs3PnTvT396O0tHQRz3750Ov1eP/99zE0NISsrCy+zwtg3759uO+++8zeU4D/p+dbZWUlAgICEB4ejieeeAI3btwAYH3v87JcLHC+dXZ2Qq/Xm73hAODr64vy8vIlOquVp7W1FQAsvs/G21pbW+Hj42N2u0qlgoeHh3wMTTAYDHjxxRexYcMGJCQkABDvoZ2dHdzc3MyOnfw+W/p3MN5GE4qLi5GVlYXR0VE4OTnhwIEDiIuLQ2FhId/nefT+++/jypUruHjx4pTb+H96/mRmZuKtt95CdHQ0Wlpa8Oqrr+Kee+5BSUmJ1b3PDChEy9i+fftQUlKCM2fOLPWprFjR0dEoLCxEX18fPvzwQ3znO99Bbm7uUp/WitLQ0IAXXngBX375JdRq9VKfzoq2e/dueT8pKQmZmZkICQnBBx98AAcHhyU8s6nYxAPAy8sLNjY2U3oqt7W1wc/Pb4nOauUxvpe3ep/9/PzQ3t5udrtOp0N3dzf/LSZ5/vnn8dlnn+HEiRMIDAyUr/fz88PY2Bh6e3vNjp/8Plv6dzDeRhPs7OywevVqrFmzBq+99hqSk5Px7//+73yf59Hly5fR3t6OtLQ0qFQqqFQq5Obm4ne/+x1UKhV8fX35Xi8QNzc3REVFoaqqyur+TzOgQHwArVmzBsePH5evMxgMOH78OLKyspbwzFaWsLAw+Pn5mb3P/f39uHDhgvw+Z2Vlobe3F5cvX5aPycnJgcFgQGZm5qKfszWSJAnPP/88Dhw4gJycHISFhZndvmbNGtja2pq9zxUVFbhx44bZ+1xcXGwWBr/88ku4uLggLi5ucV7IMmUwGKDVavk+z6Nt27ahuLgYhYWFclm7di2eeOIJeZ/v9cIYHBxEdXU1/P39re//9Lx2uV3G3n//fcne3l566623pLKyMun73/++5ObmZtZTmW5vYGBAKigokAoKCiQA0v/6X/9LKigokOrr6yVJEsOM3dzcpIMHD0pXr16VHnzwQYvDjFNTU6ULFy5IZ86ckSIjIznM2MRzzz0nubq6SidPnjQbKjg8PCwf8+yzz0rBwcFSTk6OdOnSJSkrK0vKysqSbzcOFdyxY4dUWFgoHTlyRPL29uaQzElefvllKTc3V6qtrZWuXr0qvfzyy5JCoZCOHTsmSRLf54VkOopHkvhez5cf/ehH0smTJ6Xa2lrp7Nmz0vbt2yUvLy+pvb1dkiTrep8ZUEz8/ve/l4KDgyU7OzspIyNDOn/+/FKf0rJz4sQJCcCU8p3vfEeSJDHU+JVXXpF8fX0le3t7adu2bVJFRYXZY3R1dUmPP/645OTkJLm4uEjf/e53pYGBgSV4NdbJ0vsLQNq/f798zMjIiPQP//APkru7u+To6Cg9/PDDUktLi9nj1NXVSbt375YcHBwkLy8v6Uc/+pE0Pj6+yK/Guj399NNSSEiIZGdnJ3l7e0vbtm2Tw4kk8X1eSJMDCt/r+fHYY49J/v7+kp2dnbRq1Srpsccek6qqquTbrel9VkiSJM1vnQwRERHRnWEfFCIiIrI6DChERERkdRhQiIiIyOowoBAREZHVYUAhIiIiq8OAQkRERFaHAYWIiIisDgMKERERWR0GFCIiIrI6DChERERkdRhQiIiIyOowoBAREZHV+f8BRHywfR97FPAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1GElEQVR4nO3deVhb54Ev/q8QSOz7bjC7MZs3sDFe8I7t2HHcpG2aTpNmJplpp4l/adO5t5Pm9qZ9cmfcdNrMTDJp2k4zaZPUSbN4S7yvYLxhwGA2G2xjm33fd0nn98drHUlIYMAsAr6f53mfczg6EucoMfrqXRWSJEkgIiIisiI2U30BRERERIMxoBAREZHVYUAhIiIiq8OAQkRERFaHAYWIiIisDgMKERERWR0GFCIiIrI6DChERERkdWyn+gLGQqfTobq6Gi4uLlAoFFN9OURERDQCkiSho6MDgYGBsLEZvo5kWgaU6upqBAcHT/VlEBER0RhUVFQgKCho2HOmZUBxcXEBIG7Q1dV1iq+GiIiIRqK9vR3BwcHy5/hwpmVA0TfruLq6MqAQERFNMyPpnsFOskRERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BiRKfV4kJwME499RQqbt6c6sshIiKatRhQjJS+8w5WVFZiwyefQBEVhTeDg/HG//2/KCoqgiRJU315REREswYDihHP7dtxdscONKhUCALwcmUlnnv9dfw1Ph5LIyLwv//3/8aFCxeg0+mm+lKJiIhmNIU0DasG2tvb4ebmhra2Nri6uo7/L+jrQ/t//RekN96AW0MDAKADwO8AvAlA8vPDY489hp07d2L9+vVQq9Xjfw1EREQzzGg+vxlQhqPRAJ9/Du2//AuUhYUAgD4A7wP4FYByAC4uLnjkkUfwta99DVu3bp3Y6yEiIprGGFDGmyQBhw8Du3cD588DAHQKBfar1XittxeF90+zs7PDhg0b8LWvfQ07duyAv7//xF8bERHRNMGAMpHOnQP+9V+Bo0flQyUREfh5fz8+raiQjykUCqSkpGDnzp3YuXMnoqKiJvc6iYiIrAwDymTIzQV++Uvg889FDQuA7iVLcHT+fPyqtBSXs7NNTo+JicGOHTuwY8cOJCcnQ6lUTsVVExERTRkGlMl04wbwq18BH34IDAyIY2FhaH3mGXzq7IzPjh3D2bNnodFo5Kd4e3tj+/bt2LFjBzZt2gRnZ+cpungiIqLJw4AyFWpqgHfeAd59F2huFsdcXYG//3u0PfMMDhcV4csvv8Thw4fR1tYmP02tVmP9+vXYsWMHtm/fjqCgoCm6ASIioonFgDKVurtFbcq//7uoXQEApRJ44gngRz/CQGIizp07hy+//BIHDx7E7du3TZ6+ZMkS7NixA48++igWL14MhUIxBTdBREQ0/hhQrIFOJzrSvvkmcOqU4fjy5cCLLwJPPAFJrUZJSQkOHjyIgwcP4tKlSyYz1gYFBclNQevWrYO9vf0U3AgREdH4YECxNvn5wH/8B7BnD9DfL455ewN/+7fA974HREQAAOrr63Ho0CEcPHgQx48fR3d3t/wSTk5OSEtLw44dO7Bt2zb4+PhMwY0QERGNHQOKtaqtBf77v4E//AGorDQc37wZ+P73ge3bAVtbAEBvby9Onz6NgwcP4ssvv0R1dbV8un4I8/bt27Ft2zYkJCSwKYiIiKweA4q102jExG/vvgscOyYPU4a/P/D008CzzwKxsfLpkiQhNzdX7rdy9epVk5cLCgrCI488gm3btmHDhg1wcnKaxJshIiIaGQaU6eT2bVGj8j//A9xf9wcAsHSpCCrf+hbg6WnylIqKChw6dAiHDh3CqVOn0NPTIz+mVquxdu1abNu2Ddu2bUN4ePgk3QgREdHwGFCmo/5+4MgR4P33gUOHRC0LAKhUwM6dIqxs2iQ3Aen19PTg7NmzcmC5c+eOyePz58+Xw8qqVatgZ2c3KbdDREQ0GAPKdFdfLzrUvv8+cO2a4XhAAPDUU6JWJSkJGNTvRJIklJSUyGElMzMTWq1WftzV1RVpaWnYtm0btm7dCj8/v8m6IyIiIgaUGSUvD/jTn4C//AVobDQcDw8HnnxShJWEBLOwAgCtra04ceIEDh06hMOHD6PBuAkJQFJSkly7kpiYCBsbm4m9FyIimtUYUGai/n7RsfaTT4AvvxQTwunFxIiw8s1vAvPnWwwrOp0O2dnZcu1KTk6OyeN+fn7YunUrtm3bho0bN8Ld3X2Cb4iIiGYbBpSZrqsL+OorEVYOHzbMrQIAUVHAY4+JkpIiZrG1oKamBkeOHMGhQ4dw4sQJdHR0yI8plUqkpKRgy5Yt2LJlCxYvXszaFSIiemgMKLNJWxtw4IAIKydPGhYsBAAfHzG3ymOPiQ62jo4WX6K/vx+ZmZk4dOgQjhw5gpKSEpPHfXx8sHnzZmzZsgVpaWmcJI6IiMaEAWW2am8X0+sfPChGArW2Gh5Tq4FVq0RQ2bgRWLwYGKJW5O7duzh27BiOHj2KkydPmtSuKBQKJCYmyrUrycnJsB00soiIiMgSBhQSNSnnzonalQMHgLt3TR/38gI2bBBhZdMmIDR0iJcZwMWLF3H06FEcPXrUbJI4Nzc3bNq0CVu2bMHmzZu5GjMREQ2JAYVMSRJw/bpoAjpxAjh7FjCqFQEg1gPasEHUsqxcCYSFWexsW1tbi+PHj+PIkSM4fvw4mpubTR6Pj4+Xa1dWrVoFtVo9gTdGRETTCQMKDW9gAMjKEmHl5Eng0iXAaL4UAICfH7BihQgrK1YAS5aIZiIjWq0W2dnZcu3K5cuXTVZjdnR0xPr16+XAEnF/UUQiIpqdGFBodNrbRa1KRgZw/jyQk2Pa2RYQ4SQpyRBali8XIcZIU1MTTp48KQeW2tpak8cjIyOxefNmbNq0CevWreN/OyKiWYYBhR5Oby+QnQ1cuCDK+fOmk8TpBQaKzrZLlhi2c+cCCgUkScK1a9fksJKZmQmNfvp+iKHMycnJSEtLw6ZNm7Bs2TJ2tiUimuEYUGh8SRJw86YhrJw/D5SUGFZhNubpKcLK4sXAokVAXBwQHY32gQGcPn0aJ06cwIkTJ1BWVmbyNFdXV6xbt04OLJGRkVBY6ANDRETTFwMKTbzOTiA/H7h6FcjNFdvCQsMih8YUCjE1f2ysXGo8PHDs7l0czsjAqVOnzDrbhoSEYNOmTUhLS8OGDRvgOWhFZyIimn4YUGhq9PUBRUUisOTmisBSVAQMCh8mQkIgxcSgzssLOT09OFpejn0FBagyCjr6uVf0tSspKSkcHURENA0xoJD1kCSgoQEoLjYtRUVi1eYhaBwcUOvigsLeXuS2t6MMwM37pd3BAWvWrpVrWGJjY9kcREQ0DTCg0PTQ2Cj6shgHl7Iy4N49y/1b7uuEIazcBNDg5gav5GREPfIIVjzxBOZwsjgiIqvEgELTW18fUF4uwsrNm4ZSVgbp7l0odLohn9oJoEKtRs+cOXBcuBBB69bBeckSsYiij4/FyeeIiGhyMKDQzNXfD9y5I4cXzfXraMvOBm7ehHtrKyyv3SwMODrCJjoayuhoEVjmzRPbqCgx+oiIiCYUAwrNTv39aM/PR8nBg6hOT0dfYSG8WloQBWAuAMtLI97n6WkIK1FRQHQ0EB8vQoyd3eRcPxHRDMeAQnRfbW0tzpw5g/Rjx3DrxAk4VldjHoCo+2UegDnDvYCdnSGsGJewsCFXgyYiIssYUIiGUF5ejlOnTuHUqVM4ffo06uvr4QggAiKwLLC3x0pfX8QplfCtr4eyq8vyCzk6ijld4uJEYFm0CEhMBDw8Ju9miIimGQYUohGQJAlFRUU4ffo0Tp06hbNnz6K9vd3knCXe3vhGTAzWensjRqeD6717UBQXi468loSHizWL9GXJEsDNbRLuhojI+jGgEI2BRqNBbm6uXMNy/vx59Pb2mpzj7++Pdamp2BEXh9UeHghsboaisFBMTHf7tuUXnjcPWLrUsNBifDygHK47LxHRzMSAQjQOent7kZWVhTNnzuDs2bO4ePEi+gbVnPj7+2Pt2rVYu3YtNixejIi2NihycsRii9nZwN275i/s7CxWg16xQpTly1nLQkSzAgMK0QTo7e3F5cuXcfbs2SEDS0BAgBxY1q5diygPDxFYLl0Siy1eugR0dJi+sEIhalVWrQI2bADWreOwZyKakRhQiCaBPrAY17D09/ebnGMcWNatW4fIsDDRh+XCBUO5dcv0hRUKsRr0hg3Axo0iuDg6TuKdERFNDAYUoinQ09NjVsMyOLAEBgZi7dq1SE1NRWpqKubPnw9Ffb0IKmfPAqdOiXWKjKlUQEqKCCwbNoj+LJybhYimoQkLKLt378bevXtx/fp1ODg4YMWKFXjjjTcQHR0tn1NXV4ef/OQnOH78OFpbW5Gamoq3334bUVFRJq918eJFvPrqq7h8+TLs7OywaNEiHDlyBA4ODuN6g0RTRR9Y9DUsly5dMgss3t7eWL16tRxYFi5cCGV9PXD6tAgrJ08CFRWmL+ziAqxfD2zbJkpg4CTeFRHR2E1YQNmyZQu+9a1vYenSpdBoNHj11VdRUFCA4uJiODk5QZIkrFixAnZ2dvjNb34DV1dXvPnmmzh69Kh8DiDCyZYtW/DKK6/g0UcfhUqlQn5+Ph599FGo1epxvUEia9HT04NLly7h7NmzOHfuHC5evGg2SsjFxQUrV66UA0tSYiLUFRUirJw6JYJLc7PpCy9eDGzfLsLK0qWcQI6IrNakNfE0NDTA19cX6enpSE1NRWlpKaKjo1FYWIi4uDgAgFarha+vL9544w08//zzAIDly5dj06ZNeP3118f0exlQaCbo7+9HdnY2zp07h4yMDGRmZprNw2Jvb4/k5GSkpqZi9erVSElOhnNZGXDkCPDVV0BWlunKzz4+wCOPiLCSlsbRQURkVSYtoNy8eRNRUVEoKChAfHw8CgoKsGDBAty8eRMRERHyeQEBAdi8eTP+9Kc/ob6+Hn5+fnjrrbfw8ccf49atW5g/fz7+5V/+BatWrbL4e/r6+kxGS7S3tyM4OJgBhWYUrVaLgoICZGRkICMjA+fOnUN9fb3JOUqlEomJiXKz0OroaHhcugQcOgQcOwYYBxxbW2DtWuDrXwd27gT8/Cb1foiIBpuUgCJJEh577DG0tLTg3LlzAICBgQFERUVh2bJl+P3vfw8nJye8+eabeOWVV5CWloZjx47h0qVLSElJgaenJ379619j0aJF+OCDD/Db3/4WhYWFZn1VAODnP/85fvGLX5gdZ0ChmUySJJSWlsphJSMjA3ctzKsSHx+P1NRUrFmxAutVKnjrA8uNG4aTbGyA1auBJ54AHn8cmDPsCkRERBNiUgLKCy+8gEOHDiEzMxNBQUHy8ZycHDz33HPIz8+HUqnExo0bYXO/Tfzw4cO4cOECVq5ciVdeeQX/+q//Kj9vwYIF2LZtG3bv3m32u1iDQiTcu3dPDisZGRm4fv262TmhoaFYtWoVHomKwtqWFvifPw/FlSumJ6WkiJqVb34TMPr3S0Q0kSY8oOzatQv79+9HRkYGwsLCLJ7T1taG/v5++Pj4IDk5GUlJSXjnnXdQXl6O8PBwfPjhh/jOd74jn//kk0/C1tYWf/nLXx74+9kHhUior69HZmamHFjy8/Oh0+lMznFzc8NjixbhbxwdkXzvHtwGD2NeuRL41rdEYPH3n8SrJ6LZZsICiiRJ2LVrF/bt24ezZ89abI4ZrKysDPPnz8eRI0eQlpYGSZIQFBSEv/u7vzPpJLt48WJs3brVpFZlKAwoRJa1t7fj8uXLOH/+PDIzM3Hp0iV0DVqROVipxK45c/C4Vovw6moo9H8CbGyANWtEWHn8ccDbewrugIhmsgkLKD/4wQ+wZ88eHDhwwGTuEzc3N3n+ks8++ww+Pj6YO3cuCgoK8NJLLyExMRFffPGFfP5//Md/4LXXXsN7772HRYsW4c9//jN+/etfo7Cw0KRz7XjcINFsptFocO3aNZw/f14OLVVVVfLjgQC+AeC7ajUWGzWjSkolFBs3GsIK/50R0TiYsICiUCgsHn///ffx7LPPAgDeeust/Nu//Rvq6uoQEBCAZ555Bj/72c+gUqlMnvPLX/4S77zzDpqbm7Fw4UL86le/GnIUz2AMKERjI0kS7t27JweW8+fP49q1a5AkCSEAvgngSQCJRs/RqlSQduyA7TPPAJs3i5ltiYjGgFPdE9GItbW14dKlS3JguXTpEgK7u/EkgL8BEGN0bqe9PWpTU+H8/e/D77HHoOCkcEQ0CgwoRDRmGo0G+fn5yMzMxPnMTLSdPYvNjY34NgDjLrR3lEpciYpCx44diN6xA4mJibC3t5+qyyaiaYABhYjGjSRJuHv3Li5kZKD5888Rev481jY3w9nonCsAPraxQfHChYhevRopKSlISUnB3Llzh2waJqLZhwGFiCZUd0MD7r79NlSfforQ0lIo7/8Z0QA4CuBDAAcBeAQEYPny5XJgSUxMHNGCoEQ0MzGgENHkqa+H9Mkn6H/vPaivXZMPtwH4DMAHADIBSABsbW2xaNEiObAsX74coaGhrGUhmiUYUIhoaly/Dnz4IfDRR8C9e/LhekdH7FEo8G5XF0oHPcXPz08OKykpKViyZAmcnZ1BRDMPAwoRTS2dDsjIEGHls8+Ajg75oaaICJwJCsIf2ttxtrAQAwMDJk+1sbFBXFwcli1bhuTkZCxbtgxxcXGwtbWd7LsgonHGgEJE1qO7Gzh4UISVY8cArVYct7WFdvNmlC1fjqO2tsjMzsbly5dRWVlp9hIODg5ITEw0CS0hISFsGiKaZhhQiMg61dUBH38swkpuruG4u7tYuPDb30Z1RASu5OTg8uXLyMrKwpUrV9De3m72Uj4+Pli2bJkcWpYuXQpPT8/JuxciGjUGFCKyfkVFhv4qRtPvY84cMcX+t78NLF4MnSShtLQUWVlZcmjJz883axoCgMjISJNalkWLFnFuFiIrwoBCRNOHVgucPQv85S/A3r1AW5vhseho4KmnRFgxWpy0t7cX+fn5JqGlrKzM7KVtbW2xcOFCk9ASHR0NG86ASzQlGFCIaHrq7QWOHBHNQF9+KX7WS0oSQeXJJ4HAQLOnNjc3I/t+PxZ9cGloaDA7z8XFBYmJiUhKSpK3ERER7M9CNAkYUIho+mtvB/bvF2HlxAlD51qFAli7VtSsPPEEMES/E/3CiFlZWXJgycnJQXd3t9m57u7uSExMlANLUlIS52chmgAMKEQ0s9TXA59/DuzZA5w/bziuVALr1gGPPw7s3AkEBAz7MhqNBsXFxcjJyUF2djZycnKQl5eHvr4+s3M9PT1NAktiYiKn7id6SAwoRDRz3b0LfPKJqFnJzzccVyiAlBQRVh5/HAgLG9HLDQwMoKioSA4s2dnZQ3bC9fb2NgksSUlJmDNnDkML0QgxoBDR7HDzJrBvn+hce+mS6WOLFokmoMcfB2JiRIAZob6+PhQWFsqBJTs7GwUFBdBoNGbn+vn5mQSWpKQkBDygJodotmJAeQh5772HmG98A2oGH6LppapK9FnZuxdITzf0WQHEaKDHHwcefRRYtkw0DY1Sb28vCgoK5MCSk5ODwsJCaI1/z30BAQFISkrCkiVLsHjxYixZsgRBQUGsaaFZjwFljBqKi+ETF4c+AHVBQfDctg3OaWmi2pjfiIimj8ZGMQpo717g+HGgv9/wmKcnsHkzsHUrsGUL4OMz5l/T09OD/Px8k+ah4uJi6HQ6s3O9vLzksKLfRkZGcsgzzSoMKGOU/4c/IOgf/xFeFv64IDQUWLkSSE0F1qwB5s0bVZUxEU2R9nYxdHnfPhFWWloMjykUYvjyI4+IkpQEPGRg6OrqkkPL1atXkZubi+LiYovNQ87Ozli4cKEcWhYvXozY2FioVKqHugYia8WA8hAG+vtx4ne/Q+5//Re8ysqwAkACALM/WX5+hrCyZg0QG/vQf9iIaIJpNMDlyyKwHD4MXL1q+ri3t6hd2bgRWL8emDt3XH5tb28vCgsLcfXqVTm0XLt2DT09PWbnqlQqxMfHm9S2LFiwAE5OTuNyLURTiQFlnOTk5ODtt9/GV3v2YPHAAFYB2KhSIVmng+3gb0NeXsDq1WJ+hk2bRt0pj4imQE0NcPSoCCsnTpjOYgsA4eEiqKxbJ8o4NvVqNBqUlpYiNzdXDi1Xr15F2+BrgFjhOTo62iS0LF68GB4eHuN2PUSTgQFlnNXV1eEPf/gDfvvb36K2thYqACttbfFCfDw2qdVwLSgQK7YamzNHBJW0NPFt7CHauYloEgwMABcvihWXT58Grlwx7WgLiOn2V6wwlHGuOZUkCXfu3JHDij641NbWWjw/JCQECxcuxMKFC7Fo0SIsXLgQYWFh7NdCVosBZYL09/fj888/x1tvvYXLly/Lx1cuW4afbt6MTSoV7M6dAzIyTKfoBoDFi0Ub9/btwNKlYxpFQESTqKMDOHdOhJUzZ0Rz0OA/l25uwPLloiQmimJhGv6HVVNTIwcWfWgpLy+3eK6zszMWLFhgElri4+PZRERWgQFlEly+fBlvv/02Pv30U3lCJ09PTzz77LP4x2efRWRtragyPn7cdDIpQNSmbN0qwkpamvgjR0TWrblZzLVy4YKoabl8GejqMj/P318ElSVLDNugoHFv8m1pacG1a9eQn5+P/Px85OXloaioyOKsuAqFAlFRUSahZeHChZxkjiYdA8okqq2txf/8z//g97//Pe7duycf37hxI77//e9jx44dsGtuFkHl0CHR3m3cxmxrKzrbbtsmAsu8eVNwF0Q0ahoNUFAgpt6/cgXIyQFKSgBLowDd3IC4OFHi4w37fn7jGlw0Gg1u3LhhElry8/NRV1dn8XxPT0+z0MJRRDSRGFCmgFarxZEjR/C73/0Ohw8fhv5tDQgIwN///d/j7//+7xEUFCTauc+fF2Hlq6+A69dNXygqSgSV7duBVasA/qEgmj66ukSNaW6uCCw5OUBxsXlfFj0vL/FvPjwciIgw3QYEjFv/lrq6OrPQcv36dYuTzNna2iImJkYOLgkJCUhISIC/vz9rW+ihMaBMsTt37uAPf/gD3nvvPdTX1wMQvfAfffRR/OM//iM2bdpk6MR286YhrKSniwCj5+Iihjxu3y6ahHx9p+BuiOih9PUBpaVAYSFQVCRKYSFw65Z5nxZj9vZiPaG5c0Wn+zlzRFORfj8wUAScMfZn6+3tRXFxsUloyc/PR2trq8Xzvby85LCiL/Hx8XB2dh7T76fZiQHFSvT392Pfvn343e9+h7Nnz8rHQ0JC8Ld/+7f427/9W8w1nmehvV30Wzl0SJT74QaAqAZOTgYeewzYsYPDmImmu54e4MYNEVRu3zbd3r07dK2LMYVChBQfH/EFxsdHFA8PwN1dNC25u1suFmpnJUlCRUWFHFquXbuGgoIClJWVWZwdFwDCwsKQkJCABQsWyMElKioKtra2Y35raOZiQLFCJSUl+N3vfocPPvhA/oaiUCiQlpaG5557Djt27IBarTY8QacDsrNFzcpXX5lPKBUZKYLKY4+J4Y78Y0A0c2g0QEWFCCuVlaJUVZluGxoe7nfY2wNOToCjo3kZdHxApUJ9ZyeqWltxr6EBt2trUVpVherWVnQDZkWrUiEkJgaxRqElISEBgYGBbCaa5RhQrFhPTw/27duH9957D6dPn5aPe3t74+mnn8Zzzz2HuLg48ydWVYm1RQ4eBE6dMl1bxMtLdLLdsUM0CbHKlWjm02iApiZR09rQIEp9vViHqLXVtLS1me5Pkn6YBpc+pRJwdISdqyvUnp5w8vGBm78/7NzcLAclFxfx9824ODqy9ngaY0CZJm7duoX3338f77//Pqqrq+Xjy5cvx3PPPYcnn3wSLi4u5k/s6BCjgg4cEE1Bzc2Gx1QqYMMGUbPy6KMTMicDEU1jWq34G9LWJiaY1Jeurgf/3NUlmqaMjw8qUnc3FBP5saJWmwYWT0/Dvr+/+Jun76MTECDOJ6vBgDLNaDQaHDt2DO+99x6+/PJLeVExJycnfPOb38R3v/tdrF692vLskBqNGBV08KAILLdumT6+dKmoWdmxA0hI4DcPIppYkiQ6Bg8KLn0tLai4cQP3rl9H9a1bqC8vR1NFBQba2+EImBUnAL729vC3s4OHTgen3l4oR9IvZzAvLxFWgoNFp+PQULHV73t48O/iJGJAmcbq6urwwQcf4L333sONGzfk46GhoXj66afx9NNPIyoqyvKTJUnMw3DggAgsly6ZPh4SIkYDPfKIWF+EM0sS0RRrampCQUEBiouLUVRUJJfGxkazc50BeANYEBSERUFBiPH1RYS7O4IcHeGjUMC2sRGorjYUC5PWmXF1FWElPByYP99QoqM5ieYEYECZASRJwvnz5/HnP/8Zn376Kdrb2+XHVqxYgWeeeQbf/OY3h18srLZWdLA9cAA4edJ0+n2VSkwQ98gjIrRER/NbBBFZjfr6epPAog8wTU1NFs+3sbFBeHg44uLiRImNxYKgIEQ5OUHd2Cg6HZeXi3LnjtgOMYGdzN/fEFZiYoCFC0XhIo1jxoAyw/T09ODAgQP44IMPcOzYMXm4n1qtxo4dO/DMM89g8+bNsLOzG/pFurrEeiL6Zebv3DF9PDTUULuybh1rV4jI6kiSZBZc9KWlpcXic2xsbBAZGYnY2Fg5vMTGxmLevHlwkCQxpLu8XMxJdf26KDduiBqYoYSEiKCyaJGhhIbyS94IMKDMYDU1NdizZw/+/Oc/o6CgQD7u4+ODb3/723j66aexZMmS4YfySZL4B3jkiCjp6aajglQqYM0aMSJo3TrxD5GLGxKRlZIkCbW1tWbNREVFRUNOPKdQKBAaGoqYmBi5zJ8/HzExMfD09BTzUpWWGkJLUZGYJXiIRRrh6ir+Vi5ebFjtOjh44m56mmJAmSXy8vLwwQcf4C9/+Ys8Yy0AzJs3D0899RSeeuopREdHP/iFOjsNtStHjpjXrnh4iMCyfr0ILHFx/KZARFZPkiTU1NSYhZbr168PWeMCAL6+viaBRb8fHBwMRVsbcO0akJdnKEVFpl/y9IKCDGFlxQpR0zJcTfcswIAyy2g0Ghw/fhx//vOfcfDgQfQa9TVZsmQJnnrqKXzrW98SawE9iCSJbwtHj4r5VjIyxJBEY76+IrAY/6PjmkFENE3om4pKSkpw/fp1lJSUyKWysnLI5zk5OcmhxTi8RIaEwO7WLTGhZna2WPE6L898NmAHB2DZMsPfzpQUMcpoFmFAmcU6Ojpw4MAB7NmzB8ePH5cXA1MoFFi9ejW+/e1v4+tf/zq8RvqPQqMRC56dOQOcPg1kZop5EIzZ24vhzMb/6Hx8xvnOiIgmXkdHB27cuGEWXm7evClPATGYra0tIiMjTUJLbEgIYjo74ZiXJwLLhQuApVqb6Ghg9Woxf9W6dWKF6xmMAYUAAA0NDfj888/x8ccf49y5c/JxW1tbbN68GU899RQee+yx0S321d8PXL4sgor+H53xRHF6kZHAkiWiPVZfuNghEU1TAwMDuHXrlhxY9OHl+vXr6OzsHPJ5QUFBiI6Oxvx585Ds7o5FPT0IraqCc0EBFINXswdEE/qGDaJJfc0asW7SDMKAQmbu3buHv/71r/j4449x1WhdHwcHB2zbtg1f//rXsW3bttGvTCpJoiOZPqxcuCCWl7dkzhwRVIyDy9y57M9CRNOWJEmorKw0qW3R79cNM4xZrVYjMTQU2zw9sUqrRVxtLbzu3TM9ycYGSEwUYWXDBmDlSjHV/zTGgELDun79Oj7++GPs2bMHN2/elI/b29tj69at+MY3voHt27dbnmZ/JJqbRTvs1auGUlpq+Vw3N2DePEOJijJs+d/24el0oplOowEGBgz7Go14DBAB0bgolWJ6cAcH0aGPAZJoTFpaWlBSUoLS0lLcuHFD3paVlaHfQqdaLwBrAGxTq7FBoUCI8dxVACQ7OyhSUgw1LMuWTbv+fwwoNCKSJCE3Nxeff/45PvvsM9wymiZfrVZjy5Yt+PrXv45HH30Ubg87o2JHhxiipw8submi5/sQbboARFvsvHlARIToDR8UJGph9Ftv75nz4anTidFUHR2m25Hud3aKKcWN10np6TGdnG8sFArRx2hwcXAQa6AYr4MyeF0ULy/x38jdfeb8dyIaB1qtFvfu3TMJLfr9iooK+bw5ANYBWA9gA4C5g15nQKVC28KFUG7dCrdvfAM202CEJQMKjZokScjPz5fDSqlRjYdKpUJaWhq+8Y1vYMeOHXAfrzbRvj6grEzUrpSWmu4bDZsekkol1tjw8RHF21ts3d3FKqjOzoat8b5+6+goqlBHQpJEDUR/vyh9fab73d0iMOiLPkCMdL+7+6HeylGztRX3LkmGor9Pfc3KeHF2Fk15lkpIiAibs3zoJZFeV1cXbt68aRZebly/Dp+ODjmsrAcweChCjZ0dSoKCUL94MWzS0hCyaBGioqLEvC5WggGFHookSSgsLMRnn32Gzz77DNeNOnLZ2dlh48aN2LlzJ3bs2AF/f/+JuYjWVhFYysqA27eBqipRKivFdiQBZiT0H9Q2NuKbh/HWxkYME9SHkcmgVFoOUw/ad3IyLFHv4GDYOjiI5hpbW0NRKof/liVJ4n57e82Lvlamq0uMSGhqEqW52bBv/PPgIeqWKBQipOib+aKjDfuhoeKaiWY5/dBoubno+nX0ZmdjTnExljQ2YrUkwd7ofC2ALADHAFx0cUFnTAzC581DVFQUIiMjERUVhaioqPH7wjlCDCg0roqKiuSalaKiIvm4QqHA8uXLsXPnTuzcuRPz5s2bvIvq7wdqasR01A0NojQ2im1bm3lTyeDmkIf9316hEB/8arX49u/kZAgLxuFi8P5wjzk7i+YTK6+iHZWeHrEGyr17puXuXcP+cOHPzk6sgbJggSgJCWIbEDCz3ieih6DRaHCnuBhN+/fD9tQpBBQUIHDQkOYWACchAssxAPrZXry9veWwYlwiIyMn5POVAYUmTElJCfbv34/9+/cjKyvL5LGYmBjs3LkTjz32GJYuXQqbkTafTDadTnxwdnSIPjD6Zo3BW51OfHtXqUQQUakM+5z6f3zodCJU3r5taN4rLRVLMZSVDd2HxstLBJUlS0RHwWXLRHMRQwuRUFEBHD8OzaFDwKlTsDVacBYAypRKHNJqcQxAOoAeCy8RHR1tUoM+HhhQaFJUVVXh4MGD2L9/P06fPm0yiVFAQAAee+wx7Ny5E+vWrYNqmvU0Jyug04kalsJCMbW4vty4YbmfjK+vIawkJ4vJA7nqLJFoqr5yBTh2TJTLl03+DWnt7HB37lxkubvjkEaD49XVqG9owNKlS82+iD4sBhSadG1tbThy5Aj279+Pw4cPo8Oo74Grqyu2bNmCbdu2YevWrfDhLLP0MHp7xVw7166JP7pZWWKE2MCA+blRUSKsLFsm5pDgwpdEov/YqVOGwGI0cggAEBiI/rVr0bZ8OXx+8INx/TfDgEJTqq+vD2fOnMH+/ftx4MAB1NbWyo8pFAokJydj27Zt2LZtGxYtWjT8ystEI9HbK9Y+ycoS3w6zsgCjOX5krq7AqlVAaqqYpTMxkSOIaHbTr7+mDyvp6YblTObMEeFlHP9GM6CQ1dDpdLhy5Qq++uorHDp0yGQWWwCYM2cOHnnkEWzbtg0bN26Ek5PTFF0pzThNTYYalkuXgPPngUHt8HB0FGtHrVkjQktysuioTDRb9faKpUyOHROd9//v/x3Xl2dAIatVVVWFw4cP46uvvsLJkyfRbTT/h1qtxtq1a+XalfDw8Cm8UppxtFrRFJSRYShNTabnqFQipKSmirJypRihRUTjggGFpoXe3l6kp6fLtSvl5eUmj8fExGDLli3YvHkzUlNT4eDgMEVXSjOSTgeUlIigkp4utjU1pufY2or+K+vWibJihZhbhojGhAGFph1JknD9+nU5rGRmZkKr1cqP29vbIzU1FZs3b8bmzZsRGxvLvis0viQJuHXLEFjOnhWjiIzpa1j0gWX5cjYJEY0CAwpNey0tLTh58iSOHTuGY8eOobKy0uTxOXPmyGFl48aNVjWVM80g5eXAmTOGUlVl+rhaLfqw6APLsmXiGBFZxIBCM4okSSgpKZHDSnp6OnqNJvCysbHB0qVLkZaWhs2bNyM5ORm2nB6dxpu+huXMGVG7cuaMeZOQg4NoBtIHlqVLOUqIyAgDCs1oPT09OHfunBxYjKffB8S8K2vWrMGGDRuwYcMGxMXFsTmIxp8kiVlvjQPL4DWinJxER1t9YElM5NpCNKsxoNCsUllZiePHj+PYsWM4ceIEWgatQeHn54f169fLgSU0NHRqLpRmNkkSnW71geXsWbE+lDFnZ2D1akNgWbyYE8fRrMKAQrOWVqtFXl4eTp06hVOnTuHcuXPo6TFdZSI8PBwbNmzA+vXrsX79evj6+k7R1dKMptMBRUWGwJKeLlZ5NubqKoYz6wPLwoViFW2iGYoBhei+vr4+XLp0SQ4sly9fNhkdBAAJCQnYsGED1q5di9WrV7PDLU0MnU5Mz69vDkpPFytvG3NzM6wnpC/+/lNyuUQTgQGFaAgdHR3IyMiQA8u1a9dMHlcoFEhISMCaNWuwZs0arF69mjUsNDG0WjE9vz6wZGSIFbYHCw42DSxJSaKpiGgaYkAhGqGGhgacOXMGp0+fRnp6usWlxWNiYuTAsmbNGgQEBEzBldKMp9EABQWG6fkvXxZNRIP/RNvYALGxpqElPp6jhayVVgt0dorw2d5uujXe7+8XC15qNKLo9y0d02rFnDz29mJYu729oeh/dnYWTYguLqLo9z09AXf3KWtKZEAhGqO6ujpkZGQgPT0d6enpKCwsNDsnKirKJLAEBwdPwZXSrNDRAeTmisCiL4MnjwPEB9KSJaIPS3w8EBcntl5ek3/NM11nJ1BbC9TVGbaNjaJ/UVOToeh/bm01D5lTzdYW8PERxdfXUPz8gKAgUebMEcXRcVx/9YQFlN27d2Pv3r24fv06HBwcsGLFCrzxxhuIjo6Wz6mrq8NPfvITHD9+HK2trUhNTcXbb7+NqKgos9eTJAmPPPIIjh49in379mHnzp3jfoNED6OxsRGZmZlyYMnLy8PgfzIhISFYuXIlVq5ciRUrViAhIQFKjsygiVJbaxpYsrLM+7Lo+fuLsBIbC0RFAfPmiTJ3LkcPGevpEUFDHzqMA8jgfaP1w0bFzs60JmPwvlotzrG1HXqr37exEbUpvb2i9PWZ7vf0iCA1uMamvV0cH6nAQPPJCR/ShAWULVu24Fvf+haWLl0KjUaDV199FQUFBSguLoaTkxMkScKKFStgZ2eH3/zmN3B1dcWbb76Jo0ePyucY+/d//3ecOHECR44cYUChaaG1tdUksOTm5pp1unVxccHy5cvl0JKcnAwXF5cpumKa8XQ64OZN0TRUWChKUZGYBXcoKhUQEWEILBERpt+cvbyA6Tx3kCQBXV2iBqOhwbzGY3DwGLzK9YM4Oorw5+8vah28vcV75ukptsZF36RiLTMM9/eL96S+3rzU1IhAUlUFVFaKYJuVNa6/ftKaeBoaGuDr64v09HSkpqaitLQU0dHRKCwsRFxcHAAx7NPX1xdvvPEGnn/+efm5+fn52L59O65cuYKAgAAGFJqWOjo6cPnyZZw/fx7nz5/HpUuX0DGoo6ONjQ0WLFhgUssyd+5cTh5HE6uzU8zLUlgI3LghJpUrLRVhpq9v+Oeq1SKsBAYaPnyHKs7OYkI6JycRfB72/2tJEh+i3d2iJqC7W5T2dkNpaxPblhbTZpXGRsN+f//ofq9aLcKGcfAw3hrvz4ZOypIkamTGeXHM0Xx+P9SUhm33qxX1wzL77v9Pb2+0eJZSqYRKpUJmZqYcULq7u/HUU0/hv/7rv+A/giF0fX198msD4gaJrIGLiws2btyIjRs3AhCBvLCwUA4s58+fx927d5GXl4e8vDy88847AMRaQsY1LIsWLYLaWr5h0czg7Cym2l+61PS4VgtUVABlZSKw3LgB3L0rvjFXVopv0n19Ylr/W7dG9zuVShFU7O1NmySMt/rmCeOi0YhA0dMjik43Pu+BWi0C1lChw3jr5ja9a43Gm0Ix5St3j7kGRZIkPPbYY2hpacG5c+cAAAMDA4iKisKyZcvw+9//Hk5OTnjzzTfxyiuvIC0tDceOHQMAfO9734NWq8Uf//hHcREKxbA1KD//+c/xi1/8wuw4a1BoOqiqqsKFCxfkwHL16lWzZiGVSoVFixYhOTlZLhEREaxlocnX1wdUVxuq+o1rKAaX5mbRlDLa2oqRUipFc4qDg+iv4eoqgoR+6+ZmXsNj/LOjI0OHlZmUJp4XXngBhw4dQmZmJoKCguTjOTk5eO6555Cfnw+lUomNGzfC5v5wpsOHD+PgwYP48Y9/jKtXr8L5fjXZgwKKpRqU4OBgBhSalrq6unDlyhWcP38eFy5cwOXLl9HU1GR2npeXl0lgWbZsGTw8PKbgiokeYGBANMN0dYnS1zf0MFmdTtSmGBd9DYs+jDg6isKh0zPOhAeUXbt2Yf/+/cjIyEBYWJjFc9ra2tDf3w8fHx8kJycjKSkJ77zzDn74wx/irbfekkMLIKrFbWxssHr1apw9e/aBv599UGgmkSQJt2/fxuXLl+Vy9epV9Fv4Vjpv3jyTwJKQkGDSpEpEZM0mLKBIkoRdu3Zh3759OHv2rMWhw4OVlZVh/vz5OHLkCNLS0lBbW4vGQQtoJSQk4D//8z/x6KOPDhl4jDGg0EzX19eH/Px8k9By8+ZNs/NsbW2RkJCAxMREJCYmIikpCQkJCezPQkRWacICyg9+8APs2bMHBw4cMJn7xM3NDQ73O9N89tln8PHxwdy5c1FQUICXXnoJiYmJ+OKLL4a+iAc08QzGgEKzUVNTE7KysnDp0iVcvnwZOTk5ZmEfAOzs7OTQkpSUhMTERCQkJEClUk3BVRMRGUxYQBmqw97777+PZ599FgDw1ltv4d/+7d9QV1eHgIAAPPPMM/jZz3427B9HBhSi0ZMkCffu3UNOTg5ycnKQnZ2NnJwci/1ZVCqVWWiJj49naCGiScWp7olmKUmScPfuXZPAkp2djZaWFrNz7ezsEBcXh0WLFsll4cKFcHd3n/wLJ6JZgQGFiGSSJOHOnTsmgSUnJwetra0Wzw8NDTUJLYsWLeLEckQ0LhhQiGhY+poW/QRy+nL37l2L57u7u2PhwoUmoSU2NpZNREQ0KgwoRDQmLS0tyM/PlwNLfn4+ioqKMDAwYHaura0toqOjkZCQgPj4eHkbGhpqMo0AEZEeAwoRjZv+/n6UlJSY1bYM1UTk5OSEuLg4s+Di5+c3uRdORFaHAYWIJpQkSaioqEBhYSEKCgrkbUlJicUJ5gDAx8cH8fHxJqElPj6eKz0TzSIMKEQ0JTQaDcrKylBYWGgSXm7evImh/tQEBQUhJiYGsbGxiImJkYuPj88kXz0RTTQGFCKyKt3d3SgpKTGpbSksLER1dfWQz/Hy8pLDinF4CQ4O5ogiommKAYWIpoWWlhaUlJSgpKQExcXF8v6dO3eGfI6TkxPmz59vUtsSGxuL8PBw2HFxOSKrxoBCRNNad3c3bty4YRZeysrKoNFoLD5HqVQiPDwc8+bNMyuBgYEcWURkBRhQiGhGGhgYwK1bt+TgYly6u7uHfJ6joyOioqIshhdPT89JvAOi2Y0BhYhmFUmSUF1djdLSUrNy+/btIWtdANHXxTiwREZGIiIiAhEREZz2n2icMaAQEd03MDCAO3fuWAwvlZWVwz7X09MT4eHhcmAxLmw2Iho9BhQiohHo6urCzZs3cePGDTm03Lp1C7du3UJdXd2wz7W3t0dYWJjF8BIaGgq1Wj1Jd0E0fTCgEBE9pM7OTpSXl8uBxbjcvXt32GYjhUKB4OBghIeHIywsDKGhofI2NDQUgYGBUCqVk3g3RNaBAYWIaAJpNBrcu3dPDiy3b982CTCdnZ3DPt/W1hZz586VA8vgABMQEMAAQzMSAwoR0RSRJAkNDQ0mtS137tzBnTt3UF5ejnv37llcfNGYnZ2dWYAJDQ3F3LlzERwcjDlz5nAlaZqWGFCIiKyUVqtFTU2NHFqMiz7ADNd8BIgmJH9/fwQHByM4OFgOLsb7fn5+7MRLVocBhYhomtJqtaiurrYYXioqKlBRUYG+vr4Hvo6dnR2CgoLMgotxmHF3d+eyATSpGFCIiGYoSZLQ2NiIe/fuyYFl8H51dTV0Ot0DX8vZ2RlBQUGYM2cOAgMDMWfOHJP9wMBA+Pv7cwkBGjcMKEREs5hGo0F1dfWQAaaiogKNjY0jei2FQgFfX1+L4cV46+npydoYeiAGFCIiGlZ3dzcqKytRWVmJ6upqVFVVoaqqSt6vrq5GdXX1A/vD6KnVaovhJSAgAP7+/vLWw8ODQWYWY0AhIqKHptPp0NDQYBJaLAWZkdbGAKJvjL+//4iKo6PjBN4dTQUGFCIimjR9fX2oqakxCy9VVVWoq6tDbW0tamtr0dzcPKrXdXV1tRhc/Pz84OvrKxcfHx84OTlN0N3ReGJAISIiq9PX12cSWIYqNTU16O3tHdVrOzo6ymHFOLgMtc+lCKYGAwoREU1bkiSho6Nj2ADT0NCAhoYG1NXVjWjY9WCurq4PDDHe3t7w9vaGl5cXHBwcJuBOZx8GFCIimhUkSUJnZyfq6+vR0NCA+vr6B+6PtOOvMUdHR3h5ecmBxXh/qK2TkxM7BA8yms9v20m6JiIionGnUCjg4uICFxcXREREPPB8SZLQ2tpqFlws/dzU1ISmpiZoNBp0d3eju7sbFRUVI742tVr9wDDj5eUFDw8PeHh4wNPTEx4eHpx35j7WoBAREQ1BkiS0t7ejqakJjY2NFreWjo2l2UnPyclJDivGweVB+25ubla/yCRrUIiIiMaBQqGAm5sb3NzcEB4ePqLnSJKErq6uB4aYxsZGNDc3o6WlBS0tLWhtbQUAdHV1oaura1S1NXpubm5DhhgPDw+4u7sPWayt4zBrUIiIiKyAVqtFW1sbWlpaTILLSPY7Ozsf+ver1WqTwBIZGYmPPvpoHO7MgDUoRERE04xSqYSnpyc8PT1H1J/GWH9/P1pbW4cMMc3NzWhtbUVrayva2trkff3PkiTJw8Dr6uoAAB0dHRNxmyPGgEJERDTNqVQqeYj0aOl0OnR0dJgFGFvbqY0IDChERESzmI2NjdzPJiQkZKovR2Yz1RdARERENBgDChEREVkdBhQiIiKyOgwoREREZHUYUIiIiMjqMKAQERGR1WFAISIiIqvDgEJERERWhwGFiIiIrA4DChEREVkdBhQiIiKyOgwoREREZHUYUIiIiMjqMKAQERGR1WFAISIiIqvDgEJERERWhwGFiIiIrA4DChEREVkdBhQiIiKyOgwoREREZHUYUIiIiMjqMKAQERGR1WFAISIiIqtjO9UXQERERA+m1WrR19eHnp4e9Pb2DlmGe3w0j4WFheHUqVNTdr8MKERERCOk1WrR09NjUiYjLPT29mJgYGBS79XWdmojAgMKERFNW5IkybUK3d3dJsHB+Ofxeqy/v3+qbxmACA/29vYmxcHBwezYwzzm4uIytfc4pb+diIhmHEmS0Nvbi+7ubnR1daG7u1su4xoYuruh6emBAqJD5VBFAtALoA/AeNZBqNVqix/uw4WB8QgSarV6yms3JsPMv0MiIjKh1Wrl4DB4a+nYg7aWjkmS9MDrsAPgD8AbgOf94jXoZ31xBuAAwHFQGS0dAI1SKYqtLXS2ttCqVNDZ2UFnbw+tkxO0zs6QXF0BFxco3N1h4+4OpZcXlH5+sAsIgHrOHKjnzIGNhwdgw7EmE4UBhYjIyuh0OnR3d6OzsxNdXV1m24cNEJPRTGELYC6Aeba2CFepMFepRLBCgUBJgr9WC9+BAXhOcp8KQNSoqLRaqLRa4GHfB6US8PICvL0Nxd9flIAAw76/P+DrC6hU43IPs8WoAsru3buxd+9eXL9+HQ4ODlixYgXeeOMNREdHy+fU1dXhJz/5CY4fP47W1lakpqbi7bffRlRUFACgubkZr732Go4fP46Kigp4e3tj586deP311+Hm5ja+d0dENIH0QUIfHoyDxFD7Izm3u7t7Uq5foVDA0dERTk5Ow26HesxNkuDb0gKPlha4NjbCqb4eDjU1UFVWwqa6GgqdDtBoRBmKSiU+2L28AE9Py8XDA3BxARwdzYudnQgKNjaWi0IBSBLQ1wf09oqt8b7xtrsbaGsD2ttF0e+3tQEtLUBTE9DYKEpHB6DVAvX1ooyEl5dpaDEOMsZbd3dx3bPcqAJKeno6XnjhBSxduhQajQavvvoq0tLSUFxcDCcnJ0iShJ07d8LOzg4HDhyAq6sr3nzzTWzcuFE+p7q6GtXV1fj1r3+N2NhY3L17F9///vdRXV2Nzz//fKLuk4hmOZ1Oh87OTnR0dAxZRhs0urq6Jvy6nZ2d4eTkBGdnZ3n/QcFhpGHD3t4eigd9EEoSUFMDlJSYl9ra4Z9rbw+EhgJz5wJz5ogSFGS69fae+A9jhQJwcBBlvPT1GQKLfltXJ0ptrXnRaMR5TU1AUdHwr61WDx9g9Fs/PxHQZiiFNJKGwiE0NDTA19cX6enpSE1NRWlpKaKjo1FYWIi4uDgAoq3T19cXb7zxBp5//nmLr/PZZ5/hO9/5Drq6ukbU8ae9vR1ubm5oa2uDq6vrWC+fiKyYJEno7u6Ww8ODwsWDykSHCUtBYqhjI9l3cnKCg4MDbCazj0NTE5CfL0pBAVBcDFy/LmoQhhIYCEREAOHhooSFGfb9/NhHAwB0OlEDU1NjCCw1NSLM6I/pty0to3ttfbNSQIB5iPH3N62JcnCY8pqZ0Xx+P1QflLb7/9N6enoCAPr6+gAA9vb28jlKpRIqlQqZmZlDBhT9hQ4VTvr6+uTXBsQNEpH1GRgYQHt7O9rb2x8qTOgDiU6nG/drVCqVcHFxMSvOzs7ydrThYtKDxMPSaoGbNw1hJC9PbKuqLJ9vYyNCSEyMaZk/H+CXxAezsRHNO15eQHz88Of29loOLoO3+loZfZNTYeGDr0OlMm02c3MTTWf3OwTD1dWw7+wsrnfTpvF5D8ZgzAFFkiS8/PLLWLVqFeLvv+Hz589HSEgIXnnlFfz+97+Hk5MT3nzzTdTW1qKmpsbi6zQ1NeH111/H9773vSF/1+7du/GLX/xirJdKRA+g0+nQ0dGB9vZ2tLW1jXnb29s7IdenDw/jUUbUrDGTdHUB164BV68agkhhoehvYUl4OLBwoSixsSKIREWJZgeaePb2QEiIKMPR6YDm5uGDTF2dOKe5WYSZ/n5DuBmJqCigtPTh72mMxtzE88ILL+DQoUPIzMxEUFCQfDwnJwfPPfcc8vPzoVQqsXHjRvmbxeHDh01eo729HWlpafDw8MDBgwdhN0RbmqUalODgYDbx0Kynn29iJOFhuMc6OjrG9bocHByGrKEYbXFycppetRNTqbVVBJHcXMP2xg3xYTaYgwOQkAAsWmQIJAkJw9eISJL4ht/ZKUpXl+n+UJ1Ph+qYqtGI2hydTpSR7Ot0okZC3zFWqTTfH+oxOzsRtNRqUZug33/YY/qfrXVuEkkS/41aWgyBpblZdADu6LC87eoSfYQ+/HBcL2U0TTxjCii7du3C/v37kZGRgbCwMIvntLW1ob+/Hz4+PkhOTkZSUhLeeecd+fGOjg5s3rwZjo6O+Oqrr0yahR6EfVBoptDpdGhvb0dra+uIy+CwoRluhMQo2dnZwc3NDa6urmPeDtdcS+Oork4EEOMwUl5u+Vx/f2DxYhFCoqJEB1UXFxFojD+wjIs+eAwuE9DsNmPY2AwfYMbr59E+R6mc6ndGNmF9UCRJwq5du7Bv3z6cPXt2yHACQB4yXFZWhuzsbLz++usmF7h582ao1WocPHhwVOGEyJqMJWAYl/b29hFNaPUgCoViyLAwmoChVqtnV/PHdCBJwN27pjUjOTlDV9O7uYm+A05OosZApxPfii9dAo4eFa83HhwdRT8FJyexdXQUzRP29uJDcfDW0jE7O8Nw4MFDhY1/Nt5XKExrVvTF+Oeh9gcGDLU5fX2iycP457EcM6bTAT09olgTpVIEFlvboTvJWjoeFQVcuTKx1zaMUQWUF154AXv27MGBAwfg4uKC2vv/QNzc3OBwf/jWZ599Bh8fH8ydOxcFBQV46aWXsHPnTqSlpQEQNSdpaWno7u7GRx99JHeoAwAfHx8orSjp0ezQ39+PlpYWNDc3W9xORsBwcHCAu7v7iIqbm5tZuGAzyDTV32+YX6O5WXR2LCkRw1Bv3QIqKsQcG6OZ0KytbfhRN4CoPRk814jxPCQeHqKpRx8+BhdHR6v6Vj5lJMkQegaHmKn8efAEdFrt2ELTODf9jtaoAsq7774LAFi7dq3J8ffffx/PPvssAKCmpgYvv/wy6urqEBAQgGeeeQY/+9nP5HNzcnJw+fJlAEBkZKTJ65SXlyM0NHSUt0AkajLa2trkUDFc4Bi8HY/hp6MJGJYCh5odEKcvSRJ/yFtaRJNJS4uh6IOHpdLUJNr5H4a7+9CTmw0XPmbw3BmTSqEQNRNTNEOsJEno7+83X7uoqwu9HR3oa29Hf0cH+jo60N/Rgf7ubnlhxd7eXvT19ckrJ+v3jYv/nDl4b0ruTHioeVCmCvugzFz9/f1oamqSy0hDRmtr65hqMmwB2ANQA/Byc4OXqytCXFwQrFZjjloNX1tbeNrYwE2hgIskwVmrhYNGA3V/P1QaDWx1Oih1OtgMDIhvUv39oljqF6KvQlUoxAeE/g+bvq3Y3t5Qba4f5jfUvv6DSf/Bw2bSsdPpRFDo6DCUwUFj8M/Gx1pbxTfU8WJjI0JEYKCY5Cw6Woym8fMzDR3u7tbbKXMW02g0wy52ON4/T+RHeFRUFErHeRTPpM2DQjQUSZLQ0dFhEjYGl8bGRrNjnZ2dJq9jC8DdqLhALBrmDSDk/r7T/a0zADelEh4qFdyVSrgolXBUKGCvUEANQK3TiVCh0UCp0UCh1cKk1XUkVePWyrhznr29GKGhnwrcyckwx4G7u6G4uBgC0uDANPhnS8dsbQ19AvRl8M/GxRJJEgFBP5pDqx1+X6MRVdW9vaLo94c7pu/caRxA9EX/2HiwsxPvtf7btEYjhvION/Q6NFSMolmwQIygSUgAIiPZfDIBBgYGTFZVHlwGr7o8XBluheXx7LQ+GjY2NnB0dISDg4NcHvZnd3f3KbkXPQYUeiCNRoOWlpYHhovBZeB+u7kNxGqkPveLN0TYCAQQC0P48DDa97SxgZskwWm03w7G2tZqif4Dd3DHPaXS8OGsP2/wdUqSoeh0hn3jD9rx/NZt3DnPWkPW4BCj78BoLWxsDLVUHh4ixHl4GPbVanHN+tDT0gI0NADV1WKCs4EBUZtiSWCgmNRMH0ISEoC4OBFoZjn9UPmHCQwjed5UBAfjD/vxCAzD/WxnZzfjOrgzoMwykiShtbUVjY2NaGhoMCvGwUO/3zroj64KImT4GJUgAIsHHdOHES+IkDIqgz+4XFzE6AQ3N8N6GvqJh7q7DdXyD/rQd3ERY/uDg0UJCRFb/TTRPj5i6ujJaFPW1xzom4eGK5bO03eK0y9k1tYm3gP9QmfG81N0dYn3Sf+NfiqCgXFgGylbW9NQaGsr/vvra4n0o0aG2re3N20eMy7OzqLWQ/8+dnaKTqr6wKEvBQXi2INWvrW3F6Me5s8XzTL67bx503a2VY1GI9cQTERo0JfJpK9pGLwu0UiLcTAYLjDMugkBJwADyjSn1WrR3NxsMWwMFUAGf5NwgnmwiLFwzM/GBt6SBJextnl6eBgCgP5bqf5bqnHTg3ETRGsrcOeOWBOkoMCwPshQ16BSiSryefPEh0V4uAghc+eK4uIytmufCDY2U9PBTj9pU0ODGCHS0GBaBh+rrx++mWI4trbm02kbr0rr5GRa9H1w7O1NV6k1noBLoTANbYO3/f2m83bcu2fazNPebljcbbQfjgEB5uvN6PcDAyd93ZmBgQF50cLRlJGGjf4HhbJxplKpxhQaRvMclUrF4DBNMKBYmf7+/iFrNyyV5uZms05SzjANFiEAkox+9oUIG34KBbx0OtiPNHAYf/NVKkXQ8PExlME/Gx/38hp+5IBWKxYly84Gzp4V2/z8oZtrfHxENbnxt9R580QYYfv98BQKQ1AID3/w+ZIkamAeFGT0x/S1OJJkuoKrtbKzM/w/6u0tQoh+5V3jEhAw6jCpH2UxlhAxuBivoKwvA6MZfvwQFArFqAPDaIODg4MDJ/gjE/y/YRJ0dXWhrq4O9fX1qKurMymDjw1uTlFD9N8wLlEAVsA0hAQolfC9HzjUI6lCH3yOvb3lcDFU8HBzG/u3RZ1OrO+QnW0oV69a/jbr4CDa6o3b7hMSxIgGmhwKhaGZZJjJGU3odKLGorXV0PlYX1pbDc1NlkpXl6gJGWoiLkkSocLOTtTQ6Lf6fZXKfN4O45FQzs7i/+n7RXJ2Rm9f39DBoKICXdevjzlYaMezr9EQlEolnJycRl1GGjLYXEFTgQFlDCRJQltb24hCR1NtLZTd3XAFLJZwiNqNwSHE28YGHpIEh5HWbgz+I+jgIIKEr68hVAy3P1Gd9XQ6sWpqTo4hjOTmWh454ewMLFkCJCUBiYmicETD9GRjY1gZdRxIkoS+vj50dnaalAcGhMZGdN29+8DzJmO2BZVKNaYQMZLCZguaiRhQjPS1taHixAm0Vlejva4OHXV16GpsRHdTE/paWtDf1gZNezt0XV1QabVwAOAAwBGiGSUWYhisKwC3+1uHsV6McQ2HjY3p/AceHqYBYzIDx3AkSbT3Z2WJ6ZGzs0UwuT9TsAlHR7E2SFKSIZDMm8cwMgPodDp0d3ebhYmHLZNRE2Fvbz/u4cHZ2RmOjo5DLoZKRJYxoBi5ffIkYr7xjQl5bcnREQr9N0rjol83Y7hZIF1cJr3z3Yg0NYkgkpVlKA0N5ufZ24u5HvRhJClJ9B1hGJly+k6W4xkkxmNm3uHo+zU4OzuPa5BwdHTkUhtEVoQBxYhXSAhqFQr029pCo1JBp1ZDcnCAjaMjlM7OsHV1hcrdHfYeHnDw8oKdq6toSjGeFMtSAHFxgWK6d/7q7hb9RPRB5MoVsVbIYHZ2YtKppUtFSUoCYmI4tfZDGqqJ42FL3+DFzsaRjY0NnJ2dx7UwRBDNHtP8U3N8+SYlWdfEUVNFqxVDeY1rRgoKLM8xMm8esGyZoSxcOOunXddPPNXR0SEXa2/iUKlU4x4m2LGSiB4GA8psp1/K3TiM5ORYHlHj7w8kJ4uakWXLRO2Ih8fkX/M409dOGIcJ43AxOGiM5LGJDBOOjo7jGiT0nSyJiKwJA8psotUCZWWiqSY317BtaTE/18VFBBDj2pE5c4ZeU2WS6Zs7xhIkLD0+UdNg60OAi4sLXFxc2MRBRDRCDCgzVVcXUFICXLtmCCP5+ZaXd7ezE00zxmEkOnpcO+YODAw8dK2EcZmoCaocHR3lMGEcKgYfG8njTk5OsLHGzs1ERNMAA8p0198vakUKCw2loAC4fdvydPAODiKMLFkihvkuWSImQlOrzU7t6+tDe3s7Ojo6TLaWjlnaGoeMieqMaW9vP6bwYOkcZ2dn1k4QEVkJBpTpQJLEYmU3bogZWEtLDfvl5UMukKfx8EBnWBiaQ0JQP2cOKry9UenkhLb7tRLtly+j4+TJIcPHRNRSqNXqcamd0D/GqbGJiGYm/nW3AgM9Pei8dQu9paUYKCuDVF4ORUUF7Kqq4FBXB6emJtgNExY6FQqUKJUo0OmQr9OhAEAhgIaWFtG/JDf3oa7P0dERrq6ucHV1hYuLy7Bb/f5QAYOTVRER0UgwoIyRVqsduumjtRV9DQ3Q1NdD19QENDfDprUV6tZWOLa3w7WrC+49PfAaGIC3RgMfAA8aCzMA4DaA0kHlBoAa/aJsRhwcHOA3gkAxOFgM3rKWgoiIpgI/eYzUFxfj+q5d6O/pwUBfHwZ6ezHQ34+Bvj5o+vqg6e8H+vqg7O+HSquFI2BSfCGChjuA0XaN1AKoAlBpZ4datRqNTk5ocXNDm4cHun190efnB2d3dzk8JLu6YuMwoYOhgoiIpjN+ihnpvHsXqadPj9vr9dnaosfeHn2Ojhhwdka/hwe0Pj7Q+fnBJjAQyuBg2IeEwD4sDM6hoZjr4IC54/bbiYiIpi8GFCPuoaE4O38+bNVq2KrVsFOroVKrYWtvD5VaDTsHB6gcHWHn7g61uzvUHh6wc3MzTHPv5CQmLrtf1Go1zMfGEBER0YMwoBjxjInB2pKSqb4MIiKiWY+zSBEREZHVYUAhIiIiq8OAQkRERFaHAYWIiIisDgMKERERWR0GFCIiIrI6DChERERkdRhQiIiIyOowoBAREZHV4UyyREREs5wkSWhsbMTt27dRXl6O8vJyODo64qWXXpqya2JAISIimgW6u7tx+/ZtkxBSXl4u/9zV1WVyfnR0NAMKERERPRxJklBfX4/bt2/j1q1buHXrlsl+bW3tA19jzpw5CAsLQ1hYGObPnz8JVz00BhQiIqJpYmBgAHfv3jULH/qakc7OzmGf7+bmhoiICDmEhIeHy/shISGwt7efpDt5MAYUIiIiK9LW1jZkLci9e/eg0+mGfK5CoUBQUBAiIiIQERGB8PBwk31PT89JvJOHw4BCREQ0yZqamlBWViaXmzdvyiGkqalp2Oc6ODggPDzcLHxEREQgNDQUarV6ku5iYjGgEBERTYCWlhaTEGIcRlpaWoZ9rq+vrxw6BgeRgIAAKBSKSbqLqcOAQkRENEatra1y6BgcRJqbm4d9blBQECIjIxEVFYWoqCiTEOLi4jJJd2C9GFCIiIiG0d7eblL7YRxCGhsbh31uYGCgSQgxDiOOjo6TdAfTEwMKERHNehqNBuXl5bhx44ZZqaurG/a5/v7+iIqKMgsikZGRcHJymqQ7mHkYUIiIaNZobGy0GEJu3bqFgYGBIZ/n6+s7ZAiZts0xkgS0twO1tUBdndga73t5Ab/61ZRdHgMKERHNKH19fbh165bFIDJcvxB7e3vMmzcP0dHRJmXevHlwc3ObxDt4CJIEdHYaQsaDtn19Q79WZCQDChER0Wg1NjaiuLgYJSUlJiGkvLx82LlCgoODzUJIdHQ0goODYWNjpWvodnePLHDU1YlzR8PVFfDzA/z9RdHvz507MfcyQgwoRERktSRJQmVlJUpKSuQwoi/DdVB1cXGRaz+MQ0hUVJT19Avp7RWBYqiwYbz/gBlizTg5mYaN4bYODhNzfw+JAYWIiKacRqPB7du3TQJIcXExrl+/Puz07SEhIYiNjcX8+fNNgoi/v//UzBWi0wGNjUBNjSFk1Naa/1xbC7S1je617e3Nazksbf38AGfnibm/ScSAQkREk6a3txc3btwwCSIlJSUoLS1Ff3+/xefY2toiMjISMTExiImJQWxsLGJiYhAdHT15tSEDAyJkVFYC1dXmoUO/X18PaLUjf12VamS1HP7+gIsLMAsmaNNjQCEionHX1dWF4uJiFBUVmTTNDNc/xMHBAfPnz5eDiD6MREREQKVSTdzF9veL0FFZKUpFhWFf/3NtreiAOhIKBeDtDQQEGGo8jPeNa0Hc3WdV6BgNBhQiIhqzvr4+XL9+HUVFRSgsLERhYSGKiopQXl4OaYgPdHd3d7PakJiYGISEhIx/J1VJAlpagNu3gfJy4M4d4N490wBSVzey8GFnB8yZAwQGGgLH4OAREAD4+Ihz6aEwoBAR0QNpNBrcvHnTJIQUFhairKwM2iGaNHx9fREXF2cSQmJjY+Hn5ze+/UN6ekTwKC83BBHj/fb2B7+GSgUEBRlKcLD5zz4+gLWO8pmBGFCIiEim0+lw584dkxBSWFiI69evD9lHxM3NDfHx8XKJi4tDXFwcfH19x+/C+vqAW7eA0lLgxg2xLS0Vx2pqHvx8f38gLEyUuXPNA4iPD5tarAwDChHRLCRJEmpqalBQUCCHkMLCQhQXF6N7iHk0HB0dERcXJ4cQfSAJDAwcnxoRSQKqqoCSEkMA0YeRu3fFCJmhuLoaAkhYGBAebtgPDQW47s20w4BCRDTD9fT0oKioCNeuXTMpTU1NFs9XqVSIiYkxCSHx8fHj20ekoQEoLBSlqMiwP9zQWxcXIDoamDdPlOhoMdtpWBjg6ckakBmGAYWIaIaQJAn37t0zCyKlpaUWR87Y2Nhg3rx5Zs0zkZGRsLUdp4+HtjbTAKLfr6+3fL5SKUJHdLRpGJk3T4x6YQiZNRhQiIimoc7OThQWFpqFkbYhaiC8vLywcOFCLFiwQN7GxMTAYbxmEdU3z+TlAVevipKXJzqpDiU8HIiPN5S4OBFK1OrxuSaa1hhQiIismCRJuHPnDvLy8kyCyK1btywO47W1tUVMTIwcQvRlXGdW1WqBsjJDCNEHkqGmnp8zxzSIxMcDMTFiOnaiITCgEBFZiYGBAZSUlCAvLw9Xr15FXl4e8vLy0NraavH8gIAAkxCyYMECzJ8/f3wnNdNogOJiICsLyM0VQeTaNcsL0imVIngsWgQsXizKwoWifwjRKDGgEBFNgc7OTly7dg1Xr16Vw0hhYSH6+vrMzrWzs0N8fLxZrYiPj8/4XpQkiWG7V66Iog8lPT3m5zo6AgsWGILIokWiZsRKF56j6YcBhYhogtXV1ZnUily9ehVlZWUWm2hcXV2xaNEiLF68WN7GxMRMzFTvNTWGIKIPJS0t5ue5uABJSaLoA0lUlKgxIZogDChERONEkiTcvn3bpFbk6tWrqBliIrHAwEAsXrzYJIyEhYVNzCq83d1AdjZw6ZIoWVmiU+tgarWoDVm6FFi2TGznzeMMqjTpGFCIiMZAH0ays7ORk5ODnJwc5ObmWuwvolAoMG/ePJMgsmjRovGdadX04sQ075cuARcvipKfb77Kro0NEBtrCCJLlwIJCWLad6IpxoBCRPQAowkjKpUKCxYsMAkjCxYsgNNEjljp6hLNMxcvGmpILM0zEhgIpKQAy5cDycmiqcbZeeKui+ghjCqg7N69G3v37sX169fh4OCAFStW4I033kB0dLR8Tl1dHX7yk5/g+PHjaG1tRWpqKt5++21ERUXJ5/T19eGf/umf8PHHH6OnpwcbNmzAb3/7WwQFBY3fnRERjcFowoharcaCBQuQmJiIpKQkJCYmIi4uDnYTuZKtviOrvmbk4kWgoMC8dsTODliyRAQSfQkK4kRnNG2MKqCkp6fjhRdewNKlS6HRaPDqq68iLS0NxcXFcHJygiRJ2LlzJ+zs7HDgwAG4urrizTffxMaNG+VzAOCHP/whvvzyS3zyySfw8vLCj3/8Y2zfvh05OTlQstMVEU0Sqw8jANDZKfqL6JtrLl2yPN9IUJChdiQlRdSO2NtP7LURTSCFZKkb+Qg1NDTA19cX6enpSE1NRWlpKaKjo1FYWIi4uDgAgFarha+vL9544w08//zzaGtrg4+PDz788EM8+eSTAIDq6moEBwfj8OHD2Lx58wN/b3t7O9zc3NDW1gZXV9exXj4RzSKSJKGqqgpZWVnIysrClStXhm2mWbhwIRITE+VAMilhZHDtyIULonZk8DT1KhWQmGgaSFgDTdPAaD6/H6oPin5KZc/7k/Dox+/bG6V2pVIJlUqFzMxMPP/888jJycHAwADS0tLkcwIDAxEfH48LFy5YDCh9fX0mcwO0t7c/zGUT0SzQ2tqK7OxsOZBkZWVZHE0zOIzoa0YmZFjvYF1dYmTNhQuG2pGGBvPzgoNNm2oWLeJ08DTjjTmgSJKEl19+GatWrUJ8fDwAYP78+QgJCcErr7yC3//+93BycsKbb76J2tpa+Q9DbW0tVCoVPDw8TF7Pz88PtbW1Fn/X7t278Ytf/GKsl0pEM1xfXx/y8/NNwsiNGzfMzlMqlUhISMCyZcuQlJQk14xMShiRJLEujXHfEUsja4xrR/RlzpyJvz4iKzPmgPLiiy/i2rVryMzMlI/Z2dnhiy++wHPPPQdPT08olUps3LgRW7dufeDrSZI05Nj/V155BS+//LL8c3t7O4KDg8d66UQ0jel0OpSWlpqEkby8PAwMDJidGx4ejmXLlsll8eLFcHR0nJwL7ekRtSPGgaSuzvy8OXNMw8iSJawdIcIYA8quXbtw8OBBZGRkmI28SUxMRF5eHtra2tDf3w8fHx8kJycjKSkJAODv74/+/n60tLSY1KLU19djxYoVFn+fWq2Gmv9giWal6upqkzBy5coVi8283t7eJmFk6dKl8Pb2npyLlCTg3j3TMHL1qljHxpidnei8mpICrFghtvyyRWTRqAKKJEnYtWsX9u3bh7NnzyIsLGzIc93c3AAAZWVlyM7Oxuuvvw5ABBg7OzucOHEC3/zmNwEANTU1KCwsxK9+9aux3gcRzQB9fX24evUqLl68iEuXLuHixYuoqKgwO8/BwQGJiYkmgSQ0NHRiZmC1pLXVdIr4rCwxbfxg/v6GIKKvHeFaNUQjMqqA8sILL2DPnj04cOAAXFxc5D4jbm5ucLj/j+6zzz6Dj48P5s6di4KCArz00kvYuXOn3CnWzc0Nzz33HH784x/Dy8sLnp6e+Kd/+ickJCRg48aN43x7RGTNKisrTcJIbm6u2WJ5NjY2iI+PNwkjcXFxsLWdpHkme3tFX5GsLEMpLTU/z9ZWdF41bq4JCeG8I0RjNKp/4e+++y4AYO3atSbH33//fTz77LMARG3Iyy+/jLq6OgQEBOCZZ57Bz372M5Pz//3f/x22trb45je/KU/U9qc//YlzoBDNYMa1I/pSWVlpdp63tzdSUlKQkpKC5cuXY+nSpXCerNlOdTrgxg3TMJKfD1jo34KICMN6NcuWiaabyerfQjQLPNQ8KFOF86AQWT997Yi+5Obmor+/3+QcpVKJBQsWYPny5XIoiYiImJymGn2/kZwcQzNNdjZgaRoDb29DENGvWzNZ/VuIZpBJmweFiAgANBoN8vLycP78eZw/fx4XLlxAlYWVco1rR1JSUpCUlDQ5tSM6nVg8LzdXBJLcXFGam83PdXAQw3yNA0loKJtqiCYZAwoRjVp7ezsuXbqE8+fPIzMzE5cvX0ZXV5fJOfraEeNAEh4ePvG1I1qt6COiDyE5OWJEjaWaEVtbID5eBJLkZBFG4uLEcSKaUvxXSEQPVFlZiczMTDmQXLt2DbpB06+7u7tjxYoVWLlyJVasWIGlS5dO7Aq+gJhrpKhI9BPJzxeBJC9PzNA6mFoNLFggwsiSJaLEx3POESIrxYBCRCa0Wi2KiopMAsm9e/fMzgsLC8PKlSuxatUqrFy5ErGxsbCxsZmYi5IkoKICuHZNBJFr10QpLTVfpwYQnVUXLRIhRB9IYmLEPCRENC0woBDNcj09Pbh8+bIcRi5cuGA2EZqNjQ0WL15sEkgCAwMn5oK6u4HCQvMwYmFRPwCis+rChaJ2RB9I5s0DOCqQaFpjQCGaZTo6OnDx4kWkp6cjIyMDWVlZZqNrnJ2dkZKSIgeS5OTk8e/MqtMBd+6Yh5GyMlFjMpitragFWbDAEEgWLBCTobEDK9GMw4BCNMO1tLQgMzMTGRkZSE9PR25uLrSDFqgLCAjA6tWr5dqRBQsWjN9EaDqdGM5bVGRaSkpEbYklfn6GAKIPIzExYiE9IpoVGFCIZpiGhgZkZGTIgeTatWsYPN1RaGgo1qxZg9TUVKSmpo7P3CP6eUUsBRFLnVYB0UF1/nzzWhE/v4e7FiKa9hhQiKa5qqoqOYxkZGSgpKTE7Jzo6Gg5jKSmpmLu3Llj/4X6DqtFRUBxsSGIFBcDnZ2Wn6NSAdHRYgivcQkP55BeIrKIfxmIppl79+7hzJkzciC5deuW2TkJCQlITU3FmjVrsHr1avj7+4/+F0kSUF0t+ogY14gUFwMdHZafY2cnOqgODiKRkQwiRDQq/ItBZOVqampw5swZuQwOJPoRNvomm1WrVsHLy2vkv0CSgLo60xCiDyVtbZafY2s7dBDhUF4iGgcMKERWprGxEWfPnsWZM2dw+vRpXL9+3eRxpVKJpUuXYs2aNVizZg1Wrlw58jWpGhvNQ0hREdDUZPl8pRKIijIPIlFR7LBKRBOKAYVoirW2tiIjI0MOJNeuXTN5XKFQYPHixVi3bh3Wr1+PVatWPTiQtLZaDiJ1dZbPVyjE6rzx8YYQEh8vakk40yoRTQEGFKJJ1tnZiczMTDmQ5Obmmk0bHx8fLweS1NRUeHp6Wn6x/n7RJyQvT8whog8iFhbqk4WGmgeR+fPFInlERFaCAYVogvX39+PixYs4efIkTp8+jaysLGg0GpNz5s2bJweStWvXwtfX1/yFmpoMa87k5YlSUgIMDFj+xcHBpiEkLk7MJTIZqwcTET0kBhSicSZJEgoLC3Hy5EmcOHEC6enp6B40IVloaKgcSNatW4c5c+YYHtTpgJs3RQAxDiOVlZZ/obu7WHdmwQIgIUEEkdhYwM1tYm6QiGgSMKAQjYOqqio5kJw8eRJ1g/p6+Pr6YuPGjVi/fj3Wr1+PsLAw8UB/v2iaOXzYEESuXRt6PpHwcBFGFi0SE5stWiRqSjjVOxHNMAwoRGPQ0dGBs2fPyqFk8ORoDg4OSE1NxaZNm7Bp0ybEx8fDRpKA69eB9HTg178GrlwRNSSD1sEBIDqmJiSYBpEFC4CRjtYhIprmGFCIRmBgYABXrlyRa0guXbpk0o9EoVAgKSkJmzZtwsaNG7EiJQXqqioRQv78Z7HNzbU85bunp1iBV18zsmiRGD3Dic2IaBbjX0CiIdy8eRNHjx7FiRMncObMGXQMmj01IiICGzduxKZNm7AuKQmepaXA+fPAL38JZGcDzc3mL+rkJMLI0qWGEhbGJhoiokEYUIju6+zsxJkzZ3D06FEcPXoUt2/fNnnc09MTGzZswMYNG7A1Lg7B9+6JQPL660BBgejcakylErUhSUmGMDJ/vpj8jIiIhsWAQrOWJEkoKCiQA0lmZiYGjIbs2tnZYdWqVdi8fj0enTsX85uaYHPxoggkluYZCQ0FVq4EVqwAkpNFHxLOtkpENCYMKDSrNDc348SJEzh69CiOHTuGmpoak8fDwsLwaFoavhESgqVdXVBfvAjs3g0MGiYMW1tg8WIRSPShJDBwEu+EiGhmY0ChGU2r1eLKlStyIMnKyjKZtdXR0RGb1qzBd6KjsRaAV0EBFB98APT0mL6Qu7sIIfpAsnQp4Og4mbdCRDSrMKDQjNPQ0IAjR47g8OHDOH78OFpaWkweXxQXh+cWLsQWtRph9+5BmZ4OHDli+iK+vsDatcC6dcDq1WIGVhubybsJIqJZjgGFpj1JknD16lUcOnQIhw4dQlZWFiRJkh93d3PDMykp+JanJxbV18Ph0iWxXo0xb29DIFm7VgQSjqwhIpoyDCg0LXV0dODEiRM4dOgQjhw5YtaXZG1CAr4fFYW1AwPwzc+H4uhR0xfw8gLWrDEEkrg4BhIiIivCgELTRmlpqVxLkpGRYTLixt3RES8sXoyvu7khtqoKqmvXxNBfPZVKNNVs2gSkpYnZWdlkQ0RktRhQyGr19fUhIyNDDiU3b940eXxtSAheCAvDmp4eeBcWQnH+vOkLxMeLMJKWJsIJO7USEU0bDChkVWpqauRAcuLECXQZTQ3vYGuLHyxYgKdcXZFw7x5Ut28Dd+8anuzrK8LIpk3Axo0c9ktENI0xoNCUkiQJRUVFOHjwIA4ePIjLly+bPJ7g64sfRkdjs0aDwKIiKHJzDQ8qlcCqVcAjjwCbN4uJ0dhsQ0Q0IzCg0KTTaDQ4d+6cHEoGTyn/dGwsnvPzQ1J9PZyKioD6esODPj7A1q3Atm2itsTdfXIvnoiIJgUDCk2K9vZ2HD16FAcPHsThw4dN5iZxUKmwa8kSfMfRETHXr8O2uBgoLjY8eckSEUi2bRMTpLGWhIhoxmNAoQlTUVGBL7/8EgcOHMCZM2dMRt0EeHnhx0uW4HEAoVevQnHpkuGJTk6idmTbNlFbwr4kRESzDgMKjRtJkpCXl4eDBw/iwIEDuHr1qsnjCyIj8XJ8PLb29MDn8mUoTpwwPOjhAezYATz+uOjk6uAwyVdPRETWhAGFHopWq8WFCxewd+9e7Nu3D3eNRtUoFApsXLYMu8LDsba5GS7nzgHGQ4X9/ICvfU2EkrVrATu7yb8BIiKySgwoNGr9/f04ffo09u7diwMHDqDeqBOro6MjnlizBv/g74+llZVQp6cDxiNz5s4FnnhChJKUFDESh4iIaBAGFBqRrq4uHD16FHv37sVXX32F9vZ2+TF3d3c8s3EjnvP0RNyNG1AePw5otYYnR0cbQsmSJZxSnoiIHogBhYbU0tKCL7/8Env37sWxY8fQ29srP+bv74/nN2zA046OiCwogM3nn5s+edEiEUieeIIL7xER0agxoJCJmpoa7N+/H/v27cOZM2eg0Wjkx8LDwvD9NWvwpJ0dgq9cgeIvfzF9ckqKCCWPPw6Eh0/ylRMR0UzCgEKorKzEF198gc8++wwXLlyAJEnyYwnx8XghJQU7dTr4ZmZC8ac/GZ6oVIoVgR9/HNi5E5gzZ9KvnYiIZiYGlFmqsrISn3/+uRxKjK1ITsYLS5bgkd5euJ8+Dfz3fxseVKnEMODHHxfDgr29J/nKiYhoNmBAmUX0oeTTTz/FxYsXTR5bs2IFXlq4EJs6OuB88qTpyBtHR7HezeOPi62b2yRfORERzTYMKDNcRUWFXFNiHEoUCgXWpaTgh7GxWN/WBqeTJwHjmhQ3N8PEaWlpIqQQERFNEgaUGejevXtyKLlkNIW8QqHApuXL8cPoaKxtaoLDmTOmocTHR/QleeIJYN060ZxDREQ0BRhQZoiqqip8+umn+PTTT81CydbkZPwwIgKr6+thn5EBGDfvBAUZhgOvXMmJ04iIyCowoExjjY2N+Pzzz/HJJ58gIyNDHn2jUCjwWHIy/r+QEKyorob6wgXAeDG+yEgRSJ54AkhK4hwlRERkdRhQppn29nbs378fn3zyCU6cOGEyT8nXk5Lw/wUHI7myEqrLl01DyYIFhjlK4uMZSoiIyKoxoEwDPT09OHz4MD7++GMcOnTIZEbXx2Nj8dLcuUiuqoI6OxvIzjY8MTlZBJKvfQ2IipqCKyciIhobBhQrNTAwgJMnT+Ljjz/G/v370dHRIT/2WEgIXg4JQXJ1NdTFxUBxsXjAxgZYvVo03ezcCQQHT83FExERPSQGFCui0+lw7tw5fPzxx/j888/R1NQEAFAA2Onnhx/NnStCyd27wN274kl2dsCGDSKU7NgB+PpO3Q0QERGNEwYUK3Dt2jV8+OGH+Pjjj1FVVQVA/If5urs7dgUHI7mmBuq6OqCuTjzBwQHYskWEkm3bAHf3Kbt2IiKiicCAMkUqKyuxZ88efPTRRygoKAAAOAL4jqMjfhAQgKS6Oti1tgKtreIJrq7A9u0ilGzeDDg5TdWlExERTTgGlEnU3t6OL774Ah999BHOnDkDSZLgCeDvlEp8z9cXS5qaYNvdDdy6JZ7g4wM89pjo5LphA6BWT+n1ExERTRYGlAk2MDCAY8eO4aOPPsKBAwfQ29uLIAAvAPhbNzcs6uiAjVYL1NSIJ4SGikDyta8BK1Zw4jQiIpqVGFAmgCRJyMrKwkcffYRPPvkEjY2NiAHwIwBP2dsjQT9MuK1NbBcsMISSBQs4RwkREc16DCjjqLy8HB9++CE++ugj3CorQzKAHwP4ulKJSK1WnNTbKwLIypUikOzcCYSHT+FVExERWR8GlIfU2dmJzz//HH/605+Qk56ONAA/BbANgI/+JK1WLLy3YYMIJTt2AH5+U3bNRERE1o4BZQz085X86U9/wsW//hUbenrwzwDWATDpxurmBmzdKjq6PvKIGIlDRERED8SAMgrl5eX44E9/wtU//hGJ1dX4IYD3B58UESFqSB59FFi1SkykRkRERKPCgPIAXV1d2PeXv6Dk7bcRVliIfwAQYPS4ZGMDrFgBxaOPilAyfz47uRIRET0kBhQLJEnC5b17ceM3v4FfVhae0GrhYPT4gL09FFu3wvZrX4Ni61bA23vKrpWIiGgmshnNybt378bSpUvh4uICX19f7Ny5Ezdu3DA5p7OzEy+++CKCgoLg4OCAmJgYvPvuuybn1NbW4umnn4a/vz+cnJywZMkSfP755w9/Nw+pLicHZ9etQ6G9PZZ//ev47sWL2HI/nLS6u6P9u98Fjh+HXVsbbPfuBZ5+muGEiIhoAoyqBiU9PR0vvPACli5dCo1Gg1dffRVpaWkoLi6G0/2p13/0ox/hzJkz+OijjxAaGorjx4/jBz/4AQIDA/HYY48BAJ5++mm0tbXh4MGD8Pb2xp49e/Dkk08iOzsbixcvHv+7HKH6oiKsPXsWAKADUO7jA+XOnQh58UW4JySw6YaIiGiSKCRJksb65IaGBvj6+iI9PR2pqakAgPj4eDz55JP42c9+Jp+XmJiIRx55BK+//joAwNnZGe+++y6efvpp+RwvLy/86le/wnPPPffA39ve3g43Nze0tbXBdRxHxkg6HTLnz4cyNRULf/pTOHF+EiIionEzms/vUTXxDNZ2fyZUT09P+diqVatw8OBBVFVVQZIknDlzBqWlpdi8ebPJOX/961/R3NwMnU6HTz75BH19fVi7dq3F39PX14f29naTMhEUNjZYXVqKFX/8I8MJERHRFBpzQJEkCS+//DJWrVqF+Ph4+fhbb72F2NhYBAUFQaVSYcuWLfjtb3+LVatWyef89a9/hUajgZeXF9RqNb73ve9h3759iIiIsPi7du/eDTc3N7kEBweP9bKJiIhoGhhzQHnxxRdx7do1fPzxxybH33rrLVy6dAkHDx5ETk4OfvOb3+AHP/gBTp48KZ/zf/7P/0FLSwtOnjyJ7OxsvPzyy/jGN76BgoICi7/rlVdeQVtbm1wqKirGetlEREQ0DYypD8quXbuwf/9+ZGRkICwsTD7e09MDNzc37Nu3D9u2bZOPP//886isrMTRo0dx69YtREZGorCwEHFxcfI5GzduRGRkJH73u9898PdPVB8UIiIimjij+fwe1SgeSZKwa9cu7Nu3D2fPnjUJJwAwMDCAgYEB2NiYVswolUrodDoAQHd3NwAMew4RERHNbqMKKC+88AL27NmDAwcOwMXFBbW1tQAANzc3ODg4wNXVFWvWrMH/+l//Cw4ODggJCUF6ejo++OADvPnmmwCA+fPnIzIyEt/73vfw61//Gl5eXti/fz9OnDiBr776avzvkIiIiKadUTXxKIaYB+T999/Hs88+C0BMwvbKK6/g+PHjaG5uRkhICP7hH/4BP/rRj+Tnl5WV4Z//+Z+RmZmJzs5OREZG4p/+6Z9Mhh0Ph008RERE089oPr8fah6UqcKAQkRENP1M2jwoRERERBOBAYWIiIisDgMKERERWR0GFCIiIrI6DChERERkdRhQiIiIyOqMaqI2a6EfGT1RqxoTERHR+NN/bo9khpNpGVA6OjoAgKsaExERTUMdHR1wc3Mb9pxpOVGbTqdDdXU1XFxchpzddqza29sRHByMiooKTgI3gfg+Tx6+15OD7/Pk4Ps8eSbivZYkCR0dHQgMDDRbk2+waVmDYmNjg6CgoAn9Ha6urvyffxLwfZ48fK8nB9/nycH3efKM93v9oJoTPXaSJSIiIqvDgEJERERWhwFlELVajddeew1qtXqqL2VG4/s8efheTw6+z5OD7/Pkmer3elp2kiUiIqKZjTUoREREZHUYUIiIiMjqMKAQERGR1WFAISIiIqvDgGLkt7/9LcLCwmBvb4/ExEScO3duqi9p2snIyMCjjz6KwMBAKBQK7N+/3+RxSZLw85//HIGBgXBwcMDatWtRVFRkck5fXx927doFb29vODk5YceOHaisrJzEu7Buu3fvxtKlS+Hi4gJfX1/s3LkTN27cMDmH7/P4ePfdd7FgwQJ5oqqUlBQcOXJEfpzv88TYvXs3FAoFfvjDH8rH+F4/vJ///OdQKBQmxd/fX37c6t5jiSRJkqRPPvlEsrOzk/77v/9bKi4ull566SXJyclJunv37lRf2rRy+PBh6dVXX5W++OILCYC0b98+k8d/+ctfSi4uLtIXX3whFRQUSE8++aQUEBAgtbe3y+d8//vfl+bMmSOdOHFCys3NldatWyctXLhQ0mg0k3w31mnz5s3S+++/LxUWFkp5eXnStm3bpLlz50qdnZ3yOXyfx8fBgwelQ4cOSTdu3JBu3Lgh/fSnP5Xs7OykwsJCSZL4Pk+ErKwsKTQ0VFqwYIH00ksvycf5Xj+81157TYqLi5NqamrkUl9fLz9ube8xA8p9y5Ytk77//e+bHJs/f770z//8z1N0RdPf4ICi0+kkf39/6Ze//KV8rLe3V3Jzc5N+97vfSZIkSa2trZKdnZ30ySefyOdUVVVJNjY20tGjRyft2qeT+vp6CYCUnp4uSRLf54nm4eEh/fGPf+T7PAE6OjqkqKgo6cSJE9KaNWvkgML3eny89tpr0sKFCy0+Zo3vMZt4APT39yMnJwdpaWkmx9PS0nDhwoUpuqqZp7y8HLW1tSbvs1qtxpo1a+T3OScnBwMDAybnBAYGIj4+nv8thtDW1gYA8PT0BMD3eaJotVp88skn6OrqQkpKCt/nCfDCCy9g27Zt2Lhxo8lxvtfjp6ysDIGBgQgLC8O3vvUt3L59G4B1vsfTcrHA8dbY2AitVgs/Pz+T435+fqitrZ2iq5p59O+lpff57t278jkqlQoeHh5m5/C/hTlJkvDyyy9j1apViI+PB8D3ebwVFBQgJSUFvb29cHZ2xr59+xAbGyv/Qeb7PD4++eQT5Obm4sqVK2aP8f/p8ZGcnIwPPvgA8+bNQ11dHf7f//t/WLFiBYqKiqzyPWZAMaJQKEx+liTJ7Bg9vLG8z/xvYdmLL76Ia9euITMz0+wxvs/jIzo6Gnl5eWhtbcUXX3yB7373u0hPT5cf5/v88CoqKvDSSy/h+PHjsLe3H/I8vtcPZ+vWrfJ+QkICUlJSEBERgT//+c9Yvnw5AOt6j9nEA8Db2xtKpdIsAdbX15ulSRo7fW/x4d5nf39/9Pf3o6WlZchzSNi1axcOHjyIM2fOICgoSD7O93l8qVQqREZGIikpCbt378bChQvxn//5n3yfx1FOTg7q6+uRmJgIW1tb2NraIj09HW+99RZsbW3l94rv9fhycnJCQkICysrKrPL/ZwYUiD9AiYmJOHHihMnxEydOYMWKFVN0VTNPWFgY/P39Td7n/v5+pKeny+9zYmIi7OzsTM6pqalBYWEh/1vcJ0kSXnzxRezduxenT59GWFiYyeN8nyeWJEno6+vj+zyONmzYgIKCAuTl5cklKSkJf/M3f4O8vDyEh4fzvZ4AfX19KCkpQUBAgHX+/zzu3W6nKf0w4/fee08qLi6WfvjDH0pOTk7SnTt3pvrSppWOjg7p6tWr0tWrVyUA0ptvvildvXpVHq79y1/+UnJzc5P27t0rFRQUSE899ZTFYWxBQUHSyZMnpdzcXGn9+vUcKmjkH//xHyU3Nzfp7NmzJsMFu7u75XP4Po+PV155RcrIyJDKy8ula9euST/96U8lGxsb6fjx45Ik8X2eSMajeCSJ7/V4+PGPfyydPXtWun37tnTp0iVp+/btkouLi/w5Z23vMQOKkXfeeUcKCQmRVCqVtGTJEnnYJo3cmTNnJABm5bvf/a4kSWIo22uvvSb5+/tLarVaSk1NlQoKCkxeo6enR3rxxRclT09PycHBQdq+fbt07969Kbgb62Tp/QUgvf/++/I5fJ/Hx9/93d/JfxN8fHykDRs2yOFEkvg+T6TBAYXv9cPTz2tiZ2cnBQYGSo8//rhUVFQkP25t77FCkiRp/OtliIiIiMaOfVCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVocBhYiIiKwOAwoRERFZHQYUIiIisjoMKERERGR1GFCIiIjI6jCgEBERkdVhQCEiIiKrw4BCREREVuf/BzsHPUNB2NuAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1622,9 +1418,9 @@ ], "metadata": { "kernelspec": { - "display_name": "neuromancer", + "display_name": "nm14", "language": "python", - "name": "neuromancer" + "name": "nm14" }, "language_info": { "codemirror_mode": { diff --git a/examples/ODEs/Part_6_NetworkODE.py b/examples/ODEs/Part_6_NetworkODE.py index ebd4eaf7..97bee0f5 100644 --- a/examples/ODEs/Part_6_NetworkODE.py +++ b/examples/ODEs/Part_6_NetworkODE.py @@ -1,4 +1,4 @@ -# Numpy + plotting utilities + ordered dicts +# %% Numpy + plotting utilities + ordered dicts import numpy as np import matplotlib.pyplot as plt from collections import OrderedDict @@ -11,7 +11,7 @@ # Neuromancer imports from neuromancer.psl.coupled_systems import * -from neuromancer.dynamics import integrators, ode, physics, interpolation +#from neuromancer.dynamics import integrators, ode, physics, interpolation from neuromancer.dataset import DictDataset from neuromancer.constraint import variable from neuromancer.problem import Problem @@ -20,11 +20,16 @@ from neuromancer.loggers import BasicLogger from neuromancer.trainer import Trainer +# Local core development: +import local_integrators as integrators +import local_physics as physics +import local_ode as ode + # Fix seeds for reproducibility np.random.seed(200) torch.manual_seed(0) - +# Define Network and datasets adj = np.array([[0,1],[0,2],[0,3],[1,0],[1,3],[1,4],[2,0],[2,3],[3,0],[3,1],[3,2],[3,4],[4,1],[4,3]]).T s = RC_Network(nx=5, adj=adj) nsim = 500 @@ -48,42 +53,46 @@ train_dataset, dev_dataset, = [DictDataset(d, name=n) for d, n in zip([train_data, dev_data], ['train', 'dev'])] train_loader, dev_loader, test_loader = [DataLoader(d, batch_size=nsim//nstep, collate_fn=d.collate_fn, shuffle=True) for d in [train_dataset, dev_dataset, dev_dataset]] -zones = [physics.RCNode(C=nn.Parameter(torch.tensor(5.0)),scaling=1.0e-5) for i in range(5)] # heterogeneous population w/ identical physics -heaters = [physics.SourceSink() for i in range(5)] # define heaters +# Define the states +states = {} +states['T_1'] = 0 +states['T_2'] = 1 +states['T_3'] = 2 +states['T_4'] = 3 +states['T_5'] = 4 +states['T_6'] = 5 +states['T_7'] = 6 +states['T_8'] = 7 +states['T_9'] = 8 +states['T_10'] = 9 +states['T_11'] = 10 + +# Model construction +keys = list(states.keys()) +zones = [physics.RCNode(in_keys=[keys[i]], state_keys=[keys[i]], + C=nn.Parameter(torch.tensor(5.0)),scaling=1.0e-5) for i in range(5)] -outside = [physics.SourceSink()] +heaters = [physics.SourceSink(state_keys=[keys[i+len(zones)]], in_keys=[keys[i+len(zones)]]) for i in range(5)] # define heaters + +outside = [physics.SourceSink(state_keys=[keys[-1]], in_keys=[keys[-1]])] # join lists: agents = zones + heaters + outside -map = physics.map_from_agents(agents) -# Let's take a look at this 'map': -print(map) - # Helper function for constructing couplings based on desired edge physics and an edge list: -def generate_parameterized_edges(physics,edge_list): +def generate_deltaTemp_edges(physics,edge_list,agents): """ Quick helper function to construct edge physics/objects from adj. list: """ - couplings = [] - if isinstance(physics,nn.Module): # is "physics" an instance or a class? - # If we're in here, we expect one instance of "physics" for all edges in edge_list (homogeneous edges) - physics.pins = edge_list - couplings.append(physics) - print(f'Broadcasting {physics} to all elements in edge list.') - else: - # If we're in here, we expect different "physics" for each edge in edge_list (heterogeneous edges) - for edge in edge_list: - agent = physics(R=nn.Parameter(torch.tensor(50.0)),pins=[edge]) - couplings.append(agent) - - print(f'Assuming new {physics} for each element in edge list.') + for edge in edge_list: + agent = physics(in_keys=[*agents[edge[1]].in_keys,*agents[edge[0]].in_keys],R=nn.Parameter(torch.tensor(50.0)),pins=[edge]) + couplings.append(agent) return couplings -couplings = generate_parameterized_edges(physics.DeltaTemp,list(adj.T)) # Heterogeneous edges of same physics +couplings = generate_deltaTemp_edges(physics.DeltaTemp,list(adj.T),agents) # Heterogeneous edges of same physics # What do we have so far? print(len(couplings)) @@ -93,28 +102,25 @@ def generate_parameterized_edges(physics,edge_list): print(couplings[0].pins) # Couple w/ outside temp: -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[0,5]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[1,5]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[2,5]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[3,5]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[4,5]])) +outside_list = [[0,5],[1,5],[2,5],[3,5],[4,5]] +out_couplings = generate_deltaTemp_edges(physics.DeltaTemp,outside_list,agents) # Couple w/ individual sources: -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[0,6]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[1,7]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[2,8]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[3,9]])) -couplings.append(physics.DeltaTemp(R=nn.Parameter(torch.tensor(50.0)),pins=[[4,10]])) +source_list = [[0,6],[1,7],[2,8],[3,9],[4,10]] +source_couplings = generate_deltaTemp_edges(physics.DeltaTemp,source_list,agents) + +couplings += out_couplings + source_couplings +# Model ODE RHS instantiation model_ode = ode.GeneralNetworkedODE( - map = map, + states=states, agents = agents, couplings = couplings, insize = s.nx+s.nu, - outsize = s.nx, - inductive_bias="compositional") + outsize = s.nx) -fx_int = integrators.RK2(model_ode, h=1.0) +# Integrator instantiation +fx_int = integrators.Euler(model_ode, h=1.0) dynamics_model = System([Node(fx_int,['xn','U'],['xn'])]) @@ -167,4 +173,5 @@ def generate_parameterized_edges(physics,edge_list): plt.figure() plt.plot(sol.detach().numpy(),label='model', color = 'black') -plt.plot(s_test['X'][:,:5],label = 'data', color = 'red') \ No newline at end of file +plt.plot(s_test['X'][:,:5],label = 'data', color = 'red') +# %% diff --git a/src/neuromancer/dynamics/integrators.py b/src/neuromancer/dynamics/integrators.py index c22c7268..febd5765 100644 --- a/src/neuromancer/dynamics/integrators.py +++ b/src/neuromancer/dynamics/integrators.py @@ -97,7 +97,35 @@ def integrate(self, x, *args): k1 = self.block(*[x, *args]) # k1 = f(x_i, t_i) return x + h*k1 +class EulerDAE(Integrator): + def __init__(self, block, algebra=None, interp_u=None, h=1.0): + """ + + :param block: (nn.Module) A state transition model. + :param algebra: (nn.Module) Model for evolving algebraic states. + :param interp_u: Function for interpolating control input values for intermediate integration steps. + If you assume a constant control sequence over the time intervals of the samples then + lambda u, t: u will work. + See interpolation.py and neuromancer/examples/system_identifcation/duffing_parameter.py for + more sophisticated interpolation schemes. + :param h: (float) integration step size + """ + super().__init__(block=block, interp_u=interp_u, h=h) + self.algebra = algebra + + def integrate(self, x, *args): + """_summary_ + :param x: (torch.Tensor, shape=[batchsize, SysDim]) + :param u: (torch.Tensor, shape=[batchsize, nu]) + :param t: (torch.Tensor, shape=[batchsize, 1]) + :return x_{t+1}: (torch.Tensor, shape=[batchsize, SysDim]) + """ + x = self.algebra(x, *args) + h = self.h + k1 = self.block(x, *args) + return x + h*k1 + class Euler_Trap(Integrator): def __init__(self, block, interp_u=None, h=1.0): """ diff --git a/src/neuromancer/dynamics/ode.py b/src/neuromancer/dynamics/ode.py index d516d780..b5398ee4 100644 --- a/src/neuromancer/dynamics/ode.py +++ b/src/neuromancer/dynamics/ode.py @@ -70,90 +70,139 @@ def forward(self, x, *args): assert len(x.shape) == 2 return self.ode_equations(x, *args) - class GeneralNetworkedODE(ODESystem): - """ - Coupled nonlinear dynamical system with heterogeneous agents. This class acts as an - aggregator for multiple interacting physics that contribute to the dynamics of one - or more agents. - """ + """ Coupled nonlinear dynamical system with heterogeneous agents. Can be used standalone for networked ODE systems with + homo/heterogeneous agents or together with :class:'GeneralNetworkedAE' for the specification of differential-algebraic + equations.""" - def __init__(self, map = None, + def __init__(self, states = None, agents = None, couplings = None, insize = None, outsize = None, - inductive_bias = "additive" ): + """Constructor method. + :param states: (dict) dictionary of state and index pairs, defaults to None + :param agents: (list(Agents)) list of agents for the networked system, defaults to None + :param couplings: (list(Couplings)) list of couplings between agents + :param insize: (int) in state dimension, defaults to None + :param outsize: (int) out state dimension, defaults to None """ - :param map: mapping between state index and agent state name(s) - :param agents: list of ordered dicts, one per agent. - :param couplings: list of blocks. one per interaction type. - :param insize: dimensionality of input, including disturbances and control - :param outsize: dimensionality of output, just for agent evolution - :param inductive_bias: selection of inductive bias for ODE. additive or compositional - """ + super().__init__(insize=insize, outsize=outsize) # Composition of network: - self.map = map + self.states = states self.agents = nn.ModuleList(agents) self.couplings = nn.ModuleList(couplings) self.insize = insize self.outsize = outsize - self.inductive_bias = inductive_bias - assert len(self.map) == len(self.agents) - def ode_equations(self, x, *args): + """Forward pass of the method. + + :param x: (torch.Tensor) input tensor of size (batches,states) + :return: (torch.Tensor) output tensor of size (batches,states) """ - Select the inductive bias to use for the problem: - - Additive: f(x_i) + sum(g(x_i,x_j)) - - General: f(x_i, sum(g(x_i,x_j))) - - Composed: f(sum(g(x_i,x_j))) - """ - if self.inductive_bias == "additive": - dx = self.intrinsic_physics(x, *args) + self.coupling_physics(x, *args) - elif self.inductive_bias == "general": - #dx = self.intrinsic_physics(x,self.coupling_physics(x)) - raise Exception("General RHS not implemented.") - elif self.inductive_bias == "compositional": - dx = self.intrinsic_physics(self.coupling_physics(x, *args), *args) - else: - raise Exception("No inductive bias match.") - - return dx[:, :self.outsize] - - def intrinsic_physics(self, x, *args): - """ - Calculate and return the contribution from all agents' intrinsic physics + + # construct the RHS of the ODE via physics(states,accumulated interactions)[return only autonomous part] + # dx/dt = f(x,\sum_A(couplings)) + return self.intrinsic_physics(x,self.coupling_physics(x, *args), *args)[:,:self.outsize] + + def intrinsic_physics(self, x, interactions, *args): + """Calculation of intrinsic physics contributions from agents. For each agent, + aggregate interactions and call the forward pass of the agent. + + :param x: (torch.Tensor) input tensor of size (batches,states), these are the states of the system + :param interactions: (torch.Tensor) input tensor of size (batches,states), these are the accumulated interactions of the system + :return: (torch.Tensor) output tensor of size (batches,states) """ - dx = torch.tensor([]) # initialize empty to avoid indexing tedium features = torch.cat([x, *args], dim=-1) - # loop over agents and calculate contribution from intrinsic physics - for idx, agent_dict in enumerate(self.map): - dx = torch.cat((dx, self.agents[idx](features[:, list(agent_dict.values())])), -1) - return dx + dx = torch.zeros_like(features) + + for agent in self.agents: + """Get all of the relevant attributes from the agent object and pass them as arguments to agents() fwd pass. + Loop through each agent. construct RHS of the ODE. + """ + state_idxs = list(map(self.states.get, agent.state_keys)) + input_idxs = list(map(self.states.get, agent.in_keys)) + dx[:,state_idxs] = agent(features[:,input_idxs], interactions[:,state_idxs]) + + return dx + def coupling_physics(self, x, *args): + """Calculate aggregated coupling physics across all connections in self.couplings. + + :param x: (torch.Tensor) input tensor of size (batches,states), these are the states of the system + :return: (torch.Tensor) output tensor of size (batches,states) """ - This coupling physics assumes that each coupling physics nn.Module contains the - connection information, including what agents are connected and if the connection - is symmetric. - """ - dx = torch.zeros_like(x) + features = torch.cat([x, *args], dim=-1) + dx = torch.zeros_like(features) + # first loop over coupling physics listed in self.couplings for physics in self.couplings: # for each physics in self.couplings, loop over the pins and add contribution to dx for pin in physics.pins: - send = self.map[pin[0]][physics.feature_name] - receive = self.map[pin[1]][physics.feature_name] - contribution = physics(features[:, [send, receive]]) - dx[:, [send]] += contribution + + send = list(map(self.states.get, self.agents[pin[0]].state_keys)) + receive = list(map(self.states.get, self.agents[pin[1]].state_keys)) + interaction_idx = list(map(self.states.get, physics.in_keys)) + + contribution = physics(features[:,interaction_idx]) # -> x[:,[1]] - x[:,[0]] + dx[:,receive] += contribution if physics.symmetric: - dx[:, [receive]] -= contribution - return dx + dx[:,send] -= contribution + return dx + +class GeneralNetworkedAE(ODESystem): + """General Networked Algebraic Equation class. This is an extension of the ODESystem class + for handling update of algebraic states for differential-algebraic equations. Intended to + be used in conjunction with GeneralNetworkedODE class. + """ + + def __init__(self, states = None, + agents = None, + insize = None, + outsize = None): + """Constructor method. + :param states: (dict) dictionary of state and index pairs, defaults to None + :param agents: (list(Agents)) list of agents for the networked system, defaults to None + :param insize: (int) in state dimension, defaults to None + :param outsize: (int) out state dimension, defaults to None + """ + super().__init__(insize=insize, outsize=outsize) + self.states = states + self.agents = nn.ModuleList(agents) + self.insize = insize + self.outsize = outsize + + def ode_equations(self, x, *args): + """Forward pass of the method. For evolution of algebraic states, we call + self.algebraic_equations(x) here. + + :param x: (torch.Tensor) input tensor of size (batches,states) + :return: (torch.Tensor) output tensor of size (batches,states) + """ + + return self.algebraic_equations(x, *args) + + def algebraic_equations(self, x, *args): + """Update of algebraic state variables according to agent-based algebra solvers or surrogates thereof. + + :param x: (torch.Tensor) input tensor of size (batches,states) + :return: (torch.Tensor) output tensor of size (batches,states) + """ + + features = torch.cat([x, *args], dim=-1) + dx = torch.clone(features) + + for agent in self.agents: + # change the states at these indices based on the algebra solvers contained in the agents, if any + dx[:,list(map(self.states.get, agent.state_keys))] = agent(features[:,list(map(self.states.get, agent.in_keys))], [], mode="dae") + + return dx[:,:self.outsize] class TwoTankParam(ODESystem): diff --git a/src/neuromancer/dynamics/physics.py b/src/neuromancer/dynamics/physics.py index 9797fe82..b48498d2 100644 --- a/src/neuromancer/dynamics/physics.py +++ b/src/neuromancer/dynamics/physics.py @@ -12,19 +12,259 @@ class Agent(nn.Module, ABC): - serve as anchor for connections (pins) """ - def __init__(self, state_names): + def __init__(self, state_keys): + """ + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict + """ super().__init__() - self.state_names = state_names + self.state_keys = state_keys + + @abstractmethod + def intrinsic(self, x, y): + """Calcuation of the intrinsic physics contribution from a particular agent + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + """ + pass @abstractmethod - def intrinsic(self, x): + def algebra(self, x): + """Algebraic update of algebraic states, if any. + + :param x: (torch.Tensor) input tensor of size (batches,in_keys), these are inputs to the algebra solver for the agent's algebraic states + """ pass - def forward(self,x): - assert len(self.state_names) == x.shape[1] - return self.intrinsic(x) + def forward(self, x, y, mode: str = "ode"): + """_summary_ + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :param mode: mode of the forward pass, "ode" or "dae", defaults to "ode" + :raises ValueError: invalid mode + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + if mode == "ode": + return self.intrinsic(x,y) + elif mode == "dae": + return self.algebra(x) + else: + raise ValueError("No match for ode or dae.") ### Children: + +class SIMOConservationNode(Agent): + """Single Input, Multiple Output Conservation Node. Useful for splitting mass flows, etc... + """ + + def __init__(self, state_keys = None, + in_keys = None, + solver = None): + """ + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)), List of strings for input, defaults to None + :param solver: any callable mapping from in_keys to state_keys, e.g. nn.Module or lambda function, defaults to None + """ + super().__init__(state_keys=state_keys) + self.solver = solver + self.in_keys = in_keys + + def intrinsic(self, x, y): + """No intrinsic physics contribution from conservation node, return zeros of correct size. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return torch.zeros_like(x[:,:len(self.state_keys)]) + + def algebra(self, x): + """Algebraic update for splitting single input among multiple outputs. + + :param x: (torch.Tensor) input tensor of size (batches,in_keys) + :return: (torch.Tensor) output tensor of size (batches,state_keys) + """ + + param = torch.abs(self.solver(x[:,1:])) + return torch.cat((x[:,[0]]*param,x[:,[0]]*(1.0 - param)),-1) + #return x[:,[0]]*self.solver(x[:,1:]) + +class SIMOBBConservationNode(Agent): + """Single Input, Multiple Output Conservation Node. Useful for splitting mass flows, etc... + """ + + def __init__(self, state_keys = None, + in_keys = None, + solver = None): + """ + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)), List of strings for input, defaults to None + :param solver: any callable mapping from in_keys to state_keys, e.g. nn.Module or lambda function, defaults to None + """ + super().__init__(state_keys=state_keys) + self.solver = solver + self.in_keys = in_keys + + def intrinsic(self, x, y): + """No intrinsic physics contribution from conservation node, return zeros of correct size. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return torch.zeros_like(x[:,:len(self.state_keys)]) + + def algebra(self, x): + """Algebraic update for splitting single input among multiple outputs. + + :param x: (torch.Tensor) input tensor of size (batches,in_keys) + :return: (torch.Tensor) output tensor of size (batches,state_keys) + """ + + return x[:,[0]]*self.solver(x[:,1:]) + +class SISOConservationNode(Agent): + """Single input, single output conservation node. Useful for sources, sinks, drains, return mass flows, etc... + """ + + def __init__(self, + state_keys = None, + in_keys = None, + solver = None): + """ + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)), List of strings for input, defaults to None + :param solver: any callable mapping from in_keys to state_keys, e.g. nn.Module or lambda function, defaults to None + """ + super().__init__(state_keys=state_keys) + self.solver = solver + self.in_keys = in_keys + + def intrinsic(self, x, y): + """No intrinsic physics contribution from conservation node, return zeros of correct size. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return torch.zeros_like(x[:,:len(self.state_keys)]) + + def algebra(self, x): + """Algebraic update according to self.solver. + + :param x: (torch.Tensor) input tensor of size (batches,in_keys) + :return: (torch.Tensor) output tensor of size (batches,state_keys) + """ + return self.solver(x) + +class MIMOTank(Agent): + """Multiple Input, Multiple Output Conservation Node.""" + def __init__(self, profile = lambda x: 1.0, + state_keys = None, + in_keys = None, + scaling: float = 1.0): + """ + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)), List of strings for input, defaults to None + :param solver: any callable mapping from in_keys to state_keys, e.g. nn.Module or lambda function, defaults to None + :param scaling: (float), optional scaling factor. + :param solver: a callable mapping agent states to a state-derived property (e.g. area-height relationship), nn.Module or lambda function + """ + + super().__init__(state_keys = state_keys) + self.profile = profile + self.scaling = scaling + self.in_keys = in_keys + + def intrinsic(self, x, y): + """Time rate of change of amount of substance in fixed volume over time, equal to sum(mass flows)/area(height). + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + # need to sum all of the inlet and outlet contributions and then scale by the 'capacitance' of the agent + #return torch.sum(y,1,keepdim=True)/self.profile(x) + return self.scaling*y/self.profile(x) + + def algebra(self, x): + """No algebraic update for agent's states. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return x[:,:len(self.state_keys)] + +class BatchReactor(Agent): + """Custom agent for an adiabatic batch reactor with exothermic chemical reactions.""" + + def __init__(self, state_keys = None, + in_keys = None, + C = nn.Parameter(torch.tensor(1.0)), + kinetics = None): + """ + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)), List of strings for input, defaults to None + :param solver: any callable mapping from in_keys to state_keys, e.g. nn.Module or lambda function, defaults to None + :param C: (nn.Parameter), thermal capacitance of the reactor. + :param kinetics: (callable) surrogate model for chemical kinetics + """ + + super().__init__(state_keys = state_keys) + self.in_keys = in_keys + self.C = C + self.kinetics = kinetics + + def intrinsic(self,x,y): + """Time rate of change of temperature of reactor obeys a first-law energy balance. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return (1.0/self.C)*(1-(x[:,[3]]/(x[:,[1]]+x[:,[2]]+x[:,[3]])))*self.kinetics(x[:,[0]]) + + def algebra(self, x): + """No algebraic update for agent's states. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return x[:,:len(self.state_keys)] + +class Reactions(Agent): + """Custom agent for surrogate modeling of chemical reaction network. """ + + def __init__(self, state_keys = None, + in_keys = None, + solver = None): + """ + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)), List of strings for input, defaults to None + :param solver: any callable mapping from in_keys to state_keys, e.g. nn.Module or lambda function, defaults to None + """ + super().__init__(state_keys=state_keys) + self.in_keys = in_keys + self.solver = solver + + def intrinsic(self, x, y): + """No intrinsic physics contribution from conservation node, return zeros of correct size. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return torch.zeros_like(x[:,:len(self.state_keys)]) + + def algebra(self, x): + """Algebraic update according to self.solver. + + :param x: (torch.Tensor) input tensor of size (batches,in_keys) + :return: (torch.Tensor) output tensor of size (batches,state_keys) + """ + return self.solver(x) + class RCNode(Agent): """ @@ -32,36 +272,71 @@ class RCNode(Agent): according to the capacitance of the agent. Examples include lumped volumes, rooms, etc. """ - def __init__(self, C = nn.Parameter(torch.tensor([1.0])), - state_names = ["T"], + def __init__(self, state_keys = None, + in_keys = None, + C = nn.Parameter(torch.tensor([1.0])), scaling = 1.0): """ - :param C: capacitance - :param state_names: List of state names. Length should be same as dimension of state. - :param scaling: scale factor. Useful for expeceted multi-scale physics. + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)) List of strings for input, defaults to None + :param scaling: (float) scale factor. Useful for expeceted multi-scale physicsm defaults to 1.0 + :param C: (nn.Parameter) learnable capacitance, defaults to a value of 1.0 """ - super().__init__(state_names=state_names) + super().__init__(state_keys=state_keys) + self.in_keys = in_keys self.C = C self.scaling = scaling - def intrinsic(self, x): - return torch.max(torch.tensor(1e-6),self.C)*self.scaling*x + def intrinsic(self, x, y): + """Time rate of change of temperature of reactor obeys a first-law energy balance. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return torch.max(torch.tensor(1e-6),self.C)*self.scaling*y + + def algebra(self, x): + """No algebraic update for agent's states. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return x[:,:len(self.state_keys)] class SourceSink(Agent): """ Generic Source / Sink agent. Useful for 'dummy' agents to which one can attach external signals. """ - - def __init__(self, state_names = ["T"]): + def __init__(self, state_keys = None, + in_keys = None): """ - :param state_names: List of state names. Length should be same as dimension of state. + :param state_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None + :param in_keys: (list(Str)), List of strings for input, defaults to None + :param solver: any callable mapping from in_keys to state_keys, e.g. nn.Module or lambda function, defaults to None """ - super().__init__(state_names = state_names) + super().__init__(state_keys=state_keys) + self.in_keys = in_keys + + def intrinsic(self, x, y): + """No intrinsic physics contribution from conservation node, return zeros of correct size. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :param y: (torch.Tensor) input tensor of size (batches,agent states), these are the accumulated interactions at the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return torch.zeros_like(x[:,:len(self.state_keys)]) + + def algebra(self, x): + """No algebraic update for agent's states. + + :param x: (torch.Tensor) input tensor of size (batches,agent states), these are the states of the agent + :return: (torch.Tensor) output tensor of size (batches,agent states) + """ + return x[:,:len(self.state_keys)] - def intrinsic(self, x): - return torch.zeros_like(x) ####################### COUPLING DEFINITIONS AND SPECIFICATIONS #################### @@ -72,25 +347,60 @@ class Interaction(nn.Module, ABC): - interactions can be one-sided or symmetric (influence both agents) """ - def __init__(self, feature_name, pins, symmetric): + def __init__(self, in_keys, + pins: list[list[int]], + symmetric: bool = False): """ - :param feature_name: (str) Specification of correct state for interaction physics + :param in_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to None :param pins: list of lists of pairwise connections between agents (e.g. pins=[[0,1],[0,2]]) - :param symmetric: one-way ot two-way interaction + :param symmetric: one-way or two-way interaction, default False """ super().__init__() self.symmetric = symmetric - self.feature_name = feature_name + self.in_keys = in_keys self.pins = pins @abstractmethod def interact(self, x): + """Calculation of an interaction on an edge in a graph. + + :param x: (torch.Tensor) input tensor of shape (batches,in keys), these are the selected input states opon which the interaction operates + """ pass - def forward(self,x): + def forward(self, x): + """forward pass of the interaction. + + :param x: (torch.Tensor) input tensor of shape (batches,in keys), these are the selected input states opon which the interaction operates + :return: (torch.Tensor) + """ return self.interact(x) -### Children: +### Children: +class Pipe(Interaction): + """ + Imposition of a source term as an interaction. + """ + def __init__(self, + in_keys = [], + pins: list[list[int]] = [], + symmetric: bool = True): + """ + :param in_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to []] + :param pins: list of lists of pairwise connections between agents (e.g. pins=[[0,1],[0,2]]), defaults to [] + :param symmetric: one-way or two-way interaction, defaults to True + """ + super().__init__(in_keys = in_keys, + pins=pins, + symmetric=symmetric) + + def interact(self, x): + """Observation function. Return observed value from specified agent. + + :param x: (torch.Tensor) input tensor of shape (batches,in keys), these are the selected input states opon which the interaction operates + :return: (torch.Tensor) + """ + return x[:,[0]] class DeltaTemp(Interaction): """ @@ -98,21 +408,29 @@ class DeltaTemp(Interaction): """ def __init__(self, + in_keys = [], + pins: list[list[int]] = [], R = nn.Parameter(torch.tensor(1.0)), - feature_name = "T", - symmetric = False, - pins = []): + symmetric = False): """ - :param R: resistivity for connection - :param feature_name: (str) Specification of correct state for interaction physics - :param pins: list of lists of pairwise connections between agents (e.g. pins=[[0,1],[0,2]]) - :param symmetric: one-way ot two-way interaction + :param in_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to []] + :param pins: list of lists of pairwise connections between agents (e.g. pins=[[0,1],[0,2]]), defaults to [] + :param R: (nn.Parameter) 1/Resistance, learnable, defaults to 1.0 + :param symmetric: one-way or two-way interaction, defaults to True """ - super().__init__(feature_name=feature_name, pins=pins, symmetric=symmetric) + super().__init__(in_keys = in_keys, + pins=pins, + symmetric=symmetric) self.R = R def interact(self, x): + """calculation of temperature difference (or, abstractly, any state difference) between agents. + Scales the temperature difference by (R = 1/Resistance). + + :param x: (torch.Tensor) input tensor of shape (batches,in keys), these are the selected input states opon which the interaction operates + :return: (torch.Tensor) + """ return torch.max(torch.tensor(1e-2),self.R)*(x[:,[1]] - x[:,[0]]) class DeltaTempSwitch(Interaction): @@ -121,21 +439,30 @@ class DeltaTempSwitch(Interaction): depending on agent values (zero or nonzero). """ def __init__(self, - R = nn.Parameter(torch.tensor([1.0])), - feature_name = "T", - symmetric = False, - pins = []): + in_keys = [], + pins: list[list[int]] = [], + R = nn.Parameter(torch.tensor(1.0)), + symmetric = False): """ - :param R: resistivity for connection - :param feature_name: (str) Specification of correct state for interaction physics - :param pins: list of lists of pairwise connections between agents (e.g. pins=[[0,1],[0,2]]) - :param symmetric: one-way ot two-way interaction + :param in_keys: (list(Str)) List of strings corresponding to keys in the ODE system's state dict, defaults to []] + :param pins: list of lists of pairwise connections between agents (e.g. pins=[[0,1],[0,2]]), defaults to [] + :param R: (nn.Parameter) 1/Resistance, learnable, defaults to 1.0 + :param symmetric: one-way or two-way interaction, defaults to True """ - super().__init__(feature_name=feature_name, pins=pins, symmetric=symmetric) + super().__init__(in_keys = in_keys, + pins=pins, + symmetric=symmetric) self.R = R def interact(self, x): + """calculation of temperature difference (or, abstractly, any state difference) between agents. + Scales the temperature difference by (R = 1/Resistance). + Returns a minimum value (default is 1e-2) if paired agent's state value is zero. + + :param x: (torch.Tensor) input tensor of shape (batches,in keys), these are the selected input states opon which the interaction operates + :return: (torch.Tensor) + """ return torch.max(torch.tensor(1e-2),self.R)*(x[:,[1]] - x[:,[0]])*(x[:,[1]]>=0.0) class HVACConnection(Interaction): @@ -143,40 +470,35 @@ class HVACConnection(Interaction): Imposition of a source term as an interaction. """ def __init__(self, - feature_name = "T", - symmetric = False, - pins = []): + in_keys = [], + pins: list[list[int]] = [], + symmetric = False): """ :param feature_name: (str) Specification of correct state for interaction physics :param pins: list of lists of pairwise connections between agents (e.g. pins=[[0,1],[0,2]]) :param symmetric: one-way ot two-way interaction """ - super().__init__(feature_name=feature_name, pins=pins, symmetric=symmetric) + super().__init__(in_keys = in_keys, + pins=pins, + symmetric=symmetric) def interact(self, x): - return x[:,[1]] - -################################# HELPER FUNCTIONS ################################# + """Observation function. Return observed value from specified agent. -def map_from_agents(intrinsic_list): - """ - Quick helper function to construct state mappings: - """ + :param x: (torch.Tensor) input tensor of shape (batches,in keys), these are the selected input states opon which the interaction operates + :return: (torch.Tensor) + """ + return x[:,[1]] - agent_maps = [] - count = 0 - for agent_physics in intrinsic_list: - node_states = [(s,i+count) for i,s in enumerate(agent_physics.state_names)] - count += len(node_states) - agent_maps.append(OrderedDict(node_states)) - - return agent_maps - -### Aggregate all in dicts: - -agents = {'RCNode': RCNode, +agents = {'SIMOConservationNode': SIMOConservationNode, + 'SISOConservationNode': SISOConservationNode, + 'MIMOTank': MIMOTank, + 'BatchReactor': BatchReactor, + 'Reactions': Reactions, + 'RCNode': RCNode, 'SourceSink': SourceSink} -couplings = {'DeltaTemp': DeltaTemp, +couplings = {'Pipe': Pipe, + 'DeltaTemp': DeltaTemp, 'DeltaTempSwitch': DeltaTempSwitch, 'HVACConnection': HVACConnection} \ No newline at end of file From 6b05a8af5fcddab7db18043099435d84a0520f51 Mon Sep 17 00:00:00 2001 From: "Koch, James V" Date: Mon, 2 Oct 2023 08:55:22 -0700 Subject: [PATCH 2/5] updated networked ode example to work with new syntax --- examples/ODEs/Part_6_NetworkODE.py | 9 ++------- 1 file changed, 2 insertions(+), 7 deletions(-) diff --git a/examples/ODEs/Part_6_NetworkODE.py b/examples/ODEs/Part_6_NetworkODE.py index 97bee0f5..d1977cf2 100644 --- a/examples/ODEs/Part_6_NetworkODE.py +++ b/examples/ODEs/Part_6_NetworkODE.py @@ -11,7 +11,7 @@ # Neuromancer imports from neuromancer.psl.coupled_systems import * -#from neuromancer.dynamics import integrators, ode, physics, interpolation +from neuromancer.dynamics import integrators, ode, physics from neuromancer.dataset import DictDataset from neuromancer.constraint import variable from neuromancer.problem import Problem @@ -20,11 +20,6 @@ from neuromancer.loggers import BasicLogger from neuromancer.trainer import Trainer -# Local core development: -import local_integrators as integrators -import local_physics as physics -import local_ode as ode - # Fix seeds for reproducibility np.random.seed(200) torch.manual_seed(0) @@ -120,7 +115,7 @@ def generate_deltaTemp_edges(physics,edge_list,agents): outsize = s.nx) # Integrator instantiation -fx_int = integrators.Euler(model_ode, h=1.0) +fx_int = integrators.RK4(model_ode, h=1.0) dynamics_model = System([Node(fx_int,['xn','U'],['xn'])]) From 2fa337bf99e681dfc817f3e8091aa17c0a631eb9 Mon Sep 17 00:00:00 2001 From: "Koch, James V" Date: Mon, 2 Oct 2023 10:30:40 -0700 Subject: [PATCH 3/5] new examples --- examples/ODEs/Part_7_DAE.ipynb | 11963 +++++++++++++++++++++++++++++++ examples/ODEs/Part_7_DAE.py | 337 + examples/ODEs/data/area.dat | 401 ++ examples/ODEs/data/tanks.dat | 501 ++ 4 files changed, 13202 insertions(+) create mode 100755 examples/ODEs/Part_7_DAE.ipynb create mode 100644 examples/ODEs/Part_7_DAE.py create mode 100644 examples/ODEs/data/area.dat create mode 100644 examples/ODEs/data/tanks.dat diff --git a/examples/ODEs/Part_7_DAE.ipynb b/examples/ODEs/Part_7_DAE.ipynb new file mode 100755 index 00000000..0a05a131 --- /dev/null +++ b/examples/ODEs/Part_7_DAE.ipynb @@ -0,0 +1,11963 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data-driven modeling of a Tank/Manifold System\n", + "\n", + "This tutorial performs the data-driven modeling of a pair of tanks connected by a common manifold.\n", + "\n", + "**Problem Setup:**\n", + "\n", + "Consider two water tanks of different area-height profiles connected at their base by a common pipe/manifold network that is fed by a pump:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Tank-manifold diagram](figs/manifold.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, a volumetric flow out of the pump enters a manifold where the flow splits into two streams; one into each tank. The split of flow between these two streams is equal to the input. In mathematical terms:\n", + "$$\n", + "q_\\text{pump} = q_2 + q_2.\n", + "$$\n", + "Similarly, we can write down evolution equations for the heights of the tanks:\n", + "$$\n", + "\\frac{dh_1}{dt} = \\frac{1}{A_1 \\left( h_1 \\right)}q_1\n", + "$$\n", + "$$\n", + "\\frac{dh_2}{dt} = \\frac{1}{A_2 \\left( h_2 \\right)}q_2 . \n", + "$$\n", + "\n", + "Now, suppose we have two goals: from measurements of tank heights and flows and knowledge of $A_1(h)$, (i) predict the evolution of the system, and (ii) learn the other area-height tank profile. Let's start by training a Neural ODE to learn the dynamics of the system. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Modeling in Neuromancer:**\n", + "\n", + "Let's do this task in Neuromancer. Here are the relevant imports:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "import os\n", + "\n", + "import neuromancer.slim as slim\n", + "from neuromancer.modules import blocks, activations\n", + "from neuromancer.dynamics import integrators, ode, physics\n", + "from neuromancer.trainer import Trainer\n", + "from neuromancer.problem import Problem\n", + "from neuromancer.dataset import DictDataset\n", + "from neuromancer.loss import PenaltyLoss\n", + "from neuromancer.constraint import variable, Objective\n", + "from neuromancer.system import Node, System\n", + "from neuromancer.loggers import BasicLogger\n", + "\n", + "from collections import OrderedDict\n", + "from abc import ABC, abstractmethod\n", + "\n", + "torch.manual_seed(0)\n", + "device = 'cpu'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also want to keep our plots clean and uniform - let's set the defaults now:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "plt.rcParams[\"font.family\"] = \"serif\"\n", + "#plt.rcParams[\"font.serif\"] = [\"Times\"]\n", + "plt.rcParams['figure.dpi'] = 300\n", + "plt.rcParams.update({'font.size': 10})\n", + "\n", + "params = {'legend.fontsize': 10,\n", + " 'axes.labelsize': 10,\n", + " 'axes.titlesize': 10,\n", + " 'xtick.labelsize': 10,\n", + " 'ytick.labelsize': 10}\n", + "plt.rcParams.update(params)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Data Loading and preparation**\n", + "\n", + "For this problem, we load data from a text file and construct the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "data = np.float32(np.loadtxt('data/tanks.dat'))\n", + "data=data[1:497,]\n", + "area_data = np.loadtxt('data/area.dat')\n", + "time = np.float32(np.linspace(0.0,len(data[:,0])-1,len(data[:,0])).reshape(-1, 1))\n", + "U = time*0.0 + 0.5\n", + "\n", + "train_data = {'Y': data[1:], 'X': data[1:], 'Time': time[1:], 'U': U[1:] }\n", + "dev_data = train_data\n", + "test_data = train_data\n", + "\n", + "nsim = data.shape[0]\n", + "nx = data.shape[1]\n", + "nstep = 15\n", + "\n", + "for d in [train_data, dev_data]:\n", + " d['X'] = d['X'].reshape(nsim//nstep, nstep, nx)\n", + " d['Y'] = d['Y'].reshape(nsim//nstep, nstep, nx)\n", + " d['xn'] = d['X'][:, 0:1, :] # Add an initial condition to start the system loop\n", + " d['Time'] = d['Time'].reshape(nsim//nstep, nstep, 1)\n", + " d['U'] = d['U'].reshape(nsim//nstep, nstep, 1)\n", + "\n", + "train_dataset, dev_dataset, = [DictDataset(d, name=n) for d, n in zip([train_data, dev_data], ['train', 'dev'])]\n", + "train_loader, dev_loader, test_loader = [DataLoader(d, batch_size=nsim//nstep, collate_fn=d.collate_fn, shuffle=True) for d in [train_dataset, dev_dataset, dev_dataset]]\n", + "\n", + "nx = 4 # set the state dimension\n", + "nu = 1 # set the exogenous input dimension\n", + "\n", + "# State names if we need them (we do)\n", + "states = {}\n", + "states['h_1'] = 0\n", + "states['h_2'] = 1\n", + "states['m_1'] = 2\n", + "states['m_2'] = 3\n", + "states['m'] = 4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Data Visualization:**\n", + "\n", + "Now that we have our data loaded, we can take a look at the system dynamics:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr8AAAUeCAYAAADHJyqpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd5RV9bk//udMY2hDb0qHYUCwoVEkKigIiiYaY/uZYkk0Ro2KUWNicpUkdqPGJBpbEm+amkQTK4go9opKpA1NujQpQ5t+fn/kXr4X60bmMDOH12st1+Jz5vPs/T4uYcbzZu+dSqfT6QAAAAAAAIAskFPfAQAAAAAAAKCuKL8AAAAAAADIGsovAAAAAAAAsobyCwAAAAAAgKyh/AIAAAAAACBrKL8AAAAAAADIGsovAAAAAAAAsobyCwAAAAAAgKyh/AIAAAAAACBrKL8AAAAAAADIGsovAAAAAAAAsobyCwAAAAAAgKyh/AIAAAAAACBrKL8AAAAAAADIGsovAAAAAAAAsobyCwAAAAAAgKyh/AIAAAAAACBrKL8AAAAAAADIGsovAAAAAAAAsobyCwAAAAAAgKyh/AIAAAAAACBrKL8AAAAAAADIGsovAAAAAAAAsobyCwAAAAAAgKyh/AIAAAAAACBrKL8AAAAAAADIGsovAAAAAAAAsobyCwAAAAAAgKyh/AIAAAAAACBrKL8AAAAAAADIGnn1HYBtpdPpOOSQQ+Kll17a+tppp50Wf/jDH3bouFVVVfHKK6/E9OnTY82aNVFQUBDdu3ePIUOGRI8ePXYwNQAAAAAAQMOg/Gpg7rzzzm2Krx21YcOGuPrqq+POO++MdevWfeyeoUOHxrhx42LkyJF1dl4AAAAAAID6oPxqQN5///24/PLL6+x4U6dOjWOPPTYWLlwYERH5+flx1FFHRb9+/WLt2rXxwgsvxOzZs+Pll1+OI444Ii644IK45ZZbIifH3TABAAAAAIDGSfnVgJx//vmxfv36OjnW9OnT4/DDD481a9ZERMSQIUPigQceiO7du2/dU1tbG3fddVecf/75UVNTE7fddlts2rQp7rnnnjrJAAAAAAAAsLO5xKeB+Ne//hUPPfRQRES0atVqh45VXl4eX/3qV7cWX/3794+nnnpqm+IrIiInJyfOOeec+M1vfrP1tXvvvVf5BQAAAAAANFrKrwZgw4YNcf7550dERK9eveLss8/eoePddtttUVpaunX961//Olq2bPmJ+88+++w46KCDtq5/9KMfxYYNG3YoAwAAAAAAQH1QfjUAP/zhD2PJkiUREXHHHXdEs2bNPvex1q5dG9dee+3W9V577RUjRoz41JlUKhVjx47dul61alXcdNNNnzsDAAAAAABAfVF+1bNXX3017rjjjoiIOPXUU2P06NE7dLwHHngg1q1bt3X9ta99LdHcl770pSgqKtq6vvvuuyOdTu9QFgAAAAAAgJ1N+VWPqqqq4qyzzora2tpo06ZN3HLLLTt8zL///e/brA877LBEc4WFhTFkyJCt6/fffz9eeumlHc4DAAAAAACwMym/6tH1118f06ZNi4iIG2+8MTp27LhDxysrK4vnnntu67qgoCD22muvxPMHHHDANutHHnlkh/IAAAAAAADsbMqvejJ79uy4+uqrIyJi2LBhceaZZ+7wMd99992orq7euu7du3c0adIk8fzAgQO3Wb/zzjs7nAkAAAAAAGBnUn7Vk+985ztRXl4eTZo0iTvvvDNSqdQOH3P69OnbrLt27bpd87vvvvunHg8AAAAAAKChy6vvALuie++9NyZPnhwRET/84Q+jpKSkTo47a9asbdYfLrM+y4f3L1u2LDZs2BAtW7bc4WwrV66MVatWbddMWVlZvPnmm1FUVBStW7eObt26bdeVbAAAAAAAkI0qKipi8eLFW9fDhg2L1q1b11+gBkb5tZOtWLEiLr300oiI6N+/f/zwhz+ss2OvWbNmm3VRUdF2zX/c/rVr19ZJ+XX77bfHuHHjdvg4AAAAAADAtv75z3/GscceW98xGgy3PdzJLrzwwli7dm2kUqm46667oqCgoM6OvWHDhm3W23uVVGFh4WceEwAAAAAAoCFTfu1ETzzxRDzwwAMREfGtb30rDjnkkDo9/oeLqo8rsz6N8gsAAAAAAGjs3PZwJ9m0aVOce+65ERHRqVOnuOGGG+o50UelUqmPvJZOp+vk2Oeee26ceOKJ2zUzY8aMOOmkk7au//nPf0bfvn3rJA8AAAAAADRWc+fOjeOOO27rulu3bvUXpgFSfu0kP/7xj2PhwoUREXHrrbdGmzZt6vwcH342V3l5+XbNb9my5TOP+Xl17NgxOnbsuEPH6Nu3bwwcOLBO8gAAAAAAQLbY3scgZTu3PdwJ3nzzzfjVr34VERFHHXVUnHLKKRk5T4sWLbZZV1RUbNf8x5VldVV+AQAAAAAA7AzKrwyrrq6Os846K2pqaqJZs2Zx++23Z+xcbdu23WZdVla2XfMftz8TV6gBAAAAAABkivIrw26++eZ45513IiJi3Lhx0bNnz4ydq3///tusly5dul3zH97fpUuXKCoq2uFcAAAAAAAAO4vyK8OeeOKJrb++9NJLI5VKfeY/48aN2+YY991338fu+8Mf/rDNvkGDBm2zXrJkyXZl/XD59eHjAQAAAAAANHTKryyy5557Rm5u7tb1vHnztuu5X9OmTdtmvffee9dZNgAAAAAAgJ1B+ZVhkydPjnQ6vV3/XHnlldsc47TTTvvYfaeffvo2+4qKimLYsGFb11VVVTF16tTEWd94441t1l/+8pe3/w0DAAAAAADUI+VXljnhhBO2WU+ePDnRXHl5ebz66qtb1507d44vfvGLdRkNAAAAAAAg45RfWebkk0+OVq1abV3/+c9/TjT36KOPRllZ2db1t7/97cjJ8Z8HAAAAAADQuGg3skzbtm3j8ssv37r+97//HZMmTfrUmXQ6HbfccsvWdbt27eLSSy/NWEYAAAAAAIBMUX5loQsvvDCKi4u3rr/3ve/Fxo0bP3H/XXfdFa+88srW9dVXXx1FRUUZzQgAAAAAAJAJyq8s1LRp0/jHP/4RrVu3joiImTNnxqhRo2LRokXb7KutrY0777wzzjvvvK2vnX766fGd73xnZ8YFAAAAAACoM8qvevaHP/whUqnUNv+MGzdumz333XffR/ZcddVVn3rcPffcM5555pno1q1bRES88sorUVxcHMcdd1xcdtllcdZZZ8Uee+wR55xzTtTU1ERExHnnnRf33HNPRt4nAAAAAADAzpBX3wHInH333TfefffduOaaa+LOO++M9evXx7/+9a+P7BsyZEiMGzcuRo0aVQ8pAQAAAAAA6k4qnU6n6zsEmVdZWRkvv/xyTJ8+PdauXRsFBQXRrVu3OOigg6Jnz571He9jTZ8+PQYNGrR1PW3atBg4cGA9JgIAAAAAgPrn8/NP58qvXURBQUEMHz48hg8fXt9RAAAAAAAAMsYzvwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGsovwAAAAAAAMgayi8AAAAAAACyhvILAAAAAACArKH8AgAAAAAAIGvk1XeAXVlFRUXMmjUrZs6cGatWrYqysrIoLCyM1q1bR0lJSeyzzz7RokWL+o4JAAAAAADQaCi/drJ33nknHn744XjmmWfi9ddfj8rKyk/cm5+fH0cddVSMHTs2hg8fnvgcp59+etx3332fO+Mtt9wSF1100eeeBwAAAAAAqC/Kr52oX79+MWfOnG1eKyoqimHDhkVxcXEUFhbGmjVr4vXXX4+33norqqqq4pFHHolHHnkkzjzzzPjtb38b+fn59ZQeAAAAAACg4VN+7UT/t/hKpVJxxRVXxOWXXx7Nmzf/yN7XX389vvGNb8Ts2bMjIuJ3v/tdrF+/Pv7+97/vtLwAAAAAAACNTU59B9hVXXfddfGzn/3sY4uviIgDDjggnn322ejYsePW1/7xj3/EAw88kPgcV155ZaTT6e3+xy0PAQAAAACAxkr5VQ/69esX3//+9z9z32677RaXXHLJNq/dcccdmYoFAAAAAADQ6Cm/6sFJJ50Uubm5ifYeffTR26xffPHFqKmpyUQsAAAAAACARk/5tRMdffTRcfTRR8eoUaMSz/Ts2XObdU1NTaxevbqOkwEAAAAAAPVh9ooNccnfpsamiur6jpI18uo7wK7kscce2+6ZVCr1kdeaNGlSF3EAAAAAAIB6smD1prj16dnxr6nLIp2O6NW+eZx3WN/6jpUVlF8N3OLFi7dZd+7cOVq3bl0/YQAAAAAAgB2ydN2W+NWkOfG3KUuipja99fU7n5sXXx/SI1o1za/HdNlB+dXATZw4cZv18ccfX09JAAAAAACAz2vlhvK4/dl58ZfXFkVlTe1Hvl5WXh33vjA/Lh5VUg/psovyqwHbuHFj3HjjjVvXrVq1issvv3y7jrFkyZL4y1/+EpMmTYrp06fHmjVrora2Ntq1axddunSJoUOHxqhRo2LMmDGRk+MRcAAAAAAAUJfWbqqM3z4/L+57eUGUV3209Pq/7n3xvThtaM9o18Ljj3aE8quBWrlyZZx88smxcOHCiIho2rRpPPDAA9GtW7fEx3jggQfiuuuui4qKio98bdmyZbFs2bKYMmVK/OpXv4qSkpK49tpr4ytf+UqdvQcAAAAAANhVlZVXxT0vvBe/e/G92FhRnWhmU2VN/H3KkvjOsD4ZTpfdXOrTQJSXl8f7778fTz31VIwdOzb69+8fkydPjoiIwYMHx0svvRSjR4/ermPOmjUrKioqYuTIkfGnP/0p3nvvvdiyZUusXbs23nrrrRg3bly0adMmIiJKS0vj+OOPj7Fjx0Y6nf6MIwMAAAAAAB9nc2V13D55bhxy/bNx26Q5iYuvPh2ax29OHRxnHdI7wwmznyu/6tncuXOjuLj4I68XFRXFmWeeGaecckqMHDkyUqnUdh+7SZMm8bvf/S5OPfXUbV4vLCyMfffdN/bdd9/47ne/G2PGjIk333wzIiJuvfXWKCwsjGuvvfbzvaFPsHLlyli1atV2zcydO7dOMwAAAAAAQKaUV9XEX15bFLdPnhurN1YmnuvetllcNLI4jt1n98jN2f4ugI9SfjVQZWVl8cgjj8S6deti48aNceyxxyZ+JtfgwYNj3bp1cdZZZ8XRRx/9qXs7dOgQEyZMiAEDBsTKlSsjIuK6666LESNGxMiRI3f4ffyv22+/PcaNG1dnxwMAAAAAgIagsro2/jZlcfxq0txYXlaeeK5Lq8L43uHFceL+XSM/14366pJ/m/Wsb9++kU6nI51Ox4YNG2LevHlx//33x3HHHRdr1qyJhx56KI4//vgYPHjw1quzPssFF1wQ//znPz+z+Ppfbdu2jZ/+9KfbvHbFFVds93sBAAAAAIBdRU1tOv4xZUmMuHlyXPHwtMTFV/sWBfFfx+wRz14yPE49sLviKwP8G21AWrRoEb17946TTz45Hn744XjhhRdit912i4iIqVOnxqGHHhrjx4/PyLlPPfXUKCws3Lp+/fXXY9q0aRk5FwAAAAAANFa1tel47N/LYtQtz8X3/zY1Fq/ZkmiuVdP8+MGR/eP5yw6LMw/uFYX5uRlOuuty28MGbOjQofHEE0/EkCFDory8PLZs2RInn3xyvP3229G7d90+8K5ly5axzz77xKuvvrr1taeffjoGDRpUJ8c/99xz48QTT9yumblz58Zxxx1XJ+cHAAAAAIAdkU6nY9LMlfGLibNj5vtliedaNMmLbx3cK751SK8oKszPYEL+l/Krgdt7773j7LPPjttuuy0i/vMssCuvvDL++Mc/1vm5Bg4cuE35VZdXfnXs2DE6duxYZ8cDAAAAAICdIZ1Ox0tzP4ibniqNdxavSzxXmJ8Tpw3tGecc2ifaNC/IXEA+wm0PG4Gvfe1r26z/9re/xZYtyS6j3B5t2rTZZr169eo6PwcAAAAAADQWbyxYE6fc9Wp8/d7XEhdfBbk5cfrQnvH8ZYfFD48aoPiqB678agT222+/yMvLi+rq6oiIqKioiDfffDMOOeSQOj1PQcG2vwEzUbABAAAAAEBD9+8l6+IXT82O52avSjyTm5OKk/bvGucfXhy7t26awXR8FuVXI5Cbmxtt27aNlStXbn1t+fLldX6esrJt71Harl27Oj8HAAAAAAA0VKXLN8TNE0tjwvQViWdSqYjj9tk9LhxRHD3bN89gOpJSfu0kb775ZpSXl0efPn2iS5cu2z1fW1u7zTon5+PvWHnddddFeXl5nHDCCTFo0KDtOseSJUu2WX+enAAAAAAA0NgsWL0pbn16dvxr6rJIp5PPHTWoc4w9ol/069Qyc+HYbsqvneSEE06IhQsXxo9//OP42c9+tl2zW7ZsibVr127zWufOnT9273XXXRfr16+PoqKi7S6/pkyZss360EMP3a55AAAAAABoTJat2xK/emZOPPjmkqipTd56HVbSIb4/qiQG7d4qg+n4vJRfO9lLL7203TPPPfdc1NTUbF0XFhbG3nvv/akzzz//fFx88cWJz/Haa6/F4sWLt66bNm0ahx122HZnBQAAAACAhm71xoq4/dl58afXFkZlde1nD/yPg3q3i0tG94v9erTNYDp2lPJrJ3vuuedi+vTpMXDgwMQzN9100zbrMWPGRIsWLT515sknn4yFCxdGjx49Ep3j+uuv32Z93nnnRVFRUeKMAAAAAADQ0K3fXBV3vTAvfv/SgthcWfPZA/9jcPfWccmokhjat30G01FXlF87WW1tbZx22mnxzDPPJCqXrrnmmpg0adLWdUFBQVxzzTWfOVdZWRlnnHFGTJgwIfLz8z917z333BMPP/zw1nX37t3j8ssv/8xzAAAAAABAY7Cpojp+/9J7cdfz86OsvDrx3MDdiuKSUSUxvKRDpFKpDCakLuXUd4Bd0ZQpU+LAAw+Mp556KtKf8OS8pUuXxhlnnBFXXHHF1tdyc3Pj3nvvjZKSkkTnefbZZ2PYsGHx73//+2O/vmnTpvjRj34UZ5999tbXWrVqFY899li0a9duO94RAAAAAAA0POVVNXHvi+/FoTc8Gzc9NTtx8dW3Y4u4/WuD49HzD47D+ndUfDUyrvzaSb761a/GnXfeGZs2bYqIiFmzZsXo0aOjW7ducdBBB0W3bt2isLAw1q1bF1OnTo3XXnstqqqqts5379497rjjjhgzZsynnuekk06KP/3pT7Fly5aIiHjllVdi7733jn333Te+8IUvRPv27WPz5s0xf/78mDRp0tY8ERGDBw+OBx98MPr06ZOBfwMAAAAAALBzVNXUxt+nLInbJs2J99eXJ57r2qZpjB3ZL47bd/fIzVF4NVap9CddekSdKysriwcffDAef/zxeOaZZ6KsrOxT96dSqTjggAPi61//epx55pnRrFmzROdZt25d3H///VvPs3nz5k/cm5OTEwceeGBccMEFceKJJ0Zubu52vadMmj59egwaNGjretq0adv1rDQAAAAAAHYtNbXpeHTqsrjl6dmx8INP/mz8wzq2bBLfG1EcJ+/fLQryGv5N83x+/umUX/WkpqYm5s+fHzNnzoxly5ZFWVlZVFZWRosWLaJ169bRt2/f2GuvvRI9F+zTVFdXR2lpacyYMSNWrFgRZWVlUVBQEG3atIlu3brFkCFDdvgcmeI3LwAAAAAASaTT6ZgwfUXcPLE0Zq/YmHiuTbP8OHd43/jGQT2iML/hXBzyWXx+/unc9rCe5ObmRnFxcRQXF2f0PHl5eTFw4ED/0QMAAAAAkHXS6XS8MGd1/OKp0pi6ZH3iuZZN8uLbh/SOMw/uGS0L8zOYkPqg/AIAAAAAABqdNxasiRsnlMbr761JPFOYnxOnD+0V3zm0d7RpXpDBdNQn5RcAAAAAANBoTFu6Pm56qjQml65KPJOfm4pTD+ge5x3WNzoWFWYwHQ2B8gsAAAAAAGjw5qzYEDdPnB1PTlueeCYnFXHCfl3jghHF0bVNswymoyFRfgEAAAAAAA3Wog82x62TZsc/314atenkc8fs1SXGHtEv+nRokblwNEjKLwAAAAAAoMFZvr48fvXMnHjgjcVRvR2t18gBHePiI0pij92KMpiOhkz5BQAAAAAANBhrNlXGHZPnxn+/sjAqqmsTzw3t0y4uGV0Sg7u3yWA6GgPlFwAAAAAAUO/Kyqvinhfei3tfmB+bKmsSz+3bvXVcOqokhvZtn8F0NCbKLwAAAAAAoN5srqyO+15eGL99bl6s31KVeK5/55Zx6eiSOLx/x0ilUhlMSGOj/AIAAAAAAHa6iuqa+Otri+LXz86L1RsrEs/1bt88xh7RL47es0vk5Ci9+CjlFwAAAAAAsNNU19TGQ28tjV9OmhNL121JPLd766Zx4YjiOH7w7pGXm5PBhDR2yi8AAAAAACDjamvT8fi778ctE2fH/NWbEs+1b9Ekvnd43zjlgG7RJC83gwnJFsovAAAAAAAgY9LpdEyauTJ+MXF2zHy/LPFcq6b5cc6wPnHa0B7RrECdQXL+awEAAAAAADLi5bmr48anSuPtResSzzQvyI1vHdI7vn1IrygqzM9cOLKW8gsAAAAAAKhTby1aGzdNKI2X532QeKZJXk6cNrRnnDOsT7RtXpDBdGQ75RcAAAAAAFAnZiwri188VRqTZq1MPJOXk4pTDugW3zu8ODoVFWYwHbsK5RcAAAAAALBD5q/aGDdPnB2P/fv9xDM5qYjj9t09LhrRL7q3a5bBdOxqlF8AAAAAAMDnsnTdlrjt6Tnx97eWRE1tOvHcmD07x8VH9Iu+HVtmMB27KuUXAAAAAACwXVZvrIjbn50Xf3p1YVTW1CaeO6ykQ3x/VEkM2r1VBtOxq1N+AQAAAAAAiZSVV8U9z8+Pe198LzZV1iSeO7BX27h0dEns37NtBtPBfyi/AAAAAACAT7Wlsib++5UFccdz82Ld5qrEc3t3bRWXjC6Jg/u2j1QqlcGE8P8ovwAAAAAAgI9VVVMbD7yxOG6bNCdWbqhIPFfSqWVcPKpfjNqjk9KLnU75BQAAAAAAbKOmNh2PTl0WN0+cHYvWbE4816Ndsxg7sl98ae/dIjdH6UX9UH4BAAAAAAAREZFOp+PpmSvjpgmlUbpiQ+K5TkVN4oIRxXHS/t0iPzcngwnhsym/AAAAAACAeHne6rhxQmm8vWhd4pnWzfLj3OF94psH9YzC/NzMhYPtoPwCAAAAAIBd2NTF6+LGCaXx4tzViWeaF+TGtw7pHd8+pFcUFeZnMB1sP+UXAAAAAADsguas2BA3PVUaE6avSDxTkJcT3xjSI84d3ifatWiSwXTw+Sm/AAAAAABgF7J4zea45enZ8c+3l0ZtOtlMbk4qTtyva1wwojh2a900swFhBym/AAAAAABgF7ByQ3n8+pm58dfXF0VVTcLWKyKO2atLXHxEv+jdoUUG00HdUX4BAAAAAEAWW7+5Kn77/Lz4/UvvRXlVbeK5w0o6xPdHlcSg3VtlMB3UPeUXAAAAAABkoc2V1fH7lxbEb5+bFxvKqxPPfaFnm7h0dP84oFfbDKaDzFF+AQAAAABAFqmorom/vrYofv3svFi9sSLx3MDdiuKS0SUxvF+HSKVSGUwImaX8AgAAAACALFBTm46H3loStz49J5au25J4rnf75vH9USVx1KDOkZOj9KLxU34BAAAAAEAjlk6nY/y05fGLibNj7sqNied2a1UYF44sjq8O7hp5uTkZTAg7l/ILAAAAAAAaoXQ6HS/MWR03TiiNd5euTzzXrnlBnHdY3zj1wO5RmJ+bwYRQP5RfAAAAAADQyExZuDZunDArXp2/JvFMyyZ5cfahveOMg3tFiybqAbKX/7oBAAAAAKCRmPl+WfziqdJ4eubKxDNN8nLi9KE945xhfaJN84IMpoOGQfkFAAAAAAAN3ILVm+KWp2fHI1OXRTqdbCYvJxUnf6FbXDCiODoVFWY2IDQgyi8AAAAAAGiglq8vj9uemRMPvrE4qmuTtV6pVMRx++weF40sjh7tmmc4ITQ8yi8AAAAAAGhg1m6qjDuemxf3vbwgKqprE88dsUen+P6oftG/c1EG00HDpvwCAAAAAIAGYmNFddz7wntx9wvzY2NFdeK5g3q3i0uPLInB3dtkMB00DsovAAAAAACoZ+VVNfGnVxfG7ZPnxZpNlYnn9u7aKi4d3T++2LddpFKpDCaExkP5BQAAAAAA9aS6pjb+PmVJ/HLSnHh/fXniueKOLeL7o0pi9MBOSi/4EOUXAAAAAADsZLW16Xhi2vtx81OzY/7qTYnnurZpGmNH9ovj9t09cnOUXvBxlF8AAAAAALCTpNPpeH7O6rhh/KyYvqws8Vz7Fk3ighF945QvdI+CvJwMJoTGT/kFAAAAAAA7wVuL1sYN42fFq/PXJJ4pKsyLc4b3idOH9oxmBT7ShyT8TgEAAAAAgAyavWJD3DihNCbOWJF4pml+bpx5cM84+9A+0appfgbTQfZRfgEAAAAAQAYsWbs5bpk4Jx56e0mk08lm8nNT8bUDe8R5h/WNDi2bZDYgZCnlFwAAAAAA1KHVGyviN8/OjT+/uigqa2oTzeSkIo4f3DUuHFEc3do2y3BCyG7KLwAAAAAAqAMbyqvi7hfei3tfmB+bKmsSz40e2CkuGVUSxZ1aZjAd7DqUXwAAAAAAsAPKq2riT68ujN88OzfWbq5KPHdQ73Zx2ZElsW/3NhlMB7se5RcAAAAAAHwO1TW18dBbS+PWp2fHsvXlief23L1VXHZkSRzct32kUqkMJoRdk/ILAAAAAAC2QzqdjgnTl8eNE0pj3qpNied6t28el4wuiaMGdVZ6QQYpvwAAAAAAIKGX566O68fPiqlL1iee6VxUGBeNLI4T9usaebk5GUwHRCi/AAAAAADgM/17ybq4YXxpvDh3deKZ1s3y49zhfeKbB/WMwvzcDKYD/i/lFwAAAAAAfIK5KzfGzRNL44l3lyeeaZqfG98+pFecdWjvKCrMz2A64OMovwAAAAAA4EOWrdsSv3x6TvxtyuKoTSebyc9NxakHdI/zDy+ODi2bZDYg8ImUXwAAAAAA8D/WbqqM2yfPjfteWRiV1bWJZlKpiK/ss3uMPaJfdGvbLMMJgc+i/AIAAAAAYJe3qaI67n3xvbj7+fmxoaI68dzIAR3jktEl0b9zUQbTAdtD+QUAAAAAwC6rorom/vraovj1s3Nj9cbKxHMH9GwbPziqJPbr0TaD6YDPQ/kFAAAAAMAup6Y2Hf96Z2ncPHF2LFm7JfHcgC5FcdmRJTG8X4dIpVIZTAh8XsovAAAAAAB2Gel0Op6euTJunDArZq/YmHiuR7tmcfER/eJLe+0WOTlKL2jIlF8AAAAAAOwSXpv/QVw/fla8tWhd4pkOLZvEhSOK4+QvdIv83JzMhQPqjPILAAAAAICsNn3Z+rhxQmlMLl2VeKaoMC/OGd4nTh/aM5oV+CgdGhO/YwEAAAAAyEoLVm+KX0ycHY9OXZZ4pjA/J874Yq8459A+0apZfgbTAZmi/AIAAAAAIKusKCuP2ybNiQfeWBzVtelEM7k5qTjlC93ighHF0amoMMMJgUxSfgEAAAAAkBXWb66KO56bF394+b0or6pNPPelvXeLi4/oF73aN89gOmBnUX4BAAAAANCobamsid+//F78dvK8KCuvTjw3vKRDXDKqJAbt3iqD6YCdTfkFAAAAAECjVFVTG/e/sThumzQnVm2oSDw3uHvruOzI/jGkd7sMpgPqi/ILAAAAAIBGpbY2HY/+e1ncPHF2LPxgc+K5kk4t45LRJTFyQMdIpVIZTAjUJ+UXAAAAAACNQjqdjsmzV8UN40tj5vtliee6tmkaFx/RL47dZ/fIzVF6QbZTfgEAAAAA0OC9vWhtXPfkrHjtvTWJZ9q3KIjvHV4cpxzQLZrk5WYwHdCQKL8AAAAAAGiw5q7cGDdOmBUTpq9IPNOySV6cfWjvOPPgXtG8iY/BYVfjdz0AAAAAAA3O++u3xK0T58TfpiyO2nSymYK8nDjtoB7x3eF9o23zgswGBBos5RcAAAAAAA3Gus2VccfkefGHlxdERXVtopmcVMRJ+3eLC0YUx26tm2Y4IdDQKb8AAAAAAKh3Wypr4g8vL4g7Js+NsvLqxHNHDeoc3x9VEn07tshgOqAxUX4BAAAAAFBvqmtq429TlsStT8+OFWUVieeG9mkXPziyf+zdrXXmwgGNkvILAAAAAICdLp1Ox/hpy+PGp0pj/qpNiecG7lYUPziyfxxS3D5SqVQGEwKNlfILAAAAAICd6uV5q+P68aUxdfG6xDM92jWL748qiWP27BI5OUov4JMpvwAAAAAA2CmmL1sf148vjednr0o8075FQVwwojhO+UL3KMjLyWA6IFsovwAAAAAAyKhFH2yOX0wsjX+9syzxTIsmeXH2ob3jWwf3iuZNfJQNJOdPDAAAAAAAMmLVhor49TNz4i+vL4qqmnSimYLcnPj6kB5x3mF9ol2LJhlOCGQj5RcAAAAAAHVqQ3lV3P3Ce3HPC/Njc2VNoplUKuIr++4eFx/RL7q2aZbhhEA2U34BAAAAAFAnKqpr4s+vLopfPzs31myqTDw3on/HuPTIkujfuSiD6YBdhfILAAAAAIAdUlObjn+9szRunjg7lqzdknhuvx5t4vKj+scXerbNYDpgV6P8AgAAAADgc0mn0/Fs6cq4YXxpzFq+IfFccccWcdmR/WPkgI6RSqUymBDYFSm/AAAAAADYblMWro3rn5wVry9Yk3hmt1aFMfaIfnH84K6Rm6P0AjJD+QUAAAAAQGJzVmyIGyaUxsQZKxLPtG6WH+cN7xvfOKhHFObnZjAdgPILAAAAAIAElq3bErc+PTv+PmVJ1KaTzTTNz41vHdwrzh7WO4oK8zMbEOB/KL8AAAAAAPhEazdVxh3PzYs/vLwgKqtrE83k5qTi/zugW1xweHF0LCrMcEKAbSm/AAAAAAD4iC2VNfG7l96L3z43LzaUVyeeO3qvLnHJqJLo1b55BtMBfDLlFwAAAAAAW1XV1MaDby6OXz49J1ZuqEg8d3Df9vGDI/vHnl1bZTAdwGdTfgEAAAAAEOl0Op54d3nc9FRpvLd6U+K5PXdvFT84sn8cXNw+g+kAklN+AQAAAADs4l6auzquHz8r/r1kfeKZnu2axSWjS2LMoC6Rk5PKYDqA7aP8AgAAAADYRU1buj6uHz8rXpizOvFMh5ZN4sIRxXHyF7pFfm5OBtMBfD7KLwAAAACAXczCDzbFTU/NjkenLks807JJXpwzvE+c8cWe0azAR8tAw+VPKAAAAACAXcTqjRXxq0lz4s+vLYrq2nSimYK8nDjtoB5x7vC+0aZ5QYYTAuw45RcAAAAAQJbbVFEd97zwXtz1/LzYVFmTaCYnFfHVwV3joiP6xe6tm2Y4IUDdUX4BAAAAAGSpqprauP/1RfHLSXNi9cbKxHMjB3SKy44siX6dWmYwHUBmKL8AAAAAALJMOp2OJ95dHjdOmBULPticeO4LPdvED47sH/v3bJvBdACZpfwCAAAAAMgir8z7IK57cmZMXbI+8UxJp5Zx2ZElcXj/jpFKpTKYDiDzlF8AAAAAAFlg5vtlcf34WTG5dFXimd1bN42xR/SLr+y7e+TmKL2A7KD8AgAAAABoxJau2xK/eKo0Hn57aaTTyWZaNc2P8w/rG984qEcU5udmNiDATqb8AgAAAABohNZtrozfPDs37ntlYVRW1yaaaZKXE2d8sVd8d3ifaNU0P8MJAeqH8gsAAAAAoBEpr6qJ37+0IG6fPDc2lFcnmslJRZywX9cYe0S/6NKqaYYTAtQv5RcAAAAAQCNQU5uOf0xZEjdPnB3Ly8oTz40c0CkuO7Ik+nVqmcF0AA2H8gsAAAAAoAFLp9MxaebKuH78rJizcmPiucHdW8flRw2IA3q1zWA6gIZH+VWPKioqYtasWTFz5sxYtWpVlJWVRWFhYbRu3TpKSkpin332iRYtWtTJuaqqquKVV16J6dOnx5o1a6KgoCC6d+8eQ4YMiR49etTJOQAAAACAujVl4dq47smZ8caCtYlnendoHpeN7h+jB3aKVCqVwXQADZPyayd755134uGHH45nnnkmXn/99aisrPzEvfn5+XHUUUfF2LFjY/jw4Z/rfBs2bIirr7467rzzzli3bt3H7hk6dGiMGzcuRo4c+bnOAQAAAADUrbkrN8aNE2bFhOkrEs90bNkkLhrZL07av2vk5eZkMB1Aw6b82on69esXc+bM2ea1oqKiGDZsWBQXF0dhYWGsWbMmXn/99XjrrbeiqqoqHnnkkXjkkUfizDPPjN/+9reRn5+f+HxTp06NY489NhYuXBgR/69M69evX6xduzZeeOGFmD17drz88stxxBFHxAUXXBC33HJL5OT4xggAAAAA9WFFWXnc+vScePDNxVFTm04007JJXpwzvE+c8cWe0azAR74A/iTcif5v8ZVKpeKKK66Iyy+/PJo3b/6Rva+//np84xvfiNmzZ0dExO9+97tYv359/P3vf090runTp8fhhx8ea9asiYiIIUOGxAMPPBDdu3ffuqe2tjbuuuuuOP/886OmpiZuu+222LRpU9xzzz078jYBAAAAgO1UVl4Vdz03P+55cX6UV9UmmsnPTcU3hvSM8w/vG22bF2Q4IUDjofyqJ9ddd11cdtlln/j1Aw44IJ599tnYd999Y+XKlRER8Y9//CMeeOCBOPnkkz/12OXl5fHVr351a/HVv3//eOqpp6Jly5bb7MvJyYlzzjknUqlUnHPOORERce+998aQIUPi29/+9o68PQAAAAAggYrqmvjTq4vi18/MibWbqxLPHbfPbvH9USXRrW2zDKYDaJzc364e9OvXL77//e9/5r7ddtstLrnkkm1eu+OOOz5z7rbbbovS0tKt61//+tcfKb7+r7PPPjsOOuigresf/ehHsWHDhs88DwAAAADw+dTWpuOfby+NEb94Ln722IzExdchxe3jse8dHLeesq/iC+ATKL/qwUknnRS5ubmJ9h599NHbrF988cWoqan5xP1r166Na6+9dut6r732ihEjRnzqOVKpVIwdO3bretWqVXHTTTclygcAAAAAbJ/nZ6+KY371Ylz0wDuxZO2WRDODdi+KP33rwPjjtw6MQbu3ynBCgMbNbQ93ov8tskaNGpV4pmfPntusa2pqYvXq1dGpU6eP3f/AAw/EunXrtq6/9rWvJTrPl770pSgqKoqysrKIiLj77rvjqquuilQqlTgrAAAAAPDJ3l2yPq4fPytenLs68Uz3ts3iktElccyeXSInx2d1AEkov3aixx57bLtnPq58atKkySfu//vf/77N+rDDDkt0nsLCwhgyZEg89dRTERHx/vvvx0svvRQHH3zwdqQFAAAAAD5s0Qeb46anSuORqcsSz7RtXhAXHN43Tj2wRxTkuYEXwPZQfjVwixcv3mbduXPnaN269cfuLSsri+eee27ruqCgIPbaa6/E5zrggAO2ll8REY888ojyCwAAAAA+pw82VsSvnpkbf35tYVTVpBPNNM3PjbMO6RVnHdo7WhbmZzghQHZSfjVwEydO3GZ9/PHHf+Led999N6qrq7eue/fu/alXiX3YwIEDt1m/8847iWcBAAAAgP/YVFEd9774Xtz1/PzYWFH92QMRkZuTiv/vgG5xwYji6NiyMMMJAbKb8qsB27hxY9x4441b161atYrLL7/8E/dPnz59m3XXrl2363y77777px4PAAAAAPhkVTW18cAbi+PWp+fE6o0ViefG7Nk5LhlVEr07tMhgOoBdh/KrgVq5cmWcfPLJsXDhwoiIaNq0aTzwwAPRrVu3T5yZNWvWNusPl1mf5cP7ly1bFhs2bIiWLVtu13EAAAAAYFeSTqdj/LTlceOE0pi/elPiuQN6tY0fHtU/9u3eJoPpAHY9yq8Gory8PNauXRvvvvtuPPnkk3HffffF2rVrIyJi8ODBcc8998S+++77qcdYs2bNNuuioqLtyvBx+9euXav8AgAAAIBP8Nr8D+LaJ2fFO4vXJZ4p6dQyLj+qfwwv6RCpVCpz4QB2UcqvejZ37twoLi7+yOtFRUVx5plnximnnBIjR45M9E1ww4YN26y353lfERGFhR+9l/CHj/l5rVy5MlatWrVdM3Pnzq2TcwMAAABAXStdviGuHz8rnpm1MvHMbq0K4+JRJfGVfXeP3BylF0CmKL8aqLKysnjkkUdi3bp1sXHjxjj22GMjJyfnU2c+XFR9XJn1aTJZft1+++0xbty4OjkWAAAAANSX5evL4+aJpfH3KUuiNp1splXT/DjvsD7xzYN6RmF+bmYDAqD8qm99+/aNdPo/3yU3btwYK1eujDfeeCPuv//+eOSRR+Khhx6Khx56KPbee++45557Yv/9989Ylo+7uux/swEAAADArqysvCrufG5e3Pvie1FeVZtopiAvJ874Ys84d1jfaNUsP8MJAfhfyq8GpEWLFtGiRYvo3bt3nHzyyfHyyy/HiSeeGMuWLYupU6fGoYceGg899FAceeSRHzv/4WdzlZeXb9f5t2zZ8pnHBAAAAIBdSWV1bfzltYVx2zNzY82mykQzOamIrw7uGmOP6Be7tW6a4YQAfJjyqwEbOnRoPPHEEzFkyJAoLy+PLVu2xMknnxxvv/129O7d+yP7W7Rosc26oqJiu873cWVZXZVf5557bpx44onbNTN37tw47rjj6uT8AAAAALA90ul0PP7u+3HjhNJY+MHmxHMjB3SMS0f3j5LO/lI5QH1RfjVwe++9d5x99tlx2223RcR/ngV25ZVXxh//+MeP7G3btu0267Kysu0618ftb9OmzXYd45N07NgxOnbsWCfHAgAAAIBMenX+B3Htk7Ni6uJ1iWf27d46Lj+yfxzYu13mggGQSE59B+Czfe1rX9tm/be//e1jb1HYv3//bdZLly7drvN8eH+XLl2iqKhou44BAAAAAI3V7BUb4lt/eCNOuevVxMVXr/bN446vDY6HvjtU8QXQQLjyqxHYb7/9Ii8vL6qrqyPiP7czfPPNN+OQQw7ZZt+gQYO2WS9ZsmS7zvPh8uvDxwMAAACAbLSirDxumTg7HnxzcdSmk820a14QF40sjlMO6B75ua4xAGhIlF+NQG5ubrRt2zZWrly59bXly5d/ZN+ee+4Zubm5UVNTExER8+bNi4qKimjSpEmi80ybNm2b9d57770DqQEAAACgYdtQXhV3PT8/7n5hfpRX1SaaaZqfG2cd0ivOHtYnWjTx8SpAQ+RP553kzTffjPLy8ujTp0906dJlu+dra7f95puT89G/TVJUVBTDhg2LZ555JiIiqqqqYurUqXHAAQckOscbb7yxzfrLX/7yducEAAAAgIausro2/vr6orht0pz4YFNlopmcVMTJX+geY0cWR8eiwgwnBGBHuB53JznhhBPikEMOidtvv327Z7ds2RJr167d5rXOnTt/4nn+r8mTJyc6R3l5ebz66qvbHP+LX/zi9gUFAAAAgAYsnU7HE+++H6NueS6ufGR64uJr5IBOMeGiQ+Pa4/dUfAE0Asqvneyll17a7pnnnntu660MIyIKCws/8ZaEJ598crRq1Wrr+s9//nOiczz66KNRVla2df3tb3/7Y68uAwAAAIDG6PX31sRXbn85zv3zW7Hgg82JZvbu1joeOHtI3HPa/lHcqWWGEwJQV7QbO9lzzz0X06dP366Zm266aZv1mDFjokWLFh+7t23btnH55ZdvXf/73/+OSZMmferx0+l03HLLLVvX7dq1i0svvXS7MgIAAABAQzR35Yb49n1vxkl3vhLvLF6XaKZnu2Zx+9cGxz/PHRoH9m6X2YAA1Dnl105WW1sbp5122jZXWX2aa665ZpvyqqCgIK655ppPnbnwwgujuLh46/p73/tebNy48RP333XXXfHKK69sXV999dVRVFSUKB8AAAAANEQry8rjhw+9G6NueT6enrki0Uy75gUx7ssD46mxw2LMnl0ilUplOCUAmaD8qgdTpkyJAw88MJ566qlIp9Mfu2fp0qVxxhlnxBVXXLH1tdzc3Lj33nujpKTkU4/ftGnT+Mc//hGtW7eOiIiZM2fGqFGjYtGiRdvsq62tjTvvvDPOO++8ra+dfvrp8Z3vfOdzvjMAAAAAqF8bK6rj5omzY9iNk+Ovry+K2o//+G0bhfk58b3D+8bkS4fHaUN7RkGej00BGrO8+g6wq/jqV78ad955Z2zatCkiImbNmhWjR4+Obt26xUEHHRTdunWLwsLCWLduXUydOjVee+21qKqq2jrfvXv3uOOOO2LMmDGJzrfnnnvGM888E8cee2wsXrw4XnnllSguLo6jjjoq+vXrF2vXro0XXnghSktLt86cd9558ctf/rJu3zgAAAAA7ARVNbVx/+uL4peT5sTqjZWJZnJSESft3y0uGtkvOrcqzHBCAHaWVPqTLj2izpWVlcWDDz4Yjz/+eDzzzDOfeevDVCoVBxxwQHz961+PM888M5o1a7bd51y/fn1cc801ceedd8b69es/ds+QIUNi3LhxMWrUqO0+fiZNnz49Bg0atHU9bdq0GDhwYD0mAgAAAKChSafTMX7a8rhhQmm8t3pT4rkR/TvGD47qH/06tcxgOoDM8Pn5p1N+1ZOampqYP39+zJw5M5YtWxZlZWVRWVkZLVq0iNatW0ffvn1jr732qrNnb1VWVsbLL78c06dPj7Vr10ZBQcHWq8569uxZJ+eoa37zAgAAAPBp3lywJq55Yma8tWhd4pm9u7aKH44ZEEN6t8tcMIAM8/n5p3Pbw3qSm5sbxcXFUVxcvFPOV1BQEMOHD4/hw4fvlPMBAAAAQKbMXbkxbhg/K56asSLxTPe2zeKyI0vi6D27RCqVymA6AOqb8gsAAAAAaBRWbiiPXz49J+5/Y3HU1Ca7oVWbZvlx4YjiOPXAHlGQl5PhhAA0BMovAAAAAKBB21RRHXc9Pz/ufmF+bK6sSTTTJC8nvn1Ir/jOsD5RVJif4YQANCTKLwAAAACgQaqqqY0H3lgctz49J1ZvrEg0k5OKOGG/rjH2iH7RpVXTDCcEoCFSfgEAAAAADUo6nY6nZqyI68fPivmrNiWeO7x/x/jBkf2jpHPLDKYDoKFTfgEAAAAADcaUhWvimidmxZSFaxPP7NW1VVx+VP8Y2qd9BpMB0FgovwAAAACAejd/1ca4YXxpjJ++PPFMt7ZN49LR/eOYPbtETk4qg+kAaEyUXwAAAABAvVm1oSJ+OWl2/PX1xVFTm04007pZfnzv8OL4+pDu0SQvN8MJAWhslF8AAAAAwE63ubI67n7+vbjr+XmxqbIm0UyTvJw48+Becc6wPtGqaX6GEwLQWCm/AAAAAICdpqY2HX97c3HcPHF2rNxQkWgmlYo4YXDXGHtEv9itddMMJwSgsVN+AQAAAAAZl06nY/LsVXHdE7OidMWGxHPDSzrED47sHwO6FGUwHQDZRPkFAAAAAGTUtKXr49onZ8ZLcz9IPDNo96L44VED4ot922cwGQDZSPkFAAAAAGTE0nVb4hcTSuPhd5ZGOp1spmubpnHp6JL40l67RU5OKrMBAchKyi8AAAAAoE6VlVfFHZPnxb0vvheV1bWJZlo1zY/vHd43vnFQj2iSl5vhhABkM+UXAAAAAFAnKqtr4y+vLYzbnpkbazZVJpopyM2JM77YM84d3jdaNcvPcEIAdgXKLwAAAABgh6TT6Rg/bXlcP35WLPhgc+K5Y/fZLS4ZVRLd2jbLYDoAdjXKLwAAAADgc5uycG1c88TMmLJwbeKZIb3bxo/GDIi9urbOXDAAdlnKLwAAAABguy1YvSlumDArnnh3eeKZPh2axw+PGhAjBnSMVCqVwXQA7MqUXwAAAABAYms2VcZtk+bEn19bGFU16UQz7Vs0ibFHFMfJ+3eLvNycDCcEYFen/AIAAAAAPlN5VU384eUF8Ztn58aG8upEM03zc+OsQ3rF2cP6RIsmPooEYOfwHQcAAAAA+ES1ten419SlcdOE2bF03ZZEMzmpiBP36xYXj+oXnYoKM5wQALal/AIAAAAAPtbLc1fHNU/OjGlLyxLPDOvXIX44pn/071yUwWQA8MmUXwAAAADANmav2BDXPjEzni1dlXhmjy5F8aMxA+Lg4vYZTAYAn035BQAAAABERMTKsvK45enZ8cAbi6M2nWymS6vCuGRUSXxl390jJyeV2YAAkIDyCwAAAAB2cZsqquOu5+fH3S/Mj82VNYlmWjTJi+8O7xPfOrhXFObnZjghACSn/AIAAACAXVR1TW38bcqSuHni7Fi1oSLRTF5OKr52YPe4YERxtGvRJMMJAWD7Kb8AAAAAYBeTTqfj2dKVce0Ts2LOyo2J544c2DkuO7IkendokcF0ALBjlF8AAAAAsAuZtnR9XP34zHhl/geJZ/bt3jquGDMg9u/ZNoPJAKBuKL8AAAAAYBewZO3muGlCafzznWWJZ7q3bRY/OLJ/jNmzc6RSqQymA4C6o/wCAAAAgCy2fktV3D55bvz+pQVRWV2baKZ1s/y44PDi+PqQHlGQl5PhhABQt5RfAAAAAJCFKqtr40+vLoxfPTMn1m6uSjRTkJcTZwztGece1jdaNc3PcEIAyAzlFwAAAABkkXQ6HU+8uzxumDArFn6wOfHccfvsFpeMLomubZplMB0AZJ7yCwAAAACyxJSFa+Lqx2fGW4vWJZ4Z0rtt/GjMgNira+uM5QKAnUn5BQAAAACN3ILVm+L68bPiyWnLE8/07dgifnhU/zi8f8dIpVIZTAcAO5fyCwAAAAAaqXWbK+O2SXPjj68uiKqadKKZ9i2axNgjiuPk/btFXm5OhhMCwM6n/AIAAACARqaiuib++MrCuG3SnCgrr0400zQ/N846tHecfWjvaNHEx4IAZC/f5QAAAACgkUin0/HEu8vj+vGzYtGazYlmclIRJ+3fLcYe0S86FRVmOCEA1D/lFwAAAAA0AlMWro2rH58Rby1al3hmeEmH+OFRA6Kkc8vMBQOABkb5BQAAAAAN2OI1m+O68bPi8X+/n3hmjy5FccXRA+KLfdtnMBkANEzKLwAAAABogNZvropfPzsn7nt5YVTW1Caa6VxUGJeMLonj9909cnJSGU4IAA2T8gsAAAAAGpDK6tr482sL45eT5sS6zVWJZpoV5MZ3h/WJbx/SO5oW5GY4IQA0bMovAAAAAGgA0ul0TJi+Iq57cmYs+GBzopmcVMTJX+gWY4/oFx1bFmY4IQA0DsovAAAAAKhnUxevi6sfnxmvL1iTeGZYvw7xozEDoqRzywwmA4DGR/kFAAAAAPVkydrNceOE0vjXO8sSz/Tv3DJ+NGZAHNqvQwaTAUDjpfwCAAAAgJ2srLwqbn92Xvzupfeisro20UyHlk3iklH94oT9ukVuTirDCQGg8VJ+AQAAAMBOUlVTG399fVHc+vScWLOpMtFM0/zcOPvQ3nH2ob2jeRMf5wHAZ/HdEgAAAAAyLJ1Ox9MzV8a1T86M+as2JZpJpSJO3K9rXHxESXRuVZjhhACQPZRfAAAAAJBB7y5ZH1c/MSNenb8m8czBfdvHj8YMiD12K8pgMgDITsovAAAAAMiAZeu2xE0TSuOht5cmninu2CJ+dPSAGN6vQ6RSnusFAJ+H8gsAAAAA6tDGiuq4Y/LcuOeF96KiujbRTPsWBTH2iH5x8v7dIi83J8MJASC7Kb8AAAAAoA5U19TG/W8sjlufnh2rN1YmmmmSlxNnHdI7zhneJ1o08VEdANQF31EBAAAAYAek0+mYXLoqrnliZsxZuTHx3PGDd49LR5dEl1ZNM5gOAHY9yi8AAAAA+JxmLCuLq5+YES/N/SDxzJDebePHR+8Rg3ZvlcFkALDrUn4BAAAAwHZavr48fvFUafz9rSWRTieb6d2hefzoqAExYkDHSKVSmQ0IALsw5RcAAAAAJLSpojrufH5+3P38/NhSVZNopm3zghg7sjhOOaB75OfmZDghAKD8AgAAAIDPUFObjr+9uTh+MXF2rNpQkWimIC8nvnVwr/ju8D5RVJif4YQAwP9SfgEAAADAp3hu9qq45vGZUbpiQ+KZ4/bZLS4ZXRJd2zTLYDIA4OMovwAAAADgY5Qu3xBXPzEznp+9KvHMAT3bxhVHD4i9u7XOXDAA4FMpvwAAAADg/1i5oTxumTg7HnhjcdSmk830at88Lj+qf4zao1OkUqnMBgQAPpXyCwAAAAAioryqJu598b24/dm5samyJtFM62b5ceGI4vjagT2iIC8nwwkBgCSUXwAAAADs0tLpdDwydVncML40lq7bkmimIDcnTv9izzjvsL7Rqml+hhMCANtD+QUAAADALmvKwjXxs8dmxjuL1yWeOWavLvGDI/tHt7bNMhcMAPjclF8AAAAA7HIWr9kc142fFY//+/3EM/v1aBNXHD0gBndvk8FkAMCOUn4BAAAAsMsoK6+K3zw7N37/4oKorKlNNNOtbdO4/MgBMWbPzpFKpTKcEADYUcovAAAAALJedU1t3P/G4rhl4uz4YFNlopmWhXlxweHF8c2hPaJJXm6GEwIAdUX5BQAAAEBWm1y6Mq5+fGbMWbkx0f7cnFR87cDuceGI4mjXokmG0wEAdU35BQAAAEBWKl2+Ia5+YmY8P3tV4pnD+3eMH43pH307tsxgMgAgk5RfAAAAAGSV1Rsr4uaJs+P+1xdFbTrZTP/OLeOKowfEIcUdMhsOAMg45RcAAAAAWaG8qiZ+/9KC+M2zc2NjRXWimfYtmsQlo/rFift3i9ycVIYTAgA7g/ILAAAAgEYtnU7HY/9+P657clYsXbcl0UyTvJw465Decc7wPtGiiY/IACCb+M4OAAAAQKP11qK18bPHZsTbi9Ylnjl2n93isiP7x+6tm2YuGABQb5RfAAAAADQ6S9ZujuvHl8ajU5clntmvR5v48dEDYt/ubTKYDACob8ovAAAAABqNDeVVccfkeXHPi+9FZXVtopmubZrGD48aEGP27ByplOd6AUC2U34BAAAA0OBV19TGg28uiZsnlsbqjZWJZlo2yYvzD+8bpw3tGYX5uRlOCAA0FMovAAAAABq052eviqsfnxmlKzYk2p+bk4pTD+geF40sjnYtmmQ4HQDQ0Ci/AAAAAGiQ5qzYEFc/MTMml65KPDO8pENcMWZAFHdqmcFkAEBDpvwCAAAAoEH5YGNF3PL07Pjr64ujpjadaKZfpxZxxdF7xLB+HTKcDgBo6JRfAAAAADQI5VU18YeXF8RvnpkbGyqqE820b1EQFx9REift3zXycnMynBAAaAyUXwAAAADUq3Q6HU+8uzyuGz8zFq/ZkmimIC8nvn1wr/ju8D7RsjA/wwkBgMZE+QUAAABAvXln8br42WMzYsrCtYlnvrz3bnHZkSXRtU2zDCYDABor5RcAAAAAO93SdVvihvGz4l/vLEs8M7h76/jxMXvE4O5tMpgMAGjslF8AAAAA7DQbK6rjjslz454X3ouK6tpEM7u3bhqXH9U/jtmrS6RSqQwnBAAaO+UXAAAAABlXU5uOB99cHL94anas3liRaKZFk7w477C+ccYXe0Zhfm6GEwIA2UL5BQAAAEBGvTR3dfzssRkxa/mGRPtzUhH/3wHdY+wR/aJ9iyYZTgcAZBvlFwAAAAAZ8d7qTXH14zPj6ZkrEs8M69chrjh6QPTr1DKDyQCAbKb8AgAAAKBOrd9cFbc9Myf++5UFUVWTTjRT3LFFXHH0gBhe0jHD6QCAbKf8AgAAAKBOVNfUxl9fXxQ3T5wdazdXJZpp17wgxh7RL075QrfIy83JcEIAYFeg/AIAAABghz03e1X8/LEZMWflxkT7C3Jz4syDe8W5h/WJosL8DKcDAHYlyi8AAAAAPre5KzfEzx+fGZNLVyWeOXqvLnH5kf2jW9tmGUwGAOyqlF8AAAAAbLe1myrjl5PmxB9fXRg1tcme67V311bxk2P2iP17ts1wOgBgV6b8AgAAACCxyura+OOrC+O2SXNi/ZZkz/XqVNQkfnBk/zhun90jJyeV4YQAwK5O+QUAAADAZ0qn0/HMrJVx9eMzY/7qTYlmCvNz4juH9onvDOsdzQp8DAUA7Bx+6gAAAADgU81aXhY/f2xmvDh3deKZ4/bZLS47sn/s1rppBpMBAHyU8gsAAACAj/XBxoq4eeLs+OvriyLhY71i3+6t47+O2SP27d4ms+EAAD6B8gsAAACAbVRU18R9Ly+IX02aGxsqqhPN7NaqMC4fMyC+tFeXSKU81wsAqD/KLwAAAAAi4j/P9ZowfUVc++TMWPjB5kQzzQpy47vD+sRZh/aOwvzcDCcEAPhsyi8AAAAAYvqy9fGzx2bEq/PXJJ45Yb+ucenokuhUVJjBZAAA20f5BQAAALALW7mhPH4xYXY8OGVxpBM+1+uAnm3jJ8fsEXt2bZXZcAAAn4PyCwAAAGAXVF5VE/e++F7c/uzc2FRZk2ima5um8aMxA+KoQZ091wsAaLCUXwAAAAC7kHQ6HU+8uzyufXJmLFm7JdFMiyZ5cd5hfeOML/b0XC8AoMFTfgEAAADsIv69ZF387LEZ8caCtYn2p1IRp3yhW1x8REl0aNkkw+kAAOqG8gsAAAAgyy1fXx43TJgVD721NPHMQb3bxU+O2SP22K0og8kAAOqe8gsAAAAgS22prIm7X5gfd0yeF1uqkj3Xq2e7ZvGjMQPiiD06ea4XANAoKb8AAAAAskw6nY5Hpi6L656cFe+vL08007IwLy4cURzfPKhnFOTlZDghAEDmKL8AAAAAsshbi9bGzx6bEW8vWpdof04q4msH9oiLRhZHuxae6wUANH7KLwAAAIAssGzdlrh+/Kz41zvLEs8cUtw+fnz0HlHSuWUGkwEA7FzKr3q2dOnSmDJlSixbtizWrl0b+fn50aZNm+jTp0/sv//+0aJFi/qOCAAAADRgmyur47eT58VdL8yP8qraRDO9OzSPnxy9Rwwv6eC5XgBA1lF+1YOXX345HnzwwXj44Ydj0aJFn7gvJycnRowYEeeff358+ctf3q5znH766XHfffd97oy33HJLXHTRRZ97HgAAAMis2tp0/POdpXH9+Fmxoqwi0UyrpvkxdmRxfG1Ij8jP9VwvACA7Kb92oocffjiuueaaePPNN7e+lkqlYv/994/BgwdHu3btYtOmTTFz5sx4/vnno7y8PCZOnBgTJ06Mo48+Ou69997o1KlTPb4DAAAAoCF4a9Ha+OmjM+KdxesS7c/LScXXh/znuV6tmxVkNhwAQD1Tfu1E3/3ud2PFihVb18OGDYs777wzSkpKPrL3/fffjwsvvDD+9re/RUTE448/HsOHD4/nnnsuOnbsuNMyAwAAAA3H8vXlcf34WfHw20sTzxzev2P8aMyA6NvRoxUAgF2D8queHH744TF+/PjIz8//2K936dIlHnjggSgoKIg///nPERExa9as+OY3vxnjx49PfJ4rr7wyrrrqqrqIDAAAANST8qqauOv5+XHH5Hmxpaom0Uy/Ti3ix0fvEYf265DhdAAADYubO9eDvLy8uOuuuz6x+PpfqVQqfvOb30RRUdHW1yZMmBATJkzIdEQAAACgAUin0/Ho1GUx4hfPxc0TZycqvto0y4+fHTconrjgEMUXALBLUn7Vg+HDh0efPn0S7W3VqlWcfPLJ27x2//33ZyIWAAAA0IBMW7o+TrrzlfjeX9+Opeu2fOb+vJxUfPvgXjH50sPiG0N6RF6uj30AgF2T2x7Wg4MPPni79h900EFx9913b12/+OKLdR0JAAAAaCBWbiiPmyaUxt+mLIl0OtnMiP4d44qjB0TvDp7rBQCg/NqJHnrooaisrIySkpLtmuvSpcs26+XLl9dlLAAAAKABqKiuid+9uCB+8+zc2FhRnWimb8cW8ZNj9ohhbm8IALCV8msnGjp0aJ0cp7a2tk6OAwAAANS/dDodT81YEVc/PjMWrdmcaKZV0/wYO7I4vjakR+S7vSEAwDaUX43AqlWrtlkXFxfXUxIAAACgLs1aXhY/fXRGvDzvg0T7c3NS8fUDu8dFI/tFm+YFGU4HANA4Kb8agX//+9/brEePHr1d80uWLIm//OUvMWnSpJg+fXqsWbMmamtro127dtGlS5cYOnRojBo1KsaMGRM5Of62GAAAAGTaBxsr4uaJs+Ovry+K2oTP9TqkuH385Jg9ol+nlpkNBwDQyCm/GoHx48dv/XUqlYozzzwz8ewDDzwQ1113XVRUVHzka8uWLYtly5bFlClT4le/+lWUlJTEtddeG1/5ylfqJDcAAACwraqa2vjvVxbGrU/Pjg3lyZ7r1at98/jx0QPi8P4dI5VKZTghAEDj5zKfBm7KlCkxbdq0retTTjklSkpKEs/PmjUrKioqYuTIkfGnP/0p3nvvvdiyZUusXbs23nrrrRg3bly0adMmIiJKS0vj+OOPj7Fjx0Y6nfCvnQEAAACJPDtrZYy+9fn42WMzEhVfLZvkxRVjBsSEiw6NEQM6Kb4AABJy5VcDd80112z9dVFRUdxwww3bNd+kSZP43e9+F6eeeuo2rxcWFsa+++4b++67b3z3u9+NMWPGxJtvvhkREbfeemsUFhbGtddeu+Nv4H+sXLnyI88u+yxz586ts/MDAABAfZm7ckP87LGZ8dzsZP9fnEpFnPKF7vH9Uf2ifYsmGU4HAJB9lF8N2NNPPx0PPfTQ1vUvf/nL6Nq1a6LZwYMHx7p16+Kss86Ko48++lP3dujQISZMmBADBgyIlStXRkTEddddFyNGjIiRI0d+/jfwf9x+++0xbty4OjkWAAAANAbrN1fFLU/Pjj++ujBqEj7Ya0jvtvFfxwyMPXYrynA6AIDspfxqoNasWRNnnHHG1vUZZ5wRp59+euL5Cy64IC644ILE+9u2bRs//elP45xzztn62hVXXFFn5RcAAADsKqprauMvry+KmyfOjnWbqxLNdG3TNK4YMyCOHNTZ7Q0BAHaQZ341QNXV1XHKKafEkiVLIiLi0EMPjd/+9rcZP++pp54ahYWFW9evv/76Ns8bAwAAAD7di3NWx5jbXoj/+tf0RMVXs4LcuHR0STx98bA4as8uii8AgDrgyq8G6Nxzz42JEydGRMRee+0V//znP6OgoCDj523ZsmXss88+8eqrr2597emnn45Bgwbt8LHPPffcOPHEE7drZu7cuXHcccft8LkBAAAg0xas3hQ/f3xmPD1zReKZE/brGpeNLomORYWfvRkAgMSUXw3MJZdcEnfffXdERAwYMCAmTpwYbdq02WnnHzhw4DblV11d+dWxY8fo2LFjnRwLAAAAGoqy8qr49TNz4/cvvRdVNcme67VfjzZx5Zf2iL26ts5sOACAXZTyqwH5wQ9+EL/4xS8iImLPPfeMSZMmRYcOHXZqhg8XbatXr96p5wcAAIDGoKY2HX97c3Hc9FRprN5YmWimS6vC+OGYAfGlvdzeEAAgk5RfDcSll14aN910U0TUX/EVER+5veKWLVt2egYAAABoyF6b/0GMe3RGzHi/LNH+wvycOGdYn/jOoX2iaUFuhtMBAKD8agAuvvjiuOWWWyKifouviIiysm1/cG/Xrl295AAAAICGZvGazXHtkzPjiXeXJ545dp/d4gdH9o/dWjfNYDIAAP4v5Vc9u+iii+KXv/xlRNRd8XXddddFeXl5nHDCCTFo0KDtml2yZMk26y5duuxQFgAAAGjsNlVUx+2T58bdL7wXldW1iWb26toqrvzSHrFfj7YZTgcAwIcpv+rR9773vfj1r38dEcmLr1NOOSWWL18ep59+epx++ukfu+e6666L9evXR1FR0XaXX1OmTNlmfeihh27XPAAAAGSL2tp0PPz20rh+/KxYuaEi0UzHlk3isiP7x/H77h45OZ7rBQBQH5Rf9SCdTsf5558ft99+e0Rs3xVfr776aixcuDCGDx/+mXuff/75uPjiixPneu2112Lx4sVb102bNo3DDjss8TwAAABki7cXrY1xj86IdxavS7S/IC8nzjqkV5w7vG80b+LjFgCA+uSnsZ0snU7Hd7/73bjzzjsjIrPP+HryySdj4cKF0aNHj0T7r7/++m3W5513XhQVFdV5LgAAAGioVpaVx/XjS+Mfby357M3/Y8yeneOHRw2Ibm2bZTAZAABJKb92onQ6Hd/5znfi7rvvjoiIQYMGZaz4ioiorKyMM844IyZMmBD5+fmfuveee+6Jhx9+eOu6e/fucfnll2ckFwAAADQ0FdU18bsXF8Svn5kTmyprEs3s0aUo/utLe8SQ3u0ynA4AgO2h/NpJ0ul0nHXWWXHvvfdufW3atGnRsWPHjJ732WefjWHDhsVvf/vb2GuvvT7y9U2bNsXVV18d11133dbXWrVqFY899li0a+eHdwAAALJbOp2OSTNXxs8fnxELPticaKZd84K4ZHRJnLR/t8j1XC8AgAZH+bWTLFy4cJviK5NOOumk+NOf/hRbtmyJiIhXXnkl9t5779h3333jC1/4QrRv3z42b94c8+fPj0mTJsWmTZu2zg4ePDgefPDB6NOnz07JCgAAAPVl7soNMe7RGfHCnNWJ9ufnpuKML/aK8w/vG0WFn36HFQAA6o/yKwvdddddccMNN8T9998fjz/+eDzzzDOxefPmePvtt+Ptt9/+yP6cnJw48MAD44ILLogTTzwxcnNz6yE1AAAA7Bzrt1TFL5+eE//9yoKork0nmhnRv2P8+Jg9olf75hlOBwDAjlJ+7SQ9e/aMdDrZD9R1oXXr1nHOOefEOeecE9XV1VFaWhozZsyIFStWRFlZWRQUFESbNm2iW7duMWTIkCgqKtpp2QAAAKA+1NSm44E3FsdNT5XGmk2ViWb6dGgePzlmjxhektnHFgAAUHeUX7uAvLy8GDhwYAwcOLC+owAAAEC9eP29NTHu0ekxfVlZov0tm+TFhSOL47ShPSM/NyfD6QAAqEvKLwAAACBrLVu3Ja59clY8OnVZov2pVMQpX+gW3x9VEu1bNMlwOgAAMkH5BQAAAGSd8qqauPO5+XHHc3OjvKo20cz+PdrEVV8eGIN2b5XhdAAAZJLyCwAAAMga6XQ6npy2PK5+fGYsXbcl0UyXVoVx+VH948t77xapVCrDCQEAyDTlFwAAAJAVZr5fFuMenR6vzl+TaH9BXk6cc2jvOGd4n2hW4CMSAIBs4Sc7AAAAoFFbu6kyfjGxNP7y2qKoTSebOWpQ5/jRmAHRrW2zzIYDAGCnU34BAAAAjVJ1TW38+bVFcfPE2bF+S1WimZJOLePKL+8RQ/u0z3A6AADqi/ILAAAAaHRemrs6xj06PWav2Jhof+tm+fH9I/rF/3dA98jLzclwOgAA6pPyCwAAAGg0Fq/ZHD9/fEZMmL4i0f6cVMTXh/SIi4/oF62bFWQ4HQAADYHyCwAAAGjwNlVUxx2T58VdL8yPyuraRDND+7SL//rSHtG/c1GG0wEA0JAovwAAAIAGK51Ox7/eWRbXPTkrlpeVJ5rp2qZp/PjoATF6YOdIpVIZTggAQEOj/AIAAAAapHeXrI+rHp0eUxauTbS/aX5unHdYn/j2Ib2jMD83w+kAAGiolF8AAABAg7JqQ0XcNKE0HpyyONLpZDPH7rNbXH5U/+jSqmlmwwEA0OApvwAAAIAGobK6Nu57eUHcNmlObKioTjQzaPeiuOpLA2P/nm0znA4AgMZC+QUAAADUu2dLV8bPHpsR81dtSrS/fYuCuHR0SZywX7fIzfFcLwAA/h/lFwAAAFBv5q/aGD97bEY8W7oq0f68nFScPrRnXDCyOIoK8zOcDgCAxkj5BQAAAOx0G8qr4lfPzI3fv/ReVNUke7DX8JIO8ZNj9og+HVpkOB0AAI2Z8gsAAADYaWpr0/GPt5bE9eNLY/XGikQzvdo3j58cMyAO798pw+kAAMgGyi8AAABgp5i6eF1c+cj0eGfxukT7WzTJiwtG9I3Th/aKgryczIYDACBrKL8AAACAjFq1oSJunDArHnxzSeKZE/frGpceWRIdWxZmMBkAANlI+QUAAABkRFVNbfz3Kwvj1omzY0NFdaKZfbu3jqu+NDD27tY6s+EAAMhayi8AAACgzr00d3Vc9cj0mLNyY6L9HVs2iR+O6R/H7r175OSkMpwOAIBspvwCAAAA6sziNZvj6sdnxvjpyxPtL8jNiW8d0ivOP6xvNG/iYwoAAHacnyoBAACAHbalsiZ++9y8+O1z86KiujbRzIj+HeMnx+wRPds3z3A6AAB2JcovAAAA4HNLp9Mxftry+PnjM2Ppui2JZnq1bx7/dcwecVj/jhlOBwDArkj5BQAAAHwus1dsiKsemR4vz/sg0f7mBbnxvRHFccYXe0aTvNwMpwMAYFel/AIAAAC2y/otVXHr07Pjv19ZGDW16UQzX9l397j8qP7Rqagww+kAANjVKb8AAACARGpr0/G3KYvjhvGl8cGmykQzA3crinFfHhj792yb4XQAAPAfyi8AAADgM721aG1c9cj0+PeS9Yn2t2mWH5eO7h8nf6Fb5OakMpwOAAD+H+UXAAAA8IlWbiiP658sjX+8tSTR/pxUxDeG9IixR/SL1s0KMpwOAAA+SvkFAAAAfERldW384eX34rZJc2NjRXWimQN7tY2rvjwwBnQpynA6AAD4ZMovAAAAYBvPzV4V4x6dHvNXbUq0v0urwrji6AFx9J5dIpVyi0MAAOqX8gsAAACIiIhFH2yOnz0+IybOWJFof0FeTnzn0N7x3eF9olmBjxgAAGgY/GQKAAAAu7jNldVx+7Pz4q4X5kdldW2imSP26BQ/OXqP6N6uWYbTAQDA9lF+AQAAwC4qnU7HY/9+P655Yma8v7480UzvDs3jyi8NjGH9OmQ4HQAAfD7KLwAAANgFzXy/LK56ZHq89t6aRPtbNMmLC0cUx2lDe0ZBXk6G0wEAwOen/AIAAIBdyLrNlXHzxNnxp1cXRm062cxXB3eNHxxZEh2LCjMbDgAA6oDyCwAAAHYBNbXpuP+NRXHThNJYu7kq0cxeXVvFVV8eGIO7t8lwOgAAqDvKLwAAAMhyby5YE1c+Mj2mLytLtL9d84K47MiSOHG/bpGTk8pwOgAAqFvKLwAAAMhSK8rK49onZsY/31mWaH9uTiq+eVCPuGhkv2jVND/D6QAAIDOUXwAAAJBlKqtr4/cvvRe3TZoTmyprEs0M7dMurvrywOjXqWWG0wEAQGYpvwAAACCLvDBnVVz5yPSYv2pTov27t24aPz56QBw5qHOkUm5xCABA46f8AgAAgCywZO3m+PljM2P89OWJ9jfJy4lzhvWJc4b1iaYFuRlOBwAAO4/yCwAAABqx8qqauOv5+XH75LlRXlWbaObIgZ3jiqMHRLe2zTKcDgAAdj7lFwAAADRST89YET99bEYsWrM50f6+HVvEVV8aGAcXt89wMgAAqD/KLwAAAGhkFqzeFD99bEY8M2tlov0tmuTFRSOL47ShPSM/NyfD6QAAoH4pvwAAAKCR2FxZHbc/Oy/uen5+VNYku8XhVwd3jR8cVRIdWxZmOB0AADQMyi8AAABo4NLpdDw5bXn8/LEZsWx9eaKZPboUxU+PHRj792yb4XQAANCwKL8AAACgAZuzYkNc9ej0eGnuB4n2t2qaH5eMLolTD+geuTmpDKcDAICGR/kFAAAADdCG8qq4bdKc+P1LC6K6Nv2Z+1OpiFO+0D0uHV0SbZsX7ISEAADQMCm/AAAAoAFJp9Pxz3eWxjVPzIpVGyoSzezTrXX89NiBsVfX1pkNBwAAjYDyCwAAABqI6cvWx1WPTI83FqxNtL9d84L4wVH944TBXSPHLQ4BACAilF8AAABQ79ZvropfTCyNP726MBLc4TByUhHfPKhnjD2iX7Rqmp/5gAAA0IgovwAAAKCe1Nam48E3F8cNE0pjzabKRDMH9Gob4748MAZ0KcpwOgAAaJx2ifKrpqYmnnzyydhjjz2id+/e9R0HAAAA4p3F6+LKf02LqUvWJ9rfqahJ/GjMgPjy3rtFKuUWhwAA8EkaTfn1/PPPR0TEoYceut2z5eXl8eUvfzlSqVQMHDgwbrjhhjjyyCPrOiIAAAB8pg82VsQN40vjgTcXJ9qfl5OKbx3SK753eHG0aNJo/jceAADqTaP5qXn48OGRk5MT1dXVn/sY6XQ6pk2bFsccc0zcf//9ccIJJ9RhQgAAAPhk1TW18ZfXF8VNE0qjrDzZ/9seUtw+rvzSwOjbsUWG0wEAQPZoNOVXxH/Kq8+joKAgLr/88igtLY0nn3wyysvL48ILL4yvfOUrkZubW8cpAQAAYFtvLFgT//Wv6THz/bJE+3dv3TR+csweMXpgJ7c4BACA7dSoyq/PKz8/P6655pqIiJg2bVoMGTIkli9fHi+++GIMGzasntMBAACQrVaWlce1T86Kh99emmh/QV5OnDOsT3x3WJ9oWuAvawIAwOeRU98BdrZBgwbF8ccfHxER06dPr+c0AAAAZKOqmtq4+/n5cdhNkxMXXyMHdIqnxw6Li4/op/gCAIAdsEtc+fVhXbp0iYiI9evX13MSAAAAss2Lc1bHVY9Oj7krNyba37Nds7jySwPjsP4dM5wMAAB2Dbtk+fXOO+9ERESTJk3qNwgAAABZY+m6LXH14zPiiXeXJ9rfND83zj+8b3z7kF7RJM+VXgAAUFcaVPm1aNGiz9yzePHiSKfT23XcdDod5eXlsXTp0njkkUdi4sSJkUqlomvXrp83KgAAAERERHlVTdzzwvz49bNzo7yqNtHM0Xt1iSvGDIjdWjfNcDoAANj1NKjyq2fPnpFKpT7x6+l0Onr27Fkn50qlUjF06NA6ORYAAAC7psmlK+OqR6bHgg82J9pf3LFFjPvywBjat32GkwEAwK6rQZVf/+vTruza3qu+PiyVSkUqlYoTTjjBlV8AAAB8LkvWbo6fPTYjJkxfkWh/iyZ5cdHI4jhtaM/Iz83JcDoAANi1NcjyK5PS6XSMGTMm7rrrrvqOAgAAQCNTUV0Tdz+/fbc4PH7f3ePyo/pHx6LCDKcDAAAiGlj5ddppp33i1+67775IpVLxzW9+c7uPm5ubGy1btoxevXrF4YcfHoMGDdqRmAAAAOyCJpeujHGPzoj3Vm9KtH9Al6L46bED4ws922Y4GQAA8H81qPLr97///Sd+7b777vvMPQAAAFDXtvcWh0WFeXHp6JI49cAekZvzyc+1BgAAMqNBlV8AAADQUFRU18Q9L7wXv3pmTuJbHJ68f7e47MiSaNeiSYbTAQAAn6TRlF/du3ePnBwPBQYAACDznpu9Kq56ZHriWxwO2r0ofnrsoBjcvU2GkwEAAJ+l0ZRfCxYsqO8IAAAAZLml67bEzx+bEU9OW55of1FhXlx6ZP849YDubnEIAAANRKMpvwAAACBT/vcWh79+Zm5sqapJNOMWhwAA0DDtkuXX4YcfHqlUKiZNmlTfUQAAAKhnz//PLQ7nJ7zF4cDd/nOLw/16uMUhAAA0RLtk+TV58uRIpdyOAgAAYFfmFocAAJCddsnyCwAAgF1XZXVt3PPi/PjVpOS3ODxp/67xgyP7u8UhAAA0Ao22/NqyZUu8++67sWLFitiwYUNUV1fXdyQAAAAauBfmrIorH5ke81clu8XhHl2K4mfHucUhAAA0Jo2u/PrXv/4Vt912Wzz//PNRW1tb33EAAABoBJat2xI/f3xGPPFu8lscXjK6JL52YA+3OAQAgEam0ZRf6XQ6zjzzzPjv//7vrevPw7O+AAAAdh2V1bVx74vvxW2T5iS+xeGJ+3WNHxzVP9q7xSEAADRKjab8uv766+O+++6LiP8UWKlU6nMVYJ+3NAMAAKBxeXHO6vivR6a5xSEAAOxiGkX5VV5eHtdff/3Wq7bS6XQUFRXFYYcdFgMGDIguXbpEs2bNIi8v2ds544wzMhkXAACAevT++i3x88dmxuPvvp9of8vCvLjULQ4BACBrNIry66WXXor169dvLb++853vxE033RTNmzf/XMdTfgEAAGSfyura+N1L/7nF4ebKZLc4PGG/rnG5WxwCAEBWaRTl1+zZs7f+eu+994477rijHtMAAADQ0Lw0d3X817+mxbyEtzgc0KUofnbswNi/Z9sMJwMAAHa2RlF+rVu3buuv/3/27jpKrsJuH/h3VqMbNyIkgYR4SHAPENwlQKGlUKRYsRYKFAop7tICRWvQ4u4Ud0ggboS4ECGyG9nNyvz+6I+8DSU7m2R31j6fczind3juzMN7+tLMPnvvPfroozf5/U488cS1V5EBAABQe81fvjqueXlivDym4rc4/M2+W8UJO3SJrMyMKm4HAABUh1oxfjVt2nTtf+7cufMmv99f//rXTX4PAAAAqs+akrL4y0fT484NvMXhb/fvFW2ausUhAADUZbVi/Bo0aNDa/7xq1apqbAIAAEB1+3jq4vj9C+Nj6sIVFcq7xSEAANQvteIeDzvvvHN069YtIiJGjBixye83a9asmDVr1ia/DwAAAOnz7fLCOOefX8bxD35WoeGraW5WXHVIn3jxnF0MXwAAUI/UivErkUjE7bffHslkMp544omYP79i93Jfn65du0b37t0rqR0AAABVqbi0LB54f1rsfeu78VIFn+115OCO8fZvhsRJu3TzbC8AAKhnas03gEMPPTRuueWWWLFiRRxyyCGxcOHCTXq/ZDJZSc0AAACoKp9PXxIH3/VhXPvKxFhZgWd79WrfNJ48Y6e47ZitPdsLAADqqVozfkVEXHjhhfHqq6/G8uXLY6uttorLL788Ro4cGWvWrKnuagAAAFSixSuK4tdPjI5j7vskJi8oSJlvmpsVVx7SJ1761a6xnVscAgBAvZZV3QU25vaDxcXFsXz58rj++uvj+uuvj8zMzGjevHk0btw4EolEFbQEAAAgHUrLkvHPz2fFza9NivzCkgqdc+TgjnHJAb2ibdMGVdwOAACoDap9/JoxY0YkEokNug1hIpFY55ySkpJYvHhxLF68uKpqAgAAUMVGz14WVzw/LsbMWV6hfK/2TeMPh/WL7bu50gsAAPg/1T5+fW9jrtja2Ku8PO8LAACg5li+qjhufmNSPPrZrKjI17UmuVlxwT494+c7bR5ZmbXqbv4AAEAa1Jjxq0uXLmn7rJkzZ6btswAAAPhxyWQynv5yblz/ysT4bmXFnuV86MDN4ncH9Y52eW5xCAAA/LgaM35Nnz49bZ+VkeE3AwEAAKrTpG/z44rnxsUXM5ZWKN+9TeO4+rB+scuWrau4GQAAUNvVmPELAACAum9FUUnc8eaU+MvHM6K0LPU9DhtkZ8Sv9uoRp+3WPXKy/CIjAACQmvELAACAKpdMJuPlsfPj6pcmxIL8ogqds0+fdvH7g/tE55aNqrgdAABQl1T7+HX77ben/TPfeeedtH8mAABAfTVt0Yq48oXx8cHXiyuU79SiYQw/tG/s3btdFTcDAADqomofv84777y0f+Yee+yR9s8EAACobwqLS+Pud6bGfe9NizWlZSnzOZkZccYe3eOsPbeMBtmZaWgIAADURdU+fgEAAFD3vDVxQVz14viYvWR1hfK79Wgdww/tG93bNKniZgAAQF1Xa8avvfbaKxKJRLz11lvVXQUAAID1mLN0VQx/cUK8OWFBhfLt8nLj9wf3jQP7t49EIlHF7QAAgPqg1oxf7777ri9CAAAANdSakrJ44INp8ce3v47C4tS3OMzMSMTJO3eN8/fpGU1ya81XUwAAoBbwDQMAAIBN8tHUxXHF8+Ni2qKVFcpv17VFXH14v+jVPq+KmwEAAPVRrRu/Zs+eHclkcpPfJ5FIRJMmTaJFixaV0AoAAKD+WZBfGNe8PDFeHD2vQvlWjXPi0gN7x1GDO7qzBwAAUGVq3fjVtWvXSn2/jIyM6NGjRwwZMiR+8YtfxLbbblup7w8AAFDXlJSWxd8/mRm3vTklVhSVpMwnEhEn7NAlLtq3VzRrlJ2GhgAAQH1W68avyrjq67+VlpbGpEmTYvLkyXHffffFIYccEg8//HC0bNmyUj8HAACgLhg5c0lc/tz4mDg/v0L5/h2bxTWH94uBnZtXbTEAAID/r1aNX98PXz+8PUZ5g1hFst9nkslkvPjii7HddtvF+++/Hx07dtzUygAAAHXCkpVr4oZXJ8YTI+ZUKJ/XICsu2r9XHL99l8jMcItDAAAgfWrN+HXiiSdGIpGIwsLCeOqpp6K0tDQiItq0aRN9+vSJVq1aRZMmTSKRSEQymYyVK1fGd999F+PHj49FixZFxH9ucXjEEUdE06ZNIyJi1apVsXz58pg8eXLMnDlz7WdNnz49hg0bFu+//35kZdWa/xMBAABUurKyZDz2xey46fVJsWxVcYXOOWpwp7j0wF7RukluFbcDAAD4X7Vm2fnrX/8a33zzTRx11FGRSCTinHPOiVNPPTUGDBiQ8txx48bFAw88EH/+859j/Pjx8cwzz0Tv3r3XycybNy8efvjhuOmmm2LFihXx2WefxT/+8Y84+eSTq+ofKSIi5s6dGyNHjox58+bF0qVLIzs7O1q0aBFbbLFFbLvtttGkSZNK+6zi4uL45JNPYvz48bFkyZLIycmJLl26xI477hibb755pX0OAABQN4ybuzwuf25cjJq9rEL5rdo1jasP7xfbd3MbeQAAoPokkpX9EK0qsmLFihg0aFDk5+fHyy+/HNtuu+0Gv8fIkSPjwAMPjIYNG8aoUaOiefPm/5P5+uuvY8iQITF//vzo27dvjB07thLar+vjjz+OJ554Ip599tmYNWvWenMZGRmx9957xznnnBOHHnroRn9eQUFBXHvttXHffffFsmXLfjSz8847x/Dhw2Po0KEb/TmVbfz48dGvX7+1x+PGjYu+fftWYyMAAKgfCgqL49Y3psTfP5kRZRX4xtg4JzPOH9ozTtqla2RnZlR9QQAAqOf8/Lx8tWb8Ovvss+PPf/5zvPzyy7H//vtv9Pu89tprceCBB8Ypp5wSDzzwwI9mXn755TjkkEMikUjEnDlzokOHDhv9ef/t2Wefjeuuuy5GjBix9rVEIhHbbrttDB48OFq1ahUrV66MiRMnxvvvvx+FhYVrcwcddFA89NBD0a5duw36zNGjR8dhhx229raO2dnZccABB0TPnj1j6dKl8cEHH8SUKVPW5s8999y4/fbbIyOj+r+w+n9eAABIr2QyGS+PnR9/eHFCLCwoqtA5B/XvEJcf3Ds6NGtYxe0AAIDv+fl5+WrF+FVYWBjt27ePLl26xJgxYzb5/QYOHBjTp0+PBQsWRMOGP/4Fbcstt4zp06fHU089FUccccQmf2ZERPv27WPBggVrj/fYY4+47777Yquttvqf7Pz58+O8886LJ598cu1rvXr1ivfeey/atm1boc8bP3587L777rFkyZKIiNhxxx3j8ccfjy5duqzNlJWVxf333x/nnHPO2ueonXLKKfHggw9u1D9jZfL/vAAAkD4zFq+MK54fFx98vbhC+a6tGsUfDusXu/dsU8XNAACAH/Lz8/JV/+U9FfD+++9Hfn5+7LbbbpXyfrvuumusXLky3n///fVmvv+sb7/9tlI+84f22muvePPNN390+IqI6NChQzz++ONxwgknrH1t0qRJceKJJ1bo/QsLC+Ooo45aO3z16tUr3njjjXWGr4j/3FrxjDPOiLvvvnvtaw899FCNGL8AAICqV1RSGnf+++vY9473KzR85WZlxIX79IzXzt/d8AUAANRItWL8mjNnTkREtGjRolLe7/tnfX3/vj+mffv2ERHrfUbWpsjKyor7778/srOzy80lEom4++67Iy8vb+1rr7/+erz++uspP+Ouu+6KyZMnrz3+05/+FE2bNl1v/vTTT4+ddtpp7fFll10WBQUFKT8HAACovT78enHsf8cHcfu/p8SakrKU+b16tY03L9gjzt27RzTIzkxDQwAAgA1XK8avhQsXRkTlXYX1/a0HFy9e/281fv/Mq6ysrEr5zP82ZMiQ2GKLLSqUbdasWRx77LHrvPbYY4+Ve87SpUvj+uuvX3s8YMCA2Hvvvcs9J5FIxAUXXLD2eNGiRXHLLbdUqCMAAFC7LCwojHP/9VX89KHPYvrilSnzHZo1iD//dJt46OfbRpdWjdLQEAAAYOPVivHr+yu+3njjjU1+r2QyufZ9vr8C7MfMmzcvIiKaNGmyyZ/5Q7vuuusG5f/7iqyIiA8//LDc/OOPP77OFWv/fevE8hxyyCHrXGX2wAMPRC14JBwAAFBBpWXJ+NvHM2LvW96LF0bPS5nPzEjE6bt3j39fuEfs3699JBKJNLQEAADYNLVi/OrWrVtERMydOzfuuOOOTXqv22+/fe3tDr9/3x/z/cDUqVOnTfq8//bMM8/EO++8E6effvoGndehQ4d1jlNdAffUU0+tc7znnntW6HMaNGgQO+6449rj+fPnx0cffVTBlgAAQE02Zs6yOPzuj+LKF8ZHQVFJyvw2m7eIl361a1x2YO9onFv5d8QAAACoKrXiG8yQIUOiadOmsWLFirj44osjkUjEeeedt8Hvc9ttt8Ull1wSERFNmzaNIUOG/Gjuueeei2+++SYSiUT06NFjU6qvY+edd66U9ykrW/+9+PPz8+O9995be5yTkxMDBgyo8Htvv/3261xh98ILL2zwlWoAAEDNkV9YHLe8Pjn+8enMqMiNHZo3yo5LD+gVw7bpHBkZrvQCAABqn1px5VdOTk6ccsopkUwmo6SkJC688MLo379//OlPf4qpU6eWe+6UKVPizjvvjL59+8ZFF10UJSUlkUgk4tRTT42cnJz/yb/xxhtx0kknRcR/bovYq1evqvhH2iCLFi1a57i8QW7s2LFRUvJ/v8XZvXv3yM3NrfBn9e3bd53jUaNGVfhcAACg5kgmk/H8qLmx963vxd8/qdjwNWybTvH2r4fEsdt1MXwBAAC1Vq248isi4g9/+EM89dRTMXfu3EgmkzF+/Pi1V381aNAgunbtGk2bNo0GDRpEYWFh5Ofnx4wZM6KoqCgiYp1nV3Xp0iWGDx++zvs/+OCD8de//jU++eSTSCaTkUgk1ntlWLqNGTNmneP99ttvvdnx48evc7yht23s2LFjue8HAADUfNMWrYjfPz8+Ppy6uEL5nu2axLVH9I/turas4mYAAABVr9aMX02aNIk333wzhgwZEgsWLIhEIrF20Fq9enVMnDgxImKd1//b96+3b98+3nzzzWjcuPE6f/+hhx6Kzz77bJ3XjjnmmCr6p9kwr7322tr/nEgk4he/+MV6s5MmTVrn+IdjVio/zM+bNy8KCgqiadOmG/Q+AABA+hUWl8Y9734Tf373m1hTuv7bpX+vYXZmnDe0R5yya7fIzqwVNwYBAABIqdaMXxERW221VXz22Wdx0kknxbvvvhuJxI/fhuOHryeTyUgmk7HnnnvGX/7yl+jSpcv/nHPiiSeuc6VXIpGIww8/vDLrb5SRI0fGuHHj1h4fd9xxsdVWW603v2TJknWO8/LyNujzfiy/dOlS4xcAANRw709ZFL9/flzM+G5VhfL79GkXVx7SJzq1aFTFzQAAANKrVo1fEf+5ZeHbb78dTzzxRPzpT3+KDz/8MOU5u+22W5xzzjkxbNiw9WbOPPPMyqxZaa677rq1/zkvLy9uuummcvMFBQXrHG/I874i/nMLyVTvuTEWLlz4P88uSyXV89wAAICIBfmF8YeXJsTLY+ZXKN+xecO46tC+sU+fdlXcDAAAoHrUuvHre8ccc0wcc8wxsWDBgvj4449j/PjxsWTJkrW36GvZsmX07ds3dt5552jXrnZ+qfv3v/8dzzzzzNrjO++8M+UzvH44VP3YmFWeqhq/7rnnnv95zhoAALDxSkrL4h+fzoxb35gSK4pKUuazMhJx6m7d49y9t4xGObX2qyAAAEBKtf4bT7t27eKII46II444orqrVKolS5bEySefvPb45JNPjpNOOqnKP/fHbiX5Y89QAwAAqs+o2cvid8+OjfHz8iuU375ry7j68H6xVXu3MwcAAOq+Wj9+1UUlJSVx3HHHxZw5cyIiYvfdd48///nPFTr3h8/mKiws3KDPXr16dcr3BAAAqsfy1cVx8+uT4tHPZkVFfketRaPsuOzA3nH0Np3W+8xkAACAuqZejl/vv/9+RPxnVKqJzjrrrHjzzTcjImLAgAHx3HPPRU5OToXObdKkyTrHRUVFG/TZPzaWVcb4ddZZZ5X7zLUfM3Xq1Dj88MM3+bMBAKC2SyaT8fyoeXHNyxNi8Yo1FTrnuO06x2/37xUtGlfsuwQAAEBdUS/HryFDhkRGRkaUlKS+L366/eY3v4kHHnggIiJ69+4db775ZrRo0aLC57ds2XKd4/z8it0Gpbz8hnz++rRt2zbatm27ye8DAAD1zdSFK+L3z4+Lj7/5rkL5Xu2bxjWH94ttu7ZMHQYAAKiD6uX4FVEzn2P129/+Nm699daIiOjfv3+89dZb0aZNmw16j169eq1zPHfu3A06/4f5Dh06RF5e3ga9BwAAsOkKi0vj7nemxp/f+yaKS1N/f2mUkxkXDO0ZJ+3SNbIzM9LQEAAAoGaqt+NXTXPRRRfFLbfcEhEbP3xFRPTr12+d4++fG1ZRPxy/fvh+AABA1Xtn8sK48vnxMWvJqgrl9+vbLq48pG9s1rxhFTcDAACo+WrE+JWfnx+PP/54lJWVxTHHHPOjt9nba6+9qqFZelx44YVx++23R8SmDV/fn5+ZmRmlpaUREfHNN99EUVFR5ObmVuj8cePGrXM8cODAjeoBAABsuG+XF8YfXhofr4z9tkL5Ti0axvBD+8bevdtVcTMAAIDao9rHr0WLFsV2220Xs2fPjoiIa665JkaOHPk/z4d69913I5FIVEfFKnX++efHnXfeGRGbPnxFROTl5cUee+wRb7/9dkREFBcXx+jRo2P77bev0PlffPHFOseHHnroRncBAAAqprQsGX//ZEbc+saUWFGU+tnE2ZmJOG237vGrvXpEw5zMNDQEAACoPar9RvCPP/54zJo1KyL+8xyuefPmxRNPPFHNrdLjV7/61QYPX8cdd1wMGTIk/vrXv643c/TRR69z/O6771aoT2FhYXz66adrj9u3bx+77LJLhc4FAAA2ztg5y+Pwuz+K4S9OqNDwtUO3lvHKubvFxfv3MnwBAAD8iGofvzp06LD2P39/Zdd/v/ZDyWRyk/+qbslkMs4+++z405/+FBEbdsXXp59+Gu+9917MmDFjvZljjz02mjVrtvb40UcfrVCvF198MfLz89cen3rqqZGRUe3/FQEAgDppRVFJDH9xfBx294cxdu7ylPlWjXPi1mED47HTd4we7ZqmoSEAAEDtVO3LxlFHHRVnnnnm2uHr9NNPj6OOOmq9+bKysk3+qzolk8k488wz45577omIyrnV4Q+1bNkyLrnkkrXHY8aMibfeeitlr++fOxYR0apVq7jooosqrRMAAPAfyWQyXhs3P4be+l785aMZUVaB38/7yfZd4q1f7xFHbdOpTt4OHgAAoDJV+/gVEXH33XdHfn5+FBQUxL333lvddapMMpmMX/7yl3HfffdFRES/fv0qffj63nnnnRc9evRYe/yrX/0qVqxYsd78/fffH5988sna42uvvTby8vIqvRcAANRnc5auilP/NiLOeOTL+Da/MGW+d4e8eOasneP6I/tH80Y5aWgIAABQ+2VVd4HvNWrUqLorVKlkMhmnnXZaPPTQQ2tfGzduXLRt27ZKPq9hw4bx9NNPx+677x7Lli2LiRMnxr777huPPfZYdOnSZW2urKwsHnjggTj77LPXvnbSSSfFL3/5yyrpBQAA9VFxaVn85aPpcfubX8fq4tKU+UY5mXHhPj3jpJ27RlZmjfidRQAAgFqjxoxfqZx44omVdnuPynyvipo5c+Y6w1c69O/fP95+++047LDDYvbs2fHJJ59Ejx494oADDoiePXvG0qVL44MPPojJkyevPefss8+OO++8M609AQCgLvty1tK47JmxMenbggrl9+nTLq46tG90bN6wipsBAADUTbVm/PrrX/9aI9+rphs0aFCMHTs2rrvuurjvvvti+fLl8fzzz/9Pbscdd4zhw4fHvvvuWw0tAQCg7lm+ujhuem1S/PPzWZGswHO9OjRrEFcd2jf269u+6ssBAADUYbVm/KrtunbtGsmKfOOtAs2aNYsbb7wxrr766vj4449j/PjxsXTp0sjJyYnOnTvHTjvtFF27dq2WbgAAUNckk8l4ccz8+MOLE2LxiqKU+YxExMm7dIsL9ukZTXJ9RQMAANhUvlnVIzk5OTFkyJAYMmRIdVcBAIA6aeZ3K+Py58bFB18vrlB+YKdmce0R/aNfx2ZV3AwAAKD+qPXj19ixY+Ozzz6L0aNHx3fffRfLly+Pl19+ee3fnzFjRhQWFkavXr2qsSUAAFCXrSkpiwc+mBZ3vfV1FJWUpcw3yc2Ki/bbKn664+aRmZHe5xEDAADUdbVy/CouLo577rkn7r333vj666/Xvp5MJiORWPeL42effRbHH3987LzzznHDDTfELrvsku66AABAHfb59CXxu2fHxtcLV1Qof1D/DvH7Q/pEu7wGVdwMAACgfqp149e4cePihBNOiHHjxq3zDK0fjl7/LZlMxscffxx77LFHXHnllXHFFVekoyoAAFCHLV25Jq5/dWI8MWJOhfKdWjSMqw/rF3v2alvFzQAAAOq3WjV+TZw4MYYMGRJLly5d5yqvZDK5zhD233r06BH9+/ePsWPHRjKZjKuuuipycnLit7/9bTqrAwAAdUQymYxnvpwb174yMZasXJMyn5WRiFN36x7n7d0jGuZkpqEhAABA/ZZR3QUqqrCwMA466KBYsmTJOq9vscUWceCBB8Zxxx33o+cNHjw4Ro8eHa+++mp06dIlkslkXHHFFTF+/Ph01AYAAOqQbxatiOMf+Cx+/eToCg1f22zeIl46d9e45IBehi8AAIA0qTXj1x//+MeYMWNGJBKJaNq0adxwww0xb968mDJlSrz00kvxz3/+s9zz99tvv/j000+jW7duUVpaGtdee22amgMAALVdYXFp3PbmlDjgjg/ik2nfpcznNciK64/sH0/+cqfo1T4vDQ0BAAD4Xq257eHdd98diUQiunbtGm+//XZsvvnmG/we7du3jwceeCCGDh0azz//fKxatSoaNWpUBW0BAIC64qOpi+Py58bF9MUrK5Q/fOvN4ncH9Yk2TXOruBkAAAA/plaMX1OmTIlZs2ZFRkZG/POf/9yo4et7e+21V/Tu3TsmTZoUX375Zey6666V2BQAAKgrFq8oimtfnhjPfjW3QvmurRrFNYf3j117tK7iZgAAAJSnVtz28KuvvoqIiG233TZ22GGHTX6/XXbZJSIiJk2atMnvBQAA1C1lZcl47PNZsfet71Vo+MrJzIhz9+4Rr52/u+ELAACgBqgVV34tWrQoIiK23377Snm/tm3bRkTE0qVLK+X9AACAumHKgoK47JmxMWJmxb4r7NCtZVx7RP/Ysm2TKm4GAABARdWK8WvFihUREdG0adNKeb+VK/9zr/5kMlkp7wcAANRuq9eUxl1vfx0PvD8tSspSf09o0Sg7fndQnzhqcMdIJBJpaAgAAEBF1Yrxq1WrVhERMXduxe61n8rUqVMjIqJ1a7ckAQCA+u6dyQvj98+Pi9lLVlcof8y2neLSA3pHi8Y5VdwMAACAjVErxq+OHTtGRMTrr78excXFkZ2dvdHvtXz58nj77bcjImLzzTevlH4AAEDts7CgMP7w4oR4acz8CuW3bNskrj28X+zQvVUVNwMAAGBTZFR3gYrYddddIysrKxYuXBjDhw/fpPe67LLLYvXq1ZGbmxu77LJLJTUEAABqi7KyZPzzs1kx9Nb3KjR85WZlxG/27RmvnLub4QsAAKAWqBVXfuXl5cVee+0Vb7zxRlx//fUREXHVVVdFVlbF65eVlcUVV1wR9957byQSidh///2jQYMGVVUZAACogb5eUBCXPTs2vpixtEL53Xq0jmsO7xebt2pcxc0AAACoLLXiyq+IWOeKr+uvvz622mqruOmmm2LChAnlnjdv3rz485//HAMHDowbbrghIiISiURceeWVVdoXAACoOQqLS+PWNybHgXd9UKHhq3WT3LjrJ4Pi77/Y3vAFAABQy9SKK78iInbYYYc488wz1165NX369Lj00kvj0ksvjSZNmkT37t3XZnffffcoKCiIuXPnxnfffRcREclkMiL+M3yde+65MXDgwGr55wAAANLr428Wx++eHRfTF69MmU0kIo7fvktcvH+vaNZw4581DAAAQPWpNeNXRMQf//jHmDVrVrz88suRSCTWDloFBQUxevToiPjPyPXRRx+t/Xvf+z5/8MEHx6233pr27gAAQHotXbkmrn1lYjw1ck6F8lu1axrXHdk/ttm8RRU3AwAAoCrVmtseRkRkZGTE888/HxdddNHa1xKJxP/89cPXv3fxxRfHs88+u85rAABA3ZJMJuOZL+fE3re9V6HhKzcrIy7ef6t46dxdDV8AAAB1QK0avyL+M4DdeOONMWLEiDjqqKMiMzMzksnkev/KzMyMo446KkaMGBE33HBDZGTUun9kAACggmYsXhk/e+jzuPCJ0bFk5ZqU+V23bB1vXLB7nDVky8jO9F0BAACgLqhVtz38b4MGDYonn3wyVqxYER988EGMHj06Fi9eHPn5+ZGXlxetW7eOgQMHxm677RZNmjSp7roAAEAVKi4ti/vfnxZ3vfV1FJWUpcy3bJwTVxzcOw7fuqM7QwAAANQxtXb8+l6TJk3igAMOiAMOOKC6qwAAANVg5MylcdkzY2PygoIK5Ydt0ykuO7B3tGicU8XNAAAAqA61fvwCAADqp/zC4rjptUnx6GezIplMne/WunFce0S/2HmL1lVfDgAAgGpj/AIAAGqVZDIZr437Nq58YXwsLChKmc/OTMSZe2wRZ+25ZTTIzkxDQwAAAKpTjRi/MjIyIiMjI0pKSurk5wEAAJVj7rLVceXz4+LfExdWKL9d1xZx3RH9o0e7plXcDAAAgJqiRoxfEf/57c26/HkAAMDGKy1Lxl8/nhG3vjE5Vq0pTZnPa5AVlx7YO47dtnNkZCTS0BAAAICaosaMXwAAAD9m3NzlcekzY2Ps3OUVyh88oEP8/pA+0bZpgypuBgAAQE1Uo8av2bNnuyILAACIiIiVRSVx+5tT4uGPpkdZBb4mdGzeMK45ol/suVXbqi8HAABAjVWjxq+uXbtWdwUAAKAGeHvSgrjiufExd9nqlNnMjEScsmu3OH9oj2iUU6O+4gAAAFANatQ3Q1d9AQBA/bYwvzCGvzghXh47v0L5AZ2axfVH9o++mzWr4mYAAADUFjVq/Eok0vMgaiMbAADULGVlyfjn57PixtcmRUFhScp845zM+PW+W8XPd+4amRnp+R4BAABA7VCjxi+jFAAA1D9TFhTEpc+MjZEzl1YoP7R3u/jDYX1js+YNq7gZAAAAtVGNGr/KysoqnM3IyIhEIhGlpaUb/DkZGRkbfA4AAFC5CotL4+53psaf3/smiktT/yJcu7zcGH5o39ivb/u03TUCAACA2qdGjV8AAED98Om07+KyZ8bGtMUrU2YTiYif7bh5/Ga/rSKvQXYa2gEAAFCbGb8AAIC0Wb66OG54dWL86/PZFcr3at80rjuyfwzu0qKKmwEAAFBX1Ijxq0uXLmm9FWG6Pw8AAOq7ZDIZr477Nq58YXwsKihKmc/NyojzhvaI03brHtmZ/uwOAABAxdWI8WvGjBl1+vMAAKA+m798dVzx3Pj498QFFcrv1qN1XHN4v9i8VeMqbgYAAEBdVCPGLwAAoO4pK0vGI5/NjJtemxwrikpS5ls2zonfH9wnDtt6s0gkEmloCAAAQF1k/AIAACrdlAUFccnTY+LLWcsqlD9qcKe4/KDe0aJxTtUWAwAAoM4zfgEAAJWmsLg07nlnatz73jdRXJpMme/SslFce0S/2K1HmzS0AwAAoD4wfgEAAJXi8+lL4pJnxsS0RStTZjMzEnHqrt3i/KE9o2FOZhraAQAAUF8YvwAAgE2yfHVx3PDqpPjX57MqlO/XMS9uOHJA9OvYrIqbAQAAUB8ZvwAAgI322rj58fvnx8fCgqKU2YbZmXHhPj3j5F26RlZmRhraAQAAUB/ViPFr1qz//IZoly5d6uTnAQBAXfPt8sL4/fPj4o0JCyqU361H67juiP7RuWWjKm4GAABAfVcjxq+uXbtGRkZGlJSU1MnPAwCAuqKsLBmPfj4rbnp1UhQUpf7zdMvGOXHFwb3j8K07RiKRSENDAAAA6rsaMX5FRCSTyTr9eQAAUNt9vaAgLn1mbIyYubRC+SMHdYzLD+4TLRvnVHEzAAAA+D81ZvwCAABqpqKS0rjnnW/innenRnFp6l8i69yyYVx7eP/YvWebNLQDAACAddWo8euDDz7Y4CuyNuYcAACgYr6YsSQufWZsTF24ImU2IxFx6m7d4/yhPaJRTo36qgEAAEA9UqO+kQ4ZMmSD8slkcoPPAQAAUssvLI4bX50Uj342q0L5vpvlxQ1HDoj+nZpVcTMAAAAoX40avzbkCq7vH5btqi8AAKhcr437Nq58YVwsyC9KmW2QnREXDO0Zp+zaLbIyM9LQDgAAAMpXo8av7wetqj7HYAYAAP9rQX5h/P75cfH6+AUVyu+6Zeu47oj+0aVVoypuBgAAABVXo8avLl26pOVzZs6cmZbPAQCA2qCsLBn//HxW3PjqpCgoKkmZb9EoOy4/qE8cObjjRv0yGgAAAFSlGjV+TZ8+PS2fk5HhdiwAABARMXVhQVz6zNj4YsbSCuUP33qzuOLgPtGqSW4VNwMAAICNU6PGLwAAID3WlJTFve9+E3e/MzXWlJalzHdq0TCuPaJ/7NGzTRraAQAAwMYzfgEAQD3z1aylccnTY2PygoKU2YxExC926RYX7tszGuX4+gAAAEDNVyO+ve6+++5pfVZAuj8PAABqglVrSuKW16fEXz6eHslk6nyfDnlxw1H9Y0Cn5lXeDQAAACpLjRi/3n333Tr9eQAAUN0++HpRXPrM2JizdHXKbG5WRlywT884ZddukZ3pebkAAADULjVi/AIAAKrGslVr4uqXJsbTX86pUH6XLVvFdUf0j81bNa7iZgAAAFA1jF8AAFAHJZPJeGXst3HlC+Ni8Yo1KfPNGmbH5Qf1jqO36eQW4QAAANRqxi8AAKhjFuQXxuXPjYs3JyyoUP6gAR3iqkP6RpumuVXcDAAAAKqe8QsAAOqIsrJkPPbF7Lj+lYlRUFSSMt8uLzeuObx/7NOnXRraAQAAQHoYvwAAoA6YsXhlXPLMmPh02pIK5Y/foUtcckCvyGuQXcXNAAAAIL2MXwAAUIuVlJbFgx9Oj9vfnBJFJWUp891aN47rj+wfO3ZvlYZ2AAAAkH7GLwAAqKXGz1sev316TIybm58ym5mRiNN37x7n7d0jGmRnpqEdAAAAVA/jFwAA1DKFxaVx51tfx/3vT4vSsmTKfN/N8uLGowZEv47N0tAOAAAAqpfxCwAAapHPpn0XlzwzNqYvXpkym5uVEecP7Rmn7dYtsjIz0tAOAAAAqp/xCwAAaoGCwuK44dVJ8ehnsyqU36Fby7jhqAHRrXXjKm4GAAAANYvxCwAAarh/T1gQlz83Lr7NL0yZbZqbFZce2DuO265zZGQk0tAOAAAAahbjFwAA1FCLVxTFVS+Mj5fGzK9QfmjvdnHN4f2ifbMGVdwMAAAAai7jFwAA1DDJZDKe+XJuXP3yhFi2qjhlvnWTnLjq0L5xUP8OkUi42gsAAID6zfgFAAA1yOwlq+J3z42L96csqlD+qMGd4vKDekeLxjlV3AwAAABqB+MXAADUAKVlyfjbxzPiljcmx6o1pSnznVo0jOuO6B+792yThnYAAABQexi/AACgmk1ZUBC/fXpMfDVrWcpsIhFx8s7d4tf79ozGuf44DwAAAD/k2zIAAFSTNSVlcc+7U+Pud6ZGcWkyZb5nuyZx41EDYlCXFmloBwAAALWT8QsAAKrBV7OWxm+fHhNTFqxImc3OTMQ5e/aIM4dsETlZGWloBwAAALWX8QsAANJo9ZrSuO3NyfHQh9OjLPXFXjGoS/O48agB0bNd06ovBwAAAHWA8QsAANLk02nfxSVPj4kZ361KmW2UkxkX7bdVnLhT18jMSKShHQAAANQNxi8AAKhiBYXFceNrk+KRT2dVKL97zzZx3RH9olOLRlXcDAAAAOoe4xcAAFShdycvjMueGRvzlhemzDZvlB2/P7hPHDGoYyQSrvYCAACAjWH8AgCAKrBs1Zq4+qWJ8fSXcyqUP3hAh7jq0L7RukluFTcDAACAus34BQAAley1cfPj8ufGx+IVRSmzbZvmxrVH9I99+rRLQzMAAACo+4xfAABQSRYVFMWVL4yLV8Z+W6H8Mdt2it8d1CeaNcyu4mYAAABQfxi/AABgEyWTyXhu1NwY/uKEWLaqOGW+Y/OGcf2R/WP3nm3S0A4AAADqF+MXAABsgvnLV8dlz4yNdyYvqlD+5zttHhfv3ysa5/qjOAAAAFQF37gBAGAjJJPJ+Nfns+P6VyZGQVFJyny31o3jxqMGxPbdWqahHQAAANRfxi8AANhAM79bGZc8PTY+mfZdymxGIuK03bvHBUN7RoPszDS0AwAAgPrN+AUAABVUWpaMv348I25+fVIUFpelzPdq3zRuOnpADOjUvOrLAQAAABFh/AIAgAqZurAgLn5qTHw5a1nKbHZmIs7ec8s4a8iWkZOVUfXlAAAAgLWMXwAAUI7i0rK4//1pcee/v441pamv9hrYqVncdPTA2Kp90zS0AwAAAH7I+AUAAOsxbu7yuPipMTFhfn7KbG5WRly4T884ZddukZXpai8AAACoLsYvAAD4gaKS0vjjW1Pj3ve+idKyZMr89l1bxg1H9Y/ubZqkoR0AAABQHuMXAAD8ly9nLY2LnxoTUxeuSJltlJMZlx7QK07YYfPIyEikoR0AAACQivELAAAiYtWakrjl9Snxl4+nRzL1xV6xW4/Wcf2R/aNTi0ZVXw4AAACoMOMXAAD13sffLI5Lnh4bs5asSpnNa5AVlx/cJ4Zt0ykSCVd7AQAAQE1j/AIAoN7KLyyO61+ZFP/6fFaF8vv2aRfXHN4v2uY1qOJmAAAAwMYyfgEAUC+9M2lhXPbs2Ji/vDBltlXjnBh+WN84qH8HV3sBAABADWf8AgCgXlm+qjiGvzQ+nvlyboXyh229WVx5SN9o2TinipsBAAAAlcH4BQBAvfHmhAVx2bNjY1FBUcpsu7zcuPbw/jG0T7s0NAMAAAAqi/ELAIA6b+nKNTH8xfHx3Kh5Fcoft13nuPTA3tGsYXYVNwMAAAAqm/ELAIA67bVx8+Py58bH4hWpr/bq1KJh3HDkgNi1R+s0NAMAAACqgvELAIA66bsVRXHlC+PjpTHzU2YTiYif79Q1Ltpvq2ic64/IAAAAUJv5Zg8AQJ3z8pj58fvnx8V3K9ekzHZr3ThuOnpAbNe1ZRqaAQAAAFXN+AUAQJ2xeEVR/P75cfHK2G9TZjMSEafu1j0u3KdnNMjOTEM7AAAAIB2MXwAA1HrJZDJeHDM/rnx+XCxdVZwyv0WbxnHzsIExuEuLNLQDAAAA0sn4BQBArbawoDAuf3ZcvDFhQcpsRiLi9N23iPOH9nC1FwAAANRRxi8AAGqlZDIZz4+aF1e+MD6Wr059tVePtk3i5mEDY+vOzau+HAAAAFBtMqq7AP/x4IMPRvPmzSORSEQikYh33323uisBANRYC/IL47S/j4jzHx+VcvjKzEjE2XtuES+du6vhCwAAAOoB41c1mzlzZuy7775x2mmnxfLlyyvlPU866aS1I9rG/HXHHXdUSg8AgMqWTCbjqZFzYp/b3ot/T1yYMt+rfdN47qxd4qL9ekVultscAgAAQH3gtofVJJlMxr333hu//e1vY8WKFdVdBwCgxpu/fHVc9szYeGfyopTZrIxEnLXnlnHOnltGTpbf9wIAAID6xPhVDaZOnRqnnnpqvPfeexER0alTp1i+fHkUFBRUczMAgJonmUzGEyNmxzUvTYyCopKU+d4d8uKWYQOi72bN0tAOAAAAqGn8Gmya3XnnnTFw4MC1w9epp54a48ePj5YtW1b6Z1155ZWRTCY3+K/zzz+/0rsAAGyMuctWx4kPfx6/fXpsyuErOzMRFwztGS+cs4vhCwAAAOoxV36l2ZVXXhmrVq2Krl27xgMPPBBDhw6t7koAADVOMpmMf30+O657ZWKsqMDVXv065sXNRw+M3h3y0tAOAAAAqMmMX2mWkZERZ511Vtx4443RpEmT6q4DAFDjzF6yKi59Zmx8OHVxymxOZkacN7RHnL5798jOdFMDAAAAwPiVdq+99lpsv/321V0DAKDGKStLxqOfz4obXpkYK9eUpswP7NQsbh42MHq2a5qGdgAAAEBtYfxKM8MXAMD/mvXdqrj46dHx6bQlKbM5WRlx4T4949Rdu0WWq70AAACAHzB+AQBQbcrKkvGPT2fGDa9OitXFqa/2GtSledx89IDYsq2rvQAAAIAfZ/wCAKBazPpuVVz01Oj4bHrqq71yszLiN/tuFb/YtVtkZiTS0A4AAACorYxfddycOXPin//8Z7z11lsxfvz4WLJkSZSVlUWrVq2iQ4cOsfPOO8e+++4bBx54YGRkuG0QAFD1vn+21/WvTIxVFXi217abt4ibjh4Q3ds0SUM7AAAAoLYzftVhjz/+eNxwww1RVFT0P39v3rx5MW/evBg5cmT88Y9/jK222iquv/76OOKII6qhKQBQX8xesip++/SY+Pib71JmG2RnxEX79YqTdu7qai8AAACgwoxfddikSZMiImLo0KFx0kknxS677BLt27ePwsLCmD59erz44otxxx13xNKlS2Py5Mlx5JFHxvnnnx+33XZbJBKV+wOmhQsXxqJFizbonKlTp1ZqBwCg+iSTyfjX57Pj2pcnxMoKXO21fdeWcdPRA6Jr68ZpaAcAAADUJcavOiw3NzcefvjhOP7449d5vUGDBjFo0KAYNGhQnHnmmXHggQfGiBEjIiLijjvuiAYNGsT1119fqV3uueeeGD58eKW+JwBQO8xdtjoueXpMfPD14pTZhtmZcckBveJnO24eGa72AgAAADaC8asOGjx4cCxbtixOO+20OOigg8rNtmnTJl5//fXo3bt3LFy4MCIibrjhhth7771j6NCh6agLANRRyWQynhgxO65+aWKsKCpJmd++W8u4+egBsXkrV3sBAAAAGy+jugtQ+c4999x47rnnUg5f32vZsmX84Q9/WOe13/3ud1VRDQCoJ+YvXx0n/eWL+O3TY1MOXw2yM+LKQ/rEY6ftaPgCAAAANpkrv4iIiOOPPz7OP//8KCwsjIiIzz//PMaNGxf9+vWrlPc/66yzYtiwYRt0ztSpU+Pwww+vlM8HANIjmUzG01/OjeEvjo+CwtRXe227eYu4edjA6ObZXgAAAEAlMX4RERFNmzaNrbfeOj799NO1r/373/+utPGrbdu20bZt20p5LwCgZlqQXxiXPjM23p60MGU2NysjLtpvqzh5l26R6dleAAAAQCUyfrFW37591xm/xo0bV41tAIDaIplMxnOj5saVz4+P/Apc7TWoS/O4ZdjA2KJNkzS0AwAAAOob4xdrtWjRYp3jxYsXV1MTAKC2WFhQGL97dly8OWFBymxOVkb8Zt+eccqu3V3tBQAAAFQZ4xdr5eTkrHO8evXqamoCANR0yWQyXhg9L658YXwsW1WcMj+wc/O4ddiA2LJt0zS0AwAAAOoz4xdr5efnr3PcqlWramoCANRki1cUxeXPjovXxn+bMpuTmRHn79MjTt+te2RlZqShHQAAAFDfGb/qmBtuuCEKCwvj6KOPjn79+m3QuXPmzFnnuEOHDpVZDQCoA14eMz+ueH5cLFm5JmW2f8dmccuwgbFVe1d7AQAAAOlj/Kpjbrjhhli+fHnk5eVt8Pg1cuTIdY533333yqwGANRi360oit8/Pz5eHjs/ZTY7MxHn7d0jfrnHFpHtai8AAAAgzfw0oo56//33Nyj/2WefxezZs9ceN2zYMPbcc8/KrgUA1EKvjZsf+97+foWGrz4d8uKFc3aNc/bqYfgCAAAAqoUrv+qoV199NWbOnBmbb755hfI33njjOsdnn3125OXlVUU1AKCWWLpyTVz5wvh4YfS8lNmsjET8aq8ecdaervYCAAAAqpfxq45as2ZNnHzyyfH6669HdnZ2udkHH3wwnn322bXHXbp0iUsuuaSqKwIANdgb47+Ny54dF4tXFKXM9mrfNG49ZmD03axZGpoBAAAAlM+v5dZh77zzTuyxxx4xZsyYH/37K1eujMsuuyxOP/30ta81a9YsXnrppWjVqlW6agIANciyVWvigsdHxen/GJly+MrMSMS5e20ZL5yzq+ELAAAAqDFc+ZVmM2bMiG7duqXM/djztq688sq46qqryj3vmGOOiUceeSRWr14dERGffPJJDBw4MAYNGhTbbbddtG7dOlatWhXTpk2Lt956K1auXLn23MGDB8cTTzwRW2yxxYb9QwEAdcLbkxbEJU+PjYUFqa/26tmuSdw6bOvo38noBQAAANQsxq865v7774+bbropHnvssXj55Zfj7bffjlWrVsVXX30VX3311f/kMzIyYocddohzzz03hg0bFpmZmdXQGgCoTgWFxXH1SxPiiRFzUmYzEhFnDtkizt27R+Rm+XMDAAAAUPMYv9Ksa9eukUwmq/QzmjdvHmeccUacccYZUVJSEpMnT44JEybEggULIj8/P3JycqJFixbRuXPn2HHHHSMvL69K+wAANdfHUxfHRU+NibnLVqfMbtm2SdwybGBs3bl51RcDAAAA2EjGrzouKysr+vbtG3379q3uKgBADbJ6TWnc+Nqk+OvHM1JmMxIRp+3ePS4Y2jMaZLvaCwAAAKjZjF8AAPXMyJlL4zdPjo7pi1emzHZv0zhuGTYwBndpkYZmAAAAAJvO+AUAUE8UlZTG7W9+Hfe//02UpbgLcyIRccou3eI3+23lai8AAACgVjF+AQDUA+PmLo9fPzE6Ji8oSJnt0rJR3DJsYGzfrWUamgEAAABULuMXAEAdVlxaFve++03c9dbXUZLqcq+I+OmOXeLSA3pH41x/TAQAAABqJz/VAACoo75eUBC/fnJ0jJmzPGW2Q7MGceNRA2L3nm3S0AwAAACg6hi/AADqmNKyZDz84fS4+Y3JsaakLGX+qMGd4veH9IlmDbPT0A4AAACgahm/AADqkJnfrYyLnhwTn89YkjLbuklOXHtE/9ivb/s0NAMAAABID+MXAEAdkEwm49HPZsV1r0yMVWtKU+YP6Nc+rjm8X7RqkpuGdgAAAADpY/wCAKjl5i1bHb99ekx88PXilNm8Bllx9eH94tCBm0UikUhDOwAAAID0Mn4BANRSyWQynvlyblz14vgoKCxJmR+yVZu48agB0S6vQRraAQAAAFQP4xcAQC20qKAofvfs2HhjwoKU2cY5mXHFwX3i2O06u9oLAAAAqPOMXwAAtcwrY+fH5c+NiyUr16TM7ti9Zdx89MDo3LJRGpoBAAAAVD/jFwBALbFs1Zq48oXx8fyoeSmzuVkZ8dv9e8VJO3eNjAxXewEAAAD1h/ELAKAWeGfSwvjt02NiYUFRyuzWnZvHrccMjC3aNElDMwAAAICaxfgFAFCDFRQWx7UvT4zHvpidMpudmYjzh/aMX+7ePbIyM9LQDgAAAKDmMX4BANRQH3+zOC56ckzMXbY6ZbZ3h7y47ZiB0btDXhqaAQAAANRcxi8AgBpm9ZrSuOn1SfGXj2akzGYkIs4asmWcu3ePyMlytRcAAACA8QsAoAYZPXtZXPDEqJi2aGXKbPc2jePWYQNjUJcWaWgGAAAAUDsYvwAAaoDi0rL409tT40/vTI3SsmS52UQi4he7dIuL9tsqGmRnpqkhAAAAQO1g/AIAqGZTF66IC58YFWPmLE+Z7dSiYdwybGDs2L1VGpoBAAAA1D7GLwCAalJWloy/fTIjbnh1UhSVlKXM/2T7LvG7g3pHk1x/hAMAAABYHz85AQCoBvOWrY6LnhodH039LmW2XV5u3HjUgBiyVds0NAMAAACo3YxfAABplEwm49mv5saVL4yPgsKSlPlDB24WVx/WL5o1yk5DOwAAAIDaz/gFAJAmS1auid89OzZeHfdtymyzhtlxzeH94pCBm6WhGQAAAEDdYfwCAEiDtyctiIufGhuLVxSlzO7Rs03cdPSAaJfXIA3NAAAAAOoW4xcAQBVaWVQS17w8If71+eyU2YbZmfG7g3rHCTt0iUQikYZ2AAAAAHWP8QsAoIp8MWNJ/PqJ0TFryaqU2UFdmsdtx2wd3Vo3TkMzAAAAgLrL+AUAUMmKSkrj9je/jvve/yaSyfKzWRmJuGCfnvHL3btHVmZGegoCAAAA1GHGLwCASjRxfn5c8PiomPRtQcpsz3ZN4rZjto5+HZuloRkAAABA/WD8AgCoBKVlyXjgg2lx2xtTYk1pWbnZRCLi1F27xa/33SoaZGemqSEAAABA/WD8AgDYRLO+WxW/fnJUfDFjacpsx+YN49ZjBsaO3VuloRkAAABA/WP8AgDYSMlkMh77YnZc/dKEWLWmNGX+mG07xRUH94mmDbLT0A4AAACgfjJ+AQBshIUFhXHJ02Pj7UkLU2ZbNc6J64/sH/v2bZ+GZgAAAAD1m/ELAGADvTp2flz27NhYuqo4ZXbfPu3iuiP7R+smuWloBgAAAIDxCwCggpavLo7hL4yPZ76amzLbJDcrrjykTxy9TadIJBJpaAcAAABAhPELAKBCPv5mcfzmidExb3lhyuyO3VvGLcMGRqcWjdLQDAAAAID/ZvwCAChHYXFp3PL65Hjww+kpszlZGXHxflvFL3bpFhkZrvYCAAAAqA7GLwCA9Zg4Pz8ueHxUTPq2IGW272Z5cfuxW0fPdk3T0AwAAACA9TF+AQD8QFlZMh78cFrc8vqUWFNaVm42IxFx9p5bxq/26hE5WRlpaggAAADA+hi/AAD+y9xlq+PXT4yKT6ctSZnt1rpx3HrMwBjcpUUamgEAAABQEcYvAID/7/lRc+Py58ZFQWFJyuxPd+wSlx3YOxrl+OMUAAAAQE3ipzUAQL23fFVxXP78uHhx9LyU2dZNcuPmowfEnr3apqEZAAAAABvK+AUA1GsfTV0cv3lydMxfXpgyu2+fdnH9kf2jVZPcNDQDAAAAYGMYvwCAeqmwuDRufn1yPPTh9JTZxjmZceUhfWPYtp0ikUikoR0AAAAAG8v4BQDUOxPm5ccFj4+KyQsKUma32bxF3H7M1tGlVaM0NAMAAABgUxm/AIB6o7QsGQ9+MC1ufWNKrCktKzeblZGI84f2iDP22CKyMjPS1BAAAACATWX8AgDqhTlLV8Wvnxgdn01fkjLbvU3juOPYrWNAp+ZVXwwAAACASmX8AgDqtGQyGc+Nmhu/f258FBSVpMyfuNPmcekBvaNhTmYa2gEAAABQ2YxfAECdtWzVmvjdc+Pi5THzU2bbNM2Nm48eEEO2apuGZgAAAABUFeMXAFAnffj14vjNk6Pj2/zClNn9+7aP647sHy0b56ShGQAAAABVyfgFANQphcWlcdNrk+Phj6anzDbOyYyrDu0bR2/TKRKJRBraAQAAAFDVjF8AQJ0xYV5+nP/4VzFlwYqU2W03bxG3HbN1dGnVKA3NAAAAAEgX4xcAUOuVliXjgQ+mxa1vTI7i0mS52ayMRFywT884Y48tIjPD1V4AAAAAdY3xCwCo1eYsXRUXPjE6Pp++JGV2izaN445jB0X/Ts3S0AwAAACA6mD8AgBqredHzY3Lnx0XBUUlKbM/32nzuOSA3tEwJzMNzQAAAACoLsYvAKDWyS8sjiueGxfPj5qXMtu2aW7cPGxg7NGzTRqaAQAAAFDdjF8AQK3y+fQlccHjo2LustUpswf0ax/XHdE/WjTOSUMzAAAAAGoC4xcAUCsUl5bFXW99HXe/MzXKkuVnm+RmxVWH9o2jBneMRCKRnoIAAAAA1AjGLwCgxpu+eGWc//ioGD17Wcrstpu3iNuP3To6t2xU9cUAAAAAqHGMXwBAjZVMJuPJEXPiqhfHx6o1peVmszISccE+PeOMPbaIzAxXewEAAADUV8YvAKBGWrpyTVz27Nh4ddy3KbPdWjeOO47dOgZ2bl71xQAAAACo0YxfAECN89HUxXHhE6NiQX5Ryuxx23WOKw7uE41z/bEGAAAAAOMXAFCDFJWUxq1vTIn735+WMtu8UXbccOSA2L9f+zQ0AwAAAKC2MH4BADXC1IUFce6/RsWE+fkps7tu2TpuPWZgtMtrkIZmAAAAANQmxi8AoFolk8l45NOZcc3LE6OopKzcbE5mRly8/1bxi126RUZGIk0NAQAAAKhNjF8AQLVZvKIoLn5qTLw9aWHKbI+2TeLO4wZFn83y0tAMAAAAgNrK+AUAVIt3Ji+Mi54cHYtXrEmZ/flOm8elB/aOBtmZaWgGAAAAQG1m/AIA0qqwuDSuf2Vi/O2TmSmzrZvkxM1HD4w9e7VNQzMAAAAA6gLjFwCQNhPm5cd5j30VXy9ckTK7V6+2cdPRA6J1k9w0NAMAAACgrjB+AQBVrqwsGQ9/ND1uem1yrCktKzebm5URlx/cJ366Q5dIJBJpaggAAABAXWH8AgCq1IL8wvj1E6Pjw6mLU2b7dMiLO4/bOnq0a5qGZgAAAADURcYvAKDKvDbu27jkmTGxbFVxyuzpu3ePX+/bM3KzMtPQDAAAAIC6yvgFAFS6lUUlcfVLE+KxL2anzLbLy43bjtk6dtmydRqaAQAAAFDXGb8AgEo1ds7yOO+xr2La4pUpswf0ax/XHdE/WjTOSUMzAAAAAOoD4xcAUCnKypLx4IfT4ubXJ0dxabLcbKOczLjqkL4xbNtOkUgk0tQQAAAAgPrA+AUAbLKF+YXx6ydHxwdfL06ZHdi5edxx7NbRrXXjNDQDAAAAoL4xfgEAm+StiQvioqfGxJKVa8rNZSQizt5zyzh37x6RnZmRpnYAAAAA1DfGLwBgoxQWl8YNr06Kv348I2W2Y/OGccdxW8d2XVtWfTEAAAAA6jXjFwCwwaYsKIhz//VVTPq2IGX2kIGbxTWH94tmDbPT0AwAAACA+s74BQBUWDKZjEc+mxXXvDQhikrKys02zsmMPxzWL44c3DESiUSaGgIAAABQ3xm/AIAKWbJyTVz81Jj498QFKbMDOjWLu44bFF1bN05DMwAAAAD4P8YvACClj6cujgueGBUL8ovKzSUSEWfssUVcMLRn5GRlpKkdAAAAAPwf4xcAsF5rSsritjenxH3vfxPJZPnZtk1z4/Zjt45dtmydnnIAAAAA8COMXwDAj5qxeGWc+9hXMWbO8pTZob3bxU1HD4iWjXPS0AwAAAAA1s/4BQCsI5lMxtNfzo0rnx8XK9eUlpvNzcqIyw/uEz/doUskEok0NQQAAACA9TN+AQBr5RcWx+XPjosXRs9Lme3Vvmnc9ZNB0bNd0zQ0AwAAAICKMX4BABERMXLm0jjvsa9iztLVKbMn7dw1LjmgVzTIzkxDMwAAAACoOOMXANRzpWXJuPudqXHnW19HaVmy3GzLxjlx89EDYu/e7dLUDgAAAAA2jPELAOqxuctWxwWPjYrPZyxJmd2tR+u4ddjAaJvXIA3NAAAAAGDjGL8AoJ56Zez8uOTpMZFfWFJuLjszERftt1Wcumv3yMhIpKkdAAAAAGwc4xcA1DOr15TG8BfHx2NfzE6Z7da6cdx13KDo36lZGpoBAAAAwKYzfgFAPTLp2/w4559fxdSFK1Jmj9m2U1x5SN9onOuPCwAAAADUHn6aBQD1QDKZjEc+mxVXvzQh1pSUlZtt2iArrj+yfxw8YLM0tQMAAACAymP8AoA6btmqNfHbp8fE6+MXpMxuu3mLuOO4raNTi0ZpaAYAAAAAlc/4BQB12BczlsR5//oq5i0vLDeXkYg4b++ecfaeW0RWZkaa2gEAAABA5TN+AUAdVFqWjLvfmRp3/HtKlCXLz3Zs3jDuOG7r2K5ry/SUAwAAAIAqZPwCgDrm2+WFcf7jX8Wn05akzO7ft33ceNSAaNYoOw3NAAAAAKDqGb8AoA55a+KC+M2To2PpquJyc7lZGXHFwX3ihB26RCKRSFM7AAAAAKh6xi8AqAOKSkrj+lcmxV8/npEy26Ntk/jT8YNjq/ZNq74YAAAAAKSZ8QsAarlvFq2IX/3zq5gwPz9l9ifbd4nfH9wnGuZkpqEZAAAAAKSf8QsAaqlkMhlPfzk3fv/8uFi1prTcbNMGWXHDkQPioAEd0tQOAAAAAKqH8QsAaqEVRSVx+bNj47lR81JmB3VpHncdNyg6t2yUhmYAAAAAUL2MXwBQy4yZsyx+9a+vYuZ3q8rNJRIRZ+6xRVywT8/IzsxIUzsAAAAAqF7GLwCoJcrKkvHQh9PjptcnRXFpstxsm6a5ccexW8cuW7ZOUzsAAAAAqBmMXwBQCyxeURS/fmJ0vDdlUcrskK3axC3DBkbrJrlpaAYAAAAANYvxCwBquI+mLo7zHx8ViwqKys1lZybi4v16xSm7douMjESa2gEAAABAzWL8qiEefPDB+M1vfhPLly+PiIh33nknhgwZUmnvX1xcHJ988kmMHz8+lixZEjk5OdGlS5fYcccdY/PNN6+0zwGg8hSXlsXtb06Je9/7JpLl3+UwNm/VKP74k0ExoFPztHQDAAAAgJrK+FXNZs6cGaeddlq8+eabVfL+BQUFce2118Z9990Xy5Yt+9HMzjvvHMOHD4+hQ4dWSQcANtzsJavi3Me+iq9mLUuZPXzrzeLqw/tF0wbZVV8MAAAAAGo441c1SSaTce+998Zvf/vbWLFiRZV8xujRo+Owww6LmTNnRkREdnZ2HHDAAdGzZ89YunRpfPDBBzFlypT4+OOPY5999olzzz03br/99sjIyKiSPgBUzGvj5sfFT42J/MKScnONcjLjD4f1i6MGd4xEwm0OAQAAACDC+FUtpk6dGqeeemq89957ERHRqVOnWL58eRQUFFTaZ4wfPz722muvWLJkSURE7LjjjvH4449Hly5d1mbKysri/vvvj3POOSdKS0vjrrvuipUrV8aDDz5YaT0AqLiiktK47uWJ8bdPZqbM9umQF388flBs0aZJGpoBAAAAQO3hEp80u/POO2PgwIFrh69TTz01xo8fHy1btqy0zygsLIyjjjpq7fDVq1eveOONN9YZviIiMjIy4owzzoi777577WsPPfSQ8QugGsxYvDKOuvfjCg1fJ+3cNZ49e2fDFwAAAAD8CONXml155ZWxatWq6Nq1a7z55pvxwAMPRF5eXqV+xl133RWTJ09ee/ynP/0pmjZtut786aefHjvttNPa48suu6xSr0IDoHwvjJ4XB//xwxg3N7/cXItG2fHgidvGVYf2jdyszDS1AwAAAIDaxfiVZhkZGXHWWWfF2LFjY+jQoZX+/kuXLo3rr79+7fGAAQNi7733LvecRCIRF1xwwdrjRYsWxS233FLp3QBY1+o1pXHpM2Pi3H99FSuKyn++1w7dWsar5+0eQ/u0S1M7AAAAAKidjF9p9tprr8Xdd98dTZpUza2qHn/88Vi2bNna4xNOOKFC5x1yyCHrXIH2wAMPRDKZrOx6APx/Xy8oiMPv/ij+9fnscnOJRMR5e/eIf562Y7Rv1iBN7QAAAACg9jJ+pdn2229fpe//1FNPrXO85557Vui8Bg0axI477rj2eP78+fHRRx9VajcA/uPJEbPj0D99FJMXlH+L2TZNc+PRU3aIC/bpGZkZiTS1AwAAAIDazfhVh+Tn58d777239jgnJycGDBhQ4fN/OMy98MILldYNgIiVRSVx4eOj4qKnxsTq4tJys7v1aB2vnrdb7Lxl6zS1AwAAAIC6Iau6C1B5xo4dGyUl//fMmO7du0dubm6Fz+/bt+86x6NGjaqsagD13oR5+XHOv76MaYtWlpvLzEjEr/ftGWfsvkVkuNoLAAAAADaY8asOGT9+/DrHnTp12qDzO3bsWO77AbDhkslkPPrZrPjDSxNiTUlZudkOzRrEH38yKLbt2jJN7QAAAACg7jF+1SGTJk1a5/iHY1YqP8zPmzcvCgoKomnTppvcDaA+yi8sjkufHhsvj52fMju0d9u4+eiB0aJxThqaAQAAAEDdZfyqQ5YsWbLOcV5e3gad/2P5pUuXVsr4tXDhwli0aNEGnTN16tRN/lyA6jJ69rL41b++illLVpWby85MxCUH9I5f7NI1Egm3OQQAAACATWX8qkMKCgrWOd6Q531FRDRo0CDle26se+65J4YPH14p7wVQkyWTyXj4oxlxw6sTo7g0WW62c8uG8aefDI6BnZunpxwAAAAA1APGrzrkh0PVj41Z5anK8QugPli2ak385skx8e+JC1JmD+zfPm44akDkNchOQzMAAAAAqD+MX6z1Y7fbSibLv2oBgP8YOXNJ/OqfX8W85YXl5nKyMuKKg/vET3fo4jaHAAAAAFAFjF91yA+fzVVYWP4PYH9o9erVKd9zY5111lkxbNiwDTpn6tSpcfjhh1fK5wNUlbKyZNz3/rS45Y3JUVpW/i8MdG/dOP54/KDou1mzNLUDAAAAgPrH+FWHNGnSZJ3joqKiDTr/x8ayyhq/2rZtG23btq2U9wKoKRavKIoLnxgd709ZlDJ7+NabxTVH9I8muf6nFwAAAACqkp/A1SEtW7Zc5zg/P3+Dzv+xfIsWLTapE0Bd9em07+Lcf30VCwvK/0WDBtkZ8YfD+sWwbTq5zSEAAAAApIHxqw7p1avXOsdz587doPN/mO/QoUPk5eVtci+AuqSsLBn3vvdN3PrG5Ehxl8Po2a5J3H384OjRrnKuogUAAAAAUjN+1SH9+vVb53jOnDkbdP4Px68fvh9Afbdk5Zq44PFR8V4FbnN43Had48pD+kbDnMw0NAMAAAAAvmf8qkP69+8fmZmZUVpaGhER33zzTRQVFUVubm6Fzh83btw6xwMHDqz0jgC11YgZS+Kcf34V3+b/7/MR/1vjnMy47sj+cdjWHdPUDAAAAAD4bxnVXYDKk5eXF3vsscfa4+Li4hg9enSFz//iiy/WOT700EMrrRtAbVVWloz73vsmjr3/05TDV58OefHSubsZvgAAAACgGhm/6pijjz56neN33323QucVFhbGp59+uva4ffv2scsuu1RmNYBaZ9mqNXHa30fE9a9OitIUD/j62Y6bxzNn7RzdWjdOUzsAAAAA4McYv+qYY489Npo1a7b2+NFHH63QeS+++GLk5+evPT711FMjI8N/PYD668tZS+Oguz6MtyYtLDfXJDcr/viTQXH14f2iQbbnewEAAABAdbNu1DEtW7aMSy65ZO3xmDFj4q233ir3nGQyGbfffvva41atWsVFF11UZR0BarJkMhkPfjAtjvnzJzF32epys7075MWLv9o1Dhm4WZraAQAAAACpGL/qoPPOOy969Oix9vhXv/pVrFixYr35+++/Pz755JO1x9dee23k5eVVaUeAmmj56uI445GRcc3LE6MkxW0Of7J9l3jWbQ4BAAAAoMYxftVBDRs2jKeffjqaN28eERETJ06MfffdN2bNmrVOrqysLO677744++yz17520kknxS9/+ct01gWoEcbMWRYH//GDeH38gnJzjXIy445jt47rj+zvNocAAAAAUANlVXeB+mbGjBnRrVu3lLk999zzf1678sor46qrrqrQ5/Tv3z/efvvtOOyww2L27NnxySefRI8ePeKAAw6Inj17xtKlS+ODDz6IyZMnrz3n7LPPjjvvvLPC/ywAdUEymYy/fzIzrn15YqwpLSs327Ndk7jnhG1iy7ZN0tQOAAAAANhQxq86bNCgQTF27Ni47rrr4r777ovly5fH888//z+5HXfcMYYPHx777rtvNbQEqD75hcVx6dNj4+Wx81Nmh23TKf5wWL9omONqLwAAAACoyYxfada1a9dIJst/jkxlatasWdx4441x9dVXx8cffxzjx4+PpUuXRk5OTnTu3Dl22mmn6Nq1a9r6ANQU4+ctj7Mf/TJmfLeq3FyD7Iy4+rB+MWzbzmlqBgAAAABsCuNXPZGTkxNDhgyJIUOGVHcVgGqVTCbjn5/PiuEvTog1JeXf5nCLNo3jnhO2ia3aN01TOwAAAABgUxm/AKg3VhaVxGXPjo3nR81LmT18683i2iP6R+Nc/1MJAAAAALWJn+gBUC9M+jY/znr0y5i2aGW5uZysjBh+aN84brvOkUgk0tQOAAAAAKgsxi8A6rRkMhlPjpgTVzw/LopS3Oawa6tGcfcJg6PvZs3S1A4AAAAAqGzGLwDqrFVrSuLy58bFM1/OTZk9aECHuOHI/tG0QXYamgEAAAAAVcX4BUCdNHXhijjzkZHx9cIV5eZyMjPiioN7x0933NxtDgEAAACgDjB+AVDnvDB6Xlzy9JhYtaa03FyXlo3i7uMHR/9ObnMIAAAAAHWF8QuAOmNNSVlc+/KE+NsnM1Nm9+vbLm46emA0a+g2hwAAAABQlxi/AKgT5i5bHWc/+mWMmr2s3Fx2ZiIuPaB3nLxLV7c5BAAAAIA6yPgFQK333pRFcf5jX8XSVcXl5jo2bxh3nzA4tu7cPD3FAAAAAIC0M34BUGuVliXjzre+jj++/XUkk+Vn9+rVNm47ZmA0b5STnnIAAAAAQLUwfgFQK323oijOf3xUfPD14nJzGYmIX++7VZy5xxaRkeE2hwAAAABQ1xm/AKh1Rs5cGmc/+mV8m19Ybq51k5y46yeDYuctWqepGQAAAABQ3YxfANQayWQy/vLRjLjulYlRUlb+fQ6369oi/nT84GiX1yBN7QAAAACAmsD4BUCtUFBYHJc8PTZeHjs/ZfaXu3eP3+y3VWRnZqShGQAAAABQkxi/AKjxJn2bH2c98mVMW7yy3FzT3Ky45ZiBsV/f9mlqBgAAAADUNMYvAGq0Z76cE5c9OzYKi8vKzfXukBf3njA4urZunKZmAAAAAEBNZPwCoEYqLC6NP7w0If752ayU2WO37RzDD+sbDbIz09AMAAAAAKjJjF8A1Dizl6yKMx8dGePm5peby83KiKsP7xfHbNs5Tc0AAAAAgJrO+AVAjfLvCQviwidGRX5hSbm5rq0axT0nbBN9NstLUzMAAAAAoDYwfgFQI5SUlsWtb06Je9/9JmV2/77t46ZhAyKvQXYamgEAAAAAtYnxC4Bqt6igKM7911fxybTvys1lZiTi0gN6xSm7dotEIpGmdgAAAABAbWL8AqBajZy5NM56dGQsyC8qN9e2aW7cfcLg2K5ryzQ1AwAAAABqI+MXANUimUzG3z+ZGde8PCGKS5PlZnfeolXcedygaNM0N03tAAAAAIDayvgFQNqtWlMSlz0zNp4bNS9l9pw9t4wL9ukZmRlucwgAAAAApGb8AiCtZixeGWc8MjImfVtQbq5Zw+y4/diBsVevdmlqBgAAAADUBcYvANLmzQkL4sInRkVBYUm5uf4dm8U9JwyOzi0bpakZAAAAAFBXGL8AqHKlZcm4/c0p8ad3pqbMHrdd57jq0L7RIDszDc0AAAAAgLrG+AVAlVqyck2c99hX8cHXi8vN5WRlxB8O7RvHbd8lTc0AAAAAgLrI+AVAlRk1e1mc9cjImLe8sNxcx+YN488/3Sb6d2qWpmYAAAAAQF1l/AKg0iWTyfjX57PjqhfGx5rSsnKzu/dsE3ceu3W0aJyTpnYAAAAAQF1m/AKgUhUWl8YVz42LJ0fOSZk9d68t47yhPSMzI5GGZgAAAABAfWD8AqDSzF6yKs54ZGSMn5dfbq5pg6y449itY+/e7dLUDAAAAACoL4xfAFSKdyYvjPMfGxXLVxeXm+vdIS/+/NPBsXmrxmlqBgAAAADUJ8YvADZJWVky7nr767jzra8jmSw/e+TgjnHt4f2jYU5mesoBAAAAAPWO8QuAjbZs1Zo4//FR8e7kReXmsjMTceUhfeOEHbpEIuH5XgAAAABA1TF+AbBRxs1dHmc8MjLmLF1dbq5DswZxzwmDY1CXFmlqBgAAAADUZ8YvADbYkyNmx+XPjYuikrJycztv0Sru+smgaN0kN03NAAAAAID6zvgFQIWtKSmLq1+aEP/4dGbK7JlDtohf79MzsjIz0tAMAAAAAOA/jF8AVMjC/MI469EvY8TMpeXmmuRmxS3DBsb+/dqnqRkAAAAAwP8xfgGQ0siZS+LMR76MhQVF5eZ6tmsSf/7pNtG9TZM0NQMAAAAAWJfxC4D1SiaT8ehns2L4i+OjuDRZbvaQgZvFDUf2j8a5/qcFAAAAAKg+fkIJwI8qLC6N3z8/Lp4YMafcXGZGIn53YO84eZeukUgk0tQOAAAAAODHGb8A+B/zlq2OMx8ZGaPnLC8317pJTvzp+MGxY/dWaWoGAAAAAFA+4xcA6/h02ndx9qNfxncr15SbG9i5efz5p4OjQ7OGaWoGAAAAAJCa8QuAiPjP870e/mhGXPfKxCgtK//5Xsdt1zmuOrRvNMjOTFM7AAAAAICKMX4BEKvXlMYlz4yJ50fNKzeXnZmI4Yf2i+N36JKmZgAAAAAAG8b4BVDPzV6yKn75j5ExYX5+ubl2eblxzwnbxDabt0hTMwAAAACADWf8AqjH3p+yKM597KtYtqq43Nx2XVvE3ScMjrZNG6SpGQAAAADAxjF+AdRDyWQy/vzetLj59UmR4vFeceJOm8flB/WJnKyM9JQDAAAAANgExi+AemZlUUlc9NToeGXst+XmcrIy4roj+sfR23RKUzMAAAAAgE1n/AKoR6YvXhmn/31EfL1wRbm5js0bxp9/uk3079QsTc0AAAAAACqH8Qugnnhr4oI4//FRUVBYUm5up+6t4k/HD4pWTXLT1AwAAAAAoPIYvwDquLKyZNz19tdxx7+/Tpk9bbdu8dv9e0VWpud7AQAAAAC1k/ELoA4rKCyOCx4fHf+euKDcXIPsjLjp6IFx6MDN0tQMAAAAAKBqGL8A6qhpi1bE6f8YGVNTPN+rS8tGcd/PtoneHfLS1AwAAAAAoOoYvwDqoHcmL4xz//VVyud77dGzTdx53NbRvFFOmpoBAAAAAFQt4xdAHZJMJuPP702Lm16fFMlk+dmz99wiLtxnq8jMSKSnHAAAAABAGhi/AOqI1WtK4+Knx8SLo+eVm2uckxm3HrN17N+vfZqaAQAAAACkj/ELoA6YvWRV/PIfI2PC/Pxyc11bNYoHTtw2erRrmqZmAAAAAADpZfwCqOU++ea7OPufX8aSlWvKze3Rs03c9ZNB0axhdpqaAQAAAACkn/ELoJZKJpPx909mxh9emhClZeU/4OuMPbaIi/bzfC8AAAAAoO4zfgHUQkUlpXHFc+PiiRFzys01yM6IG48aEIdt3TFNzQAAAAAAqpfxC6CWWZBfGL/8x8gYNXtZubmOzRvGfT/bJvp1bJaeYgAAAAAANYDxC6AW+XLW0jjjHyNjYUFRubkdurWMe04YHK2a5KapGQAAAABAzWD8Aqglnvhidlz+3LhYU1pWbu7nO20elx/cJ7IzM9LUDAAAAACg5jB+AdRwxaVlcc1LE+Jvn8wsN5eTmRFXH943jt2uS5qaAQAAAADUPMYvgBrsuxVFcfY/v4xPpy0pN9emaW78+afbxDabt0hTMwAAAACAmsn4BVBDjZ+3PE7/+8iYu2x1ubmBnZvHfT/dJto3a5CmZgAAAAAANZfxC6AGenXs/LjwidGxuri03NywbTrF1Yf3iwbZmWlqBgAAAABQsxm/AGqQsrJk3PnW13HnW1+Xm8vMSMQVB/WOn+/cNRKJRJraAQAAAADUfMYvgBpi1ZqS+PUTo+PVcd+Wm2vRKDvuPmFw7LxF6zQ1AwAAAACoPYxfADXA3GWr47S/jYgJ8/PLzfXukBf3/2yb6NyyUZqaAQAAAADULsYvgGo2YsaS+OU/RsZ3K9eUmzuof4e4ediAaJTjX90AAAAAAOvjJ6gA1eiJL2bH754bG8WlyXJzF+7TM36115ae7wUAAAAAkILxC6AalJSWxXWvTIqHP5pebq5RTmbcdszWsX+/9mlqBgAAAABQuxm/ANJs+ariOOdfX8YHXy8uN9execN48OfbRu8OeWlqBgAAAABQ+xm/ANJo6sIVcdrfR8T0xSvLzW3ftWXc+9PB0apJbpqaAQAAAADUDcYvgDR5d/LC+NW/voqCwpJycz/ZvnMMP7Rf5GRlpKkZAAAAAEDdYfwCqGLJZDIe+nB6XPfKxChLrj+XmZGI3x/cJ07cafNIJBLpKwgAAAAAUIcYvwCqUFFJafzu2XHx1Mg55eaaNcyOe04YHLts2TpNzQAAAAAA6ibjF0AVWVhQGGf8Y2R8OWtZubkt2zaJB0/cNrq2bpyeYgAAAAAAdZjxC6AKjJu7PE77+4iYv7yw3NyeW7WJO38yKPIaZKepGQAAAABA3Wb8AqhkL4+ZH79+clQUFpeVm/vlHt3j4v16RWaG53sBAAAAAFQW4xdAJUkmk/HHt6fGbW9OKTeXk5URNx7VP44Y1ClNzQAAAAAA6g/jF0AlKCwujd8+PSaeHzWv3Fzbprlx38+2iUFdWqSpGQAAAABA/WL8AthECwsK4/S/j4xRs5eVmxvQqVnc/7Nto32zBukpBgAAAABQDxm/ADbBhHn5cerfvoh5ywvLzR06cLO46egB0SA7M03NAAAAAADqJ+MXwEZ6c8KCOO+xr2LVmtJyc7/Zt2ecveeWkUgk0tQMAAAAAKD+Mn4BbKBkMhn3vz8tbnhtUiST6881yM6I24/ZOg7o3yF95QAAAAAA6jnjF8AGWFNSFr97dmw8OXJOubl2ebnx0M+3i34dm6WpGQAAAAAAEcYvgApbsnJNnPHIyPh8+pJyc/07NosHf75ttMtrkKZmAAAAAAB8z/gFUAFfLyiIU/42ImYtWVVu7sD+7ePWYVtHw5zMNDUDAAAAAOC/Gb8AUnhvyqI459Evo6CopNzcuXttGecP7RkZGYk0NQMAAAAA4IeMXwDl+NvHM2L4i+OjLLn+TE5WRtx89IA4bOuO6SsGAAAAAMCPMn4B/Iji0rL4w4sT4h+fziw317pJTtz3s21jm81bpKkZAAAAAADlMX4B/MDyVcVx9j+/jA+nLi4316t903jw59tGpxaN0tQMAAAAAIBUjF8A/2X64pVxyt++iGmLVpabG9q7bdxx3KBokutfowAAAAAANYmf2gL8f59O+y7OeGRkLFtVXG7ul7t3j4v37xWZGYk0NQMAAAAAoKKMXwAR8fTIOXHJM2OiuDS53kx2ZiKuPbx/HLNd5zQ2AwAAAABgQxi/gHotmUzG7W9OibvenlpurkWj7Lj3p9vEjt1bpakZAAAAAAAbw/gF1FuFxaVx8VNj4oXR88rNbdm2STz0821j81aN09QMAAAAAICNZfwC6qXvVhTFL/8xMkbMXFpubrcerePuEwZHXoPsNDUDAAAAAGBTGL+AeuebRSvi5L98EbOWrCo397MdN48rD+kTWZkZaWoGAAAAAMCmMn4B9crH3yyOM/4xMvILS9abSSQiLj+oT/xil66RSCTS2A4AAAAAgE1l/ALqjSdHzI5LnxkbJWXJ9WYaZmfGXT8ZFPv0aZfGZgAAAAAAVBbjF1DnlZUl49Y3J8fd73xTbq5t09x46OfbRf9OzdLUDAAAAACAymb8Auq0wuLS+M2To+OlMfPLzfVq3zQePmm72Kx5wzQ1AwAAAACgKmRUdwGqxowZMyKRSGz0X82bN6/ufwTYZN+tKIrjH/g05fC151Zt4qkzdzZ8AQAAAADUAa78AuqkqQsL4uS/fhGzl6wuN/fznTaPKw7uE1mZfhcAAAAAAKAuMH4Bdc7HUxfHLx8ZGQWFJevNJBIRvz+4T5y8S7c0NgMAAAAAoKoZv+qBZDJZ3RUgbZ74YnZc9uzYKClb/3/vG+Vkxl3HDYqhfdqlsRkAAAAAAOlg/ALqhLKyZNz8xuS4991vys21y8uNh36+XfTr2CxNzQAAAAAASCfjF1DrFRaXxq+fGB0vj51fbq5Ph7x46KRto0OzhmlqBgAAAABAuhm/gFptyco1cdrfR8TImUvLze3Vq2388SeDonGuf+0BAAAAANRlfgoM1Fozv1sZJ/3li5i+eGW5uZN27hpXHNwnMjMSaWoGAAAAAEB1MX4BtdKXs5bGqX8bEUtWrllvJiMR8fuD+8RJu3RLYzMAAAAAAKqT8QuodV4b922c99hXUVRStt5Mo5zM+NPxg2KvXu3S2AwAAAAAgOpm/KoHysrK4rXXXounn346RowYEbNmzYoVK1ZEkyZNolWrVtGnT58YMmRIDBs2LDp37lzddaFcD384Pa5+eUIkk+vPtMvLjYdP2i76btYsfcUAAAAAAKgRjF/1wODBg2P06NH/8/qyZcti2bJl8c0338SLL74Yl1xySfzsZz+Lm2++OVq2bFkNTWH9ysqScc3LE+Phj6aXm9uqXdP4y8nbxWbNG6apGQAAAAAANYnxqx4YPXp0tGjRIs4888w47LDDonv37pGXlxeLFi2Kjz/+OB566KF4/fXXo7i4OB5++OF466234rnnnoutt9660josXLgwFi1atEHnTJ06tdI+n9qtsLg0zn9sVLw2/ttyc7ts2Sru/ek2kdcgO03NAAAAAACoaYxf9cDQoUPjkUceiXbt1n32UceOHWPYsGExbNiweOihh+L000+PsrKymDlzZuy///7x+eefR5cuXSqlwz333BPDhw+vlPeifvluRVGc9vcR8eWsZeXmjhrcKa4/sn/kZGWkpxgAAAAAADWS8auOatSoURx22GHRtm3buPPOO6Nhw/JvAXfKKafEt99+G5dffnlERCxYsCCOP/74+PDDD9NRF37UjMUr46S/fB4zvltVbu68vXvE+UN7RCKRSFMzAAAAAABqKpdI1FFt27aN5557Lu6///6Uw9f3Lr744ujcufPa448++iheffXVqqoI5Ro5c2kccc9H5Q5fWRmJuOnoAXHBPj0NXwAAAAAARIQrv/gv2dnZceKJJ8a111679rWHHnooDjjggE1+77POOiuGDRu2QedMnTo1Dj/88E3+bGqfV8fOj/MfHxVFJWXrzTTJzYp7fzo4duvRJo3NAAAAAACo6YxfrGO33XZb5/idd96JsrKyyMjYtIsE27ZtG23btt2k96B+eOjD6XHNyxMimVx/pn1eg/jLydtF7w556SsGAAAAAECtYPxiHX379l3neMmSJTFv3rzo1KlTNTWivigtS8Y1L0+Iv3w0o9xcr/ZN4y8nbxcdmlXsdp4AAAAAANQvnvnFOlq0aPE/ry1evLgamlCfFBaXxq/+9WXK4Wu3Hq3jyTN2MnwBAAAAALBervxiHTk5Of/z2urVq6uhCfXF8lXFcdo/RsTn05eUmzt6m05x/ZH9IzvTZg8AAAAAwPoZv1hHfn7+/7zWqlWramhCfTBv2eo46S+fx5QFK8rNXTC0Z5y795aRSCTS1AwAAAAAgNrK+FUHffrpp/Haa69F69at45xzztmgc+fMmbPOcSKRiPbt21dmPYiIiMnfFsTPH/48vs0vXG8mKyMRNxw1II7exjPnAAAAAACoGONXHfTpp5/G8OHDo2nTphs8fo0YMWKd44EDB0ZeXl5l1oP4dNp3cdrfR0RBYcl6M01ys+LPP90mdu3ROo3NAAAAAACo7Tw8pw4rKCiIUaNGbdA5Tz311DrHBx54YCU2goiXx8yPEx/6vNzhq03T3Hj8lzsavgAAAAAA2GDGrzru3nvvrXD2q6++ijfeeGPtcaNGjeLcc8+tilrUU3/5aHqc868vY01p2Xoz3ds0jmfO3Dn6btYsjc0AAAAAAKgrjF913EMPPRSvv/56ytzSpUvj5z//eZSV/d8oMXz48GjXrl1V1qOeKCtLxvWvTIzhL06IZHL9ucFdmsfTZ+wcnVs2Sl85AAAAAADqFONXHVdaWhqHHXZY3HbbbVFYWPijmY8++ih23XXXGDt27NrXfvGLX8RvfvObdNWkDltTUhYXPjEq7nt/Wrm5ob3bxaOn7hgtGuekqRkAAAAAAHVRVnUXoPJtu+220bdv3xg/fnxERBQVFcWvf/3ruOaaa2L33XePLbbYIho0aBALFy6Mjz/+OCZMmLD23KysrLjuuusMX1SKgsLiOPORL+PDqYvLzf1k+y5x9WF9IyvTHg8AAAAAwKYxftVBu+66a4wbNy4+/vjjeOqpp+KVV16JyZMnx9KlS+P555//0XNat24dP/nJT+KCCy6Ibt26pbkxddHC/MI46S9fxIT5+eXmLtynZ/xqry0jkUikqRkAAAAAAHWZ8asO23nnnWPnnXeO2267LRYvXhxjx46NadOmxdKlS6OoqCiaNWsWrVu3jgEDBkTv3r2ND1SabxatiJ8//HnMWbp6vZnMjERcf0T/OGa7zmlsBgAAAABAXWf8qidat24de+65Z+y5557VXYU6buTMpXHK376IZauK15tpmJ0Z95wwOPbs1TaNzQAAAAAAqA+MX0CleXvSgjjr0S+jsLhsvZmWjXPi4ZO2i607N09fMQAAAAAA6g3jF1Apnh45Jy5+ekyUliXXm+nSslH8/RfbR9fWjdPYDAAAAACA+sT4BWyyB96fFte+MrHcTP+OzeLhk7aLNk1z09QKAAAAAID6yPgFbLRkMhk3vDYp7ntvWrm53Xu2iXtPGByNc/0rBwAAAACAquUn0cBGKSkti0ufGRtPjpxTbu7IwR3jxqMGRHZmRpqaAQAAAABQnxm/gA1WWFwa5/zzy/j3xIXl5n65e/e45IBekUgk0tQMAAAAAID6zvgFbJDlq4vj1L99EV/MWFpu7tIDesUv99giTa0AAAAAAOA/jF9AhS3IL4yfP/x5TPq2YL2ZzIxE3HjUgDh6m05pbAYAAAAAAP9h/AIqZPrilfGzhz6LOUtXrzeTm5UR95wwOPbu3S6NzQAAAAAA4P8Yv4CUxs5ZHif95fP4buWa9WbyGmTFQydtF9t1bZnGZgAAAAAAsC7jF1Cuj6cujtP+PiJWrildb6ZdXm787RfbR6/2eWlsBgAAAAAA/8v4BazXK2Pnx/mPjYo1pWXrzXRr3Tj+/ovto3PLRmlsBgAAAAAAP874BfyoRz6dGVc8Py6SyfVn+ndsFn85ebto3SQ3fcUAAAAAAKAcxi9gHclkMv749tS47c0p5eZ22bJV3PezbaNJrn+NAAAAAABQc/ipNbBWWVkyrnl5Yjz80fRycwcN6BC3HTMwcrMy09QMAAAAAAAqxvgFRERESWlZXPrM2Hhy5Jxycz/bcfO46tC+kZmRSFMzAAAAAACoOOMXEEUlpXH+Y6Pi1XHflps7f2iPOG/vHpFIGL4AAAAAAKiZjF9Qz61aUxK//MfI+ODrxevNJBIRfzisX/xsx83T2AwAAAAAADac8QvqseWri+MXf/0iRs5cut5MVkYibj926zhk4GZpbAYAAAAAABvH+AX11KKCojjx4c9j4vz89WYaZGfEvT/dJvbcqm0amwEAAAAAwMYzfkE9NGfpqvjZQ5/H9MUr15tpmpsVD520XWzfrWUamwEAAAAAwKYxfkE9882iFfGzBz+LecsL15tp2Tgn/v6L7aNfx2ZpbAYAAAAAAJvO+AX1yLi5y+PnD38e361cs95Mh2YN4h+n7BBbtm2SxmYAAAAAAFA5jF9QT3wxY0n84i9fREFRyXozXVs1ikdO3SE6tWiUxmYAAAAAAFB5jF9QD7w7eWGc8cjIKCwuW2+mV/um/6+9O4+Ssjzzxn91N90gSzcgoEZRFGRVUERZXCBxy8QojhMVlwQU0FeNJhpxkowOcc6rGaPRwSyiuBAj4zIZNSYqRqMSRVGJgnsUFVCBAGmgEWTt5/eHP+q1oKsXuruqKD6fc/oc7qeu+3mu9lj3uZ/6dlXF3WMPiy7tWmWxMwAAAAAAaFrCLyhwj76+OL5//2uxcXOSsWbg3u3jrjGHRUXr0ix2BgAAAAAATU/4BQXs/lcWxo8efCOqM+decUSPTnHrtw+JNi0tBwAAAAAA7Pi82g0F6vbnPoz/++g7tdZ8vd/uMemMg6Jli5IsdQUAAAAAAM1L+AUFJkmS+OXT8+LnT75Xa923Dtkr/vOUA6NFSXGWOgMAAAAAgOYn/IICkiRJXP/E3+LXz35Qa905h3eLq07oG8XFRVnqDAAAAAAAskP4BQUiSZK4+g9vx9QX5tda9/1j9o/vHb1/FBUJvgAAAAAAKDzCLygA1dVJ/NvDb8S9L39ca91V3+wbY4/YN0tdAQAAAABA9gm/YAe3aXN1TPjd6/HQa59mrCkqivjPUw6M0w/dO4udAQAAAABA9gm/YAe2YVN1fO++1+LxN5dkrCkpLoobTxsQIw/aM4udAQAAAABAbgi/YAe1buPmuHDaq/H0u0sz1pSWFMUvzjg4vn7AHlnsDAAAAAAAckf4BTugtRs2xXl3/zWen7c8Y03LFsUx+exD4qu9u2SxMwAAAAAAyC3hF+xgVq/bGOdOfSVemb8iY80upSVxx+hBMaxHpyx2BgAAAAAAuSf8gh3IyrUbYvSdL8fcT1ZlrGnbskVMPefQGNStYxY7AwAAAACA/CD8gh3EPz5bH2ff8XK8s7gqY03FLqVx97mHxYCu7bPXGAAAAAAA5BHhF+wAlq1eH2dOmRXvL/0sY82ubcrinnGDo88e5VnsDAAAAAAA8ovwC/Lc0qp1ccaUWfHBsjUZa3YrbxnTxg2JHl3aZrEzAAAAAADIP8IvyGNLVq2LM6fMig+XZw6+9my/S/z3+MGxz65tstgZAAAAAADkJ+EX5KnFqz6PM26bFfP/sTZjTbddW8e08UNiz/a7ZLEzAAAAAADIX8IvyEOfrvwi+FpYmTn46tGlbfz3uMHRpbxVFjsDAAAAAID8JvyCPPNx5do4Y8qs+GTF5xlreu7WNqaNGxKd27XMYmcAAAAAAJD/hF+QRxb+44vg69OVmYOv3ru3i2njBseubQVfAAAAAACwNeEX5IkF/1gTZ9w2KxatWpexpu8e5XHPuMHRsU1ZFjsDAAAAAIAdh/AL8sBHy78IvpZUZQ6+DtizPO4ZOzjatxZ8AQAAAABAJsIvyLEPln0WZ9w2K5auXp+xpv9eFfHbcwdHRevSLHYGAAAAAAA7HuEX5NC8pavjjCkvxbJagq8BXdvH3eceFhW7CL4AAAAAAKAuwi/Ikff+vjrOnDIrln+2IWPNwL3bx9RzD4vyVoIvAAAAAACoD+EX5MC8pXUHX4P26RBTzz0s2rb0NAUAAAAAgPryqjpk2QfLPoszprxUa/B12L4d464xh0YbwRcAAAAAADSIV9Yhiz5avibOuG1Wrd/xNWS/jnHnmEOjdZmnJwAAAAAANJRX1yFLFvzji+BraS3B1+E9do3bv3No7FJWksXOAAAAAACgcBTnugHYGXxcuTbOuG1WLKlal7FmWHfBFwAAAAAANJbwC5rZJyvWxhlTZsWiVZmDryH7dYw7Rgu+AAAAAACgsYRf0IwWrfw8zpzyUnyy4vOMNYd1E3wBAAAAAEBTEX5BM1myal2cOWVWLKxcm7HmkH06xJ3nHBptWvr6PQAAAAAAaArCL2gGS6u+CL7m/yNz8HVQ1/Yx9ZxDo63gCwAAAAAAmozwC5rYstXr44wps+LD5Wsy1gzYqyLuHntYtGtVmsXOAAAAAACg8Am/oAkt/2x9nDllVnywLHPwdcCe5XH3uYOjXPAFAAAAAABNTvgFTaRyzYY4+/aX4v2ln2Ws6btHedwzdnBUtBZ8AQAAAABAcxB+QRNY9fnG+PYdL8W7S1ZnrOm9e7u4Z9zgaN+6LIudAQAAAADAzkX4BY20Zv2mOOeul+OtRVUZa3ru1jamjRscHdsIvgAAAAAAoDkJv6AR1m3cHON+MzteXbgyY033zm1i2rghsWvbltlrDAAAAAAAdlLCL9hOGzZVxwX3/DVe/PAfGWv269Qm7h0/JDq3E3wBAAAAAEA2CL9gO2zaXB3fu++1eOZvyzLW7N2xdfz3+CHRpbxVFjsDAAAAAICdm/ALGqi6Ookrfvd6PP7mkow1e1S0imnjBsfuFYIvAAAAAADIJuEXNECSJHHV79+MB1/7NGNNp7YtY9q4wdG1Y+ssdgYAAAAAAEQIv6DekiSJax59J6a9tDBjTfvWpTFt3ODYr3PbLHYGAAAAAABsIfyCerrpqffj9uc/yvh4u5Yt4rfnDo5eu7fLYlcAAAAAAMCXCb+gHqb85cO4+c/vZ3x8l9KSuOucQ+PAvSqy2BUAAAAAALA14RfU4YFXPo5rHnsn4+NlLYrj9tGDYlC3jlnsCgAAAAAAqInwC2ox/c3F8cMHX8/4eIviorjlrIFxeI9OWewKAAAAAADIRPgFGcyctzwuuXdOVCc1P15cFDFp1MFxdJ/dstsYAAAAAACQkfALajD345Vx3t2zY8Pm6ow11/1L/zih/x5Z7AoAAAAAAKiL8Au28v7fV8eYu16ONRs2Z6y56pt949RBXbPYFQAAAAAAUB/CL/iST1asjW/f8XKsWLsxY83FX+sRY4/YN4tdAQAAAAAA9SX8gv/fstXr49t3vBxLqtZlrPn2kH3ismN7ZrErAAAAAACgIYRfEBFV6zbG6Dtfjo+Wr8lYc9KAr8TVJ/WLoqKiLHYGAAAAAAA0hPCLnd66jZtj3NTZ8fbiqow1I3p1jp+fNiCKiwVfAAAAAACQz4Rf7NQ2ba6Oi+99LV6eX5mxZtA+HeKWsw6J0hJPFwAAAAAAyHdezWenlSRJ/Psjb8WTb/89Y03v3dvFHWMOjV3KSrLYGQAAAAAAsL2EX+y0fvn0vPjvlxZmfHyfXVvH3WMPi4pdSrPYFQAAAAAA0BjCL3ZKD8z+OH7+5HsZH+/SrmXcM3ZwdGnXKotdAQAAAAAAjSX8YqfzzLtL40cPvpHx8XatWsTdYw+Lrh1bZ7ErAAAAAACgKQi/2KnM+XhlXDjt1dhcndT4eFlJcdz27UHRe/fyLHcGAAAAAAA0BeEXO435y9fEuVNfic83bq7x8aKiiBtPHxBDu++a5c4AAAAAAICmIvxip7Bs9fr4zp0vR+WaDRlrrjqhb3yz/1ey2BUAAAAAANDUhF8UvDXrN8W5U1+JhZVrM9acf9R+ce4R+2axKwAAAAAAoDkIvyhoGzdXx4XTXo03Pl2Vsebkg74S//r13lnsCgAAAAAAaC7CLwpWkiRx5UNvxoz3lmWsOaJHp/jZtwZEcXFRFjsDAAAAAACai/CLgnXLjA/i/tkfZ3y87x7lccvZA6OshacBAAAAAAAUCq/6U5D++Pqi+Nn0v2V8fK8Ou8TUcw6Ndq1Ks9gVAAAAAADQ3IRfFJy/LlgRlz0wN+Pj7VuXxm/OPSy6lLfKYlcAAAAAAEA2CL8oKAv/sTbG3z07NmyqrvHxshbFcft3BkX3zm2z3BkAAAAAAJANwi8Kxqq1G2PM1Jejcs2GjDU3nDogBnXrmMWuAAAAAACAbBJ+URA2bKqO8++ZHR8uW5OxZsLxveKkAV/JYlcAAAAAAEC2Cb/Y4SVJElc9/GbM+rAyY81pg/aKC0d0z2JXAAAAAABALgi/2OHdNXN+3D/744yPH95j17jmnw+MoqKiLHYFAAAAAADkgvCLHdqM95bF/3307YyP9+jSNn591iFRWuJ/dQAAAAAA2BlIBNhhfbDss/juf78a1UnNj3dqWxZ3jTk0KnYpzW5jAAAAAABAzgi/2CGtWrsxxv1mdqxet6nGx8tKiuPWbw+Krh1bZ7kzAAAAAAAgl1rkugGya+HChTFr1qxYsGBBbNiwITp27Bj9+vWLIUOGRFlZWa7bq5dNm6vjov9+NT5aviZjzbWnHBiH7NMhi10BAAAAAAD5QPi1k3j66adj4sSJ8fzzz9f4eEVFRZx33nlx5ZVXRnl5eZa7a5j/++g78fy85RkfP++o/eJbh+yVxY4AAAAAAIB84WMPC1x1dXVcdtllcfTRR6eCr169esXYsWPj8ssvj5NOOilKS0tj1apVcf3118cBBxwQr732Wo67zuyB2R/H1BfmZ3z8q706x79+vXf2GgIAAAAAAPKKd34VuAsuuCBuu+22iIgoKSmJX/3qVzF+/PgoLv5/uefChQvjtNNOi5deeik+/vjj+NrXvhZ/+ctf4sADD8xV2zV6/++r48qnF2Z8vEeXtnHzGQdHSXFRFrsCAAAAAADyiXd+FbC77rorFXxFREyePDnOP//8tOArImLvvfeOP/3pT9GzZ8+IiFi5cmWccsop8fnnn2e137r8xx/fjg2bqmt8rH3r0rj9O4OiXavSLHcFAAAAAADkE+FXgfrss8/ihz/8YWp8xBFHxLhx4zLWl5eXx80335waz5s3LyZNmtSsPTbUklXrajxeUlwUvz5zYHTr1CbLHQEAAAAAAPlG+FWgbrjhhli6dGlqfNlll9U55/jjj4++ffumxtddd12sWLGiWfprSv/2jT4xrEenXLcBAAAAAADkAeFXAUqSJKZMmZIat2/fPk444YR6zT377LNT/165cmXcf//9Td5fUzppwFfinMO75boNAAAAAAAgTwi/CtDMmTNj0aJFqfGwYcOirKysXnNHjBiRNv7d737XlK01qV67tYv//JcDo6ioKNetAAAAAAAAeUL4VYAeeeSRtPGhhx5a77kHH3xwlJaWpsYzZsyIqqqqJuutqbRr2SJuOXtgtC5rketWAAAAAACAPCL8KkCvvfZa2rhPnz71ntuqVavYb7/9UuNNmzbFm2++2WS9NZWfnzYg9uvcNtdtAAAAAAAAeUb4VYDeeuuttPFee+3VoPl77rlnrefLtQtHdI/j+u2e6zYAAAAAAIA8JPwqMFVVVbF48eK0Y1uHWXXZuv7dd99tdF9N5YgeneIHx/XKdRsAAAAAAECeEn4VmMrKym2OlZeXN+gcW9evWLGiUT01lS7tWsakUQdFSXFRrlsBAAAAAADyVItcN0DTWr169TbHWrZs2aBztGrVqs5zNtTSpUtj2bJlDZrz9ttvp43HHNAqliyYF0sa3Q0AAAAAAOy45s2blzZev359jjrJT8KvAlNTULV1mFWX5gi/fv3rX8fVV1/dqHNcOv7sRvcBAAAAAACF5uOPP46BAwfmuo284WMPqVOSJLluAQAAAAAAyGDlypW5biGvCL8KTLt27bY5tm7dugadY+v6ms4JAAAAAADkh6qqqly3kFd87GGBadu27TbH1q9fH23atKn3OZoj/Lrwwgvj1FNPbdCcOXPmxNln/7+POnzggQeib9++je4FoKnMmzcvTj755NT44Ycfjh49euSuIYCtWKeAfGaNAvKddQrIZ2+//XacdtppqfGgQYNy2E3+EX4VmI4dO25zrKqqqsbjmWydEHfo0KHRfXXp0iW6dOnSqHP07ds3+vXr1+heAJpLjx49rFNAXrNOAfnMGgXkO+sUkM/Ky8tz3UJe8bGHBaaioiJ23333tGOffvppg86xdX3v3r0b3RcAAAAAAEA2CL8K0AEHHJA2/uSTTxo0f+vwa+vzAQAAAAAA5CvhVwE6+OCD08Zvv/12veeuW7cuPvzww9S4pKRE+AUAAAAAAOwwhF8F6MQTT0wbv/LKK/We+9prr8XGjRtT4+HDh/usUAAAAAAAYIch/CpAhx9+eOyxxx6p8YsvvhgbNmyo19xnn302bfytb32rKVsDAAAAAABoVsKvAlRcXBzjxo1LjVeuXBmPPvpoveZOmzYt9e+Kioo4/fTTm7w/AAAAAACA5iL8KlATJkyIzp07p8Y33XRTnXOeeOKJeOutt1LjK664Ijp27Ngs/QEAAAAAADQH4VeBateuXVx77bWp8XPPPRd33HFHxvrVq1fHJZdckhp37949vv/97zdniwAAAAAAAE1O+FXAxo0bF2PHjk2Nzz///Ljtttuiuro6rW7hwoVx7LHHxnvvvRcRX3zc4f/+7/9G69ats9ovAAAAAABAY7XIdQM0r9tuuy3atGkTN998c2zevDnOP//8uPHGG+Ooo46KioqKeP/99+Pxxx+PDRs2RETEnnvuGb///e9jwIABOe4cAAAAAACg4YRfBa64uDgmTZoUJ554YkycODFeeOGF+Nvf/hZ/+9vf0urKy8tj/PjxcdVVV0VFRUWOugUAAAAAAGgc4ddO4phjjoljjjkmFixYEC+++GIsXLgwNmzYEB06dIh+/frF0KFDo2XLlrluM03nzp1j4sSJaWOAfGKdAvKddQrIZ9YoIN9Zp4B8Zo2qXVGSJEmumwAAAAAAAICmUJzrBgAAAAAAAKCpCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgILRItcNQCYLFy6MWbNmxYIFC2LDhg3RsWPH6NevXwwZMiTKyspy3R4AQIN8+umn8de//jUWLVoUK1asiNLS0ujQoUN07949Bg0aFG3btm2ya23cuDFefPHFeOutt6KysjLKyspi7733jiFDhsQ+++zTZNeJsGeDQrF+/fp4991345133olly5ZFVVVVtGrVKtq3bx+9evWKgw46qMnWKWsUAMD2s5eqH+EXeefpp5+OiRMnxvPPP1/j4xUVFXHeeefFlVdeGeXl5VnuDsh3t99+e1x++eWxatWqiIh45plnYsSIEU12fhsMoCFeeOGFeOCBB+Khhx6KhQsXZqwrLi6Oo48+Or773e/GSSedtN3XW716dVxzzTVx6623xsqVK2usGTZsWFx99dVxzDHHbPd1IuzZoBDMmTMnHnrooXj66afj5Zdfjg0bNmSsLS0tjX/6p3+KSy+9dLv3VtYooCklSRJHHnlkzJw5M3Vs9OjRMXXq1Ead1z0fUB/z58+Pfffdd7vnV1RUZNwPZWIv1TBFSZIkuW4CIiKqq6vj8ssvj5tuuil1rFevXnHEEUdEhw4d4r333ovHH388Nm7cGBERXbt2jd///vdx8MEH56plII8sWLAgxo8fH08++WTa8aYKv2wwgIZ46KGH4tprr43Zs2enjhUVFcWgQYNi4MCBseuuu8aaNWvinXfeib/85S+xbt26VN0JJ5wQd9xxR+y2224NuubcuXNj5MiRsWDBgoj4fy9U9+zZM1asWBHPPfdcvPfee6n6Sy65JG666aYoLm7YJ6Hbs0Fh6NmzZ7z//vtpx8rLy2P48OGx//77R6tWraKysjJefvnlePXVV9Pqzj333Jg8eXKUlpbW+3rWKKCpTZ48OS644IK0Y40Jv9zzAQ2R7fDLXmo7JJAnzjvvvCQikohISkpKksmTJyebN29Oq1mwYEEyePDgVF379u2T119/PUcdA/mguro6+dWvfpW0bds2tTZ8+eeZZ55p9DXmzJmT7LPPPqlzlpaWJieddFJy+eWXJ2PHjk169uyZds1LLrlkm/WrPjZv3pxceumlaefq1atXMnbs2OTyyy9PTjrppKS0tDT1WNeuXZNXX3210b8f0PR22223tOfy8OHDk3fffbfG2kWLFiWnnnpqWn3v3r2Tv//97/W+3ptvvpl07NgxNX/IkCHJggUL0mo2b96c3HLLLUlJSUmqbuzYsQ3+3ezZoDB8ec0pKipKrrzyyuSzzz6rsfall17aZr/zL//yL/W+ljUKaGqLFi1KKioqtrn/Gz169Hadzz0f0FAfffRRja9D1fenoqKi3teyl9o+wi/ywp133pn25J8yZUrG2lWrVqVtOnr06JGsXbs2i90C+eL9999Phg8fnloP9tprr6Rdu3ZNGn7ZYADb48vh19e+9rVkw4YNtdZXV1cnZ511Vtr6dfzxx9frWp9//nnSq1evtOCsqqoqY/3kyZPrve/amj0bFI4vP5evu+66Ous//fTTpEuXLmnz7rvvvjrnWaOA5nDKKafU+GLy9oRf7vmA7fHl8Ks52UttP+EXObd69eq0m6gjjjiizjnTp09PeyL+9Kc/zUKnQD75r//6r6R169apdWDcuHHJqlWr0v5ar7Hhlw0GsL22hF8tWrRI5s2bV685K1euTMrLy9PWgunTp9c577rrrkub89RTT9VaX11dnQwdOjRV37lz51rXti3s2aCwbHle9uzZM9m0aVO95vzsZz9Le04PHz68zjnWKKCpPfzww6nn7dbv/mpo+OWeD9he2Qq/7KW2n/CLnJs4cWLak+TBBx+s17y+ffum/RVMZWVlM3cK5JMtNzndunVLnnzyydTxpgy/bDCA7bUl/DrmmGMaNG/8+PFpz+0xY8bUWl9ZWZm0b98+Vd+/f/96XeeBBx5Iu86///u/1znHng0Ky5bn5ZVXXlnvOW+99VbaOlBSUlJrcGaNAppaVVVVstdeeyURkey7777JhAkTGhV+uecDtlc2wi97qcZp2LedQRNLkiSmTJmSGrdv3z5OOOGEes09++yzU/9euXJl3H///U3eH5C/iouL48ILL4w33nij0V82XJMVK1bET3/609S4f//+cfTRR9c6p6ioKC699NLUeNmyZXHDDTfUea0bbrghli5dmhpfdtlldc45/vjjo2/fvqnxddddFytWrKhzHpBdRxxxRIPqhw4dmjbO9CXoW9x///1pX5J81lln1es6J554YtqXp0+ZMiWSJMlYb88GheeEE06IE044IY477rh6z+nWrVvaePPmzbF8+fKM9dYooKn96Ec/ik8++SQiIm655ZZo3br1dp/LPR+Q7+ylGkf4RU7NnDkzFi1alBoPGzYsysrK6jV3xIgRaePf/e53TdkakOemT58ev/rVr6Jt27bNcn4bDKAxHnzwwXjmmWfivPPOa9C8PfbYI228ZMmSWuu33v989atfrdd1WrVqFUOGDEmNFy9eHDNnzsxYb88GheePf/xj/PGPf4wjjzyy3nOKioq2OdayZcuM9dYooCnNmjUrbrnlloiIOPPMM+P4449v1Pnc8wH5zl6qcYRf5NQjjzySNj700EPrPffggw+O0tLS1HjGjBlRVVXVZL0B+e2www5r1vPbYACNMWzYsBgxYsQ2YVZDVVdXZ3ysqqoqZsyYkRqXlZVF//79633urdfRrfdltT1mzwY7p48//jhtvPvuu0f79u1rrLVGAU1p48aNMX78+Kiuro4OHTrETTfd1OhzuucD8pm9VOMJv8ip1157LW3cp0+fes9t1apV7Lfffqnxpk2b4s0332yy3oCdlw0GkCvLli1LG++///4Za994443YtGlTarzffvvV+g6MrfXr1y9tPGfOnIy19mxARMSTTz6ZNj7llFMy1lqjgKZ03XXXpZ6b119/fXTp0qVR53PPB+Q7e6nGE36RU2+99VbaeK+99mrQ/D333LPW8wFsDxsMIFdef/31tHFtH+eTzX2UPRvw2WefxfXXX58aV1RUxA9/+MOM9dYooKm89957cc0110RExPDhw+Pcc89t9Dnd8wFNqbq6Oh577LEYO3ZsDBgwIDp06BClpaXRoUOH6NGjR5x00klx4403bvMu+trYSzWe8IucqaqqisWLF6cd2/qJUpet6999991G9wVggwHkyvTp01P/LioqqvXFna33PY3dRy1atChWr169TZ09G7B06dI48cQTY8GCBRERscsuu8T9998fXbt2zTjHGgU0lfPPPz/WrVsXLVu2jFtvvbXG7x9sKPd8QFMaOHBgnHDCCXHnnXfG66+/HitXroxNmzbFypUr44MPPog//OEP8YMf/CC6d+8eY8eOjcrKyjrPaS/VeMIvcqamJ/mXvzC0PrauX7FiRaN6AoiwwQBy469//WvaX/KOGjUqevXqlbF+671UY/dRETXvpezZYOezbt26WLx4cfzpT3+KSy+9NHr37h3PPvtsRHzx4s7MmTNrfWdqhDUKaBp33HFHav350Y9+VOveqCHc8wFNae7cudGhQ4f48Y9/HC+99FIsW7Ys1q9fH5988kk88MADqX3Txo0b484774yBAwfW+o7RCHupptAi1w2w86ppU9CQt5hHfPH277rOCdBQzbXBaNeuXa3XaYpr5csGA2i4a6+9NvXv8vLy+NnPflZr/db7nsbuo2o6Z6Zj9mxQmObNm1fjdw2Wl5fHueeeG6NGjYpjjjmmXu+6sEYBjfX3v/89JkyYEBERvXv3jh/96EdNdm73fEBTOuaYY+Kee+6J3XbbLe34nnvuGaeeemqceuqpcccdd8R5550X1dXVsWDBgvj6178eL7/8cuy99941ntNeqvGEX+RMTU+Cmp6UtcnXJxawY7PBALLtqaeeigcffDA1njRpUp0fibP1872x+6iazpnpmD0b7FyqqqrikUceiZUrV8Znn30WI0eOjOLi2j9IxhoFNNb3vve9WLFiRRQVFcVtt90WZWVlTXZu93xAY7Vu3TpGjhwZXbp0iUmTJsUuu+xSa/3YsWNjyZIlceWVV0bEFwH/mWeeGc8//3yN9fZSjedjDykoSZLkugWgANhgANlUWVkZ55xzTmp8zjnnxJgxY5r9ujW9cyNbeyl7NshPPXr0iCRJIkmSWL16dXzwwQdx3333xcknnxyVlZXx4IMPximnnBIDBw6M2bNnN2sv1ijYuT322GNx//33R8QXLxgfeeSRTXp+93xAY3Xp0iUefvjhuO222+oMvra44oor0r4zdebMmfH44483S3/2UsIvcmjrt4JHfPHZ8g2xdX1N5wTINhsMoL42bdoUo0aNik8++SQiIo466qiYPHlyveZuve9p6D7q888/r/OcmY7Zs0Hha9u2bey3335x+umnx0MPPRTPPfdcfOUrX4mIL77X4qijjorp06dnnG+NArbXmjVr4sILL4yIiN12263Oj4LOBfd8wPYoLS2N73znO2nH7rjjjhpr7aUaT/hFzrRt23abY+vXr2/QOfL1iQXs2GwwgGy58MIL48knn4yIiP79+8fDDz9c74/02Xov1dh9VETNa4g9GxARMWzYsHjsscdS70D4/PPP4/TTT48PP/ywxnprFLC9rrzyyliwYEFERPzXf/1XdOjQocmv4Z4PyJWt38n6zDPPRHV19TZ19lKNJ/wiZzp27LjNsaqqqgadY+v65tgQATsfGwwgGy6//PKYMmVKRET06dMnnnzyyQbtZbbeSzV2HxVR817Kng3YYsCAAXHeeeelxlVVVTFx4sQaa61RwPaYPXt2/OIXv4iIiH/6p3+KUaNGNct13PMBudKvX7+0cWVlZSxatGibOnupxhN+kTMVFRWx++67px379NNPG3SOret79+7d6L4AbDCA5vav//qv8fOf/zwiIg488MCYMWNGdOnSpUHn2Hrf09h91B577BHl5eXb1NmzAV921llnpY3/53/+p8Z3QFijgIbatGlTjB8/PjZv3hytW7eOX//61812Lfd8QK7U9Bxevnz5NsfspRpP+EVOHXDAAWnjLd93UV9bP7G2Ph/A9rDBAJrThAkTUt9dceCBB8af//zn6Ny5c4PPk819lD0bsMUhhxwSLVq0SI3Xr18fs2fP3qbOGgU01I033hhz5syJiIirr746unXr1mzXcs8H5EpNH3Nf0x8S2Us1nvCLnDr44IPTxm+//Xa9565bty7t8+VLSkry5okF7NhsMIDmctlll8UNN9wQEY0LvrbMLykpSY0/+OCDBn2Mzptvvpk2HjBgQMZaezZgi5KSkm3eybBkyZJt6qxRQEM99thjqX9PmDAhioqK6vy5+uqr087xm9/8psa6qVOnptW55wNypaZ3f+66667bHLOXajzhFzl14oknpo1feeWVes997bXXYuPGjanx8OHDa/wrG4CGssEAmsP3v//9uOmmmyKi8cFXRER5eXkMHz48Nd64cWPMnTu33vO33neddNJJGWvt2aCwzJ49O55//vlYvHjxds3f+kvZi4u3fWnBGgXkM/d8QGPMmjUrfvKTn8Qvf/nLBs/dOgAvKira5h2iEfZSTUH4RU4dfvjhsccee6TGL774YmzYsKFec5999tm08be+9a2mbA3YidlgAE3t4osvjkmTJkVE/YOvUaNGxYgRI7b5S+Uv23r/s/X+KJN169bFrFmzUuPdd989Dj/88Iz19mxQWL71rW/FkUceuV3fp/P555/HihUr0o7V9ILNlut8mTUKqM2zzz4bSZI06GfixIlp5xg9enSNdWPGjEmrc88HNMasWbPi6quvjh//+McNnrv1x0UPGDAg4/PaXqpxhF/kVHFxcYwbNy41XrlyZTz66KP1mjtt2rTUvysqKuL0009v8v6AnZcNBtAUkiSJiy66KPUXgQ15x9esWbNixowZMX/+/Iw1p59+elRUVKTGX94f1eYPf/hD2sdtjBs3rsZ3bmxhzwaFaebMmQ2eM2PGjNi8eXNq3KpVq4zveLBGAfnMPR/QWKtXr059V2F9/e53v0sbf+Mb38hYay/VOMIvcm7ChAlpLwBt+Tig2jzxxBPx1ltvpcZXXHHFNp87D9AYNhhAYyVJEhdccEHqnRVN8VGHW+vYsWP88Ic/TI1ff/31+POf/1xnX1/eb+26664xYcKEOq9lzwaFZ8aMGWnP0frY8r2FW3zjG9+Itm3b1lhrjQLymXs+oCnccsst9a597bXX4k9/+lNq3Lp167jkkksy1ttLNVICeWDKlClJRKR+br/99oy1VVVVSc+ePVO13bt3T9asWZPFboF8ts8++6StJ88888x2n+unP/1p2rmeeuqpWuurq6uToUOHpup33XXXZNWqVXVep6qqKuncuXNq3pFHHlnnnOnTp6f1ds0119T79wKaX3V1dTJ+/PjUc/SAAw5Ili5d2qBzbFnPJk6cWGvd2rVrk/333z91rT59+iSrV6/OWD958uS09WPy5Mn17smeDQrDl/dLhxxySL32K0mSJNdcc03aGlBWVpa8++67tc6xRgHNaeLEiWnP+9GjRzdovns+YHvcdNNNqedmSUlJMn369DrnVFZWJgceeGDa8/r666+vc5691PYTfpE3xo4dm7Zo3HrrrcnmzZvTahYsWJAMHjw4VVdRUZHMmTMnRx0D+agpwy8bDGB7VFdXp+1rGvtTV/iVJEny+uuvJ+3bt0/NGTp0aLJgwYK0ms2bNyeTJ09OSkpKUnVjxoxp8O9nzwY7vq33S717906eeOKJpLq6usb6Tz75JBkzZkzanJKSkuS3v/1tva5njQKaS2PDL/d8wPb4cvgVEUnLli2Tn//858nnn39eY/3zzz+f9O3bN23OueeeW+/r2UttH+EXeWPz5s3JJZdckrYI9OrVKxk/fnxy+eWXJyNHjkzKyspSj+25557J7Nmzc902kGeaMvxKEhsMoOE++uijJgu+6ht+JUmSvPrqq0nXrl1T88rKypKRI0cmEyZMSMaNG5f06tUr7bwXXXRRsmnTpgb/fvZssOO77LLLkjZt2myz3nTt2jU57bTTkh/84AfJv/3bvyUXXXRRcsQRRySlpaVpdXvvvXfy6KOPNuia1iigOTQ2/EoS93xAwz333HNJv379ttlLdejQIRk5cmRy2WWXJT/+8Y+TcePGbRN6tWjRIvnZz36W8Y+OMrGXajjhF3nnySefTIYNG5bxBaDy8vLkBz/4QbJy5cpctwrkUGNeXK7vC8lb2GAADZGr8CtJkmTlypXJFVdckVRUVGQ835AhQ5Innnii0b+nPRvs2FatWpVMmTIlOfnkk5Py8vI616KioqJk8ODByS9+8YvtfveBNQpojLvuuqvZ9lLu+YDtMXPmzOTSSy/dZo2o6adTp07JxRdfnHz44YfbfT17qYYpSpIkCchDCxYsiBdffDEWLlwYGzZsiA4dOkS/fv1i6NCh0bJly1y3B+TY/PnzY999992uuRMnToyf/OQnDZqzatWquPbaa+PWW2+NVatW1VgzZMiQuPrqq+O4447brr62eOqpp2LixInxwgsv1Ph4eXl5jB8/Pq666qq0L2gG2GLDhg3xwgsvxFtvvRUrVqyIsrKy6Nq1awwdOjS6devWpNeyZ4Md3+bNm+PDDz+Md955JxYtWhRVVVWxYcOGaNu2bbRv3z569OgR/fv3j/Ly8ia5njUK2B5Tp06Nc845p8Hz6nv/554PaIzly5fHG2+8ER9++GGsWLEi1q9fHxUVFdGpU6fo379/OGUCsAAACqxJREFU9OnTJ4qKiprkWvZS9SP8AoAGsMEAAAAoXO75AAqD8AsAAAAAAICCUZzrBgAAAAAAAKCpCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACkaLXDcAAABA89i4cWPce++9sXbt2jj77LOjbdu2uW4JAACg2XnnFwAAQDMaM2ZMFBUVZeVn6tSpadc++eSTY/To0XHBBRfE8OHDY+PGjbn5jwAAAJBFwi8AAIAC9O6778Zjjz2WGr/66qvx9NNP57AjAACA7BB+AQAAZME+++wTSZLU+vPMM880eM5HH31U4/WSJNnmWHV1dbP8bgAAAPlE+AUAAFCA+vTpE8cff3xqfOCBB8bRRx+dw44AAACyo0WuGwAAAKB5PPLII3HvvffG2rVr46yzzoqysrJctwQAANDshF8AAAAFqqysLEaPHp3rNgAAALJK+AUAANCMunfvHoMHD4499tijWc7fsmXLGDx4cEREdO7cuVmuAQAAsCMpSmr6FmQAAACy7tlnn42vfvWrqfE+++wT8+fPz11DAAAAOyDv/AIAAKDekiSJmTNnxl//+tdYs2ZNdOrUKQ477LA46KCDap3zwgsvxKuvvhqrV6+Ojh07Rv/+/WPw4MFRUlLSqH6qq6vjlVdeib/97W+xdOnSiIjo1KlT7LvvvjF06FDfcwYAADsh4RcAAEABGTFiRMyYMaPGx0aPHh1Tp07d5vjDDz8c//zP/5zxnFs+MGTGjBnxf/7P/4l33313m5qDDjoofvWrX8WwYcPSjk+fPj0uvvjimDdv3jZz9t5775g0aVKcfPLJtfxGNausrIxrrrkm7r777li+fHmNNa1bt46RI0fG1VdfHfvvv3+DrwEAAOyYinPdAAAAAPnvgQceiGOOOabG4CsiYs6cOfHVr341/vjHP6aO/frXv45vfOMbNQZfERELFy6MU045Je6+++4G9fL4449H9+7d48Ybb4zly5dHaWlpHHfccXHZZZfF5ZdfHiNHjow2bdrE2rVr4957742+ffvGpEmTGnQNAABgx+U7vwAAAPJEU3/n1/z582PfffdNjTO98+vTTz+N5557LjX+j//4j3jnnXdS4zfeeCMGDRoULVq0iNNPPz0GDRoUu+yyS8ybNy/uueeeWLBgQaq2oqIiPvjgg5g7d24ce+yx0aJFizj11FNj2LBh0aZNm5g3b1789re/TZvTrl27eO+992L33Xev83eaNm1ajBkzJjZt2hQREYcddlhMmzYtevTokVZXWVkZF110Udx3331pv9dVV11V5zUAAIAdm/ALAAAgT+Qq/Nra1h+deNRRR8WSJUviiSeeiG7duqXVrl27No4//vh4/vnnU8d+8pOfxD333BNr1qyJP/3pT3HAAQdsM+fYY4+NF154IXXsmmuuiR//+Me19jVnzpwYOnRorFu3LiIievbsGa+88kqUl5fXWF9dXR2nnHJK/P73v4+IiOLi4nj22WfjyCOPrPO/AQAAsOPysYcAAADU6sUXX4xHHnlkm+Ar4ovv1frlL3+Zduzaa6+NefPmxX333bdN8LVlzs0335x27Msfl5jJmDFjUsFXRMQvfvGLjMFXxBdh1y9/+cto0eKLr7uurq6O7373u3VeBwAA2LEJvwAAAKjVqFGjolevXhkfHzBgQOyzzz6p8YYNG2L48OFx1FFHZZxzyCGHxF577ZUav/7661HbB5M8+uijMXfu3NS4V69ecdxxx9XZ+1577RXHHnts2nW+/C41AACg8Ai/AAAAqNXJJ59cZ03v3r3TxiNHjqxzTp8+fVL/XrNmTaxevTpj7d133502/uY3v1nn+bc4/PDD08b/+7//W++5AADAjkf4BQAAQK0GDBhQZ02HDh0aPKdjx45p46qqqoy1zz77bNp4yJAhdZ5/i549e6aNX3rppXrPBQAAdjzCLwAAAGq122671VnTsmXLBs9p1apV2njTpk011i1evDiWLl2adqx79+51nn+Lrb8X7MsfnwgAABSeFrluAAAAgPzWpk2bBs9p3bp1k11/+fLl2xwbOHDgdp9v7dq1sW7dum3CNwAAoDB45xcAAAC1KioqysqcTGr7OMTttXLlyiY/JwAAkB+88wsAAIC8tvXHFkZEvP/++9GjR48cdAMAAOQ77/wCAAAgr3Xq1GmbY6tXr85BJwAAwI5A+AUAAEBe22OPPaJLly5pxz799NMcdQMAAOQ74RcAAAB5b8SIEWnjOXPmNGh+ZWVl3HfffXHffffFn//856ZrDAAAyDvCLwAAAPLet7/97bTxI4880qD5v/nNb+KMM86IM844I5544ommbA0AAMgzwi8AAADy3je/+c0YMGBAavzKK6/ECy+8UK+569evj5tvvjkiIoqLi+Occ85plh4BAID8IPwCAABgh3DXXXdFq1atUuPx48fHihUr6pz3ve99L+bPnx8REWPGjIk+ffo0V4sAAEAeEH4BAACwQzj44IPj9ttvjxYtWkRExNtvvx0jRoyIV155pcb6JUuWxKhRo+LWW2+NiIh+/frFpEmTstYvAACQG0VJkiS5bgIAAGBnNH/+/Nh3333rXT98+PB49tlna60ZMWJEzJgxo17n++ijj6Jbt24N6uOZZ56JESNGREREt27dYsGCBXXOueuuu2LMmDENmjNx4sT4yU9+UuNjTz75ZIwaNSoqKytTxwYMGBBDhgyJXXfdNdauXRtvvvlmzJgxIzZu3BgREUceeWQ8+OCD0alTpzqvDQAA7Nha5LoBAAAAaIhjjz02Pvzww7jhhhvijjvuiMWLF8fcuXNj7ty529QOHDgwLr744hg9enQUFRXloFsAACDbvPMLAACAHdrcuXPjjTfeiGXLlsXatWujXbt2sffee8chhxwSXbt2zXV7AABAlgm/AAAAAAAAKBjFuW4AAAAAAAAAmorwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACobwCwAAAAAAgIIh/AIAAAAAAKBgCL8AAAAAAAAoGMIvAAAAAAAACsb/B/Wf9z2xiENOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(time,data[:,0])\n", + "plt.xlim([0,500])\n", + "plt.ylim([0,40])\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Height\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAUeCAYAAAA4hQ9LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXiV5Z0/4O9JIOwJ+yIoCK4gKlVUxCpinbY6tmoVO9WqVZS2dnFstZuttdM6bXW0+hurg7VqV3W0VVtHrQu4L2gpClQBUfYdQtgTkvP7IxBIcoAAyTknee/7us6V87zLcz5xpCP55HneVDqdTgcAAAAAAAAkUEGuAwAAAAAAAECuKMsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILFa5ToAEXPnzo3XXnst5syZE+Xl5dG1a9cYMmRIHHfccVFUVJTreLF8+fKYNGlSzJ49O1avXh0FBQVRXFwc/fv3j0MOOSQGDRqU64gAAAAAAAB7RFmWQ88991xcd9118dJLL2U8X1JSEpdffnlce+21UVxcnNVs6XQ6Hnjggbj99tvj5ZdfjnQ6vcNru3btGieeeGJ86lOfii984QtZTAkAAAAAALB3UumdtSA0iaqqqvjmN78Zt9xyS82xgw8+OE444YTo0qVLzJgxI5544omoqKiIiIh99903Hn300Rg2bFhW8s2cOTMuuOCCeOONNyIionXr1nHiiSfGAQccEF26dImFCxfG9OnT480336x1X7du3WL58uVZyQgAAAAAANAYlGU5MG7cuBg/fnxERBQWFsbtt98el112WRQUbHuE3Ny5c2PMmDHx+uuvR0RE586d44UXXoihQ4c2abbXXnstTjvttFi1alUUFhbGVVddFd/5zneiS5cu9a59+eWX4/LLL4/p06dHhLIMAAAAAABofpRlWXbPPffEJZdcUjO+6667YuzYsRmvLSsri+HDh8eMGTMiIuKAAw6It99+O9q1a9ck2WbOnBnHHXdcrFy5MgoLC+PPf/5znHHGGTu9Z9GiRTF48OAoLS1VlgEAAAAAAM1Owa4vobGsXbs2vv3tb9eMTzjhhB0WZRERxcXFcdttt9WMZ82aFbfeemuT5bv00ktj5cqVERHxH//xH7ssyiIi+vTpExdddFGTZQIAAAAAAGhKVpZl0Q9/+MO4/vrra8Z/+tOf4qyzztrlfUOGDKnZ6rBz584xe/bsjNsi7o3f/OY3NaVX3759Y9asWdG2bdsG3fvuu+/GxIkTo127doozAAAAAACgWbGyLEvS6XTcddddNePOnTvH6aef3qB7L7jggpr3paWl8cADDzRqtqqqqrj22mtrxhdeeGGDi7KIiEMOOSS++MUvKsoAAAAAAIBmR1mWJS+//HIsXLiwZnz88cdHUVFRg+4dNWpUrfFDDz3UmNFiwoQJMW/evJrxpz71qUadHwAAAAAAIF8py7LkscceqzUePnx4g+8dNmxYtG7dumb8/PPPR1lZWaNl++1vf1vzvlWrVnHUUUc12twAAAAAAAD5TFmWJZMnT641PvTQQxt8b9u2bWPgwIE1482bN8fUqVMbLdtTTz1V837gwIG1ijkAAAAAAICWTFmWJdOmTas17tev327d37dv353Ot6eWLFkSixcvrhkPGDCg5v0HH3wQN9xwQ3z0ox+Nfv36RZs2baJLly5x0EEHxfnnnx/33XdfbNy4sVFyAAAAAAAA5EKrXAdIgrKysli0aFGtY3XLr12pe/27776717ki6q9469SpU2zatCmuvfbauO2226K8vLzW+fLy8igtLY2ZM2fGH/7wh/jud78bP/vZz+KCCy5olDwAAAAAAADZZGVZFqxcubLeseLi4t2ao+71q1at2qtMW82YMaPWePPmzfGJT3wibrrppigvL4/zzz8/JkyYEMuXL48NGzbEjBkz4pZbbomePXtGRMTChQvj85//fFx99dWNkgcAAAAAACCbrCzLgjVr1tQ71qZNm92ao23btrucc0+UlpbWGj/66KMREVFYWBh/+MMfYsyYMbXOH3jggXHllVfG+eefH6NGjYrp06dHRMRNN90U/fr1i69//euNkisiYunSpbFs2bLduqesrCzefPPNKC4ujs6dO8e+++672/+sAQAAAACgpdm0aVPMmzevZnzSSSdF586dcxcojyjLsiBTsVW3/NqVpirLysrKMh7/1re+Va8o216PHj3iscceiyFDhsSmTZsiIuLqq6+Of/3Xf41BgwY1SrZf/vKXcf311zfKXAAAAAAAwDaPPPJIfPrTn851jLxgG8ZmKp1ON8o8mUq39u3bx7e//e1d3jto0KAYO3ZszbiioiJ+/vOfN0ouAAAAAACAbFCWZUGnTp3qHdu4ceNuzVH3+kxzNpbTTjutwfN/7nOfqzX+4x//GJWVlU0RCwAAAAAAoNHZhjELOnbsWO/Ypk2bokOHDg2eo6nKskzzDB8+vMH3H3300dG6deuoqKiIiOqVapMnT46jjz56r7N9+ctfjnPPPXe37pk+fXqt7SMfeeSROOCAA/Y6CwAAAAAANGezZs2KM888s2a877775i5MnlGWZUHXrl3rHSsrK8t4fEfqPlusS5cue50rIqK4uLjesYEDBzb4/qKioth///1jxowZNcf++c9/NkpZ1rNnz+jZs+dezXHAAQfEkCFD9joLAAAAAAC0JG3atMl1hLxhG8YsKCkpid69e9c6tmDBgt2ao+71hxxyyF7niojo1atXvWOZCrSdKSkpqTVesWLFXmUCAAAAAADIFmVZlhx22GG1xvPnz9+t++uWZXXn21OZ5kmlUrs1R1FRUa3xhg0b9ioTAAAAAABAtijLsmTYsGG1xtOnT2/wvRs3bozZs2fXjAsLCxutLBs6dGi9cmzNmjW7NUfd67t3777XuQAAAAAAALJBWZYlZ5xxRq3xpEmTGnzv5MmTo6KiomZ80kkn7fZWiTtSXFwcRxxxRK1jc+bM2a05Fi1aVGvct2/fvc4FAAAAAACQDcqyLBk5cmT06dOnZvzqq69GeXl5g+6dOHFirfE555zTmNHivPPOqzWeMmVKg+9dvHhxLFu2rGbcqlWrOOGEExotGwAAAAAAQFNSlmVJQUFBjB07tmZcWloajz/+eIPu/f3vf1/zvqSkpF65tbf+7d/+LQoLC2vGTzzxRFRWVjbo3r/+9a+1xo256g0AAAAAAKCpKcuy6Oqrr44ePXrUjG+55ZZd3vPUU0/FtGnTasbXXHNNdO3adaf3rFixIsaPHx+33357LFiwYJef0b9///jSl75UM166dGk88MADu7yvqqoq7rjjjlrHrr322l3eBwAAAAAAkC+UZVnUqVOnuOGGG2rGL774Ytx99907vH7NmjXxta99rWY8aNCguPLKK3f6GfPmzYshQ4bEuHHj4itf+UoMHjw43n777V1m+9GPfhQ9e/asGV9zzTX1nkVW1y233BJ///vfa8YXXHBBjBo1apefBQAAAAAAkC+UZVk2duzYuPTSS2vG48aNi/Hjx0dVVVWt6+bOnRunnnpqzJgxIyKqt198+OGHo3379jud/4477oglS5bUjMvKyuLnP//5LnN16dIl/u///q9mC8UFCxbE6NGja5VhW1VUVMSPf/zjuPrqq2uOHX/88XHXXXft8nMAAAAAAADySatcB0ii8ePHR4cOHeK2226LysrKGDduXNx8881x4oknRklJScycOTOeeOKJKC8vj4iIvn37xqOPPhpHHHHELudOp9P1jtUt4nbkqKOOiieffDLOP//8+OCDD+Ldd9+No48+OkaMGBEf+chHomPHjjF//vx46qmnYtmyZTX3XXzxxXHHHXdE27ZtG/hPAAAAAAAAID+k0pnaFbLimWeeieuuuy5eeeWVjOeLi4vjsssui+9///tRUlLSoDnnzJkTw4cPrymzOnbsGC+++GIceeSRDc61fv36+M///M+47777Yt68eRmvad26dZx66qnx3e9+N0aOHNnguZvatGnT4rDDDqsZT506NYYMGZLDRAAAAAAAkHt+fr5jyrI8MGfOnHj11Vdj7ty5UV5eHl26dIkhQ4bEiBEjok2bNrs93/Lly+Phhx+OioqKOPPMM6Nfv357lCudTsff//73mDFjRixatCgqKiqiW7du0b9//zj++OOjQ4cOezRvU/KHHQAAAAAA6vPz8x2zDWMe6N+/f/Tv37/R5uvevXuMGzdur+dJpVJx1FFHxVFHHdUIqQAAAAAAAPJPQa4DAAAAAAAAQK4oywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASq1WuAxAxd+7ceO2112LOnDlRXl4eXbt2jSFDhsRxxx0XRUVFuY4HAAAAAADQYinLcui5556L6667Ll566aWM50tKSuLyyy+Pa6+9NoqLi5s0yw9/+MO4/vrr9/j+r3/96/GLX/yi8QIBAAAAAABkgW0Yc6CqqiquuuqqOOWUU2qKsoMPPjguvfTS+OY3vxmf+tSnonXr1rF69eq48cYb47DDDovJkyfnODUAAAAAAEDLY2VZDnzpS1+K8ePHR0REYWFh3H777XHZZZdFQcG27nLu3LkxZsyYeP3112PevHkxevToeOGFF2Lo0KG5ig0AAAAAANDiWFmWZffcc09NURYRceedd8a4ceNqFWUREfvtt1/87W9/i4MOOigiIkpLS+Pss8+ODRs2NGm+iy66KNLp9G6/bMEIAAAAAAA0R8qyLFq7dm18+9vfrhmfcMIJMXbs2B1eX1xcHLfddlvNeNasWXHrrbc2aUYAAAAAAIAkUZZl0U033RRLly6tGV911VW7vOfjH/94DB48uGb8s5/9LFatWtUk+QAAAAAAAJJGWZYl6XQ67rrrrppx586d4/TTT2/QvRdccEHN+9LS0njggQcaPR8AAAAAAEASKcuy5OWXX46FCxfWjI8//vgoKipq0L2jRo2qNX7ooYcaMxoAAAAAAEBiKcuy5LHHHqs1Hj58eIPvHTZsWLRu3bpm/Pzzz0dZWVmjZQMAAAAAAEgqZVmWTJ48udb40EMPbfC9bdu2jYEDB9aMN2/eHFOnTm20bAAAAAAAAEmlLMuSadOm1Rr369dvt+7v27fvTudrTCtWrIjbb789zjjjjBgwYEB07NgxioqKonfv3nHEEUfE5ZdfHg888ECUl5c3WQYAAAAAAIBsaJXrAElQVlYWixYtqnWsbvm1K3Wvf/fdd/c6VyYvvPBCDBw4MOM2j0uWLIklS5bE22+/HXfddVf069cvvv/978fll1/eJFkaw5L1S6Lz2s65jgEAAAAAAE2iV/te0apA3bM3/NPLgpUrV9Y7VlxcvFtz1L1+1apVe5VpRz744IOIqH6m2tixY2P06NGxzz77RGVlZcybNy+efPLJuPnmm2PBggUxf/78GDduXDz33HNx7733Rtu2bZsk094Y9/S4aDs9/3IBAAAAAEBjePIzT0bfjru3QIfalGVZsGbNmnrH2rRps1tz1C2iMs3ZGFKpVNx4443x7//+71FQUHuXzsGDB8fgwYNj3Lhxcd5558Xjjz8eEREPPPBAFBQUxB/+8IdGzbJ06dJYtmzZbt0za9asRs0AAAAAAAC0bMqyLMhUbO3uKqymLssOOeSQ+PSnPx2f/vSn4wtf+MJOr+3QoUP86U9/imHDhsX06dMjIuKPf/xjjB49OsaOHdtomX75y1/G9ddf32jzAQAAAAAA1FWw60vIR+l0ulHn++xnPxuPPPLILouyrYqKiuLmm2+udexHP/pRbNq0qVFzAQAAAAAANCVlWRZ06tSp3rGNGzfu1hx1r880Z7adeuqpse+++9aM582bF08//XQOEwEAAAAAAOwe2zBmQceOHesd27RpU3To0KHBc+RjWVZQUBAjR46M+++/v+bYM888E//6r//aKPN/+ctfjnPPPXe37pk1a1aceeaZjfL5AAAAAABAy6csy4KuXbvWO1ZWVpbx+I6UlZXVGnfp0mWvczWGIUOG1BpPnTq10ebu2bNn9OzZc6/m+J9T/ycOPvTgRkoEAAAAAAD5pVf7XrmO0Owpy7KgpKQkevfuHYsXL645tmDBghgwYECD51iwYEGt8SGHHNJY8fZK3dJu+fLlOUqSWa/2vaJvx765jgEAAAAAAOQpzyzLksMOO6zWeP78+bt1f92yrO58uVJUVFRrvGHDhhwlAQAAAAAA2H3KsiwZNmxYrfH06dMbfO/GjRtj9uzZNePCwsK8Kcvqbg/ZrVu3HCUBAAAAAADYfcqyLDnjjDNqjSdNmtTgeydPnhwVFRU145NOOimKi4sbLdudd94ZP/zhD+Oll17a7XvrrpDr06dPY8UCAAAAAABocp5ZliUjR46MPn36xKJFiyIi4tVXX43y8vJ62xhmMnHixFrjc845p1Gz3XnnnTFlypRYuXJlnHDCCbt175tvvllrfOKJJzZmNAAAAAAAgCZlZVmWFBQUxNixY2vGpaWl8fjjjzfo3t///vc170tKSuK8885r9HwRES+88MJuXb9w4cJ49dVXa8apVCo++clPNnYsAAAAAACAJqMsy6Krr746evToUTO+5ZZbdnnPU089FdOmTasZX3PNNdG1a9ed3rNixYoYP3583H777bFgwYIG55syZUqt8mtXbrrppqisrKwZf+Yzn4mDDjqowfcDAAAAAADkmrIsizp16hQ33HBDzfjFF1+Mu+++e4fXr1mzJr72ta/VjAcNGhRXXnnlTj9j3rx5MWTIkBg3blx85StficGDB8fbb7/d4IyXXXZZrF69epfXPfXUU3HbbbfVjDt37hz/+Z//2eDPAQAAAAAAyAfKsiwbO3ZsXHrppTXjcePGxfjx46OqqqrWdXPnzo1TTz01ZsyYERHV2y8+/PDD0b59+53Of8cdd8SSJUtqxmVlZfHzn/+8wfmmTZsWI0aMiJdeeinj+YqKirjlllvi05/+dM2qsqKiovjf//3fOOCAAxr8OQAAAAAAAPmgVa4DJNH48eOjQ4cOcdttt0VlZWWMGzcubr755jjxxBOjpKQkZs6cGU888USUl5dHRETfvn3j0UcfjSOOOGKXc6fT6XrH6hZxdZ155pnx4Ycf1qwo++c//xkf/ehH45BDDokRI0ZEr169oqKiIubOnRvPPvtsrFy5subegQMHxoMPPhhHHXXU7vwjAAAAAAAAyAupdKZ2hax45pln4rrrrotXXnkl4/ni4uK47LLL4vvf/36UlJQ0aM45c+bE8OHDY9myZRER0bFjx3jxxRfjyCOP3Ol969evj4cffjj+8pe/xNNPPx2lpaU7vDaVSsXQoUPjiiuuiAsvvDDatm3boGzZMG3atDjssMNqxlOnTo0hQ4bkMBEAAAAAAOSen5/vmLIsD8yZMydeffXVmDt3bpSXl0eXLl1iyJAhMWLEiGjTps1uz7d8+fJ4+OGHo6KiIs4888zo16/fbt1fVVUV77//fkybNi0WLlwYq1evjoKCgujatWvss88+cdxxx0W3bt12O1c2+MMOAAAAAAD1+fn5jtmGMQ/0798/+vfv32jzde/ePcaNG7fH9xcUFMSBBx4YBx54YKNlAgAAAAAAyEcFuQ4AAAAAAAAAuaIsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLAAAAAAAASCxlGQAAAAAAAImlLAMAAAAAACCxlGUAAAAAAAAklrIMAAAAAACAxFKWAQAAAAAAkFjKMgAAAAAAABJLWQYAAAAAAEBiKcsAAAAAAABILGUZAAAAAAAAiaUsAwAAAAAAILGUZQAAAAAAACSWsgwAAAAAAIDEUpYBAAAAAACQWMoyAAAAAAAAEktZBgAAAAAAQGIpywAAAAAAAEgsZRkAAAAAAACJpSwDAAAAAAAgsZRlAAAAAAAAJJayDAAAAAAAgMRSlgEAAAAAAJBYyjIAAAAAAAASS1kGAAAAAABAYinLaNF+9uS7uY4AAAAAAADkMWUZLdrkOatyHQEAAAAAAMhjyjJatNINFVFZlc51DAAAAAAAIE8py2jRKqvSsWp9ea5jAAAAAAAAeUpZRou3fO2mXEcAAAAAAADylLKMFm/ZGmUZAAAAAACQmbKMFk9ZBgAAAAAA7IiyjBbPNowAAAAAAMCOKMto8awsAwAAAAAAdkRZRounLAMAAAAAAHZEWUaLt3xtea4jAAAAAAAAeUpZRotnZRkAAAAAALAjyjJavOVrlWUAAAAAAEBmyjJavJXry6OisirXMQAAAAAAgDykLKPFS6cjVq7z3DIAAAAAAKA+ZRmJ4LllAAAAAABAJsoyEmGZ55YBAAAAAAAZKMtIBCvLAAAAAACATJRlJMJyK8sAAAAAAIAMlGUkgpVlAAAAAABAJsoyEkFZBgAAAAAAZKIsIxFswwgAAAAAAGSiLCMRrCwDAAAAAAAyUZaRCMvXluc6AgAAAAAAkIeUZSTC6g0VsWlzZa5jAAAAAAAAeUZZRmJYXQYAAAAAANSlLCMxlntuGQAAAAAAUIeyjMRYpiwDAAAAAADqUJaRGMvWKssAAAAAAIDalGUkhm0YAQAAAACAupRlJIaVZQAAAAAAQF3KMhLDM8sAAAAAAIC6lGUkxnIrywAAAAAAgDqUZSSGlWUAAAAAAEBdyjISQ1kGAAAAAADUpSwjMdaVV8a6TZtzHQMAAAAAAMgjyjISZf6qDbmOAAAAAAAA5BFlGYkyd+X6XEcAAAAAAADyiLKMRJmnLAMAAAAAALajLCNRrCwDAAAAAAC2pywjUeavUpYBAAAAAADbKMtIFCvLAAAAAACA7bXKdQAi5s6dG6+99lrMmTMnysvLo2vXrjFkyJA47rjjoqioKNfxakybNi2GDRsWFRUVNccmTJgQo0aNyl2o3TRv5YZIp9ORSqVyHQUAAAAAAMgDyrIceu655+K6666Ll156KeP5kpKSuPzyy+Paa6+N4uLiLKerLZ1Ox+WXX16rKGuONlRUxvK15dGjU5tcRwEAAAAAAPKAbRhzoKqqKq666qo45ZRTaoqygw8+OC699NL45je/GZ/61KeidevWsXr16rjxxhvjsMMOi8mTJ+c08x133BGvvPJKTjM0lnmeWwYAAAAAAGxhZVkOfOlLX4rx48dHRERhYWHcfvvtcdlll0VBwbbucu7cuTFmzJh4/fXXY968eTF69Oh44YUXYujQoVnPu3DhwvjOd76T9c9tKvNWro+P7Ncl1zEAAAAAAIA8YGVZlt1zzz01RVlExJ133hnjxo2rVZRFROy3337xt7/9LQ466KCIiCgtLY2zzz47NmzYkNW8ERFXXHFFlJWVRatWraJ9+/ZZ//zGNneFlWUAAAAAAEA1ZVkWrV27Nr797W/XjE844YQYO3bsDq8vLi6O2267rWY8a9asuPXWW5s0Y11/+tOf4pFHHomIiG984xvRo0ePrH5+U7ANIwAAAAAAsJWyLItuuummWLp0ac34qquu2uU9H//4x2Pw4ME145/97GexatWqJslXV1lZWXz1q1+NiIiBAwfGddddl5XPbWpzVyrLAAAAAACAasqyLEmn03HXXXfVjDt37hynn356g+694IILat6XlpbGAw880Oj5MvnWt74VCxcujIiIO+64I9q1a5eVz21q81ZmfytLAAAAAAAgPynLsuTll1+uKZ4iIo4//vgoKipq0L2jRo2qNX7ooYcaM1pGr7zySvzP//xPREScf/758S//8i9N/pnZsmj1hqiorMp1DAAAAAAAIA8oy7LkscceqzUePnx4g+8dNmxYtG7dumb8/PPPR1lZWaNlq6u8vDwuu+yySKfT0bVr17jlllua7LNyoSodsbDU6jIAAAAAAEBZljWTJ0+uNT700EMbfG/btm1j4MCBNePNmzfH1KlTGy1bXT/96U9j+vTpEVH9nLUePXo02WfliueWAQAAAAAAEcqyrJk2bVqtcb9+/Xbr/r59++50vsby3nvvxQ033BAR1ds/fuELX2iSz8mWrh0yb3WpLAMAAAAAACKUZVlRVlYWixYtqnWsbvm1K3Wvf/fdd/c6V13pdDouv/zy2LRpU7Rp06bmmWXNWZ+SthmPz1tpG0YAAAAAACCiVa4DJMHKlSvrHSsuLt6tOepev2rVqr3KlMmvfvWreOGFFyIi4nvf+14cdNBBjf4Zu2Pp0qWxbNmy3bpn1qxZtca9i9vGzBX1r5tnZRkAAAAAABDKsqxYs2ZNvWNt2rTZrTnatq29QirTnHtj8eLFcc0110RE9fPUvvWtbzXq/Hvil7/8ZVx//fV7NUefkrYRmcqyVcoyAAAAAADANoxZkanYqlt+7UpTl2Vf+9rXorS0NFKpVIwfPz6KijI/66u56bWDbRg9swwAAAAAAIhQljVb6XS60eb661//Gv/7v/8bERGXXXZZnHDCCY02d671KWmX8Xjp+opYta48y2kAAAAAAIB8YxvGLOjUqVO9Yxs3bowOHTo0eI6NGzfucs49sXbt2vjyl78cERG9evWKn/3sZ40yb2P48pe/HOeee+5u3TNr1qw488wza8b9urSLiNKM185cujaO2b/rngcEAAAAAACaPWVZFnTs2LHesU2bNuVFWfbd73435s2bFxERt956a3Tu3LlR5m0MPXv2jJ49e+7VHF07FEVJu9axekNFvXMzlqxRlgEAAAAAQMLZhjELunatX8iUlZXt1hx1r+/SpcteZYqIeOONN+L222+PiIjTTjstzjvvvL2eM9+kUqk4sGf9sjIiYuaSxn3uGwAAAAAA0Pwoy7KgpKQkevfuXevYggULdmuOutcfcsghe5Vp8+bNcdlll0VVVVV06NAhfvnLX+7VfPnswF6ZV+HNXLo2y0kAAAAAAIB8YxvGLDnssMNi8eLFNeP58+fv1v11y7LDDjtsr/LMnz8/3n777YiIWLduXQwYMGCP5jn55JMzHk+n03sardEd1CvzyrIZS5RlAAAAAACQdFaWZcmwYcNqjadPn97gezdu3BizZ8+uGRcWFu51WZYkB/bMvLJs+dpNsWpdeZbTAAAAAAAA+URZliVnnHFGrfGkSZMafO/kyZOjoqKiZnzSSSdFcXHxXuUZMGBApNPp3X7179+/1jwTJkzIeF0+2dHKsghbMQIAAAAAQNIpy7Jk5MiR0adPn5rxq6++GuXlDVvVNHHixFrjc845pzGjtXg9OrWJknatM56bsWRNltMAAAAAAAD5RFmWJQUFBTF27NiacWlpaTz++OMNuvf3v/99zfuSkpI477zzGj1fS5ZKpeLAnplXl81UlgEAAAAAQKIpy7Lo6quvjh49etSMb7nlll3e89RTT8W0adNqxtdcc0107dp1p/esWLEixo8fH7fffnssWLBgzwO3IAf2yvzcMtswAgAAAABAsinLsqhTp05xww031IxffPHFuPvuu3d4/Zo1a+JrX/tazXjQoEFx5ZVX7vQz5s2bF0OGDIlx48bFV77ylRg8eHC8/fbbe529udvRc8tmLFGWAQAAAABAkuV1WTZ37tyYO3durmM0qrFjx8all15aMx43blyMHz8+qqqqal03d+7cOPXUU2PGjBkRUb394sMPPxzt27ff6fx33HFHLFmypGZcVlYWP//5zxvxO2ieDuyZeWXZ8rWbYtW6hj07DgAAAAAAaHla5TrAzgwYMCAKCgpi8+bNuY7SqMaPHx8dOnSI2267LSorK2PcuHFx8803x4knnhglJSUxc+bMeOKJJ6K8vLrE6du3bzz66KNxxBFH7HLudDpd71jdIq6hRo0aFc8///xOrzn55JPrHfvggw9iwIABe/SZTWVHK8siImYsWRPHDuyWxTQAAAAAAEC+yOuVZRGZy5/mrqCgIG699dZ4+umn4/jjj4+IiPfeey/uuuuuuOmmm+LRRx+N8vLyKC4ujm984xsxbdq0OOqooxo09xe/+MVaz0Xr2LFjXHPNNU3yfTQnPTq1iZJ2rTOe89wyAAAAAABIrrxeWbbVt7/97RgzZkx85CMfyXWURvWxj30sPvaxj8WcOXPi1Vdfjblz50Z5eXl06dIlhgwZEiNGjIg2bdrs1pz9+/eP6dOnx8MPPxwVFRVx5plnRr9+/fYo38SJE/fovnyUSqXiwJ4d4805q+qdm7lkTQ4SAQAAAAAA+aBZlGU33nhj3HjjjTFw4MD47Gc/G2PGjImhQ4fmOlaj6d+/f/Tv37/R5uvevXuMGzeu0eZrKQ7s1SljWTZjiZVlAAAAAACQVHm/DWNE1GxV+P7778cNN9wQRx55ZAwePDh+9KMfxbvvvpvjdDQXO3pu2cylVpYBAAAAAEBSNYuy7MUXX4y5c+fGTTfdFEcffXSk0+l499134/rrr48hQ4bEkUceGT/96U/j/fffz3VU8tiBPTtlPL58bXksLduY5TQAAAAAAEA+aBZlWURE375946qrrorXX389Zs+eHT/5yU/i8MMPj3Q6HW+//XZ873vfi4MOOiiGDx8e//Vf/xXz5s3LdWTyzKF9MpdlERHvLFidxSQAAAAAAEC+yOuy7MQTT4wTTzyx3vEBAwbEd77znZg8eXK8++67cd1118UhhxwS6XQ63nrrrbjmmmtiwIABMXLkyLjtttti0aJFOUhPvunWsU307dwu47m35yvLAAAAAAAgifK6LJs4cWJMmDBhp9ccdNBBcd1118W0adNiypQp8Z3vfCf233//SKfT8eqrr8a///u/x7777hujRo2KO++8M0vJyVeH9S3OeHyqlWUAAAAAAJBIeV2W7a6hQ4fGT37yk5g1a1bceeed0bFjx0in01FVVRUvvPBCXHHFFbmOSI4d3q9zxuO2YQQAAAAAgGRqlesAjemdd96JBx54IB588MF4//33IyIilUpFREQ6nc5lNPLEYX1LMh5fumZTLCnbGL2K22Y5EQAAAAAAkEvNviz75z//WVOQvffeexGxrRirW5S1bt06NyHJG0N3UJZFRLwzf3X0GqwsAwAAAACAJGmWZdnMmTNrCrJp06ZFRO2CLJVKRTqdjnQ6Ha1atYrRo0fHeeedF2eddVYuY5MHunYoir6d28WC0g31zr2zYHV8bHCvHKQCAAAAAABypdmUZR988EE8+OCD8cADD8SUKVMiYscFWWFhYYwaNSrGjBkTn/nMZ6Jr1665jE6eGdq3JGNZNtVzywAAAAAAIHHyuiybN29eTUH21ltvRUTtZ49tX5AVFBTEiSeeGGPGjIlzzjknevTokavY5Lmh/UriyWmL6x1/W1kGAAAAAACJk9dlWf/+/WsKsa3qjkeOHBnnnXdenHPOOdG7d+9cxKSZOWwHzy1btmZTLCnbGL2KPbcMAAAAAACSIq/Lsq1SqVRERM0qsmOPPTbOO++8OPfcc6Nv3745TkdzM3QHZVlExDvzV0evwcoyAAAAAABIioJcB9iZQYMG1RRkEdWl2bHHHhvf+MY34otf/KKijD3StUNR9O3cLuM5WzECAAAAAECy5HVZNnPmzHjzzTfjG9/4Ruy7776RTqfj9ddfj/POOy969OgRn/vc5+KRRx6J8vLyXEelmdnR6rKpyjIAAAAAAEiUvC7LIiI+8pGPxI033hgffvhhvPzyy/HVr341evfuHevWrYv7778/PvOZz0TPnj3joosuiscffzw2b96c68g0A0P7ZS7L3p6/utYz8QAAAAAAgJYt78uy7Y0YMSJuvfXWmD9/fkyYMCEuv/zy6NatW5SVlcVvf/vb+NSnPhU9e/aMSy+9NJ566qmorKzMdWTy1I5Wli1fuynmrdyQ5TQAAAAAAECuNKuybKtUKhUnnXRS3HnnnbFo0aJ46qmn4uKLL46SkpIoLS2Ne+65J0477bTo3bt3jBs3Lp577jmrhajliH07RyqV+dykD1dmNwwAAAAAAJAzzbIs215hYWGceuqp8etf/zqWLFkSjz76aHzuc5+Ljh07xooVK+JXv/pVnHrqqdGnT5/4yle+kuu45ImSdq3j4F6dMp57c86qLKcBAAAAAABypdmXZdtr3bp1nHHGGXHzzTfHD37wg+jYsWOk0+lIp9OxdOnSuOOOO3IdkTxy9IAuGY+/aWUZAAAAAAAkRqtcB9iZ3/zmNxERceGFF+7y2mXLlsXDDz8cDz74YLz44otRVVUVEdVbNkaEbRip5+j+XeN3r82td3zm0rVRur48OrcvykEqAAAAAAAgm/K6LLv44oujoKBgh2XZihUragqy559/vqYg21qMpVKpmvcFBQVx0kknZSc4zcKOVpZFRLw1Z1WccmivLKYBAAAAAAByIa/Lsoj6K8JWrlwZf/rTn+LBBx+MiRMnRmVlZa3rtq4k2/r+hBNOiDFjxsQ555wTvXopP9imb+d20aekbSxavbHeuUkfKssAAAAAACAJ8r4si4goLS2tKcgmTJgQmzdvjojMBVlExMiRI2PMmDFx7rnnRu/evbOel+YhlUrFUf27xF/fXlTvnOeWAQAAAABAMjSLsqxXr14ZC7Ltt1kcMWJETUG2zz775CwrzcvwAV0zlmVvz18dGysqo23rwhykAgAAAAAAsqVZlGUVFRURUbsgS6fTccwxx8SYMWNizJgx0a9fvxynpDna0XPLyiurYuqC1XH0gK5ZTgQAAAAAAGRTsyjLti/Ijj766JqCbL/99st1NJq5Q3oXR8c2rWLtps31zk36cJWyDAAAAAAAWrhmUZYNGzaspiAbMGBAruPQghQWpGLYfp3jxZnL6517a87KiBiU/VAAAAAAAEDWNIuy7M0338x1BFqw4QO6ZizL3vhgZVRWpaOwIJWDVAAAAAAAQDYU5DoA5NqOnltWtnFzTFu4OstpAAAAAACAbMrrlWX33HNPriOQAB/Zr0sUtSqI8s1V9c69NGt5HN6vc/ZDAQAAAAAAWZHXK8suuuiiuOiii3IdgxaubevCGL6D1WUvz6q/PSMAAAAAANBy5HVZBtky8oDuGY9P+nBVbKyozHIaAAAAAAAgW/J6G8ZMNm/eHM8991xMnDgx/vGPf8Ty5ctj9erVUVJSEt27d48jjjgiTj755Bg9enS0atXsvj1y5IQDusfP4716x8s3V8WbH66KEw7MXKYBAAAAAADNW7Npk6qqquL222+Pm266KebPn19zPJ1O17xPpVLx1FNPxc9//vPo27dvXH311XHFFVdEQYEFdOzckH1KoqRd61i9oaLeuZffX64sAwAAAACAFqpZtEhLly6NU045Ja688sqYN29epNPpmpIslUrVvCKi5tz8+fPjyiuvjNGjR8fixYtzGZ9moLAgFccP6pbxnOeWAQAAAABAy5X3ZdmqVavixBNPjBdeeCHS6XTGYmz7V8S2Ai2dTscLL7wQJ510UqxcuTKX3wbNwPE7eG7ZOwtWR+n68iynAQAAAAAAsiHvt2EcM2ZMzJgxo1ZB1qNHjxg6dGgMGjQoiouLo127drF+/fpYs2ZNzJo1K955551Yvrx6NVAqlYqZM2fGueeeG88++2wuvxXy3Ak7KMvS6YhX318RnxzaJ8uJAAAAAACAppbXZdkjjzwSzz77bE1R9rnPfS6++tWvxrHHHrvT+9LpdLz22mtx6623xv/+7/9GRMTEiRPjz3/+c5x11llNnpvmaUC39tG3c7tYULqh3rmXZi1XlgEAAAAAQAuU19sw/vSnP42IiI4dO8YTTzwRv/vd73ZZlEVUryYbMWJE3H///fHXv/41OnbsWGs+yCSVSsXIAzI/t+zFmctrtvkEAAAAAABajrwty5YtWxaTJk2KVCoVd9xxR/zLv/zLHs3zyU9+Mm6//fZIp9Px1ltvxbJlyxo5KS3JyB1sxTh35fp4f9m6LKcBAAAAAACaWt6WZa+88kqk0+nYf//943Of+9xezfX5z38+9t9//0in0/HKK680UkJaohMO6B5bdv2s57l3l2Q3DAAAAAAA0OTytixbvHhxRESMHj26UeY75ZRTas0LmXTr2CaG7ds547ln/7k0u2EAAAAAAIAml7dl2cqVKyMiomfPno0yX48ePSIiYtWqVY0yHy3XKYf2ynj8zTmrYvX6iiynAQAAAAAAmlLelmUlJSURsa0021tbS7Li4uJGmY+Wa/QhmQvayqp0vDDTM+8AAAAAAKAlyduyrFev6tU9L730UqPM9+KLL9aaF3bkkN6dYp+SthnPPfeurRgBAAAAAKAlyduy7Nhjj42IiGnTpsXTTz+9V3M9+eSTMW3atFrzwo6kUqkYfWjm1WUT3lsalVXpLCcCAAAAAACaSt6WZf369YvBgwdHOp2Oiy++OKZOnbpH80yZMiUuvvjiSKVSMXjw4OjXr18jJ6UlOuWQzCsQS9dXxOS5nnsHAAAAAAAtRd6WZRER//7v/x4REYsXL44RI0bEddddF0uWLGnQvYsXL45rr702Ro4cGUuXVm+dd9VVVzVZVlqWEYO6RdvWmf94PGsrRgAAAAAAaDFS6XQ6b/eUq6qqimHDhsXUqVMjnU5HKpWKVCoVRx11VBxxxBExaNCgKC4ujnbt2sWGDRuirKwsZs2aFVOmTIm///3vkU6na+47/PDD4+9//3ukUqlcf1s0oWnTpsVhhx1WM546dWoMGTJkj+Yae9+keOaf9YuxA3t2jKevOmmPMwIAAAAAQLY15s/PW5pWuQ6wMwUFBfHoo4/GcccdF8uWLaspvyZNmhRvvvnmDu+r2//16NEjHnnkEUUZu2X0Ib0ylmUzl66NWUvXxAE9O+UgFQAAAAAA0JjyehvGiIgBAwbE008/HYMGDYqIqFldtrU4y/Taek1ExIEHHhjPPvts9O/fP5ffBs3Qxw7tGTvqV594Z3F2wwAAAAAAAE0i78uyiIihQ4fGW2+9FV/5yleibdu2NSvHtpZi278iqleWtW3bNr72ta/Fm2++aRkhe6Rncds4ar8uGc/931RlGQAAAAAAtAR5vQ3j9jp16hS33XZb/OAHP4iHHnooJkyYEFOmTInly5dHWVlZFBcXR/fu3eOII46Ik08+Oc4555zo3r17rmPTzH1yaJ94c86qesf/uagsPli+Lvbv3iEHqQAAAAAAgMbSbMqyrbp37x5f/OIX44tf/GKuo5AAnzisd/zHX6dnPPfE1EXx5VEHZDkRAAAAAADQmJrFNoyQK307t4sj9+2c8ZznlgEAAAAAQPOnLINdOG1o74zH31mwOuatXJ/lNAAAAAAAQGNKTFl2ySWXxKWXXprrGDRDnzyszw7PPTF1URaTAAAAAAAAjS0xZdm9994b9957b65j0Azt27V9DO1bkvHc428rywAAAAAAoDlLTFkGe+MTh2XeinHK/NUxe9naLKcBAAAAAAAaS6tcfOjcuXNz8bGwx04f2idufOq9jOce+cfCuOrUg7KcCAAAAAAAaAw5KcsGDBgQqVQqFx8Ne2RA9w5x5L6d4x/zSuude/QfC+LfP3agf6cBAAAAAKAZytk2jOl0Oqsv2FtnDeub8ficFetjcoYSDQAAAAAAyH85K8uswqG5+dfD+0RhQeZ/bx+ZvCDLaQAAAAAAgMaQk20Yt7rooouy9ln33Xdf1j6LlqlbxzZx0kE94rl3l9Y799e3F8X3/3VwtC7MWf8MAAAAAADsgZyWZffcc0/WPktZRmM4c1jfjGXZynXl8eLMZTH6kF45SAUAAAAAAOwpy2BgN5x6aK/oUFSY8dyf/m4rRgAAAAAAaG6UZbAb2hUVxscP653x3N+mLYlV68qznAgAAAAAANgbOdmGccKECYn4TFqms4b1zbiKrLyyKh75x4L4wsj9c5AKAAAAAADYEzkpy0466aREfCYt0/GDukffzu1iQemGeufuf2NeXHz8gEilUjlIBgAAAAAA7C7bMMJuKixIxTlH9ct47r0la2LK/NVZTgQAAAAAAOypnKwsi4gYPXp0xuMDBw6MX/3qV1lOA7vn3KP7xW3PzYx0uv65BybNiyP37Zz1TAAAAAAAwO7LWVk2ceLESKVSka7TNixfvjxHiaDh+nVpHx89sEe8MGNZvXOP/WNBXHv6odGhTc7+eAEAAAAAAA2U85/m77///rHffvvVGkNzcN7R+2Ysy9aVV8bj7yyKMUfvm4NUAAAAAADA7sh5WTZu3Li45pprch0DdtvHBveMrh2KYuW68nrn/vD6XGUZAAAAAAA0Azkvy3ZmR881214qlYpnn302C2mgtjatCuOsYX3j7pc+qHfuH/NK4535q2Nov5IcJAMAAAAAABoqr8uyus81S6VSERGRTqdrjm89Brnw2eH7ZizLIiJ+8+qHceO5R2Q5EQAAAAAAsDvyuiw78cQTa5Vhzz//fKRSqTjppJNymAq2ObBXpxgxsFu8OntFvXOPTVkY3z3t0OjSoSgHyQAAAAAAgIbI67Js4sSJtcYFBQURETFhwoQcpIHMLhzRP2NZtmlzVTz45rwYd9KgHKQCAAAAAAAaoiDXAaC5O3Vwr+hT0jbjud+9Picqq9JZTgQAAAAAADSUsgz2UqvCgvjcMftlPDdv5YZ4fsbSLCcCAAAAAAAaSlkGjeCzx+wXrQtTGc/d8/KH2Q0DAAAAAAA0mLIMGkGPTm3itKF9Mp57ceby+OeisiwnAgAAAAAAGiIxZdno0aPjlFNOyXUMWrALRwzY4blfvfhB9oIAAAAAAAANlpiybOLEiTFx4sRcx6AF+8h+nePIfTtnPPfYlAWxpGxjdgMBAAAAAAC7lJiyDJpaKpWKyz46MOO5isp03PvKh9kNBAAAAAAA7JKyDBrRx4f0in27tst47vevzYl1mzZnOREAAAAAALAzyjJoRK0KC+KSkftnPFe2cXM8+Oa8LCcCAAAAAAB2plWuA/zsZz+LO++8c7fuGTgw81Z3kA/GHL1v3PL0jCjbWH8V2V0vzI7zj+0fRa301AAAAAAAkA9yXpatWrUqVq1a1eDr0+l0fPjhh00XCPZShzat4nPH9o87n3+/3rmFqzfGI5MXxJjh++YgGQAAAAAAUFfOl7ekUqmsvCCbvjByQBQVZv7jdcfz70dlVTrLiQAAAAAAgExyXpal0+msvCCbehW3jc8c1S/juQ+Wr4v/e2dRlhMBAAAAAACZ5Hwbxvvuuy/222+/Jv2MdDodo0ePbtLPgLq+dNKgePDNeRlXkd0+YVb86+F9rHoEAAAAAIAcy3lZduyxx8ZBBx2U6xjQ6Pbr1j4+dcQ+8efJC+qde3fxmnj2n0vjY4N75SAZAAAAAACwVc63YYSW7MujBu3w3C+enWGLUAAAAAAAyDFlGTShA3t1ik8M6Z3x3NQFZfG36UuynAgAAAAAANhezsqyDz74IGbPnh0DBw7M6udBtn1l9AE7PHfL0zOiKsMzzQAAAAAAgOzIWVnWv3//6N+/f7RqlZ3Hpm39PMi2w/qWxKk7eDbZu4vXxP9NXZTlRAAAAAAAwFa2YYQsuOrUg3Z47hfPzIxKq8sAAAAAACAnlGWQBYf2KY7Th/bJeG7W0rXx2JQFWU4EAAAAAABEKMsga77+sQMjlcp87r/+NiM2ba7MbiAAAAAAAJqnys0RG1ZFlM6LqKrKdZpmLzsPDAPioF6d4lNH7BOP/mNhvXPzV22I3782Ny45Yf8cJAMAAAAAoMml0xEV6yM2rYnYtDZiU9mW92siytdueb/dsU11jtVcs6Z6nq2+NSeiXeecfVstgbIMsujrpxwYf317UcZnlP2/52bGOUf3i+K2rXOQDAAAAACAjKqqIirWbSuqNpZtV2qV7eD4mjpF2Jbj6SZYBbZpjbJsLynLIIsG9ugY5w3fN/7w+tx651atr4jxz8+Ob3784BwkAwAAAABoYbau5Nq4fYG1unaRtdPia82241F/AUTe2LQm1wmaPWUZZNmVpxwYf/77gthQUf8ZZb96aXZcOKJ/9Cxum4NkAAAAAAB5IJ2OqNiwXYG1oxJr9Q6Ob3euKVZy5Rtl2V5TlkGW9SxuG2M/un/8v+dm1Tu3saIqbvrbe/Hzc47IQTIAAAAAgL2QTkds3lh7RVbdFVpbi6965VadUqxqc66/m+ZDWbbXlGWQA5efODB+//rcWLmuvN65/31rflw4YkAc1rckB8kAAAAAgESqWc1Vtm1rwo2rq1+1jtX9Wlq7+KqqyPV3kjzlyrK9pSyDHOjUtnV8dfQBcf1fptc7l05H/Mdfp8f9lx8XqVQqB+kAAAAAgGZl64quWkXW6jqlV92Sa3X9c1Zz5UZRp4g2nSLadNzydcurqFPtcaZXUceITn1y/R00e8oyyJHzj+0f973yYXy4Yn29c69/sDKemrY4PnGY/5EDAAAAgBZv86btSqtMxVadcivTCq/K+rtY0YRShVsKq+KItsXbFVjF2xVfJdsd71j7fFHHbV8LCnL93SSesgxypKhVQXzv9MFx2W/ezHj+J//3zzj5kJ7RplVhlpMBAAAAAA22uXzHK7XqrfTawbnKTbn+LhIklaHg2r7k6hTRtiTD8Tr3tG4fYWewFkNZBjn0sUN7xsgDusXLs1bUOzdv5Yb41YsfxBUnH5CDZAAAAACQEJvLtz2ba+PqLc/gWt3w1+YNuf4OkqOo0w5Wce2o4MpwvKiDkot6lGWQQ6lUKq49fXCcftuLUZWuf/6/n5sVZw7rG307t8t+OAAAAABoDpRd+a+o4w6KrOLaK7d2dtx2hTQhZRnk2KF9iuOzx+wXf3h9br1zGyoq48d/nR53XHBUDpIBAAAAQBYou/JXqmC71Vkl20qsHX7dwequAo+aIb+1yLLs/fffj7Kyshg2bFiuo0CDXHXqQfHXKQujbOPmeueemLo4XpixLE48qEcOkgEAAADALii78tR2z+ZqW7LrkivTNUUdbVlIIuR9WXbNNdfEm2++WevYMcccEz/96U93eM9rr70WF154YQwZMiSuv/76OOuss5o6JuyV7h3bxDf+5eC47rFpGc//8LFp8cSVH402rfwGBgAAAABNoGJjdcm1oXRb2bX1/a6+VqzPSeSWLbVtddYuy64tRVfdc7YthAbL67Js0aJF8Ytf/CIqKytrjqXT6Wjbtu0u702n0zFt2rQ455xz4vOf/3zcfffdUVioaCB/nX/sfvHApHkxfVFZvXOzl6+L8c/Pjq+ecmAOkgEAAACQ99LpiIoNOym1Vu+88Nq8MSexW6yiTrXLqx2WXSXbrezafkVXJ0UXZFFel2W//e1vY/PmzZFKpSKdTkdRUVGceuqp8dnPfnan9x144IFx1FFHxVtvvVUzT0TEvffe29SRYY+1KiyI/zhzSHzmjlcznv9/E2bF6Yf3iYE9OmY5GQAAAABZkU5HlK9r2GquTCu/KstzErvFSRVs25aw3qtz/WN1yy7P6IJmJ6/Lsr/85S81788///y4+eabo0ePXT+36ZhjjolJkybF5MmT40tf+lK88cYb8dvf/jbOPvvs+NSnPtWUkWGvHNW/a5xzVL946K359c6Vb66K7/15avzhsmMjZZ9gAAAAgPyUTkeUr60usDasaljxtf3Kr6r6z7RnN+1u2VX35TldkDh5W5atW7cuXnvttUilUnHJJZfEXXfdtdtzDBs2LF544YX4xCc+ERMnTowbbrhBWUbe+/YnD4mnpy+J1Rsq6p17dfaKeOit+XHu0fvmIBkAAABAglRVblm9tWpb8bX1tbHOuO5L4bV3lF1AluVtWTZ16tSorKyM9u3bx0033bTH8xQVFcU999wTBxxwQEyaNCnmzp0b++23XyMmhcbVvWOb+O5ph8S3Hn4n4/mf/N8/4+RDekb3jm2ynAwAAACgGdpc3rCCq24ptnF1RKRzHL6ZShXuotDqvG3bQmUXkAfytix79913IyJi1KhRUVJSsldz9e/fP0466aSYMGFCvPHGG8oy8t6Yo/eNh/++IN74YGW9c6XrK+L7j0yNX57/EdsxAgAAAMmQTkdUrN91wZXpWMW6XKdvngrbRLTrvK3cate5AV+3XFvUQdkFNCt5W5atWrUqIiIOOeSQRpnv8MMPjwkTJsSCBQsaZT5oSqlUKm44a2icduuLUV5ZVe/8E1MXx2NTFsanj+ybg3QAAAAAeyidjthUFrF+ZcNKr+1Xg1WW5zp989OqXeYyqyHFV+t2OYkMkAt5W5Zt2LAhIiLatm3bKPO1b98+IiLWr1/fKPNBUzugZ8f48smD4hfPzMx4/gePTosRA7tFz+LG+TMCAAAAsFs2b6ousdavjNiwMsPXVdVft7/G87x2X+sOO1/FtbPCq5XHeAA0RN6WZV27do2IiCVLljTKfIsXL641LzQHXxo1KJ6cujjeXbym3rnVGyriu39+J+668GjbMQIAAAB7rqoqYtPqbau9ti+2MhZhW47b3rDhijrVL7rqlluZCq+2JRGtinKTGSBB8rYs6927d0REPPvss40y33PPPVdrXmgO2rQqjJvOPSLOvP3l2FxV/4Gyz/xzaTz89wVxzlH9cpAOAAAAyDsVG7bb4nAHJVem1V7p+o+BoI5UYUS7LhlenXdwvMu2wqswb38MC0DkcVl2/PHHRyqVijlz5sTvfve7uOCCC/Z4rt/97nfx4YcfRkFBQYwcObIRU0LTO6xvSVxx8gFx67OZt2O8/i/TYuQB3aJPiX2kAQAAoMVIpyM2ro5Yv6K61Fq/YiervbYrxjZvyHXy/NeqXYaiq/OOy66t79t0irC7D0CLlLdlWY8ePWL48OHxxhtvxBVXXBG9evWKU089dbfnefbZZ+OKK66IVCoVw4cPj+7duzdBWmhaXxl9QDzzzyUxbWFZvXNrNm6Oax56O35zyTG2YwQAAIB8lE5HlK/dVnrVfK372u74hpWe7bUrbYp3vaor0yqw1n7hGIDa8rYsi4j41re+FZ/5zGdizZo18clPfjLOP//8+MpXvhLDhw/f5b1vvvlm/Pd//3f8/ve/j8rKykilUvGtb30rC6mh8bUuLIj/GnNEnPH/XoqKyvrbMb44c3n88Y158blj98tBOgAAAEiYig07Lrl2dLyyPNep81OqYDeKru3P29oQgMaT1/8f5ayzzopRo0bFxIkTo6qqKn73u9/F7373u+jZs2ccfvjhMWjQoCguLo62bdvGhg0boqysLN5///145513YunSpRERkU6nI5VKxahRo+LMM8/M7TcEe+GQ3sVx5ccOihufei/j+Z88Pj1GHtAt+nfrkOVkAAAA0Ixt3lR7m8OdFmBbjlWsz3Xq/FTUKaL91kKra0T7rjv4ut01bYojCgpynRyAhMvrsiwi4qGHHopjjjkmZs+eHRHV5deSJUvimWeeiWeeeSbjPel09cqbrVvSDRo0KB566KHsBIYmNO7EgfG36UtiyrzSeufWlVfG1/44Of73i8dHUSv/kQkAAEACVVVFbCyNWLc8Yv3yLV93UX6Vr8l16vxT0CpDybWl4NpRAdauS0SrolwnB4A9kvdlWdeuXeOFF16Ic889N1599dVaz2TaWoptL5VK1VyTTqdj5MiR8eCDD0aXLl2ylhmaSqvCgvivcw+P0257Kco3V9U7P2X+6rjpb+/Fd087NAfpAAAAoJFVVW4puZZHrFu2rfyqW4ZtHa9fGZGuzHXq/NKmeOclV/uuW577td2xNp0iPBcdgATJ+7IsImKfffaJ559/Pm699da4+eabY9GiRbXOp1KpmuJs69e+ffvGN77xjfjqV78ahYWFWc8MTeWAnp3i6n85OH7yf//MeH78C7NjxKBucfLBPbOcDAAAAHahsmJbubVuWYbia3nEuhXbxhtWRUT9X5ZOpMKiOiu5Ou+iANtyTWHrXCcHgLzXLMqyiIhWrVrVlF/PPvtsTJgwIaZMmRIrVqyIsrKyKC4uju7du8cRRxwRJ598cpxyyinRurX/GKBluuSE/WPCe0vjlfdXZDz/jQenxBNf/2j0Km6b5WQAAAAkyuZN2xVfdYquTOONq3OdOD+kCiPad9vu1bXOeOux7Y4XdbTaCwCaSLMpy7YqKiqKT37yk/HJT34y11EgZwoLUnHLeUfGabe+GCvWldc7v3Jdefz7A/+I3156bBQW+A9pAAAAGmhzeXWptXbpthJsZ0WY531FRGrLNoe7Kr+2O96mOKLA88YBIF80u7IMqNaruG3cNOaI+MI9kzKef+X9FXHHxFnxldEHZjkZAAAAeSOdrl7NtbX02vpau/14ecS6pdXvrfyKaFtSXWi169qA8qtb9VaHBR4BAgDNmbIMmrGTD+4Zl584MMa/MDvj+VuemRnHDuwWwwd0zXIyAAAAmkzG1V9Ltyu+ltU+V1WR68S507pDRIedrPCqV3x18YwvAEigxJRlBQUFUVBQEJs3b851FGhU3/yXg+P12Stiyvz6v/1XWZWOr/9xcvzlqydEt45tcpAOAACAXbL6q+HaFFeXWh26R7TvXv11+/ftu28px7aMW7fLdWIAoBlITFkWEZFOp3MdARpdUauC+H//9pE4/bYXY82m+mXwwtUb46t/nBy/ueSYaFVoP3QAAICsqNy8bcVXTell9Vc9bTtvKbx61C/B6hZf7btFtPKLoABA40tUWQYt1X7d2scNZw+Nr/5xcsbzr7y/In7+1Hvx3dMOzXIyAACAFqSqMmL9ioi1S6qLrrVLt5RhW19LtpRgSyLWr4yIpP3SbqpO4dVtJ8VX9+qtEG15CADkgZyWZTNnzoyqqqo4+OCDM57/0Y9+lOVE0HydccQ+8fKs5XH/pHkZz49/YXYM7VsSZxyxT5aTAQAA5LGqqogNq7YUXTsovrYeW788Il2V68TZkypo2FaHW7+26xJRUJjr1AAAuy0nZdnmzZvjnHPOib/85S8REfGJT3wiHn300WjVqnacH/7wh5FKpXIREZql684YEv+YVxrvLl6T8fw1D70dB/TsGIf2Kc5yMgAAgCxKp6sLsLplV8YybGlEujLXibOnqOOW8qtn9daHW7dA7Nhz2/sOParPt+sSUWA7fwCg5ctJWfaHP/whHnvssZrxk08+Gb///e/joosuykUcaDHaFRXG+M8fHWf890uxekP9/e43VFTGuN++FY99ZWR0bl+Ug4QAAAB7KJ2O2LRmW9GVaeXX9mVYUp4BtnX1V72yq86rY4/q64ra5zoxAEDeyUlZtnHjxoiIWqvGysvLd3h9Op20Pb5hz+3XrX3c9m/D4uJ73ohMf3TmrlwfX7//H/Hri4dHYYGVmwAAQI5VVW15Dtji6uJrzZLq97W+bnlVrM912uwo6lin7Npahm23EmzryjCrvwAA9lpOyrLzzz8/7rjjjpgyZUpERBx++OHxuc99bofXT5gwYa8+L51Ox+jRo/dqDmhOTjqoR1z98YPj50++l/H88zOWxc1PvxdXf/yQLCcDAAASY3N59UqvmtJraxm2eMvqry1F2LqlEVWbc522aaUKtyu5ti+7utde+dXB6i8AgFzISVnWoUOHmDRpUjz77LORTqfjlFNOidatW+/w+pNOOimL6aBl+NJJg+Kd+avjiamLM56/fcL7cWDPTnHmsL5ZTgYAADRrm9ZuV3rVWfm1fSG2YWWukzax1LZnf3Xc/tWrzrFeEe26Wv0FAJDHclKWRUS0atUqPv7xj+fq46HFS6VSceO5R8SspWtj5tK1Ga+55qG3Y5/O7eKY/btmOR0AAJBX0umIDasi1iyqv/Jr+69rl0aUZ/77RYvRrmt1wdWxR4biq+eWca+I9t0iCnP2YxUAABpRXv9X3X777VfruWZ7O1eB3+IiYTq2aRXjLzw6PvXfL8WajfW3NSmvrIpxv30z/vzlkTGge4ccJAQAAJrcpjURZYu2FWE1XxfWHlfu+FnizV7bkp0XXzXFWI+Iwh3vfAMAQMuU12XZhx9+mJdzQXOyf/cO8Yvzjoyxv3kz0un651etr4hL7p0Uf/ry8dG5fVH2AwIAAHumYsOWsitTAbbdsZa6Eqyo0y62P+y5bdyqTa7TAgCQx/K2LFu3bl189atfrXf885//fJx88sk5SATN1ymH9orvfPKQuOH/3s14fvbydTHut2/Fby89NopaWYEJAAA5VVlRvd1hptVfW7+WLYzYWJrrpE0gVb26q1OvLSu+em95v93XrcVYUftchwUAoIXI27Lsn//8Z9x77731tmE8+uijlWWwBy776MD4YPn6+OMbczOef/2DlfGdP70TN517eKNtfwoAAGynqipi/YqdF2BrFkesWxYRGbaFaM4Ki7YVXZ16V5ddtb72rD7foYfngAEAkHV5+1+g7733Xs37dDodhYWFMWLEiDjooINymAqar1QqFT/69JCYv2p9vDhzecZrHv77/BjQrX189ZQDs5wOAACaucrNEWu3FF41rwXVRdjW8ZpFLe+5YEWd6q/8qlkVtl0h1q5LhF/KAwAgT+VtWbZ8efUP89PpdHTs2DEmTpwYH/nIR3KcqmnMnTs3XnvttZgzZ06Ul5dH165dY8iQIXHcccdFUVFuniG1fPnymDZtWsyaNStKS0tj48aNUVxcHD169IgjjjgiDj744CgosF1fc9O6sCBuP/8j8ZlfvhIzl2Z+bsF/PT0jenRqE589Zr8spwMAgDxVvr5O6bWwTim2MGLtkmhRq8Had8+88qtuIVbUIddJAQBgr+VtWbZu3bqIqF4Nc/nll7fIouy5556L6667Ll566aWM50tKSuLyyy+Pa6+9NoqLi5s0y8aNG+PJJ5+Mxx9/PCZOnBizZs3a6fW9evWKCy64IK655pro2bNnk2ajcRW3bR2/vnh4nPXLl2P52sy/1frdP78TXToUxceH9M5yOgAAyKJ0OmLj6gwl2IKIskXbjm1Yleukjaddl4hO+1QXYJ36bPnaO6J4y7GtWyUWts51UgAAyJq8Lcu2L4eGDBmSwySNr6qqKr75zW/GLbfcUnPs4IMPjhNOOCG6dOkSM2bMiCeeeCJWr14dN954Y9x///3x6KOPxrBhw5okz5NPPhljxoyJNWvW1Dp+4IEHxvHHHx99+vSJysrKmDdvXkyYMCGWLFkSS5Ysif/6r/+Ku+++O+6+++44++yzmyQbTWPfru3jrguPjs+Ofy02ba6qd74qHfHVP06O31xyTBw3sFsOEgIAwF6qqqp+9lemVWDbb49YsT7XSRtHUcftyq/tvhb32Tbu2DuiddtcJwUAgLyTt2XZ4MGDa96Xl7esPd2/9KUvxfjx4yMiorCwMG6//fa47LLLam1rOHfu3BgzZky8/vrrMW/evBg9enS88MILMXTo0EbPs3jx4lpFWd++feNXv/pVfOITn6h3bUVFRdx+++3xrW99K8rLy6O0tDTGjBkTDz/8cHz6059u9Gw0nWH7dYmbxxwZV/zh7xnPl2+uisvuezPuH3dcDNmnJMvpAABgJ9LpiPUrI8rmR6xeUF1+rZ6/5euC6uNliyKqKnKddO8VtqlfgG2/EmzruE2nXCcFAIBmK2/Lso9+9KPRpUuXKC0tjSlTpuz1fPvvv38UFBTE+++/3wjp9tw999xTU5RFRNx5550xduzYetftt99+8be//S2GDx8eM2bMiNLS0jj77LPj7bffjnbt2jVZvuLi4pg4cWIccMABGc+3bt06rrzyyujUqVNN7srKyhg3blycfPLJTb5dJI3r9MP7xNI1g+P6v0zPeH7Nps1x0a8nxcNfGhH9u3kWAQAAWbJpTXXptXr+jguxzRtynXLvpAq3PQ+s3kqwrcf6VG+bmErlOi0AALRoeVuWtW7dOr75zW/G9773vXj44YfjZz/7WXTqtOe/KTdnzpxI5fgvGGvXro1vf/vbNeMTTjghY1G2VXFxcdx22201K7xmzZoVt956a605GtvVV1+9w6Jse5dccknccsstMW3atIiIWLJkSfzpT3+Kiy++uMmy0TS+MHL/WLG2PP57Qubn1C1fuyk+f/cb8dAXR0TPYlu2AACwlyo2bnkm2IIdFGILIjatznXKvdOqXfXKr62vTn0iivtuGfepfmZYx54RBYW5TgoAAEQel2UREd/61rfi+eefj7/97W8xduzYuP/++3NeeO2Nm266KZYuXVozvuqqq3Z5z8c//vEYPHhwTJ9evfLnZz/7WYwbNy66dOnSJBn/7d/+rUHXpVKpOO2002rKsoiI559/XlnWTH3jXw6KFes2xR/fmJfx/NyV6+PCX78Rf7zsuOjSoSjL6QAAaDYqN295Ftj2q8Dmb9sacfWCiPXLc51y77TtXKcI26f2uHif6mua8d9dAQAgafK6LCsoKIhHH300rrjiivj1r38dCxcujJtuuimOPfbYXEfbbel0Ou66666acefOneP0009v0L0XXHBBfPe7342IiNLS0njggQfii1/8YqNl23fffeP000+PNm3axKBBgxp834ABA2qNFy9e3GiZyK5UKhU/PnNorFpXEU9Oy/x/x3cXr4kL7n49/jD2uChp3zrLCQEAyAub1kasnhdROi9i9dzqIqx0XvWx1fOri7J0Va5T7qFU9baIxVtWgXXqU6cE23KsqH2ugwIAAI0sr8uyH/3oRxFR/fyuUaNGxcSJE+P444+PAQMGxDHHHBP9+vWLjh07NovVZi+//HIsXLiwZnz88cdHUVHDVuiMGjWq1vihhx5q1LLslFNOiVNOOWW376v7z71NmzaNFYkcKCxIxS8+e2R84Z5J8ersFRmvmbawLC789evx27HHRnFbhRkAQIuSTkesW7ZdGTZvuzJsbvXXjaW5TrlnClpnKMH61j7WqXdEof/GBQCAJMrrsuyHP/xhvUImnU7HBx98EB9++GFuQu2hxx57rNZ4+PDhDb532LBh0bp166ioqIiI6u0Oy8rKori4uFEz7q5582pv2XfIIYfkKAmNpW3rwhh/4VHx2fGvxbSFZRmvmTJ/dVz86zfiN5ceGx3b5PX/hAAAsL3KiuptEUu3lGCr50WUzt32fvX8iM0bc51y9xW0qt4KsaRvdfFV0jeiZN/tnhHWN6J9t4iCglwnBQAA8lSz+El3Op2OVCrVLFaQ7cjkyZNrjQ899NAG39u2bdsYOHBgvPfeexERsXnz5pg6dWocf/zxjZpxdz399NO1xmeffXaOktCYOrVtHfddckyMufPVmL18XcZr/j63NC65d1Lc+4Xh0b6oWfzPCABAy1dri8R59VeINcstErdsjVhThPWrX4h17BlRUJjroAAAQDPWbH7KnU6ncx1hr0ybNq3WuF+/frt1f9++fWvKsq3z5bIs+8tf/hJvvvlmzfjss8+OY445Jmd5aFzdO7aJP1x2XJw3/tWYs2J9xmve+GBljL3vzfj1xcOjbWs/nAAAaHIbV1evBFs1p/rr1ldz3iKxXdctRVi/DIVYv+rtEVs1bPt6AACAPdUsyrIf/OAHcfLJJ+/x/el0OkaPHt2IiXZPWVlZLFq0qNaxvn377tYcda9/99139zrXnnrmmWfiggsuqBkfddRRcffdd+csD02jd0nb6sLsf16N+as2ZLzmlfdXxNj73oy7Ljw62hUpzAAA9srWlWE1Zdic6tfWcXMrw4o6biu9dlSIFbXPdUoAAIDmUZYNHjw4TjrppFzH2GMrV66sd2x3nzdW9/pVq1btVaaGSqfTsXbt2li4cGFMmjQp7r///nj88ccjIqKgoCDGjRsXP//5z6Njx45ZyUN29e3cLv64pTBbuDrz8ytemrU8Lrrnjfj1xcM9wwwAYGcqNlSvACudG1H6YZ1VYnMi1q/IdcLdkKpe9dV53+rtEDvvu6UU23dbEda2JKIZb6UPAAAkh59sZ8GaNWvqHWvTps1uzdG2bdtdztnYrr322vjJT35S7/iQIUPinHPOiYsvvjgGDBjQZJ+/dOnSWLZs2W7dM2vWrCZKk1z7dm1fsyXjkrJNGa9544OV8fm7X497v3BMlLRrneWEAAB5YnP5lueEzalfhJXOjVi7JNcJG65V2y3l15YCrPN+24qwzlueFVbov/sAAICWIa/LssMPPzxSqVR06dJlr+e68MILI5Wj32rMVGzVLb92JRdl2Y5Mnz497r///li7dm1ccsklMXjw4Cb5nF/+8pdx/fXXN8nc7J4B3TvE78ceF58d/1osX5u5MJs8tzTO/9Vr8dtLjo0uHTxXAgBogaqqItYsilj14bbX9mVY2cKIaCbPWm7beduqsJqVYdu979DDqjAAACAx8ros+8c//tFoc917772NNlc+SKeb/i/hP/7xj+PHP/5xVFVVRWlpaXzwwQfxwgsvxP/8z//Ee++9F++9917ccsstcckll8QvfvGL6NChQ5NnIncO6Nkx/nDZsfFv41+LFevKM14zdUFZ/Ntdr8VvLz02enTavdWTAAB5oXxd9YqwVR9GrPqgdjG2ak5EZeZfHMovdbZI3LoarGS/bdsltumU65AAAAB5I6/Lsr2RTqdj2rRpccABB+z2Kq7G1qlT/b+Ibty4cbfKpY0baz8vKtOcTaWgoCC6du0aXbt2jaOOOiq+/vWvx49//OO47rrroqqqKn71q1/FW2+9Fc8991x07tw5a7nIvoN6dYoHxh0Xn7vr9Vi6JvMPit5dvCbOG/9q/GHscdG7JLd/9gAA6qmqqt4OsW4RtnLLeN3S3OZriIJWWwqw/bZsj7hf7WeHddonopWV/gAAAA2V12XZ3LlzIyJiv/322+17169fH4cffni0adMmTj311PjRj34URx55ZCMnbJiOHTvWO7Zp06ZmU5bVVVBQED/4wQ9iw4YN8dOf/jQiIiZPnhyf//zn4y9/+Uujfc6Xv/zlOPfcc3frnlmzZsWZZ57ZaBmo74CeneLBcSPi/F+9HgtKN2S8ZvaydfGZO16J3156TAzsUf/ffwCAJlW+vnprxLpF2KoPq49v3rjz+3MtVVD9TLDO/avLsC79txVjnftXrxorzOu/ygEAADQref03rAEDBkRBQUFs3rx5j+fYtGlTPP744/HMM8/Ek08+GSeeeGIjJmyYrl271jtWVlaW8fiOlJWV1Ro3xnPc9tYPfvCDuOeee2LJkuoHlf/1r3+NZ599Nk455ZRGmb9nz57Rs2fPRpmLxjWge4eaFWZzV67PeM2C0g1x7p2vxr1fOCaG9ivJckIAoEVLp7esDvuwdhG2devEtUtym2+Xtm6TuH0Rtl0hVtIvorB1rkMCAAAkRl6XZRF7/myu1q1bx3nnnRczZsyIyZMnx8aNG+Oyyy6L9957r5ET7lpJSUn07t07Fi9eXHNswYIFMWDAgAbPsWDBglrjQw45pLHi7bF27drF2WefHXfccUfNsfvuu6/RyjLyW78u7ePBcSPic796LWYvW5fxmhXryuOz41+N//n80XHCgd2znBAAaNaqqiLWLIpYOTti5ftbvs6uLsdWzo6oyPwLO3mjQ8/6RViX/tXvS/pFtPJ8VwAAgHyR92XZnioqKoo//vGPERHxzDPPxGmnnRazZs2K119/PY499tis5znssMNqlWXz58/frfvrlmWHHXZYo+TaW8cee2ytsuzll1/OYRqyrXdJ23jg8hFxwa9ej/eWrMl4zbryyvjCvW/ELecdGf96+D5ZTggA5LWqyojV87crwrYrw1Z9kN/bJbbtHNFlQPVr+yJsaxlW1D7HAQEAAGioFluWbe9jH/tYnHnmmfHwww/HP/7xj5yUZcOGDYtnnnmmZjx9+vQG37tx48aYPXt2zbiwsDBvyrK62yRuXwiSDD06tYk/Xn5cXHzPG/H2/NUZr6moTMdX/zg5Vq4rjwtHDMhuQAAgtyo3R6yeW7sI2/pa9WFEZXmuE2aWKozovO+2QqzLgIgu+2/52j+iXe63RQcAAKBxJKIsi4gYOHBgRESsXLkyJ59/xhlnxI033lgznjRpUoPvnTx5clRUVNSMTzrppCguLm6UXKtXr4533nknIiKOP/74KCgo2K37q6qqao13935ahq4diuIPlx0XX/ztW/HSrOUZr0mnI37w6LRYUrYxvvkvB0cqlcpySgCgyWwujyidW2eF2JZX6ZyIqj1/BnGTalMS0XVAnSJsy6tk34jCxPx1CQAAINES87e/mTNnRkT1s8xyYeTIkdGnT59YtGhRRES8+uqrUV5eHkVFRbu8d+LEibXG55xzTqPlmjx5cpx88skRETFr1qwYNGjQbt1fd3vI3r17N1o2mpeObVrF3RcfHd94cEr89e1FO7zu9gnvx7yVG+LGcw+PNq0Ks5gQANgrVVURZfMjVsyKWPH+lq9bXqVzI9JVu54j21IF1Vsi1i3CugyI6Lq/1WEAAABERAsvyzZt2hQLFiyIxx57LB555JGIyF2ZU1BQEGPHjo3/+I//iIiI0tLSePzxx+Oss87a5b2///3va96XlJTEeeed1yQZX3755d0uy5577rla4+OOO64xI9HMtGlVGLd9dlh061AU9706Z4fXPTZlYSxavSHGf/7o6NJh14UxAJAl6XTE+pW1i7Ctr5Wz8/MZYm2KMxdhNavDcvPLcgAAADQfOS/LCgt3vrIknU7v8pqGSKfTkUqlclrmXH311XHnnXfGsmXLIiLilltu2WVZ9tRTT8W0adNqxtdcc0107dp1p/esWLEiHn744aioqIgzzzwz+vbt26B8d9xxR3z+859v8PZ4s2fPjj/96U+1jo0ZM6ZB99JyFRSk4oefGhLdOraJm5+escPrJn24Ks6+45W45+LhMaB7hywmBACifF11+bV8Zv1VYhtLc52uvvbdIroOrP/qsn9E+64RtncGAABgL+S8LEun041yza6kUqkYPXp0HHDAAXs9157q1KlT3HDDDXHZZZdFRMSLL74Yd999d1x66aUZr1+zZk187WtfqxkPGjQorrzyyp1+xrx582L48OGxZMmSiIj47ne/Gy+++GIcfvjhu8z32muvxQ033BDf+973dnntmjVrYsyYMbWepTZq1Kg444wzdnkvLV8qlYqvnXJgdOtYFN9/ZGpU7eCP8AfL18VZv3w5fnXR0XFU/52XwADAbqqsqN4esd4qsfcjyhbs+v5s69CzdhHWbbtCrF3nXKcDAACgBct5WRZR/YP1xijEdmbo0KFx3333NelnNMTYsWPjtddei7vvvjv+P3v3HR1Xda5//DnTNGqjLlmWbblX2QaMARsXbCCUAIGEmkBoJpByQ2765QchPYQk5IZLCgTTQhICAQKB0A3GYMAUN8m9Sbas3uv03x8jyZI9klWmSfp+1tKambP3OecdVuxY88y7tyTdfPPN8nq9WrVqlUwmU9e8kpISXX755dq1K9CZk5KSoqeffloJCQl9Xv+Pf/xjV1AmSY2Njbr77rv1+OOP96u+22+/Xbt379aPfvQj5efnB52zZs0afeUrX9HOnTu7jk2dOlWPPfZYv+6B0eMLp+YrO9mur/99o9rc3qBz6lrduurPH+hXl87TZ07oXxckAADo4PdLrTVS9a6On26dYnX7JZ8n2hX2lJwbvEMsfZIUlxzt6gAAAAAAo1TUw7Jly5b1uuzf2rVrZRiGli1bNuDrms1mJScna9KkSVq5cqXOO++8kCznGAoPPPCAEhMTde+998rr9ermm2/WPffco2XLliklJUW7d+/WSy+9JJfLJUnKy8vTc889p/nz5x/32sFCR5+v983WJ06cqKVLl2rdunVdxx599FH95S9/0YIFCzR//nxlZmbK7/ervLxc77zzjvbu3dvjGhdccIEeeOAB5ebm9vc/AUaRs2fn6MmbF+mGRz9UVZMz6ByXx6dbn9ikHeVN+vanZshsYiklAAB68HmlugOBMKwrGOv4aauLdnU9OcYd6QrrsWTiRMnG0ssAAAAAgNhj+MPd0jUEJpNJhmHI6w3ekTLcvf7667rzzju1fv36oOMOh0M33XST7rjjDqWkpPTrmsXFxVq4cGHXvmhJSUlat26dTjjhhD7P27Ztm5544gm9/PLL+vjjj/sM2CQpMTFRF110kW688UadeeaZ/aotEoqKilRQUND1urCwUHPmzIliReh0qK5VNzzyoXZVNPc578yZ2frfK09Qst0aocoAAIghzmapZvdRodjuQKeY1xXt6o5IypEypkkZU6SMqYHH9ClSWr5kjY92dQAAAACAIPj8vHeEZTGguLhY7733nkpKSuRyuZSWlqY5c+Zo0aJFiouLG/D1qqur9fTTT8vtduviiy/WuHHjBnR+c3OzduzYoZ07d6q2tlZNTU0ymUxyOBzKyMhQQUGBZs6cGTOdet3xhz22Nba79ZXHP9E7e6r7nDctO0kPXnuy8jP49jkAYATy+6XmikAQVrWzWzC2W2o8FO3qjrAlS5lTO8KwqT1DMbsj2tUBAAAAAAaIz897R1iGEYU/7LHP7fXp9mcL9Y+PDvY5LyXeqj984SSdPjUzQpUBABBiXk9g37CqnUfCsOqOcMzZGO3qAkzWwBKJnUFY92AsKVvqZbl0AAAAAMDww+fnvYv6nmV9Od5SgACGH6vZpLs+N1eTsxJ118s71Ftc39Dm1hcf2qD/OW+mblwyqde9DQEAiDqvW6rdL1VtDwRjlR2PNbtjZ+nElPHHhmEZUwPHzTH9KwEAAAAAAGHHb8YAIs4wDN28fIqm5yTr63/fqCanJ+g8r8+vn764XRsP1uvuz81TYhx/ZQEAosjrlmr2SlU7uv10dIr53NGuTopLkbKm99xLLHOalDZJsiVEuzoAAAAAAGIWnzwDiJoVM7P17FcXa9WjH+lATWuv817cUqZd5U360zULNCUrKYIVAgBGJY9Lqt17pEOss2OsZo/kC/4Fj4hKmRAIwTKnB8KxzI6fxCyWTQQAAAAAYBCGZVjW0NCgDz/8UJs3b1ZNTY3q6+v1hz/8oWu8qqpKcXFxcjjYeByIdVOzk/XcV5foa3//ROt2V/c6b3dlsz5z37v69WXzdG5BbgQrBACMWB5nIACr2iFVdusUq90b/VDMHNcRiE07EoZlTg90jNkSo1sbAAAAAAAjzLAKy5577jn9/ve/15o1a+Q/aqOj7mHZmjVrdN111+nSSy/VD3/4Q02ZMiXSpQIYgJQEqx6+bqF+/p8deujd/b3Oa3Z6dMvjn+jm5ZP1nU/NkMVsimCVAIBhy+cN7ClWWRToFqvoeKzdJ/m90a0tIaNnGJY5PRCQpU6QTObo1gYAAAAAwCgxLMKy8vJyXXfddXrttdck6ZigzAiy3IzT6dTf/vY3PfPMM/rjH/+oL37xixGpFcDgWMwm/eDC2Zoz1qHbnt0qp8fX69z71+7TxuJ6/e6qE5SbEh/BKgEAMc3vl5rKu4Vi2wLPq3ZKnvYoFmZIaflS5oxAEJY1o6NLbJqUmBHFugAAAAAAgDQMwrLDhw9r8eLFOnjwoPx+vwzD6BGOHR2cSdLYsWOVnp6u2tpatbW16frrr5fJZNLVV18dydIBDMLnFozTzNxk3fL4xzpY29brvA0HanX+79bpnstP0IqZ2RGsEAAQE9obAoFY5baOUKzjp60uejUZJil9spQ1MxCIZc3qCMamSVa+3AEAAAAAQKwy/MHSphjh8/l08skna9OmTTIMoysYs9vtmjx5shwOh95//30ZhiGvt+cSOh6PR6tXr9b3v/99NTQ0KD4+Xjt27ND48eOj8VYQIUVFRSooKOh6XVhYqDlz5kSxIgxWQ6tb3/jHRr25s+q4c29eNlnfPmeGrCzLCAAjj8cpVe/qtnzitsDzhoPRq8kwB0Kx7JkdwVjHT8ZUyWqPXl0AAAAAAPSBz897F9OdZQ899FBXUGYymXTTTTfp+uuv14IFC2QyBT4U73w8msVi0c0336zly5dr2bJlqqmp0U9/+lPdf//9kXwLAAYpJcGq1dcu1L1rdut3b+xWX7H+/W/v04cHavV/nz9Jeal8cx8AhiW/X2o8LFUUSuVbjwRjNXsknyc6NZksUvqUQHdY9qwj3WIZUyRLXHRqAgAAAAAAIRfTnWWzZ8/Wjh07lJGRof/85z9auHDhMXNMJlPQzrLu/vnPf+ryyy9XSkqKKisrZbVaw1k2oohkfGR6c2elvvHEJjW0ufuclxJv1V2fnavz5uZGqDIAwKB4nFLVDqm8sFs4Vhi9JRRN1kBXWI9QbGYgKLPYolMTAAAAAAAhxufnvYvZzrKDBw9qx44dMgxDjz32WNCgrL8uvfRSTZw4UcXFxdq4caNOOeWUEFYKINxWzMjWf25dqv/62yf6pKS+13kNbW59+a+f6IqTx+sHF85WYlzM/hUHAKNHc+WRMKwzHKveFZ1usc49xbJnd/zMCvykT5bMfJkKAAAAAIDRKmY/Sd6wYYMkac6cOTrvvPOGfL3ly5frscceU1FREWEZMAzlpcbrHzcv0q9f3an71+7rc+4/PjqoDQdq9bsrT9C8camRKRAARjuvW6re3bNTrLxQaqmMTj3JuUcCsZw5gedZMyQry/UCAAAAAICeYjYsq6wMfLCyZMmSkFxv7NixkqTa2tqQXA9A5FnNJv3PebN02qQMffPJTapr7X1Zxv3VLfrsH9brm5+arpuXTZHZZESwUgAY4drqpfItPZdRrNoheV2RryXOEQjCcmb37BhLSI98LQAAAAAAYFiK2bCsvr5ekpSeHpoPOpxOpyTJ7e57zyMAsW/FzMCyjF//+0Z9eKD3/W08Pr/ufnmn3t5VpV9dOl/j0xMiWCUAjBDNlVLZ5p4/9cWRr8NskzJndIRis6TsOYHnjjzJ4AsRAAAAAABg8GI2LEtLS5N0pMNsqA4cOCBJyszMDMn1AERXbkq8/n7Tabp3zR7dt2a3fP7e576/r1bn/u/buv2C2bpy4XgZfKgKAMfy+6WGgx2B2JYjwVhzeeRrSRkv5RRIYwo6usbmsK8YAAAAAAAIm5gNy3JzcyVJr7/++pCv5XQ6u66Tl5c35OsBiA0Ws0nfPHu6lk7L1Dee2KTS+rZe57a4vPqfZ7bq5cJy3fW5ucpNYc8aAKOYzyfV7u3ZLVa+RWrrvVs3LMxxgS6xMQVSztyOxzlSfFpk6wAAAAAAAKNazIZlp59+ukwmk4qLi3Xffffpa1/72qCvddddd6mxsVFWqzVke6ABiB0LJ6brpW8s1R3/KtRzmw73OXftrip96rdv64cXztFnT8qjywzAyOd1B/YT694tVlEouZojW0dSTke32NzAT06BlDFVMsfsP0cBAAAAAMAoEbOfTmRmZuq0007T+vXr9c1vflN2u12rVq0a8HX+/Oc/6yc/+YkMw9CyZcuUnJwchmoBRJvDbtXvrjxRK2Zk6/Z/FarZ6el1blO7R996arNeLirXzy4pUHayPYKVAkAYed1S5Tbp8MbAT9lmqaJI8roiV4PJEthbbEzBkaUUc+ZKSVmRqwEAAAAAAGAAYjYsk6Tbb79d559/vrxer26++WY9+uij+q//+i+dd955fYZeXq9Xr732mv73f/9Xr732mvx+vwzD0B133BHB6gFEw8Un5mlBfpq++eQmfXig7+XEXttWoY8O1OonFxfognljI1QhAISIzytV75JKPzkSjpVvlbzOyNUQn9bRJTb3SDiWNUOyxEWuBgAAAAAAgCGK6bDs3HPP1SWXXKJnn31WkrR+/XqtX79eJpNJs2bN0pQpU7rmfvGLX1RTU5NKS0tVVFSk9vZ2SeoKyq644gotW7YsKu8DQGSNT0/QE19apIff3a+7X9kpl8fX69y6Vre+9reNemlrue68aDZdZgBik88n1e47Eood/iTQNeZujVwNyWOl3HlS7nxpTMdjyjiJ5WwBAAAAAMAwZ/j9fn+0i+hLW1ubli9fro8++kiGYah7ud1fd+47FGz8lFNO0dq1axUXx7ecR7qioiIVFBR0vS4sLNScOXOiWBGibU9ls7711GZtPlh/3LkOu0X/79OzdPnJ49nLDED0+P1SfUkgEOsKxzZLzobI1ZA2qVswNj/wPCk7cvcHAAAAAAAhx+fnvYvpzjJJio+P15o1a7Rq1So9+eSTx3yA3T0kMwyjx2u/36/LL79cq1evJigDRqmp2Ul6+pZFuv/tffrf13fJ7e39+wGN7R597+mtenZjqX7x2XmalJkYwUoBjFpNFVLpx4FwrHNJxbbayNzbMAX2F+sMxnLnB5ZVtKdE5v4AAAAAAAAxIObDMklKSkrSE088oSuuuEJ33XWXPvzww6DzuneVnXzyybrtttt08cUXR6hKALHKYjbpqyumauXMbH3ryc3aVtbY5/z399XqnP99W7eeOU03LZ0sm8UUoUoBjHjutsDyiYc+kko/kg59LDWURObeZpuUPbtbMHZC4LUtITL3BwAAAAAAiFExvwxjMDt27NCbb76pzZs3q7q6Wo2NjXI4HMrMzNT8+fO1YsUKzZw5M9plIgpoI8XxuDw+3ffmHv3+zT3y+o7/19+MnGTd9bm5OnFCWgSqAzCi+HxSzZ6OUKwjHKsoknye8N/bHBfoEBt7ojT2hEA4ljlDstjCf28AAAAAABCT+Py8d8Ois+xoM2fOJAwDMCg2i0nfPHu6zp6Vo28/tVk7K5r6nL+zokmf/eN6Xbtoor59zgwlxQ3LvzYBREJLdbeOsY8Cyyq2R2CfMZNFypnTEYydKI09ScqeJZmt4b83AAAAAADACMCnvgBGpbnjUvTv/1qiB97eq3vX7JHL4+t1rt8vPbL+gF4uLNcdF8zW+XPHHLN/IoBRxt0ulW/t2TVWdyD89zVMUtbMnsFYzhzJag//vQEAAAAAAEYowjIAo5bNYtLXVk7T+XNz9T/PbNUH+2v7nF/e2K6v/u0TnT41Qz+6qEBTs5MiVCmAqGsskw5+IB3cEHgs2yz53OG/b8a0bsHYiYH9xmyJ4b8vAAAAAADAKDJqwjKTySSTySSPJwL7hAAYViZnJemJL52mJz86qJ+9uF2N7X3/PfHunhqd97u3deOSyfqvlVOVyNKMwMji9UiVRYFgrOT9wGNDSfjvmzJByjsp8DP2xMA+Y/aU8N8XAAAAAABglBtVn/D6/f5olwAgRhmGoSsWTtCKmdn60b+36cUtZX3Od3v9+tPavXpuU6lu/zRLMwLDWltdYCnFgx8Efg59LLlbwntPW3IgFBt3spR3spS3QErOCe89AQAAAAAAENSoCssA4Hiyk+36/edP0iUnVOiO5wpV1tDe5/yyhsDSjEumZuqHF81haUYg1vn9Us3eI8HYwQ+kqh3hvadhkrLnSOMWBIKxcSdLmdMlkzm89wUAAAAAAEC/DJuwzOl0at26ddq0aZPKy8vV2NjIkooAwuas2Tk6bUqG7nl1lx5974C8vr47U9/ZU63zfve2bjh9kr66cqocdmuEKgXQJ3ebVPpJz/3G2vren3DIHHmBTrHOrrGxJ7DPGAAAAAAAQAyL+bCsra1NP/zhD/XAAw+osbEx2uUAGEWS4iz6wYWzdfnCcfrBv4q04UDfH7C7vX7d//Y+/fPjQ/rmp6bryoUTZDaxNCMQUe0NUskHUsl6qXi9dHij5HWF737WxMD+Yt27xhxjw3c/AAAAAAAAhFxMh2X19fVauXKlNm/e3GO/MfYFAhBJM8c49I+bT9Nzmw7rZ//ZrqomZ5/za1pc+n/PFuov7xXrjgtm6/SpmRGqFBiFmio6grH3AuFYRaGkMO5Rmj5ZGn+qNP4UadwpUtZMyRzT/5wCAAAAAADAccT0pzu33nqrNm3aJCkQkHUGZt2DMwCIBMMwdPGJeTpzVrb+9/XdemT98Zdm3FHepC88+IHOmpWt286fpclZ7GcGDInfL9XtDwRjnZ1jtfvCdz9zXKBrbPwp0oTTAuFYUlb47gcAAAAAAICoiNmwrLKyUo8//nhXF5nf79cFF1ygiy++WLNmzVJ6errsdnu/ruX3+zV58uRwlgtglEi2W3XHBbN12cn9W5pRkl7fXqm3dlbp2sUT9fWV05SSwH5mQL/4fFLlNqmko2useL3UXB6++yXldHSNdfzkzpMsceG7HwAAAAAAAGJCzIZlb775ZlcHmclk0jPPPKPPfOYzUa4KAAIGujSjx+fX6nf265lPDunrZ07T50+doDiLOULVAsOEzxdYRvHAO9KBdYFwrL0+PPcyTFJOQbdw7BQpdYLEUs8AAAAAAACjTsyGZaWlpZICS5999rOfJSgDEHM6l2Y8e3aO/vjWXv153T45Pb4+z6lrdetH/96mh97dr29/aoYunDdWJhMfzmOU6uwcO7CuIyB7J3zhWFyKNH7hkWAsb4EUlxyeewEAAAAAAGBYidmwzO12dz1fsWLFkK/38MMPD/kaABBMYpxF3z5nhq46dYJ++dIOPb/58HHPOVjbpluf2KT71+7T98+bqWXT2QcJo4DPJ1VtD4Ri+9+Wit+V2urCc6+kMVL+ImnC4sBj9mzJRDcnAAAAAAAAjhWzYdnEiRO7niclJQ35etdee+2QrwEAfclLjde9V52oaxfn68cvbNfmg/XHPWdbWaO++NAGnT41Q98/d5bmjksJf6FApPj9UtUOaf+6jmUV35Vaa8Jzr/TJR4KxCYsCr1lSEQAAAAAAAP0Qs2HZihUrZLFY5PV6deDAgWiXAwD9tiA/Xc9+ebGe33xYd720Q+WN7cc95909Nbrwvnd0wbxcfeecGcrPSIxApUCI+f1SzR5p31sdSyu+K7VWh+FGhpQzR8pfHAjG8hdLyWPCcB8AAAAAAACMBjEblmVnZ+u6667Tgw8+qCeffFK33367jCF8Q3zSpEkymUzau3dvCKsEgOBMpsB+ZufMGaMH3t6nP63dqza397jnvbClTC8XluuKheP1tZVTlZsSH4FqgSFoqpD2rw0EZPvekhpLQ38Pk1Uae2IgFMtfHNh3LD419PcBAAAAAADAqGT4/X5/tIvoTVNTkxYtWqTt27frv//7v/XrX/960NcymUwyDENe7/E/rMbwVVRUpIKCgq7XhYWFmjNnThQrAgIqG9v1uzd264kPD8rr699fuzaLSV84dYK+fMYUZSfbw1wh0E/OJql4/ZFwrHJb6O9htknjFkoTlwR+8k6WbAmhvw8AAAAAAMAowufnvYvZzjJJSk5O1tq1a3XZZZfpnnvu0datW3X77bdr6dKl0S4NAAYk22HXzy6ZqxuWTNKvX9mplwrLj3uOy+PTw+8e0N83lOjaxRN1y7IpSku0RaBaoBuvWyr9+Eg4duhDyecJ7T1MVmncydLEpYFwbNxCwjEAAAAAAABETEyHZZKUkZGhNWvW6P7779ett96q119/XampqZo7d65ycnKUkJAwpOUZASCSpmQl6Y9XL9AnJXW666Ud2rC/9rjntLt9un/tPv31/RLdcPpE3bh0slLirRGoFqOS3y9Vbg8EY/vXSgfekVzNob2HyRLoFuvsHBt/KuEYAAAAAAAAoibmwzKPx6Mf//jHuvfee+V2u+X3+1VXV6d169ZFuzQAGLSTJqTpH186TW/trNJdL+3Qzoqm457T7PTo3jV79Mj6A7pp6WRdd/pEJdsJzRACzZXS3jXSnjcCAVlzRWivb7JIY0+SJi3tFo4lhvYeAAAAAAAAwCDFdFjmcrl07rnnau3atfL7/TIMgy4yACOGYRhaMTNby6Zn6dmNpfrta7tUWt923PMa2z36zWu79OA7+3XD6ZN03ekT6TTDwHhc0qENgXBsz+tS+ZbQXt8wSWNPlCYt6wjHTpPikkJ7DwAAAAAAACBEYjosu/322/XWW29JCnyo7Pf7o1sQAISB2WTo0gXjdOH8XD354UHd9+YeVTQ6j3teQ5tbv319lx5ct0/XLp6oG5dMYk8z9K7uQCAY27Mm0D0W6qUVM6ZJk88I/ExcIsWnhvb6AAAAAAAAQJjEbFjW2Nio3//+9z06yS6++GJ95jOf0cyZM5WWlqa4uLh+Xcvv92vy5MnhKhUAQiLOYtY1iybqspPH6/H3i/XHt/aqpsV13POanB7d9+YePfzufl29KF83LZ2szKT+/f2IEczVEthvrLN7rHZvaK+fmH0kHJu8XEoZF9rrAwAAAAAAABESs2HZW2+9pba2wHJkJpNJzzzzjC666KIoVwUA4We3mrVq6WRddcoEPfreAd2/dp8a2tzHPa/F5dX9a/fp0fUH9IVT83XzssnKdtgjUDFigt8vVe2Udr8aCMdK3pO8xw9b+82aGOgY6wzIsmdJLI0MAAAAAACAESBmw7I9e/ZICiy/eMkllxCUARh1EuMs+soZU3X1afl66J39Wr1uv5qcnuOe1+72afU7+/WX94t12YJx+tKyycrPSIxAxYg4d1uge2zXK9LuV6T6ktBd2zBL4xYeCcfyFkgWlvkEAAAAAADAyBOzYZnLdeTb8CtWrBjy9R5++OEhXwMAosFht+obZ03XdYsnavU7+/XIuwf6FZq5PD799YMS/X1Dic6fm6tblk9RQV5KBCpGWDUc6gjHXpX2rZU8baG7dvoUaepZ0pQVUv7pkt0RumsDAAAAAAAAMSpmw7IJEyZ0PXc4hv5h3bXXXjvkawBANKUm2PStT83QqqWT9ci7B/TQu/v7tTyjzy+9sKVML2wp07LpWbpl+WQtmpzRY09IxDCvRzr0YaBzbNerUmVR6K5tS5ImLZemnhn4SZsYumsDAAAAAAAAw0TMhmVnnXWWrFarPB6PDh48GO1yACBmpMRbdetZ03TDkon6y/vFenDdftW29G9vqrd3VentXVWaPz5VX14+RZ+anSOTidAs5rTWSrtfO7L/WHt96K49Zl6ge2zqmdK4U1haEQAAAAAAAKOe4ff7/dEuojdf//rXdd999+nkk0/Whg0bhnStlStXyjAMvfHGGyGqDrGoqKhIBQUFXa8LCws1Z86cKFYEhF+ry6O/fVCiP63dp+pm54DOnZyVqBuXTNJnTxyneJs5TBWiX2r2Sjv/I+18SSp5T/L7QnPdhExpysojyysmZYfmugAAAAAAABhW+Py8dzEdlrW3t2vlypX64IMPdNddd+k73/nOoK9lMplkGIa8Xm8IK0Ss4Q87RrN2t1dPbCjR/W/vU1lD+4DOTUuw6urT8nXNonxlJ9vDVCF68Pmkw59IO14MhGRVO0JzXcMU6BibdlYgIBszXzKZQnNtAAAAAAAADFt8ft67mF2GUZLsdrtef/113XTTTfr+97+v7du364477tCkSZOiXRoAxBy71azrTp+kz5+ar+c3H9af1u7Vnsrmfp1b1+rW/63Zo/vX7tOF88fqxiWTNHvs0PeLxFHc7dL+tYGAbNfLUnNFaK4bnxYIxqadE1heMSE9NNcFAAAAAAAARoGYDst+/OMfS5JmzJihpUuX6pFHHtGjjz6quXPnav78+crJyVFiYqIMg/12AKCTzWLSpQvG6bMn5un17RX649q92lhS369zXV6fnv7kkJ7+5JBOn5qhVUsma/n0LPY1G4rW2kAwtvM/0p41krslNNfNKZCmfUqafo40bqFkYhlNAAAAAAAAYDBiehnGzqUTO3UvdaABmd/vZxnGUYA2UuBYfr9fG/bX6o9r9+qtnVUDPp99zQahvkTa/u9AB1mo9h+zJkiTlkvTPxUIyVLGDf2aAAAAAAAAGDX4/Lx3Md1Z1qkz6KKDDAAGzjAMnTo5Q6dOztC2w426/+29emFLmby+/n1XYl9Vi/7fs4X69Ss79YVT8/WF0yYoNyU+zFUPQzV7pW3PSduflw5vDM01U/Ol6ecGArL8JZKV/eQAAAAAAACAUBsWYZnUs6sMADA4s8c69LsrT9R3zpmhR9cf0BMbDqrJ6enXuXWtbt335h79ce1efWp2jq5ZlK9FkzNG7xcZ/H6pakcgINv2vFRZFJrr5i2QZpwnzfi0lD1LGq3/fQEAAAAAAIAIGRZh2Q9+8AOtWLFi0Of7/X6tXLkyhBUBwPA2Li1B/+/Ts/X1M6fpyY8O6eF39+tQXVu/zvX6/HqpsFwvFZZrWnaSvrh4oi45MU9JccPi/1KGxu+XyjYHuse2PS/V7B76Nc22wPKKM8+Xpp8nOXKHfk0AAAAAAAAA/TYsPtmcPXu2li9fHu0yAGDESbZbdeOSSbp2Ub5e21ahB9/Zr4+L6/p9/u7KZt3xr0L98qUdunTBOF19Wr6mZieFseIo8Pmk0o+lbf8K7ENWXzz0a9pTA8srzjhPmnqmFJc89GsCAAAAAAAAGJRhEZYBAMLLYjbpvLm5Om9urj4pqdPqd/brpa1l6ue2Zmp2evTI+gN6ZP0BLZmaqS8uyteZs3JkNg3TJQT9funQh1Lh04EOsqbDQ79mar4089PSjPOlCYskM/8XDAAAAAAAAMSCmP6kbt68eTIMQ2lpaUO+1he/+MXRu68OAAzASRPSdNLn03SwtlWPrj+gf3zY/33NJOmdPdV6Z0+18lLj9flTJ+iyk8cpO9kexopDpHOJxcKnpaJ/SQ0lQ7/mmLnSrIsCIVn2bPYfAwAAAAAAAGKQ4ff7+9k3AMS+oqIiFRQUdL0uLCzUnDlzolgRMPw1tbv19MeH9Nj7xdpX1TLg8y0mQ2fNytFVp07Q0qmZMsVat1nl9kBAVviMVLt36NfLO1mafVEgJEufNPTrAQAAAAAAACHA5+e9i+nOMgBA9CXbrbru9Em6dvFEvbunRo++d0BvbK/o9xKNHp9fLxeV6+Wico1Li9eVC8fr8pPHK9sRxW6zmr1S0TOBgKxy2xAvZkj5iwPh2KwLpJRxISkRAAAAAAAAQGSMmrCssbFRkuRwOKJcCQAMT4ZhaMm0TC2ZlqlDda366wclemJDiepa3f2+xqG6Nv361V367eu7ddasbF11ygQtnZYVmb3N6g9KRc8GusjKNg3tWoZZmrQs0EE28wIpKTskJQIAAAAAAACIvFETlqWmpspkMsnj6f++OwCA4MalJeh7587UrWdO0wtbyvTYewe05VBDv8/3+vx6pahCrxRVKC+1o9ts4XjlhLrbrKUm0EG29Z/SwfeHdi2zTZqyMtBBNuM8KSE9NDUCAAAAAAAAiKpRE5ZJEtuzAUBo2a1mXbpgnC5dME6bDtbrsfUH9MKWMrm8vn5fo7S+Tb95bZf+943dWjEjS5cuGK+VM7Nls5gGV5S7Tdr5krTlSWnPa5JvCF+SMFmlqWdJBZ+Vpp8r2elOBgAAAAAAAEaaURWWAQDC54TxqTrhihN026dn6Z8fH9LfN5SouKa13+d7fX69vr1Sr2+vVHqiTRefkKfLTh6nWbn9CKh8Pqn4XWnLE9K25yVn4+DfSOcSiwWfC+xBFp82+GsBAAAAAAAAiHkxHZb9+Mc/jnYJAIABykyK0y3Lp+hLSyfr/X01+tuGEr1SVC63t//dvbUtLj307n499O5+FeQ5dNmC8frMCWOVmmDrObFyRyAg2/KU1HhoCFUbUv7iQAfZrM9ISVlDuBYAAAAAAACA4SSmw7If/vCHMgwj2mUAAAbBZDK0eGqmFk/NVE2zs6vb7MAAus0kqbC0UYWlRfrZi9t19pwcfX62XYta18i05R9S+ZahFZm3INBBNvtiKSVvaNcCAAAAAAAAMCzFdFg2WEfvTUbgBgDRlZEUp5uXT9GXlk3We/tq9PcNB/VyYVm/u82s8miFf6Mu3r5Wp+7cJJPR/z3RjpEzN9BBNucSKX3S4K8DAAAAAAAAYEQYFmHZ0eFXf3QGZH6/f1DnAwBCzzAMLZ6SqcVTMlXTPFvPfFKqv28o0b7qlqDzZxolusy8Vheb31GG0TT4G6fmS/Mul+ZeJmXNGPx1AAAAAAAAAIw4wyIse/PNN/s1r6WlRdXV1SoqKtJLL72kwsJCTZ06Vb/85S+Vnp4e5ioBAAORkRSnm5ZN1qqlk/ThgTo99dFBvbi1TFZXgz5jfleXmddqrunA4G9gTw10kM27Qhp/qkSXMQAAAAAAAIAghkVYtnz58gGf88tf/lKvv/66vvSlL+mrX/2qnnvuOS1cuDAM1QEAhsIwDJ2Sn6JTPB/rF96/ydj1H5l97kFdy+m3aI3vRL1kWq74SefqopmTdNq4DJkJygAAAAAAAAD0YliEZYN11lln6Z133tFJJ52kCy+8UO+//74mTpwY7bIAAJ3qiqVPHpM2/VVqKhv0/yl94Jupf3lP14veU9WopMDBjZX6x8ZKjXHY9ZkTxuqSk/I0c4wjZKUDAAAAAAAAGBliOiz7wQ9+0LX32GCNHTtWd955p7761a/qS1/6kl599dUQVQcAGBSvW9r5kvTxI9LeNZIGt6/kPt8YPe1dpud8p+uQP6vXeeWN7br/7X26/+19mpGTrAvn5+qCeWM1MTNxcPUDAAAAAAAAGFEMv98/uE8ph5GDBw8qPz9fhmFo586dmjp1arRLQpgUFRWpoKCg63VhYaHmzJkTxYoAdKndH+gi2/i41FI5qEv4bYnam/0pPdS8WH8rHytp8F+omJuXogvn5+rT88YqLzV+0NcBAAAAAAAAhgM+P+9dTHeWhUpubm7X83Xr1hGWAUCkeN3Szv9IHz0s7Xtz8NeZuFQ64QsyZl+kqbZE/VzSl6pb9K9NpXp2Y6mKa1oHfMmtpQ3aWtqgn/9nhxbkp+nCebk6f16uspPtg68TAAAAAAAAwLAzKsKyxsbGrufl5eVRrAQARonafR1dZH8ddBeZUsZL86+STvi8lD7pmOGJmYn6xlnTdeuZ07TxYL3+tbFU/958WHWt7gHf6uPiOn1cXKcfv7BNp03O0IXzx+rcOWOUlmgbXO0AAAAAAAAAho1REZa9/fbbXc/tdjoGACAsfF5p96vShj9Le98Y3DUsdmnWhdIJX5AmLZdMpuOeYhiGTpqQppMmpOn2T8/W2l1V+tfGUr22vUIuj29gb8Evrd9bo/V7a3THvwq1ZFqmLpw3VmfPyZHDbh3cewIAAAAAAAAQ00Z8WNbQ0KA77rij63VeXl4UqwGAEai1NtBF9tFqqb5kcNfIKZAWXCfNvUyKTx10KTaLSWfPztHZs3PU0ObWy4VleuaTUm04UKuB7tDp8fn11s4qvbWzSrZnTFo6LVPnzc3V2bNylJJAcAYAAAAAAACMFCMuLGtvb1dtba327t2rt956S/fff7/Kysq6xpctWxbF6gBgBDm8MdBFVvi05Gkf+PnWBKngc9KC66W8kyTDCGl5KfFWXbFwgq5YOEHlDe16cWuZ/r35sDYdrB/wtVxen97YUak3dlTKYjK0aEqGzivI1afm5CgzKS6kdQMAAAAAAACIrJgOy8xm85Cv4e9oJTAMQxdddJHGjBkz5GsCwKjlcUpF/5I2PCCVfjS4a4yZGwjI5l4m2R0hLa/XW6bYdeOSSbpxySQdrG3Vv7cc1r83l2l7WePxTz6Kx+fXut3VWre7Wrf/a6sWTkzXeQVjdG5BrsaksNQvAAAAAAAAMNzEdFjmH+iaWUcxDEOGYcjv9ys3N1f33ntviCoDgFGm4ZD00UPSx49KrdUDP9+aKM39XGCpxbGh7yIbiPHpCfrKGVP1lTOmak9ls17YcljPbz6sfVUtA76Wzy99sL9WH+yv1Q//vU0nTUjVeQW5OrdgjManJ4ShegAAAAAAAAChFtNhmaSusGsw/H6/DMPQBRdcoN///vcaP358iKsDgBHu4Abpvd9L25+X/L6Bnz9mnnTy9VLBpRHrIhuIqdlJ+sZZ03XrmdO0vaxJ/95yWC9sOayDtW2Dut4nJfX6pKReP/vPdhXkObqCsylZSSGuHAAAAAAAAECoxHxYJknLly/v91yLxaKkpCSNGTNG8+fP17nnnquJEyeGrzgAGGm8HmnHvwMh2aEPB36+2SbNuURaeJM07uSodpH1l2EYmj3WodljHfruOTO0+VCD/r05EJxVNDoHdc3C0kYVljbqV6/s1OSsRJ09O0efmp2jE8anyWyK/f8mAAAAAAAAwGhh+Ie61mEYmUwmGYYhr9cb7VIwTBQVFamgoKDrdWFhoebMmRPFioBhpL1R2vgX6f0/SQ0lAz/fkSedfIN00rVSUlbo64sCn8+vjQfr9NLWcr1UWK7S+sF1nHWXmWTTypnZOnv2GC2Zmql429D35wQAAAAAAACOh8/PezcsOssAAGFUVyxteCCwH5mraeDnT1oW6CKbcb5kHln/t2IyGVqQn64F+en6f5+epa2lDXqpsFwvF5Zrf/XA9ziTpOpml5786JCe/OiQ7FaTlk7L0tmzc7RyZrYyk+JC/A4AAAAAAAAAHM/I+lQTANB/Bz+U3rtvcPuR2ZKk+VcGQrLsmeGpL8YYhqF541I1b1yqvnvODO2saNJLWwPB2c6KQYSMktrdPr22rUKvbauQYUgLJqTp7Nk5Ont2jiazzxkAAAAAAAAQETEdlu3fvz/aJQDAyOLzSTtflN69Vzq0YeDnZ0yTTvlSICizO0Jf3zBhGIZmjnFo5hiH/vvs6dpX1dzVcba1tGFQ1/T7pY+K6/RRcZ1+8dKOwD5ns3K0Yma2FuSnyWo2hfhdAAAAAAAAAJBiPCzLz8+PdgkAMDJ4XNKWf0jv/k6q2T3w8yefIS36mjTlTMlEaHO0yVlJ+uqKqfrqiqk6WNuqV4oCe5x9UlKnwe4Muq+qRfdX7dP9b+9Tst2iZdOztHJGts6YkaUMlmsEAAAAAAAAQiamw7JQ+vGPfyzDMHTHHXdEuxQAiBxnU2Avsvd+LzUdHti5Zps09zLptK9IYwqOPx+SpPHpCVq1dLJWLZ2sqian3tgeWGbxnT3VcnoGuNxlh6Z2j17cUqYXt5TJMKT541K1cma2Vs7M1pyxDhmGEeJ3AQAAAAAAAIweht8/2O+8Dy8mk0mGYcjr9Ua7FIRRUVGRCgqOfKhfWFioOXPmRLEiIEpaqqUP/iRteEBqH+CygPHp0sJVgZ/knPDUNwq1ujxat7tar22r0JodlaptcYXkutnJcVoxI1srZmZrybRMJcWNmu/BAAAAAAAAYAD4/Lx3fKIGACNJfYm0/v+kT/4iedoGdm7m9EAX2bwrJFtCeOobxRJsFp0zZ4zOmTNGXp9fHxfX6fWOrrP91S2Dvm5lk1P/+Oig/vHRQVnNhk6dlKEVM7O1YkaWJmUm0nUGAAAAAAAAHAdhGQCMBLX7pHX3SJv/Lvk8Azt30vLAfmRTz2I/sggxmwydMildp0xK1/+cN1N7q5r16rZAcLbpYP2g9zlze/16Z0+13tlTrZ+8II1Li9fy6VlaNj1Li6dkKNluDe0bAQAAAAAAAEaAqIRlZrM5GrcFgJGnere07jfSlicl/wCWmTVM0pzPSqffKuXOC199OC7DMDQ1O1lTs5P1lTOmqrKpXWu2V+qNHZV6d0+1Wl2DXz74UF2b/vpBif76QYksJkMn5adp+fQsLZ+epdm5DplMdJ0BAAAAAAAAUQnLRsk2aQAQPpXbpbd/LRU9I/l9/T/PYpdO+IK0+L+k9Enhqw+Dlp1s15WnTNCVp0yQ0+PVB/tqtWZHpd7cWanimtZBX9fj82vD/lpt2F+rX72yU5lJNi2dFgjOlk7LVEZSXAjfBQAAAAAAADB8RG0ZRsMwIhaaRfJeABBW5Vult38lbXte0gD+XotLkU5ZJZ16i5SUHbbyEFpxFrOWdSyjeKd/tvZVt+jNHZVas6NSG/bXyuMb/P+3VTe79OzGUj27sVSGIRWMTdGy6ZlaPj1bJ05IldXMkpwAAAAAAAAYHaK6Z9ny5csjdq+1a9dG7F4AEHIV26S3fi5t//fAzksaIy36qrTgOsnuCEtpiAzDMDQlK0lTspK0aulkNbW79c7u6o6usypVNzsHfW2/X9pa2qCtpQ36/Zt7lWgz67TJGTp9aqaWTMvUtOwkGQZLNgIAAAAAAGBkimpY9uabb0bsXiYT35AHMAxV75He+oVU+LQG1EmWOkFa8k3phM9LFpbXG4mS7VadNzdX583Nlc/nV9HhRq3ZUak1Oyu15VC9htJQ3eLy6o0dgX3TJCkrOU5LpmZq8ZQMLZmWqdyU+BC9CwAAAAAAACD6ohqWAQB6UXdAWnu3tPnvA9uTLH2KtPRb0rzLJbM1bOUhtphMhuaOS9HccSm69axpqm1x6Z091Vq7s0pv765SVdPgu84kqarJ2bVkoyRNzkrUkqmZOn1qpk6bnKGUeP63BgAAAAAAgOGLsAwAYknDIentX0sb/yL5PP0/L3OGtOw70pxLJDN/tY926Yk2XTR/rC6aP1Z+v1/by5r09u4qrd1ZpY+Ka+X2Dm0fz31VLdpX1aLH3iuWyZDmjUvtCs9Oyk9VnMUconcCAAAAAAAAhF9UPlF9+OGHR8U9AaDfmiuldb+RPnpI8rr6f15OgbTs29Ksz0gsN4sgDMPQ7LEOzR7r0C3Lp6jF6dF7e2v09u4qvb2rSgdqWod0fZ9f2nSwXpsO1uu+N/fIbjXplEkZOn1KhhZPydTssQ6ZTex3BgAAAAAAgNhl+P1D2dUEiC1FRUUqKCjoel1YWKg5c+ZEsSLgOJxN0vr7pPX/J7lb+n/emLnS8u9LM84nJMOQFNe06O1dVVq7q0rr99ao1eUN6fWT7RadOildp03O0GmTMzQrl/AMAAAAAAAgGvj8vHes1QUA0eBxSR8/Iq39pdRa3f/zsmZJK/5HmnkhIRlCIj8jUdcsStQ1iybK5fFp08F6vbunWu/uqdbGg/Xy+ob2nZqmdo9e316p17dXSpJS4q06pSM8WzQ5QzPHJMtEeAYAAAAAAIAoGtZhWWVlpaqrq9XQ0KCUlBRlZmYqOzs72mUBQO98Pmnbs9IbP5Hq9vf/vPQp0hn/IxV8VjKxHxTCw2Yx6ZRJ6TplUrr+++zpamp3a8P+Wr3TEZ7tqmge8j0a2tx6bVuFXttWISkQnp06KV2LpgQ6z2bkEJ4BAAAAAAAgsoZdWPbyyy/rscce01tvvaWKiopjxnNycnTGGWfommuu0XnnnReFCgGgF/vekl67Uyrb1P9zUicEllucd4VkHnZ/ZWOYS7ZbdeasHJ05K0eSVNnYrnf3Vuud3TV6d0+1yhvbh3yPhja3Xt1WoVc7wrO0BKtOnZTRFZ5Ny04iPAMAAAAAAEBYDZs9y7Zu3arrr79eGzdulCT1VbZhBD5UO/HEE/Xwww9r7ty5EakR0ceaq4hJ5YXSa3dIe9f0/5zksdLy70gnXC1ZbOGrDRgkv9+vvVUtWr+3Wu/srtZ7+2rU1O4J+X3SE21aODFNCycGOt5m5zpkMbMEKQAAAAAAwEDx+XnvhkWbwpNPPqkbbrhBbW1t8vv9MgyjKxDrjd/v1yeffKLTTjtNq1ev1pVXXhmhagGgQ3OV9OZPpU8ek/y+/p0TnyYt/ba0cJVktYe3PmAIDMPQ1OwkTc1O0hcXTZTH69PW0ga9u6da7+yp1icl9XJ5+vm/+z7Utrj0SlGFXikKdJ4l2sw6KT9Np0xM18JJ6TphfKrsVpYmBQAAAAAAwODFfFi2Zs0aXXPNNXK73V0hWX+a4TrDtLa2Nl177bXKysrSmWeeGe5yAUDyOKX3/yi9/WvJ1dS/cyzx0mlflk6/VYpPDWt5QDhYzCadOCFNJ05I09dWTlO726tNB+v13t4avb+vRhtL6uXyDj08a3F5tW53tdbtrpYk2cwmzRuXooWT0nXKxHQtmJgmh9065PsAAAAAAABg9IjpsKyxsVFXXHGFPB5PV0g2Y8YMXXDBBZo/f76mTJkih8Oh+Ph4tba2qqmpSXv27NHmzZv173//W7t375ZhGHK73bryyiu1d+9eORyOaL8tACOV3y9tf1567QdS3YH+nWOYpBOvkc74vuQYG9bygEiyW806bXJg3zFJand79UlJnd7fV6v399Zo48E6ub1DXwna5fXpo+I6fVRcpz9qrwxDmjXGoVMmpWvhxHQtnJSm7GS6NAEAAAAAANC7mN6z7I477tDPfvYzGYahmTNn6ne/+53OOuusfp//8ssv65vf/KZ27NghwzB022236Sc/+UkYK0a0seYqoubwJumV26Tid/t/zswLpDN/IGXNCFtZQKxqc3WGZzV6b2+NNh+qD0l4FsykzEQtnJimBfmBn8mZSTKZ+l7OGQAAAAAAYKTh8/PexXRYlpeXp/Lyci1cuFCvvvrqoLrCGhsbdeaZZ+rjjz/WmDFjdPjw4TBUiljBH3ZEXHOl9PqPpE1/ldTPv07Hnyad/WNpwqlhLQ0YTlpdHn1SXK/39lXr/X212nywXh5feP6Jkppg1UkTAsHZSRPSNH98ihJsMd1sDwAAAAAAMGR8ft67mP1kaMuWLSorK5PZbNbjjz8+6OUTHQ6H/vrXv2r27NmqqKjQli1bNG/evBBXC2DU8Xqkj1ZLa34qORv7d07aROnsn0izLpQMulqA7hJsFi2Zlqkl0zIlSS1Ojz4urtOHB2q1YX+tNh2sl9Mz9D3PJKm+1a01Oyq1ZkelJMlsMjQ719HVebYgP01jU+NDci8AAAAAAADEvpgNywoLCyVJy5Yt09SpU4d0renTp2v58uV66623VFhYSFgGYGiK35P+822porB/823J0vLvSKfeIlniwlsbMEIkxlm0bHqWlk3PkiQ5PV4VljZow/46bdhfo4+K69TU7gnJvbw+v7aWNmhraYMeWX9AkpSbYtdJ+Wla0NGBNnusQ1azKST3AwAAAAAAQGyJ2bCsqqpKkjR37tyQXG/u3Ll66623uq4LAAPWXCm9dqe0+W/9m2+YpJOulVb8PykpK7y1ASNcnMWsBfnpWpCfri+fMUVen187y5u6Os82HKhVVZMzZPcra2jXi1vK9OKWMkmS3WrSvHGpOjn/yPKNaYm2kN0PAAAAAAAA0ROzYVl7e7skKT4+NMsgdV7H6QzdB2kARomuJRd/Jjkb+nfO5DOkc34u5bDmLxAOZpOh2WMdmj3WoWsXT5Tf71dxTas2HKjVhx3hWXFNa8ju1+72BUK5/bVdxyZnJuqE8ak6YUKqThifqpljHLJZ6D4DAAAAAAAYbmI2LMvKCnRhlJSUhOR6ndfJzMwMyfUAjBIl70svfluq2Nq/+RlTpU/9TJp+DvuSARFkGIYmZiZqYmaiLj95vCSpsrFdGw7U6qMDdfq4uE7byhrl9flDds991S3aV92iZzaWSpJsFpMKxjp0wvg0nTAhVSeOT9W4tHgZ/F0AAAAAAAAQ02I2LJswYYIk6ZVXXpHb7ZbVah30tZxOp15++eUe1wWAPrXVS6/9QPrk0f7NtyZKy78rnfYVycLSbEAsyHbYdcG8sbpg3lhJUqvLo80HG/RJSSA8+7i4Tg1t7pDdz+Xx6ZOSen1SUi+9GziWmWTT/HGBzrMTJ6Rp3vgUOeyD/zcNAAAAAAAAQi9mw7LTTz9dcXFxqqur05133qmf//zng77WnXfeqbq6Otntdi1ZsiSEVQIYcfx+adu/pJe+JzVX9O+cOZcEuslS8sJaGoChSbBZtGhKhhZNyZAk+Xx+7atu0cfFtV3h2d6qlpDes7rZpTd2VOqNHZWSAg2nU7KSAss3ju9cvjFZFjPLNwIAAAAAAERLzIZl8fHx+tSnPqV///vf+uUvfymr1ao77rhDFkv/S/Z4PLrzzjt19913yzAMnXPOObLb7WGsGsCw1nAosOTirpf6Nz9jmnT+r6QpK8JbF4CwMJkMTc1O0tTsJF2xMNB5Xtfi0saDgeDsowN12nyoXu1uX8ju6fdLeyqbtaeyWf/8+JAkyW41aW5eik4Yn6r541M1fxzLNwIAAAAAAESS4ff7Q7d5R4ht3LhRJ598ctfrSZMm6ctf/rLOP/98zZw5M+iHSH6/X9u3b9cLL7ygP/3pTyouLpbf75fJZNLHH3+s+fPnR/ItIMKKiopUUFDQ9bqwsFBz5syJYkUYFnxe6cPV0hs/klzNx59vTehYcvGrLLkIjHBur0/byxq7Os8+Ka7T4Yb2sN83NcGquXkpmj8uVXPHpWjeuBSNcdgJ0AAAAAAAwKDx+XnvYjosk6RvfOMbuvfee2UYhvx+f9eHRHFxccrPz5fD4VB8fLza2trU2NioAwcOyOVySQoEZ5JkGIZuvfVW3XPPPVF7H4gM/rBjwCq2Sf/+unTow/7Nn32xdM7PpJRxYS0LQOw6XN+mjSX12nSwTpsO1mtraUNIu896k5Ucp3l5KV3h2bxxqcpMigv7fQEAAAAAwMjA5+e9i9oyjCtXrpRhGHrjjTf6nHfPPfdo7969evHFF7sCM0lqb2/Xzp07JanH8e46j19wwQX6zW9+E/o3AWD48jilt38lvfNbyec5/vy0idKn75Gmnhn20gDEtrGp8RqbGq9Pz8uVFOg+21nepI0H67WpI0QL9d5nklTV5Oyx/5kkjU2xd4RnqZo3LkVz81KUmkDHKwAAAAAAwEBELSx76623+rWUkMlk0nPPPafvf//7XYFXsPOOPtYZnn33u9/Vz3/+c5YtAnDE4U3Sv74sVW47/lzDLC3+mrT8+5ItIeylARh+rGaTCvJSVJCXomtOy5ckNbS5teVQZ3gW+KlpcYX83ocb2nW4oV2vFFV0HcvPSNDcvJSO8CxVc/IcctitIb83AAAAAADASBG1sGwgTCaT7r77bl1xxRX6xS9+oeeff14eT++dIBaLRZ/5zGd022236cQTT4xgpQBimtctvf1rad2v+9dNlnuCdNG9Ui57HQIYmJR4q5ZOy9LSaVmSAl/iOVTX1qP7rPBwo1ye0C/fWFzTquKaVr2wpazr2MSMBM0Zm6I5eQ4VjE3RnLEOZbCEIwAAAAAAgKQYCMtuuukm3XDDDVq0aNFx5y5YsED//Oc/1dzcrHXr1mnz5s2qrq5WY2OjHA6HMjMzNX/+fC1dulRJSUkRqB7AsFFRJD17i1S+5fhzrQnSiv8nnXqLZI76X5MARgDDMDQ+PUHj0xN00fyxkiSXx6cd5Y3adLBeG0vqteVQvfZVtygcu8keqGnVgZpWvbj1SICWm2LXnLEOzRkb6IqbM9ah3BQ73fgAAAAAAGDUMfzBNvuKAJPJ1OPDmBkzZmjVqlW65pprlJWVFY2SMAKwQSGO4fVI638nvXWX5O3HEmhTzwrsTZaWH/7aAOAoTe1uFZY2amtpvTYfatDWQw0qqW2N2P3TE23dArTAY356gkwmAjQAAAAAAIY7Pj/vXdTDsjFjxqisLPAtZ8MwZLFYdOGFF+qGG27Qeeedx7ebMSD8YUcP1bsD3WSlHx1/bkKmdO5d0txLJf7eARBD6ltd2nKoQVtLG7TlUL22HmrQ4Yb2iN0/Kc6i2WMdmjM2sIRjQV6KpmQlymI2RawGAAAAAAAwdHx+3ruoh2Vut1v/+c9/tHr1ar344ovyeDxdAVlubq6uu+46XX/99ZoyZUo0ysQwwx92SJJ8PumDP0lv/Ejy9OMD5dkXS5/+jZSYGfbSACAUKpvaVVjaoC2HOn/qVd3cj+7ZEImzmDQzNxCgzc51aFauQzPHJCsxjqVrAQAAAACIVXx+3ruoh2Ver7frWGVlpR599FE9/PDD2rFjR6DAjuBs2bJlWrVqlT73uc/JbrdHo2QMA/xhhxoPB7rJ9q89/tz4tEBIVvC58NcFAGHk9/tV3tjeFZx1dqLVt7ojVoNhSPnpCZrVEZ4FfpKVlxrPSgEAAAAAAMQAPj/vXUyFZd299957evDBB/XUU0+publZUiA4czgc+vznP6/rr79eJ598ciRLxjDAH/ZRbvu/pef/S2qrO/7c6edJF/5OSs4Jf10AEAV+v1+l9W0qLG1U0eEGFR1uVGFpgyqbnBGtw2G3aGZuZwdasmblOjQ9J1l2qzmidQAAAAAAMNrx+XnvohaWFRcXS5Ly8/P7nNfS0qInnnhCDz30kN577z1JR7rNCgoKtGrVKn3hC19Qenp6eAvGsMAf9lHK1SK9/D/SJ48ef25cinTeXdL8q9ibDMCoVNnUrqLDjSoqbQgEaWUNOljbFtEaTIY0OSupq/tsVkeYlp0cRxcaAAAAAABhwufnvYtaWDYYO3fu1IMPPqi//OUvqqyslBQIzmw2my6++GLdcMMNOvvss6NcJaKJP+yj0OFN0tOrpJrdx587ZaV00X1SSl7YywKA4aSh1a2isgYVlTaqsKMLbW9VsyL9r8T0RFsgPBtzZCnHKdmJirPQhQYAAAAAwFDx+XnvhlVY1snj8eiFF17Q6tWr9fLLL8vr9XZ9C3n8+PG6/vrrdd111x23aw0jD3/YRxG/X3r/D9Jrd0q+4+zJY02UzvmZtOA6uskAoJ9aXR5tL2tS0eEGFZYGArRdFU1yeyP7T0ezydDkzERNH5OsmTnJmjEm8DM+LUEmE3+nAwAAAADQX3x+3rthGZZ1V1ZWpkceeUQPP/yw9uzZIynQbWYYhlauXKlVq1bp4osvls1mi3KliAT+sI8SrbXSc1+Vdv7n+HPzTpY+92cpfXL46wKAEc7p8Wp3RXNHgNao7WWN2lHepGanJ+K1JNjMmpaTrBk5SZoxxqGZY5I1PSdZWclxEa8FAAAAAIDhgM/Pezfsw7Lu3n77bT344IN65pln1Nra2tVtlpaWpquvvlrXX3+95s+fH+UqEU78YR8FDm6Q/nmD1HCw73mGSVr6bWn5dyWzNTK1AcAo5PP5daiuTdvKAuHZ9rJGbS9vjPg+aJ0yEm2a3tGBNnNMsqaPSdaMnGQlxlmiUg8AAAAAALGCz897N6LCsk5NTU36zW9+o5/+9Kfy+XySjnSbeTyR/+YzIoc/7COYzye993/SGz+WfMf5c5wyXvrsA1L+4sjUBgA4RmO7WzvLm7S9rFHbDgdCtJ0VTWp3+6JSz/j0eM3oWsbRoRk5yZqclSir2RSVegAAAAAAiDQ+P+/diPqKrc/n04svvqgHH3xQL730kvx+f1d32QjMBIHRo7VWevZmaferx59b8Dnp0/dI8alhLwsA0DuH3aqFE9O1cGJ61zGvz6/91S1HOtDKGrW9rEnlje1hr+dgbZsO1rbp9e2VXccsJkOTMhM1LSdJ07KTNS0nSdNzkjUxI1E2CyEaAAAAAACjxYgIy/bs2aPVq1fr0UcfVUVFhaQj4VhnWAZgmDq8SXryGqm+pO951gTp/F9LJ3xe4s89AMQks8nQ1OwkTc1O0oXzx3Ydr2txBTrQOsKz7WWN2lPZLJc3vF1oHp9fuyubtbuyWVJ5jzonZiRoek6ypmUnaWpOsqbnJGlSZqLiLOaw1gQAAAAAACJv2IZl7e3teuqpp7R69WqtW7dOUs/use4hmd/vl8Vi0fnnnx/xOgEMwcbHpRe+KXmdfc/LmiVd9oiUPTMiZQEAQist0abFUzO1eGpm1zG316cD1S3aUd6kneVN2lkReCypbQ17PV6fX3urWrS3qkUvdTtuNhnKz0jQtOwjnWjTsgPLOdqthGgAAAAAAAxXwy4s+/jjj7V69Wr9/e9/V2Njo6TgXWSdx6ZNm6YbbrhB1157rcaMGRP5ggEMnLtdeum70iePHn/uiddI590t2RLCXxcAIGKsZpOm5SRrWk6yLpx/5HiL06Pdlc3aWd6oHeVN2tURolU3u8Jek9fn176qFu2ratErRRVdx02GlJ+RqKnZSZreEaB1dtARogEAAAAAEPuGRVhWX1+vxx9/XKtXr9aWLVskBe8i6zyWkJCgSy+9VDfeeKOWLl0a+YIBDF79wcCyi4c39j3Pmihd+L/SvMsjUhYAIDYkxll0wvhUnTA+tcfx6mandpU39ehE21XRpFaXN+w1+fzS/uoW7a9u0WvbjoRohiFNSE/oCs+mZCVqSnaSpmQlKSXeGva6AAAAAABA/0QtLFu5cqUMw9Abb7zR65w1a9Zo9erVevbZZ+V0OvtcZlGSFi5cqBtvvFFXXXWVkpOTw1c8gPDYv0568otSW23f87JnS5c/JmVOi0xdAICYl5kUp8ypcT2WcvT5/DpU19axhGNjV5C2r7pFXp+/j6uFht8vFde0qrimVa9vr+gxlpUcFwjPsgLh2dTsJE3JTlKuwy6Tib03AQAAAACIpKiFZW+99VaPwKtTaWmpHnnkET300EM6cOCApL6XWczIyNDVV1+tG2+8UQUFBeEvHEB4fPig9NL3JJ+n73lzL5Mu/J1kS4xMXQCAYctkMjQhI0ETMhJ09uycruNOj1f7q1u0u6JZuyuatLuyWbsrm7U/QiGaJFU1OVXV5NT7+3p+QSTeatbkjhBtakcX2pTsRE3MYF80AAAAAADCJSaWYfR6vXr++ef14IMP6tVXX5XP5+uzi8xkMunss8/WjTfeqIsvvlhWK8vYAMOW1x3Yn+yjh/qeZ7JI5/xcOuVLgXWtAAAYpDiLWTPHODRzjKPHcZfHpwM1LdpV0aTdFc3aU9msXRVN2l/dIk+EQrQ2t1dFhxtVdLixx3GTIY1PT+joROvoSMtO0tSsJKUl2iJSGwAAAAAAI1XUw7LvfOc7+stf/qKqqipJfXeR5efn6/rrr9f111+v8ePHR75YAKHVUhNYdrH4nb7nJY2RLn9UmnBaZOoCAIxKNotJ03OSNT2n53Lebq9PB6pbAh1oFc3aVdmkPRXN2lfdLLc3MiGar9uSjmt29BxLT7T1WNJxclaiJmUmanx6gqxmU0TqAwAAAABgOIt6WHbPPff02UUWFxeniy++WDfeeKPOOuusaJQIIBwqiqS/XynVl/Q9L/906dKHpeScvucBABAmVrNJ03KSNS0nWZp75Ljb61NxTav2VDZ1hGiBZR33VbXI5fVFrL7aFpdqW1z68EBdj+MWk6EJ6QmalBkIzyZ1hGiTM5OU44gLuiQ6AAAAAACjUdTDMr/fH7SLbN68ebrxxht19dVXKy0tLVrlAQiHXa9I/7xBcjX3Pe+ULwWWXjSz1CoAIPZYzSZNzQ7sLXZut61zPV6fSmpbOzrRAnui7atq0d6qZrW6vBGrz+Pza191i/ZVtxwzlmAza2JGoiZnJWpyV5CWpEmZiUqJ5/93AQAAAACjS9TDMsMwugKylJQUXXXVVbrxxhu1YMGCKFcGICw2/DmwR5m/j2/cm6zSp38tLbguYmUBABAqFrNJk7OSNDkrSefMGdN13O/3q6yhXXurmrW3sll7OwK0PZXNqmxyRrTGVpdX28oata2s8ZixjERboAOtW4A2OStRE9ITZLeaI1onAAAAAACREPWwTJKWL1+uG2+8UZdeeqnsdnu0y4m4kpISvf/++youLpbL5VJ6errmzJmj0047TTZb5Dds93q9KiwsVGFhoaqrq9Xc3CyHw6GMjAzNnz9fs2bNksnE/hcYIJ9Xeu0H0nv39T0vIUO64nEpf3Fk6gIAIEIMw9DY1HiNTY3X0mlZPcYa292B7rPKZu3pCtOaVVzTKo8vMvuidappcammxaWPinsu62gYUl5qfMdSjomanJXUtcTj2NR4mU0s6wgAAAAAGJ6iHpbt2rVLU6ZMiXYZUbFmzRrdeeedeuedd4KOp6Sk6Etf+pJuv/12ORyOsNbS0tKif/3rX3rqqaf02muvqbW1tde5qampuuaaa/T1r39dU6dODWtdGCFcrdIzN0k7Xuh7Xk6BdOXfpLT8yNQFAECMcNitOmF8qk4Yn9rjuLtjScc9HeHZ3sqWrs60JqcnojX6/dKhujYdqmvTut3VPcZsFpMmpCdoYkaC8jMSNTEzURMzEjQxI1G5KXZZzHzRCgAAAAAQuwx/5xqIEWYymWQYhrzeyO3bECt8Pp++/e1v67e//W3XsRkzZmjJkiVKS0vTrl279NJLL8ntdkuSxo8fr+eee04nnnhiyGtpbGzUPffco/vuu081NTVdxx0Oh5YuXapp06YpISFBVVVVWr9+vYqKirrm2O12/fSnP9W3vvWtkNc1WEVFRSooOLJpSGFhoebMmRPFiqDmSunvV0qlH/c9b+YF0iX3S3FJkakLAIBhzO/3q6rJGehC6+hI21sV2BvtcEObovMv/OCsZkPj0xKU3xmkZSR0hGmJykuLl5UgDQAAAAAigs/Pexf1zrLR6Mtf/rIeeOABSZLZbNbvf/973XTTTT2WNiwpKdHll1+uDz74QAcPHtTKlSv19ttva+7cuSGtZf369frRj37U9dpsNuv222/Xt7/9bSUlHRtavPnmm7ruuutUUlKi9vZ2ffvb39bhw4f1m9/8JqR1YYSo3i09/lmpvqTveUv+W1r5A4nlPQEA6BfDMJTtsCvbYdfiKZk9xtrdXh2oadH+qhbtq27R/m4/tS2uiNfq9vq1rzpQi1TVY8xsMjQuLb4rROv+OD49XnEW9kgDAAAAAIRf1MKyhx9+OFq3jqqHH364KyiTpD/96U9atWrVMfMmTJigV199VQsXLtSuXbtUX1+vz372s9qyZYvi4+PDVt8DDzygG264odfxFStWaP369TrxxBNVVRX4sOOee+7RySefrKuuuipsdWEYKv1Y+utlUmtN73MMs3TBPdKC6yJWFgAAI53datbMMQ7NHHPsMt71ra4e4dm+rkCtWe1uX8Rr9fr8Kq5pVXFNq94+asxkSGNT4zUxI1H5HUs65nd0pU1IT5DdSpAGAAAAAAiNqC3DOBo1NzdrypQpqqyslCQtWbJE69at6/OcV155Reeee27X61/84hf6/ve/H7KaXn75ZZ133nmSpDPOOENvvvlmv8575JFHdP3113e9zsvLU3Fxsczm6H5oQRtpjNi7Rnriasnd0vscW7J0+SPS1LMiVhYAAAjO5/Oroqk9aDdaSW2rvL7Y+5UhN8Wu/IwETUjv7EQLPJ+QnqC0BKsMw4h2iQAAAAAQU/j8vHcswxhBv/71r7uCMkn65je/edxzzjnnHM2ePVvbtm2TJP3yl7/UzTffrLS0tJDXF6zDrTef//zn9bWvfU0tLYEwpLS0VO+8846WL18e8rowzGz9p/TsLZLP3fscR570+SelMQW9zwEAABFjMhnKTYlXbkq8Fk/tuayj2+tTSW2r9ld1dKN1dKLtr25RRaMzShVLZQ3tKmto1/v7ao8ZS46zHAnPMhI0Pj1B+R2vx6bGy2Zh6WcAAAAAwBGEZRHi9/v15z//uet1amqqPv3pT/fr3Kuvvlq33XabJKm+vl7/+Mc/dMstt4S8xiVLlvR7rs1m04IFC/T220cWzCEsgz54QHrpu5L6+Pb5mHmBoMyRG7GyAADA4FnNJk3JStKUrGP3s212enSgukUHalpUXNOqA9UdjzUtqmyKXpDW5PRoW1mjtpU1HjNmMqTclPiurrTOUK3zdUo8XWkAAAAAMNoQlkXIu+++q8OHD3e9Xrx4sWw2W7/OPeOMM3q8/uc//xmysOyUU07pWnpxwoQJAzo3N7dn2FFeXh6SmjAM+f3Smz+X3r6773mTV0hXPC7FHfthGwAAGH6S4iwqyEtRQV7KMWMtTo9Kals7wrRWFdccCdXKGtqjUG2Azy+V1reptL5N6/ceu7dqst3SFZ51X9oxPz1Rual2Wc10pQEAAADASENYFiHPP/98j9cLFy7s97knnniirFar3O7AsnZr165VY2OjHI5jN20fqPT09GPCuMHy+SK/KTxigN8vvfx96YM/9T2v4HPSxX+SLP0LiQEAwPCWGGfRrFyHZuUe+2/Wdre3W5DWLUyrbtXhhjZFc1flpnaPig43qujwsV1pZpOhsan2rgBtQnqixqfHa1xagsanxSs90UZXGgAAAAAMQ4RlEbJx48Yer2fNmtXvc+12uyZPnqydO3dKkjwejwoLC7V48eKQ1jhQVVVVPV5PmzYtSpUganw+6cX/lj5+pO95p9wsnXuXZOKb2AAAQLJbzZqek6zpOcnHjDk9Xh2sbevoRGvtsczjobpW+aIYpHl9fh2sbdPB2ja9q2O70hJsZo1LC4Rn49LiNb7zMT3wyBKPAAAAABCbCMsipKioqMfrcePGDej8vLy8rrCs83rRDsu2bt3a4/WnPvWpKFWCqPB6pOe/Jm3+e9/zVt4uLf22xAdDAACgH+IsZk3NTtLU7GOXbXZ5fCqtbwt0o1W36GBtm0pqW1RS26qS2la1u6O70kGry6tdFc3aVdEcdDw5zqK8jjCte0da5+tkuzXCFQMAAAAAJMKyiGhsbFRZWVmPY3l5eQO6xtHzd+zYMeS6huLjjz/u0Vm2ePFizZ49O4oVIaK8bumZm6SiZ3ufY5ikC34rLbguYmUBAICRzWYxaVJmoiZlJkozeo75/X5VNTtVUtPaFZ6V1LZ2va5sckan6G6anB7tKG/SjvKmoOMp8dagHWnj0xOUlxqvxDh+fQMAAACAcOC3rQiora095thA9xs7en5dXd2QahqqRx55pMfrO++8MzqFIPI8Tump66WdL/Y+x2SVLn1Imn1R5OoCAACjmmEYyk62KzvZrpMnph8z3uby6lBdq4q7hWkHa1tV3PHo9ER//92GNrca2txB90uTpPREW1cn2rhunWl5qfHKS4tXgo1f7wAAAABgMPhtKgKamo795mhcXNyArmG32497zUgpKyvTww8/3PX6kksuCcsSjJWVlcfsi3Y8e/bsCXkd6MbdLv3jamnPa73PsdilKx6Xpp0duboAAACOI95m1rScZE0Lsk+az9fRlVZ7JEw72BGoFde0qro5+l1pklTb4lJti0ubDzUEHU9LsCqvIzwbmxp4HJcWr7zUBI1NtSs90caeaQAAAAAQBGFZBAQLto4Ov44nlsKy73znO2ppaZEk5eTk6A9/+ENY7vOHP/xBP/rRj8JybQyCx3n8oMyaIF31hDR5eeTqAgAAGCKTyVCOw64ch10Lg3Sltbo8Hfujtaq4pqUrSCupbdWhuraY6EqTpLpWt+pa3SosDd6ZFm81a2yqXXlpCcpLtXd1pHWGaWMcdlnMpghXDQAAAADRR1g2TPn9/qjc96mnntJf//pXSZLZbNbf/vY3jRkzJiq1III8Lump6/oOymzJ0heekvIXRawsAACASEiwWTRjTLJmjDm2K61zr7RDdW062BGeBX4Cz0vr2uTyxkaY1ub2am9Vi/ZWtQQdN5sMjXEcCdHGptqVl5rQ1a2WlxqveJs5wlUDAAAAQPgRlkVAcvKxv1S3t7crMTGx39dob28/7jXDrbCwUDfeeGPX6/vuu08rV66MeB2IMK9HevpGaed/ep9jT5GuflYatyBydQEAAMSA7nulnTQh7Zhxn8+vyianDta1BgK02raO54HHw/Xt8vqi80W4o3l9fpXWt6m0vk06EHxOeqKtKzgb29WZFljucWxqvNISrCz1CAAAAGDYISyLgKSkpGOOOZ3OYRWWHT58WBdeeGHX8o933HGHbrnllrDe8ytf+Youu+yyAZ2zZ88eXXzxxeEpaDTyeaVnvyRtf773OfHp0hf/JeXOj1hZAAAAw4XJZGhMil1jUoIv8ejx+lTR5OzqSut6rGtVaV2byhraFCNZmqQj+6ZtLQ2+b1q81azcVLvGpsQrN8Wu3NR4jU2xa2xqoFMtNyVeiXH8GgoAAAAgtvBbSgSkpx/7S3FjY2PQ471pbOy570Ba2rHfWg2XqqoqnXXWWTpw4IAk6Vvf+pZ+/OMfh/2+2dnZys7ODvt90AufT3ruq1Lh073PiU+XrntBypkTuboAAABGEIvZ1NWpFYzb61NZfbsO1bUe6UjrFqhVNjkVpRXag2pze7WvqkX7elnqUZIcdovGpvYM03JT4rsCtTEpdsVZWO4RAAAAQOQQlkVASkqKxowZo/Ly8q5jpaWlmjhxYr+vUVpa2uP1zJkzQ1Ven6qqqrRy5Upt375dkvS9731Pd911V0TujSjy+aQXbpU2/733OfZU6YvPEZQBAACEkdVs0oSMBE3ISAg67vR4Vd7QrtK6tq4lFDufH65v0+H69pjZM61TY7tHjeVN2lHe1OuczCSbcju607oHa3kd3WnZyXGymE0RrBoAAADASEZYFiEFBQU9wrJDhw4N6Pyjw7KCgoKQ1NWXiooKnXnmmSoqKpIkff/739cvfvGLsN8XUeb3S6/dIX3yWO9z4hzSNc9KufMiVxcAAACOEWcxKz8jUfkZwZd49/n8qm526lBHeNYVqnUL15raPRGu+viqm12qbu59uUeTIeU47EG60zrDtXhlJNpkMrF/GgAAAIDjIyyLkBNPPFGvv/561+tt27b1+9z29nbt27ev67XZbA57WFZeXt6jo4ygbBR593+l9+7rfdyWJF39tJR3UsRKAgAAwOCYTIayHXZlO+w6aULwpdwb290qresI0zqCtO7hWmWTM8JVH5/PL5U1tKusoV0qqQ86x2Y2KSclTrmO+K5948Z0BGw5KYHHrCQ61AAAAAAQlkXMhRdeqF/96lddrz/88MN+n7tx40a53e6u18uXL5fD4Qhpfd2VlZVpxYoV2rlzpySCslHlk8ek13/Y+7g1QfrCU9L4UyJWEgAAAMLLYbfKkWvVrNzgv2M4PV6V1bfrcH0gROu+zGPno9sbQxundXB5fTpY26aDtW29zjEZUlZynMakxGuMI065KfFdoVr3R7uVPdQAAACAkYywLEJOP/105ebmqqysTJL03nvvyeVyyWazHffct956q8frSy+9NBwlSpIOHz6sFStWaNeuXZL6F5Rt2rRJ3/jGNyRJTzzxhMaMGRO2+hBG21+Q/n1r7+MWu3TVE1L+4sjVBAAAgKiLs5g1MTNREzN7X+qxqtmpQ3VtKmtoCwRrHY9lDW063NCuqhjsTpMCHWoVjU5VNDq1uY95aQnWrmUfAyFafI8OtTEpdiXHWWQYLPsIAAAADEeEZRFiMpm0atUq/eQnP5Ek1dfX68UXX9Qll1xy3HP/+te/dj1PSUnRFVdcEZYaS0tLtWLFCu3evVtS/zvK6uvrtXbtWkmBJSMxDB14R/rnDZK/l83fTRbpiselycsjWxcAAABinslkKMdhV47DLin4Uo9Oj1cVDc5AiNbQpsMdQVogWAs8r291Bz03FtS1ulXX6taO8qZe5yTYzD260XK7nsd3HWMfNQAAACA2EZZF0He+8x396U9/UlVVlSTpt7/97XHDsldeeUVFRUVdr7/73e8qPT29z3Nqamr09NNPy+126+KLL1ZeXt5xazt48KBWrFihvXv3SmLpxVGlbLP096skbx/f9r34j9K0syNXEwAAAEaUOItZEzISNCEjodc5rS7PUSFat8eGdpXVt6nF5Y1g1QPT6vJqX1WL9lW19DrHajaUndyxb5qj8ydOOQ67sjsecxx2JcXxqzoAAAAQSfwLPIKSk5P185//XDfddJMkad26dVq9erVuvPHGoPObmpr09a9/vev1lClTupY77M3Bgwe1cOFCVVRUSJJuu+02rVu3TvPmzev1nJKSEq1YsUL79u2TJH3ve98jKBst6g5Ij18qORt7n3PuXdK8yyNWEgAAAEanBJtFU7OTNDU7Kei43+9XY7tHh+uDdad1Bmrtcnl7WS0hBri9fpV27PXWl0SbWTkpduUkdw/TjjzPSQ6Ea+ylBgAAAIQGYVmErVq1Su+//75Wr14tSbr55pvl9Xq1atUqmUymrnklJSW6/PLLu/YOS0lJ0dNPP62EhN6/iSlJf/zjH7uCMklqbGzU3Xffrccffzzo/OLiYq1YsUL79+/vOvbLX/5Sv/zlLwf9HjFMtNVLf71caqnsfc7Sb0mnfTliJQEAAAC9MQxDKfFWpcRbNSvXEXSO3+9XTYtLh+sDYVpFY7vKG9tV3rHUY0WjU2UNbWp3x26gJkkt/ehSk6TUBGtXcNajSy05sOxjjiNOmUlxsppNfV4HAAAAGO0Iy6LggQceUGJiou699155vV7dfPPNuueee7Rs2TKlpKRo9+7deumll+RyuSRJeXl5eu655zR//vzjXtvv9x9zzOfr/RfBhx9+uEdQhlHC65ae/KJUvbP3OSddK628I3I1AQAAAENkGIYykwIB0bxxwef4/X41tnlU1hjoRqtoaFdZQyBQ6wzWyhvb1dAWu3uodapvdau+1a2dFb3vpWYYUkZi3JGuNEdcjzAtOzmw9CP7qQEAAGA0IyyLApPJpN/97ne68MILdeedd2r9+vXauXOndu7sGVw4HA7ddNNNuuOOO5SSktKva99yyy1avXp1175oSUlJ+u53vxvy94BhzO+XXvymtH9t73NmXShd8NvAb9YAAADACGIYhlISrEpJsGrmmOAdalJgD7XuAVpZQ6BTrftjdbNTQb6vGFP8fqm62anqZqeKDve+/LrFZCgrOS6w3GNyz2AtyxGnrKQ4ZTvilJEYJzOhGgAAAEYYwx+sFQkRVVxcrPfee08lJSVyuVxKS0vTnDlztGjRIsXFxQ34etXV1Xr66afldrt18cUXa9y4Xr5SOQIVFRWpoKCg63VhYaHmzJkTxYpi0Lu/k177Qe/j+Uukq5+WrPbI1QQAAAAMQ26vT5VNTpU3tKm8IbDE49EBW2VTu9zekfNrt8mQMpPiAsFaciBMy3YceZ2VbO94ZE81AACAWMPn572jsywG5OfnKz8/P2TXy8zM1M033xyy62EE2fa89NqdvY9nTJOufJygDAAAAOgHq9mkvNR45aXG9zrH5wvso9bZjVbe0KbyxnZVNDpV0diuykanKpraVd8a+8s+SpLPL1U2OVXZ5FTRceY67BZlO+xdXWmd4VpX0OaIU1aSXY54iwxWtQAAAEAUEZYBo0Xpx9IzX5LUy7da49OlLzwpxadFtCwAAABgJDN1LG+YlRyngrzel9dvd3tV1RQI0DrDtMrGwJKPFR2BWmWjU81OTwSrH5rGdo8a25u1p7K5z3lxFlO3zrSObrXOMK3b64wkloAEAABAeBCWAaNBQ6n0tyslT1vwcbNNuvJvUvrkyNYFAAAAQJJkt5o1Pj1B49MT+pzX7PR0BGgdXWk9wrTA8/LGdrk8vghVPnROj0+H6tp0qK6X31c6mAwpPbF7V9qRx6xkuzKTbMpKjlNmcpyS4+hWAwAAQP8RlgEjnbtd+sfVUktl73M+8wcpf1HkagIAAAAwKElxFiVlJWlKVlKvc/x+vxra3F1LPVY0tquys2utoV0VTYGutcomp7y+4bOfms8vVTc7Vd3s1LayvufGWUzKTAoEZ4Ewzaasbq+7PybazARrAAAAoxxhGTCS+f3Sf74lHf6k9zln3CbNuyxyNQEAAAAIK8MwlJpgU2qCTTPGJPc6r/t+apVN7T3CtYpGpyo7ln6sbnZqGGVqkgLdaqX1bSqt77tbTZLs1sAykJlJxwZpWZ3dakmBJSETbHyMAgAAMBLxrzxgJPvoIWnj472Pz7tSWv7dyNUDAAAAIGZ0309N6n0/Na/Pr9oWVyA8a3KqqtGpquYj3WmVTU5VNQXCtXb38Fn+sVO726eDtW06WHv8YC3BZj4qWLN1BWmdj1lJgefxNnMEqgcAAEAoEJYBI1XJB9JL3+t9fPxp0kX3Siw3AgAAAKAP5m6h2pw+5vn9fjU5PYHgrKMzraorSDvSqVbV7FR9qzti9YdSq8ur4ppWFde0HnduUpzlyD5q3QK1wI9NGR2BW0aSTQksBQkAABBVhGXASNRYJj15jeTr5RfQ5Fzp8sckS1xk6wIAAAAwYhmGIYfdKofd2ueeapLk9Hi7QrSux45Ote7hWnWza1jtq9Zds9OjZqdHB/oRrNmtJmUkBkK0zI4ALSMpThmJR153PqYn2GQxmyLwDgAAAEYPwjJgpPG4pCe/KDVXBB83WQNBWXJOZOsCAAAAgA5xFrPGpSVoXFpCn/N8Pr9qW109OtW6L/vYuadadbNLzU5PhKoPvXZ3//dYk6S0BKsyunWoZSZ2hGsdoVpmkk0ZiYHXSXEWutYAAACOg7AMGGle/p50aEPv4+f/Shp/SuTqAQAAAIBBMpmMrqULZ8vR59w2l1fVzYFlHquaAiFaz0dX1+tWlzdC7yA86lrdqmt1a0/l8efaLCZlJtqUmRzoVOsK1RIDe651hmqZSXFKT7TJStcaAAAYhQjLgJFk8z+kjx7qffykL0onXx+5egAAAAAgQuJtZo1PT9D49L671SSpxenp6EgLBGlV3YK0zsfO5+1uXwSqDx+Xx6fDDe063NDer/kp8dYjHWtJPcO0zCSb0hMDoVpGok0p8VaZTHStAQCA4Y+wDBgpqvdIL/x37+N5J0vn/zpy9QAAAABAjEqMsygxzqL8jMQ+5/n9frW4vL10qjlV1eRSVbNT1U2BjjaXZ3gHa5LU0OZWQ5tbe6tajjvXbDKUlmBVeqKtI0CLO/I8yXbM8bQEK/utAQCAmERYBowEHqf0z+sldy+/zCRmBfYps8RFti4AAAAAGMYMw1BSnEVJcRZNyjx+sNbk9ASCtI7wrPqo5R+7jrW4RkSw5vX5Vd3sUnWzq1/zDSPQudbZmRYI0+K6ngcL2GwWwjUAABB+hGXASPDanVL5luBjhlm67FEpJS+yNQEAAADAKGIYhhx2qxx2q6ZkJfU51+/3q9npUU2zSzUtzo7AyRl43RwI02o6Xlc3O1XX6o7Quwgvv1+qb3WrvtWtff3oXJOk5DiL0pNsvQZs6UlHjmckxineZg7zuwAAACMRYRkw3O34j/TBH3sfP/MH0sTTI1cPAAAAAKBPhmEo2W5Vst2qicfpWJMkj9en2lZXR5gWCNiqmpyq6R6qdTyvbh7++6x11+T0qMnpUXFNa7/mx1vNQbrUjgRsaYk2pSdalZYQGHPY2XcNAAAQlgHDW8Mh6bmv9D4+ZaW0+OuRqwcAAAAAEHIWs0nZyXZlJ9uPO9fv96vV5e0I0I50pwWCNFfPgK3ZqdpWl/z+CLyJCGlze1Va36bS+rZ+zTcZUlpCR4iWYFNaYmCZyNSEztc9w7W0RJuS4ywyDAI2AABGEsIyYLjyeqSnb5La6oKPJ2ZLl9wvmVjfHQAAAABGC8MwlBhnUWKcRRMyEo473+vzq66ray2wBGR1k1M1XUGbq9tzp1pd3gi8i8jx+RUIEFv6t++aJFlMRo9wrWfYdlS41vGYYDMTsAEAEMMIy4Dh6u27pZL1vQwa0mcfkJKyI1oSAAAAAGB4MZsMZSbFKTMpTlLycee3u72qaXGptiNEq21xqbYjbKrt6Fyr7The0+JSU7sn/G8iwjw+v6qaAkth9pfNYlJ6gk2pCdauDrWucC3B2hGy2XqEbOy/BgBA5BCWAcNR8XvS2rt7H1/y39KUFZGrBwAAAAAwKtitZuWlxisvNb5f810eX1fnWiBAOzZg6368vs09opaF7OTy+FTe2K7yxvZ+n2O3mrp1q/UM0tISrUpNsCktIdDFltrxSAcbAACDQ1gGDDeuFulfX5bUy28P406RVtwW0ZIAAAAAAAjGZjEpx2FXjuP4+61JksfrU32bOxCgdQRptS3Ojo61owM2l+paXfL6RmC6Jqnd7dPhhnYdbuh/wGYzm5SSYFVaQs8wLaXj8cjxwPPO41YzWzgAAEY3wjJguHn9h1Ld/uBj9hTp0tWS2RrRkgAAAAAACAWL2XRkWcic48/3+fxqbHcfCdOCBGw9jre65PL4wv9GosTl9Q14iUhJSoqzdHWndX8M1r3Wedxht9DFBgAYMQjLgOFk31ppwwO9j190n5Q6IXL1AAAAAAAQRSaTodQEm1ITbJqSdfz5fr9fbW6valtcqmtxq7bVpbqOQK2uNfBY3+ru8bqu1SW3d2R2r3VqdnrU7PToUF1bv88xmwylxluDhmvdu9dSjwra7Fb2YgMAxB7CMmC4aG+Unvta7+MnfEGafVHk6gEAAAAAYJgxDEMJNosSbBaNS+vfOX6/X81OT9BwLRCouQPHOsYCx90jdnnITl6fXzUdy2FKLf0+L95qDhqidT6mxB8ZS40PLBWZEm9VnIWQDQAQPoRlwHDx2h1SQ0nwMUeedO4vIlsPAAAAAACjgGEYSrZblWy3akJGQr/O8fn8amr3BMK0Y7rXeoZrta2Bbra6Vpf8IztfkyS1ub1qa/AOaC82KRCyHQnTrEqNPxKupXR73T1gS02wKdFmZrlIAMBxEZYBw8Ge16WPH+l9/KL/C+xXBgAAAAAAos5kMgKBTYJVE5XYr3O8Pr8a24ItDenutkRkoJOrM1xraHOPioBNOhKylQ0wZLOYjCOhWmfX2lEB25HA7ci4I94qs4mQDQBGC8IyINa11UvP/Vfv4wuuk6aeGalqAAAAAABAGJhNhtISbUpLtEn92H9NOhKw1bcFwrP61sBebHUd3Wr1bYElITuP13csEdnm9ob3zcQQj8+v6maXqptdAz432W45pout6zHe1jNg6xbIsS8bAAw/hGVArHvlNqnpcPCx1AnSp34a2XoAAAAAAEBM6B6wTepnB5sktbu9augI2LqHaPVtHV1rLd1Cto4OttGwD9vRmto9amr36KDaBnSe3Wrq2bXWuXRkgk0p8VY57BY54o+Mdf444q2ymk1hejcAgL4QlgGxbPdr0qa/9j7+md9LccmRqwcAAAAAAAx7dqtZdqtZOQ57v8/x+/1qcnpU39m51tbZsdY9WHMfOd7qUn2LW01OTxjfSWxqd/tU7m5XeePAloyUpESbuStICxaoBY5bjgnZUuKtirPQ0QYAg0VYBsQqV4v0wjd7Hz/lZmnSssjVAwAAAAAARi3DMOSwW+WwWzUhI6Hf57m9PtW3utXQsSRkXbc91+o6j7cc2YMtMHd0LRXZXYvLqxbXwPdmkwIdbQ578I61YM+7/9itJhkGe7QBGL0Iy4BY9dYvpIaS4GPpk6Wz7oxsPQAAAAAAAANkNZuUlRynrOS4AZ3X7vZ27cdW39G51tDm7grUOpeM7HGs1aXG9tHXydap3e1Tu9upyibngM+1mU1yBOlaOzp06xHGdSwzmWgzE7QBGPYIy4BYVLZZeu8PvQwa0mf+INn6vxY5AAAAAADAcNK5VGT2AJaKlCSvz98tZDsqYOsI2Ro6Qrbuc+pb3fKMsj3ZunN5fapudqq6eeBBm8VkdARplqCdbA57IIQLPB7Zs63zOMtHAogFhGVArPF5pee/Lvl7WW7g5Buk/EWRrQkAAAAAAGAYMJsMpSXalJZok9T/Lxr7/X61uLwdwVkgUKtvCxKwHdXVVt86epeM7OTx+VXb4lJti2tQ58dZAl1tyfbeA7W+jtuthG0Aho6wDIg1H66WyjYFH0saw/KLAAAAAAAAIWYYhpLiLEqKsygvNX5A5zo9gZCtR8B2zLKRHctEtrnV2O7pGvOO4m62Tk6PT1VNTlUNYvlISbJZTH2Gasldzy3dlpI8MjfOwn5tAAjLgNjSXCWt+Wnv4+ffLdlTIlcPAAAAAAAA+hRnMSs72azs5IEtGdm9m62h2/5rje1uNbYded39J3Dco8Y2t1xeX5je0fDi8gx+CUmpc7+2QHiW3M+uNsI2YOQhLANiyet3Ss6G4GMzzpdmXRTZegAAAAAAABAWQ+lm8/v9anf7egnTgr9ubD/yvN1N0NYpsF+bS9XNg1tG0mo2jgnUku0WJcd1PNo7HwPPu4K5bmNWsynE7wrAQBGWAbGi5ANp01+Dj1kTpPPulviWCgAAAAAAwKhnGIbibWbF28wakzKwjjbpyNKRPcK0Nk/QbrbOeZ1zW1yje4+2o7m9ftW0uFQzyD3bJMluNXUL1TpCt6NCtqODNwI3ILQIy4BY4PNK//lW7+PLviOljo9cPQAAAAAAABixBrt0pCS5vb6jOtY8x3aytbrV5AwEcJ3LSnbOY5+2Y7W7fWp3D37fNkmKt5qPCdeCBW5Hh2zd51gI3DCKEZYBseCTR6XyrcHHMqZKi74W2XoAAAAAAACAIKxmkzKS4pSRFDfgc/1+v9rc3qNCtGNDtb6Oewjbgmpze9Xm9qoyhIFb55KSjs5wLS54p1tKx7ykOAI3DF+EZUC0tdVLa37a+/h5d0sWW8TKAQAAAAAAAMLBMAwl2CxKsFkGtXxkX2FbU/vxg7YGwrY+hSJwS7CZu4K0pK5wzdKxP59VSR3hW1KcRUkdj52hW9cxm0UmE9vRILIIy4Boe/tXUmtN8LFZF0lTz4xsPQAAAAAAAEAMCkXY1u72DbqrrbHdLbeXsK0vrS6vWl1eVTQOPnCT1BGudQRt9iPPkzsCt55B3JFjjm7zEwndMACEZUA01eyVPrg/+JjFLp3zs8jWAwAAAAAAAIxQhmEo3mZWvM2sHEeIwrauIK3jseN5U7tbTT0eA89bXN4wvLORp9npUbPTo/LGwV/DMKQk25HwLKnbcpJBg7iObrgku6VjyclACJdgNRO6jQKEZUA0vXqH5HMHH1v8dSl1QmTrAQAAAAAAABDUUMM2SfL6/GpuD3StNXV7PDpc6y1wa2x3q5XArV/8fqnJ6VGT0zOk63SGbt3DtaTOfdviggRx3Zae7Ox8S7ZblGAzyzAI3WIVYRkQLfvXSTtfDD6WnCudfmtk6wEAAAAAAAAQVmaToZQEq1ISrIO+hsfrU7PTc1TYFixw6+xyO3aMwK3/eoRuDYO/ztGdbolx3fdz6xbEHf28q9st0OmWGGdWnMUcujcISYRlQHT4/dJrP+h9/Mw7pbikyNUDAAAAAAAAYFiwmE1KTbApNcE26GsEC9wa247qZHMGngcL3BrbPGpzE7gNRKg63STJZjb1CN1uO3+mlk7LCkGVoxdhGRAN2/4lHf4k+NjYE6V5V0S0HAAAAAAAAACjRygCN7fXp+b2ozvcAo+de441trvV3PG6qd0TmO/0qNl5pCPO6/OH8J2NDi6vT7UtLtW2uAKvPb4oVzT8EZYBkeZ1S2/8uPfxc34umUyRqwcAAAAAAAAABshqNikt0aa0xMEHbn6/X06Prytoa3Z6OvZ06wjcOo51drodCd6OhHKdj6M5dEuKI+oZKv4LApH28SNS7b7gY9PPk/IXR7QcAAAAAAAAAIgGwzBkt5plt5qVlRw36Ov4/X61u31q6uhY697N1j2Ea+oWrjUHCdya2t0ajplbImHZkPFfEIgkZ7O09pfBxwyTdNadka0HAAAAAAAAAIY5wzAUbzMr3mZWdvLgr+P3+9Xm9h7V3RZYNrKxWwgXtLutW+DW7PRENHRLthP1DBX/BYFI+uBPUktV8LETPi9lz4psPQAAAAAAAAAASYHQLcFmUYLNomzH4K/j9/vV6vL26G5rcXq79mprdnrU4uy5tGRL9663bsed/diPjGUYh47/gkCktDdI6/8v+JjFLp1xW2TrAQAAAAAAAACEnGEYSoyzKDHOopwhhG6S5PL41OLsFqJ1W1KyuT0QsiXbraEpfBQjLAMi5f0/Su31wcdOvVlKyYtoOQAAAAAAAACA2GazmGSz2JSWaIt2KSOaKdoFAKNCa6303u+Dj9mSpdO/EdFyAAAAAAAAAABAAGEZEAnv/V5yNgYfW/QVKSE9svUAAAAAAAAAAABJhGVA+LXUSB/8KfiYPUU67SuRrQcAAAAAAAAAAHQhLAPC7f0/SK7m4GOL/kuKT41oOQAAAAAAAAAA4AjCMiCc2hukDX8OPhafLp12S2TrAQAAAAAAAAAAPRCWAeG04c+SsyH42Olfl+KSI1sPAAAAAAAAAADogbAMCBdXS2AJxmDsqdLCVREtBwAAAAAAAAAAHIuwDAiXTx6TWmuCj516C11lAAAAAAAAAADEAMIyIBw8Tunde4OP2ZKkU2+ObD0AAAAAAAAAACAowjIgHLY+JTUdDj528g1SQnpk6wEAAAAAAAAAAEERlgGh5vdL6+8LPmaOkxZ9LbL1AAAAAAAAAACAXhGWAaG25w2panvwsZOukZJzIlsPAAAAAAAAAADoFWEZEGrv/V8vA4a06KsRLQUAAAAAAAAAAPSNsAwIpfKt0r63go/NukBKnxzRcgAAAAAAAAAAQN8Iy4BQeu/3vY8t+q/I1QEAAAAAAAAAAPqFsAwIlcYyaetTwcfGnSJNODWy9QAAAAAAAAAAgOMiLANC5aOHJJ8n+Njir0W2FgAAAAAAAAAA0C+EZUAoeFzSx48EH0ubKM28IJLVAAAAAAAAAACAfiIsA0Jh+/NSS2XwsVNulkzmyNYDAAAAAAAAAAD6hbAMCIUNfw5+3JognfD5yNYCAAAAAAAAAAD6jbAMGKqyLdLB94OPzbtCik+NaDkAAAAAAAAAAKD/CMuAofqwl64ySTrlpsjVAQAAAAAAAAAABoywDBiKtjppy1PBxyYslnLmRLYeAAAAAAAAAAAwIIRlwFBseVLytAUfO2VVZGsBAAAAAAAAAAADRlgGDJbfL33yWPCxpDHSzAsjWw8AAAAAAAAAABgwwjJgsA5vlCoKg4+ddI1ksUW2HgAAAAAAAAAAMGCEZcBgbfxLLwOGdOI1ES0FAAAAAAAAAAAMDmEZMBiuVmnrP4OPTV4upeVHth4AAAAAAAAAADAohGXAYGx7TnI2Bh876YuRrQUAAAAAAAAAAAwaYRkwGJ88Fvx4fJo084LI1gIAAAAAAAAAAAaNsAwYqOo9Usn64GPzr5IscZGtBwAAAAAAAAAADBphGTBQW/7R+9iJ10SuDgAAAAAAAAAAMGSEZcBA+P29h2V5C6Sc2ZGtBwAAAAAAAAAADAlhGTAQBzdI9cXBx+ZfFdlaAAAAAAAAAADAkBGWAQOx9cngx00Wac5nI1sLAAAAAAAAAAAYMsIyoL88LqnwmeBjU8+WEjMiWw8AAAAAAAAAABgywjKgv/a+IbXVBh+bd1lkawEAAAAAAAAAACFBWAb015Z/BD9uS5amnxfZWgAAAAAAAAAAQEgQlgH90d4o7Xwp+NjsiyRbQmTrAQAAAAAAAAAAIUFYBvTHzv9InvbgY/Muj2wtAAAAAAAAAAAgZAjLgP7Y9lzw40ljpIlLI1sLAAAAAAAAAAAIGcIy4HicTdKeN4KPzblEMpkjWw8AAAAAAAAAAAgZwjLgeHa9InmdwcdmfyaytQAAAAAAAAAAgJAiLAOOp68lGMefGtlaAAAAAAAAAABASBGWAX1xtUi7Xws+NutCycQfIQAAAAAAAAAAhjM+6Qf6svs1ydMWfIwlGAEAAAAAAAAAGPYIy4C+bH8++PGETCl/cWRrAQAAAAAAAAAAIUdYBvTG3SbteiX42KwLJZM5svUAAAAAAAAAAICQIywDerNvreRqDj7GEowAAAAAAAAAAIwIhGVAb3a9HPx4fLo0cUlkawEAAAAAAAAAAGFBWAYE4/f3vgTj9HMkszWy9QAAAAAAAAAAgLAgLAOCKd8qNR0OPjb9nMjWAgAAAAAAAAAAwoawDAimt64yk0WasjKytQAAAAAAAAAAgLAhLAOC6W2/svzFkj0lsrUAAAAAAAAAAICwISwDjtZcKZV+HHxs+rmRrQUAAAAAAAAAAIQVYRlwtN2vSfIHHyMsAwAAAAAAAABgRCEsA47W2xKMGVOljCmRrQUAAAAAAAAAAIQVYRnQnccl7V0TfIyuMgAAAAAAAAAARhzCMqC7kvckV3PwsennRLYWAAAAAAAAAAAQdoRlQHf73gp+PM4hTVgU0VIAAAAAAAAAAED4EZYB3fUWlk1aJpmtES0FAAAAAAAAAACEH2EZ0KmtTjq8MfjY5DMiWgoAAAAAAAAAAIgMwjKg0/51kvzBxyaviGgpAAAAAAAAAAAgMgjLgE69LcHoGCdlTIloKQAAAAAAAAAAIDIIy4BOvYVlk8+QDCOSlQAAAAAAAAAAgAghLAMkqf6gVLs3+Bj7lQEAAAAAAAAAMGIRlgGStH9t72OTl0euDgAAAAAAAAAAEFGEZYDU+xKM2XOkpOyIlgIAAAAAAAAAACKHsAzw+/verwwAAAAAAAAAAIxYhGVA5XappSr4GEswAgAAAAAAAAAwohGWASXrgx83WaT8xZGtBQAAAAAAAAAARBRhGVDyfvDjY0+U4pIjWwsAAAAAAAAAAIgowjKgt7BswmmRrQMAAAAAAAD4/+3deZRV1Zk34LeqmASsAgSUoICiIJSCOETAAZJg7I6t0HQUEv1aEkCiSUw06hfTppH+lmY5tDQmRoQYTaJLNM6JA2oUoigGI6CCRnEoFFCgGQplKKDu90ea296iiprvrarzPGuxFnvfvfd5y+U9a5/6cc4BIOuEZSTb5o8iNn9Y+We9hmW3FgAAAAAAIOuEZSRbVXeVRUQccmL26gAAAAAAAHJCWEayVRWWHXBERIeu2a0FAAAAAADIOmEZyfah95UBAAAAAECSCctIru2bIz5ZVvln3lcGAAAAAACJICwjuT5aFJEqr/wzd5YBAAAAAEAiCMtIrpUvV97foVtEl8OyWwsAAAAAAJATwjKSa+VLlff3GhqRl5fdWgAAAAAAgJwQlpFMu3dGfPRK5Z8d4hGMAAAAAACQFMIykunj1yN2bav8s17DslsLAAAAAACQM8Iykmn14sr7W+0X0WNQdmsBAAAAAAByRlhGMq1ZUnl/j0ERBa2zWgoAAAAAAJA7wjKSqao7y3ock9UyAAAAAACA3BKWkTw7t0esfbPyz74wJLu1AAAAAAAAOSUsI3nWLoso31X5Z184JqulAAAAAAAAuSUsI3mqegRj6/YRXftltxYAAAAAACCnhGUkz+ollfcfNCgivyCrpQAAAAAAALklLCN51iypvN8jGAEAAAAAIHGEZSTLzu0Ra9+s/LMex2S1FAAAAAAAIPeEZSTLJ8siyndV/tkXhmS3FgAAAAAAIOeEZSTLmsWV97fuENH1iOzWAgAAAAAA5JywjGRZXUVYdtDREfkF2a0FAAAAAADIOWEZybJ6aeX9Xzgmq2UAAAAAAABNg7CM5Ni5LWLdm5V/5n1lAAAAAACQSMIykmPt8ojyXZV/1uOYrJYCAAAAAAA0DcIykmPtW5X3t9ovousR2a0FAAAAAABoEoRlJEdVj2Ds1j8ivyC7tQAAAAAAAE2CsIzkqOrOsu4DslsHAAAAAADQZAjLSI51f6u8v9uR2a0DAAAAAABoMoRlJMOOTyM2r6z8M2EZAAAAAAAkVqtcF0DEypUrY+HChVFSUhJlZWXRpUuXKC4ujqFDh0abNm1yWtuGDRviBz/4Qdx1110REdG7d+/44IMPclpTnayv4q6yiIjuwjIAAAAAAEgqYVkOPfvsszF16tR44YUXKv28qKgoLrjggrjqqquisLAwy9VFPPjgg3HRRRfFJ598kvVjN7iq3lfWun1EUa/s1gIAAAAAADQZHsOYA+Xl5XHppZfGV77ylXRQ1r9//5g4cWJcdtllcdZZZ0Xr1q1j8+bNccMNN8RRRx0Vixcvzlp9a9eujXPOOSf+5V/+pWUEZRER696svL9rv4h8XwMAAAAAAEgqd5blwIUXXhizZs2KiIiCgoK45ZZbYvLkyZH/udBm5cqVcc4558TLL78cH374YXz5y1+OP//5z3H00Uc3am333HNPXHzxxbF+/fqIiBg4cGAsX768UY+ZFeuqeAxj9wHZrQMAAAAAAGhS3FKTZXfccUc6KIuImDlzZkyZMiUjKIuI6NWrVzz11FPRr1+/iIjYtGlTjB07NrZt29Yoda1fvz7GjBkT3/zmN2P9+vVxwAEHxF133RW33HJLoxwv66p6DGM37ysDAAAAAIAkE5Zl0aeffho//vGP0+2TTz45Jk2aVOX4wsLCuPnmm9PtFStWxIwZMxqlthdeeCEeeeSRiIgYO3ZsLFu2LM4999xGOVbW7fg0YvPKyj8TlgEAAAAAQKIJy7LoxhtvjLVr16bbl156abVzTj/99Bg4cGC6fd1118XGjRsbpb5u3brFvffeGw888EAceOCBjXKMnFhfxSMYIyK6C8sAAAAAACDJhGVZkkqlYvbs2el2p06d4owzzqjR3PPOOy/9902bNsW9997b4PUNGjQoli9fHuecc06Dr51zVT2CsXX7iKJe2a0FAAAAAABoUoRlWbJgwYJYvXp1uj18+PBo06ZNjeaOHDkyo33//fc3ZGkREXHYYYdF165dG3zdJmHdm5X3d+sfke8rAAAAAAAASSYpyJJHH300o33CCSfUeO6QIUOidevW6fb8+fOjtLS0wWpr8dZV8RhG7ysDAAAAAIDEE5ZlyeLFizPaAwYMqPHcdu3axWGHHZZu79q1K954440Gq63Fq+oxjMIyAAAAAABIPGFZlixbtiyjffDBB9dqfs+ePfe5HlUo2xqxeWXln3WveWAJAAAAAAC0TK1yXUASlJaWxpo1azL6KoZf1ak4/q23qrhbqgVZu3ZtrFu3rlZzVqxYkdmxqaTqwd3616EqAAAAAACgJRGWZcGGDRv26issLKzVGhXHb9y4sV41NQe//OUvY9q0afVbpHRV5f2t2kUU9arf2gAAAAAAQLPnMYxZsGXLlr362rZtW6s12rVrV+2aVKJ0deX9nXpH5PvfHwAAAAAAkk5akAWVBVsVw6/qCMvqqKqwrHPv7NYBAAAAAAA0SR7D2EylUqlcl9DoLrroojj77LNrNWfFihUxZsyY/+3YXMVjGDv3qXNdAAAAAABAyyEsy4L9999/r77t27dHhw4darzG9u3bq12zpenevXt07969fouUro6o7Ca+Tu4sAwAAAAAAPIYxKzp27LhX344dO2q1RhLDsgbx6ZrK+91ZBgAAAAAAhLAsK7p06bJXX2lpaa3WqDi+c+fO9aopMcp3V97vnWUAAAAAAEAIy7KiqKgoDjrooIy+VauqeJdWFSqOP/LII+tdV6J5DCMAAAAAABDCsqw56qijMtofffRRreZXDMsqrkcttD8gol1hrqsAAAAAAACaAGFZlgwZMiSjvXz58hrP3b59e7z33nvpdkFBgbCsPtxVBgAAAAAA/A9hWZaceeaZGe1FixbVeO7ixYtj586d6faIESOisNCdUXXWuU+uKwAAAAAAAJoIYVmWnHTSSdGjR490+6WXXoqysrIazZ03b15G++tf/3pDlpY8nd1ZBgAAAAAA/J2wLEvy8/Nj0qRJ6famTZviscceq9Hcu+++O/33oqKiGDduXIPXlyjuLAMAAAAAAP6HsCyLLr/88ujWrVu6PX369GrnzJ07N5YtW5ZuX3HFFdGlS5d9zvnv//7vmDVrVtxyyy2xatWquhfcUnlnGQAAAAAA8D+EZVm0//77x7XXXptuP//883H77bdXOX7Lli1x8cUXp9t9+/aNH/7wh/s8xocffhjFxcUxZcqU+N73vhcDBw6M1157rd61tyjuLAMAAAAAAP6HsCzLJk2aFBMnTky3p0yZErNmzYry8vKMcStXrozTTjst3n777Yj4++MXH3jggWjfvv0+17/11lvjk08+SbdLS0vj+uuvb8CfoJnLK4goOjjXVQAAAAAAAE1Eq1wXkESzZs2KDh06xM033xy7d++OKVOmxE033RSnnnpqFBUVxTvvvBNPPPFElJWVRUREz54945FHHonBgwdXu3Yqldqrr2IQV5Wrr746pk2bts8xJSUlkZeXt1f/+++/H3369KnRcXKqqGdEQetcVwEAAAAAADQR7izLgfz8/JgxY0Y8/fTTMXz48IiI+Nvf/hazZ8+OG2+8MR555JEoKyuLwsLC+NGPfhTLli2L4447rkZrf+c738l4L1rHjh3jiiuuaJSfo1nyCEYAAAAAAOBz8lKV3YpEVpWUlMRLL70UK1eujLKysujcuXMUFxfHsGHDom3btrVeb/369fHAAw/Ezp07Y8yYMXHwwcl57OCyZcviqKOOSrffuLBDFHcv+N8BQ/5PxOhf5KAyAAAAAADInb1+f/7GG1FcXJzDipoOj2FsAnr37h29e/dusPW6du0aU6ZMabD1WhR3lgEAAAAAAJ/jMYwki7AMAAAAAAD4HGEZySIsAwAAAAAAPkdYRrJ0arjHXQIAAAAAAM2fsIzkyG8d0aFrrqsAAAAAAACaEGEZydGxe0ReXq6rAAAAAAAAmhBhGcnRsXuuKwAAAAAAAJoYYRnJ0fHAXFcAAAAAAAA0McIykqNDt1xXAAAAAAAANDHCMpLDnWUAAAAAAEAFwjKSwzvLAAAAAACACoRlJIewDAAAAAAAqEBYRnJ4DCMAAAAAAFCBsIzk6ODOMgAAAAAAIJOwjOTwGEYAAAAAAKACYRnJ0Gq/iLb757oKAAAAAACgiRGWkQwdu0Xk5eW6CgAAAAAAoIkRlpEMHQ/MdQUAAAAAAEATJCwjGYRlAAAAAABAJYRlJEOHbrmuAAAAAAAAaIKEZSSDO8sAAAAAAIBKCMtIho7dc10BAAAAAADQBAnLSAZhGQAAAAAAUAlhGcngMYwAAAAAAEAlhGUkQ4duua4AAAAAAABogoRlJIPHMAIAAAAAAJUQltHytdk/ok2HXFcBAAAAAAA0QcIyWr6OHsEIAAAAAABUTlhGy9fxwFxXAAAAAAAANFHCMlo+7ysDAAAAAACqICyj5esgLAMAAAAAAConLKPl8xhGAAAAAACgCsIyWj6PYQQAAAAAAKogLKPlE5YBAAAAAABVEJbR8gnLAAAAAACAKgjLaPk6CMsAAAAAAIDKCcto+dxZBgAAAAAAVEFYRsvWdv+IVm1zXQUAAAAAANBECcto2dofkOsKAAAAAACAJkxYRss25rZcVwAAAAAAADRhwjJatvadcl0BAAAAAADQhAnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWK1yXQARK1eujIULF0ZJSUmUlZVFly5dori4OIYOHRpt2rTJWV3l5eWxaNGieO2112LdunVRUFAQPXv2jBNOOCH69++fs7oAAAAAAAAairAsh5599tmYOnVqvPDCC5V+XlRUFBdccEFcddVVUVhYmLW6ysrKYvr06TFjxoxYs2ZNpWOOPvrouOqqq+Kcc87JWl0AAAAAAAANTViWA+Xl5XHZZZfF9OnT0339+/ePk08+OTp37hxvv/12PPHEE7F58+a44YYbYs6cOfHII4/EkCFDGr22kpKSGD16dCxdujQiIvLz82PUqFFRXFwc27Zti5dffjkWL14cr7/+eowbNy7uv//++M1vfhP77bdfo9cGAAAAAADQ0IRlOXDhhRfGrFmzIiKioKAgbrnllpg8eXLk5//vK+RWrlwZ55xzTrz88svx4Ycfxpe//OX485//HEcffXSj1bVmzZoYOXJkfPDBBxERccQRR8RDDz0UxcXFGeMeeuihOO+882Lr1q3x+9//PkpLS+OPf/xjtGrlfycAAAAAAKB5ya9+CA3pjjvuSAdlEREzZ86MKVOmZARlERG9evWKp556Kvr16xcREZs2bYqxY8fGtm3bGq22b3zjG+mgrFu3bjF//vy9grKIiH/+53+OBx54IN2eO3duXH311Y1WFwAAAAAAQGMRlmXRp59+Gj/+8Y/T7ZNPPjkmTZpU5fjCwsK4+eab0+0VK1bEjBkzGqW2++67L+bPn59u/+xnP4sePXpUOf4f/uEfYvz48en2jTfeGCUlJY1SGwAAAAAAQGMRlmXRjTfeGGvXrk23L7300mrnnH766TFw4MB0+7rrrouNGzc2aF27du2Kf/u3f0u3u3btGv/6r/9a7bzP179jx47493//9watCwAAAAAAoLEJy7IklUrF7Nmz0+1OnTrFGWecUaO55513XvrvmzZtinvvvbdBa3vmmWdixYoV6fbZZ58drVu3rnbeCSeckH5MZETEnDlzorS0tEFrAwAAAAAAaEzCsixZsGBBrF69Ot0ePnx4tGnTpkZzR44cmdG+//77G7K0vdb70pe+VOO5n6+trKwsHn300YYqCwAAAAAAoNEJy7KkYoh0wgkn1HjukCFDMu70mj9/foPewfWHP/yhzrV98YtfzGgLywAAAAAAgOZEWJYlixcvzmgPGDCgxnPbtWsXhx12WLq9a9eueOONNxqkrlWrVmW8R22//faLPn361Hh+cXFxRnvJkiUNUhcAAAAAAEA2CMuyZNmyZRntgw8+uFbze/bsuc/16qriOhWPU52K4999993Yvn17vesCAAAAAADIBmFZFpSWlsaaNWsy+uobSr311lv1rquydWpbV48ePSI//3//NyovL4933nmnQWoDAAAAAABobMKyLNiwYcNefYWFhbVao+L4jRs31qumPSrWVtu6WrVqFfvtt19GX0PVBgAAAAAA0Nha5bqAJNiyZctefW3btq3VGu3atat2zbqouE5t64r4e22fffZZlWvW1dq1a2PdunW1mrN8+fKM9ooVKxqkFgAAAAAAaM4q/r58x44dOaqk6RGWZUFl4VHF8Ks62QrLaltXZXMaqrZf/vKXMW3atHqtMWbMmAapBQAAAAAAWpIPP/wwjj322FyX0SR4DGMzlUqlcl1ClZpybQAAAAAAQMSmTZtyXUKTISzLgv3333+vvu3bt9dqjYrjK1uzLiquU9u6KpvTULUBAAAAAACNo7S0NNclNBkew5gFHTt23Ktvx44d0aFDhxqv0ViBVMXa6vKM0saq7aKLLoqzzz67VnOWLFkS5513Xrp93333xcCBAxukHoCGsGLFioxHxD788MNx+OGH564ggM9xjgKaOucpoClzjgKauuXLl8c555yTbh9//PE5rKZpEZZlQZcuXfbqKy0trbS/KhUT3s6dO9e7roi9a6ttkrxr167Ytm1bRl9D1da9e/fo3r17vdYYOHBgFBcXN0g9AI3h8MMPd54CmiznKKCpc54CmjLnKKCpKywszHUJTYbHMGZBUVFRHHTQQRl9q1atqtUaFccfeeSR9a6rsnVqW9eaNWuivLw83c7Pz48jjjiiQWoDAAAAAABobMKyLDnqqKMy2h999FGt5lcMsSquV1cV16lviNe3b9/Yb7/96l0XAAAAAABANgjLsmTIkCEZ7eXLl9d47vbt2+O9995LtwsKChosLOvZs2d069Yt3d62bVu8//77NZ7/xhtvZLQHDx7cIHUBAAAAAABkg7AsS84888yM9qJFi2o8d/HixbFz5850e8SIEQ36LNH61FZx7FlnndUgNQEAAAAAAGSDsCxLTjrppOjRo0e6/dJLL0VZWVmN5s6bNy+j/fWvf70hS9trvYrH25fPj23Tpo2wDAAAAAAAaFaEZVmSn58fkyZNSrc3bdoUjz32WI3m3n333em/FxUVxbhx4xq0tlGjRsVhhx2Wbv/+97/PuJOtKosWLYq333473T7nnHOiqKioQWsDAAAAAABoTMKyLLr88ssz3g82ffr0aufMnTs3li1blm5fccUV0aVLl33O+e///u+YNWtW3HLLLbFq1apqj9G6deu45ppr0u3169fHb3/722rn3XTTTem/t2nTJv7jP/6j2jkAAAAAAABNibAsi/bff/+49tpr0+3nn38+br/99irHb9myJS6++OJ0u2/fvvHDH/5wn8f48MMPo7i4OKZMmRLflM81/wAAJFtJREFU+973YuDAgfHaa69VW9u4cePilFNOSbevvPLKWLNmTZXj586dG3PmzEm3L7300jj00EOrPQ4AAAAAAEBTIizLskmTJsXEiRPT7SlTpsSsWbOivLw8Y9zKlSvjtNNOSz/msKioKB544IFo3779Pte/9dZb45NPPkm3S0tL4/rrr6+2rry8vLjnnnuiV69eERGxbt26GDFiRMZdbXs8/PDDMXbs2HR71KhR8f/+3/+r9hgAAAAAAABNTatcF5BEs2bNig4dOsTNN98cu3fvjilTpsRNN90Up556ahQVFcU777wTTzzxRJSVlUVERM+ePeORRx6JwYMHV7t2KpXaq69iEFeVnj17xrx58+Kss86KN954I955550YNGhQnHbaaVFcXBzbtm2LhQsXxuLFi9Nzxo4dG7/73e+iVSv/KwEAAAAAAM2PhCMH8vPzY8aMGXHmmWfG1KlT48UXX4y//e1v8be//S1jXGFhYUyePDl++tOfRlFRUY3W/s53vhO33357rFu3LiIiOnbsGFdccUWNazv00EPjlVdeiZtuuilmzJgRn3zyScydOzfmzp2bMa64uDiuuuqqGD9+fI3XBgAAAAAAaGqEZTk0atSoGDVqVJSUlMRLL70UK1eujLKysujcuXMUFxfHsGHDom3btrVas3fv3rF8+fJ44IEHYufOnTFmzJg4+OCDa7VG27Zt48orr4wrrrgiFi1aFEuXLo3169dHQUFBfOELX4gTTjghBgwYUKs1s6Vbt24xderUjDZAU+I8BTRlzlFAU+c8BTRlzlFAU+c8VbW8VGXP7QMAAAAAAIAEyM91AQAAAAAAAJArwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABIrFa5LgAaysqVK2PhwoVRUlISZWVl0aVLlyguLo6hQ4dGmzZtcl0eAECtrFq1Kv7617/G6tWrY+PGjdG6devo3Llz9O3bN44//vjo2LFjgx1r586d8dJLL8WyZctiw4YN0aZNm+jVq1cMHTo0evfu3WDHibBng5Zix44d8dZbb8Wbb74Z69ati9LS0mjXrl106tQp+vfvH8ccc0yDnaecowAA6sd+qnrCMpq9Z599NqZOnRovvPBCpZ8XFRXFBRdcEFdddVUUFhZmuTqgOfjVr34Vl112WWzevDkiIp577rkYOXJkg61vQwLU1Isvvhj33XdfPPTQQ7Fy5coqx+Xn58dXvvKV+N73vhdnnXVWnY+3ZcuWuOaaa+K2226LTZs2VTpm+PDhMW3atBg1alSdjxNhzwYtwZIlS+Khhx6KZ599Nv7yl79EWVlZlWNbt24d//iP/xiXXHJJnfdVzlFAQ0ulUnHKKafEggUL0n3nn39+3HnnnfVa1zUfUBMffPBBHHrooXWeX1RUVOWeqCr2UzWXl0qlUrkuAuqivLw8Lrvsspg+fXq6r3///nHyySdH586d4+23344nnngidu7cGRERhxxySDzyyCMxZMiQXJUMNDElJSUxefLkePrppzP6GyossyEBauqhhx6Ka6+9Nl555ZV0X15eXhx//PFx7LHHxgEHHBCfffZZvPnmm/HnP/85tm/fnh53xhlnxO233x4HHnhgrY65dOnSGD16dJSUlETE//5iu1+/frFx48Z4/vnn4+23306Pv/jii2P69OmRn1+7J7nbs0HL0K9fv3jnnXcy+goLC2PEiBFxxBFHRLt27WLDhg3xl7/8JV599dWMcd/+9rdj5syZ0bp16xofzzkKaAwzZ86MCy+8MKOvPmGZaz6gNrIdltlP1VIKmqkLLrggFRGpiEgVFBSkZs6cmdq9e3fGmJKSktSJJ56YHtepU6fUa6+9lqOKgaaivLw8dcstt6Q6duyYPj98/s9zzz1X72MsWbIk1bt37/SarVu3Tp111lmpyy67LDVx4sRUv379Mo558cUX73UOq4ndu3enLrnkkoy1+vfvn5o4cWLqsssuS5111lmp1q1bpz875JBDUq+++mq9fz6gYR144IEZ3+MRI0ak3nrrrUrHrl69OnX22WdnjD/yyCNTn3zySY2P98Ybb6S6dOmSnj906NBUSUlJxpjdu3enbr311lRBQUF63MSJE2v9s9mzQcvw+XNOXl5e6qqrrkp9+umnlY59+eWX99rr/Mu//EuNj+UcBTSG1atXp4qKiva6/jv//PPrtJ5rPqC23n///Up/D1XTP0VFRTU+lv1U7QnLaJZ+/etfZ5woZs+eXeXYzZs3Z2xQDj/88NTWrVuzWC3QlLzzzjupESNGpM8JBx98cGr//fdv0LDMhgSorc+HZV/+8pdTZWVl+xxfXl6eOvfcczPOXaeffnqNjrVt27ZU//79M4K20tLSKsfPnDmzxvuuiuzZoOX4/Hf5uuuuq3b8qlWrUt27d8+YN2fOnGrnOUcBjWXs2LGV/vK5LmGZaz6gLj4fljUm+6m6EZbR7GzZsiXjouvkk0+uds6TTz6Z8aX92c9+loVKgabmv/7rv1Lt27dPnwsmTZqU2rx5c8a/BqxvWGZDAtTFnrCsVatWqRUrVtRozqZNm1KFhYUZ54Enn3yy2nnXXXddxpxnnnlmn+PLy8tTw4YNS4/v1q3bPs9re9izQcuy53vZr1+/1K5du2o05/rrr8/4To8YMaLaOc5RQGN4+OGH09/dineX1TYsc80H1FW2wjL7qboRltHsTJ06NeML9eCDD9Zo3sCBAzP+hc2GDRsauVKgqdlzUdSnT5/U008/ne5vyLDMhgSoiz1h2ahRo2o1b/LkyRnf6wkTJuxz/IYNG1KdOnVKjx80aFCNjnPfffdlHOff//3fq51jzwYty57v5VVXXVXjOcuWLcs4DxQUFOwzaHOOAhpDaWlp6uCDD05FROrQQw9NXX755fUKy1zzAXWVjbDMfqruavemNsixVCoVs2fPTrc7deoUZ5xxRo3mnnfeeem/b9q0Ke69994Grw9o2vLz8+Oiiy6K119/vd4vV67Mxo0b42c/+1m6PWjQoPjKV76yzzl5eXlxySWXpNvr1q2LG2+8sdpj3XjjjbF27dp0+9JLL612zumnnx4DBw5Mt6+77rrYuHFjtfOA7Dn55JNrNX7YsGEZ7ape+L7Hvffem/FC6HPPPbdGxznzzDMzXhQ/e/bsSKVSVY63Z4OW54wzzogzzjgjvvrVr9Z4Tp8+fTLau3fvjvXr11c53jkKaAxXXnllfPTRRxERceutt0b79u3rvJZrPqCps5+qO2EZzcqCBQti9erV6fbw4cOjTZs2NZo7cuTIjPb999/fkKUBzcCTTz4Zt9xyS3Ts2LFR1rchAerqwQcfjOeeey4uuOCCWs3r0aNHRvvjjz/e5/iK+58vfelLNTpOu3btYujQoen2mjVrYsGCBVWOt2eDluePf/xj/PGPf4xTTjmlxnPy8vL26mvbtm2V452jgIa2cOHCuPXWWyMi4pvf/Gacfvrp9VrPNR/Q1NlP1Z2wjGbl0UcfzWifcMIJNZ47ZMiQaN26dbo9f/78KC0tbbDagKbvi1/8YqOub0MC1NXw4cNj5MiRe4VftVVeXl7lZ6WlpTF//vx0u02bNjFo0KAar13xHFpxX7avz+zZIJk+/PDDjPZBBx0UnTp1qnSscxTQ0Hbu3BmTJ0+O8vLy6Ny5c0yfPr3ea7rmA5oy+6n6EZbRrCxevDijPWDAgBrPbdeuXRx22GHp9q5du+KNN95osNqAZLMhAXJh3bp1Ge0jjjiiyrGvv/567Nq1K90+7LDD9nmHR0XFxcUZ7SVLllQ51p4NiIh4+umnM9pjx46tcqxzFNDQrrvuuvT384Ybboju3bvXaz3XfEBTZz9VP8IympVly5ZltA8++OBaze/Zs+c+1wOoKxsSIBdee+21jPa+Hi2UzX2UPRvw6aefxg033JBuFxUVxY9//OMqxztHAQ3p7bffjmuuuSYiIkaMGBHf/va3672maz6gIZWXl8fjjz8eEydOjMGDB0fnzp2jdevW0blz5zj88MPjrLPOiptuummvO/X3xX6qfoRlNBulpaWxZs2ajL6KX6rqVBz/1ltv1bsugAgbEiA3nnzyyfTf8/Ly9vmLoIr7nvruo1avXh1btmzZa5w9G7B27do488wzo6SkJCIi9ttvv7j33nvjkEMOqXKOcxTQkKZMmRLbt2+Ptm3bxm233VbpOxRryzUf0JCOPfbYOOOMM+LXv/51vPbaa7Fp06bYtWtXbNq0Kd599934wx/+ED/60Y+ib9++MXHixNiwYUO1a9pP1Y+wjGajshPC51+OWhMVx2/cuLFeNQHsYUMCZNtf//rXjH8lPH78+Ojfv3+V4yvupeq7j4qofC9lzwbJs3379lizZk089dRTcckll8SRRx4Z8+bNi4i//yJowYIF+7zzNcI5Cmg4t99+e/ocdOWVV+5zf1QbrvmAhrR06dLo3Llz/OQnP4mXX3451q1bFzt27IiPPvoo7rvvvvTeaefOnfHrX/86jj322H3ekRphP1VfrXJdANRUZRuI2tzuHvH3W9GrWxOgLhprQ7L//vvv8zgNcaymsCEBau/aa69N/72wsDCuv/76fY6vuO+p7z6qsjWr6rNng5ZpxYoVlb4rsbCwML797W/H+PHjY9SoUTW6o8M5CmgIn3zySVx++eUREXHkkUfGlVde2WBru+YDGtKoUaPirrvuigMPPDCjv2fPnnH22WfH2WefHbfffntccMEFUV5eHiUlJfEP//AP8Ze//CV69epV6Zr2U/UjLKPZqOwLU9kXeF+a4pcQaBlsSIBseuaZZ+LBBx9Mt2fMmFHt43kqftfru4+qbM2q+uzZIFlKS0vj0UcfjU2bNsWnn34ao0ePjvz8fT/YxjkKaAg/+MEPYuPGjZGXlxezZs2KNm3aNNjarvmA+mrfvn2MHj06unfvHjNmzIj99ttvn+MnTpwYH3/8cVx11VUR8fd/EPDNb34zXnjhhUrH20/Vj8cwkmipVCrXJQAthA0JkC0bNmyIb33rW+n2t771rZgwYUKjH7eyO0OytZeyZ4Om6fDDD49UKhWpVCq2bNkS7777bsyZMyfGjBkTGzZsiAcffDDGjh0bxx57bLzyyiuNWotzFPD444/HvffeGxF//wXzKaec0qDru+YD6qt79+7x8MMPx6xZs6oNyva44oorMt77umDBgnjiiScapb6k76eEZTQbFW9Lj/j7s/Fro+L4ytYEyIWkb0iAmtm1a1eMHz8+Pvroo4iIOPXUU2PmzJk1mltx31PbfdS2bduqXbOqPns2aPk6duwYhx12WIwbNy4eeuiheP755+MLX/hCRPz9nRynnnpqPPnkk1XOd44C6uOzzz6Liy66KCIiDjzwwGofT50LrvmAumjdunX867/+a0bf7bffXulY+6n6EZbRbHTs2HGvvh07dtRqjab4JQRaBhsSIBsuuuiiePrppyMiYtCgQfHwww/X+PFCFfdS9d1HRVR+/rBnAyIihg8fHo8//nj67oZt27bFuHHj4r333qt0vHMUUB9XXXVVlJSURETEf/3Xf0Xnzp0b/Biu+YBcqXin7HPPPRfl5eV7jbOfqh9hGc1Gly5d9uorLS2t1RoVxzfG5glIJhsSoLFddtllMXv27IiIGDBgQDz99NO12stU3EvVdx8VUfleyp4N2GPw4MFxwQUXpNulpaUxderUSsc6RwF19corr8TPf/7ziIj4x3/8xxg/fnyjHMc1H5ArxcXFGe0NGzbE6tWr9xpnP1U/wjKajaKiojjooIMy+latWlWrNSqOP/LII+tdF0CEDQnQuP7v//2/8Z//+Z8REXH00UfH/Pnzo3v37rVao+K+p777qB49ekRhYeFe4+zZgM8799xzM9q///3vK727wjkKqItdu3bF5MmTY/fu3dG+ffv45S9/2WjHcs0H5Epl3+H169fv1Wc/VT/CMpqVo446KqO9530dNVXxS1hxPYC6siEBGsvll1+efu/G0UcfHX/605+iW7dutV4nm/soezZgj+OOOy5atWqVbu/YsSNeeeWVvcY5RwF1cdNNN8WSJUsiImLatGnRp0+fRjuWaz4gVyp79H5l//jIfqp+hGU0K0OGDMloL1++vMZzt2/fnvF8/IKCgibxJQRaBhsSoDFceumlceONN0ZE/YKyPfMLCgrS7XfffbdWj/R54403MtqDBw+ucqw9G7BHQUHBXndJfPzxx3uNc44C6uLxxx9P//3yyy+PvLy8av9MmzYtY43f/OY3lY678847M8a55gNypbK7Sw844IC9+uyn6kdYRrNy5plnZrQXLVpU47mLFy+OnTt3ptsjRoyo9F/wANSFDQnQ0H74wx/G9OnTI6L+QVlERGFhYYwYMSLd3rlzZyxdurTG8yvuu84666wqx9qzQcvyyiuvxAsvvBBr1qyp0/yKL6DPz9/7VxHOUUBT55oPqI+FCxfG1VdfHb/4xS9qPbdiYJ6Xl7fXHagR9lP1JSyjWTnppJOiR48e6fZLL70UZWVlNZo7b968jPbXv/71hiwNSDgbEqAhff/7348ZM2ZERM2DsvHjx8fIkSP3+lfQn1dx/1Nxf1SV7du3x8KFC9Ptgw46KE466aQqx9uzQcvy9a9/PU455ZQ6vQto27ZtsXHjxoy+yn65s+c4n+ccBVRn3rx5kUqlavVn6tSpGWucf/75lY6bMGFCxjjXfEB9LFy4MKZNmxY/+clPaj234iOsBw8eXOX32n6q7oRlNCv5+fkxadKkdHvTpk3x2GOP1Wju3Xffnf57UVFRjBs3rsHrA5LNhgSor1QqFd/97nfT/9qwNneULVy4MObPnx8ffPBBlWPGjRsXRUVF6fbn90f78oc//CHj0R+TJk2q9M6QPezZoGVasGBBrefMnz8/du/enW63a9euyrspnKOAps41H1BfW7ZsSb9rsabuv//+jPbXvva1KsfaT9WdsIxm5/LLL8/4hdGexxPty9y5c2PZsmXp9hVXXLHXc/MB6suGBKiPVCoVF154YfrOjYZ49GJFXbp0iR//+Mfp9muvvRZ/+tOfqq3r8/utAw44IC6//PJqj2XPBi3P/PnzM76jNbHnvYt7fO1rX4uOHTtWOtY5CmjqXPMBDeHWW2+t8djFixfHU089lW63b98+Lr744irH20/VQwqaodmzZ6ciIv3nV7/6VZVjS0tLU/369UuP7du3b+qzzz7LYrVAU9e7d++Mc8pzzz1X57V+9rOfZaz1zDPP7HN8eXl5atiwYenxBxxwQGrz5s3VHqe0tDTVrVu39LxTTjml2jlPPvlkRm3XXHNNjX8uoHGVl5enJk+enP5+HnXUUam1a9fWao0957KpU6fuc9zWrVtTRxxxRPpYAwYMSG3ZsqXK8TNnzsw4d8ycObPGNdmzQcvw+b3ScccdV6O9SiqVSl1zzTUZ54A2bdqk3nrrrX3OcY4CGtvUqVMzvvvnn39+rea75gPqYvr06envZkFBQerJJ5+sds6GDRtSRx99dMb3+oYbbqh2nv1U3QjLaLYmTpyYcYK57bbbUrt3784YU1JSkjrxxBPT44qKilJLlizJUcVAU9WQYZkNCVBb5eXlGfua+v6pLixLpVKp1157LdWpU6f0nGHDhqVKSkoyxuzevTs1c+bMVEFBQXrchAkTav3z2bNB81dxr3TkkUem5s6dmyovL690/EcffZSaMGFCxpyCgoLU7373uxodzzkKaEz1Dctc8wF18fmwLCJSbdu2Tf3nf/5natu2bZWOf+GFF1IDBw7MmPPtb3+7xsezn6o9YRnN1u7du1MXX3xxxgmjf//+qcmTJ6cuu+yy1OjRo1Nt2rRJf9azZ8/UK6+8kuuygSaoIcOyVMqGBKid999/v8GCspqGZalUKvXqq6+mDjnkkPS8Nm3apEaPHp26/PLLU5MmTUr1798/Y93vfve7qV27dtX657Nng+bv0ksvTXXo0GGv880hhxySOuecc1I/+tGPUv/2b/+W+u53v5s6+eSTU61bt84Y16tXr9Rjjz1Wq2M6RwGNpb5hWSrlmg+oveeffz5VXFy8136qc+fOqdGjR6cuvfTS1E9+8pPUpEmT9grJWrVqlbr++uur/IdKVbGfqh1hGc3e008/nRo+fHiVvzAqLCxM/ehHP0pt2rQp16UCOVafX0jX9JfPe9iQADWVq7AslUqlNm3alLriiitSRUVFVa43dOjQ1Ny5c+v9c9qzQfO2efPm1OzZs1NjxoxJFRYWVnsuysvLS5144ompn//853W+s8E5CqivO+64o9H2U675gLpYsGBB6pJLLtnrHFHZn65du6a+//3vp9577706H89+qubyUqlUKqAFKCkpiZdeeilWrlwZZWVl0blz5yguLo5hw4ZF27Ztc10e0AR88MEHceihh9Zp7tSpU+Pqq6+u1ZzNmzfHtddeG7fddlts3ry50jFDhw6NadOmxVe/+tU61bXHM888E1OnTo0XX3yx0s8LCwtj8uTJ8dOf/jTjhdQAERFlZWXx4osvxrJly2Ljxo3Rpk2bOOSQQ2LYsGHRp0+fBj2WPRs0f7t374733nsv3nzzzVi9enWUlpZGWVlZdOzYMTp16hSHH354DBo0KAoLCxvkeM5RQF3deeed8a1vfavW82p6/eeaD6iP9evXx+uvvx7vvfdebNy4MXbs2BFFRUXRtWvXGDRoUAwYMCDy8vIa5Fj2U9UTlgFAI7MhAQAAaLlc8wE0f8IyAAAAAAAAEis/1wUAAAAAAABArgjLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYrXJdAAAAAE3Hzp0745577omtW7fGeeedFx07dsx1SQAAAI3KnWUAAABNzIQJEyIvLy8rf+68886MY48ZMybOP//8uPDCC2PEiBGxc+fO3PxHAAAAyBJhGQAAABER8dZbb8Xjjz+ebr/66qvx7LPP5rAiAACAxicsAwAAaKJ69+4dqVRqn3+ee+65Ws95//33Kz1eKpXaq6+8vLxRfjYAAICmQlgGAABAREQMGDAgTj/99HT76KOPjq985Ss5rAgAAKDxtcp1AQAAADQdjz76aNxzzz2xdevWOPfcc6NNmza5LgkAAKBRCcsAAABIa9OmTZx//vm5LgMAACBrhGUAAABNTN++fePEE0+MHj16NMr6bdu2jRNPPDEiIrp169YoxwAAAGgu8lKVvcEZAACAZmHevHnxpS99Kd3u3bt3fPDBB7krCAAAoJlxZxkAAACNKpVKxYIFC+Kvf/1rfPbZZ9G1a9f44he/GMccc8w+57z44ovx6quvxpYtW6JLly4xaNCgOPHEE6OgoKBe9ZSXl8eiRYvib3/7W6xduzYiIrp27RqHHnpoDBs2zHvaAAAgYYRlAAAACTdy5MiYP39+pZ+df/75ceedd+7V//DDD8c///M/V7nmnoeYzJ8/P77zne/EW2+9tdeYY445Jm655ZYYPnx4Rv+TTz4Z3//+92PFihV7zenVq1fMmDEjxowZs4+fqHIbNmyIa665Jn7729/G+vXrKx3Tvn37GD16dEybNi2OOOKIWh8DAABofvJzXQAAAAAt03333RejRo2qNCiLiFiyZEl86Utfij/+8Y/pvl/+8pfxta99rdKgLCJi5cqVMXbs2Pjtb39bq1qeeOKJ6Nu3b9x0002xfv36aN26dXz1q1+NSy+9NC677LIYPXp0dOjQIbZu3Rr33HNPDBw4MGbMmFGrYwAAAM2Td5YBAAA0Yw39zrIPPvggDj300HS7qjvLVq1aFc8//3y6/R//8R/x5ptvptuvv/56HH/88dGqVasYN25cHH/88bHffvvFihUr4q677oqSkpL02KKionj33Xdj6dKlcdppp0WrVq3i7LPPjuHDh0eHDh1ixYoV8bvf/S5jzv777x9vv/12HHTQQdX+THfffXdMmDAhdu3aFRERX/ziF+Puu++Oww8/PGPchg0b4rvf/W7MmTMn4+f66U9/Wu0xAACA5ktYBgAA0IzlKiyrqOKjHE899dT4+OOPY+7cudGnT5+MsVu3bo3TTz89XnjhhXTf1VdfHXfddVd89tln8dRTT8VRRx2115zTTjstXnzxxXTfNddcEz/5yU/2WdeSJUti2LBhsX379oiI6NevXyxatCgKCwsrHV9eXh5jx46NRx55JCIi8vPzY968eXHKKadU+98AAABonjyGEQAAgAb30ksvxaOPPrpXUBbx9/eC/eIXv8jou/baa2PFihUxZ86cvYKyPXNuvvnmjL7PP76xKhMmTEgHZRERP//5z6sMyiL+Ho794he/iFat/v6K7/Ly8vje975X7XEAAIDmS1gGAABAgxs/fnz079+/ys8HDx4cvXv3TrfLyspixIgRceqpp1Y557jjjouDDz443X7ttddiXw9Leeyxx2Lp0qXpdv/+/eOrX/1qtbUffPDBcdppp2Uc5/N3wQEAAC2LsAwAAIAGN2bMmGrHHHnkkRnt0aNHVztnwIAB6b9/9tlnsWXLlirH/va3v81o/9M//VO16+9x0kknZbQfeOCBGs8FAACaF2EZAAAADW7w4MHVjuncuXOt53Tp0iWjXVpaWuXYefPmZbSHDh1a7fp79OvXL6P98ssv13guAADQvAjLAAAAaHAHHnhgtWPatm1b6znt2rXLaO/atavScWvWrIm1a9dm9PXt27fa9feo+F6zzz/OEQAAaFla5boAAAAAWp4OHTrUek779u0b7Pjr16/fq+/YY4+t83pbt26N7du37xXWAQAAzZ87ywAAAGhweXl5WZlTlX09nrGuNm3a1OBrAgAAuefOMgAAAFqcio9RjIh455134vDDD89BNQAAQFPmzjIAAABanK5du+7Vt2XLlhxUAgAANHXCMgAAAFqcHj16RPfu3TP6Vq1alaNqAACApkxYBgAAQIs0cuTIjPaSJUtqNX/Dhg0xZ86cmDNnTvzpT39quMIAAIAmRVgGAABAi/R//s//yWg/+uijtZr/m9/8Jr7xjW/EN77xjZg7d25DlgYAADQhwjIAAABapH/6p3+KwYMHp9uLFi2KF198sUZzd+zYETfffHNEROTn58e3vvWtRqkRAADIPWEZAAAALdYdd9wR7dq1S7cnT54cGzdurHbeD37wg/jggw8iImLChAkxYMCAxioRAADIMWEZAAAALdaQIUPiV7/6VbRq1SoiIpYvXx4jR46MRYsWVTr+448/jvHjx8dtt90WERHFxcUxY8aMrNULAABkX14qlUrluggAAABq5oMPPohDDz20xuNHjBgR8+bN2+eYkSNHxvz582u03vvvvx99+vSpVR3PPfdcjBw5MiIi+vTpEyUlJdXOueOOO2LChAm1mjN16tS4+uqrK/3s6aefjvHjx8eGDRvSfYMHD46hQ4fGAQccEFu3bo033ngj5s+fHzt37oyIiFNOOSUefPDB6Nq1a7XHBgAAmq9WuS4AAAAAGttpp50W7733Xtx4441x++23x5o1a2Lp0qWxdOnSvcYee+yx8f3vfz/OP//8yMvLy0G1AABANrmzDAAAgMRZunRpvP7667Fu3brYunVr7L///tGrV6847rjj4pBDDsl1eQAAQBYJywAAAAAAAEis/FwXAAAAAAAAALkiLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWP8fHixNLxRVboMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(time,data[:,[2,3]])\n", + "plt.plot(time,data[:,2]+data[:,3])\n", + "plt.xlim([0,500])\n", + "plt.ylim([0,0.6])\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Volumetric Flow\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are a couple of things to note here. First, the heights of the two tanks are equivalent for all time. This is because although the tanks are of different area-height profiles, and therefore volumes, their evolution is constrained such that each has the same hydrostatic pressure head. Similarly, the volumetric flow into each tank varies as a function of time. Notice how adding the curves together yield the third (constant) curve at 0.5. This is because of the conservation relationship at the manifold: what goes in must come out!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Model Construction:**\n", + "\n", + "Let's start by defining a non-autonomous ODE to evolve the states over the time period of interest:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# define neural network of the NODE\n", + "fx = blocks.MLP(nx+nu, nx, bias=True,\n", + " linear_map=torch.nn.Linear,\n", + " nonlin=torch.nn.ReLU,\n", + " hsizes=[10, 10])\n", + "\n", + "fxRK4 = integrators.RK4(fx, h=1.0)\n", + "\n", + "dynamics_model = System([Node(fxRK4,['xn','U'],['xn'])])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we need a loss function. Here, we use Neuromancer's built-in Variable abstraction to construct a loss that penalizes the misfit in flow rates and the height discrepancy between the two tanks:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "x = variable(\"X\")\n", + "xhat = variable(\"xn\")[:, :-1, :]\n", + "reference_loss = ((xhat[:,:,[2,3]] == x[:,:,[2,3]])^2)\n", + "reference_loss.name = \"ref_loss\"\n", + "\n", + "height_loss = (1.0e0*(xhat[:,:,0] == xhat[:,:,1])^2)\n", + "height_loss.name = \"height_loss\"\n", + "\n", + "objectives = [reference_loss, height_loss]\n", + "constraints = []\n", + "# create constrained optimization loss\n", + "loss = PenaltyLoss(objectives, constraints)\n", + "# construct constrained optimization problem\n", + "problem = Problem([dynamics_model], loss)\n", + "optimizer = torch.optim.Adam(problem.parameters(), lr=0.01)\n", + "\n", + "trainer = Trainer(\n", + " problem,\n", + " train_loader,\n", + " dev_loader,\n", + " test_loader,\n", + " optimizer,\n", + " epochs=10000,\n", + " patience=20,\n", + " warmup=50,\n", + " eval_metric=\"dev_loss\",\n", + " train_metric=\"train_loss\",\n", + " dev_metric=\"dev_loss\",\n", + " test_metric=\"dev_loss\",\n", + " logger=None,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 0 train_loss: 361.18109130859375\n", + "epoch: 1 train_loss: 177.46018981933594\n", + "epoch: 2 train_loss: 86.99143981933594\n", + "epoch: 3 train_loss: 43.273536682128906\n", + "epoch: 4 train_loss: 20.912870407104492\n", + "epoch: 5 train_loss: 9.351593017578125\n", + "epoch: 6 train_loss: 3.290347099304199\n", + "epoch: 7 train_loss: 0.9612399339675903\n", + "epoch: 8 train_loss: 6.165356159210205\n", + "epoch: 9 train_loss: 10.364153861999512\n", + "epoch: 10 train_loss: 8.532082557678223\n", + "epoch: 11 train_loss: 5.270593643188477\n", + "epoch: 12 train_loss: 4.419445991516113\n", + "epoch: 13 train_loss: 3.289616346359253\n", + "epoch: 14 train_loss: 2.0178794860839844\n", + "epoch: 15 train_loss: 1.1312956809997559\n", + "epoch: 16 train_loss: 0.8535256385803223\n", + "epoch: 17 train_loss: 0.6974184513092041\n", + "epoch: 18 train_loss: 0.5534299612045288\n", + "epoch: 19 train_loss: 0.4380740523338318\n", + "epoch: 20 train_loss: 0.3549269139766693\n", + "epoch: 21 train_loss: 0.29896360635757446\n", + "epoch: 22 train_loss: 0.262856662273407\n", + "epoch: 23 train_loss: 0.24299371242523193\n", + "epoch: 24 train_loss: 0.22395667433738708\n", + "epoch: 25 train_loss: 0.18795683979988098\n", + "epoch: 26 train_loss: 0.14619797468185425\n", + "epoch: 27 train_loss: 0.11155693233013153\n", + "epoch: 28 train_loss: 0.09701173007488251\n", + "epoch: 29 train_loss: 0.1069629043340683\n", + "epoch: 30 train_loss: 0.1262456625699997\n", + "epoch: 31 train_loss: 0.13510224223136902\n", + "epoch: 32 train_loss: 0.129230335354805\n", + "epoch: 33 train_loss: 0.11368219554424286\n", + "epoch: 34 train_loss: 0.09497081488370895\n", + "epoch: 35 train_loss: 0.0771043598651886\n", + "epoch: 36 train_loss: 0.06170722097158432\n", + "epoch: 37 train_loss: 0.04881610348820686\n", + "epoch: 38 train_loss: 0.03774762898683548\n", + "epoch: 39 train_loss: 0.02797352895140648\n", + "epoch: 40 train_loss: 0.019654199481010437\n", + "epoch: 41 train_loss: 0.012820769101381302\n", + "epoch: 42 train_loss: 0.00839919038116932\n", + "epoch: 43 train_loss: 0.006424264051020145\n", + "epoch: 44 train_loss: 0.006449824199080467\n", + "epoch: 45 train_loss: 0.0077615887857973576\n", + "epoch: 46 train_loss: 0.009554372169077396\n", + "epoch: 47 train_loss: 0.011136168614029884\n", + "epoch: 48 train_loss: 0.01203972939401865\n", + "epoch: 49 train_loss: 0.012050619348883629\n", + "epoch: 50 train_loss: 0.010960451327264309\n", + "epoch: 51 train_loss: 0.008989015594124794\n", + "epoch: 52 train_loss: 0.006587406154721975\n", + "epoch: 53 train_loss: 0.004234915599226952\n", + "epoch: 54 train_loss: 0.002349240006878972\n", + "epoch: 55 train_loss: 0.001190963201224804\n", + "epoch: 56 train_loss: 0.0008295930456370115\n", + "epoch: 57 train_loss: 0.0011416497873142362\n", + "epoch: 58 train_loss: 0.0018754336051642895\n", + "epoch: 59 train_loss: 0.002730884589254856\n", + "epoch: 60 train_loss: 0.0034380825236439705\n", + "epoch: 61 train_loss: 0.003807539353147149\n", + "epoch: 62 train_loss: 0.003764112014323473\n", + "epoch: 63 train_loss: 0.003344218712300062\n", + "epoch: 64 train_loss: 0.002665674313902855\n", + "epoch: 65 train_loss: 0.0018921210430562496\n", + "epoch: 66 train_loss: 0.0011826083064079285\n", + "epoch: 67 train_loss: 0.000655653013382107\n", + "epoch: 68 train_loss: 0.000368947017705068\n", + "epoch: 69 train_loss: 0.0003141974739264697\n", + "epoch: 70 train_loss: 0.0004310032818466425\n", + "epoch: 71 train_loss: 0.000629704853054136\n", + "epoch: 72 train_loss: 0.0008209424559026957\n", + "epoch: 73 train_loss: 0.0009353210334666073\n", + "epoch: 74 train_loss: 0.0009396016830578446\n", + "epoch: 75 train_loss: 0.0008377266931347549\n", + "epoch: 76 train_loss: 0.0006639423663727939\n", + "epoch: 77 train_loss: 0.00046702439431101084\n", + "epoch: 78 train_loss: 0.0002960949786938727\n", + "epoch: 79 train_loss: 0.00018600164912641048\n", + "epoch: 80 train_loss: 0.00015028606867417693\n", + "epoch: 81 train_loss: 0.00018096109852194786\n", + "epoch: 82 train_loss: 0.0002533908700570464\n", + "epoch: 83 train_loss: 0.00033621571492403746\n", + "epoch: 84 train_loss: 0.0003999730106443167\n", + "epoch: 85 train_loss: 0.0004256659303791821\n", + "epoch: 86 train_loss: 0.0004078852944076061\n", + "epoch: 87 train_loss: 0.00035408890107646585\n", + "epoch: 88 train_loss: 0.0002805234689731151\n", + "epoch: 89 train_loss: 0.00020601246797014028\n", + "epoch: 90 train_loss: 0.0001471305004088208\n", + "epoch: 91 train_loss: 0.0001131363824242726\n", + "epoch: 92 train_loss: 0.00010509648564038798\n", + "epoch: 93 train_loss: 0.00011699749302351847\n", + "epoch: 94 train_loss: 0.00013855485303793103\n", + "epoch: 95 train_loss: 0.00015921704471111298\n", + "epoch: 96 train_loss: 0.00017090157780330628\n", + "epoch: 97 train_loss: 0.0001700790016911924\n", + "epoch: 98 train_loss: 0.00015775824431329966\n", + "epoch: 99 train_loss: 0.00013885597581975162\n", + "epoch: 100 train_loss: 0.00011911991168744862\n", + "epoch: 101 train_loss: 0.00010423269850434735\n", + "epoch: 102 train_loss: 9.705554111860693e-05\n", + "epoch: 103 train_loss: 9.794742800295353e-05\n", + "epoch: 104 train_loss: 0.00010465108061907813\n", + "epoch: 105 train_loss: 0.00011346775136189535\n", + "epoch: 106 train_loss: 0.00012073205289198086\n", + "epoch: 107 train_loss: 0.00012388404866214842\n", + "epoch: 108 train_loss: 0.00012191941641503945\n", + "epoch: 109 train_loss: 0.00011566678585950285\n", + "epoch: 110 train_loss: 0.00010733548697317019\n", + "epoch: 111 train_loss: 9.915285045281053e-05\n", + "epoch: 112 train_loss: 9.312821202911437e-05\n", + "epoch: 113 train_loss: 9.024699829751626e-05\n", + "epoch: 114 train_loss: 9.035725088324398e-05\n", + "epoch: 115 train_loss: 9.246727859135717e-05\n", + "epoch: 116 train_loss: 9.526539361104369e-05\n", + "epoch: 117 train_loss: 9.734640480019152e-05\n", + "epoch: 118 train_loss: 9.799792314879596e-05\n", + "epoch: 119 train_loss: 9.713901818031445e-05\n", + "epoch: 120 train_loss: 9.517328726360574e-05\n", + "epoch: 121 train_loss: 9.287131979363039e-05\n", + "epoch: 122 train_loss: 9.094680717680603e-05\n", + "epoch: 123 train_loss: 8.99359947652556e-05\n", + "epoch: 124 train_loss: 8.992150105768815e-05\n", + "epoch: 125 train_loss: 9.066246275324374e-05\n", + "epoch: 126 train_loss: 9.168683754978701e-05\n", + "epoch: 127 train_loss: 9.251209849026054e-05\n", + "epoch: 128 train_loss: 9.280756785301492e-05\n", + "epoch: 129 train_loss: 9.244571265298873e-05\n", + "epoch: 130 train_loss: 9.15947966859676e-05\n", + "epoch: 131 train_loss: 9.05496344785206e-05\n", + "epoch: 132 train_loss: 8.962696301750839e-05\n", + "epoch: 133 train_loss: 8.901987894205377e-05\n", + "epoch: 134 train_loss: 8.883211557986215e-05\n", + "epoch: 135 train_loss: 8.899549720808864e-05\n", + "epoch: 136 train_loss: 8.935714868130162e-05\n", + "epoch: 137 train_loss: 8.969195187091827e-05\n", + "epoch: 138 train_loss: 8.987126057036221e-05\n", + "epoch: 139 train_loss: 8.984257146948949e-05\n", + "epoch: 140 train_loss: 8.965119923232123e-05\n", + "epoch: 141 train_loss: 8.936546510085464e-05\n", + "epoch: 142 train_loss: 8.909303141990677e-05\n", + "epoch: 143 train_loss: 8.893018093658611e-05\n", + "epoch: 144 train_loss: 8.89004732016474e-05\n", + "epoch: 145 train_loss: 8.89838847797364e-05\n", + "epoch: 146 train_loss: 8.910835458664224e-05\n", + "epoch: 147 train_loss: 8.92154494067654e-05\n", + "epoch: 148 train_loss: 8.924323628889397e-05\n", + "epoch: 149 train_loss: 8.920063555706292e-05\n", + "epoch: 150 train_loss: 8.908480231184512e-05\n", + "epoch: 151 train_loss: 8.8946741016116e-05\n", + "epoch: 152 train_loss: 8.882768452167511e-05\n", + "epoch: 153 train_loss: 8.875961793819442e-05\n", + "epoch: 154 train_loss: 8.875167259247974e-05\n", + "epoch: 155 train_loss: 8.878533117240295e-05\n", + "epoch: 156 train_loss: 8.883595000952482e-05\n", + "epoch: 157 train_loss: 8.887838339433074e-05\n", + "epoch: 158 train_loss: 8.890317258192226e-05\n", + "epoch: 159 train_loss: 8.888547017704695e-05\n", + "epoch: 160 train_loss: 8.884966518962756e-05\n", + "epoch: 161 train_loss: 8.881110989023e-05\n", + "epoch: 162 train_loss: 8.877824438968673e-05\n", + "epoch: 163 train_loss: 8.876594802131876e-05\n", + "epoch: 164 train_loss: 8.877031359588727e-05\n", + "epoch: 165 train_loss: 8.87858186615631e-05\n", + "epoch: 166 train_loss: 8.880080713424832e-05\n", + "epoch: 167 train_loss: 8.881038229446858e-05\n", + "epoch: 168 train_loss: 8.880376844899729e-05\n", + "epoch: 169 train_loss: 8.879036613507196e-05\n", + "epoch: 170 train_loss: 8.877180516719818e-05\n", + "epoch: 171 train_loss: 8.87558635440655e-05\n", + "epoch: 172 train_loss: 8.874526247382164e-05\n", + "epoch: 173 train_loss: 8.874339982867241e-05\n", + "epoch: 174 train_loss: 8.874902414390817e-05\n", + "epoch: 175 train_loss: 8.87559144757688e-05\n", + "epoch: 176 train_loss: 8.876414358383045e-05\n", + "epoch: 177 train_loss: 8.876524225343019e-05\n", + "epoch: 178 train_loss: 8.876537322066724e-05\n", + "epoch: 179 train_loss: 8.875825733412057e-05\n", + "epoch: 180 train_loss: 8.875230560079217e-05\n", + "epoch: 181 train_loss: 8.874815102899447e-05\n", + "epoch: 182 train_loss: 8.874574996298179e-05\n", + "epoch: 183 train_loss: 8.874769264366478e-05\n", + "epoch: 184 train_loss: 8.874905324773863e-05\n", + "epoch: 185 train_loss: 8.875157800503075e-05\n", + "epoch: 186 train_loss: 8.875261846696958e-05\n", + "epoch: 187 train_loss: 8.875087223714218e-05\n", + "epoch: 188 train_loss: 8.874898048816249e-05\n", + "epoch: 189 train_loss: 8.874522609403357e-05\n", + "epoch: 190 train_loss: 8.874418563209474e-05\n", + "epoch: 191 train_loss: 8.874286140780896e-05\n", + "epoch: 192 train_loss: 8.874354534782469e-05\n", + "epoch: 193 train_loss: 8.874458580976352e-05\n", + "epoch: 194 train_loss: 8.874558989191428e-05\n", + "epoch: 195 train_loss: 8.874564082361758e-05\n", + "epoch: 196 train_loss: 8.874559716787189e-05\n", + "epoch: 197 train_loss: 8.874557533999905e-05\n", + "epoch: 198 train_loss: 8.874540071701631e-05\n", + "epoch: 199 train_loss: 8.874358172761276e-05\n", + "epoch: 200 train_loss: 8.874355262378231e-05\n", + "epoch: 201 train_loss: 8.874366903910413e-05\n", + "epoch: 202 train_loss: 8.874316699802876e-05\n", + "epoch: 203 train_loss: 8.874396735336632e-05\n", + "epoch: 204 train_loss: 8.874522609403357e-05\n", + "epoch: 205 train_loss: 8.874505874700844e-05\n", + "epoch: 206 train_loss: 8.874388731783256e-05\n", + "epoch: 207 train_loss: 8.874377817846835e-05\n", + "epoch: 208 train_loss: 8.874263585312292e-05\n", + "epoch: 209 train_loss: 8.874270133674145e-05\n", + "epoch: 210 train_loss: 8.874307968653738e-05\n", + "epoch: 211 train_loss: 8.874270133674145e-05\n", + "epoch: 212 train_loss: 8.874307968653738e-05\n", + "epoch: 213 train_loss: 8.874358900357038e-05\n", + "epoch: 214 train_loss: 8.874294144334272e-05\n", + "epoch: 215 train_loss: 8.874341438058764e-05\n", + "epoch: 216 train_loss: 8.874377817846835e-05\n", + "epoch: 217 train_loss: 8.874342165654525e-05\n", + "epoch: 218 train_loss: 8.874296327121556e-05\n", + "epoch: 219 train_loss: 8.874281047610566e-05\n", + "epoch: 220 train_loss: 8.874309423845261e-05\n", + "epoch: 221 train_loss: 8.8743086962495e-05\n", + "epoch: 222 train_loss: 8.874292689142749e-05\n", + "epoch: 223 train_loss: 8.874353807186708e-05\n", + "epoch: 224 train_loss: 8.874333434505388e-05\n", + "epoch: 225 train_loss: 8.87430360307917e-05\n", + "epoch: 226 train_loss: 8.874317427398637e-05\n", + "epoch: 227 train_loss: 8.874261402525008e-05\n", + "epoch: 228 train_loss: 8.874257036950439e-05\n", + "epoch: 229 train_loss: 8.874297054717317e-05\n", + "epoch: 230 train_loss: 8.874307241057977e-05\n", + "epoch: 231 train_loss: 8.87427813722752e-05\n", + "epoch: 232 train_loss: 8.87433416210115e-05\n", + "epoch: 233 train_loss: 8.8743086962495e-05\n", + "epoch: 234 train_loss: 8.874262130120769e-05\n", + "epoch: 235 train_loss: 8.874305058270693e-05\n", + "epoch: 236 train_loss: 8.874277409631759e-05\n", + "epoch: 237 train_loss: 8.874285413185135e-05\n", + "epoch: 238 train_loss: 8.874276682035998e-05\n", + "epoch: 239 train_loss: 8.874299237504601e-05\n", + "epoch: 240 train_loss: 8.874270133674145e-05\n", + "epoch: 241 train_loss: 8.874289778759703e-05\n", + "epoch: 242 train_loss: 8.874331251718104e-05\n", + "epoch: 243 train_loss: 8.874275954440236e-05\n", + "epoch: 244 train_loss: 8.874350896803662e-05\n", + "epoch: 245 train_loss: 8.874270861269906e-05\n", + "epoch: 246 train_loss: 8.874290506355464e-05\n", + "epoch: 247 train_loss: 8.8743086962495e-05\n", + "epoch: 248 train_loss: 8.874261402525008e-05\n", + "Early stopping!!!\n" + ] + } + ], + "source": [ + "best_model = trainer.train()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To make our lives easier, let's make a quick plotting function to use (we'll use this again later):" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def process_and_plot(integrator):\n", + "\n", + " # Roll out the model:\n", + " end_step = len(data[:,0])\n", + " sol = torch.zeros((end_step,5))\n", + " sol[:,-1] = 0.5\n", + " x0 = np.concatenate((data[0,:],U[0]))\n", + " ic = torch.unsqueeze(torch.tensor(x0),0).float()\n", + " t = 0\n", + " for j in range(sol.shape[0]-1):\n", + " if j==0:\n", + " sol[[0],:] = ic\n", + " sol[[j+1],:4] = integrator(sol[[0],:4],sol[[0],-1:])\n", + " else:\n", + " sol[[j+1],:4] = integrator(sol[[j],:4],sol[[j],-1:])\n", + " t += time[1]-time[0]\n", + "\n", + " # plot the results\n", + " plt.plot(time,sol.detach().numpy()[:,0],label=\"Tank #1\")\n", + " plt.plot(time,sol.detach().numpy()[:,1],label=\"Tank #2\")\n", + " plt.plot(time,data[:,0],label=\"Data\",linestyle=\"--\")\n", + " plt.xlabel(\"Time\")\n", + " plt.ylabel(\"Height\")\n", + " plt.legend()\n", + " plt.show()\n", + "\n", + " plt.plot(time,sol.detach().numpy()[:,2],label=\"Inflow #1\")\n", + " plt.plot(time,sol.detach().numpy()[:,3],label=\"Inflow #1\")\n", + " plt.plot(time,np.sum(sol.detach().numpy()[:,[2,3]],-1),label=\"In_1 + In_2\")\n", + " plt.plot(time,data[:,2],label=\"Data Inflow #1\",linestyle=\"--\")\n", + " plt.plot(time,data[:,3],label=\"Data Inflow #2\",linestyle=\"--\")\n", + "\n", + " plt.xlim([0,500])\n", + " plt.ylim([0,0.6])\n", + " plt.xlabel(\"Time\")\n", + " plt.ylabel(\"Volumetric Flow\")\n", + " plt.legend()\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABu8AAAUOCAYAAAB95a56AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3xUdfb/8fedSe+EEIHQO4QiKCBNQEUsK6KiYFsb6uoqrqy7689lBburru66X3t3LaDYsCsIKFgogkjoRUInQCCQnpn7+2OSIeVOZpLMTSbk9fQxj+TO+dzPOXdSMJ8z917DNE1TAAAAAAAAAAAAABqco6ELAAAAAAAAAAAAAOBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIETTvAAAAAAAAAAAAgBBB8w4AAAAAAAAAAAAIEWENXQCAhnHo0CEtXLjQu922bVtFRkY2YEUAAAAAAAAAADS8wsJCbd++3bs9cuRIJSUl1Vt+mndAE7Vw4UKNHz++ocsAAAAAAAAAACCkffjhhzr//PPrLR+XzQQAAAAAAAAAAABCBM07AAAAAAAAAAAAIERw2UygiWrbtm2F7Q8//FBdunRpoGoAAAAAAAAAAAgNmzZtqnDbqcrr6XajeQc0UZGRkRW2u3TpovT09AaqBgAAAAAAAACA0FR5Pd1uXDYTAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQQfMOAAAAAAAAAAAACBE07wAAAAAAAAAAAIAQEdbQBQDHk8zMTP3444/atm2bioqKlJycrPT0dJ1yyimKiIho6PIAAAAAAAAAAECIo3kHBME333yj6dOna9GiRZbxxMRE3XDDDZo2bZoSEhLquToAAAAAAAAAANBYcNlMoA7cbremTp2q008/3du46969u6677jrdcccdGjdunMLDw3X48GE9+uij6t27t1asWNHAVQMAAAAAAAAAgFDFmXdAHdx00016/vnnJUlOp1NPPfWUrr/+ejkcx/rimZmZuuSSS/TTTz9p+/btOu200/Ttt9+qT58+DVU2AAAAAAAAAAAIUZx5B9TSK6+84m3cSdKzzz6rG2+8sULjTpLatWunr776St26dZMkHTp0SBdeeKHy8/PrtV4AAAAAAAAAABD6aN4BtXD06FHdeeed3u3hw4dr8uTJPscnJCToySef9G5v2rRJ//nPf2ytEQAAAAAAAAAAND4074BaeOyxx7Rv3z7v9tSpU/3uM3bsWPXq1cu7/c9//lPZ2dm21AcAAAAAAAAAABon7nkH1JBpmnrhhRe820lJSTr33HMD2veKK67QXXfdJclz+cxZs2bpD3/4gy11AgAAAAAAAEBtuE233KZbkmTKlEx5PzdLN0yz4ufesZVjMr1xSQp3hCsmPMZvDXnFeTpafLTCXNXNbVVn+Zh5LKiY8Bi1jG3pt4YjRUe0/cj2qnNXc3y+Xp/KxxAdFq0+Lfr4rSG3OFc/7/3Z92tgmlWOz9frU3mM03DqzA5n+q0B9Y/mHVBDixcv1q5du7zbQ4cOVURERED7jho1qsL27Nmzad4BAAAAAFBL5RcvDRkyDMPvPgUlBXKbbstFzwqLrxYLs1YLp+UXRRMjExUdFu23hqy8LOUW51aYv8Jiq6+arBZhK+3XMralWsS08FvD9iPbtSd3T9XjqbzQbLEQ7m8BOS0uTd2Tu/utYVvONmXsz6gyf+XjtWoOVH4dKn/tWsW10qltTg3odfgm85vqXwOL3FZfu8r7JUcl6/Kel/utYX/+fr26+tWAXwPL70Mf+0U4IzTtlGl+ayh0FeruxXdbfs2ry1vlcx/7PzziYcVHxPut4/b5t+tI0RGfP3v+GkS+fo4k6cHhD6pzUme/Ndyx8A5tyt5U4Rhq05ipfAySdPeQuwP6vvzH4n9owfYFVfb39TNZvq7qajNl6k8D/qSr0q/yW8Pjyx7Xa2te8zuuNiZ1n6S/n/J3v+M+3PShHlrykC01nNrmVD11+lN+x/2892fd8s0tttTQJamLPjj/A7/jdh3dpZvn3WxLDdFh0TTvQhTNO6CG5syZU2F74MCBAe/bv39/hYeHq7i4WJK0cOFC5eTkKCEhIag1AgAAoOkxTdO7GF15IdFqgblsnyoLP5WeKxubHJUsh+H/zgu7j+5WiVlinb98XX7erWz1DuGOCR0Depf2uoPrPIviAbwD3LvQZfpeBCu/3at5L6XGpPqtYeW+ldqTu8fnAqLPBWgfC7bl9+vXol9Ai+LL9y6vsCju9zUoX6dFc6D8dp+UPgEtPq7Yt6LaRXFfr4FlTZX269qsa0CL4msPrPUuPpZvRvh6Haxq8bVY2jqudUCL4juO7NCM72dY/mxV93NZIaePn5lIZ6T+d87//NaQV5ynSZ9O8p0vgIVnX6+DJH14/odKikryW8dZ752lQ4WHAmoEVJev/L5lZp47U+kp6X5ruOqLq7TmwBq/42rjXyP/FdAi6ENLHtLX2762pYY/n/RnXd37ar/jZq2bZdvC/MTuEwP62Vi8c7FtC/Mj0kYE9Htqy6EtemzZY7bU0Dmxc0C/p7ILsm37WkSHRQf0tXC5Xfps62e21CBJxe7igMYt27tMhwoP2VJDfkl+QOO2H9muzYc3N2gNucW5tr0OZWfTNSSr3+H1XoNJDQhtNO+AGlqxYkWF7Z49ewa8b1RUlDp16qT169dLkkpKSrR69WoNHTo0qDUCAEJH5QWx8guG5RegosKiAprrcOFhnwt//hY8Ky9YVh7fNr6twhz+//dwQ/YGlbhLKs7l5x2/PuuttN0npU9A78hdumepcopyfDcHPMl91lbdwumgloPUJr6N3xq+2/GdMo9k1uy1l/XXqvLXZWjroeqf2t9vDQu3L9TSPUtr/dpXN35wq8E6r/N5fmtYtHORPtj4geVrWd33vb+vlUypb4u+mjJgit8aVuxboceWPlbtMVb7fVrN+HYJ7fTMGc/4rWHL4S2a/OXkKrms5i87Pu9YP98j0WHRWnzpYr815Jfka/Bbg/2Oq62FExcqOSrZ77hLPrnEtsWmQBfmp38/3baF+cdGPqaxHcb6Hff6mtdtW5ifetLUgJp38zPn27owH8ii+NoDa/Vqxqu21DAibURAi+L78vbp0y2f2lJD50T/Z3BInp/Pn/b8ZEsNgZzlVWbr4a221CBJbgW2GJxbnKvc4lxbaij/73BDoYaaCeRMycZcQ6BfC0M21hAizYFA6wiF18LOGhoTfj5DqIYQ+LlA/aN5B9RQRkZGhe02bfwv7pWXlpbmbd6VzUfzDnYqvwDoMBwB/U/H4cLD3nfue69vXv7d/OUWId2mWzI9f6ybpun5o710Ebb8eMnzXPuE9gEtMJS9Y758fquFz7K8vhY8rfbr16JfQNc1X7J7iXYe3Vlh32rrCTC/JA1qOUh9W/T1W8N3O77Tz/t+tlwAt3p9q1uoL3+tetM0NajVIP2u0+/81mC1MO/vGMvXWV3t/Vr00+0n3e63huV7l+ufS/5pnc/PIr2/76H2ie318tiX/daw+dBmXfbpZb5fBx/fk4GIDovWksuX+B2XX5KvEbNGBDxvTQW6MD/5y8nKLsy2pYa3znkroGv+P7bsMVsX5gNp3n2w6QPbFuZjwmICat4t3bPUtoX5qLCogJp3mTmZ+mrbV7bUEOEM7NLkOYU5WrV/lS01hDvCAxrncruUlZ9lSw1h7tD4sy0UFrxq8rsVLLqFVA1NYNEtJH5HhEINIfB7KhR+NkJBKHwtAhUKX4tQqEFqAr+zQ+D7MhRqQM2Eys8n6ldo/BUINBI5OTnavXt3hefS0tJqNEfl8evWratzXai9Tb8sVt7n02VK2u9065XEHJmS9z2jpiTTKP0oo2x5vvQ5o/T50rFGpf28+5uKMB2alttNpgzJMCQZMks/qtxzhYZb06JXVsh7bD6z3Lym5fOSWa4GU2alf9v/ZZyjeCPK84++YchUWTPvWA0yDN1eOFtHVVj3F9jC9Oa/V6eIVqU1OKTS+1IYhsNTg+HZnrbrOW0t2uV3vtr4a+ebNKL5YG8uGcdeB8Ph8N4r45W1L2jR/h9tqWFKv1vVPaGbjNLchuGQw+EofQmOfeF+2v2TbQvzEc6IgJp3di7Mx4T5v/SZ5HmH9tqDa22pIS4iLqBxpmkqryTPlhoa26JbKOAPao9Q+CMuJBZYQqGGBliMdrtNlbhNuU1TLrepI0UlttUgSZ+t3q0YR75cpW+ccLklt+nJ73abcpmemgqK7bsU07MLNym50l+xVq/8riMFttWwfNtBuY/sVpjToTCnoXBH6UenoTDv5w7lFtr39QiF31OB4uwFj5D4PWXzvxmhUEco/M4O9MfzuG9ihkINIfC7khqOCZU6AmHr70t+R4RODSHwPUkNqA7NO6AGDh48WOW5mt6vrvL47Oy6n7mwb98+ZWXV7J3emzZtqnPe40H+ob3qW7BUkrQpPFy/RLayJU+U261BBz/2Oy7PMHSoQ1tbapCkk357Xs3d/hfUwtulSU6nLTV0X/WI+hQV+R0X0/oEKTLSlhpa/HCfOuT6b8JEp6ZIsYE1l2rKOf9eRX74F8uY2yxrDBtyJydKSf4vIVgbuUvf0O4vXpVpGKXNaM9DpY1plW5nx0tq7v8eR7WRs/lH/bpklLeZ7f1YrrFtStoSUSj5PyGsVvIO7tSP/71KZc10s7Sp7NksO25Duxz5UuBXpaoRl6tI379xj6eJXfY6GA7PnynlGuuFctlTQKlVC99XYlh8ae5jzfQKjW4ZchX7/xmurfUbMuTaWSDJUe7Yyz6XPE12Q/n59i3Mb8s6ql8c2d6c5f92L//HY06+fQvz+3IKtH7PEVVeN6j8p2t2XmD3DqldDfla+ttBmWb5S2FKZX9nl51tuiXLnkufSVLWkQJ99utuTw0yZZqeZlHZR3fpx4059pzxVlbDjDkZx5pUpa+H2112JrGnhiOunbbVUFBcoj7Tv5TLLG3WlTbtqjCKFN/DtjJ094erZbr8/5sU29WlAK7AWyuf/bpb7gL/Z0PGdCiS06bf2S8v2qqSI/7/BohK269wm25tPXv5di1ZsdzbKAxzGApzOrwNxHCnoTCnoRVH7DlLWgqNN3yEwmJTKNQQqKbQSG1UDcQQqMHeHmbDL8zTJAmdGkJFo/qdHQJv0guFb4lQ+L4MiRoMQ5FOzxpZ2RvOvTEZ3jFl/5UGqsSs9i+bF6GH5h1QA0eOHKnyXGQNmwtRURXvaWQ1Z009/fTTuueee+o8T1NU/n9iDRv/Jy7Qme1pjxwTaB12/m9J5bMBG6KGQBk2LkpVN7PDOHbOZZiN35cxKlArZfv9xkgx42RX5yzOnaM+Rf5vBH5UUZJSbakhynVUpxz40O+4LeFhUpvWttRguF0auvVxv+MKDEOyscHfZ+lfleLy3+APs7HB3/XbW9Wv0H9zMLbVCVKUPX9ktFtwq/qVNvjLN9OPnXHtaSrGpyZJcfZ0Bxw//ldhXzzpqUGOYw19GRVqcSebUjNbSlDBuq+U/d0PFfJ7PjoqvCZHE3Lt+vFU3u712rL8b6XH7ZDLdMjtfR0ccsmQWw7tismWanYl84AV5h/V6jVfyC1H6eNYfrcMuUo/FkdkS53sqcGUdDSgs7hC4V/PUGHjaxHw1PbVsGnfUa05sMfvuIgWhxSZYk8Nc37ZqcU/favIMIciw5yKDHcowulQVLhTUeFOxUQ4FR3h1G9F++wpQGJhvoY14JiQWIgN4RrKL+x6F4INVdiusBBcbmzZdqCLwdHh0Woe1bz6fJUWpK3yVa5JUkC3SpCk+Ih49Uzueez4LfL5ew0q11E2LtAaYsJjvPcRre1rbrVobxiGwozAln+dDqcu6npRheOpUE+557zPV6qp8utRfv8op/97fEvSlb2uVF5xnuXcVY7PInd1r02r2MDesH1V+lU6kH+g2tfAV8zna1AaC+QWAZJ0Rc8rNKb9GOtj9PH9UT6XtwaL/dsntA+ohku6XaKRbUYG/DWuMKZSfZX3T4xMDKiGszudrcGtBlfYv/L3QeW5rV4Dq9cn0Mvjn9L6FP1w6Q8+X4NAv0YVjqGGzdlOiZ207IplNdoHjR/NO6AGrBptlZtx/tjRvEPtmeaxRWo7/3RyB/iPsp0NxNIEgQ2zsYyAG4ihUIN9JZQu/gdSg30vRKAXNbP3dWj4GkJB4E1te39H8PNZtYbyzfTKwgL+Kaq5ZOOoOjty/I5rYSRKCuwP35pKM7J0pnOD33GFjjh9YlODv62xT7eEZfgdtygsSt/Z1EFsbRzQ7Mh7/Y7bEh6m82VPgz/CKNZPkTeXNgo9TUzv5+U+FhjSNbZU4PGHsI8UZUTKXSl/5c+/UJFNF9+WWhkHZBhRfmvw9/vSrPCLt9LnpsVz5T8G+EvbdEXJXRJbi/nLPrcYU5rbdAX2xgGzJF6ugvILlUa5+n28BuXiZuV4uWM/dDRJWQf9/y3jjC1WRHJ3y/mlst+uFed3GIachiGHwyGnw1CYw5DT4fBclrT00qRhDofycjroqfmbFBcZptjIMMVFOhXr/bz0Y0SYWkSn6oIuF/hc0C17zmphr7oFc0OGkqMD+/2XFJWkG/reUGVOfwvR1S6Ul247jcDeUBPmCNO0wdMqHkel4wl4UdJiv7jwwC5F/sDwB1TkKqr2ta3wGlReAK3m69Y5sXNANdw77F7ll+RbLq5W+xqUj/tYOE+JDqxjPu2Uabrj5DsCfg0qfC/4qqlUuDOwBenbBtym2wbcViV/fRrXeZzGdR5X73nLOzH1RL1z3jsNWkPL2JZ66vSnGrSGcEe4Zgyd0aA1SNLkPpMbugSN7TC2oUvQiaknNnQJahPfJqB7gdspISJBCRE2XcogQOGOcIVHBPZ7FQgmmndAA+Ndkg3MrLIkYU+aAMc5bP52cAd4lKHwWoRCDXaeCRkar0PDt8RC4UzMUKghUHY2zWoimK+FYR77TqzJvNGmqTi32/ualLvYatUlb7PsuYq5vA/z2HNlcweiVYlLXYqKvHNY5i5flymL/KZlrS1LArskZ8fiEo3Iyy+Xo8IyuOVrUvaaW7UGytfaN4AzICWpc1GxLsk5UuXrWPE1OVaX1eshVf0aSlL74sBeh/bFxbrt4CHvPBVyWb7uldoSZuXYsZrirS5PaSG1xKWH9u23zOXJUc33aIVaq36fOiSdYBRU3MGCW9KruyK9Qyy/583y+S2+LqVPW71W7YxMhQfwF+Qtu5xyG36+5y1+Ziq+LmaVn09DUpT5qAI5maNkz7H9TNNzhqRZoeFpVGn6VdcYdZWecer5/AO5Iz6qZqwhl5wqPhCmwv0tVawwFStMRQr3fDTDVCznsW3vc8fGFSlMxaaz4nbpuAJFyK1wueSW28//rRRnD1dx9nD/L5iNXLk9lJ9rz/Vc10r6VusDGhsZNsTb0Cvf6EuICldCdNnHcO92ovfzcCVEhSkhOlzhztr/32FyVLJu7X9rrfcPhjBHmCb2mNigNUjS8LSG/Z6UpM5JgTX57JQYmRjwmSd2cRh2X/sFAADUFs07oAbi46ve46OgoECxsbEBz1FQUPEePVZz1tTNN9+siy++uEb7bNq0SePHj69z7sbv2FkTdjfOQkHgDaPQfTGsFj/LL3ZWWfC0WNgPD3BhPtnlVlrpwrHnAmlVF/otF0ctFj0rL5q2cAV277L2xSU6JT+/ygK0txZVXKz3tVDvUNXXpm9hYOdFWC3MV16U97Ugb7UY7yi3b9uSwO7X1aG4WHccyLY4TrPaRXeHWfm5qvvGBbgwf0KJS0/uzfK5uF7+62Fdj3w2kQL9/RMm6b0duyvlrf77z6O6r9Gxz5MDuGSmJH28Y5dMX8dYVlOlhpiv78/aenGPjZdhC9DU7EOaat/tpAIy/miuxh+1755zgTipsFAnBfj7xC5tS1yafNj/mYp2ijNN/S6A+6naySE1+NdCkloG+G+cnSr8oWuYCpNLCuS+oXX95VTPikynChShQoWrUBEqND0fCxSuQrP0o8V2ocJVYJZ+LNu/0naBGaF8RShPkco3ozwfFVH6f0SNT2GJW4UlRTqQW/v7tkaHOz1NvQrNvtJGX3S4EqPDlRQToWYx4WoWG6FmpZ8nRIXL4Whk31wAAABoUDTvgBqIi6t6GZDCwsIGb96lpqYqNdWmm80c55Jad9OPLS+XJB0xC3Vm8Y6qzaBK71B3lJ6mU9bMkWnVPDBLF/AN77jl8V0lmZ7xZXcLMj0fyz53ydQfDudJpc0WR2lTxuGtpexOQ566HDLl8J614mlUlMU9TQt36b6eOg4YHXSk9Ko63jsXmRXvZGRIumefKVOu0rk9OT355N12lL5GTrm9n3u2PbU4vQ0jd+l73T3Px7qdOmpGe8d7js/tfd3KanhpV5Z3PqfRMOeI3XkwW3cebNiV+QuO5uoCFuaVVuLSVTkNe5nhGNPU6Lz8Bq3BIalbcWANTzvFcdY4AISECMOlCOVLKv33qR7+h6nADFeeIpWnKOWbkaVNvUjlm6WNPkUpr+x5M7K0AVhxbJ5Z+lGROmLGKFee5mCoNwbzi13KL3ZpTw3fK+AwpMToig29pJgIJcdGKCkm3Ptcs5gINY+LVEpchBKjwxvkEoYAAAAIDTTvgBpITq56P4OcnBzL533Jyan4l16zZs3qXBdqr32PAWrf42nv9pgGrKXMSQ1dgKTAbl1srypXEzc9jU/TdMs0TZmmKbfpluk2ZZouzyVoS58/NsZzX0PT7a6yr2m6ZcqU3JIpz5iy54/NY3rnlemutL/nYai0BrnLzWV6P3oatpJpurzzyjRlqmKuYzlKt1XxeMoff1lMKjdfuf298SpzuUp7xaak0rGmSudxe5vJnnxll/V1e8eoXO6yMeVrKTuGyvUZ5eo5Fqu0vzdWcf+yswq996csfc3LN8GPXf62dE7TXSlWdhZY2efuCvsZ5Y/B23iv9Fzp19GoPIfkfd28Z6yW1nhsrMrFPfM45NaxC5eaVeYwTPexWPnnS+tylKurQsx7JmJZDRWb4uU/L19DhXnKN+3LzV32hoZj94ADADRFUUaxolSsZB0NarPQbRrKVZTnYUbpiKKVa0YrV5U+N6OVq0qfVxp/VNF+Lylan9ymlJ1XrOy8YkmBvSkr3GkoOTZCKXGR3oZeSunH5rGRSomPVPPYCLWIj1RybESdLukJAACA0EPzDqiBxMREtWzZUnv27PE+t3PnTnXo0CHgOXbu3Flhu0cPe+7/ABx3DEMyDBlyeNeJnA1aENCEVWnG+vhYqRlb8aM88Uoxs9xzZY13b9O4LLc35pa3iV0ld9X5KjTLvc3Usua4KuUqe/5YU9ww5Wn6V2mKVz6uyvuVy+Ott9KxV6hT5Y6ttFld2vSv/Noa5XOUb+pWOs6yhrPhfQ3d3qZ0xYa06c1XvqFdIUe5Jnrl17tCI77a74WyuKqPlz3vdpV7ncoerorbbnelePkx5fZ1uyzGVXqUjSlrygOwncMwFa98xSs/KE3BHDNaOYrVETNGOYpRjhlb+jFGOYot/Vj++VgdLo0fVUyDN/+KXab25hRqb05gVz9IiglX89iyBp+nyZeaEKUW8ZE6ISFKqaUfm8VwRh8AAEBjQPMOqKHevXtXaN7t2LGjRvtXbt717t07KHUBAFBvSpvptkzt43OgQXjPjLZo+LktGoNVGoquSp+7yn10V9ou/WiaFmNdPubw9Xy5emo9h6/aa1pH+bmqGVt2hjUQJAlGvhLq0Ags3/zLNuOUrTgdMuOVrThlm8c+P2TGKVvxyjbjdFixaqhLfx7KK9ahvGJtzqr+zL5wp6HU+CilJkR6G3qp8ZFKLdfgS42PVLOYCO7TBwAA0IBo3gE11L9/f82dO9e7vWbNmoD3LSgo0JYtW7zbTqeT5h0AAECo8jaquRyd7cqaoP4agxXG+GiA+nu+PhqS7mLJVSK5CiVXkeQq9nwsKSrdrvwolkoKj41zNey9ZlG75p/bNHRYsZ7mnuKUbcaXfvR8nq14HTATlGUm6oASdMBM0FFFqz7frlLsMrXzUL52Hqr+Pr5lTb7WSVFqlRitVklRSkuK9nyeGKXWSdGcxQcAAGAjmndADZ133nl69NFHvdtLly4NeN8VK1aouLjYuz1y5EglJCQEtT4AAACg0TEMyXBKDi6KLan0DMySY829ktKGnqtYKs73NPpK8qWSAqm4wPOx7OHdLhtTWGkfq+1K+7iKGvoVaJQchqlmOqpmxtGA9ykww7VfiTpgJngf+5Wo/WaCDpiJ3th+M0HZildJPS3jVGzyZVuOiQp3qHVpY69VYrRaJ0WrdWKU2jSLUdtkzzb34gMAAKgdmndADQ0bNkytWrXS7t27JUk//PCDioqKFBER4XffBQsWVNieMGGCHSUCAAAAaMwMQ3KGex6Krf/8breniVecLxXlSsV5UlGeVJxb+jEv8OeKcj3zeD/PozlYTpRRrDbarzbG/oDG7zcTlGUmaa/ZTPvMJO2V5+O+sm2zmbKUpOJ6WO4pKHZry/5cbdlvfalOhyG1SoxW2+RotW0Wo7bJnqZeu+QYtW0WoxbxkZy5BwAA4APNO6CGHA6HJk+erPvuu0+SdOjQIX366ae64IIL/O775ptvej9PTEzUxIkTbasTAAAAAGrF4ZAiYj2P2JTgz+8qKW3w5UqFR6XCI1LRkXKfl370fn5UKswp93m554uONKl7JqYYOUoxctRTmdWOO2DGV2zqqay5l6xdZnPtNpvrgOJtvUef25T37L0fdbBKPDLMoTbNPM28dskx6pASqw4pseqUEqu0pGiFcdYeAABowmjeAbXwl7/8Rc8++6yysrIkSU888YTf5t2XX36pjIwM7/Zf//pXJScn21onAAAAAIQcZ5jkTJSiEus+l2l6zuYr3wQsyJEKDgf+KDpS9zpCTHPjiJobR9RT232OKTTDtMdM1i4zRbuUrN2lTb1dpY/dZnPlKEZ23ZOvsMStzVm52pxV9cy9cKehtskx6pQSq46lTb2OKbHqlBKnExI4Yw8AABz/aN4BtRAfH68HH3xQ119/vSTpu+++00svvaTrrrvOcvyRI0c0ZcoU73bnzp31pz/9qT5KBQAAAIDjl2EcO0sw/oTazeEq8ZzZV3CoYlMv/5DnubyDUv7B0o/ZFbfdxX4mD12RRonaG/vUXvt8jjlqRpU29ZJLm3op2mGmaLuZqkwzVfuUZMvZe8UuU1uycrXForEXHe70nqHXqUWsuqTGqWtqvDq1iFVUOPfNBAAAxwead0AtTZ48WT/++KNeeuklSdKNN94ol8ulyZMny+E49sdLZmamLrnkEm3YsEGS53KZ7733nmJiYhqkbgAAAABAOc4wKSbZ86gJ0/RcvrO65l75j7kHpNx9UkmBPcdhgzijQF2NneqqnZbxQjNcO8wU7TBbaLvZQtvNVO/HTDNVhxWrYJ+5l1/s0trdOVq7O6fC8w5Dat/c08zrdoKnodclNU5dUuNo6gEAgEaH5h1QB88//7xiY2P15JNPyuVy6cYbb9Tjjz+uU089VYmJidq4caM+//xzFRV5bsielpamjz76SP369WvgygEAAAAAdWIYUmS859GsfWD7mKbnXn+5WVUfR8tv7/c0+vIOSjJtPYy6iDSK1dnYrc7abRnPMaO1w9vQ8zT1tpmp+s1sqR1mC5UEcVnKbUpb9+dq6/5cfb1mr/d5w5DaJceoa2q8erWKV89WCerRKkHtk2PkcHD5TQAAEJoM0zRD9/8CgUZi7ty5mj59ur7//nvLeEJCgq6//nr94x//UGJiEO7rEAQZGRnq3bu3d3v16tVKT09vwIoAAAAAABW4SkrP2suSju6VjuyVjuwu/Xx3xe1GdEafJBWbTm03W+g3s6W2mq201Wyp30ofu8zmcttwOc7yYiKc6t4yXj1aJnibet1bxis+KtzWvAAAoHFo6PVzzrwDguCMM87QGWecoW3btumHH35QZmamioqK1KxZM6Wnp2vIkCGKjIxs6DIBAAAAAI2JM0yKS/U8Tqhmscg0Pffnq665l7PL87mrqN7Kr0644VInY486aY+klRVihWa49wy9raXNvc3u1tpktla2EoKSP6/IpRWZh7Qi81CF59smR6tXqwT1bZOk3mmJ6pOWqOTYiKDkBAAACBTNOyCI2rdvr/btA7xcCgAAAAAAwWAYUnQzzyO1h+9xbreUt186vEPK2Skd3ikd3n7s85ydngaf6a6/2i1EGsXqZuxUN4t77R0w47XJTNMmd5o2mmmln7fWHiUrGPfX234wX9sP5uvLjGOX3mzTLFp92ySqd1qi+qYlqU9aohJjOEMPAADYh+YdAAAAAABAU+BwHDuTL22A9RhXiaeBl7OzUpNvh3Q4U8rOlAoP12/d5TQ3jqi5sU6DHesqPH/EjNZms7U2mWna6E7TJrO1NppttN1sIbOOl+DckZ2vHdn5+uzXPd7n2iXHqE+bRPVrk6gB7Zqpd1qiosKddcoDAABQhuYdAAAAAAAAPJxhUlJbz8OX/Gwpe5uU/Zt0aJvnc+/HTMlVWG/llok38nWisVknarNUroeWa0Zqg9lWa91ttc5sp3XudlpntlWO4uqUL/NgnjIP5unTVbslSeFOQ71aJ2pAuyQNaNdMA9o3U+vEKBlG3c8GBAAATQ/NOwAAAAAAAASu7BKdrU+sGnO7PffYs2rsZW/1nMlXj2KNQvU3Nqm/Y1OF53eazb2NvHXudlprttNWs5Vcqt3Zc8UuU79sP6Rfth/SK4t/kySdkBDpaeS1a6YB7T330IsM4+w8AADgH807AAAAAAAABIfDISW08jzaD6kaL8rzNPEObJYObJIObpYObPF8nruv3spMMw4ozXlAp2uF97lCM0ybzDStNdvrV3dH/eruqDVmexUoslY59uYU6vPVe/T5as/lNiPCHOrfNkmDOzXXKR2T1b9dM0VH0MwDAABV0bwDAAAAAABA/YiIkU5I9zwqK8iRDpY28g5uOdbgO7BRKrD/PnuRRonSjW1K1zZNcH4rSXKZhjaZaVptdtRqd4fShl4H5SmqxvMXlbj109aD+mnrQT0pz6U2+7VJ0uBOyRrcsblOat9MsZEs1QEAAJp3AAAAAAAACAVRCZ5LcVa+HKdpei7FmbVe2r9Bylrn+Txrve1n6zkNU92NHequHbrI+Z0kyW0a2my21q9mR60ud4ZerqJrNHexy9Sybdlati1bT83fLKfDUJ+0RA3ulKwhnZprcMfmnJkHAEATRfMOAAAAAAAAocswpPiWnkenkRVj+dlSVmlDb/+GY029w5m2leMwTHU1dqqrdupC5yJJnobeJrO1Vri7aoXZRSvcXbTRbCO3HAHP63KbWrn9kFZuP6TnFm5RhNOhk9o304huKRrRpYXSWyfI4TDsOiwAABBCaN4BAAAAAACgcYpuJrUb7HmUV3jU09Dbu1rau0bam+H5vOCQLWU4DFPdjJ3q5tipiVogSTpqRukXd2dvM2+lu4sOKDHgOYtcbv2w5YB+2HJAj2i9kmMjNLRzc53atYWGd01R66SanekHAAAaD5p3AAAAAAAAOL5ExkltTvY8ypimlLPrWCNvb4a0b43njD13SdBLiDMKNMyZoWHK8D63zZ2qlWYXLXN30zJ3d6032wZ8dt7B3CJ9smq3Plm1W5LUuUWsRnRtoVO7pWho5xRFhXOJTQAAjhc07wAAAAAAAHD8MwwpMc3z6HbmsedLCj0NvL0Z0p5fpV0rpd2/SEVHgl5Ce8c+tdc+ne/8XpKUY8Zouburlrp7aIm7u341O6lQEQHNtTkrV5uzcvXq978pKtyhoZ1TdFqPVJ3WI5Wz8gAAaORo3gEAAAAAAKDpCouUWvbxPPpN8jzndksHt0i7V0q7VniaebtXSYWHg5o6wcjTaOcvGu38RZJUaIbrF7OTlrq7a6m7u352d1OOYv3OU1Ds1jfr9umbdfskST1bJei0Hi10Wo8TdGLbJDm5Vx4AAI0KzTsAAAAAAACgPIdDSuniefSZ4HnO7Zayt5Y29FZ6Pu7+RSoIXkMv0ijWIGO9BjnWe1KahtaY7fW9O13fu3tpqbuHcuX/rLq1u3O0dneOnpq/WcmxERrT8wSN7X2ChnVJUWQYl9cEACDU0bwDAAAAAAAA/HE4pOadPY/eF3meM01PQ2/nz9KOpZ7H7lWSuzg4KQ1TvY3f1Nvxm27QpyoxHfrF7Kwf3L30vTtdy93d/F5m82BukWYt265Zy7YrNsKp0T1SNTa9pUb3SFVcJEuDAACEIv6FBgAAAAAAAGrDMKTkTp5H2Rl6xQXSnlXSjmWlDb1l0uHMoKQLM9w6ydiokxwbdYs+UqEZpp/d3Uqbeb200uyikmqW+3KLXPpk1W59smq3IpwODe+aorHpJ+jMXi3VLDawe+0BAAD70bwDAAAAAAAAgiU8Smo7yPMoc2RPaTNviZT5k7TrZ8lVVOdUkUaJhjjXaIhzjaZKOmJG63t3ur5199VCd1/tMFN97lvkOnafvL9/sFrDu6bovL6tNSb9BCVEhde5NgAAUHs07wAAAAAAAAA7xbeUev7O85Ck4nzPpTYzf/A8ti+RCnPqnsbI11jnMo11LpMkbXa38jbyfnT3UoEiLfcrcZtasD5LC9ZnKeIDh0Z1a6Hf9WutM3qmKiaC5UMAAOob//oCAAAAAAAA9Sk8WuowzPOQJLdL2ptxrJm37Qfp6J46p+ns2K3Ojt26Rl+q0AzXEnf30mZeP20w20gyquxTVOLWV2v26qs1exUd7tRpPVM1/sQ0jezWQhFhjjrXBAAA/DNM0zQbuggA9S8jI0O9e/f2bq9evVrp6ekNWBEAAAAAAJAkmaZ0cIv02yJp67eeR+6+oKbYYaZonqu/5rpP0k/unipS9ZfKTI6N0Lh+rXXhgDT1SUuUYVRt/AEAcLxo6PVzzrwDAAAAAAAAQolhSM07ex4nXeVp5mWtL23kLfQ09QoO1SlFG2O/rgr7Wlfpax01o7TQ3VfzXAM0332ispVQZfzB3CK9+v1vevX739QlNU4XDkjT+BPT1Dopuk51AACAqjjzDmiiGvqdAwAAAAAAoJbcLmnv6mNn5f22WCrODcrULtPQcrOb5roGaJ57gDabrWV1eU3J02Mc2rm5LhrQRuf0aaWocGdQagAAoKE19Po5zTugiWroXz4AAAAAACBISoqk7T9Jm+dJm+ZJe1YFbeot7pb6yj1Qn7kGaZXZSb4aeQlRYbqgf5omDWqnnq2qnrkHAEBj0tDr5zTvgCaqoX/5AAAAAAAAmxzZK22ZL22aK23+Rso7EJRpd5gp+tw1SJ+7BmmF2UWmHJbjTmybpEsHtdXv+rZWbCR37QEAND4NvX5O8w5oohr6lw8AAAAAAKgHbre0e2XpWXnfeM7QM111nna3mawvXAP1qWuwlpvdLBt5sRFOjTsxTZcNaqc+bRLrnBMAgPrS0OvnNO+AJqqhf/kAAAAAAIAGkJ/tubTm+s+kjXOlwsN1nnKvmaQvXAP1uXuwlrh7yG3RyDuxbZKuHtpBZ/dpqcgw7o0HAAhtDb1+TvMOaKIa+pcPAAAAAABoYK5iadv30oYvPM287N/qPOVeM0lzXEP1oWuYMswOqnyPvJS4SF02qK0uG9xeLROj6pwPAAA7NPT6Oc07oIlq6F8+AAAAAAAghJimlLXe08Tb8IW0fYmkui0bbnSn6UPXMH3kHqodZmqFWJjD0NjeLXXVkA4a2KGZDMPwMQsAAPWvodfPad4BTVRD//IBAAAAAAAh7GiWp5G3do60ZYHkLqnTdMvc3fSha5g+dQ1WthIqxHq2StDk4R11Xr/WigireslNAADqW0Ovn9O8A5qohv7lAwAAAAAAGon8bGn959Kaj6TN30iuolpPVWw6tdDdVx+5hukr98kqVIQ31jIhStcM66BLB7dTQlR4MCoHAKBWGnr9PKzeMgEAAAAAAABofKKbSSde5nkUHJbWf+Fp5G2aK7kKazRVuOHSGc4VOsO5QjlmjD5yDdW7rpFaZXbSnpwCPfT5Ov33m026dFBbXTOso1onRdt0UAAAhC6adwAAAAAAAAACE5Uo9ZvoeRQekTZ8Ka35UNr4tVRSUKOpEow8XRk2V1eGzdU6d1u96xqpD1zDdbAwQS98t1WvLP5N5/VrretHdFKv1gn+JwQA4DjBZTOBJqqhT/sFAAAAAADHkYIcae3H0q/vSFu/lUx3raYpNp2a6x6gd10jtdDdTy45JUkju7XQlNO76KT2ycGsGgAASw29fs6ZdwAAAAAAAADqJipB6n+555GzW1r9nqeRt/uXGk0Tbrh0tnOpznYu1W4zWbNcozSzZLQWbpAWbsjS0M7NNeX0rjqlU3ObDgQAgIZH8w4AAAAAAABA8CS0kobe4nlkrZd+fVda9Y50aFuNpmllHNSfwt7Xrc4PNM89QG+6ztC3m/vo+80HNKhDsm49vYuGd0mRYRg2HQgAAA2D5h0AAAAAAAAAe7ToLp02TRr9d2n7EmnVLM9ZeQWHAp7CaZg607lcZzqXK9PdQm+7Tte7v43UlS8d1IltkzTl9C4a3T2VJh4A4LjhaOgCAAAAAAAAABznDENqN1j63ePSn9dLE16WOp8mqWYNt3aOLP0tfKa+j7xF/w1/Uo4dS3Ttq0t1/lOL9e2GLJmmaU/9AADUI868AwAAAAAAAFB/wqOk3hd5Hoe2S7/MlFa+IWX/FvAUEYZL5zl/1HnOH/WLu5Ne3TVWk1/erwGdTtBfxvbQSe2b2Vc/AAA248w7AAAAAAAAAA0jqa008i/SrSukqz6R+k6SwqJqNEU/xxY9EfGMFkdO0SmZz+sPz3ymya8t1drdOTYVDQCAvTjzDgAAAAAAAEDDcjikjiM8j7Mf9pyNt+xlaf+GgKdoYRzWn8Le183Oj/TJpiG6c/1Ydeg7Qref0U0dUmJtLB4AgOCieQcAAAAAAAAgdEQ3k065SRr8B2nbYk8Tb80cyV0c0O4RhksXOhfpQuci/bSmh+7/9TydcNJ5um1Md6XG1+ysPgAAGgLNOwAAAAAAAAChxzCkDsM9j6NZnvviLXtFOrQt4CkGO9ZpsGOdNq58S/9ZeZ7ajLxK15zaXVHhThsLBwCgbrjnHQAAAAAAAIDQFtdCGn67NGWldNk7UufTarR7V8dOPeB4Vhd+e7Ze/udt+nTJWpmmaU+tAADUEc07AAAAAAAAAI2DwyF1Gytd+YH0xyXSwMlSeOD3szvBOKSbS/6nUz8drY8euVar1qyxsVgAAGqH5h0AAAAAAACAxqdFd+ncf0lT10hnPiAzqX3Au8Yb+Rqf/766zxqhb5+4Urt+W29joQAA1AzNOwAAAAAAAACNV3SSNPQWGVNWSJPektl+WMC7RholOvXwHLV4ZYh+feoKFezZaF+dAAAEiOYdAAAAAAAAgMbP4ZR6nCvjms+k67+Rq+d4uQNc/gw3XOqT9bHCnx2k3S9fKe1bZ3OxAAD4RvMOAAAAAAAAwPEl7SQ5J74mx5TlKjjxGhUbkQHt5pRbrTLnyP30Kcr732XSntU2FwoAQFU07wAAAAAAAAAcn5I7KWr8vxV+x1odGPhnHXEkBLSbQ6ZiNn8qPTtMrneulrI22FsnAADl0LwDAAAAAAAAcHyLba7m596t+DvXa/PA6dpnpAS8q3PNBzKfHix9cJN0cKuNRQIA4EHzDgAAAAAAAEDTEBGjzudOVfO71mhJ7+naodSAdjNMt/TLWzL/72Tp4z9Jh3faWycAoEmjeQcAAAAAAACgSXGGR2rQhKmKv2OVZrf7uza7WwW0n+EukZa/IvPJ/tIX/086us/mSgEATRHNOwAAAAAAAABNUmJctCZc+1flTf5ej8b/TevcbQPaz3AVSj8+Lf3nRGnBw1LhUXsLBQA0KTTvAAAAAAAAADRpfdol68+3/z/9fM4nut24I+AmnopzpQUPSf8dIC17RXKV2FsoAKBJoHkHAAAAAAAAoMlzOAxddkoH/eOOv+m1vm9oStEt2uJuGdjOR/dKn/xJemaotP5zyTRtrRUAcHyjeQcAAAAAAAAApZJjI/TQhBN19R/u0C3NntVfim/QDjMlsJ33r5feniS9+jtp53J7CwUAHLdo3gEAAAAAAABAJQPaNdOHt45U29Nu0JklT2ha8TXaayYFtvO2RdILp0mzr5UOZdpaJwDg+EPzDgAAAAAAAAAsRIQ5NOX0rvpoymitSbtYpxb+W/cXX65DZmxgE6x+T/q/gdL8h6SiPHuLBQAcN2jeAQAAAAAAAEA1up4Qr3f/MFR3nnei3nSM06mFT+jZkt+p0Az3v3NJgbTwYempQdLq97kfHgDAL5p3AAAAAAAAAOCH02HommEd9dXtp6pf1w56uOQynVb4mN53DQ9sgsPbpdnXeO6Ht+dXe4sFADRqNO8AAAAAAAAAIEBtk2P0+rWD9NjF/XQkqpWmFt+scwsf0CJXemATbFskPXeq9MntUu4Be4sFADRKNO8AAAAAAAAAoAYMw9CEk9roiz+dqmFdmivD7Kgriu/SVUV/01p3W/8TmG5p2cvSf/tLS1+U3G77iwYANBo07wAAAAAAAACgFlonRet/1w7W3b/rpcgwpxa6++ncoof09+JrddCM8z9BwWHp0z9LL42Rdq+yv2AAQKNA8w4AAAAAAAAAasnhMHTt8I765NbhSm+dILccetN1hkYXPq5XSsaqxAxgCXbnMun5kdIXd0mFR+wvGgAQ0mjeAQAAAAAAAEAddT0hXh/cPEy3jO4ihyEdVpzuKblK5xQ9FNj98Ey39ONT0v8NktbMkUzT/qIBACGJ5h0AAAAAAAAABEFEmEN3jO2ud/8wRO2SYyRJG8y2uqL4Lt1YdLsy3S38T3Jkl/TOldJbE6Xs3+wtGAAQkmjeAQAAAAAAAEAQndQ+WZ/fNkIXn9Sm9BlDX7oHakzRo3q0+BLlmxH+J9n4pfTUKdKif0uuEjvLBQCEGJp3AAAAAAAAABBksZFhevTifvrPpBMVG+GUJBUqQk+5xmtM0SP6xnWi/0lK8qW506WXzpD2ZthbMAAgZNC8AwAAAAAAAACbnH9imj6ZMkK90xK8z+0wU3Vt8V90Y9GftNtM9j/JrhXScyOlBQ9LJUU2VgsACAU07wAAAAAAAADARh1TYvXeTUN17bCO5Z419KV7kM4ofFQvlpwtl2lUP4m7WFrwkPT8KE8zDwBw3KJ5BwAAAAAAAAA2iwxz6u7zeumF35+shKgw7/O5itb9JVdqXNEDWunu7H+ifRnSC6dLc2dIxQX2FQwAaDA07wAAAAAAAACgnozpdYI+uXWE0lsnVHg+w+ygC4vu0bTia5RjRlc/iemSFj0hPTtcyvzJxmoBAA2B5h0AAAAAAAAA1KN2zWP03k1DNWlg2wrPu+XQG64xOrPwEc1z9fc/0YGN0itnSXPv4V54AHAcoXkHAAAAAAAAAPUsKtyphy/qq0cm9FVkWMVl2j1qruuK79BtRTcr24yrfiLTLS16XHrxNGnfWhsrBgDUF5p3AAAAAAAAANBALjm5rT64eZjaJle+VKahj9zDNabwUX3qGuR/oj2/Ss+NlH54WnK7bakVAFA/aN4BAAAAAAAAQAPq1TpBc/44XMO6NK8S269E/bH4T7qp6DZlmQkWe5fjKpS+/H/S/86XDu+wqVoAgN1o3gEAAAAAAABAA2sWG6HXrhmkycM7WsY/dw/WmMJH9b5ruP/Jtn4rPT1UWvWuZJpBrhQAYDeadwAAAAAAAAAQAsKcDk37XS89fkk/RYRVXbo9pHhNLb5ZNxTdrgNmfPWTFR6W3p8szb5Wyj9kT8EAAFvQvAMAAAAAAACAEHLhgDaa/YchapUYZRn/yj1QYwsf0VxXf/+TZbwvPTdC2rEsyFUCAOxC8w4AAAAAAAAAQkzfNkn66I/D1K9NomV8vxI1ufgO3Vk8WQWGdZPP61Cm9PJYafF/JLfbhmoBAMFE8w4AAAAAAAAAQlBqQpRm3ThE5/Zp5WOEoZmu0zS24EGtC+te/WTuEunru6W3LpaOZgW9VgBA8NC8AwAAAAAAAIAQFRXu1H8v7a9bT+vic8w2s6XOPTpNz4ddJtMRVv2Em+ZKzw6XtiwMcqUAgGCheQcAAAAAAAAAIczhMPTnM7vriYn9FOG0XtJ1yakHj/5Ol5n3Kz+hU/UTHt0jvX6+9M0DkqvEhooBAHVB8w4AAAAAAAAAGoEL+rfRm9cPVlJMuM8xP+S30ykH79aO9hf6mc2Uvn1Eeu08KWdXcAsFANQJzTsAAAAAAAAAaCQGdkjWezcNVZtm0T7HHC6J0KkbJujHfg9J4bHVT5j5vfTcqdLW74JcKQCgtmjeAQAAAAAAAEAj0rlFnN6/eah6pyX4HOM2pUk/tdesk96QWvapfsLcLM9lNL//r2SaQa4WAFBTNO8AAAAAAAAAoJFJjY/SzBuGaGS3FtWO+9uCfD3W7imZA6+vfkLTJX01TXr3aqnwSPAKBQDUGM07AAAAAAAAAGiE4iLD9OJVJ+vik9pUO+7/vt2huwqvkuuS/0lRidVPuuZD6YXTpawNwSsUAFAjNO8AAAAAAAAAoJEKdzr0yIS+umV0l2rHvb0kU1NWtFHR5G+lNgOrn3T/eumF06Q1c4JYKQAgUDTvAAAAAAAAAKARMwxDd4ztrmnn9qx23Ke/7tYfPslSwRUfS/4uo1l0RHrnSunruyVXSRCrBQD4Q/MOAAAAAAAAAI4Dk0d00mMX95PTYfgc8826fbr+zVXKH/NP6YLnpLDo6idd/B/pzYuk/OwgVwsA8IXmHQAAAAAAAAAcJyac1EbPXD5AEWG+l36/27hf17y6RLk9JkiTv5aadah+0i0LuA8eANQjmncAAAAAAAAAcBw5M72lXrtmkOIiw3yO+XHLQf3+5SXKSeoh3bBA6nZW9ZMe3Cy9eIa0aV5wiwUAVEHzDgAAAAAAAACOM0M6N9db1w9WYnS4zzHLt2Xryhd/0mEzTpr0tjT675J8X3JThYelNydIPz4rmWbwiwYASKJ5BwAAAAAAAADHpb5tkvT29aeoeWyEzzG/7Disy1/6UYcLXNLIv0qXz5aiknxParqlL/4mfXybVFIU/KIBADTvAAAAAAAAAOB41at1gmbecIpaxEf6HLN6Z46ufPknHc4vlrqeId0wX2rRo/qJf35N+t8FUu6BIFcMAKB5BwAAAAAAAADHsa4nxOudG4eoVWKUzzGrdhz23AOvoFhK7iRd97XU9czqJ962SHphtLRvbZArBoCmjeYdAAAAAAAAABznOqbE6p0bh6hNs2ifY37ZfkhXv7xERwtLpKgE6dKZ0pBbqp/40DbpxTHSlgXBLRgAmjCadwAAAAAAAADQBLRNjtGsG4eoXXKMzzE/Zx7SNa8sUW5hieRwSmMfkM5/SnKE+5646Ij0xkXSLzNtqBoAmh6adwAAAAAAAADQRKQlRevtG06p9gy8pb9l65pXlyq/yOV5ov8V0lUfSzEpvid2l0gf3Ch9+6hkmkGuGgCaFpp3AAAAAAAAANCEpCVF6+3rT1Faku8G3pKtB3XjG8tVWFLawGs/RLr+Gyk1vfrJv7lf+vg2yVUSxIoBoGmheQcAAAAAAAAATUzb5Bi9ff0pap0Y5XPMtxuy9KeZK1XicnueaNZeuu5Lqfs51U/+82vSzEulwqNBrBgAmg6adwAAAAAAAADQBLVrHqO3bzhFLRN8N/A+X71Hd77/q9zu0kthRsZLE9+QBt1Y/eQbv5JePVc6ui+IFQNA0xDW0AUgtJSUlOjRRx/VPffco8LCQknS1q1b1aFDh6DmycvL0+LFi7Vu3TodPnxYMTEx6tixo4YNG6bU1NSg5tqwYYOWLFminTt3yuVyqUWLFurbt68GDhwohyN4/ev6PCYAAAAAAAAgGNo3j9XbN5yiSc//oL05hZZjZi/fobjIME0/r5cMw5AcTunsf0pJbaWvpvmefPdK6cUzpCvek1K62nMAAHAconkHr1WrVunaa6/V8uXLbcuxd+9ezZgxQ6+99pry8/OrxB0Oh84880zdd999Ovnkk+uUa/bs2br//vv1yy+/WMZbtmypKVOmaOrUqYqMjKx1nvo8JgAAAAAAACDYOqbE6s3Jg3XJcz/qYG6R5ZhXv/9NCVFhmnpmd88ThiENvVVKaC198AfJZb2fDm2TXhojXfau1HagTUcAAMcXwzRNs6GLQMMqLi7WAw88oAcffFDFxcVV4sE68+6bb77RxRdfrIMHD0qSYmNjdc4556hjx47au3ev5s2bpx07dkjyNLwefPBB/e1vf6txnoKCAl1zzTWaOXOm97n+/ftr8ODBio6O1urVqzV37lyVfev37t1bc+bMUceOHUP2mOyQkZGh3r17e7dXr16t9HQ/NxwGAAAAAADAcWv1zsO69PkfdaSwxOeYaef21OQRnSo++dtizz3uCg77njw8Vpr0ptR5dJCqBQD7NPT6OWfeNXHLly/Xtddeq1WrVkmSevXqpTVr1gQ9z/z583XOOed4L8U5btw4vfTSS0pJSfGOKSoq0gMPPKB7771Xbrdbd955p4qLizVtWjWn3lficrl00UUX6bPPPpPkaaa98cYbGj9+fIVxGRkZGj9+vDZt2qTVq1dr1KhR+v7775WWlhZyxwQAAAAAAADUh95piXr5moG68qWfVFDsthxz/6dr1TwuQhf0b3PsyQ7DpOu+lt6YIB3OtJ68OFd66xJpwstSz/NsqB4Ajh/Bu+EXGhW326277rpLp5xyilatWqWwsDDddddd+vnnn4Oea9++fZo4caK3yTVq1CjNnj27QpNLkiIiInTPPffozjvv9D53991366uvvgo417333utt3EnSBx98UKVxJ0np6elasGCBmjdvLknKzMzUpEmTFOiJqPV5TAAAAAAAAEB9GdghWc9debLCnYbPMX95d5W+3ZBV8ckW3aXJX0ut+vme3FUkvfN7acWbQaoWAI5PNO+aqJycHD300EMqKSlR37599dNPP+mBBx6o073ffJkxY4aysjz/mIeHh+uZZ55ReHi4z/HTp0/3XsLSNE1NnTpVLpfLb57MzEw98sgj3u0rrrhCY8aM8Tk+LS1NDzzwgHd70aJFmjVrlt88Uv0dEwAAAAAAAFDfRnZroScn9ZfDR/+uxG3qD28s16odhyoG4ltKV38mdfG9JifTLX10s/TjM0GrFwCONzTvmrDw8HBNnz5dy5Yt04ABA2zJsWnTJr3wwgve7bPPPls9evSodp+oqCjddNNN3u2MjAy9/vrrfnPdfffdKigo8G5PnTrV7z7XXHONmjVr5t2eNm2aSkp8X9Nbqt9jAgAAAAAAABrC2X1a6Z8X9fUZzyty6ZpXlmrr/tyKgcg46dK3pT4XV5/gizul+Q9KAV4JCwCaEpp3TVRUVJSWLVumGTNmVHvGWF29+OKLFZphl19+eUD7XXbZZTKMY2/tee6556odn5OTo5kzZ3q3e/bsqf79+/vNExERoYsvPvY/Eps3b9bcuXOr3ae+jgkAAAAAAABoSBef3FZ3nu37TesHcov0+5d/0r4jBRUDznDpguelgZOrT7Dwn9Lnf5Pc1vfXA4CmiuZdExUVFaW+fX2/cyZY3nvvvQrbo0aNCmi/tLQ0de3a1bu9ZMkSbd++3ef4OXPmeO8/J0mjR48OuMbKNc2ePbva8fV1TAAAAAAAAEBDu/HUTrpmWAef8e0H83XNK0t1tLDS1awcDumcx6QRd1SfYMlznstouqq/GhYANCU072CbNWvWaNOmTd7t9u3bKzU1NeD9Bw0a5P3cNE19/PHHPsfOmTOnwvbAgQNrlcdqrvLq85gAAAAAAACAhmYYhv5xbi+d16+1zzEZu3J061s/q8RV6Qw6w5BO/4d05v3VJ/nlbWn2NVJJURAqBoDGj+YdbLNixYoK2z179qzR/unp6RW2V65caUuuzp07KyoqyrudlZWlXbt2BT2PVLNjAgAAAAAAAEKBw2HosYv7aliX5j7HzF+fpXs+XiPT6h52Q2+Vxv1XMqpZjl47R3r3aqmk0PcYAGgiaN7BNhkZGRW227RpU6P909LSqp2vTEFBgbZs2VKnXK1bV3znkK9c9XVMAAAAAAAAQCiJDHPq2StOUnrrBJ9j/vfjNr20aKt1cMDvpQmvSI5w30nWfyrNukIqLvA9BgCagLCGLgDHr3Xr1lXYrty48qfy+MrzldmwYYPc5W5q63A41LJlyxrnKt8AXLduncaMGVNlXH0dU03t27dPWVlZNdqn/OU/AQAAAAAAAH/io8L1yjUDddEz32v7wXzLMQ98tlZtk2M0Nt1ifS59vBQZJ826UirOs06y8Stp5qXSpLek8OjgFQ8AjQjNO9jm4MGDFbYTEny/K8dK5fGHDh2SaZoyDKPaPLGxsXI6nXXKlZ2dbTmuvo6ppp5++mndc889dZoDAAAAAAAA8Cc1PkqvXD1IFz69WDkFJVXipindNnOF3rlxiPq2Sao6QZczpCs/lN6cIBXmWCfZ/I301iXSpTOliNig1g8AjQGXzYRtjhw5UmE7MjKyRvuXvw+dJLndbuXlVX1HTl3zWOWqPGewcgV6TAAAAAAAAECo6pIap+euPFnhTus3pBcUu3Xtq8u0I9vHule7wdLvP5SiEn0n2fqt9OYlUlFu3QsGgEaG5h1sU7nRVblx5Y/VeKumWl3zWO0TaPPOrmMCAAAAAAAAQtmQzs310IV9fcb3Hy3U5NeWKbew6tl5kqS0k6SrPpaim/lOsm2R9NZEqYg3vwNoWmje1bNbbrlFhmHY/pgxY0ZDH6otTNM8rvIEK9fNN9+s1atX1+jx4Ycf1r14AAAAAAAANFkTTmqjKad39Rlft+eIbp+1Um63j/WvVv2kqz6RYpr7TvLbd9LMy6TigjpWCwCNB/e8g23i4+MrbBcU1OwfWKvxlecMRh6rfazyBCNXoMdUU6mpqUpNTa3zPAAAAAAAAEBN3H5GV207kKuPVu6yjH+1Zq/+PXeDpp7Z3XqClr2lqz+VXhsn5e6zHrNlvjTrcmnSW1JYzW+ZAwCNDWfewTZxcXEVtgsLC2u0f+VGl2EYio2teoPauuaxyuWroVZfxwQAAAAAAAA0BoZh6JEJfTWwg+/LXz75zSZ9ssq6uSdJSu3paeDFtfQ9ZtNcadaVUklRHaoFgMaBM+/q2U033aSzzjrL9jzdunWzPYc/ycnJFbZzcnJqtH/l8UlJSTKMqjfBrZwnNzdXLpdLTqez1rmaNbP+n436OiYAAAAAAACgsYgMc+q5K0/W+U8t0vaD+ZZj7nj3F3VoHqveaYnWk7ToJl39ifTKOb7PwNv4pfTu1dIlr0nO8OAUDwAhiOZdPUtPT1d6enpDl1EvevToUWF7586dNdq/8vjK85Xp1q2bHA6H3G63JMntdmvPnj1KS0sLeq76OiYAAAAAAACgMUmOjdCLvx+oC59erNwiV5V4QbFb17++TB/dMkyp8VHWk6R0la76WHr1XClvv/WY9Z9K718vXfSS5Aj8zfsA0Jhw2UzYpnfv3hW2d+zYUaP9Kze6Ks9XJjo6Wp06dapTrl27Kp627ytXfR0TAAAAAAAA0Nh0bxmvf0/qL18Xmtp9uEB/+N9yFZZUbe55pfbwNPCik32PyfhA+vg2yTTrVjAAhCiad7BN//79K2yvWbOmRvuvXr26wna/fv1sybVp06YK96JLSUlR69atg55HqtkxAQAAAAAAAI3NmF4n6I4zu/uM/5x5SPd87GdN7YRe0lVzpGjf99HTiv9JX95FAw/AcYnmHWzTq1cvde7c2budmZmpfft8XK/awtKlSytsn3feeT7HVo5V3rcmecaNG+dzbH0eEwAAAAAAANAY3Tyqs8b1s35zvCS99VOm3lm2vfpJWvaRrvxQivJxjzxJ+vFpacHDtSsSAEIYzTvY6qKLLqqwvWDBgoD227lzpzZu3OjdHjRokNq1a+dz/Lhx4xQREVHjPFZjJ0yYUO34+jomAAAAAAAAoDEyDEOPTOirPmm+G2/TPlytX3ccrn6i1idKV34gRcT7HrPwYen7/9auUAAIUTTvYKvrrrtOYWFh3u0333wzoP3eeustmeVOeb/hhhuqHZ+YmKiJEyd6t9euXasVK1b4zVNUVKR3333Xu92xY0edccYZ1e5TX8cEAAAAAAAANFZR4U698PuT1SI+0jJeVOLWH95YroO5RdVPlHaSdNlMKSzK95ivpknLXqlDtQAQWmjewVbdunXTdddd593+/PPPtW7dumr3KSgo0DPPPOPd7tGjh66++mq/ue677z5FRh77n4HHH3/c7z6vvPKKsrOzvdv333+/wsPDq92nPo8JAAAAAAAAaKxaJkbpqcsGKMxhWMZ3HsrXlLdXyOX2c9+6DsOliW9IjmrW7T65Xcr4sPbFAkAIoXkH282YMUPNmzeXJBUXF+vmm29WSUmJz/H33HOPtm7dKslziv0TTzwhp9PpN0/79u11xx13eLffeOMNzZ071+f4Xbt26e9//7t3e+jQobr00kv95pHq75gAAAAAAACAxmxQx2T9/dyePuOLNu3Xv75a73+irmOki16QDF9L2qb0/vXS1m9rVygAhBCad7Bdy5YtNWvWLO896ebPn68JEybowIEDFcYVFRVpxowZevjhYzeZvfvuu3XWWWcFnGvGjBkaO3asd3v8+PH66KOPqozLyMjQyJEjvTW0adNGM2fOlGFYvwuoIY8JAAAAAAAAaMyuHtpB55/Y2mf86QWb9WXGHv8TpV8gnfek77irSHr7Mmn3L7WoEgBCh2GWvwkXmpQFCxZo9OjRtdr3lVdeqfFlH7/++mtNnDjRe5nKuLg4nXPOOerQoYP27dunefPmafv27ZIkh8Oh++67T3fddVeNa8vPz9dVV11V4V52AwYM0ODBgxUdHa2MjAx9/fXXcrvdkqRevXrp448/VqdOnWqcq76OyQ4ZGRnq3bu3d3v16tVKT09vwIoAAAAAAABwvMorKtGFT3+vdXuOWMbjo8L06a0j1K55jP/JfnxG+uJO3/HYVOm6L6Xkmq/3AYDU8OvnNO+asPpu3knSnj17NH36dL3++usqKCioEjcMQ2PGjNH999+vgQMH1qq2Mu+8847uv/9+/frrr5bx1NRUTZkyRX/+858VFVXNDW/9qM9jCqaG/uUDAAAAAACApuW3/bk67/8W6UiB9e1n+qQlavZNQxQZFsDtZuY/KC38p+94sw7SdV9Lcam1KxZAk9bQ6+c079AgcnNztXjxYq1bt045OTmKiopSx44dNWzYMLVs2TKoudatW6clS5Zo165dcrlcSklJUd++fTVo0KCg3neuPo8pGBr6lw8AAAAAAACannlr9+q615b5jF89tINmjAtgjco0pU9ul5a/4ntMyz7S1Z9JUQm1qBRAU9bQ6+c074AmqqF/+QAAAAAAAKBpevzrDXpy3kaf8acvH6Bz+rTyP5HbJb17tbR2ju8xnUZJl8+WnOE1rhNA09XQ6+eOessEAAAAAAAAAGjybju9q4Z2bu4z/rfZq7TtQK7/iRxO6cIXpA4jfI/ZskD6+DbPmXoA0EjQvAMAAAAAAAAA1Bunw9C/J52olLhIy/iRwhL98a2fVVDs8j9ZeJQ06U3phD6+x6x8s/r74wFAiKF5BwAAAAAAAACoV6nxUXry0hPlMKzjq3fm6MHP1gY2WVSidMV7UrMOvscseEha8WaN6wSAhkDzDgAAAAAAAABQ74Z2TtFtp3fzGX/9h236YvXuwCaLP0G64n0pOtn3mI+nSJvn17BKAKh/NO8AAAAAAAAAAA3iltO6aHiXFJ/xv733q3Yfzg9ssuadpctmSWFR1nF3iTTrSmnP6lpUCgD1h+YdAAAAAAAAAKBBOB2Gnph4olrEW9//7nB+sW6ftVIutxnYhG0HSRc+L8nH9TiLjkhvXSId2VO7ggGgHtC8AwAAAAAAAAA0mBbxkXpyUn+f97/7cctBPbtwc+AT9jpfGvug73jOTuntS6WivJoVCgD1hOYdAAAAAAAAAKBBDencXLeM7uIz/vjXG7QiM7sGE94sDb7Jd3zXz9KHN0ludw2qBID6QfMOAAAAAAAAANDgppzeVQPaJVnGXG5Tt81cqaOFJYFPOPYBqcfvfMfXfCgteKhGNQJAfaB5BwAAAAAAAABocGFOh/4zqb/iIsMs45kH83T3R6sDn9DhlC58QWo9wPeYbx+RVr1Tw0oBwF407wAAAAAAAAAAIaFtcozuH9/bZ/z9n3fqo5U7A58wIka69G0pIc33mI9ukbYvqUGVAGAvmncAAAAAAAAAgJAxvn+aLujvu9n2jw9Xa/fh/MAnjG8pXTpTCo+1jrsKpZmXSYcya1gpANiD5h0AAAAAAAAAIKTce3662iZHW8ZyCkr019mrZJpm4BO26itd9IIkwzqem+Vp4BXl1bxYAAgymncAAAAAAAAAgJASHxWu/0zqL6fDutn23cb9euPHbTWbtMe50ph7fMf3/Cp99EepJk1BALABzTsAAAAAAAAAQMgZ0K6Zbju9q8/4A5+t1db9uTWbdOgUqf8VvuMZ70uLnqjZnAAQZDTvAAAAAAAAAAAh6eZRndWvbZJlrKDYranvrFSJyx34hIYhnfuE1H647zHz7pU2fFWzQgEgiGjeAQAAAAAAAABCUpjToccv6aeocOul7BWZh/Tct1tqOGmEdMlrUmI7HwNM6b3J0v6NNZsXAIKE5h0AAAAAAAAAIGR1bhGn/3d2T5/xf8/doIxdh2s2aWyKNOlNKSzaOl54WHr7UqmghvMCQBDQvAMAAAAAAAAAhLQrT2mv4V1SLGPFLlNTZ/2iwhJXzSZt1Vca/5Tv+IGN0vs3SO4aXJYTAIKA5h0AAAAAAAAAIKQ5HIYemdBX8VFhlvH1e4/o/77ZVPOJe18kDb/dd3zDF9J3/6r5vABQBzTvAAAAAAAAAAAhr3VStO49P91n/OkFm7V6Zy0uc3naP6QuY3zH5z8gbZpb83kBoJZo3gEAAAAAAAAAGoXxJ6bp7N4tLWMut6m/zl6lYlcNL3PpcEoXvSg17+JjgCm9N1nK3lazeQGglmjeAQAAAAAAAAAaBcMwdP/43moeG2EZX7M7R88u2FzziaOTpElvSxFx1vH8bOmd30vFBTWfGwBqiOYdAAAAAAAAAKDRaB4XqXuquXzmk99s1Ia9R2o+cYtu0vinfcd3r5Q+/2vN5wWAGqJ5BwAAAAAAAABoVM7t00pj00+wjBW7TP3l3V9UUtPLZ0pSr/Olobf6jv/8mvTz/2o+LwDUAM07AAAAAAAAAECjYhiG7ju/txKjwy3jv+w4rJcWba3d5KfPkDqM8B3/9M/SrpW1mxsAAkDzDgAAAAAAAADQ6KQmROnu3/XyGf/X1xu0OetozSd2hkkTXpbiW1nHXYXSu1dLBYdrPjcABIDmHQAAAAAAAACgUbpwQJpGdW9hGSsqcev/vfer3G6z5hPHpUoXvyY5wqzj2VulOVMksxZzA4AfNO8AAAAAAAAAAI2SYRh68II+iou0brIt+e2g3lm2vXaTtxssjX3Qd3zNh9LSF2s3NwBUg+YdAAAAAAAAAKDRap0Urb+f29Nn/MHP1irrSGHtJh90g9T7It/xL+/i/ncAgo7mHQAAAAAAAACgUZs0sK2Gdm5uGcspKNH9n66p3cSGIZ33Hym5s3XcVVR6/7uc2s0PABZo3gEAAAAAAAAAGjXDMPTABX0UEWa95P3Ryl1auCGrdpNHxkuXvCY5I63j2Vulj7n/HYDgoXkHAAAAAAAAAGj0OqbE6tbRXXzGp334q/KLXLWbvGUf6ex/+o5nfMD97wAEDc07AAAAAAAAAMBx4caRndU1Nc4ytv1gvv4zb2PtJz/paj/3v/u7tGd17ecHgFI07wAAAAAAAAAAx4WIMIcevLCPz/gL323R2t21vD+dYUi/+3c1978rlN67TirKq938AFCK5h0AAAAAAAAA4LgxsEOyLh3UzjLmcpv6f+//Kpe7lveni0qQLn7V9/3vstZJX/29dnMDQCmadwAAAAAAAACA48qdZ/VQSpx1g23l9kOatXR77Sdv1Vc66yHf8WUvS2s/rv38AJo8mncAAAAAAAAAgONKYky4pp/Xy2f8kS/X6WBuUe0TnHyt1PM83/E5t0qHd9Z+fgBNGs07AAAAAAAAAMBx53d9W2lU9xaWsUN5xXr0y3W1n9wwpPOelBLSrOP52dIHN0puV+1zAGiyaN4BAAAAAAAAAI47hmHovvN7KzLMehl85tLtWrn9UO0TxCRLFz4vybCO//adtOiJ2s8PoMmieQcAAAAAAAAAOC61TY7RH0d3sYyZpnT3R6vlcpu1T9BhuHTqHb7j8x+Udiyr/fwAmiSadwAAAAAAAACA49YNp3ZS++YxlrFVOw5r5tLMuiUYeafUZpB1zHRJ798gFeXWLQeAJoXmHQAAAAAAAADguBUV7tSM89J9xh/5Yr0O5hbVPoEzTLroBSkywTp+cLP01T9qPz+AJofmHQAAAAAAAADguDa6R6rG9DrBMnY4v1iPfLGubgmadZB+V8397Za9JG38um45ADQZNO8AAAAAAAAAAMe9u3/XS5Fh1kviM5du18+Z2XVL0GeC1HeS7/hHf5RyD9QtB4AmgeYdAAAAAAAAAOC41zY5RreM7uIzPmNOhtxus25JznlESmxrHTu6V/rkT5JZxxwAjns07wAAAAAAAAAATcL1p3ZSh+YxlrFVOw7r/RU765YgKlEa/7Tv+No50qpZdcsB4LhH8w4AAAAAAAAA0CREhTs1Y1y6z/gjX6xTbmFJ3ZJ0PFUacovv+Gd/kQ5l1i0HgOMazTsAAAAAAAAAQJMxqnuqzuh5gmVs35FCPb1gU92TnPYPqUVP61hhjvThzZLbXfc8AI5LNO8AAAAAAAAAAE3KtHN7KtxpWMZe+G6rth/Mq1uC8CjpwuclR7h1/LfvpKUv1i0HgOMWzTsAAAAAAAAAQJPSISVW1w7raBkrKnHrwc/W1j1Jq77SaX/3HZ87XTq4pe55ABx3aN4BAAAAAAAAAJqcW07ropS4CMvY56v36MctB+qeZOgUqd0Q61hxnvTRLVw+E0AVNO8AAAAAAAAAAE1OfFS47jizu8/4PR+vkctt1i2JwymNf1oKj7GOb1ssLXm+bjkAHHdo3gEAAAAAAAAAmqSLT26r9NYJlrG1u3M0a+n2uidJ7iSdMcN3fO4M6cDmuucBcNygeQcAAAAAAAAAaJKcDkPTz0v3Gf/XV+uVU1Bc90QDr5faD7eOleRz+UwAFdC8AwAAAAAAAAA0WYM6JuvcPq0sYwdyi/TsgiCcFedwSOf/nxQeax3P/F5a8lzd8wA4LtC8AwAAAAAAAAA0aXee3UORYdbL5S8t2qpdh/LrniS5ozTmHt/xufdw+UwAkmjeAQAAAAAAAACauLbJMbrh1E6WscISt/711YbgJDr5OqnDCOtYSb40ZwqXzwRA8w4AAAAAAAAAgBtHdlZKXIRl7P0VO7RmV07dk/i7fOa2RdKK1+ueB0CjRvMOAAAAAAAAANDkxUWG6bYzulnGTFN66PO1wUnUrEP1l8/86m4pZ3dwcgFolGjeAQAAAAAAAAAgadLAturUwvqsuO827tfCDVnBSXTydVL74daxwsPSZ3d4OoYAmiSadwAAAAAAAAAASAp3OnTnWT18xh/6bK1c7iA01RwOadyTkjPSOr7uE2ntnLrnAdAo0bwDAAAAAAAAAKDUmF4naFCHZMvYuj1H9N7PO4KTqHlnadSdvuOf/UXKzw5OLgCNCs07AAAAAAAAAABKGYah/3eO77Pv/vXVeuUXuYKTbOitUss+1rGje6WvpgUnD4BGheYdAAAAAAAAAADl9G/XTOf2bWUZ25tTqJcXbw1OIme4NO7/JMNpHV/xhrRlQXByAWg0aN4BAAAAAAAAAFDJ38b2ULjTsIw9u3CzDuUVBSdR6xOlobf4jn98m1ScH5xcABoFmncAAAAAAAAAAFTSrnmMrjylg2XsSEGJnl24JXjJRt4pNetoHcv+TfruX8HLBSDk0bwDAAAAAAAAAMDCrad1UXxkmGXs1e+3al9OQXASRcRI4570HV/0bylrfXByAQh5NO8AAAAAAAAAALDQLDZCN5zayTJWUOzWk99sDF6yjqdK/a+0jrmLpU+mSqYZvHwAQhbNOwAAAAAAAAAAfLh2eEelxEVYxmYu2a7MA3nBSzbmXimmuXVs2yLpl7eDlwtAyKJ5BwAAAAAAAACAD7GRYfrj6C6WsRK3qSfmbghesphk6cwHfMe/miblHQxePgAhieYdAAAAAAAAAADVuGxwO6UlRVvGPly5U+v25AQvWb9JUocR1rG8A9LXdwcvF4CQRPMOAAAAAAAAAIBqRIY5ddsZXS1jpik99mUQz74zDOl3T0hO60t1asX/pG0/BC8fgJBD8w4AAAAAAAAAAD8u7J+mzi1iLWNz1+7Vz5nZwUuW0lUa9iff8U9ul1zFwcsHIKTQvAMAAAAAAAAAwI8wp0N3nNndZ/zRL9bLNM3gJRzxZ6lZR+tY1lrpx6eDlwtASKF5BwAAAAAAAABAAM7q3VJ90hItYz9sOaAfNh8IXrLwKOl3j/uOL3xEytkVvHwAQgbNOwAAAAAAAAAAAmAYhv4y1vfZd0/M3RDcs+86nyb1nmAdKzoqffWP4OUCEDJo3gEAAAAAAAAAEKARXVN0Sqdky9jS37K1eFMQz76TpLEPSpEJ1rHVs6Wt3wU3H4AGR/MOAAAAAAAAAIAAGYahP1dz77ugn30Xf4I06v/5jn/2F8lVHLx8ABoczTsAAAAAAAAAAGpgYIdkDe+SYhlbvi1bizbtD27CQTdIqb2sY1lrpSUvBDcfgAZF8w4AAAAAAAAAgBq6fUxXn7Envg7y2XfOMOmcR33HFzwkHdkbvHwAGhTNOwAAAAAAAAAAauik9ska0dX67LufMw/p241BPvuuw3Cp9wTrWGGO9PXdwc0HoMHQvAMAAAAAAAAAoBZuH9PNZyzoZ99J0pn3SxFx1rFVM6VtPwQ3H4AGQfMOAAAAAAAAAIBaGNCumUZ2a2EZW7n9kBZsyApuwoRW0si/+o5/9hfJ7QpuTgD1juYdAAAAAAAAAAC19KczfN/77t92nH03+CYpxccZf3t/lVb8L7j5ANQ7mncAAAAAAAAAANRS/3bNNKq79dl3v+w4rPnr9wU3YViEdM6jvuPz7pMKDgc3J4B6RfMOAAAAAAAAAIA6+NMZvu999+S8TcE/+67TKKnX+daxvP3St9U09wCEPJp3AAAAAAAAAADUwYltk3Raj1TL2Mrth/T95gPBTzrmPskZaR378VnpwObg5wRQL2jeAQAAAAAAAABQR7dXc/bdf7/ZGPyEzdpLQ2+xjrmLpa+mBT8ngHpB8w4AAAAAAAAAgDrq0ybR573vftxyUMu3HQx+0uFTpbiW1rH1n0mb5wc/JwDb0bwDAAAAAAAAACAIbhndxWfs/77ZFPyEkXHSGdN9x7/4f5KrJPh5AdiK5h0AAAAAAAAAAEFwcodkDe6YbBmbvz5Lq3ceDn7SvpOk1gOsY1lrpeWvBD8nAFvRvAMAAAAAAAAAIEhuPa2rz9hT8204+87hkM562Hd8/oNSfnbw8wKwDc07AAAAAAAAAACCZFiX5urXNsky9vnqPdq490jwk7YbLPWeYB3LPyh9+1jwcwKwDc07AAAAAAAAAACCxDCMau999/SCzfYkHnOPFBZtHVvyvJT9mz15AQQdzTsAAAAAAAAAAILo9B6p6tEy3jI255dd2nYgN/hJE9tIw26zjrmKpHn3Bj8nAFvQvAMAAAAAAAAAIIgcDkN/9HH2nctt6tmFNp19N2yKFNfSOrb6PWnHcnvyAggqmncAAAAAAAAAAATZOX1aqVNKrGVs9vId2nO4IPhJI2Kl06b5jn81TTLN4OcFEFQ07wAAAAAAAAAACDKnw9BNozpbxopdpl5ZvNWexCdeJqWmW8cyv5fWfWpPXgBBE9bQBSA0bN26VT///LP27t2rQ4cOKSoqSs2aNVOPHj3Uv39/RUVFBTVfXl6eFi9erHXr1unw4cOKiYlRx44dNWzYMKWmpgY114YNG7RkyRLt3LlTLpdLLVq0UN++fTVw4EA5HMHrX9fnMQEAAAAAAAAIfeP7p+nfczdq56H8KrE3f8rUH0/rooSo8OAmdTilM++V3rjIOj53utRtrOQMcl4AQUPzrolyu92aN2+e3nnnHc2ZM0f79u3zOTY8PFzjxo3TlClTdOqpp9Yp7969ezVjxgy99tprys+v+g+Ww+HQmWeeqfvuu08nn3xynXLNnj1b999/v3755RfLeMuWLTVlyhRNnTpVkZGRtc5Tn8cEAAAAAAAAoPEIdzp0w6mdNH1ORpXY0cISvfVTpv4w0vrsvDrpcobUabS0ZX7V2IFN0vJXpUHXBz8vgKAwTJML3DYlpmnq5Zdf1qOPPqr169d7nw8LC9OQIUPUt29fJSUlKScnRytXrtQPP/ygkpIS77irr75a//3vfxUXF1fj3N98840uvvhiHTx4UJIUGxurc845Rx07dtTevXs1b9487dixQ5Kn4fXggw/qb3/7W43zFBQU6JprrtHMmTO9z/Xv31+DBw9WdHS0Vq9erblz56rsW793796aM2eOOnbsGLLHZIeMjAz17t3bu7169Wqlp/s4nR4AAAAAAABAreQVlWjYw98oO6+4Siw1PlLf/W20IsOcwU+851fp2RGSLFoAMc2lKSukqMTg5wWOAw29fs6Zd01MYWGhJk+eXOG5CRMm6IknnlCbNm2qjN+0aZOuv/56LViwQJL06quvavPmzfriiy8UExMTcN758+frnHPOUWFhoSRp3Lhxeumll5SSkuIdU1RUpAceeED33nuv3G637rzzThUXF2vatGpusFqJy+XSRRddpM8++0ySp5n2xhtvaPz48RXGZWRkaPz48dq0aZNWr16tUaNG6fvvv1daWlrIHRMAAAAAAACAxismIky/H9JB/5m3sUps35FCfbRily4Z2Db4iVv2kU68XFr5RtVY3gFp0b+lM6YHPy+AOgveDb/QKF155ZV69913LRt3ktSlSxd99dVXGjlypPe57777TrfffnvAOfbt26eJEyd6m1yjRo3S7NmzKzS5JCkiIkL33HOP7rzzTu9zd999t7766quAc917773exp0kffDBB1Uad5KUnp6uBQsWqHnz5pKkzMxMTZo0SYGeiFqfxwQAAAAAAACgcfv9kPaKCrdejn/u281yu226QN5pf5fCoq1jPz4j5ey2Jy+AOqF514Q1a9ZMTz75pN9x4eHheumll+RwHPt2efHFF7VmzZqA8syYMUNZWVneuZ555hmFh/u+Ger06dO9l7A0TVNTp06Vy+XymyczM1OPPPKId/uKK67QmDFjfI5PS0vTAw884N1etGiRZs2a5TePVH/HBAAAAAAAAKDxax4XqUtOtj67bnNWruat22dP4oTW0tBbrGMl+dLCf9qTF0Cd0Lxrwi666CIlJSUFNLZz5846/fTTvdtut1vvvvuu3/02bdqkF154wbt99tlnq0ePHtXuExUVpZtuusm7nZGRoddff91vrrvvvlsFBQXe7alTp/rd55prrlGzZs2829OmTatwjz8r9XlMAAAAAAAAAI4Pk4d3ksOwjj23cLN9iYfdJsW2sI79/Lp0wMbcAGqF5l0TNnz48BqNHzJkSIXtRYsW+d3nxRdfrNAMu/zyywPKddlll8kwjv1L9txzz1U7PicnRzNnzvRu9+zZU/379/ebJyIiQhdffLF3e/PmzZo7d261+9TXMQEAAAAAAAA4frRrHqNz+rSyjC3blq1lvx20J3FkvHTqX61jpkv65n578gKoNZp3TUxERITmz5+v+fPna9y4cTXat1Wriv+w7Nmzx+8+7733XoXtUaNGBZQrLS1NXbt29W4vWbJE27dv9zl+zpw53vvPSdLo0aMDymNV0+zZs6sdX1/HBAAAAAAAAOD48oeRnX3Gnvt2i32JT7paSmpnHct4X9q1wr7cAGqM5l0T43A4NGrUKI0aNarC5SJrw+12Vxtfs2aNNm3a5N1u3769UlNTA55/0KBB3s9N09THH3/sc+ycOXMqbA8cOLBWeazmKq8+jwkAAAAAAADA8aV3WqKGd0mxjH29Zq827TtiT+KwCGn0NN/xeffakxdArdC8Q8CysrIqbJc/i8zKihUV363Rs2fPGuVLT0+vsL1y5UpbcnXu3FlRUVHe7aysLO3atSvoeaSaHRMAAAAAAACA48+NIzv5jL343Vb7Eve5WDqht3Vs8zfSloX25QZQIzTvELBVq1ZV2B47dmy14zMyMipst2nTpkb50tLSqp2vTEFBgbZsqXhKeU1ztW7dOqBc9XVMAAAAAAAAAI5Pw7ukqFerBMvY+yt26sDRQstYnTkc0ul3+47Pu0cyTXtyA6gRmncISElJiebNm+fdjo2N1aRJk6rdZ926dRW2Kzeu/Kk8vvJ8ZTZs2FDhEp4Oh0MtW7a0JVd9HRMAAAAAAACA45NhGD7PvisqcevNnzLtS971TKndEOvYzuXSuk/syw0gYGENXQAah48++kjZ2dne7SlTpvi9Z97BgwcrbCckWL+bxJfK4w8dOiTTNGUYRrV5YmNj5XQ665Sr/LFWl8uuY6qpffv2VbmsqT/l790HAAAAAAAAoP6c06eVHv58nXYfLqgSe/2HbbpxZCdFhtVsjTMghiGdPl165Szr+Lx7pW5nS05aB0BD4icQfpmmqYceesi73a5dO911111+9ztypOLNVSMjI2uUt/x96CTJ7XYrLy9PsbGxQc1jlavynMHKFegx1dTTTz+te+65p05zAAAAAAAAAKgf4U6HrhraQQ9/XvXKXPuPFmrOyl26+OS29iRvP0Tqdpa04Yuqsf0bpFWzpP6X25MbQEC4bCb8eumll7R8+XJJnktSvvzyy4qLi/O7X+VGV+XGlT9W462aanXNY7VPoM07u44JAAAAAAAAwPHt0oHtFB1ufXbdS4u2yrTz/nOn3y3Jx9XAFv5TKimyLzcAv2je1bNbbrlFhmHY/pgxY0ZQ6t28ebOmTp3q3Z4+fbpOP/30oMxdG7b+g9UAeeo7FwAAAAAAAIDQkBgTrotPbmMZW7fniH7YfMC+5CekS30nWscObZNWvmFfbgB+cdlM+HT06FFdeOGF3jPDJk2apH/84x8B7x8fH19hu6Cg6vWbq2M1vvKcwchjtY9VnmDkCvSYaurmm2/WxRdfXKN9Nm3apPHjx9c5NwAAAAAAAIDauWZYR/3vx22yen//S4u2amiXFPuSj7pTWj1bcpdUjX37mNTvMim85lc5A1B3NO9gqbi4WBMnTtSqVaskSWeccYZeffVVGYaPU6ktVL60ZmFhYY1qqNzoMgzD8t5wdc1jlctXQ62+jqmmUlNTlZqaWud5AAAAAAAAANSfjimxOr1Hquau3VclNm/dPm3JOqpOLfzfwqhWkjtK/a+Qlr9aNZazU/r5NWnwjfbkBlAtmnf17KabbtJZZ51le55u3brVel+Xy6UrrrhCn332mSRpxIgR+uijjxQZGVmjeZKTkyts5+Tk1Gj/yuOTkpIsm4eV8+Tm5srlcsnptL5edCC5mjVrZjmuvo4JAAAAAAAAQNNw7fCOls07SXpl8W+6b3xv+5Kf+hdp5VuSy+Ied98+JvW/UoqIsS8/AEs07+pZenq60tPTG7oMn1wul6688kq98847kqTTTjtNH3/8sWJiav4LukePHhW2d+7cWaP9K4+vPF+Zbt26yeFwyO12S5Lcbrf27NmjtLS0oOeqr2MCAAAAAAAA0DQM6dRcPVslaO3uqicKzF6+Q38+s5uSYiLsSZ7YRjrpamnJ81VjufukpS9Kw6bYkxuAT46GLgCho6SkRJdffrnefvttSXVr3ElS794V3xGyY8eOGu1fudFVeb4y0dHR6tSpU51y7dq1K6Bc9XVMAAAAAAAAAJoGwzB03fCOlrH8YpfeXrLd3gJG/FkK83Fvu8X/lgqP2JsfQBU07yDJ07i77LLLNGvWLEl1b9xJUv/+/Stsr1mzpkb7r169usJ2v379bMm1adOmCveiS0lJUevWrYOeR6rZMQEAAAAAAABoGs7r10opcda3LXrt+99U7HLblzy+pTRwsnUs74D003P25QZgieYdVFJSokmTJundd9+VFJzGnST16tVLnTt39m5nZmZq3z7razdbWbp0aYXt8847z+fYyrHK+9Ykz7hx43yOrc9jAgAAAAAAANA0RIY59fsh7S1je3IK9PWavfYWMPx2KTzWOvb9k1L+IXvzA6iA5l0TV1xcrEsuuUTvvfeepMAbd6NGjdKoUaP0xRdfVDvuoosuqrC9YMGCgOrauXOnNm7c6N0eNGiQ2rVr53P8uHHjFBFx7LrPgeaxGjthwoRqx9fXMQEAAAAAAABoOi4f3E4RYdZL9q99/5u9yWNTpME3WscKDks/Pm1vfgAV0LxrwoqKinTxxRfrgw8+kFSzM+4WLlyohQsXas+ePdWOu+666xQWFubdfvPNNwOq7a233pJpmt7tG264odrxiYmJmjhxond77dq1WrFihd88RUVF3jMOJaljx44644wzqt2nvo4JAAAAAAAAQNPRPC5SF5yYZhn7aetBrd2dY28BQ2+VIhOsYz8+w9l3QD2ieddEFRUV6aKLLtJHH30kKXiXyqysW7duuu6667zbn3/+udatW1ftPgUFBXrmmWe82z169NDVV1/tN9d9992nyMhj14V+/PHH/e7zyiuvKDs727t9//33Kzw8vNp96vOYAAAAAAAAADQdV/q4dKYkvf7DNnuTxyRLQ/5oHSvMkX561t78ALxo3jVBhYWFuvDCC/XJJ59IkkaPHm1L467MjBkz1Lx5c0mey3TefPPNKikp8Tn+nnvu0datWyVJhmHoiSeekNPp9Junffv2uuOOO7zbb7zxhubOnetz/K5du/T3v//duz106FBdeumlfvNI9XdMAAAAAAAAAJqO3mmJOrl9M8vYhyt26nBesb0FnHKTFJVkHfvxac8lNAHYjuZdE1NYWKgLLrhAn376qfe5+fPnKzY2VoZhBPyoiZYtW2rWrFnee9LNnz9fEyZM0IEDByqMKyoq0owZM/Twww97n7v77rt11llnBZxrxowZGjt2rHd7/Pjx3rMLy8vIyNDIkSO9NbRp00YzZ84M+Njq85gAAAAAAAAANB2/H9rB8vn8YpfeXb7d3uRRib7Pvis4LP30vL35AUiSDLP8Tbhw3FuwYIFGjx4dtPleeeWVgC//+PXXX2vixIney1TGxcXpnHPOUYcOHbRv3z7NmzdP27d7/vFxOBy67777dNddd9W4pvz8fF111VUV7mU3YMAADR48WNHR0crIyNDXX38tt9stSerVq5c+/vhjderUqca56uuY7JCRkaHevXt7t1evXq309PQGrAgAAAAAAABAUYlbw/75jbKOFFaJtW8eo/l/HiWHo2YnWNRIwWHpiT5SocVZdlFJ0u2rpch4+/IDIaCh18/D6i0TmrwxY8ZozZo1mj59ul5//XUdPXpU77zzToUxhmFozJgxuv/++zVw4MBa5YmOjtY777yjd955R/fff79+/fVX/fzzz/r5558rjEtNTdWUKVP05z//WVFRUSF9TAAAAAAAAACahogwhy4b1E7/mbexSmzbgTwt3Jil0d1T7SsgKtFz+cyFD1eNFRySlrwgjZhqX34AnHmHhpGbm6vFixdr3bp1ysnJUVRUlDp27Khhw4apZcuWQc21bt06LVmyRLt27ZLL5VJKSor69u2rQYMGBfW+c/V5TMHQ0O8cAAAAAAAAAGBtb06Bhj38jUrcVZfvR3VvoVevGWRvAfnZ0r/7SoU5VWPRydKffpUi4+ytAWhADb1+zpl3aBCxsbE688wzdeaZZ9qeq0ePHurRo4fteerzmAAAAAAAAAAcv05IiNLZfVrp4192VYktWJ+l3/bnqkNKrH0FRDeTBt8offto1Vj+QWnZS9Kw2+zLDzRxjoYuAAAAAAAAAAAAVHTVkPY+Y//7cZv9BZxysxTh4+y6xU9KRXn21wA0UTTvAAAAAAAAAAAIMSe1b6ZerRIsY+8s2668ohJ7C4hJlgZdbx3L2y8te9ne/EATRvMOAAAAAAAAAIAQYxiGrhpqffbdkYISfbii6iU1g27IrVK4j8tzLv6PVJxvfw1AE0TzDgAAAAAAAACAEDSuX5oSo8MtY2/+tE2madpbQGxzaeB11rHcfdKKN+zNDzRRNO8AAAAAAAAAAAhB0RFOTRzY1jKWsStHv+w4bH8RQ2+VwqKtY4v/I7mK7a8BaGJo3gEAAAAAAAAAEKIuH9zOZ+ytn7bZX0BcqnTytdaxw9ulX9+1vwagiaF5BwAAAAAAAABAiGrfPFYjuqZYxub8skuH8+vhzLeht0jOCOvYd49Lbpf9NQBNCM07AAAAAAAAAABCmK+z7wqK3fpwxU77C0hoLZ14mXXswEZp3Sf21wA0ITTvAAAAAAAAAAAIYaf3PEEt4iMtY2/+tE2madpfxLDbJMNHS+G7x6X6qAFoImjeAQAAAAAAAAAQwsKdDk0a2NYytmHvUS3flm1/EcmdpPQLrWO7V0qbv7G/BqCJoHkHAAAAAAAAAECImzSonRyGdezNnzLrp4jht/uOffd4/dQANAE07wAAAAAAAAAACHFpSdEa1T3VMvbpr7uVnVtkfxEte0vdzraObVskZf5ofw1AE0DzDgAAAAAAAACARuDywe0sny8qceu9n3fUTxEj/uw7xtl3QFDQvAMAAAAAAAAAoBEY1T1VrROjLGNv/ZQp0zTtL6LtQKnDCOvYxi+lPb/aXwNwnKN5BwAAAAAAAABAI+B0GJo0yPrsuy37c/XDlgP1U8iIqb5ji56onxqA4xjNOwAAAAAAAAAAGomJA9vK6TAsY2/9lFk/RXQaLbXubx3L+EDK/q1+6gCOUzTvAAAAAAAAAABoJE5IiNIZPVMtY19m7NGBo4X2F2EYvu99Z7qlH562vwbgOEbzDgAAAACA/8/encdXVd37/3/vk5kkTAkhEIYECATCIMigIoozolJaRW1ttdb+2mq99vulk7VeBcUOflu9t71Va2sdqlYsakWrFlDQAioqgxAIIUwJCUkYkwAJSc45vz+QXJKsnTnrnJPzej4ePB7u9dl7r8+2SB+PvFlrAQAAhJCbpg01jtd6/XptQ5GdJkZdJSVlmmsb/iqdOGynD6AbIrwDAAAAAAAAACCEnD8iWYP7xhlriz8plN/v7/omPB7pvDvNtdoT0idPdX0PQDdFeAcAAAAAAAAAQAjxeBxdf/ZgY21H2TFtKDxqp5HxN0rx5i08te6PUm21nT6AbobwDgAAAAAAAACAEHPd5EHyOObay58U2mkiKlaa9l1z7fgBadPf7PQBdDOEdwAAAAAAAAAAhJgBveJ0wch+xtobm4p1/GSdnUam3CZFxZtra38v+bx2+gC6EcI7AAAAAAAAAABC0A2TzVtnHq/x6p+b99tpIq6PNOlmc+3wTmn7W3b6ALoRwjsAAAAAAAAAAELQJaP7Kyk+2lhbbGvrTEk69w7JiTDX1vzOXh9AN0F4BwAAAAAAAABACIqO9OjLE9OMtc/2HlF+WaWdRnoPkcZ+xVzbt04q+MhOH0A3QXgHAAAAAAAAAECIumGKeetMSXr50332GjnvLvcaq++ANiG8AwAAAAAAAAAgRGX2T9SkIb2NtVfX71Ot12enkQHjpWEzzbXt/5QO7rDTB9ANEN4BAAAAAAAAABDC3FbfHTxWo3e3ldlrZPoP3GsfPW6vDyDEEd4BAAAAAAAAABDCrho/UD2iI4y1lz8ttNfIsIuk1HHm2qa/SScO2+sFCGGEdwAAAAAAAAAAhLCEmEhdPX6AsbZqe5lKyqvtNOI40rl3mmu1J6TPnrHTBxDiCO8AAAAAAAAAAAhxbltn+vzSK+v32Wsk+ytSQqq5tu5PkrfWXi9AiCK8AwAAAAAAAAAgxE0a0kfD+8Uba698tk9+v99OI5HR0tRvm2uVxVLOP+z0AYQwwjsAAAAAAAAAAEKc4ziuq+92HTyuDYVH7TVz9rekyFhz7aM/SLaCRCBEEd4BAAAAAAAAANANzD0rTR7HXHvV5taZ8UnS+BvMteINUsFH9noBQhDhHQAAAAAAAAAA3UBKz1hdMLKfsfbGpv06Wee118w5d7jXPvqDvT6AEER4BwAAAAAAAABAN3HtpEHG8fKqWr27rcxeIylZ0vBLzLXcf0pH9tjrBQgxhHcAAAAAAAAAAHQTl43pr8TYSGPtlc8sbp0pSee6rL7z+6SP/2i3FyCEEN4BAAAAAAAAANBNxEZF6OrxA421VXkHdKDypL1mhl8i9csy19b/VaqusNcLEEII7wAAAAAAAAAA6EauOzvNOO71+fX6xiJ7jTiOdM7t5lpNpbThr/Z6AUII4R0AAAAAAAAAAN3IpCF9lJEcb6y9st5ieCdJ42+QeiSZa+uelHxeu/0AIYDwDgAAAAAAAACAbsRxHH1lonn13bb9FdpabHG7yqg4afK3zLUje6Qdy+31AoQIwjsAAAAAAAAAALqZuS7hnSS9sn6fxU4kTfm25Iky19Y9abcXIAQQ3gEAAAAAAAAA0M0M7ttD5wzra6y9vrFItV6fvWYSU6UxXzLXdr4rHdxhrxcgBBDeAQAAAAAAAADQDV07aZBx/OCxGv17xwG7zUz7rntt3Z/s9QGEAMI7AAAAAAAAAAC6oSvHDVBcVISx9spnRXabGTRFGnCWubbxRelkpdV2gGBGeAcAAAAAAAAAQDeUEBOpK8emGmvLt5aqvKrWXjOOI039jrlWUyltesleL0CQI7wDAAAAAAAAAKCbuvZs89aZNV6f/rWlxG4zY6+VeiSZa+uelPx+u/0AQYrwDgAAAAAAAACAburcYUlK7RlrrP1jo+WtM6NipUm3mGsH86RdK+32AwQpwjsAAAAAAAAAALopj8fRnLMGGmsf7jqkkvJquw1NuU1yzOfwad2f7PYCBCnCOwAAAAAAAAAAurEvuYR3fr/0xqZiu830GiRlXWWubX9bOrLHajtAMCK8AwAAAAAAAACgGxszoKcyUxKMNetbZ0rS1O+4FPzSJ3+22goQjAjvAAAAAAAAAADoxhzH0dyJacZaTnGF8ssq7TaUfr6UMsZcW/9XqeaE3X6AIEN4BwAAAAAAAABANzdngnnrTEn6xwbLW2c6jvvqu+qj0pZXrLYDBBvCOwAAAAAAAAAAurnBfXto8tA+xtrrm4rk9/vtNjT+eim2l7n26V/s9gIEGcI7AAAAAAAAAADCwJfOMq++KzxcpfUFR+02Ex0vnfV1c614vVS8wW4/QBAhvAMAAAAAAAAAIAxcNX6gIj2Osfb6xiLL3Uia/C332idP2esDCDKEdwAAAAAAAAAAhIG+8dG6YGQ/Y+3Nz/er1uuz21DyCCnjQnNt8xKp6qjVdoBgQXgHAAAAAAAAAECYcNs68/DxGq3ecdByN3JffVdXJW16yW4vQJAgvAMAAAAAAAAAIExcNqa/ekRHGGv/CMTWmVlXSQmp5tqnf5H8frv9AEGA8A4AAAAAAAAAgDDRIzpSV2Sbw7JlOaU6frLObkMRUdKkm821g9ulPavt9gMEAcI7AAAAAAAAAADCyByXrTOrar1avrXUcjeSzr5Fclziik//YrcXIAgQ3gEAAAAAAAAAEEZmjEhWUny0sfbm58WWu5HUa5A08kpzbdsb0rEyu/0AAUZ4BwAAAAAAAABAGImM8Ojq8QOMtffzDqi8qtZyR5Imf8s87quV1j9ntxcgwAjvAAAAAAAAAAAIM1dPMG+dWev1a1lOieVuJA2/WOqTbq599ozk89rsBggowjsAAAAAAAAAAMLM2UP6KLVnrLH25uf7LXcjyeORzr7VXCsvlHYst9sPEECEdwAAAAAAAAAAhBmPx9FVLltnrsk/qCPHayx3JGni16UI81l8+uxpu70AAUR4BwAAAAAAAABAGHI7967O59c7gdg6Mz5ZGjPXXNuxTCovstoOECiEdwAAAAAAAAAAhKGzBvfWoD5xxtqbnxdb7uYLk79lHvf7pI0v2O0FCBDCOwAAAAAAAAAAwpDjOLp6/EBj7cOdh3Sg8qTljiQNOUdKHmWurf+r5PPZ7QcIAMI7AAAAAAAAAADClNvWmT6/9M6W/Za7keQ40qSbzbXyAmnXe3b7AQKA8A4AAAAAAAAAgDCVPbCnMpLjjbU3Pg9AeCdJE74qRUSba589a7cXIAAI7wAAAAAAAAAACFOnts40r777ZM9hlVZUW+5IUnySlHW1ubb9LelYmd1+AMsI7wAAAAAAAAAACGNu5975/dI/A7X67uxbzOO+Omnji3Z7ASwjvAMAAAAAAAAAIIyNSk1UZkqCsfbm58WWu/lC+gVSn3Rzbf1zp5JFoJsivAMAAAAAAAAAIMy5rb5bX3BURUerLHcjyeORJt1srh3eKe1ZbbcfwCLCOwAAAAAAAAAAwtzVE8zn3knSW4HaOvOsmyQnwlxb/6zdXgCLCO8AAAAAAAAAAAhzw/slaPSAnsZawLbOTEyVRs4y17YulU4cttsPYAnhHQAAAAAAAAAA0NXjzavvNu0r174jJyx384WzbzGPe09Kny+22wtgCeEdAAAAAAAAAABwDe8k6Z0tJRY7OcOIS6WeaebaZ89Kfr/dfgALCO8AAAAAAAAAAICGJsUre6B568y3AxXeeSKkiV831w5sk4o+s9sPYAHhHQAAAAAAAAAAkCRdOTbVOP7Z3iMqKa+23M0XJn5dkmOubXjeaiuADYR3AAAAAAAAAABAkjRrrPvWmf/KCdDqu95DpOEXm2tbXpFqAnQeH9BFCO8AAAAAAAAAAIAkaURKgkb2TzDW3t6y33I3Z3DbOvNkhZT7pt1egC5GeAcAAAAAAAAAAOq5rb5bt/uwDh47abmbL4yaLcX2NtfYOhPdDOEdAAAAAAAAAACo53bunc8vLcsptdzNF6JipXHzzLXdH0hH9trtB+hChHcAAAAAAAAAAKBeVmqiMpLjjbWg3DpTfmnT36y2AnQlwjsAAAAAAAAAAFDPcRzNcll99+HOQzp6osZyR18YMEHqP9Zc2/iC5PPZ7QfoIoR3AAAAAAAAAACgAbetM+t8fi3fGqCtMx1HOusmc+1ogbR3td1+gC5CeAcAAAAAAAAAABoYl9ZLab3jjLV3tpRY7uYM46+XPFHm2oYX7PYCdBHCOwAAAAAAAAAA0IDjOK6r7/6946Aqq2std/SF+GRp1CxzbevrUnWF3X6ALkB4BwAAAAAAAAAAmrhynDm8q/H69F5umeVuznDW183jdVVSzqt2ewG6AOEdAAAAAAAAAABoYuLgPurfM8ZYe3tzALfOHHGplNDfXGPrTHQDhHcAAAAAAAAAAKAJj8fRrGzz6rtVeWU6UVNnuaMvRERKE2401/atkw7k2e0H6GSEdwAAAAAAAAAAwGjW2AHG8epan1ZtP2C5mzO4bZ0pSRtZfYfQRngHAAAAAAAAAACMpmb0VVJ8tLG2fGup5W7O0G+kNGiqufb5y5LPa7cfoBMR3gEAAAAAAAAAAKMIj6PLs83ny727rVS1Xp/ljs4w8SbzeGWxtPsDu70AnYjwDgAAAAAAAAAAuLp8jPncu4rqOq3bfdhyN2cYM1eKiDHXPl9stRWgMxHeAQAAAAAAAAAAV+cOT1J8dISxtiynxHI3Z4jrLWXNNte2LpVOHrPaDtBZCO8AAAAAAAAAAICr2KgIzRyVYqwt31oqv99vuaMzTPiqebz2uJT7pt1egE5CeAcAAAAAAAAAAJrldu5dcXm1coorLHdzhuEXSz2SzbVNf7PbC9BJIgPdAILD8ePHtW3bNuXm5urQoUM6duyYevTooT59+mjMmDEaP368YmNjO22+EydOaM2aNcrNzVV5ebl69OihjIwMTZ8+XSkp5r/B0V55eXlat26dioqK5PV61a9fP40fP15TpkyRx9N5+bXNbwIAAAAAAAAAm2aOSlGkx1Gdr+kqu2U5JRqb1isAXUmKiJLGzZM+frxpbdf7UkWx1HOg/b6ADiC8C1N+v19r167V66+/rpUrV2rDhg3yer2u98fFxenLX/6yfvzjH+uss85q97ylpaVasGCBnn32WVVVVTWpezweXX755XrwwQc1efLkds8jSUuWLNGiRYu0adMmYz01NVV33XWX5s+fr5gYl0NNW8HmNwEAAAAAAABAIPSKi9I5w5K0Ov9gk9qyraWaf/moAHT1hQk3msM7+aXPX5bO/z+2OwI6xPEHdDNaBEJZWZnOPvts7du3r8F4v379dOGFF2ro0KGKjo5WWVlZ/Uqy0yIiInT33Xdr0aJFbZ73vffe07x583T48GFJUnx8vGbPnq2MjAyVlpbq3Xffre/J4/HoF7/4hX7605+2eZ7q6mrdeuuteumll+rHJk6cqGnTpikuLk5btmzRihUr6vdhHjt2rJYuXaqMjIyg/aaukJOTo7Fjx9Zfb9myRdnZ2QHsCAAAAAAAAEAwe+7DPbrv9Rxj7f0fz9TQpHjLHX3B75ceO1c6sK1prV+WdMdHkuPY7wshK9A/P2flXRg6ceJEg+AuJiZGDz/8sL73ve8pOjq6yf3vvPOObr31VpWUlMjr9eqhhx5SdXW1fvOb37R6zpUrV2r27Nk6efKkJGnOnDl66qmnlJz8v3sR19TU6KGHHtIDDzwgn8+nu+++W7W1tbr33ntbPY/X69W1116rt956S9KpMO3555/X3LlzG9yXk5OjuXPnKj8/X1u2bNHMmTO1du1apaWlBd03AQAAAAAAAEAwuHR0f9fwbvnWUn17xjDLHX3BcaQJN0grFjStHciV9m+SBp5luyug3TrvwC+ErOeee0533XWXMbiTpFmzZmn58uUNzrx75JFH9NFHH7Xq/WVlZbrhhhvqQ66ZM2dqyZIlDUIuSYqOjtbChQt1991314/dd999WrZsWau/5YEHHqgP7iTptddeaxLcSVJ2drZWrVqlpKQkSVJBQYFuvPFGtXYhqs1vAgAAAAAAAIBgMLB3nMYPMp9tt2xrqeVuGhl3vSSX1XWfL7baCtBRhHdh7pJLLtH111/f4n1jx47Vt771rfprv9+vJ554olVzLFiwQAcOHJAkRUVF6fHHH1dUVJTr/ffff3/9FpZ+v1/z589v9jy+0woKCvTwww/XX3/961/XZZdd5np/WlqaHnroofrr1atXa/Hi1v0hbuubAAAAAAAAACCYXDa6v3H80z2HdejYScvdnKFXmjTsQnNt898lb63dfoAOILwLc1/96ldbfe9VV13V4Pr9999v8Zn8/Hz96U9/qr++8sorlZWV1ewzsbGxuv322+uvc3Jy9Nxzz7U413333afq6ur66/nz57f4zK233qo+ffrUX997772qq6tr9hmb3wQAAAAAAAAAweTy7FTjuM8vvZtbZrmbRia4/Lz7+AFp53t2ewE6gPAuDPXo0UNXXXWVrrrqKp1//vmtfi49Pb3BdUlJSYvP/PnPf24Qht10002tmutrX/uanDMOEP3jH//Y7P0VFRV66aWX6q9Hjx6tiRMntjhPdHS05s2bV3+9c+dOrVixotlnbH0TAAAAAAAAAASbkf0TNDSph7G2LCfAW2dmXS1FmXvTpr/Z7QXoAMK7MJSSkqI333xTb775pkaNGtXq584MniQpJiamxWdeeeWVBtczZ85s1VxpaWnKzMysv163bp0KCwtd71+6dGn9+XOSdNFFF7VqHlNPS5YsafZ+W98EAAAAAAAAAMHGcRxdPsa8debq/AOqqgngcUExCdLoOeZa7ltSdbndfoB2IrxDqzUOmlraKnLr1q3Kz8+vvx46dKhSUlJaPd/UqVPr/9nv9+uNN95wvXfp0qUNrqdMmdKueUzvOpPNbwIAAAAAAACAYOS2dWZ1rU8f7DhguZtGJtxoHveelLa9abcXoJ0I79Bqy5cvb3B97bXXNnv/hg0bGlyPHj26TfNlZ2c3uN64cWOXzDV8+HDFxsbWXx84cEDFxcWdPo/Utm8CAAAAAAAAgGA0aUgfJcVHG2sB3zoz4wIpcYC5tvllu70A7UR4h1YpLi5ucEbb0KFDdfvttzf7TE5OToPrQYMGtWnOtLS0Zt93WnV1tXbt2tWhuQYOHNiquWx9EwAAAAAAAAAEqwiPo0tGm3ckey+3VF6f33JHZ/BESGNdFp7s/kCqLLHbD9AOhHdo0c6dO3XFFVeosrJSkpScnKzXXntNCQkJzT6Xm5vb4LpxcNWSxvc3ft9peXl58vl89dcej0epqeZl2x2dy9Y3AQAAAAAAAEAwu3yM+WewR07UakPBEcvdNDJunnnc75NyXrPbC9AOkYFuAMHnxIkTOnTokDZt2qTXX39dL7zwgqqqqiRJl1xyiZ588kkNGzasxfccPny4wXXPnj3b1Efj+48ePSq/3y/HcZqdJz4+XhERER2a68gR8/+52PqmtiorK9OBA23bS/rMs/sAAAAAAAAAoC2mj0hWTKRHJ+t8TWrv5pZpcnrfAHT1hQETpKRM6dCOprXPX5bOaX5XOSDQCO9Qb8WKFbrsssuajPfv31+33XabbrrpJp1zzjmtft/plXqnxcTEtKmfM8+hkySfz6cTJ04oPj6+U+cxzdX4nZ01V2u/qa0ee+wxLVy4sEPvAAAAAAAAAIDWiouO0PkjkvVublmT2rvbSvXTWVkB6OoLjiONv15a+VDTWvF66dBOKWm4/b6AVmLbTLSotLRUr776qh577DEtX7681c81DroaB1ctMd1vCtU6Oo/pmdaGd131TQAAAAAAAAAQ7C52Ofcur/SYCg+fsNxNI27n3knS5iX2+gDagfDOsjvvvFOO43T5rwULFrS5t0svvVR+v19+v1/l5eXKzc3VM888o4svvljFxcX661//qssvv1wzZ87Uzp07O/9fTiv4/XYOOrU1j+25AAAAAAAAAKCzXJLV37X27rZSi50YJA2X0s421za/LPFzWQQxts2EUc+ePdWzZ0+NGjVKt9xyi5YuXapvfOMbqqio0Pvvv69p06Zp2bJlmjRpkus7EhMTG1xXV1e3qQfT/Y3f2RnzmJ4xzdMZc7X2m9rqjjvu0Lx5LoewusjPz9fcuXM7PDcAAAAAAACA8JTaK1bZA3sqp7iiSe3d3DJ9c3pGALo6w7jrpaLPmo4fypf2b5QGTrTeEtAahHdolTlz5mjx4sWaPXu2/H6/Dh06pLlz52rTpk3q06eP8ZmEhIQG1ydPnmzTnI2DLsdxjGfDdXQe01xugZqtb2qrlJQUpaSYl6gDAAAAAAAAQFe5ZHR/Y3j38a7DOnayTgkxAYwhsr8s/etnkt/XtLZ5CeEdghbhnWW33367Zs2a1eXzjBw5stPfOWvWLF1zzTVaunSpJKmwsFCPPPKIHnzwQeP9ffv2bXBdUdH0D/DmNL6/d+/echynxXmOHz8ur9eriIiIds/lFkja+iYAAAAAAAAACAWXZKXod+/uaDJe4/Vp9Y4DmjV2QAC6+kJifynjQmnXyqa1zUukyx6QPK3/OTJgC+GdZdnZ2crOzg50G+1200031Yd3kvTss8+6hndZWVkNrouKito0V+P7G7/vtJEjR8rj8cjnO/W3J3w+n0pKSpSWltbpc9n6JgAAAAAAAAAIBePSeqlfYowOVDbdpWzFtrLAhneSNP56c3h3rETas1oadqH9noAWeALdAELLtGnTGlwXFhaqsLDQeO/YsWMbXO/bt69NczUOuhq/77S4uDgNGzasQ3MVFxe3ai5b3wQAAAAAAAAAocDjcXTxKPORPitzy+Tz+S131EjW1VJEjLm2+e92ewFaifAObWI6V62kpMR478SJDfcL3rp1a5vm2rJlS4PrCRMmuN7bkbny8/MbnEWXnJysgQMHdvo8Utu+CQAAAAAAAABCwSWjzeHdoeM12rTvqN1mGovtKY1yOcpq61KprumKQSDQCO/C0OrVq7V69WodOXKkzc/6/U3/loTHY/5tNGbMGA0fPrz+uqCgQGVlZa2e65NPPmlwfc0117je27jW+Nm2zDNnzhzXe21+EwAAAAAAAACEgvMzkxUdaf458bvbWv/z0y4z7nrz+Mlyaccyu70ArUB4F4ZmzJihGTNm6NVXX23zs6ZtIlNTU13vv/baaxtcr1q1qlXzFBUVaceO/z3kdOrUqRoyZIjr/XPmzFF0dHSb5zHde9111zV7v61vAgAAAAAAAIBQ0CM6UucNTzLW3s0NgvAu8zIpppe5tnmJ3V6AViC8C2Nr1qxp8zPvvfdeg+vBgwcrLS3N9f7bbrtNkZGR9dcvvPBCq+Z58cUXG6zy+853vtPs/b169dINN9xQf71t2zZt2LChxXlqamr097//777GGRkZuvTSS5t9xtY3AQAAAAAAAECouCTLvHXmtv0VKjpaZbmbRiJjpDEuO67l/Us6ecxuP0ALCO/C2CuvvNKmLR/r6ur0X//1Xw3G5s2b1+wzI0eO1G233VZ//fbbbys3N7fZZ6qrq/X444/XX2dlZemb3/xmi/09+OCDion534NHH3nkkRafefrppxtsH7po0SJFRUU1+4zNbwIAAAAAAACAUHDx6P6utfeCYfXdOJcd1+qqpLx37PYCtIDwLoxVVFTo1ltvVW1tbYv3+v1+3Xnnndq+fXv9WFJSku65554Wn12wYIGSkk4tma6trdUdd9yhuro61/sXLlyo3bt3S5Icx9Gjjz6qiIiIFucZOnSofvSjH9VfP//881qxYoXr/cXFxfr5z39ef33eeefpq1/9aovzSPa+CQAAAAAAAABCQVrvOGWlJhpr724rtdyNwdDzpfh+5lrOa3Z7AVpAeBfm3nrrLV1wwQX6+OOPXe/Jy8vTNddcoz/+8Y/1Yz169NDixYvrA6zmpKamavHixfVn0q1cuVLXXXedDh061OC+mpoaLViwQL/61a/qx+677z7NmjWr1d+zYMECXXHFFfXXc+fO1euvv97kvpycHF144YX1PQwaNEgvvfSSHMdp1Tw2vwkAAAAAAAAAQsGlLqvv1u48pBM17osfrIiIlMZ8yVzbsVyqrrDbD9AMx3/mIVwICzfeeKNee+011dTUNBjPzMzU1KlTNWDAAEVHR+vw4cP69NNPtX79evl8vvr7srOz9dRTT2natGltmnf58uW64YYb6repTEhI0OzZs5Wenq6ysjK9++67KiwslCR5PB49+OCDrVrZ11hVVZVuueWWBmfZTZo0SdOmTVNcXJxycnK0fPny+m8aM2aM3njjDQ0bNqzNc9n6pq6Qk5OjsWPH1l9v2bJF2dnZAewIAAAAAAAAQChbX3BEX3lsrbH25DfO1uXZqZY7amTPGumZ2ebal/8oTbjRbj8IWoH++TnhXZgqKyvTSy+9pLfeekvvv/++qqurm70/IiJCF154oW6++WbddNNNioyMbNe8JSUluv/++/Xcc88Z53QcR5dddpkWLVqkKVOmtGuO015++WUtWrRImzdvNtZTUlJ011136Yc//KFiY2PbPY/Nb+pMgf7DBwAAAAAAAED34vP5NeWhFTp0vKZJ7WvThugXXx4XgK7O4PNJj46RKvc3rWVeId30sv2eEJQC/fNzwjuotrZWO3bs0LZt21RaWqrKykrV1dUpMTFRvXv31qhRozRu3Dj16NGj0+Y8fvy41qxZo9zcXFVUVCg2NlYZGRmaPn26UlM7929f5Obmat26dSouLpbX61VycrLGjx+vqVOnduq5cza/qTME+g8fAAAAAAAAAN3PD1/epFfW72syntY7Tqt/elGrjy7qMm/fLX38eNNxT5T04x1SXB/7PSHoBPrn54R3QJgK9B8+AAAAAAAAALqfNzYV6z/+tsFYW/5/L1Bm/0TLHTVSuE566jJzbc7/SJO+YbcfBKVA//zcY20mAAAAAAAAAADQrc3ITJbHZXHdqu0H7DZjMmiK1GuwuZbzqt1eABeEdwAAAAAAAAAAoFP07hGtiUPMW0+uyiuz3I2B40jZc821Xe9Lxw9abQcwIbwDAAAAAAAAAACdZubIfsbxdbsP6/jJOsvdGGR/xTzu90rbltrtBTAgvAMAAAAAAAAAAJ3moqwU43it1681+UGwsm3gRKlPurm2ha0zEXiEdwAAAAAAAAAAoNOMGdBTyQkxxtqqvCA4985x3Fff7V0jVZba7QdohPAOAAAAAAAAAAB0Go/H0YUuW2e+v/2A/H6/5Y4MxrptnemTtr5utxegEcI7AAAAAAAAAADQqWaOMod3RUerlF92zHI3Bv3HSkmZ5loOW2cisAjvAAAAAAAAAABAp7ogs588jrm2anuQbJ3ptvqu4EOpothuP8AZCO8AAAAAAAAAAECn6tUjSpOG9DHWVm4vs9yNC7dz7yRp25v2+gAaIbwDAAAAAAAAAACdzm3rzE/2HNaxk3WWuzFIyZL6jTbXOPcOAUR4BwAAAAAAAAAAOt3MUSnG8VqvX2vzD1ruxsWYL5nH966RjgXJCkGEHcI7AAAAAAAAAADQ6cYM6Kl+iTHG2qq8IDj3TnIP7+SXtr1htRXgNMI7AAAAAAAAAADQ6TweRxeONG+d+f72A/L7/ZY7MkgZLSVlmmtsnYkAIbwDAAAAAAAAAABdwu3cu6KjVcovO2a5GwPHcV99t2e1dDxItvdEWCG8AwAAAAAAAAAAXWLGiH7yOObayu1BcqacW3jn90q5/7TbC6AwCe+8Xq/efPNN7dq1K9CtAAAAAAAAAAAQNnr1iNKkIX2MtVXbg+Tcu9RxUp8Mc23bUru9AAqh8O6DDz7QBx980K5nq6urNWfOHGVmZmr8+PF65513Ork7AAAAAAAAAABgclFWinH80z1HdKKmznI3Bo4jjZljru1aJVUdsdoOEDLh3cyZM3XxxRd36B1+v19btmzR1VdfrSVLlnRSZwAAAAAAAAAAwM2FI83n3tV4ffp492HL3bhw2zrTVydtf9tuLwh7IRPeSafCt/aIjo7W3XffrS9/+cuKjY2Vz+fTD37wA3m93k7uEAAAAAAAAAAAnGnMgJ7qGx9trP0776DlblwMnCT1GmyubX3dbi8IeyEV3rVXVFSUfvGLX+iVV17RunXr1KNHD5WUlGj16tWBbg0AAAAAAAAAgG7N43F0/ohkY+3fO4Lk3DvHcV99t/M9qbrcbj8Ia2ER3p1p7Nix+spXviJJysnJCXA3AAAAAAAAAAB0fzMyzeHdjrJj2l9eZbkbF27hnbdGyvuX3V4Q1sIuvJOkAQMGSJLKy0nKAQAAAAAAAADoahe4nHsnSf/eESRbZ6ZNlhIHmmtsnQmLwjK827hxoyQpJiYmsI0AAAAAAAAAABAG+veM1aj+icbaB3lBsnWmxyONmWOu7Vgunay02w/CVmSgGzhTQUFBi/cUFhbK7/e36b1+v1/V1dUqKirS0qVLtXz5cjmOo0GDBrW3VQAAAAAAAAAA0AYzMpO1vbRpALY6/6C8Pr8iPE4AumpkzJekj59oOu49Ke1YJo291n5PCDtBFd6lp6fLcdz/4/T7/UpPT++UuRzH0Xnnndcp7wIAAAAAAAAAAM2bMbKf/rx6d5PxoydqlVNcrvGDettvqrHB06SE/tKx0qa1bW8Q3sGKoNw20+/3N/nVXK0tv6RTwd11113HyjsAAAAAAAAAACyZmt5X0ZHmWCJozr3zREhZV5trO5ZLtdV2+0FYCsrwriv5/X5deeWVevLJJwPdCgAAAAAAAAAAYSMuOkJT0/saa0Fz7p0kjb7GPF5zTNr9gd1eEJaCatvMW265xbX27LPPynEc3XzzzW1+b0REhBITE5WRkaGLL75YY8eO7UibAAAAAAAAAACgHWZkJmt1ftNVdusLjujYyTolxARBbJF+vhTbS6oub1rLfUMaebn9nhBWguC/gv/19NNPu9aeffbZFu8BAAAAAAAAAADBa0ZmP/3y7dwm47Vevz7aeUiXjukfgK4aiYiSRs6SPl/ctJb7lnT1f53aXhPoImG3bSYAAAAAAAAAAAiMrNREJSfEGGv/3hFEW2e6nXt34qBU+LHdXhB2Qia8GzJkiIYOHRroNgAAAAAAAAAAQDt5PI5mZCYba//e0XQ7zYAZcYkUGWuubXvTbi8IOyET3u3Zs0e7du0KdBsAAAAAAAAAAKADLhhpDu92HTyuwsMnLHfjIjpeGn6JuZb7huT32+0HYSVkwjsAAAAAAAAAABD6po8wh3eStDo/iFbfjXbZOvNogVSy2W4vCCthGd5dfPHFuuQSl8QcAAAAAAAAAAB0mZTEWI0e0NNYC6pz70bOkpwIcy33n3Z7QVgJy/Bu1apVWrVqVaDbAAAAAAAAAAAgLF3gcu7d6h0HVef1We7GRY++0tDzzLVczr1D1wnL8A4AAAAAAAAAAATOjMx+xvGK6jp9XlRuuZtmjL7GPF66RTq8224vCBuRgW6gvaqqqrR582aVlpaqsrJSdXV1gW4JAAAAAAAAAAC0wuT0PoqJ9OhkXdNVdmvzD2rSkD4B6Mog6yrp7Z+Ya7lvSuf9h91+EBZCLrx7/fXX9bvf/U4ffPCBfL4gWToLAAAAAAAAAABaLTYqQlMz+urfOw42qa3JP6Q7L84MQFcGvQZJAydKxRua1rYR3qFrhMy2mX6/X7feequ+8pWvaNWqVfJ6vfL7/W3+BQAAAAAAAAAAAm/6CPO5d5/tPaKqGq/lbpqRdbV5vPBj6ViZ3V4QFkImvPv1r3+tZ599tj6AcxynXe8hwAMAAAAAAAAAIPCmDzeHdzVenz7de9hyN81wC+/kl3L/abUVhIeQ2Dazurpav/71r+sDO7/fr549e+qiiy7S6NGjNWDAAPXo0UORka37nFtvvbUr2wUAAAAAAAAAAC0YM7CnesVFqbyqtkltTf4hzcjsF4CuDPqNkpJGSIfym9Zy35Qmkzmgc4VEeLdmzRqVl5fXh3ff/e539Zvf/Ebx8fHteh/hHQAAAAAAAAAAgRXhcXTusCS9k1PSpLZ2Z9Oz8ALGcU6tvlvzX01ru96Xqiuk2J7W20L3FRLbZubl5dX/84QJE/T444+3O7gDAAAAAAAAAADBYXqmeevMzUXlKj/RdEVewIy+xjzuq5V2vme3F3R7IRHeHT16tP6fr7vuug6/7+abb9bNN9/c4fcAAAAAAAAAAID2mz48yTju90sf7jpkuZtmDJwkJfQ317a/bbcXdHshEd4lJibW//PgwYM7/L5nnnlGTz/9dIffAwAAAAAAAAAA2i8jOV4DesUaa2vyg2jrTI9HGjnLXNvxL8lbZ7cfdGshEd5NnDix/p9PnDgRwE4AAAAAAAAAAEBncRxH5w03b525JpjOvZOkUbPN41VHpH3r7PaCbi0kwrvzzjtPGRkZkqRPP/20w+8rKChQQUFBh98DAAAAAAAAAAA6ZvoI89aZuw4cV0l5teVumjHsQikyzlzb/pbdXtCthUR45ziOHn30Ufn9fr388svav39/h96Xnp6uYcOGdVJ3AAAAAAAAAACgvaaPMK+8k4Js68yoOGn4xeYa596hE4VEeCdJc+bM0W9+8xsdO3ZM11xzjcrKyjr0Pr/f30mdAQAAAAAAAACA9urfM1YjUhKMteDbOvNK8/ihfOngDru9oNsKmfBOkubPn6+3335b5eXlGjVqlO6991599tlnqqmpCXRrAAAAAAAAAACgnaYPN2+duTb/UHAtxhl5hSTHXGPrTHSSyEA30J7tK2tra1VeXq5f/vKX+uUvf6mIiAj17t1b8fHxchyX/2gAAAAAAAAAAEBQOm9Esp79cG+T8ZKKau08cNx1ZZ51CSnSoCnSvnVNa9vflqb/wH5P6HYCHt7t2bNHjuO0KTl3HKfBM3V1dTp48KAOHgyy5bMAAAAAAAAAAKBF5wxLkseRfIaoYO3Og8ET3kmnts40hXeFH0vHD0rx7mf4Aa0RNNtmng7kWvOrPc+YngcAAAAAAAAAAIHXKy5K4wb1NtbW5AfZwp1Rs83jfp+0Y5ndXtAtBXzl3WlDhgyxNtfevU2X3gIAAAAAAAAAgMCZPjxJmwqPNhn/cOcheX1+RXiCZHFOv1FSnwzpyO6mte1vSWd9zX5P6FaCJrzbvdvwm7yLeDxBs+AQAAAAAAAAAABImj4iWY+t2tlkvKK6TjnF5RrvsjLPOsc5tfruoz80reW/J9VWS1Gx9vtCt0GKBQAAAAAAAAAAAu7soX0UHWmOLVYH3daZV5rHa49Le/5ttxd0O4R3AAAAAAAAAAAg4GKjIjR5aB9j7cOdhyx304Ih50ixvc217W9bbQXdT8C3zXz00Uetz7ly5UrrcwIAAAAAAAAAgOZNH5GstYag7tM9R1RT53NdmWddRJSUebm0+eWmte1vS1f99tT2mkA7BDy8+8EPfmB9zgsvvND6nAAAAAAAAAAAoHnnDk8yjlfVevX5vqOanN7XckfNGHWlObyrLJb2b5IGnmW9JXQPQRJRAwAAAAAAAACAcDcurZfioyOMtY92BdnWmSMukTxR5lreO3Z7QbcSMuHdxRdfrEsuuSTQbQAAAAAAAAAAgC4SFeFxXV330a7DlrtpQWwvKX26uZb3L7u9oFsJmfBu1apVWrVqVaDbAAAAAAAAAAAAXcht68xP9x7WyTqv5W5aMHKWebx4vVRZarcXdBshE94BAAAAAAAAAIDu75xh5vCuutanz/eVW+6mBZmXu9fyl9vrA91KZKAbaKvCwkL5/f4Ov8dxHCUkJKhPnz6d0BUAAAAAAAAAAOgMYwf2VEJMpI6drGtS+3DnIU1x2VYzIJKGS0mZ0qEdTWt5/5Imft1+Twh5IRfepaend+r7PB6PMjMzNXPmTH3rW9/S5MmTO/X9AAAAAAAAAACg9SIjPJqS3kcrtx9oUvto1yHddUlmALpqxsgrpA8N4d3OlVJdjRQZbb8nhLSQ2zbT7/d36i+v16vc3Fz98Y9/1LRp0zR37lwdPhxkh14CAAAAAAAAABBG3LbO/GzvkeA7985t68yaSqngQ7u9oFsIqfDu9HaZjuM0+NWc1tx7etzv9+uNN97QlClTVFRU1LnNAwAAAAAAAACAVjl3uDm8O1nn08aCo3abacmQc6XoRHNtxzK7vaBbCJltM2+++WY5jqPq6motWbJEXu+pZL1fv34aM2aMkpKSlJCQIMdx5Pf7dfz4cR06dEg5OTk6cODU0lqPx6Mvf/nLSkw89R/RiRMnVF5eru3bt2vv3r31c+3evVvz5s3TBx98oMjIkPlXBAAAAAAAAABAtzBmQE8lxkSq0nDu3Ue7Dmuay8q8gIiMloZfJG1b2rSW9450xUP2e0JIC5lk6plnntHOnTt17bXXynEc3Xnnnfr2t7+t8ePHt/jsli1b9Kc//UlPPPGEcnJy9Oqrr2r06NEN7ikuLtZf/vIXPfzwwzp27Jg+/vhj/fWvf9Wtt97aVZ8EAAAAAAAAAAAMIiM8mpLRV+/lljWpfbTrkH6gIDz3zhTeHcqXDu2Ukobb7wkhK2S2zTx27JhmzZql/fv3a+3atfrd737XquBOksaOHav//u//1tq1a3X48GFdeeWVOnr0aIN7Bg4cqHvvvVefffaZBgwYIL/fr0ceeaQLvgQAAAAAAAAAALTkXLdz7wqOqLo2yM69G3GZe42tM9FGIRPe/fSnP9WuXbv07LPPavLkye16x9lnn61nn31WBQUF+vGPf2y8JzMzU08++aQkaevWrdq/f3+7ewYAAAAAAAAAAO1zjkt4V1Pn08bCo3abaUlif2ngRHMt7192e0HIC4nwrrq6Wi+88IKys7M1a9asDr1r1qxZGjdunBYvXqyqqirjPVdddZWGDRsmSfroo486NB8AAAAAAAAAAGi7MQN7KjHWfPrXhzsPWe6mFTKvMI/vXSOdPGa3F4S0kAjvPvjgA1VUVGjGjBmd8r7zzz9fx48f1wcffOB6z+m5SkpKOmVOAAAAAAAAAADQehEeR9My+hprH+0KwvBupEt4562Rdq2y2gpCW0iEd/v27ZMk9enTp1Pe17t37wbvNUlNTZWkJmfjAQAAAAAAAAAAO9y2ztxQeDT4zr0bcJYUn2Ku7WDrTLReSIR3ZWVlkjpvFVxpaakk6eDBg673eDyn/tVERpqX5AIAAAAAAAAAgK7V3Ll36wuOWO6mBR6PlHm5uZa3TPL77faDkBUS4d3pFXfLli3r8Lv8fn/9e06vwDMpLi6WJCUkJHR4TgAAAAAAAAAA0HajB/RUT5dz7z7addhyN60w0iW8O1Yi7d9ktxeErJAI7zIyMiRJRUVF+q//+q8OvevRRx+t3y7z9HtNVq9eLUkaNGhQh+YDAAAAAAAAAADtE+FxNM1l9V1Qnns37CLJE2Wu7ej4AiWEh5AI72bOnKnExERJ0k9+8hP993//d7ve88gjj+juu++WJCUmJmrmzJnG+/7xj39o586dkqTMzMx2zQUAAAAAAAAAADrObevMjQVBeO5dbE9p6LnmWh7n3qF1QiK8i46O1m233Sa/36+6ujrNnz9f48aN0//8z/8oPz+/2Wfz8vL03//938rOztaPf/xj1dXVyXEcffvb31Z0dHST+5ctW6ZvfvObkk5tq5mVldUVnwQAAAAAAAAAAFrhXLdz77w+rd8bZOfeSVLmFebxos+k40G4WhBBx7xRbBB64IEHtGTJEhUVFcnv9ysnJ0c/+MEPJEmxsbFKT09XYmKiYmNjVV1drYqKCu3Zs0cnT56UdOqsu9OGDBmihQsXNnj/n//8Zz3zzDP68MMP5ff75TiO68o8AAAAAAAAAABgR1ZqonrFRam8qrZJbd2ewzpvRHIAumrGyCukZT83FPzSrpXSuOust4TQEjLhXUJCgpYvX66ZM2eqtLRUjuPUB3JVVVXatm2bJDUYP9Pp8dTUVC1fvlzx8fEN6k899ZQ+/vjjBmPXX399F30NAAAAAAAAAABoDY/H0ZT0vlqxrbRJ7ZM9hwPQUQuSRki9h0pH9zat7VhOeIcWhUx4J0mjRo3Sxx9/rG9+85tatWqVHMcx3td43O/3y+/366KLLtLTTz+tIUOGNHnm5ptvbrDSznEczZ07tzPbBwAAAAAAAAAA7TAtwxzefbb3iGrqfIqODKJTwhxHGnGp9OlTTWs735V8PskTRP0i6IRUeCed2vLyvffe08svv6z/+Z//0erVq1t8ZsaMGbrzzjs1b94813tuv/32zmwTAAAAAAAAAAB0kikZfY3j1bU+bSku16QhfSx31ILMy8zh3fEDUskmaeBE+z0hZIRceHfa9ddfr+uvv16lpaVau3atcnJydPjwYVVWVioxMVF9+/ZVdna2zjvvPPXv3z/Q7QIAAAAAAAAAgHbKHthTPaIjdKLG26T2ye7DwRfepc+QIqIlb03TWv4Kwjs0K2TDu9P69++vL3/5y/ryl78c6FYAAAAAAAAAAEAXiIrw6OyhffTvHQeb1NbtPqzvXjg8AF01IyZBGnKutPv9prX8d6ULfmy/J4QMNlUFAAAAAAAAAABBb0q6eevMT/Ycls/nt9xNK4y41DxeuE6qOmq1FYSWsAzvPvjgA33wwQeBbgMAAAAAAAAAALTSVJdz7yqq67S9tNJyN62QeZl53O+Vdq2y2gpCS1iGdzNnztTFF18c6DYAAAAAAAAAAEArnTW4t6IjzLHGut2HLXfTCv2ypJ5p5lr+cru9IKSEZXgnSX5/EC6hBQAAAAAAAAAARrFRERo/qJexFpThneNIIy4x1/Lflcgp4CJswzsAAAAAAAAAABBa3LbO/Hj34eBctDPCZevMyv1S2Va7vSBkRAa6AUmqqKjQ4sWL5fP5dP3116tPnz5N7mGbSwAAAAAAAAAAwtvUjL56bNXOJuMHj53UnkMnlJEcH4CumjHsQskTKfnqmtZ2LJf6Z9vvCUEv4OHdgQMHNGXKFBUWFkqSFi1apM8++0wpKSkN7lu1apUcxwlEiwAAAAAAAAAAIAicPbSPPI7kMyyyW7f7UPCFd7G9pMHTpL1rmtbyV0jn/x/rLSH4BXzbzMWLF6ugoEDSqXPoiouL9fLLLwe4KwAAAAAAAAAAEGwSY6M0ZmBPY+3jYDz3TnI/967gI+lkpd1eEBICHt4NGDCg/p9Pr6w7c6wxv9/f4V8AAAAAAAAAACA0TU1PMo5/sidYw7tLzeO+Wmn3B3Z7QUgIeHh37bXX6vbbb68P7r7zne/o2muvdb3f5/N1+BcAAAAAAAAAAAhNUzP6GMcLD1ep+GiV5W5aIXW8lNDfXMtfYbcXhISAh3eS9Ic//EEVFRWqrKzU448/Huh2AAAAAAAAAABAkJqS3te1FpSr7xxHGu6ydeaOFRI7BqKRoAjvJKlHjx7q0aNHoNsAAAAAAAAAAABBLCkhRiNSEoy1dcF67l2my9aZ5QXSwR12e0HQiwx0A611880312+tGUzvAgAAAAAAAAAAdk1J76v8smNNxoM2vBt2keR4JL/haK/8FVK/kfZ7QtAKmfDumWeeCcp3AQAAAAAAAAAAu6Zl9NXf1hU0Gd9RdkyHj9eob3x0ALpqRo++Utpkad+6prVdK6Vz77DfE4JW0GybCQAAAAAAAAAA0BpTM0Ls3DtJGn6xeXzPaqnupN1eENQI7wAAAAAAAAAAQEgZ2DtOab3jjLWPd4VYeFd7Qir82G4vCGohs22mm82bN+vjjz/Wpk2bdOjQIZWXl+uf//xnfX3Pnj2qrq5WVlZWALsMTVVVVRo3bpx27txZP3b//fdrwYIFHX73iRMntGbNGuXm5qq8vFw9evRQRkaGpk+frpSUlA6//0x5eXlat26dioqK5PV61a9fP40fP15TpkyRx9N5+bXNbwIAAAAAAACAcDcto69e3VDUZPyzvUEa3qWdLcX0lE5WNK3tfE/KuMB+TwhKIRne1dbW6rHHHtPjjz+uHTt21I/7/X45jtPg3o8//lhf+9rXdN555+lXv/qVpk+fbrvdkLVw4cIGwV1nKC0t1YIFC/Tss8+qqqqqSd3j8ejyyy/Xgw8+qMmTJ3doriVLlmjRokXatGmTsZ6amqq77rpL8+fPV0xMTLvnsflNAAAAAAAAAIBTpriEdznFFTpRU6ce0UEWgUREngroct9sWtv5nnTpAustITiF3LaZW7Zs0eTJkzV//nzl5eXJ7/fL7/c3+4zf79fatWt14YUX6sEHH7TUaWj7/PPP9dvf/rZT3/nee+9pzJgxeuKJJ1RVVaX4+HjNmzdPP/nJT3TLLbdo0KBB8vl8eueddzRt2jT9+te/btc81dXV+upXv6p58+bVB3cTJ07U9773Pf3f//t/ddlll8lxHJWUlOiee+7R5MmTtXv37qD+JgAAAAAAAABAQ5OH9jGO1/n82lh41G4zreW2deb+z6XjB+32gqAVZLFz87Zt26aZM2fqyJEjDVbZNRfgZWZmaty4cdq8ebP8fr8WLFig6Oho/fSnP7XZekjx+Xz69re/rbq6uk5758qVKzV79mydPHnq0M05c+boqaeeUnJycv09NTU1euihh/TAAw/I5/Pp7rvvVm1tre69995Wz+P1enXttdfqrbfekiTFx8fr+eef19y5cxvcl5OTo7lz5yo/P19btmzRzJkztXbtWqWlpQXdNwEAAAAAAAAAmhreL0G94qJUXlXbpPbZniM6b3iy4akAG36RS8Ev7VoljbvOZjcIUiGz8q66ulpXXXWVDh9uuFft8OHDNXv2bN14443G5yZNmqRNmzbp7bff1pAhQ+T3+/Wf//mfysnJsdF2SPr973+vTz75RJLUq1evDr+vrKxMN9xwQ33INXPmTC1ZsqRByCVJ0dHRWrhwoe6+++76sfvuu0/Lli1r9VwPPPBAfXAnSa+99lqT4E6SsrOztWrVKiUlJUmSCgoKdOONN7a4ijMQ3wQAAAAAAAAAaMrjcXS2y+q7T/cesdxNK/UdJvVJN9d2rrTaCoJXyIR3v//977Vnzx45jqPExET96le/UnFxsfLy8vTmm2/qxRdfbPb5K664Qh999JEyMjLk9Xr10EMPWeo8tBQWFtavCjv33HM1Z86cDr9zwYIFOnDggCQpKipKjz/+uKKiolzvv//++5WRkSHp1KrK+fPny+v1tjhPQUGBHn744frrr3/967rssstc709LS2vw+2D16tVavHhxi/NI9r4JAAAAAAAAAODOLbxbX3BEPl/rFmtY57Z15s73pFYuMEH3FjLh3R/+8Ac5jqP09HRt2rRJP/nJT9S/f/82vSM1NVV/+tOf5Pf79frrr+vEiRNd1G3ouuOOO3Ts2DFFRUXpySeflMfTsd8i+fn5+tOf/lR/feWVVyorK6vZZ2JjY3X77bfXX+fk5Oi5555rca777rtP1dXV9dfz589v8Zlbb71Vffr87x/u9957b4vbhdr8JgAAAAAAAACAO7dz7yqr65RXVmm5m1ZyC+8qi6UD2+32gqAUEuFdXl6eCgoK5DiOXnzxRQ0dOrTd77r44os1evRoVVdXa/369Z3YZehbvHix3nzzTUnSj3/8Y40dO7bD7/zzn//cIAy76aabWvXc1772tfozDSXpj3/8Y7P3V1RU6KWXXqq/Hj16tCZOnNjiPNHR0Zo3b1799c6dO7VixYpmn7H1TQAAAAAAAACA5k0Y3FtREY6x9umeIN06M32G5ESYa7vYOhMhEt5t2LBBkjR58mRNmzatw++bPn26JCk3N7fD7+oujh49qv/zf/6PJGnEiBH6z//8z0557yuvvNLgeubMma16Li0tTZmZmfXX69atU2Fhoev9S5curT9/TpIuusjt0M+mGve0ZMmSZu+39U0AAAAAAAAAgObFRkVobFovY+2zYD33Lq63NGiyubbzPautIDiFRHh3+myxqVOndsr7UlJSJElHjgTpf7gB8KMf/UglJSWSpCeeeEKxsbEdfufWrVuVn59ffz106ND6f/etceb/3n6/X2+88YbrvUuXLm1wPWXKlHbNY3rXmWx+EwAAAAAAAACgZW5bZ36697DlTtrAbevMPaulupPmGsJGSIR3x44dkyQlJiZ2yvuOHz8u6VR4Aun999/XX/7yF0nSzTffrEsuuaRT3nt6xeRpo0ePbtPz2dnZDa43btzYJXMNHz68QVh54MABFRcXd/o8Utu+CQAAAAAAAADQsrOH9jWOFx6uUmlFteVuWmmYy+5xtSekwo/t9oKgExLhXVJSkiSpqKioU953euVUcnJyp7wvlJ08eVLf/e535ff7lZSUpN/+9red9u6cnJwG14MGDWrT82lpac2+77Tq6mrt2rWrQ3MNHDiwVXPZ+iYAAAAAAAAAQOuc7bLyTgric+/SzpZiepprbJ0Z9iID3UBrnA48/vWvf6m2tlZRUVHtfld5ebnee+/Ub/yhQ4d2Sn+hbNGiRdq+fbsk6be//W2nBpqNzxRsHFy1pPH9bmcU5uXlyefz1V97PB6lpqa2ea4zA8Dc3FxddtllTe6z9U1tVVZWVr+9bGuduf0nAAAAAAAAAISqfokxSk/qoT2HTjSpfbr3sK4aPyAAXbUgIlLKuEDKfbNpbedK6dIF1ltC8AiJ8O78889XZGSkysrKtHDhQi1atKjd77rnnntUVVWl2NhYTZ8+vRO7DD05OTl6+OGHJUkXX3yxbrnllk59/+HDDfcT7tnT5W8RuGh8/9GjR+X3++U4TrPzxMfHKyIiokNzuZ2HaOub2uqxxx7TwoULO/QOAAAAAAAAAAhVZw/tawzvPtsbpCvvpFPn3pnCu/2bpOMHpXh2DwxXIbFtZs+ePXXxxRfL7/frl7/8pe69917V1dW16R0+n08///nP9fjjj8txHM2aNavBOWfhxu/36zvf+Y5qamoUGxurJ554otPnqKysbHAdExPTpucb/+/j8/l04kTTP3w7Oo9prsbv7Ky5WvtNAAAAAAAAAIDWm5xu3jozp7hCJ2ralidYM/xil4Jf2rXKZicIMiER3klqsKrol7/8pUaNGqWHH35YW7dubfa54uJiPfHEE5owYYJ+9atfSZIcx9H999/fpf0Gu8cff1xr166VJN17773KzMzs9DkaB11tDUtN95tCtY7OY3qmteFdV30TAAAAAAAAAKD1priEd16fXxsLj9ptprX6Zkh9Msy1nSvt9oKgEhLbZkrStGnTdPvtt9evnNu9e7d+9rOf6Wc/+5kSEhI0bNiw+nsvuOACVVZWqqioSIcOHZJ0aqWZdCq4u+uuuzRhwoSAfMedd96pP/zhD10+z/33368FCxYYa8XFxfrZz34mScrOztZPfvKTLu+ns5z+37G7zNNZc91xxx2aN29em57Jz8/X3LlzOzw3AAAAAAAAAATasOQE9e4RpaMnapvUPttzROcND9ItKIdfJH26u+n4rpWS3y918MglhKaQCe8k6fe//70KCgr0z3/+U47j1IcelZWV2rRpk6RTQciaNWuaBCKn77/66qv129/+1nrvweT73/++Kioq5DiOnnzySUVFRXXJPImJiQ2uq6ur2/S86f7G7+yMeUzPmObpjLla+01tlZKSopSUlA6/BwAAAAAAAABCkcfj6OwhffRublmT2qfBfu7dp39pOl5RJB3aKSWPsN8TAi5kts2UJI/Ho9dff10//vGP68ccx2nyq/H4aT/5yU/02muvNRgLN6+++qr+8Y9/SJK++93v6rzzzuuyuRISEhpcnzx5sk3PNw66HMdRfHx8p89jmsstULP1TQAAAAAAAACAtjnbZevM9QVH5PPZ222tTdJnSI5LVLOLrTPDVUitvJNOBXi//vWvdeONN+oXv/iFXn/9ddXVuR82GRkZqS996Uu65557NHHiRIudmt1+++2aNWtWl88zcuTIJmMVFRX6j//4D0nSgAED6s8A7Cp9+/ZtMn9bNL6/d+/exuC18TzHjx+X1+tVREREu+fq08f8h7ytbwIAAAAAAAAAtM3koX2N45XVdcorq1RWak/LHbVCXG9pwFlS8fqmtd3vS1P/P9sdIQiEXHh32sSJE/X3v/9dx44d07///W9t2rRJBw8eVEVFhXr27Knk5GRNmDBBM2bMaLJaKpCys7OVnZ0dkLnvvvtuFRcXS5J+97vfqVevXl06X1ZWVoProqKiNj3f+P7G7ztt5MiR8ng88vl8kiSfz6eSkhKlpaV1+ly2vgkAAAAAAAAA0DbjB/VSVISjWm/TVXaf7DkSnOGdJA2b6RLe/VvyeSVP6xeqoHsI2fDutISEBF155ZW68sorA91K0Hvrrbfq/3nevHntesfChQu1cOHCJuMrV67UzJkzG4yNHTu2wfW+ffvaNFfjoKvx+06Li4vTsGHDlJ+f32CutoR3p0PNluay9U0AAAAAAAAAgLaJjYrQ2LRe2lBwtEntsz2H9Y1zhtpvqjWGXSitfqTpePVRaf8mKW2S9ZYQWCF15h1CS+NtSrdu3dqm57ds2dLgesKECV0yV35+foOz6JKTkzVw4MBOn0dq2zcBAAAAAAAAANpm8lDzkUif7j1iuZM2GDxNiogx13a/b7cXBAXCuzCyZ88e+f3+Nv265ZZbGrzj/vvvN97XeNWdJI0ZM0bDhw+vvy4oKFBZWVmr+/3kk08aXF9zzTWu9zauNX62LfPMmTPH9V6b3wQAAAAAAAAAaJvJ6eZz7/YdqVJpRbWxFnBRcdKQc8y1XYR34SgowjuPx6PISHs7eNqeL5xde+21Da5XrVrVqueKioq0Y8eO+uupU6dqyJAhrvfPmTNH0dHRbZ7HdO91113X7P22vgkAAAAAAAAA0DZnu6y8k6QNBUG8+m7Yhebxgg+l2iANHdFlgiK8kyS/v+kBkt1pvnB12223NQhKX3jhhVY99+KLLzb43+g73/lOs/f36tVLN9xwQ/31tm3btGHDhhbnqamp0d///vf664yMDF166aXNPmPrmwAAAAAAAAAAbZOcEKOhST2MtfWGs/CCRsZM83hdtbRvnc1OEASCJrxD9zRy5Ejddttt9ddvv/22cnNzm32murpajz/+eP11VlaWvvnNb7Y414MPPqiYmP/dF/iRRwwHfDby9NNP68iR//3bFosWLVJUVFSzz9j8JgAAAAAAAABA20waYl59tz6Yz70beJYU08tcY+vMsBNUe0cWFhayIq4bWrBggZYsWaJDhw6ptrZWd9xxh5YtW+a6denChQu1e/duSZLjOHr00UcVERHR4jxDhw7Vj370Iz300EOSpOeff1633HKL60q64uJi/fznP6+/Pu+88/TVr341qL4JAAAAAAAAANA2k4b01msbipqMby4qV02dT9GRQbiuyRMhZcyQct9sWtu1SrrkP623hMAJqvAuPT090C2gC6Smpmrx4sWaPXu2ampqtHLlSl133XV66qmnlJSUVH9fTU2NfvGLX+hXv/pV/dh9992nWbNmtXquBQsW6NNPP9W//vUvSdLcuXP1wgsv6Etf+lKD+3JycjR37lwdOnRIkjRo0CC99NJLchwn6L4JAAAAAAAAANB6E11W3p2s82nb/gpNGNzbbkOtlXGhObwrXi9Vl0uxLivz0O04/iBY6ubxeOQ4jtVVd47jyOv1WpsvFCxYsEALFy5s83NPP/10q7aAXL58uW644Yb6bSoTEhI0e/Zspaenq6ysTO+++64KCwslnfo98eCDD+qee+5pcz9VVVW65ZZbGpxlN2nSJE2bNk1xcXHKycnR8uXL5fP5JEljxozRG2+8oWHDhrV5Llvf1BVycnI0duzY+ustW7YoOzs7gB0BAAAAAAAAQMfVeX0au+Bfqq71Nandf80Y3To9IwBdtcKB7dIfppprN/5Nypptt58wFuifnwfVyrvWrnrqqCDIK8PSZZddpq1bt+r+++/Xc889p2PHjunll19ucI/jOLrsssu0aNEiTZkypV3zxMXF6eWXX9bLL7+sRYsWafPmzVq/fr3Wr1/f4L6UlBTddddd+uEPf6jY2Nig/iYAAAAAAAAAQOtERng0flBvrdt9uEltQ8FR3To9AE21RvJIKXGAVLm/aW3XKsK7MMLKOwTE8ePHtWbNGuXm5qqiokKxsbHKyMjQ9OnTlZqa2qlz5ebmat26dSouLpbX61VycrLGjx+vqVOnduq5cza/qTME+m8OAAAAAAAAAEBX+dXbuXri/Z1Nxgf1idPqn14cgI5a6dXvSp+/1HS8X5b0/Y/t9xOmAv3z86BaeXd6G8PWOB34tSeA83iC8DDKMBMfH6/LL79cl19+eZfPlZWVpaysrC6fx+Y3AQAAAAAAAADcTRrS2zi+70iVyiqrlZLYvt3YutywC83h3YFcqbJESgy+hSLofKRYAAAAAAAAAACgW5k4pI9rbUPBUXuNtFXGhe61Xe/b6wMBRXgHAAAAAAAAAAC6lX6JMRrcN85YW19wxHI3bdArTUrKNNd2E96Fi6DYNnPIkCFWt7K0PR8AAAAAAAAAALBr0pA+Kjxc1WR8w96j9ptpi2EXSod2NB3f9b7k90uOY78nWBUUCdaePXu0a9eubjsfAAAAAAAAAACwa+Lg3sbxz4uOqtbrs9tMW7htnVmxTzq0024vCIigCO8AAAAAAAAAAAA606Sh5nPvqmt9yt1fabmbNsiYIclldR1bZ4YFwjsAAAAAAAAAANDtZKX2VEykOQYJ6nPv4vpIA88y1/b822orCAzCOwAAAAAAAAAA0O1ER3o0flAvY21DMId3kpQ+wzy+Z/Wpc+/QrRHeAQAAAAAAAACAbmnSEPPWmesLjtptpK0yLjCPHz8gHdhutxdYR3gHAAAAAAAAAAC6pYlDehvHCw6f0MFjJ+020xZDzpGcCHONrTO7PcI7AAAAAAAAAADQLbmtvJOkDcG8+i4mUUqbZK7t/sBuL7AuKMK7goICFRQUdNv5AAAAAAAAAACAfSk9Y5XWO85YWx/0596dbx7fs1ry+ez2AquCIrxLT0/XsGHDuu18AAAAAAAAAAAgMNy2zly/N9jDuxnm8arDUtlWu73AqqAI7yTJ7/d36/kAAAAAAAAAAIB9bltnfr6vXHXeIF7BNuQcyRNlrnHuXbcWNOEdAAAAAAAAAABAZ3NbeVdV61VuSaXdZtoiOl5KO9tc2014151FBrqBM/373/9u84q49jwDAAAAAAAAAADCQ/bAXoqO9Kimrukquw0FRzQ2rVcAumqljBlS4UdNx/eulnxeyRNhvyd0uaAK72bOnNmm+/1+f5ufAQAAAAAAAAAA4SM60qNxab30meGMuw0FR/WNcwPQVGulz5A++H9Nx6vLpZLN0sCzrLeErhdU22b6/f5W/3IcR47jtOmZ078AAAAAAAAAAED4mDi4t3F8476jVvtos8FTpYhoc41z77qtoArvTgdyrfnVnmcaPwsAAAAAAAAAALq/s1zOvdt14LjKq2rtNtMWUXHSoKnm2p7VdnuBNUG1beaQIUOszLN3714r8wAAAAAAAAAAgMCbMKi3a23zvnKdn5lsr5m2yphx6oy7xvaulbx1UkRQRT3oBEH1v+ju3butzOPxBNWCQwAAAAAAAAAA0IUG9YlTUny0Dh2vaVLbWHgkuMO79BmSftl0/GSFVLJJSjvbekvoWqRYAAAAAAAAAACgW3McR2e5nXtXWG63mbYaNFmKjDXXdnPuXXdEeAcAAAAAAAAAALq9Ca7h3VH5/X67zbRFZIw02O3cO8K77igots284IIL5DhOt50PAAAAAAAAAAAEllt4d/DYSRWXVyutd5zdhtoi/QJp9wdNx/d+KHlrpYgo+z2hywRFeLdq1apuPR8AAAAAAAAAAAisCYN6udY2FR4N7vAuY4a00jBee1wq3uC+Mg8hiW0zAQAAAAAAAABAt9e7R7QykuONtU2FR+0201YDJ0lRPcw104o8hDTCOwAAAAAAAAAAEBbcVt9tCPbwLjJaGnKOuca5d90O4R0AAAAAAAAAAAgLZ7mce7d5X7nqvD67zbRV+gzzeOG6U+feodsgvAMAAAAAAAAAAGFhgkt4V1XrVf6BY3abaSu38K72hFS80Wor6FqEdwAAAAAAAAAAICyMHtBTURGOsRb8596d5X7u3d41VltB1yK8AwAAAAAAAAAAYSE2KkKjB/Q01jYGe3gXESUNnmquEd51K4R3AAAAAAAAAAAgbLide7exsNxuI+0x9HzzeMFHks9rtxd0GcI7AAAAAAAAAAAQNiYM6m0czyut1ImaOrvNtNXQ88zjJyukks12e0GXIbwDAAAAAAAAAABhY4LLyjuvz68tRRV2m2mrtLOliBhzja0zuw3COwAAAAAAAAAAEDaGJccrMTbSWNsU7OfeRcVKg6aYa3vX2u0FXYbwDgAAAAAAAAAAhA2Px3HdOnPjvqNWe2kXt60z966RfD67vaBLEN4BAAAAAAAAAICwMmFwL+P4xoKjdhtpj/Tp5vGqI9KBbXZ7QZcgvAMAAAAAAAAAAGHlrMF9jONFR6t0oPKk5W7aaNAUyWPe9pOtM7sHwjsAAAAAAAAAABBWJgwyr7yTpM+DfevM6Hhp4CRzbc9qu72gSxDeAQAAAAAAAACAsJLSM1YDe8Uaa5sKj9ptpj3cts7cu1by++32gk5HeAcAAAAAAAAAAMLOhMG9jeMbQiG8G+oS3h0vkw7l2+0FnY7wDgAAAAAAAAAAhJ2zXMK7TYVH5Q/21WuDp0mOS8TD1pkhj/AOAAAAAAAAAACEHbeVdxXVddpz6ITdZtoqtqeUOt5c27vWbi/odIR3AAAAAAAAAAAg7IxL6yXHMdc2F5XbbaY90s83j+9dw7l3IY7wDgAAAAAAAAAAhJ34mEiN6JdgrG3ed9RuM+3hdu5dRZF0dK/dXtCpCO8AAAAAAAAAAEBYGjeol3H8830hsPJuyDmSXJYO7lljtRV0LsI7AAAAAAAAAAAQlsanmcO7LUXl8vmCfOvJHn2l/tnm2l7Cu1BGeAcAAAAAAAAAAMLSuEG9jePHa7zadfC43WbaY+h55nHCu5BGeAcAAAAAAAAAAMLSmAE9FeExbz25ueio3Wbaw+3cuyN7pPIiq62g8xDeAQAAAAAAAACAsBQXHaHMlARjLSTOvXML7ySp4EN7faBTEd4BAAAAAAAAAICwNX6Q+dy7zaEQ3iX0k5JHmmuEdyGL8A4AAAAAAAAAAIQtt3PvcoorVOf12W2mPYacax7fS3gXqgjvAAAAAAAAAABA2BqfZl55V1Xr1c4Dxy130w5u4V3ZVqnqiN1e0CkI7wAAAAAAAAAAQNjKGpCoqAjHWPt831G7zbTHkHNcCn6p8BOrraBzEN4BAAAAAAAAAICwFRMZoVGpicba5qIQOPeuT7qUOMBcK1hrtRV0DsI7AAAAAAAAAAAQ1sal9TaOf74vBMI7x3FffVfwkd1e0CkI7wAAAAAAAAAAQFgbP8h87t3W/RWq9fosd9MObufeFX0m1Vbb7QUdRngHAAAAAAAAAADCmlt4V1PnU15ppeVu2sEtvPPWSMUb7PaCDiO8AwAAAAAAAAAAYW1k/0RFR5ojk82hsHVm/2wppqe5VvCh3V7QYYR3AAAAAAAAAAAgrEVFeDRmgDn8+rwoBMI7T4Q0eKq5xrl3IYfwDgAAAAAAAAAAhD23rTNDYuWdJA05xzxe+JHkC4Fz+1CP8A4AAAAAAAAAAIS9cWnm8C63pEIn67yWu2kHt3PvqsulA9vs9oIOIbwDAAAAAAAAAABhb/yg3sbxWq9f20sq7TbTHmlnS54oc41z70IK4R0AAAAAAAAAAAh7w/vFKy4qwlj7PBS2zoyKkwZONNf2Et6FEsI7AAAAAAAAAAAQ9iIjPMoe2NNYC/lz7wo+stsHOoTwDgAAAAAAAAAAQNK4QeZz7z4vCpHwbuh55vGKfdLRQru9oN0I7wAAAAAAAAAAACSNdwnv8korVVXjtdxNOwye5l7j3LuQQXgHAAAAAAAAAAAgaVxab+O41+fX1v0Vdptpjx59pX5Z5hrhXcggvAMAAAAAAAAAAJA0LDle8dERxtrmfUftNtNeQ841j3PuXcggvAMAAAAAAAAAAJDk8Tgam2beOnNLcQisvJPcw7uyrdKJw3Z7QbsQ3gEAAAAAAAAAAHxhnFt4V1RuuZN2GuoS3klS4Tp7faDdCO8AAAAAAAAAAAC+4LbybkfZMVXXei130w69Bks908w1zr0LCYR3AAAAAAAAAAAAXxib1tM47vX5tb2k0nI37eA40pBzzDXCu5BAeAcAAAAAAAAAAPCFjOQExUVFGGtbikNk60y3c++KN0p1J622grYjvAMAAAAAAAAAAPhChMfRmIHm1Xdbiiosd9NOg6eZx70npf2f2+0FbUZ4BwAAAAAAAAAAcIaxLuFdTqisvEsZI0UnmGuFH9ntBW1GeAcAAAAAAAAAAHCG7IG9jOO5JZWq9fosd9MOEZFS2tnmWuHHdntBmxHeAQAAAAAAAAAAnCE7zbzyrqbOp/yyY5a7aach55jHC9dJfr/dXtAmhHcAAAAAAAAAAABnyExJVHSEOULZUhQiW2cOnmoeP1YqHd1rtxe0CeEdAAAAAAAAAADAGaIjPRqVmmis5RRXWO6mndImS3LMtQK2zgxmhHcAAAAAAAAAAACNjHXZOjNkVt7F9ZZSRptrnHsX1AjvAAAAAAAAAAAAGske2Ms4vnV/hby+EDkzzm3rzMJ1dvtAmxDeAQAAAAAAAAAANDI2zRzenajxavfB45a7aafB55jHy3Kk6hDZ/jMMEd4BAAAAAAAAAAA0kpWaqAiP+cy4nOIQ2TrTbeWd3ycVfWq3F7Qa4R0AAAAAAAAAAEAjsVERykxJMNZyikNk1VrfYVKPZHONrTODFuEdAAAAAAAAAACAwZiBPY3jW4pCZOWd40iDp5lrhR/b7QWtRngHAAAAAAAAAABgMHag+dy7LUXl8vv9lrtpJ7etM/d9Kvm8dntBqxDeAQAAAAAAAAAAGIxNM4d3FdV12nekynI37eS28u5khXQg124vaBXCOwAAAAAAAAAAAAO3bTOlENo6c+BEyRNlrhV8ZLcXtArhHQAAAAAAAAAAgEFCTKSGJccba1uKQyS8i4qVBp5lrhWus9oKWofwDgAAAAAAAAAAwEW2y9aZOcUVljvpALetMws/ttsHWoXwDgAAAAAAAAAAwMVYl60ztxSVy+/3W+6mnQZPNY8f2S0dK7PbC1pEeAcAAAAAAAAAAOBirMvKu4PHalRWedJyN+3ktvJOYvVdECK8AwAAAAAAAAAAcJHtsvJOOrX6LiQkpkq9h5prhHdBh/AOAAAAAAAAAADARe8e0UrrHWesbSnqDuferbPbB1pEeAcAAAAAAAAAANCMsWku594Vh8jKO8n93LviDVJdiGz/GSYI7wAAAAAAAAAAAJoxdqD53Lutxd1g5Z23RireaLUVNI/wDgAAAAAAAAAAoBlj08zhXdHRKh05XmO5m3ZKGSNFJ5hrRZ/a7QXNIrwDAAAAAAAAAABoRvZA87aZkrRtf4isvouIlNImmWv7PrHbC5pFeAcAAAAAAAAAANCMfokxSk6INta2hkp4J0mDppjH97HyLphEBroBhKcTJ05ozZo1ys3NVXl5uXr06KGMjAxNnz5dKSkpnTpXXl6e1q1bp6KiInm9XvXr10/jx4/XlClT5PF0Xn5t85sAAAAAAAAAAPY4jqPRA3rq3zsONqmF1Ll3buFdeaFUsV/qOcBuPzAivAtTq1at0kUXXdTu5ydMmKCNGze2+bnS0lItWLBAzz77rKqqqprUPR6PLr/8cj344IOaPHlyu/uTpCVLlmjRokXatGmTsZ6amqq77rpL8+fPV0xMTLvnsflNAAAAAAAAAIDAGDPQJbwLpZV3ac38jHrfJ9KYOfZ6gSvCO1jz3nvvad68eTp8+LAkKT4+XrNnz1ZGRoZKS0v17rvvat++fXrnnXe0bNky/eIXv9BPf/rTNs9TXV2tW2+9VS+99FL92MSJEzVt2jTFxcVpy5YtWrFihUpKSnTPPffoxRdf1NKlS5WRkRG03wQAAAAAAAAACKwxA8zn3uWXHdPJOq9iIiMsd9QOCf2kPunSkT1Na4R3QYPwDlasXLlSs2fP1smTJyVJc+bM0VNPPaXk5OT6e2pqavTQQw/pgQcekM/n0913363a2lrde++9rZ7H6/Xq2muv1VtvvSXpVJj2/PPPa+7cuQ3uy8nJ0dy5c5Wfn68tW7Zo5syZWrt2rdLS0oLumwAAAAAAAAAAgecW3tX5/NpRekxj03pZ7qidBk1xCe849y5YdN6BXwhJQ4cOld/vb/OvtmyZWVZWphtuuKE+5Jo5c6aWLFnSIOSSpOjoaC1cuFB33313/dh9992nZcuWtXquBx54oD64k6TXXnutSXAnSdnZ2Vq1apWSkpIkSQUFBbrxxhvl9/uD7psAAAAAAAAAAIGXkRyvmEhzrBJSW2e6nXtXvEHy1trtBUaEd+hyCxYs0IEDByRJUVFRevzxxxUVFeV6//3331+/haXf79f8+fPl9XpbnKegoEAPP/xw/fXXv/51XXbZZa73p6Wl6aGHHqq/Xr16tRYvXtziPJK9bwIAAAAAAAAABIfICI+yUhONta3F3SC8q6uSSnPs9gIjwjt0qfz8fP3pT3+qv77yyiuVlZXV7DOxsbG6/fbb669zcnL03HPPtTjXfffdp+rq6vrr+fPnt/jMrbfeqj59+tRf33vvvaqrq2v2GZvfBAAAAAAAAAAIHmMGmrfODKmVd/3HSpGx5tq+T+z2AiPCO3SpP//5zw3CsJtuuqlVz33ta1+T4zj113/84x+bvb+iokIvvfRS/fXo0aM1ceLEFueJjo7WvHnz6q937typFStWNPuMrW8CAAAAAAAAAASX0S7n3m0rrmj1sUwBFxktDTjLXOPcu6BAeIcu9corrzS4njlzZqueS0tLU2ZmZv31unXrVFhY6Hr/0qVL68+fk6SLLrqo1T027mnJkiXN3m/rmwAAAAAAAAAAwWWMS3hXebJO+45UWe6mAwZNNo/vW2e3DxgR3qHLbN26Vfn5+fXXQ4cOVUpKSqufnzp1av0/+/1+vfHGG673Ll26tMH1lCkue/a2MI/pXWey+U0AAAAAAAAAgOCS5RLeSSG2dabbuXeHd0nHD9ntBU0Q3qHLbNiwocH16NGj2/R8dnZ2g+uNGzd2yVzDhw9XbOz/7u974MABFRcXd/o8Utu+CQAAAAAAAAAQXBJiIpWe1MNY21rcDcI7SSpi68xAI7yDampq9PLLL+umm27SmDFj1KtXL0VFRSk5OVmjRo3S9ddfr8cee0wHDx5s03tzcnIaXA8aNKhNz6elpTX7vtOqq6u1a9euDs01cODAVs1l65sAAAAAAAAAAMFpzEDz6ruQWnnXK01KHGiu7fvEbi9ogvAuzB0+fFijR4/WDTfcoBdffFHbtm1TRUWF6urqdOjQIeXl5envf/+7vv/97ys9PV0/+tGPVFXVun17c3NzG1w3Dq5a0vj+xu87LS8vTz6fr/7a4/EoNTW1S+ay9U0AAAAAAAAAgOA0OtUlvAullXeSNNhl9R3hXcBFBroBBFZlZaUqKys1aNAgfe9739PVV1+tIUOGKC4uTqWlpXr//ff1hz/8QevWrdPx48f129/+VitWrNA//vEPpaenN/vuw4cPN7ju2dN9L2CTxvcfPXpUfr9fjuM0O098fLwiIiI6NNeRI0eM99n6prYqKyvTgQMH2vTMmWf3AQAAAAAAAABax23lXdHRKpWfqFWvHlGWO2qnQVOkra83Hd/3meTzSp62/ZwdnYfwDvra176mJ554QomJiQ3Ghw4dqptvvlnf+MY39MADD2jBggWSpE2bNunKK6/URx99pF69erm+t7KyssF1TExMm/o68xw6SfL5fDpx4oTi4+M7dR7TXI3f2Vlztfab2uqxxx7TwoULO/QOAAAAAAAAAEDL3MI76dTWmecOT7LYTQe4nXtXUykdzJNSRtvtB/XYNjNMJScn60tf+pJ+9KMf6a9//WuT4O5MjuPo/vvv17e//e36sdzcXH3/+99vdo7GQVfj4KolpvtNoVpH5zE909rwrqu+CQAAAAAAAAAQnFJ7xqqPy+q6baF07t2ACZLHZY1X4Tq7vaABwjvL7rzzTjmO0+W/Tq+SczN27Fj94x//0P/7f/9PHk/rfhs8/PDDiouLq7/+29/+pi1btnTkX0eb+f3+bjWP7bkAAAAAAAAAAB3jOI7r6rutoRTeRcVJqePMNc69Cyi2zUSr9enTR1/5ylf0wgsvSDq15eMzzzyj3/zmN8b7G6/mq66ubtN8pvtNKwQ7Oo/pGbeViLa+qa3uuOMOzZs3r03P5Ofna+7cuR2eGwAAAAAAAADCzejUnlqTf6jJ+NbiEArvpFNbZxZvaDq+71P7vaAe4R3aZMaMGfXhnSStWLHC9d6EhIQG1ydPnmzTXI2DLsdxjGfDdXQe01xugZqtb2qrlJQUpaSkdPg9AAAAAAAAAICWua2821FWqZo6n6IjQ2Tjw0FTpHVPNh0/kCtVl0uxvez3BMI7226//XbNmjWry+cZOXJkl7w3Ozu7wXVOTo7rvX379m1wXVHRtr9x0Pj+3r17y3GcFuc5fvy4vF6vIiIi2j1Xnz59jPfZ+iYAAAAAAAAAQPByC+9qvX7llx1zrQedQVNcCn6paL00/CKr7eAUwjvLsrOzmwRgoaRxqFVXV6ejR4+qd+/eTe7NyspqcF1UVNSmuRrf3/h9p40cOVIej0c+n0/Sqe08S0pKlJaW1ulz2fomAAAAAAAAAEDwGt4vQdERHtV4fU1qW/dXhE541ydd6pEsnTjYtLbvU8K7AAmRdZsIFtHR0U3GqqqqjPeOHTu2wfW+ffvaNFfjoKvx+06Li4vTsGHDOjRXcXFxq+ay9U0AAAAAAAAAgOAVFeHRyNQEY23b/hA6985x3Fff7fvEbi+oR3iHNjFtE5mUlGS8d+LEiQ2ut27d2qa5tmzZ0uB6woQJrvd2ZK78/PwGZ9ElJydr4MCBnT6P1LZvAgAAAAAAAAAEr9Gp5tV1W4tDKLyTpEGTzeP7PpH8fru9QBLhXVh65513tGDBAj3//PNtfrbxSrO+ffsaV+NJ0pgxYzR8+PD664KCApWVlbV6rk8+aZjqX3PNNa73Nq41frYt88yZM8f1XpvfBAAAAAAAAAAIXm5bY27dXyF/KIVebivvqg5Lh3fZ7QWSCO/C0jvvvKOFCxfq4YcfbvOzn376aYPrCy64oNn7r7322gbXq1atatU8RUVF2rFjR/311KlTNWTIENf758yZ0yBEbO08pnuvu+66Zu+39U0AAAAAAAAAgOA1ZoA5vCuvqlVxebWxFpTSJknOF3GRJ0pKO1ua9j3p2qek+OTA9hamCO/C2NatW3Xo0KE2PfPKK680uJ49e3az9992222KjIysv37hhRdaNc+LL77Y4G8mfOc732n2/l69eumGG26ov962bZs2bNjQ4jw1NTX6+9//Xn+dkZGhSy+9tNlnbH0TAAAAAAAAACB4jXZZeSeF2NaZMYnSnN9L31om/axQ+v/ek678tTTuOim2V6C7C0uEd2HM6/XqySefbPX9S5cu1bZt2+qv09LSdPPNNzf7zMiRI3XbbbfVX7/99tvKzc1t9pnq6mo9/vjj9ddZWVn65je/2WJ/Dz74oGJiYuqvH3nkkRafefrpp3XkyJH660WLFikqKqrZZ2x+EwAAAAAAAAAgOPWMjdLgvnHGWkiFd5I08evSkGlSlPl7YBfhXZj7xS9+oY0bN7Z43969e3XHHXc0GHv00UcbhGVuFixYoKSkJElSbW2t7rjjDtXV1bnev3DhQu3evVuS5DiOHn30UUVERLQ4z9ChQ/WjH/2o/vr555/XihUrXO8vLi7Wz3/+8/rr8847T1/96ldbnEey900AAAAAAAAAgOA1OtW8+m57aYiFdwgqhHdh7tixY5o5c6aeffZZ1/DpzTff1Pnnn6+ioqL6sQceeEDz5s1r1RypqalavHhx/Zl0K1eu1HXXXddky86amhotWLBAv/rVr+rH7rvvPs2aNavV37NgwQJdccUV9ddz587V66+/3uS+nJwcXXjhhfU9DBo0SC+99JIcxwm6bwIAAAAAAAAABKcsl3PvcvdXWu4E3YnjP/MQLoSF1157TfPnz9eePXsajKempuqCCy7QkCFDFBkZqZKSEr3//vv1K8YkKT4+Xk888YS+/vWvt3ne5cuX64YbbqjfpjIhIUGzZ89Wenq6ysrK9O6776qwsFCS5PF49OCDD+qee+5p8zxVVVW65ZZbGpxlN2nSJE2bNk1xcXHKycnR8uXL5fP5JEljxozRG2+8oWHDhgXtN3WFnJwcjR07tv56y5Ytys7ODmBHAAAAAAAAABBa3t68X7e/sL7JuONIWxfOUlw0O7CFokD//JzwLkz5fD6tWLFCr776qt5++20VFBQ0e39aWppuvfVW/cd//IdSUlLaPW9JSYnuv/9+Pffcc6qurm5SdxxHl112mRYtWqQpU6a0ex5Jevnll7Vo0SJt3rzZWE9JSdFdd92lH/7wh4qNjW33PDa/qTMF+g8fAAAAAAAAAAh1uw8e10W/WWWsLb1zusYP6m21H3SOQP/8nPAOkk6d/7Zlyxbt2bNH5eXlqq2tVZ8+fZScnKyzzz67XavSmnP8+HGtWbNGubm5qqioUGxsrDIyMjR9+nSlpqZ26ly5ublat26diouL5fV6lZycrPHjx2vq1Kmdeu6czW/qDIH+wwcAAAAAAAAAQp3X59fY+/+lqlpvk9rD147X9VMGB6ArdFSgf34eaW0mBLWBAwdq4MCB1uaLj4/X5Zdfrssvv7zL58rKylJWVlaXz2PzmwAAAAAAAAAAgRfhcTSyf4I27StvUttWUhGAjtAdeALdAAAAAAAAAAAAQKjKSu1pHM/dX2m5E3QXhHcAAAAAAAAAAADtlDUg0TieW1IhTi5DexDeAQAAAAAAAAAAtJPbyrsjJ2pVVnnScjfoDgjvAAAAAAAAAAAA2ikr1bzyTpJyS9g6E21HeAcAAAAAAAAAANBOfeKjldoz1ljL3V9huRt0B4R3AAAAAAAAAAAAHTDKZfUdK+/QHoR3AAAAAAAAAAAAHZA1wBzebWPlHdqB8A4AAAAAAAAAAKADRqf2NI7vPHBMNXU+y90g1BHeAQAAAAAAAAAAdIDbyrtar1+7Dh6z3A1CHeEdAAAAAAAAAABABwxLTlBUhGOsbefcO7QR4R0AAAAAAAAAAEAHREd6NLxfgrG2bT/hHdqG8A4AAAAAAAAAAKCDslLNW2fmllRY7gShjvAOAAAAAAAAAACgg7IG9DSO57LyDm1EeAcAAAAAAAAAANBBbivvSiqqdeR4jeVuEMoI7wAAAAAAAAAAADpotMvKO0nKLWH1HVqP8A4AAAAAAAAAAKCDUhJj1KdHlLG2nXPv0AaEdwAAAAAAAAAAAB3kOI6yUl3OvWPlHdqA8A4AAAAAAAAAAKATjHI5924b4R3agPAOAAAAAAAAAACgE4weYA7v8koq5fX5LXeDUEV4BwAAAAAAAAAA0Ancts2sqvWq4PAJy90gVBHeAQAAAAAAAAAAdIKR/RPlOOba9pIKu80gZBHeAQAAAAAAAAAAdIK46AhlJMUba9v2c+4dWofwDgAAAAAAAAAAoJNkuZx7l8vKO7QS4R0AAAAAAAAAAEAnGdXffO4dK+/QWoR3AAAAAAAAAAAAncRt5V3B4RM6UVNnuRuEIsI7AAAAAAAAAACATpKVag7vJCm/7JjFThCqCO8AAAAAAAAAAAA6yeA+PRQbZY5ftpewdSZaRngHAAAAAAAAAADQSTweRyP7m1ff5ZUS3qFlhHcAAAAAAAAAAACdyC28217KtploGeEdAAAAAAAAAABAJxrltvKObTPRCoR3AAAAAAAAAAAAnWhkqjm8K6moVvmJWsvdINQQ3gEAAAAAAAAAAHQit5V3kpRXxuo7NI/wDgAAAAAAAAAAoBP17xmjnrGRxtp2ts5ECwjvAAAAAAAAAAAAOpHjOBrpdu5dKeEdmkd4BwAAAAAAAAAA0Mnczr1j5R1aQngHAAAAAAAAAADQydzOvcsrrZTf77fcDUIJ4R0AAAAAAAAAAEAnc9s288iJWh04dtJyNwglhHcAAAAAAAAAAACdbGT/BNdaXskxi50g1BDeAQAAAAAAAAAAdLKkhBglJ8QYa9tLOfcO7gjvAAAAAAAAAAAAusCoVPPqu7wSwju4I7wDAAAAAAAAAADoAm7n3rHyDs0hvAMAAAAAAAAAAOgCo1zCux2llfL7/Za7QaggvAMAAAAAAAAAAOgCI1PN4d3xGq+KjlZZ7gahgvAOAAAAAAAAAACgC2SmmM+8k6Q8ts6EC8I7AAAAAAAAAACALpAYG6W03nHG2vaSY5a7QaggvAMAAAAAAAAAAOgio1y2zmTlHdwQ3gEAAAAAAAAAAHSRkf3N4d32EsI7mBHeAQAAAAAAAAAAdJFRqeZz7/IPHFOd12e5G4QCwjsAAAAAAAAAAIAukpliXnlXU+fT3sMnLHeDUEB4BwAAAAAAAAAA0EVGpCTI45hreWydCQPCOwAAAAAAAAAAgC4SGxWh9KR4Y217KeEdmiK8AwAAAAAAAAAA6EIj+5u3zswjvIMB4R0AAAAAAAAAAEAXGplqDu+2s20mDAjvAAAAAAAAAAAAutAol5V3ew6dUHWt13I3CHaEdwAAAAAAAAAAAF1oVGqCcdzr82vXgeOWu0GwI7wDAAAAAAAAAADoQkOT4hUdYY5kOPcOjRHeAQAAAAAAAAAAdKGoCI+G9Ys31naUEd6hIcI7AAAAAAAAAACALjbS5dy7HaXHLHeCYEd4BwAAAAAAAAAA0MUyU8zn3uWXEd6hIcI7AAAAAAAAAACALpbZ3xze7Tl0XNW1XsvdIJgR3gEAAAAAAAAAAHSxESnmbTN9fmn3weOWu0EwI7wDAAAAAAAAAADoYkOTeigqwjHWdrB1Js5AeAcAAAAAAAAAANDFoiI8ykiON9bySystd4NgRngHAAAAAAAAAABgQabL1pmsvMOZCO8AAAAAAAAAAAAsyOyfYBwnvMOZCO8AAAAAAAAAAAAscFt5t+fgcdXU+Sx3g2BFeAcAAAAAAAAAAGCB28q7Op9few8dt9wNghXhHQAAAAAAAAAAgAXpSfGK8DjGWl4pW2fiFMI7AAAAAAAAAAAAC6IjPUpP6mGs7SirtNwNghXhHQAAAAAAAAAAgCVu597tKGPlHU4hvAMAAAAAAAAAALDE7dy7fLbNxBcI7wAAAAAAAAAAACzJ7G9eebfr4DHVeX2Wu0EwIrwDAAAAAAAAAACwJDPFvPKu1uvX3sMnLHeDYER4BwAAAAAAAAAAYElGcrw8jrm2g60zIcI7AAAAAAAAAAAAa2KjIjQ0Kd5Yyy+rtNwNghHhHQAAAAAAAAAAgEUjXLbOzGPlHUR4BwAAAAAAAAAAYJXbuXc7ygjvQHgHAAAAAAAAAABg1cj+icbxnQeOyevzW+4GwYbwDgAAAAAAAAAAwCK3bTNr6nwqPHzCcjcINoR3AAAAAAAAAAAAFg3vlyDHMdfYOhOEdwAAAAAAAAAAABbFRUdocJ8extqOskrL3SDYEN4BAAAAAAAAAABYlumydWZ+KSvvwh3hHQAAAAAAAAAAgGUj+pvDuzxW3oU9wjsAAAAAAAAAAADLMlMSjeP5Zcfk8/ktd4NgQngHAAAAAAAAAABg2UiXlXfVtT4VHa2y3A2CCeEdAAAAAAAAAACAZcP7mcM7SdrB1plhjfAOAAAAAAAAAADAsviYSKX1jjPWdpQes9wNggnhHQAAAAAAAAAAQABkumyduaOM8C6cEd4BAAAAAAAAAAAEQGaKS3hXyraZ4YzwDgAAAAAAAAAAIAAyUxKN4zsPHJff77fcDYIF4R0AAAAAAAAAAEAADHdZeXfsZJ1KK05a7gbBgvAOAAAAAAAAAAAgAEb0M4d3krTzAOfehSvCOwAAAAAAAAAAgADo1SNKyQkxxlp+GeFduCK8AwAAAAAAAAAACJARKfHGcVbehS/COwAAAAAAAAAAgAAZ7rJ1JivvwhfhHQAAAAAAAAAAQIC4hXesvAtfhHcAAAAAAAAAAAABMiLFHN6VVpxUZXWt5W4QDAjvAAAAAAAAAAAAAmS4S3gnSTsPHLfYCYIF4R0AAAAAAAAAAECADOgZqx7REcbaTs69C0uEdwAAAAAAAAAAAAHi8Tga1i/eWMvn3LuwFBnoBhB8qqqq9MknnygvL0+HDh1SXV2dEhISlJaWpszMTGVnZysysmO/dU6cOKE1a9YoNzdX5eXl6tGjhzIyMjR9+nSlpKR00peckpeXp3Xr1qmoqEher1f9+vXT+PHjNWXKFHk8nZdf2/wmAAAAAAAAAED3MbxfgrYUVTQZZ+VdeCK8Q70PP/xQjzzyiN544w2dPHnS9b64uDhNmTJFV155pb7//e8rMTGx1XOUlpZqwYIFevbZZ1VVVdWk7vF4dPnll+vBBx/U5MmT2/Udpy1ZskSLFi3Spk2bjPXU1FTdddddmj9/vmJiYto9j81vAv7/9u47PKoq8f/4Z9ILJCSEGiAJQaQtCBa6BBVRVEARwbagqKuI7oodC0FFLLtiXXVt6LIKKiLoAlJMUFBQRFokiwgJvYQkJCSkzv39wY/7ZZKZZNJmJjPv1/PkeXLuPeeec93N5WY+OecAAAAAAAAA8D6dWtjf9+4PZt75JIthGIa7BwH3ys/P15QpU/TRRx+Zx/r06aOePXuqVatWysnJ0a5du5SamqqysjKbtlu3blWPHj2c6ufbb7/V2LFjlZ2dLUkKDw/XiBEjlJCQoMOHD2vVqlXat2+fpFOB17PPPquHH364xvdTVFSkW265RfPmzTOP9e7dW3379lVoaKi2bdumlStX6vT/9Xv06KHFixcrISGhxn256p4aQlpams3/dtu2bVP37t3dOCIAAAAAAAAA8E1Lth7U5P9srHQ8wM+i7U9fpkB/dkFzJXd/fs7MOx935MgRXXrppebstCuvvFKzZ89Wp06dKtXNyMjQfffdpy+//LLG/aSkpGjEiBHmjL6RI0fqvffeU0xMjFmnpKREM2fO1FNPPSWr1apHHnlEpaWlevzxx53up7y8XGPGjNGSJUsknQrT5s6dq9GjR9vUS0tL0+jRo7Vz505t27ZNSUlJ+uGHHxQbG+tx9wQAAAAAAAAA8G6JDmbelVkNZR4rVKeW9s/DOxHV+rCioiJdeeWVZnD30EMP6auvvrIb3ElSfHy8FixYoAEDBtSonyNHjmjcuHFmyJWUlKTPP//cJuSSpKCgIM2YMUOPPPKIeezJJ5/U8uXLne7rqaeeMoM7SVq4cGGl4E6SunfvrtTUVDVv3lyStGfPHo0fP17OTkR15T0BAAAAAAAAALxbfEyY/Cz2z+1k3zufQ3jnw2bOnKmff/5ZkjR8+HA999xz1bbx8/PTgw8+WKN+kpOTdfToUUlSYGCg3nzzTQUGBjqsP336dHMJS8MwNHXqVJWXl1fbz549e/TCCy+Y5ZtuuknDhg1zWD82NlYzZ840y2vWrNH8+fOr7Udy3T0BAAAAAAAAALxfcIC/OkSH2T3Hvne+h/DOR/3+++968cUXJUkWi0XPP/+8LBYHsX4FF110kd588029+eab1S4zuXPnTr3zzjtm+fLLL1eXLl2qbBMSEqK77rrLLKelpdnsx+fIk08+qaKiIrM8derUatvccsstioqKMsuPP/54pX39KnLlPQEAAAAAAAAAfIOjpTEJ73wP4Z2PmjFjhrnkY79+/dSrVy+n20ZEROjOO+/UnXfeaRN82fPuu+/ahGE33nijU33ccMMNNmHi22+/XWX9vLw8zZs3zyx37dpVvXv3rrafoKAgjR071iz/8ccfWrlyZZVtXHVPAAAAAAAAAADf4Wjfuz9YNtPnEN75oPz8fC1cuNAsjxw5ssH6WrBggU05KSnJqXaxsbE666yzzPJPP/2kvXv3Oqy/ePFiM4yUpKFDhzo9xopj+vzzz6us76p7AgAAAAAAAAD4Dofh3dECGYbh4tHAnQjvfNCCBQtUWFholvv169cg/fz222/auXOnWY6Li1PLli2dbn/BBReY3xuGoa+++sph3cWLF9uUzz///Fr1Y+9aZ3LlPQEAAAAAAAAAfEeig2UzTxSX6XBesd1z8E6Edz7om2++sSmfffbZDdLPr7/+alPu2rVrjdp3797dprxp06YG6SsxMVEhISFm+ejRozpw4EC99yPV7J4AAAAAAAAAAL6jk4OZdxL73vkawjsfdGZgFBwcrDZt2kiSjh8/rrfffltXXnmlOnbsqPDwcDVp0kQJCQm6/PLL9dJLL+nQoUNO95OWlmZTbteuXY3GGRsbW+X1TisqKtKuXbvq1Ffbtm2d6stV9wQAAAAAAAAA8C2RYYGKaRJs9xzhnW8hvPMxhYWF2rFjh1lu0uRUkv/+++/rrLPO0p133qn//ve/2r17twoLC1VQUKCMjAwtW7ZM999/vxITEzVt2jSVlZVV21d6erpNuWJwVZ2K9Ste77QdO3bIarWaZT8/P7Vu3bpB+nLVPQEAAAAAAAAAfE9ii3C7x3ceIbzzJQHuHgBca+fOnTZBV1hYmB544AH94x//kCQNGDBAf/vb3zR48GBFR0crKytLqampevHFF7Vp0yYVFhZq1qxZWr9+vRYuXKiIiAiHfWVnZ9uUq6prT8X6ubm5MgxDFoulyn7Cw8Pl7+9fp75ycnLs1nPVPdXUkSNHdPTo0Rq1OXPvPgAAAAAAAACA+yW2bKL1u7MrHWfmnW8hvPMxubm5NuW9e/eawd29996rl19+2SZIatu2rW644QZdd911mjBhgj7++GNJ0rfffquJEyfqiy++cNhXfn6+TTk42P50X0fO3IdOkqxWqwoLCxUebvuXB3Xtx15fFa9ZX305e0819c9//lMzZsyo0zUAAAAAAAAAAO7laN87Zt75FpbN9DF5eXl2jw8cOLBScHemgIAAzZkzR127djWPLVy4UB999JHDvioGXRWDq+rYq28vVKtrP/baOBveNdQ9AQAAAAAAAAB8T2JL++Hd4bxi5ReVung0cBfCOxebMmWKLBZLg38lJyfb7d9RUPTUU09Vu3RjYGCgnnrqKZtjs2bNslmGs6EZhuFV/bi6LwAAAAAAAACA5+rkILyTpF1HC1w4ErgTy2ZCLVu2VFJSklN1r7rqKjVt2tQMAdPT0/XLL7/o/PPPr1S3adOmNuWioqIajcte/YrXrI9+7LWx10999OXsPdXU5MmTNXbs2Bq12blzp0aPHl3nvgEAAAAAAAAA9aNNRIhCA/11srS80rmdR06oV/tmrh8UXI7wzsfYC4rOPfdc+fk5NwkzODhYvXv31nfffWceW716td3wrkkT278QKC4urtFYKwZdFovF7t5wde3HXl+OAjVX3VNNtWzZUi1btqzzdQAAAAAAAAAA7uPnZ1HHFuFKO1B5C6w/jrLvna8gvHOxu+66S5dddlmD99O5c2e7xyMiIiod69ixY42u3aVLF5vwbvv27XbrRUdH25Qd7bfnSMX6zZo1s7u0Z8V+CgoKVF5eLn9//1r3FRUVZbeeq+4JAAAAAAAAAOCbOrVsYje823mE8M5XEN65WPfu3dW9e3e39d+qVatKx+wFelWJjIy0KR87dsxuvS5dutiU9+/fX6N+KtaveL3TOnfuLD8/P3PvPavVqkOHDik2Nrbe+3LVPQEAAAAAAAAAfFNiC/v73jHzznc4t1YivEanTp0UEhJic6ymM7+CgoJsyidPnrRbr0ePHjblffv21aifikFXxeudFhoaWmn2YE37OnDggFN9ueqeAAAAAAAAAAC+yVF4l3msUKXlVhePBu5AeOdj/P391a1bN5tj+fn5NbpGxfoxMTF26/Xu3dum/Ntvv9Won23bttmUe/Xq5bBuXfrauXOnzV50MTExatu2bb33I9XsngAAAAAAAAAAvqdTS/vhXZnVUOaxQhePBu5AeOeDLrzwQptyZmZmjdofPHjQpuxoecpu3bopMTHRLO/Zs0dHjhxxup+ff/7ZpnzVVVc5rFvxXMW2Neln5MiRDuu68p4AAAAAAAAAAL4nPiZMfg4WzGPfO99AeOeDxo0bZ1PevHlzjdpv2bLFppyUlOSw7pgxY2zKqampTvWxf/9+/f7772b5ggsuUIcOHRzWHzlypM1yns72Y6/utddeW2V9V90TAAAAAAAAAMD3BAf4q310mN1zu7MKXDwauAPhnQ/q16+fzjrrLLOcmZlZaTlHR3bu3Kn//e9/ZjkyMlJDhgxxWH/SpEkKCAgwy//5z3+c6ufjjz+WYRhm+Y477qiyfmRkpE0ouX37dv3666/V9lNSUqLPPvvMLCckJOiSSy6pso2r7gkAAAAAAAAA4Js6xoTbPb7rKDPvfAHhnY+aNWuWTfnVV191qt0bb7xhU77vvvsUHm7/ISJJnTt31qRJk8zy0qVLlZ6eXmUfRUVFevPNN81yly5dNHHixGrH9vTTTys4ONgsv/TSS9W2+eCDD5STk2OWn3nmGQUGBlbZxpX3BAAAAAAAAADwPR1b2N/3bhcz73wC4Z2PGjNmjM0Ms/fff18pKSlVtvnxxx9twruuXbtq6tSp1faVnJys5s2bS5JKS0s1efJklZWVOaw/Y8YM7d69W5JksVg0e/Zs+fv7V9tPXFycHnjgAbM8d+5crVy50mH9AwcO6LHHHjPLAwYM0PXXX19tP5Lr7gkAAAAAAAAA4Hs6trA/aYZlM30D4Z0Pmz9/vnr06CFJKi8v1+jRozVv3jy7db/44gtdccUVKi0tlSS1bNlSixcvVtOmTavtp3Xr1po/f765J11KSoquvfZaHTt2zKZeSUmJkpOT9dxzz5nHnnzySV122WVO31NycrKGDx9ulkePHq1FixZVqpeWlqYhQ4aYY2jXrp3mzZsni8XBLqBuvCcAAAAAAAAAgG9JcLBsZnZBiXILS1w8GriaxThzEy74nEOHDumGG26wmXV31llnaejQoWrevLmOHTum1atX2+xzd/755+uLL75Qu3btatTXihUrNG7cOHOZyiZNmmjEiBGKj4/XkSNHtGrVKu3du1eS5Ofnp6efflrTpk2r8T2dPHlSEyZMsNnLrk+fPurbt69CQ0OVlpamFStWyGq1SpK6deumr776Sh07dqxxX666p4aQlpZmhreStG3bNnXv3t2NIwIAAAAAAAAASNLhvCL1fXaV3XML7hqgc+OiXDwi3+Luz88J7yDp1N5vr7/+ujZu3OiwTu/evXX//fdr/PjxtV7y8dChQ5o+fbo++ugjFRUVVTpvsVg0bNgwPfPMMzr//PNr1cdpn376qZ555hlt3brV7vmWLVvq3nvv1f3336+QkJBa9+PKe6pP7n74AAAAAAAAAADsMwxDPaZ/o4KS8krnXry2p8ae194No/Id7v78nPAONnbt2qVff/1VBw8eVF5enqKiotS6dWsNGDBArVq1qrd+CgoKtHbtWqWnpysvL08hISFKSEjQwIED1bp163rrR5LS09P1008/6cCBAyovL1dMTIx69uypCy64oF73nXPlPdUHdz98AAAAAAAAAACOXfXaGm3df7zS8clJDXy2tgAAaCNJREFUiXrosi5uGJHvcPfn5wEu6wmNQseOHWu1fGRNhYeH69JLL9Wll17a4H116dJFXbo0/IPMlfcEAAAAAAAAAPBuCTHhdsO7XUcL3DAauJKfuwcAAAAAAAAAAAAAWx1bhNs9vivrhItHAlcjvAMAAAAAAAAAAPAwHVs0sXs841ihyq3siObNCO8AAAAAAAAAAAA8TMcY+zPvSsqsOpB70sWjgSsR3gEAAAAAAAAAAHiYBAfhnST9cZSlM70Z4R0AAAAAAAAAAICHCQ8OUOuIELvndh0tcPFo4EqEdwAAAAAAAAAAAB6oYwv7s+92ZTHzzpsR3gEAAAAAAAAAAHggR0tn7s5i5p03I7wDAAAAAAAAAADwQB1bNLF7nGUzvRvhHQAAAAAAAAAAgAdytGzmweNFKiwpc/Fo4CqEdwAAAAAAAAAAAB4oMcb+zDuJ2XfejPAOAAAAAAAAAADAA8VGhSrI336Uw7533ovwDgAAAAAAAAAAwAP5+1kU1zzM7jlm3nkvwjsAAAAAAAAAAAAP5Wjfu11ZJ1w8ErgK4R0AAAAAAAAAAICHSnCw7x0z77wX4R0AAAAAAAAAAICHcjTzbndWgQzDcPFo4AqEdwAAAAAAAAAAAB4q0UF4d6K4TEfzi108GrgC4R0AAAAAAAAAAICH6uhg2UxJ+oOlM70S4R0AAAAAAAAAAICHigoPUrOwQLvndmWdcPFo4AqEdwAAAAAAAAAAAB6sY4yDfe+YeeeVAtw9AAC+wzAMWa1WNlEF4HUsFov8/PxksVjcPRQAAAAAAOCFOrZooo17cisd35VFeOeNCO8ANKjS0lIdP35cx48fV2lpKcEdAK9lsVgUGBioyMhIRUZGKjDQ/nIWAAAAAAAANdWxhf2Zd7uOsmymNyK8A9AgiouLdfjwYRUU8JcfAHyDYRgqKSnR0aNHdfToUYWHh6tVq1YKDg5299AAAAAAAEAj52jZzL05J1VSZlVQALukeRP+1wRQ70pLS7Vnzx6COwA+raCgQHv27FFpaam7hwIAAAAAABq5ji2a2D1ebjW0J7vQxaNBQyO8A1CvysvLtXfvXpWVlbl7KADgdmVlZdq7d6/Ky8vdPRQAAAAAANCIxTUPk8Vi/xxLZ3ofls0EUK8OHjyo4uJim2N+fn6KiIhQRESEAgMD5efH3w0A8C5Wq1WlpaXKy8tTXl6erFarea64uFgHDx5Uu3bt3DhCAAAAAADQmAUH+KtdVKj2Zp+sdG5XFiugeRvCOwD1pry8XPn5+TbHgoKCFBcXp4AAHjcAvFtQUJDCw8PVokULZWZmqqSkxDyXn5+v8vJy+fv7u3GEAAAAAACgMesY08RueLf7KOGdt2H6C4B6U3GPO4vFovbt2xPcAfApAQEBat++vSwV1rJgH1AAAAAAAFAXHVuE2z2+K4tlM70N4R2AelNx1l1YWJiCgoLcNBoAcJ+goCCFhYXZHDtxghdpAAAAAABQex1bNLF7fDfLZnodwjsA9abirJKmTZu6aSQA4H5Nmti+UBPeAQAAAACAukhobn/mXdaJEuUXlbp4NGhIhHcA6oVhGCovL7c5Fhoa6qbRAID7VZx5V15eLsMw3DQaAAAAAADQ2MXHhDk8l5FV6MKRoKER3gGoF1artdIxf39/N4wEADyDvWegvWclAAAAAACAM9pGhioowH6ss/sYS2d6E8I7APXC3mwSi8XihpEAgGew9wxk5h0AAAAAAKgtPz+L4pvbn32Xwb53XoXwDgAAAAAAAAAAoBGId7Dv3W7CO69CeAcAAAAAAAAAANAIJMQQ3vkCwjsAAAAAAAAAAIBGIN5BeJfBnndehfAOAAAAAAAAAACgEXC0bGZuYalyC0tcPBo0FMI7AAAAAAAAAACARsDRspkSS2d6E8I7AAAAAAAAAACARqBVRLBCA/3tnmPpTO9BeAcAAAAAAAAAANAIWCwWh/ve7c4qdPFo0FAI7wAAAAAAAAAAABqJhJgwu8dZNtN7EN4BAOCBkpOTZbFY7H7Fx8e7e3iNSllZmWbNmqWQkBDzv2FGRoa7hwUAAAAAAFAr8c3tz7zLILzzGoR3AIAGN3HiRIdBVH1/zZkzx923CzsWLFhg87/Trl27KtXZtWuXTZ1PPvmkzv1u2bJF/fr107Rp01RcXFzn6wEAAAAAALibo2UzM7IKZBiGi0eDhkB4BwCAB0pOTpZhGOZXXFycu4dUJ2vWrDG/b926tTp27FhlHUkaNGhQrfsrLS1VcnKyzjvvPP3yyy+1vg4AAAAAAICnSXAQ3uUXl+lYQYmLR4OGQHgHAHCZuLg4m0DK3ldKSkqN2+zevdtNdwRnnRnMDRw40G6dtWvXmt/HxcWpffv2terrl19+0XnnnacZM2aotLRU3bp1q9V1AAAAAAAAPJGj8E5i6UxvQXgHAAAaVEFBgTZt2mSWBwwYYLfemQFfbWbdWa1WTZs2Tf369dOWLVsUEBCgadOmaePGjTW+FgAAAAAAgKdqHh6kpsEBds/tJrzzCvb/1wUAAKgn69atU1lZmVm2N/MuJydH27dvN8uDBw+ucT95eXmaNWuWJKlnz5764IMP1KdPn1qMGAAAAAAAwHNZLBbFx4Rr6/7jlc4R3nkHZt4BAIAGdeaMupCQELuB2tq1a202VK7tfneBgYGaPn26NmzYQHAHAAAAAAC8VryDpTMzjhHeeQNm3gEAGlxiYqL69u2rNm3aNMj1g4OD1bdvX0lSixYtGqQP1N6Z4d3555+vwMDASnXO3O8uOjq6VvvUhYSEaMOGDerZs2ftBgoAAAAAANBIJDQPs3t8d1ahi0eChkB4BwBocE888YSeeOKJBrt+mzZttG7duga7PmqvvLxc69evN8v2lsyUbAO+gQMHymKx1LivkJAQgjsAAAAAAOATHM28yzxWIMMwavXZCjwH4R0AwKsZhqHff/9dW7du1YEDB5SXl6fQ0FBFR0erR48e6tWrl92ZYPUhIyNDq1ev1v79+xUSEqK2bdtq8ODBio2NbZD+PNHmzZuVn59vlgcMGFCpTklJiTZs2GCWa7tkJgAAAAAAgK9IcBDeFZaU60h+sVpFhLh4RKhPhHcAAK9TVlampUuXav78+VqxYoWOHDnisG6TJk00YcIEPfTQQ+rQoUOV183NzVVUVJTD8ykpKUpKStK+ffs0ZcoULV682GYft9NGjx6tV199Ve3bt3f+ppyQkZGhhISEautNmDBBc+bMqbd+k5OTNWPGDKfqjhw5sto6Dz/8sB5++OFKx+t73AAAAAAAAI2Vo/BOknZnFRDeNXKEdwA8Qlm5VQePF7l7GF6vTWSIAvz93D2MBjd27Fh9+eWXNscGDhyos88+W61bt1Zubq42b96sH3/8USdOnNAbb7yhuXPn6sMPP9SoUaPq1Hd6erqSkpJ0+PBhh3W+/PJLbdiwQT/88EO9B3gAAAAAAADwfs3CgtQsLFC5haWVzu3OKlC/js3dMCrUF8I7AB7h4PEiDX4hxd3D8HrfPzRU7aPtb2brTU6ePGl+37t3b33wwQfq1atXpXp//PGHbr/9dqWkpOj48eO67rrrtHz5cg0ZMsTudcPDw/XJJ5+Y5c8//1wLFiwwywUFBRo5cqQOHz6spKQkXX755WrdurXy8vK0evVqffHFF7JarZJkzs5btGhRfd224uPjzZl+jzzyiJ5//nn5+fnp9ddf11133VVv/QAAAAAAAMD94puHa1NhbqXjGVkFrh8M6pX3T78AAPis2NhYLV261G5wJ0mJiYlaunSp+vXrJ+nU3mt33HGHysvL7dYPDAzU+PHjza8ePXrYnH/hhReUmZmpBQsWKCUlRQ899JD+/Oc/a8qUKfrss8+0bNkyBQT839/NfPXVV8rIyKifm/3/ysrKNHHiRD3//PMKDg7W/PnzGzy4S05OlmEYlb7WrVtnU2/FihWV6pw8eVJBQUFmnVdffdXutQzDYMlMAAAAAACAMzhaOnM34V2jR3gHAPBat912m1q1alVlneDgYD333HNmeceOHfrqq69q1d93332nl156Sddcc43d88OGDdP1119vlg3D0NKlS2vVlz2FhYUaNWqUPvzwQzVt2lRLlizRtddeW2/Xr6k1a9aY3wcEBKh///6V6qxfv14lJSVmefDgwS4ZGwAAAAAAQGMX39x+eJdxjPCusSO8AwB4nTvvvFOzZ8/WpEmTnKo/aNAghYT83ya+y5cvr1W/bdu21Z133lllnYp76m3evLlWfVV07NgxXXzxxVqyZIlatmyp1NRUXXTRRfVy7dr6/vvvze/PPfdchYdXfqE8M+CLiIhQz549XTI2AAAAAACAxi6hhf3wLvNYoaxWw8WjQX1izzsAgNcZPXp0jer7+/srJiZG+/btkyRt3bq1Vv2OGjVK/v7+Vdbp3r27Tfnw4cO16utMe/bs0fDhw5Wenq6OHTvqm2++UadOnep83bpau3at+b2jfQTPDO8GDBggPz/+rggAAAAAAMAZCQ5m3hWXWXUwr0ixzUJdPCLUFz4hAwBAsgndjh07Vqtr9O7du9o6bdu2tSnn5+fXqq/Ttm3bpgEDBig9PV3dunXT2rVrPSK42759u7KysszyhRdeWKmO1WrVjz/+aJYHDRrkkrEBAAAAAAB4g/iYMIfnMtj3rlFj5h0Aj9AmMkTfPzTU3cPwem0iQ6qv5EVyc3P1+eef69tvv9WWLVt06NAh5eXlqbS0tMp2hYWFteqvTZs21dYJC7N9qSorK6tVX9KpWWtXXXWVcnNzJUlZWVkyDM9YEuHMGXV+fn52g7mtW7fq+PHjZpn97gAAAAAAAJzXNCRQMU2ClHWipNK5XVkFGtgpxg2jQn0gvAPgEQL8/dQ+2vFfigA1UVZWpueff16zZs1SQYHr/srI3p5uFQUE1M8/vYsWLdL48eNVVFRkHjty5IhuvvlmLV++3O3LT565313Pnj0VGRlZqc6Zy2oGBQXpggsucMnYAAAAAAAAvEV883C74R0z7xo3ls0EAHiVkpISXX311Xr88cfN4C4hIUGvvvqq0tLSlJ+fL8MwKn3FxcXVuW+LxVLnazjj4MGDGjNmjIqKivSXv/xFrVq1Ms+tWrVKs2bNcsk44uPjZbFY7H79+9//Nutt2rTJbp27777brFNSUqLQ0FC79VJTU11yPwAAAAAAAI1NfIz9PyYnvGvcCO8AAF5l5syZ+vrrr81yv379tGXLFt1zzz3q1q2bmjRp4sbR1Y+SkhKVl5fr2Wef1VtvvaW5c+fazLSbPn26zaw2AAAAAAAAeKcEB+Hd7mOEd40Z4R0AwGsUFRXp5Zdftjn29ttve0VgdyZ/f3+9++67evTRRyVJl1xyifm9JJWXl+v6669XTk6Ou4YIAAAAAAAAF3AU3u3NLlRZudXFo0F9IbwDAHiN9evXKy8vzyzHxcWpZ8+ebhxRw2jXrp0mTZpkc2zGjBkaPHiwWd67d69uvfXWBh1HRkaG3SVIr776arNOnz597NZ57rnnzDqhoaEqKiqyW88wDCUlJTXofQAAAAAAADRW8c3th3el5YYO5Ba5eDSoL4R3AACvcfDgQZtybGys023Ly8vrezgu5e/vr08++UQxMTHmsS+//FKvv/66S8dhtVq1evVqs3zxxRfbrbdy5Urz+0GDBik4OLjBxwYAAAAAAOBt4mPCHJ7blXXChSNBfSK8AwB4jZCQEJtyQYFza3uXlZUpKyurIYbkUrGxsfrwww9lsVjMYw888IA2bdrksjFs2rRJ2dnZZvmSSy6pVKe4uNhmTz5HAR8AAAAAAACqFhYUoFYR9v8oek92oYtHg/pCeAcA8BpdunSxKaelpTm171tKSoqKirxjGYERI0Zo6tSpZrm4uFjjxo1zOsisq2+//db8PigoSIMGDapUZ82aNTp58qRZJrwDAAAAAACovTgHS2dmHiO8a6wI7wAAXqNLly7q1q2bWS4rK9PTTz9dZZvi4mJNmzatoYfmUrNmzVLfvn3N8o4dOzR58mSX9H1meDdgwACFhVVeuuHMJTObNWumPn36uGRsAAAAAAAA3igu2v7SmZnHXPPH3Kh/hHcAAK/y4osv2iwbOXv2bD3++ON2Z9bt27dPV1xxhTZs2CB/f39XDrNBBQYGat68eWrWrJl57KOPPtK///3vBu23rKxMa9asMcvO7Hc3dOhQ+fnxOgIAAAAAAFBb8TH2Z95lMPOu0eLTMgCAW2VkZMhisZhfQ4cOtTmfmZlpcz4pKanK640YMUKvvPKKTRg3c+ZMdejQQTfeeKOmTZumBx98UCNGjFBiYqJSU1P17rvvql27dg77TE1NNc/Fx8ebx2fMmGHT99ChQ81zycnJ5vHU1FSb651p9erVNucyMjLstsnMzHRqfElJSbJYLEpISFBubq5NX3/+85/NNvHx8VX+d6yNn376Sfn5+WbZ3n53OTk52rhxo1mu7yUzK/53s/ffXJISEhIq1ZkzZ069jgUAAAAAAMAV4prbn3m3J7tQVqvh4tGgPgS4ewAAANS3e+65R+edd54ee+wxpaSkSJKOHj2qjz/+2Kzj5+enSy+9VLNmzdI555xT7fKaqN7p/9aSFBERofPOO89uHavVapYvuugil4wNAAAAAADAW8VF2595V1Jm1aG8IrVtFuriEaGuLIZhELsCPigtLU09evQwy9u2bVP37t1rfb2ysjL9/vvvNsfOOussBQTwNwJwr/3792vdunXau3evCgoK1KxZM8XGxurCCy9UdHS0u4cHL8ZzEQAAAAAAuMLxk6XqNWO53XMf395XAxJjXDyixq++Pz+vKT49AgB4tdjYWI0ZM8bdwwAAAAAAAAAaRGRooKLCApVTWFrp3J5jhRqQ6IZBoU7Y8w4AAAAAAAAAAKARi2tuf+nMjGOFLh4J6gPhHQAAAAAAAAAAQCMW3zzM7vHMYwUuHgnqA+EdAAAAAAAAAABAI9bBwcy7TGbeNUqEdwAAAAAAAAAAAI1YVTPvDMNw8WhQV4R3AAAAAAAAAAAAjVicg/CuoKRcxwpKXDwa1BXhHQAAAAAAAAAAQCMW52DZTIl97xojwjsAAAAAAAAAAIBGrHl4kJoEB9g9l5HFvneNDeEdAAAAAAAAAABAI2axWNQh2sG+d9mEd40N4R0AAAAAAAAAAEAjFx/jILxj2cxGh/AOAAAAAAAAAACgkXO0713GMWbeNTaEdwAAAAAAAAAAAI1cnINlM/cw867RIbwDAAAAAAAAAABo5BzNvMspLNXxk6UuHg3qgvAOAAAAAAAAAACgkYtrbn/mnSTtYenMRoXwDgAAAAAAAAAAoJFrHRGioAD7sU8GS2c2KoR3AAAAAAAAAAAAjZyfn8XhvneZhHeNCuEdAAAAAAAAAACAF3C0dGYmy2Y2KoR3AAAAAAAAAAAAXiCuebjd44R3jQvhHQAAAAAAAAAAgBdwNPOOPe8aF8I7AAAAAAAAAAAAL+Bo5t2R/GIVlpS5eDSoLcI7AAAAAAAAAAAALxDvYOadJO3JZunMxoLwDgAAAAAAAAAAwAu0bRYqfz+L3XMZWYR3jQXhHQAAAAAAAAAAgBcI9PdTu6hQu+f2ZLPvXWNBeAcAAAAAAAAAAOAlHO17l3GMmXeNBeEdAAAAAAAAAACAl4iLtr/v3R7Cu0aD8A4AAAAAAAAAAMBLxDW3H95lHGPZzMaC8A4AAAAAAAAAAMBLOFo280DuSZWUWV08GtQG4R0AAAAAAAAAAICXiHcw885qSPtyWDqzMQhw9wDgmwoLC7V27Vqlp6fr+PHjCgsLU0JCggYOHKiWLVvWa187duzQTz/9pP3796u8vFwtWrRQz549df7558vPr/7ya1feEwAAAAAAAAAA9rSPDpPFIhlG5XOZxwrVsUUT1w8KNUJ454MmTpyoDz/8sN6u98EHH2jixIlO1T18+LCSk5P14Ycf6uTJk5XO+/n56dJLL9XTTz+t8847r07j+vzzz/XMM89o8+bNds+3bt1a9957r6ZOnarg4OBa9+PKewLgO5KTkzVjxgy75+Li4pSRkeHaATVCu3fv1saNG3X48GHl5uYqJCREUVFR6tKli3r37q2QkBB3DxEAAAAAAKDehQT6q3VEiA4eL6p0jn3vGgfCO9SZs7PXvv32W40dO1bZ2dmSpPDwcI0YMUIJCQk6fPiwVq1apX379mnZsmVavny5nn32WT388MM1Hk9RUZFuueUWzZs3zzzWu3dv9e3bV6Ghodq2bZtWrlypQ4cOadq0afr444+1ePFiJSQk1LgvV90T0NjV9x8NVKUmf1AA11mwYIGuvfZas/zHH3+oY8eONnV27dqlxMREs/zxxx/r+uuvd7oPq9WqVatW6dNPP9XixYt15MgRh3UDAwM1cuRI3XvvvbrwwgtrcCcAAAAAAACeL655mN3wLvMYy2Y2BoR3qBN/f38lJSVVWy8lJUUjRoxQcXGxJGnkyJF67733FBMTY9YpKSnRzJkz9dRTT8lqteqRRx5RaWmpHn/8cafHU15erjFjxmjJkiWSToVpc+fO1ejRo23qpaWlafTo0dq5c6e2bdumpKQk/fDDD4qNjXW6L1fdEwDflJycrOTkZLMcHx+vzMxM9w2ojtasWWN+37p160rBXcU6kjRo0CCnrm0Yht5//329+OKL+t///mceDwgIUP/+/dWzZ081a9ZMeXl52rRpk3788UeVlpZqwYIFWrBggSZOnKjXXntNTZqwZAQAAAAAAPAOcdHhWrcru9LxTGbeNQr1t+EXGp0hQ4bIMIwaf73xxhvmNUaOHKkOHTpU2c+RI0c0btw4M+RKSkrS559/bhNySVJQUJBmzJihRx55xDz25JNPavny5U7f01NPPWUGd5K0cOHCSsGdJHXv3l2pqalq3ry5JGnPnj0aP368DHuLALv5ngBvEhcXV+0zJiUlpcZtdu/e7aY7grPODOYGDhxot87atWvN7+Pi4tS+fXunrl1cXKzbbrvNJri79tprtXv3bn333Xd6/fXX9cwzz+jVV1/Vd999p+3bt9v84cmcOXM0YsQIFRbyl2cAAAAAAMA7xMWE2T2+J5vPPxoDwjvU2D//+U/z+ylTplRbPzk5WUePHpV0apmyN998U4GBgQ7rT58+3VzC0jAMTZ06VeXl5dX2s2fPHr3wwgtm+aabbtKwYcMc1o+NjdXMmTPN8po1azR//vxq+5Fcd08A4A0KCgq0adMmszxgwAC79c4M+JyddWfPzTffrM8++0zt2rWze75Tp05avny5hgwZYh77/vvvdd9999W6TwAAAAAAAE/SIdp+eLc356SsVucmscB9CO9QIykpKUpLS5MkdevWTRdddFGV9Xfu3Kl33nnHLF9++eXq0qVLlW1CQkJ01113meW0tDR99NFH1Y7tySefVFHR/63hO3Xq1Grb3HLLLYqKijLLjz/+uMrKyqps48p7AgBvsG7dOptnq72Zdzk5Odq+fbtZHjx4cK36ioqK0quvvlptvcDAQL333ns2+7a+++67+u2332rVLwAAAAAAgCeJiw63e7ykzKrD+ZX3woNnIbzzQV26dNGQIUN0zjnn1Ljt66+/bn7vzKy7d9991+YD2xtvvNGpfm644QZZLBaz/Pbbb1dZPy8vT/PmzTPLXbt2Ve/evavtJygoSGPHjjXLf/zxh1auXFllG1fdEwB4izNn1IWEhKhPnz6V6qxdu9Zm6eLazrwbM2aMmjVr5lTdxMREXXzxxWbZarXqs88+q1W/AAAAAAAAnsTRzDtJ2nOMpTM9HeGdD3rkkUeUmpqql19+uUbt9u3bp8WLF0uSIiIidPPNN1fbZsGCBTblM/cYqkpsbKzOOusss/zTTz9p7969DusvXrzY3H9OkoYOHepUP/bG9Pnnn1dZ31X3BHiTxMRE9e3b16lQvTaCg4PVt29f9e3bVy1atGiQPlB7Z4Z3559/vt1lhs/c7y46OlrdunWrVV81Df369+9vUz5zrAAAAAAAAI1VZFigIkIC7J5j3zvPR3gHp7311lvmjLOJEyeqSZMmVdb/7bfftHPnTrMcFxenli1bOt3fBRdcYH5vGIa++uorh3VPh4qnnX/++bXqx961zuTKewK8yRNPPKF169Zp4cKFDXL9Nm3aaN26dVq3bp2uuOKKBukDtVNeXq7169ebZXtLZkq2odnAgQNtZipXJygoSCkpKUpJSdHIkSNrNL42bdrYlA8dOlSj9gAAAAAAAJ6qQ3MH+94R3nk8+7ErUEFJSYneffddSZLFYtHdd99dbZtff/3Vpty1a9ca9dm9e3eb8qZNmxqkr8TERIWEhJj75R09elQHDhxQ27Zt67UfqWb3BKB+GIah33//XVu3btWBAweUl5en0NBQRUdHq0ePHurVq5fdmWD1ISMjQ6tXr9b+/fsVEhKitm3bavDgwYqNjW2Q/jzR5s2blZ+fb5YHDBhQqU5JSYk2bNhglms6e87Pz8/pWdDVsVqt9XIdAAAAAAAAd+sQHaZt+/MqHWfmnecjvINTPvvsMx0+fFiSNGzYMHXu3LnaNmlpaTbldu3a1ajPih9uV7zeaUVFRdq1a1ed+mrbtq3NNdLS0uyGd666JwB1U1ZWpqVLl2r+/PlasWKFjhw54rBukyZNNGHCBD300EPq0KFDldfNzc1VVFSUw/MpKSlKSkrSvn37NGXKFC1evNhmH7fTRo8erVdffVXt27d3/qackJGRoYSEhGrrTZgwQXPmzKm3fpOTkzVjxgyn6jozM+7hhx/Www8/XOl4fY9bOvUHG2c6c3ljAAAAAACAxqxDdLjd44R3no/wDk55/fXXze+nTJniVJv09HSbck1nmlSsX/F6p+3YscNmpoSfn59at25d477ODO/S09M1bNiwSvVcdU8+qbxMytvv7lF4v4hYyd/7H/1jx47Vl19+aXNs4MCBOvvss9W6dWvl5uZq8+bN+vHHH3XixAm98cYbmjt3rj788EONGjWqTn2np6crKSnJ/IMHe7788ktt2LBBP/zwQ70HeKiZLVu22JSHDx/uppEAAAAAAADUrw7R9pfNJLzzfN7/CS7q7Ndff9W6deskSQkJCU7vJ5WdnW1TjoiIqFG/Fevn5ubKMIxK+yBV7Cc8PFz+/v516isnJ8duPVfdU00dOXKk0uyR6py5d59HyNsvvdLT3aPwfn/dIkXFuXsUDe7kyZPm971799YHH3ygXr16Var3xx9/6Pbbb1dKSoqOHz+u6667TsuXL9eQIUPsXjc8PFyffPKJWf7888+1YMECs1xQUKCRI0fq8OHDSkpK0uWXX67WrVsrLy9Pq1ev1hdffGH+scHp2XmLFi2qr9tWfHy8OdPvkUce0fPPPy8/Pz+9/vrruuuuu+qtH29RVlamVatWmeXw8HCNHz/ejSMCAAAAAACoP47Cu6wTJSooLlN4MBGRp+J/GVTrtddeM7+fPHmy/Pz8nGp35h5HkhQcHFyjfkNCQmzKVqtVhYWFCg+3nepb137s9VXxmvXVl7P3VFP//Oc/nV6yDvAlsbGxWrp0qVq1amX3fGJiopYuXaqkpCStW7dOJSUluuOOO/Tbb7/Z/SOAwMBAm3AnPT3dJrx74YUXlJmZqQULFuiaa66xaTtlyhStWLFCI0aMUFlZmSTpq6++UkZGhuLj4+vhbk8pKyvTbbfdpg8//FDBwcGaO3eurr322nq7vj3JyclKTk6udHz9+vXq16+fWV6xYoUuueQSmzpFRUWKjIxUSUmJJOnVV1/VPffc06DjPW3RokU2f6xx7733VrksKgAAAAAAQGPiKLyTpL05herSumaTU+A6zqUw8FnZ2dmaN2+eJCk0NFS33nqr020rBl0Vg6vq2KtvL1Sraz/22jgb3jXUPQGoH7fddpvD4O604OBgPffcc2Z5x44d+uqrr2rV33fffaeXXnqpUnB32rBhw3T99debZcMwtHTp0lr1ZU9hYaFGjRqlDz/8UE2bNtWSJUsaPLirypo1a8zvAwIC1L9//0p11q9fbwZ3kjR48GCXjM0wDM2aNcssd+jQQdOmTXNJ3wAAAAAAAK7QplmI/P3sr/q25xhLZ3oywjsXmzJliiwWS4N/2ZsBURvvvfeeufzcDTfcoOjo6Hq5bm2dXg7OW/pxdV+Ar7jzzjs1e/ZsTZo0yan6gwYNsgnXly9fXqt+27ZtqzvvvLPKOhX31Nu8eXOt+qro2LFjuvjii7VkyRK1bNlSqampuuiii+rl2rX1/fffm9+fe+65dmcZnxnwRUREqGdP1yyf+9577+mXX36RdGqv1Pfff19NmjRxSd8AAAAAAACuEOjvp7bN7E9AYd87z8aymXDIarXqrbfeMstTpkypUfumTZvalIuKimrU3l79itesj37stbHXT3305ew91dTkyZM1duzYGrXZuXOnRo8eXee+AU9U0/9v+/v7KyYmRvv27ZMkbd26tVb9jho1qto9N7t3725TPnz4cK36OtOePXs0fPhwpaenq2PHjvrmm2/UqVOnOl+3rtauXWt+72gfwTPDuwEDBji9NHNd/PHHH5o6dapZnj59ui6++OIG7xcAAAAAAMDV4qLDtTf7ZKXjewnvPBrhHRxasmSJdu3aJUkaOHCgzjnnnBq1rziDobi4uEbtKwZdFovF7qyNuvZjry9HgZqr7qmmWrZsqZYtW9b5OoAvOzN0O3bsWK2u0bt372rrtG3b1qZc16Vzt23bpssuu0z79+9Xt27dtGrVKrVu3bpO16wP27dvV1ZWllm+8MILK9WxWq368ccfzfKgQYMafFwnTpzQNddcY/53Hz9+vJ544okG7xcAAAAAAMAd2jvY946Zd56N8M7F7rrrLl122WUN3k/nzp3rfI033njD/P6ee+6pcfuKS2zm5eXVqH3F+s2aNZPFUnl93or9FBQUqLy8vNrZL1X1FRUVZbeeq+7JJ0XESn/d4u5ReL+IWHePwKVyc3P1+eef69tvv9WWLVt06NAh5eXlqbS0tMp2hYW1e3lp06ZNtXXCwmxfmMrKymrVl3Rq1tpVV12l3NxcSVJWVpbHLMV75ow6Pz8/u8Hc1q1bdfz4cbPc0PvdlZaWaty4cdqy5dSz5pJLLtGcOXN4DgMAAAAAAK/VwUF4l0l459EI71yse/fulZZM80Q7d+7UN998I+nUh9HXXHNNja/RpUsXm/L+/ftr1L5i/YrXO61z587y8/OT1WqVdGomx6FDhxQb63xI4Wxfrronn+QfIEXFuXsU8BJlZWV6/vnnNWvWLBUUFLisX2dm0gYE1M8/vYsWLdL48eNtZvQeOXJEN998s5YvX+6S5SercuZ+dz179lRkZGSlOmcuqxkUFKQLLrigwcZTXl6um266SUuWLJF0KihctGiRgoODG6xPAAAAAAAAd3MU3u3LPimr1ZCfH3/U7Inc+8kePNYbb7xhzt74y1/+osDAwBpfo0ePHjbl03tJOati0FXxeqeFhoaqY8eOderrwIEDTvXlqnsCUHslJSW6+uqr9fjjj5vBXUJCgl599VWlpaUpPz9fhmFU+oqLq3t47KoZXAcPHtSYMWNUVFSkv/zlL2rVqpV5btWqVZo1a5ZLxhEfHy+LxWL369///rdZb9OmTXbr3H333WadkpIShYaG2q2Xmppap3GWl5fr5ptv1qeffipJuuiii7Rs2bJKsyABAAAAAAC8jaPwrqTcqsP5RXbPwf0I71BJYWGh5syZI0kKDAzUX/7yl1pdp+LeT7/99luN2m/bts2m3KtXrwbpa+fOnTYzV2JiYirtSVUf/Ug1uycAtTNz5kx9/fXXZrlfv37asmWL7rnnHnXr1q3S3pWNUUlJicrLy/Xss8/qrbfe0ty5c21m2k2fPt1mVpsvKysr04033qhPPvlE0qng7quvviK4AwAAAAAAPqFDc8efgew5xtKZnorwDpXMnTvX3D9pzJgxat26da2u061bNyUmJprlPXv26MiRI063//nnn23KV111lcO6Fc9VbFuTfkaOHOmwrivvCUDNFRUV6eWXX7Y59vbbb3tFYHcmf39/vfvuu3r00Uclndq77fT30qmZZtdff71ycnLcNUSPUFZWphtuuEHz58+XRHAHAAAAAAB8T2RooCJD7a+st4d97zwW4R0q+ec//2l+P2XKlDpda8yYMTZlZ5c+279/v37//XezfMEFF6hDhw4O648cOVJBQUE17sde3WuvvbbK+q66JwA1t379euXl5ZnluLg49ezZ040jahjt2rXTpEmTbI7NmDFDgwcPNst79+7Vrbfe2qDjyMjIsLsE6dVXX23W6dOnj906zz33nFknNDRURUVFdusZhqGkpKQaj62srEzjx4/XZ599JongDgAAAAAA+C5HS2fuJbzzWIR3sPH9999r8+bNkk4tETlw4MA6XW/SpEkKCAgwy//5z3+cavfxxx+be+5J0h133FFl/cjISI0bN84sb9++Xb/++mu1/ZSUlJgf7Eqn9sW65JJLqmzjqnsCUHMHDx60KcfGxjrdtry8vL6H41L+/v765JNPFBMTYx778ssv9frrr7t0HFarVatXrzbLF198sd16K1euNL8fNGiQgoOD620MpaWluu6667RgwQJJzgd3SUlJSkpK0rJly+ptLAAAAAAAAO7mKLzLJLzzWIR3sPHGG2+Y39d11p0kde7c2WZ2yNKlS5Wenl5lm6KiIr355ptmuUuXLpo4cWK1fT399NM2H/6+9NJL1bb54IMPbJaVe+aZZxQYaH8K8WmuvCcANRMSEmJTLigocKpdWVmZsrKyGmJILhUbG6sPP/xQFovFPPbAAw9o06ZNLhvDpk2blJ2dbZbt/UFEcXGxzZ58jgK+2igpKdHYsWO1cOFCSTWbcbd69WqtXr1ahw4dqrfxAAAAAAAAuFt7B+Edy2Z6LsI7mA4ePKgvvvhCkhQdHa3rr7++Xq6bnJys5s2bSzo1G2Ly5MkqKytzWH/GjBnavXu3JMlisWj27Nny9/evtp+4uDg98MADZnnu3Lk2MzsqOnDggB577DGzPGDAAKfv2VX3BKBmunTpYlNOS0tzat+3lJQUFRUVNdSwXGrEiBGaOnWqWS4uLta4ceOcDjLr6ttvvzW/DwoK0qBBgyrVWbNmjU6ePGmW6yu8Kykp0ZgxY7Ro0SJJLJUJAAAAAAAgsWxmY0R4B9O//vUvlZaWSjq1NGRoaGi9XLd169aaP3++uSddSkqKrr32Wh07dsymXklJiZKTk232QXryySd12WWXOd1XcnKyhg8fbpZHjx5tfoh7prS0NA0ZMsQcQ7t27TRv3jyb2Sqeck8AnNelSxd169bNLJeVlenpp5+usk1xcbGmTZvW0ENzqVmzZqlv375meceOHZo8ebJL+j4zvBswYIDd4OzMP6xo1qyZ+vTpU+d+i4uLdc011+jrr7+WJA0dOpTgDgAAAAAAQFJcc/ufj2SdKFFBseNJKXCfgOqrwBeUlZXpX//6lyTJz8+v3j/kvfjii/X1119r3LhxysnJ0aJFi7Rq1SqNGDFC8fHxOnLkiFatWqW9e/eaY3j66adr/IF6QECAFi5cqAkTJuizzz5TQUGBRo8erT59+qhv374KDQ1VWlqaVqxYIavVKknq1q2bvvrqK7Vv394j7wlAzbz44ou68sorzT0mZ8+erbCwMD3++OOVltXct2+fJk6cqA0bNsjf37/R73t3WmBgoObNm6fevXsrNzdXkvTRRx/pkksu0c0339xg/ZaVlWnNmjVm2Zn97oYOHSo/v7r9LVFxcbGuvvpqLV261DyWkpKi8PDwOl0XAAAAAADAGziaeSdJe3MK1aV1hAtHA2cw8w6SpC+++EIHDhyQJF1xxRWKj4+v9z6GDRum3377TXfccYdCQkJ04sQJffrpp3rhhRc0Z84c7d27VxaLRZdeeqnWrVtX65ArNDRUn376qebPn68//elPkqSNGzfqzTff1EsvvaRvvvlGVqtVLVu21DPPPKNffvlFHTt29Oh7ArxZRkaGLBaL+TV06FCb85mZmTbnk5KSqrzeiBEj9Morr9gsTTtz5kx16NBBN954o6ZNm6YHH3xQI0aMUGJiolJTU/Xuu++qXbt2DvtMTU01z8XHx5vHZ8yYYdP30KFDzXPJycnm8dTUVJvrnWn16tU25zIyMuy2yczMdGp8SUlJslgsSkhIMIO70/785z+bbRriOf/TTz8pPz/fLNvb7y4nJ0cbN240y/WxZOaPP/5oE9wBAAAAAADg/7SJDJG/n/1V5/YcY+lMT8TMO0iSrrvuOl133XUN3k/r1q319ttv66WXXtLatWuVnp6uvLw8hYSEKCEhQQMHDlTr1q3rpa/T95Senq6ffvpJBw4cUHl5uWJiYtSzZ09dcMEF9bLvnCvvCYBz7rnnHp133nl67LHHlJKSIkk6evSoPv74Y7OOn5+fLr30Us2aNUvnnHNOtctronqn/1tLUkREhM477zy7dU7PfJZO7UsHAAAAAACAhhPg76fYZqHaY2ePO3vH4H4W4/S6YgB8Slpamnr06GGWt23bpu7du9f6emVlZfr9999tjp111lkKCOBvBOBe+/fv17p167R3714VFBSoWbNmio2N1YUXXqjo6Gh3Dw9ejOciAAAAAADwFDe9u15rdmZVOv7n/nF6alQPOy18W31/fl5TfHoEAPBqsbGxGjNmjLuHAQAAAAAAALhNh+Zh0s7Kx5l555nY8w4AAAAAAAAAAMCLdYgOs3uc8M4zEd4BAAAAAAAAAAB4MUfh3b7sk7Ja2V3N0xDeAQAAAAAAAAAAeDFH4V1JuVWH84tcPBpUh/AOAAAAAAAAAADAi7V3EN5J0p5jLJ3paQjvAAAAAAAAAAAAvFhkaKCahQXaPZfJvnceh/AOAAAAAAAAAADAyzlaOnMv4Z3HIbwDAAAAAAAAAADwco6WztxDeOdxCO8AAAAAAAAAAAC8nKOZd4R3nofwDgAAAAAAAAAAwMuxbGbjQXgHAAAAAAAAAADg5RyFd1knSlRQXObi0aAqhHcAAAAAAAAAAABezlF4J7F0pqchvAMAAAAAAAAAAPBybSJDFOBnsXuOpTM9C+EdAAAAAAAAAACAlwvw91ObZiF2z+3NOeni0aAqhHcAAAAAAAAAAAA+oH2U/aUzmXnnWQjvAAAAAAAAAAAAfICj8G4fM+88CuEdAAAAAAAAAACAD2gfHWr3+L4cZt55EsI7AAAAAAAAAAAAH9CuimUzDcNw8WjgCOEdAAAAAAAAAACAD3A0866gpFw5haUuHg0cIbwDAAAAAAAAAADwAY72vJNOzb6DZyC8AwAAAAAAAAAA8AEtmgYrOMB+NLQv56SLRwNHCO8AAAAAAAAAAAB8gMViUbso+0tn7s1h5p2nILwDAAAAAAAAAADwEe0cLJ3Jspmeg/AOAAAAAAAAAADAR7SPdjTzjmUzPQXhHQAAAAAAAAAAgI9o72Dm3T5m3nkMwjsAAAAAAAAAAAAf0T7aQXiXe1JWq+Hi0cAewjsAAAAAAAAAAAAf4WjmXUmZVUdPFLt4NLCH8A4AAAAAAAAAAMBHtIuyv+edJO1l6UyPQHgHAAAAAAAAAADgI5qFBapJcIDdc3tzCO88AeEdAAAAAAAAAACAj7BYLA5n3+3NPuni0cAe+9EqAAANJCkpSatXr3a6vr+/v6KiosyvxMRE9e/fXwMGDFCvXr0UEMA/ZQAAAAAAAEBNtI8OU/qh/ErH9zHzziPwiScAwKOVl5crKytLWVlZkqSffvpJn3zyiSSpZcuWuvPOOzV58mS1atXKncMEAAAAAAAAGo32UWF2jzPzzjOwbCYAwKVSU1NlGIb5FRcXZ3M+JSXF5vzJkye1d+9ebdq0SXPmzNGECRPUunVrSdKRI0f01FNPqUOHDnrooYdUUlLijltyKDU1VRaLxfxKTk5295AAAAAAAAAAx8tmMvPOIxDeAQA8WkhIiNq1a6devXppwoQJmjNnjjIyMvTGG28oNjZWklRSUqIXX3xR/fv31//+9z83jxgAAAAAAADwbO2j7c+8O3i8SGXlVhePBhUR3gEAGp3g4GBNnjxZW7Zs0dChQ83jGzduVP/+/bVx40Y3jg4AAAAAAADwbO2j7c+8K7caOni8yMWjQUWEdwCARis6OlrLly/XqFGjzGM5OTm6/PLLtX//fjeODAAAAAAAAPBc7RzseSexdKYnILwDADRqAQEBmjNnjhISEsxjR44c0c033+zGUQEAAAAAAACeq0lwgKLCAu2e25d90sWjQUWEdwCARq9Zs2Z68803bY6lpKTo888/d9OIAAAAAAAAAM/maN87Zt65X4C7BwAAQH0YPny4evTooW3btpnHZs2apWuvvbbatuXl5dq+fbvS0tJ06NAhnThxQk2aNFHz5s3Vq1cvde/eXX5+7v97l8LCQm3dulXbt2/XsWPHVFRUpGbNmqlVq1Y6//zzFRcX5+4hAgAAAAAAoJFoHxWmLfuOVzq+N5vwzt0I7wAAXuOuu+7S3XffbZY3btyotLQ0de/evVLdoqIiLVy4UJ999pm+/fZbHT9e+UXltJiYGN1222164IEH1Lx58yrHkJycrBkzZtg9N2PGDIfnJkyYoDlz5lQ6fuTIEX388cdatGiRfvjhB5WUlDjsu0uXLrrnnnt0xx13KCCAf+IBAAAAAADgWLvoULvH9+awbKa78ckeAI+0/8T+Brt2q7BWCvCr/vF3qOCQyo3yBhlDTGiMgv2Dq62XdTJLxeXFdeortklsndo3JhdeeGGlY//973/thnf9+/fXpk2bzLK/v7+SkpKUmJiomJgYHTt2TBs2bNAvv/yirKwsPffcc/roo4/02WefacCAAQ15G6asrCzFxsaqrKzMPBYZGamkpCTFxcUpNDRUBw4c0Pfff6+MjAylp6fr7rvv1ty5c7VgwQK1adPGJeMEAAAAAABA49M+yv6ymftYNtPtCO8AeKTLFlzWYNdeNmaZU4HWhKUTdKDgQIOM4f3h7+v81udXW+/B1Q9qw+ENdepr64StdWrfmHTv3l3NmjVTbm6ueWzdunV26548+X9/QTRs2DC9+eabSkxMrFTv119/1S233KLNmzfrwIEDuuKKK/Tjjz+qS5cudq+bnJys5ORkSVJqaqqGDh1qnps+fbp5zhllZWU2wd19992n6dOnKzIy0qaeYRhasGCB7rzzTh07dkw//vijrrzySn3//fcKC7P/EgYAAAAAAADf1i7K/sy7w3nFKiotV0igv4tHhNPcv4EPAAD1xGKx6KyzzrI5tmPHjirb9OrVSwsXLrQb3ElS7969lZKSYp7Pzc21WZrTVSZNmqSXXnqpUnAnnbrva6+9Vt98840CAwMlnVoy9B//+IerhwkAAAAAAIBGon204z/63p/L0pnuRHgHAPAqUVFRNuX9+6tegvVvf/ubwsPDq73mE088YZa//fZbmyU3XeGxxx6rts65556rG2+80Sy//PLLKi9vmKVfAQAAAAAA0LjFNrM/806S9mazdKY7Ed4BALxKxfCuoKDAbr1p06Zp9uzZuvrqq5267rBhw2zKy5cvr90AayAiIkKzZ8/Wu+++q4SEBKfanDnO7Oxs/fLLLw01PAAAAAAAADRiIYH+ahURbPfc3hxm3rkTe94BALyKYRhO1fvzn/9co+u2atXKprx1a8PvJRgWFqa//e1vNWpjb5wXXHBBPY4KAAAAAAAA3qJ9VJgO5xVXOr4vh5l37sTMOwCAV8nJybEpN2nSpF6u6+9vu0HvsWPH6uW69a2xjBMAAAAAAADu1y7K/tKZ+7KZeedOzLwD4JGWjVnWYNduFdaq+kqSPrz8Q5UbDbNfWExojFP1XhzyoorLK//lCxyrGN7FxsZWWf/QoUP69NNP9d1332nbtm06cuSI8vPzVVZWVmW7wkLX/vVRWlqaPv30U61fv17bt29XTk6OTpw4Ue1MQ1ePEwAAAAAAAI1H++gwu8f3MvPOrQjvAHik2CZVBy6u0Dq8tbuH4HTIh1OsVqv+97//2Rw7++yz7dYtKCjQE088oddff12lpaWuGF6t7N69W/fee6++/vprdw8FAAAAAAAAXqZ9lIPwLpvwzp1YNhMA4DW2bNmi/Px8m2P9+vWrVC83N1cXXXSRZs+ebQZ3PXv21Hvvvafff/9dBQUFMgyj0perbd68WX379rUJ7q688kotWrRI+/fvV3FxcaUxpqSkuHycAAAAAAAAaJzaRdtfNjOnsFQniqtemQoNh5l3AACvYS+4uvLKKysd++tf/6qffvrJLF999dWaP3++AgMDG3R8NVFcXKxx48bp6NGj5rG///3vuv/++904KgAAAAAAAHgTRzPvJGlfTqG6tI5w4WhwGjPvAABewTAMvfXWWzbH+vbtqy5dutgc279/v/7973+b5eDgYL399tseFdxJ0oIFC2yWAO3Tpw/BHQAAAAAAAOpVm8gQ+ftZ7J7bm33SxaPBaYR3AACvsGjRIu3YscPm2KOPPlqp3sqVK22WwOzXr59atGjR4OOrqRUrVtiUr7rqKjeNBAAAAAAAAN4qwN9PbSJD7J5j3zv3IbwDADR6WVlZmjJlis2x4cOHa9SoUZXqHjx40KYcGxvrVB/l5eW1H2AtNJZxAgAAAAAAoHFztHTm3hzCO3chvAMANGrFxcW66aabtH//fvNYmzZtNGfOHLv1Q0Js/5KooKDAqX4qhmnO8Pf3tymfOePvzGMnTpzQiRMnVFRU5JZxAgAAAAAAwHe1jw61e5xlM92H8A4A0GgdPXpUF110kb755hvzWPPmzbVs2TK1bt3abpuKe+CtW7fOqdlqS5curfH4mjZtalM+M5w7bceOHWratKmaNm2qG264weE416xZ41SftRknAAAAAAAAfJejmXf7mHnnNoR3AIBGp6ioSK+88op69uypH374wTx+wQUXaP369erZs6fDtkOHDlV0dLRZPnz4sN54440q+8vOztbMmTNrPM6EhARZLP+34e+ZswNP+9///md+361bN/P7MWPG2NT78ssvtXHjxir7++mnnzR//vwajxMAAAAAAAC+q52DmXf7ck7aXUkKDY/wDgDg0YqKirR//35t3rxZH374oSZMmKC4uDj97W9/06FDhyRJwcHBevTRR7VmzRolJiZWeb3g4GA988wzNsfuv/9+vfbaa3Zn4KWnp+viiy+2G7xVJzIyUr179zbLKSkpys/PN8vFxcV69dVXzfKZe/Sdf/75uu6668xyeXm5RowYoZUrV9rt67///a9GjBhhExYCAAAAAAAA1Tlz5l2zsED9KTZSI/7UWjf07aAyK+GdO1gMYlPAJ6WlpalHjx5medu2berevXutr1dWVqbff//d5thZZ52lgICAWl8T3ikpKUmrV6+ul2u1atVKd955pyZPnqyWLVvWqO1DDz2kF1980eZY+/btdfHFF6tt27Y6efKkNm3apNWrVyskJESfffaZrrjiCofX2717t+Lj4ysd/+yzz2xCuISEBDNkW7lypdLT0yVJY8eO1aeffmrTtqCgQFdeeaVSU1Ntjp9zzjkaMGCAoqKilJ2drTVr1mjr1q1KTEzUo48+qttuu83uGOPi4pSRkVHFfxXUJ56LAAAAAACgMThZUq6MYwVqFxWqpiGB7h6OR6jvz89rik+PAAAezd/fX5GRkYqKilJUVJQ6deqkAQMGaODAgerVq5f8/f1rdd0XXnhBQ4YMUXJysjZs2CBJ2rt3r+bMmWPWCQwM1HXXXaeZM2eqY8eOtepn7NixeuONN/TYY48pNzdXu3fvtlmmMyAgQLfeeqtmz55dqW14eLhWrlyp1157TS+99JL27t0rSdq0aZM2bdpk1ouIiNC0adP08MMPV7u0JgAAAAAAAHCm0CB/dW0T4e5h4AzMvAN8FDPvgP+za9curV+/XgcPHlRRUZGioqIUFxenwYMHq2nTpvXSR2FhodauXav09HTl5eUpODhYcXFxuvDCC9WqVatq25eXl2vLli369ddflZWVJcMw1Lx5c3Xp0kX9+vXjZ80D8VwEAAAAAABonJh5BwCAm3Xs2LHWM+ucFRYWpmHDhmnYsGG1au/v76/evXvb7KEHAAAAAAAAwPv4uXsAAAAAAAAAAAAAAE4hvAMAAAAAAAAAAAA8BOEdAAAAAAAAAAAA4CEI7wAAAAAAAAAAAAAPQXgHAAAAAAAAAAAAeAjCOwAAAAAAAAAAAMBDEN4BAAAAAAAAAAAAHoLwDgAAAAAAAAAAAPAQhHcAAAAAAAAAAACAhyC8AwAAAAAAAAAAADwE4R0AAAAAAAAAAADgIQjvAAAAAAAAAAAAAA9BeAcAAAAAAAAAAAB4CMI7AAAAAAAAAAAAwEMQ3gGoFxaLpdIxwzDcMBIA8AxWq7XSMXvPSgAAAAAAAOBMhHcA6oWfX+XHSWlpqRtGAgCeoaysrNIxe89KAAAAAAAA4Ex8ggSgXlgsFgUFBdkcO3HihJtGAwDuV/EZGBQUxMw7AAAAAAAAVIvwDkC9adq0qU05Ly+PpTMB+CTDMJSXl2dzrOIzEgAAAAAAALCH8A5Avan4wXRpaan2799PgAfApxiGof3791daOjgiIsJNIwIAAAAAAEBjEuDuAQDwHiEhIQoMDLT5wDo/P19//PGHIiIi1KRJEwUEBLDnEwCvY7VaVVZWphMnTigvL69ScBcYGKjg4GA3jQ4AAAAAAACNCeEdgHpjsVjUtm1b7dmzx2a2XWlpqY4dO6Zjx465cXQA4B6nn43sdwcAAAAAAABnMP0FQL0KCwtThw4d+JAaAHQquOvQoYPCwsLcPRQAAAAAAAA0EoR3AOrd6QAvMDDQ3UMBALcJDAwkuAMAAAAAAECNsWwmgAYRFhamxMREFRcXKy8vT/n5+SopKXH3sACgQQUFBalp06aKiIhQcHAws5ABAAAAAABQY4R3ABqMxWJRSEiIQkJC1LJlSxmGIavVarMfHgB4A4vFIj8/P8I6AAAAAAAA1BnhHQCXsVgs8vf3d/cwAAAAAAAAAADwWOx5BwAAAAAAAAAAAHgIwjsAAAAAAAAAAADAQxDeAQAAAAAAAAAAAB6C8A4AAAAAAAAAAADwEIR3AAAAAAAAAAAAgIcgvAMAAAAAAAAAAAA8BOEdAAAAAAAAAAAA4CEI7wAAAAAAAAAAAAAPQXgHAAAAAAAAAAAAeAjCOwAAAAAAAAAAAMBDEN4BAAAAAAAAAAAAHoLwDgAAAAAAAAAAAPAQhHcAAAAAAAAAAACAhyC8AwAAAAAAAAAAADwE4R0AAAAAAAAAAADgIQLcPQAA7lFcXGxT3rlzp5tGAgAAAAAAAACA56j4eXnFz9MbGuEd4KP27t1rUx49erR7BgIAAAAAAAAAgAfbu3ev+vTp47L+WDYTAAAAAAAAAAAA8BCEdwAAAAAAAAAAAICHsBiGYbh7EABcLzc3V6tXrzbL7du3V3BwsBtH5F47d+60WTr0yy+/VKdOndw3IACNCs8QAHXBMwRAXfEcAVAXPEMA1IW3PkOKi4tttp4aMmSImjVr5rL+2fMO8FHNmjXTqFGj3D0Mj9WpUyd1797d3cMA0EjxDAFQFzxDANQVzxEAdcEzBEBdeNMzxJV73FXEspkAAAAAAAAAAACAhyC8AwAAAAAAAAAAADwE4R0AAAAAAAAAAADgIQjvAAAAAAAAAAAAAA9BeAcAAAAAAAAAAAB4CMI7AAAAAAAAAAAAwEMQ3gEAAAAAAAAAAAAegvAOAAAAAAAAAAAA8BCEdwAAAAAAAAAAAICHILwDAAAAAAAAAAAAPAThHQAAAAAAAAAAAOAhAtw9AADwBC1atND06dNtygDgLJ4hAOqCZwiAuuI5AqAueIYAqAueIQ3DYhiG4e5BAAAAAAAAAAAAAGDZTAAAAAAAAAAAAMBjEN4BAAAAAAAAAAAAHoLwDgAAAAAAAAAAAPAQhHcAAAAAAAAAAACAhyC8AwAAAAAAAAAAADwE4R0AAAAAAAAAAADgIQjvAAAAAAAAAAAAAA9BeAcAAAAAAAAAAAB4CMI7AAAAAAAAAAAAwEMQ3gEAAAAAAAAAAAAegvAOAAAAAAAAAAAA8BCEdwAAAAAAAAAAAICHCHD3AADA3fbs2aN169YpMzNTJSUlio6OVvfu3dWvXz8FBQW5e3gAAMDF9u/fr19++UUHDhxQTk6OAgMDFRUVpcTERJ133nlq0qRJvfVVWlqqH3/8UWlpacrOzlZQUJA6dOigfv36KS4urt76kXjnAVyhuLhY6enp2r59u44ePaq8vDyFhISoWbNmOvvss3XOOefU2zOE5wcAAHAn3kUaFuEdAJ/17bffavr06VqzZo3d85GRkbrjjjv0+OOPKyIiwsWjA1BX7777rh544AEdP35ckpSSkqKkpKR6uz4vqYB3+eGHH/Tpp59q4cKF2rNnj8N6fn5+uvjiizVlyhSNHDmy1v3l5+dr5syZevvtt5Wbm2u3zoABAzRjxgxdcsklte5H4p0HaGibNm3SwoUL9e233+qnn35SSUmJw7qBgYG6/PLLdd9999X6vYTnB+BbDMPQ4MGDtXbtWvPYhAkTNGfOnDpdl99nAO+QkZGhhISEWrePjIx0+D7hCO8irmExDMNw9yAAwJWsVqseeOABzZ492zx29tlna9CgQYqKitKOHTu0dOlSlZaWSpLat2+vRYsWqXfv3u4aMoAayMzM1O23364VK1bYHK+v8I6XVMC7LFy4UM8++6w2bNhgHrNYLDrvvPPUp08fNW/eXAUFBdq+fbu+++47FRUVmfWuuOIKvffee2rVqlWN+ty8ebNGjRqlzMxMSf/3YX7nzp2Vk5Oj77//Xjt27DDr33vvvZo9e7b8/Gq26wHvPEDD69y5s37//XebYxERERoyZIjOOusshYSEKDs7Wz/99JM2btxoU+/WW2/VW2+9pcDAQKf74/kB+J633npLd911l82xuoR3/D4DeBdXh3e8i7iQAQA+5o477jAkGZIMf39/46233jLKy8tt6mRmZhp9+/Y16zVr1szYsmWLm0YMwBlWq9V44403jCZNmpg/u2d+paSk1LmPTZs2GXFxceY1AwMDjZEjRxoPPPCAMWnSJKNz5842fd57772Vni/OKC8vN+677z6ba5199tnGpEmTjAceeMAYOXKkERgYaJ5r3769sXHjxjrfH+CLWrVqZfOzNmTIECM9Pd1u3QMHDhhjx461qd+lSxfj8OHDTve3bds2Izo62mzfr18/IzMz06ZOeXm58eabbxr+/v5mvUmTJtX43njnARremc8Di8ViPP7448aJEyfs1l2/fn2ld4UxY8Y43RfPD8D3HDhwwIiMjKz0u82ECRNqdT1+nwG8z+7du+1+BuLsV2RkpNN98S7iWoR3AHzK+++/b/MP1DvvvOOw7vHjx21eXDt16mQUFha6cLQAnPX7778bQ4YMMX9e27VrZzRt2rRewzteUgHvdGZ4d9FFFxklJSVV1rdarcaNN95o83wZPny4U32dPHnSOPvss22Cv7y8PIf133rrLaffWyrinQdwjTN/zp5//vlq6+/fv99o2bKlTbt58+ZV247nB+CbrrnmGrsfttcmvOP3GcA7nRneNSTeRVyP8A6Az8jPz7f5RXnQoEHVtlm2bJnNPxazZs1ywUgB1MTLL79shIWFmT+nt912m3H8+HGbvyita3jHSyrgvU6HdwEBAcbOnTudapObm2tERETY/KwuW7as2nbPP/+8TZuVK1dWWd9qtRr9+/c367do0aLKZ89pvPMArnP6Z6Zz585GWVmZU21eeOEFm5+3IUOGVNuG5wfge7788kvz56ri7Luahnf8PgN4L1eFd7yLuB7hHQCfMX36dJsH+RdffOFUu27dutn8JVh2dnYDjxRATZz+RTY+Pt5YsWKFebw+wzteUgHvdTq8u+SSS2rU7vbbb7f52Zs4cWKV9bOzs41mzZqZ9Xv27OlUP59++qlNP08++WS1bXjnAVzn9M/M448/7nSbtLQ0m59Rf3//KoM/nh+A78nLyzPatWtnSDISEhKMBx98sE7hHb/PAN7LFeEd7yLuUbNdAgGgkTIMQ++8845Zbtasma644gqn2t50003m97m5uZo/f369jw9A7fn5+Wny5MnaunVrnTdUtycnJ0ezZs0yyz179tTFF19cZRuLxaL77rvPLB89elR///vfq+3r73//u44cOWKWp06dWm2b4cOHq1u3bmb5+eefV05OTrXtANgaNGhQjer379/fprxmzZoq68+fP99mI/gbb7zRqX6uuuoqRUREmOV33nlHhmE4rM87D+BaV1xxha644gpdeumlTreJj4+3KZeXlysrK8thfZ4fgO959NFHtW/fPknSm2++qbCwsFpfi99nANQV7yLuQXgHwCesXbtWBw4cMMsDBgxQUFCQU22TkpJsyp9//nl9Dg1AHS1btkxvvPGGmjRp0iDX5yUV8G5ffPGFUlJSdMcdd9SoXZs2bWzKhw4dqrJ+xfeHoUOHOtVPSEiI+vXrZ5YPHjyotWvXOqzPOw/gWl9//bW+/vprDR482Ok2Foul0rHg4GCH9Xl+AL5l3bp1evPNNyVJN9xwg4YPH16n6/H7DIC64l3EPQjvAPiExYsX25TPP/98p9v27t1bgYGBZnn16tXKy8urt7EBqJsLLrigQa/PSyrg3QYMGKCkpKRKYVxNWa1Wh+fy8vK0evVqsxwUFKSePXs6fe2Kz7mK7zVVneOdB/A8e/futSm3bt1azZo1s1uX5wfgW0pLS3X77bfLarUqKipKs2fPrvM1+X0GQF3wLuI+hHcAfMKvv/5qU+7atavTbUNCQtSxY0ezXFZWpm3bttXb2AB4Ll5SAThy9OhRm/JZZ53lsO7WrVtVVlZmljt27FjlLJuKunfvblPetGmTw7q88wCeb8WKFTbla665xmFdnh+Ab3n++efNn50XX3xRLVu2rNP1+H0GQF3xLuI+hHcAfEJaWppNuV27djVqHxsbW+X1AHgnXlIBOLJlyxabclVLWrnyPYR3HsCznThxQi+++KJZjoyM1COPPOKwPs8PwHfs2LFDM2fOlCQNGTJEt956a52vye8zgG+xWq1asmSJJk2apF69eikqKkqBgYGKiopSp06dNHLkSL300kuVVgGoCu8i7kN4B8Dr5eXl6eDBgzbHKj7Mq1Oxfnp6ep3HBcDz8ZIKwJFly5aZ31sslio/YKv43lDX95ADBw4oPz+/Uj3eeQDPduTIEV111VXKzMyUJIWGhmr+/Plq3769wzY8PwDf8Ze//EVFRUUKDg7W22+/bXd/zJri9xnAt/Tp00dXXHGF3n//fW3ZskW5ubkqKytTbm6u/vjjD3311Ve6//77lZiYqEmTJik7O7vaa/Iu4j6EdwC8nr1/iM7cdNkZFevn5OTUaUwAGgdeUgHY88svv9j8Nfj48eN19tlnO6xf8V2kru8hkv13Ed55AM9SVFSkgwcPavny5brvvvvUpUsXpaamSjr14dratWurnLUr8fwAfMV7771nPh8effTRKt8raoLfZwDfsnnzZkVFRWnatGlav369jh49quLiYu3bt0+ffvqp+d5RWlqq999/X3369KlyRq3Eu4g7Bbh7AADQ0Oy9WNZkmQjp1BIO1V0TgPdpqJfUpk2bVtlPffTV2F9SAU/27LPPmt9HRETohRdeqLJ+xfeGur6H2Lumo2O88wCut3PnTrv7YEZEROjWW2/V+PHjdckllzg1q4bnB+D9Dh8+rAcffFCS1KVLFz366KP1dm1+nwF8yyWXXKK5c+eqVatWNsdjY2M1duxYjR07Vu+9957uuOMOWa1WZWZm6rLLLtNPP/2kDh062L0m7yLuQ3gHwOvZe1Db+4ejKt728AfgHF5SAVS0cuVKffHFF2b5lVdeqXZZqIo/j3V9D7F3TUfHeOcBPEdeXp4WL16s3NxcnThxQqNGjZKfX9ULIvH8ALzfX//6V+Xk5Mhisehf//qXgoKC6u3a/D4DeL+wsDCNGjVKLVu21CuvvKLQ0NAq60+aNEmHDh3S448/LunUHxDccMMNWrNmjd36vIu4D8tmAkAtGIbh7iEAcAFeUgGcKTs7W7fccotZvuWWWzRx4sQG79fe7BxXvYvwzgPUXKdOnWQYhgzDUH5+vv744w/NmzdPo0ePVnZ2tr744gtdc8016tOnjzZs2NCgY+H5AXi2JUuWaP78+ZJOfaA+ePDger0+v88A3q9ly5b68ssv9a9//ava4O60hx56yGbP3bVr12rp0qUNMj7eRWqP8A6A16u4nIN0av+JmqhY3941AaAiXlIB71FWVqbx48dr3759kqQLL7xQb731llNtK7431PQ95OTJk9Ve09Ex3nkA92rSpIk6duyocePGaeHChfr+++/Vtm1bSaf2pbnwwgu1bNkyh+15fgDeq6CgQJMnT5YktWrVqtpluN2B32cA7xQYGKg///nPNsfee+89u3V5F3EfwjsAXq9JkyaVjhUXF9foGt728AfgHF5SAZw2efJkrVixQpLUs2dPffnll04va1XxXaSu7yGS/Z9x3nkAzzdgwAAtWbLEnGFy8uRJjRs3Trt27bJbn+cH4L0ef/xxZWZmSpJefvllRUVF1Xsf/D4DwJGKM31TUlJktVor1eNdxH0I7wB4vejo6ErH8vLyanSNivUb4qUagOfhJRWAJD3wwAN65513JEldu3bVihUravQuUPFdpK7vIZL9dxHeeYDGoVevXrrjjjvMcl5enqZPn263Ls8PwDtt2LBBr732miTp8ssv1/jx4xukH36fAeBI9+7dbcrZ2dk6cOBApXq8i7gP4R0ArxcZGanWrVvbHNu/f3+NrlGxfpcuXeo8LgCej5dUAA8//LD+8Y9/SJL+9Kc/afXq1WrZsmWNrlHxvaGu7yFt2rRRREREpXq88wCNx4033mhT/uyzz+zOcOH5AXifsrIy3X777SovL1dYWJj++c9/Nlhf/D4DwBF7P2NZWVmVjvEu4j6EdwB8Qo8ePWzKp/ercVbFh3/F6wHwTrykAr7twQcfNPef+dOf/qRVq1apRYsWNb6OK99DeOcBGodzzz1XAQEBZrm4uFgbNmyoVI/nB+B9XnrpJW3atEmSNGPGDMXHxzdYX/w+A8ARe1sA2PtDIt5F3IfwDoBP6N27t035t99+c7ptUVGRzR4U/v7+jf7hD8A5vKQCvmvq1Kn6+9//Lqluwd3p9v7+/mb5jz/+qNFSUtu2bbMp9+rVy2Fd3nmAxsHf37/STJVDhw5VqsfzA/A+S5YsMb9/8MEHZbFYqv2aMWOGzTU+/PBDu/XmzJljU4/fZwA4Ym92bPPmzSsd413EfQjvAPiEq666yqb8888/O932119/VWlpqVkeMmSI3b80A+B9eEkFfNPf/vY3zZ49W1LdgztJioiI0JAhQ8xyaWmpNm/e7HT7iu8tI0eOdFiXdx7AdTZs2KA1a9bo4MGDtWpvtVptyn5+lT+i4fkBoC74fQbwbuvWrVNycrJef/31GretGLBbLJZKM2gl3kXcifAOgE8YOHCg2rRpY5Z//PFHlZSUONU2NTXVpnzttdfW59AAeDBeUgHfc8899+iVV16R5HxwN378eCUlJVX6a/czVXx/qPh+4UhRUZHWrVtnllu3bq2BAwc6rM87D+A61157rQYPHlyr/apOnjypnJwcm2P2PjA73c+ZeH4AjVtqaqoMw6jR1/Tp022uMWHCBLv1Jk6caFOP32cA77Zu3TrNmDFD06ZNq3Hbist19+rVy+HPHe8i7kF4B8An+Pn56bbbbjPLubm5+u9//+tU2//85z/m95GRkRo3bly9jw+A5+IlFfANhmHo7rvvNv9qtSYz7tatW6fVq1crIyPDYZ1x48YpMjLSLJ/5flGVr776ymZJm9tuu83u7JzTeOcBXG/t2rU1brN69WqVl5eb5ZCQEIczWnh+AKgLfp8BvF9+fr65l6azPv/8c5vyiBEjHNblXcQ9CO8A+IwHH3zQ5gO408thVeWbb75RWlqaWX7ooYcq7U0BwLvxkgp4P8MwdNddd5mzZ+pjqcyKoqOj9cgjj5jlLVu2aNWqVdWO68z3lebNm+vBBx+sti/eeQDXWr16tc3PjzNO76l52ogRI9SkSRO7dXl+AKgLfp8BfMObb77pdN1ff/1Vy5cvN8thYWG69957HdbnXcRNDADwIe+8844hyfx69913HdbNy8szOnfubNZNTEw0CgoKXDhaAHURFxdn8/OekpJS62vNmjXL5lorV66ssr7VajX69+9v1m/evLlx/PjxavvJy8szWrRoYbYbPHhwtW2WLVtmM7aZM2c6fV8ATv283n777ebPUI8ePYwjR47U6BqnnzfTp0+vsl5hYaFx1llnmX117drVyM/Pd1j/rbfesvn5fuutt5weE+88QMM7813j3HPPderfesMwjJkzZ9r8fAYFBRnp6elVtuH5Afi26dOn2/xcTpgwoUbt+X0G8E6zZ882f3b8/f2NZcuWVdsmOzvb+NOf/mTzc/fiiy9W2453EdcjvAPgcyZNmmTzD9vbb79tlJeX29TJzMw0+vbta9aLjIw0Nm3a5KYRA6iN+gzveEkFvJPVarV5L6jrV3XhnWEYxpYtW4xmzZqZbfr3729kZmba1CkvLzfeeustw9/f36w3ceLEGt8f7zxAw6r4rtGlSxfjm2++MaxWq936+/btMyZOnGjTxt/f3/j3v//tVH88PwDfVdfwjt9nAO90ZngnyQgODjb+8Y9/GCdPnrRbf82aNUa3bt1s2tx6661O98e7iGsR3gHwOeXl5ca9995r8w/V2Wefbdx+++3GAw88YIwaNcoICgoyz8XGxhobNmxw97AB1FB9hneGwUsq4I12795db8Gds+GdYRjGxo0bjfbt25vtgoKCjFGjRhkPPvigcdtttxlnn322zXXvvvtuo6ysrMb3xzsP0LCmTp1qhIeHV3oWtG/f3rjuuuuM+++/33jssceMu+++2xg0aJARGBhoU69Dhw7Gf//73xr1yfMD8E11De8Mg99nAG/0/fffG927d6/0LhIVFWWMGjXKmDp1qjFt2jTjtttuqxTaBQQEGC+88ILDPzpyhHcR1yG8A+CzVqxYYQwYMMDhB3ARERHG/fffb+Tm5rp7qACqUJcP3539oP00XlIB7+Ku8M4wDCM3N9d46KGHjMjISIfX69evn/HNN9/U+T555wEazvHjx4133nnHGD16tBEREVHtc8JisRh9+/Y1XnvttVrPLuH5AXi3Dz74oMHeQ/h9BvBOa9euNe67775KP8P2vmJiYox77rnH2LVrV637413ENSyGYRgCAB+WmZmpH3/8UXv27FFJSYmioqLUvXt39e/fX8HBwe4eHoBqZGRkKCEhoVZtp0+fruTk5Bq1OX78uJ599lm9/fbbOn78uN06/fr104wZM3TppZfWalynrVy5UtOnT9cPP/xg93xERIRuv/12PfHEEzab0ANoPEpKSvTDDz8oLS1NOTk5CgoKUvv27dW/f3/Fx8fXa1+88wANq7y8XLt27dL27dt14MAB5eXlqaSkRE2aNFGzZs3UqVMn9ezZUxEREfXSH88PwDvNmTNHt9xyS43bOfu7Db/PAN4tKytLW7du1a5du5STk6Pi4mJFRkYqJiZGPXv2VNeuXWWxWOqlL95FGhbhHQAAQC3wkgoAAACgseL3GQDwbIR3AAAAAAAAAAAAgIfwc/cAAAAAAAAAAAAAAJxCeAcAAAAAAAAAAAB4CMI7AAAAAAAAAAAAwEMQ3gEAAAAAAAAAAAAegvAOAAAAAAAAAAAA8BCEdwAAAAAAAAAAAICHILwDAAAAAAAAAAAAPAThHQAAAAAAAAAAAOAhCO8AAAAAAAAAAAAAD0F4BwAAAAAAAAAAAHgIwjsAAAAAAAAAAADAQxDeAQAAAAAAAAAAAB6C8A4AAAAAAAAAAADwEIR3AAAAAAAAAAAAgIcgvAMAAAAAAAAAAAA8BOEdAAAAAAAAAAAA4CEI7wAAAAAAAAAAAAAPQXgHAAAAAAAAAAAAeAjCOwAAAAAAAAAAAMBDEN4BAAAAAAAAAAAAHoLwDgAAAAAAAAAAAPAQhHcAAAAAAAAAAACAhyC8AwAAAAAAAAAAADxEgLsHAAAAAABAY1RaWqpPPvlEhYWFuummm9SkSRN3DwkAAACAF2DmHQAAAACg0Zo4caIsFotLvubMmWPT9+jRozVhwgTdddddGjJkiEpLS93zHwEAAACAVyG8AwAAAACghtLT07VkyRKzvHHjRn377bduHBEAAAAAb0F4BwAAAABo9OLi4mQYRpVfKSkpNW6ze/duu/0ZhlHpmNVqbZB7AwAAAOBbCO8AAAAAAKihrl27avjw4Wb5T3/6ky6++GI3jggAAACAtwhw9wAAAAAAAGiMFi9erE8++USFhYW68cYbFRQU5O4hAQAAAPAChHcAAAAAANRCUFCQJkyY4O5hAAAAAPAyhHcAAAAAgEYrMTFRffv2VZs2bRrk+sHBwerbt68kqUWLFg3SBwAAAACcyWLY22UbAAAAAAAvk5qaqqFDh5rluLg4ZWRkuG9AAAAAAGAHM+8AAAAAAPAQhmFo7dq1+uWXX1RQUKCYmBhdcMEFOuecc6ps88MPP2jjxo3Kz89XdHS0evbsqb59+8rf379O47Farfr555/1v//9T0eOHJEkxcTEKCEhQf3792efPwAAAKABEN4BAAAAAOCkpKQkrV692u65CRMmaM6cOZWOf/nll7r66qsdXvP0gjirV6/WnXfeqfT09Ep1zjnnHL3xxhsaMGCAzfFly5bpnnvu0c6dOyu16dChg1555RWNHj26ijuyLzs7WzNnztRHH32krKwsu3XCwsI0atQozZgxQ2eddVaN+wAAAABgn5+7BwAAAAAAgK/79NNPdckll9gN7iRp06ZNGjp0qL7++mvz2D//+U+NGDHCbnAnSXv27NE111yjjz76qEZjWbp0qRITE/XSSy8pKytLgYGBuvTSSzV16lQ98MADGjVqlMLDw1VYWKhPPvlE3bp10yuvvFKjPgAAAAA4xp53AAAAAACfUN973mVkZCghIcEsO5p5t3//fn3//fdm+amnntL27dvN8tatW3XeeecpICBA48aN03nnnafQ0FDt3LlTc+fOVWZmplk3MjJSf/zxhzZv3qxhw4YpICBAY8eO1YABAxQeHq6dO3fq3//+t02bpk2baseOHWrdunW19/Sf//xHEydOVFlZmSTpggsu0H/+8x916tTJpl52drbuvvtuzZs3z+a+nnjiiWr7AAAAAFA1wjsAAAAAgE9wV3hXUcWlNy+88EIdOnRI33zzjeLj423qFhYWavjw4VqzZo15LDk5WXPnzlVBQYGWL1+uHj16VGozbNgw/fDDD+axmTNnatq0aVWOa9OmTerfv7+KiookSZ07d9bPP/+siIgIu/WtVquuueYaLVq0SJLk5+en1NRUDR48uNr/BgAAAAAcY9lMAAAAAADc6Mcff9TixYsrBXfSqX3lXn/9dZtjzz77rHbu3Kl58+ZVCu5Ot3n11Vdtjp253KYjEydONIM7SXrttdccBnfSqbDu9ddfV0BAgKRTYd6UKVOq7QcAAABA1QjvAAAAAABwo/Hjx+vss892eL5Xr16Ki4szyyUlJRoyZIguvPBCh23OPfdctWvXzixv2bJFVS2889///lebN282y2effbYuvfTSasferl07DRs2zKafM2cJAgAAAKg5wjsAAAAAANxo9OjR1dbp0qWLTXnUqFHVtunatav5fUFBgfLz8x3W/eijj2zKV155ZbXXP23gwIE25QULFjjdFgAAAEBlhHcAAAAAALhRr169qq0TFRVV4zbR0dE25by8PId1U1NTbcr9+vWr9vqnde7c2aa8fv16p9sCAAAAqIzwDgAAAAAAN2rVqlW1dYKDg2vcJiQkxKZcVlZmt97Bgwd15MgRm2OJiYnVXv+0ivvinbn8JgAAAICaC3D3AAAAAAAA8GXh4eE1bhMWFlZv/WdlZVU61qdPn1pfr7CwUEVFRZXCQwAAAADOYeYdAAAAAABuZLFYXNLGkaqW06yt3Nzcer8mAAAA4CuYeQcAAAAAgA+ruOylJP3+++/q1KmTG0YDAAAAgJl3AAAAAAD4sJiYmErH8vPz3TASAAAAABLhHQAAAAAAPq1NmzZq2bKlzbH9+/e7aTQAAAAACO8AAAAAAPBxSUlJNuVNmzbVqH12drbmzZunefPmadWqVfU3MAAAAMAHEd4BAAAAAODjbr75Zpvy4sWLa9T+ww8/1PXXX6/rr79e33zzTX0ODQAAAPA5hHcAAAAAAPi4K6+8Ur169TLLP//8s3744Qen2hYXF+vVV1+VJPn5+emWW25pkDECAAAAvoLwDgAAAAAA6IMPPlBISIhZvv3225WTk1Ntu7/+9a/KyMiQJE2cOFFdu3ZtqCECAAAAPoHwDgAAAAAAqHfv3nr33XcVEBAgSfrtt9+UlJSkn3/+2W79Q4cOafz48Xr77bclSd27d9crr7zisvECAAAA3spiGIbh7kEAAAAAAFDfMjIylJCQ4HT9IUOGKDU1tco6SUlJWr16tVPX2717t+Lj42s0jpSUFCUlJUmS4uPjlZmZWW2bDz74QBMnTqxRm+nTpys5OdnuuRUrVmj8+PHKzs42j/Xq1Uv9+vVT8+bNVVhYqG3btmn16tUqLS2VJA0ePFhffPGFYmJiqu0bAAAAQNUC3D0AAAAAAADgOYYNG6Zdu3bp73//u9577z0dPHhQmzdv1ubNmyvV7dOnj+655x5NmDBBFovFDaMFAAAAvA8z7wAAAAAAgEObN2/W1q1bdfToURUWFqpp06bq0KGDzj33XLVv397dwwMAAAC8DuEdAAAAAAAAAAAA4CH83D0AAAAAAAAAAAAAAKcQ3gEAAAAAAAAAAAAegvAOAAAAAAAAAAAA8BCEdwAAAAAAAAAAAICHILwDAAAAAAAAAAAAPAThHQAAAAAAAAAAAOAhCO8AAAAAAAAAAAAAD0F4BwAAAAAAAAAAAHgIwjsAAAAAAAAAAADAQxDeAQAAAAAAAAAAAB6C8A4AAAAAAAAAAADwEIR3AAAAAAAAAAAAgIcgvAMAAAAAAAAAAAA8BOEdAAAAAAAAAAAA4CEI7wAAAAAAAAAAAAAPQXgHAAAAAAAAAAAAeAjCOwAAAAAAAAAAAMBDEN4BAAAAAAAAAAAAHoLwDgAAAAAAAAAAAPAQhHcAAAAAAAAAAACAhyC8AwAAAAAAAAAAADwE4R0AAAAAAAAAAADgIQjvAAAAAAAAAAAAAA9BeAcAAAAAAAAAAAB4CMI7AAAAAAAAAAAAwEMQ3gEAAAAAAAAAAAAegvAOAAAAAAAAAAAA8BCEdwAAAAAAAAAAAICHILwDAAAAAAAAAAAAPAThHQAAAAAAAAAAAOAhCO8AAAAAAAAAAAAAD0F4BwAAAAAAAAAAAHgIwjsAAAAAAAAAAADAQxDeAQAAAAAAAAAAAB6C8A4AAAAAAAAAAADwEIR3AAAAAAAAAAAAgIcgvAMAAAAAAAAAAAA8xP8DY/dGQGZHB3YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAUeCAYAAAA4hQ9LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXhV5bn38d/OTEJGMpAESBgFAjIIIqNBQAQVERG1aqEOxanU6qltHQpy2tpaq0esQ7U9oH2dGKxYrThBmEWQMM9CAoSQEELIQEKm/f7hyZadrJWJPWZ/P9eV68qznmetdWdQsva97/uxWK1WqwAAAAAAAAAAAAAf5OfuAAAAAAAAAAAAAAB3IVkGAAAAAAAAAAAAn0WyDAAAAAAAAAAAAD6LZBkAAAAAAAAAAAB8FskyAAAAAAAAAAAA+CySZQAAAAAAAAAAAPBZJMsAAAAAAAAAAADgs0iWAQAAAAAAAAAAwGeRLAMAAAAAAAAAAIDPIlkGAAAAAAAAAAAAn0WyDAAAAAAAAAAAAD6LZBkAAAAAAAAAAAB8FskyAAAAAAAAAAAA+CySZQAAAAAAAAAAAPBZJMsAAAAAAAAAAADgs0iWAQAAAAAAAAAAwGeRLAMAAAAAAAAAAIDPIlkGAAAAAAAAAAAAn0WyDAAAAAAAAAAAAD6LZBkAAAAAAAAAAAB8FskyAAAAAAAAAAAA+CySZQAAAAAAAAAAAPBZJMsAAAAAAAAAAADgs0iWAQAAAAAAAAAAwGeRLAMAAAAAAAAAAIDPIlkGAAAAAAAAAAAAn0WyDAAAAAAAAAAAAD6LZBkAAAAAAAAAAAB8VoC7A4B09OhRff3118rOzlZlZaViYmKUlpamK664QkFBQe4OTwUFBdq8ebMOHz6ss2fPys/PTxEREUpJSVHv3r3VvXt3d4cIAAAAAAAAAADQKiTL3GjlypWaO3eu1q1bZzgfGRmpn/70p3ryyScVERHh0tisVqvef/99vfzyy1q/fr2sVqvp2piYGI0ZM0ZTpkzRT37yExdGCQAAAAAAAAAAcHEs1sayIHCK2tpa/dd//ZdeeOEF27FLLrlEo0aNUnR0tA4cOKBPP/1UVVVVkqTOnTtr+fLlGjRokEviO3jwoO644w598803kqTAwECNGTNGPXr0UHR0tE6cOKE9e/Zoy5Ytdud16NBBBQUFLokRAAAAAAAAAADAEUiWucHs2bP1+uuvS5L8/f318ssv695775Wf3w9byB09elQzZszQpk2bJElRUVFas2aN+vfv79TYvv76a02ePFlnzpyRv7+/HnnkEf3mN79RdHR0g7Xr16/XT3/6U+3Zs0cSyTIAAAAAAAAAAOB9SJa52MKFC3XXXXfZxm+88Ybuuecew7XFxcUaOnSoDhw4IEnq0aOHduzYoXbt2jkltoMHD+qKK65QYWGh/P399a9//UvXX399o+fk5uaqb9++KioqIlkGAAAAAAAAAAC8jl/TS+AopaWl+vWvf20bjxo1yjRRJkkRERFasGCBbXzo0CG9+OKLTovv7rvvVmFhoSTpv//7v5tMlElSYmKiZs6c6bSYAAAAAAAAAAAAnInKMheaN2+enn76adv4gw8+0I033tjkeWlpabZWh1FRUTp8+LBhW8SL8dZbb9mSXsnJyTp06JBCQkKade6+ffuUkZGhdu3akTgDAAAAAAAAAABehcoyF7FarXrjjTds46ioKF177bXNOveOO+6wfV5UVKT333/fobHV1tbqySeftI1//OMfNztRJkm9e/fWfffdR6IMAAAAAAAAAAB4HZJlLrJ+/XqdOHHCNh4xYoSCgoKadW56errdeOnSpY4MTatWrdKxY8ds4ylTpjj0+gAAAAAAAAAAAJ6KZJmLfPTRR3bjoUOHNvvcQYMGKTAw0DZevXq1iouLHRbbP//5T9vnAQEBuuyyyxx2bQAAAAAAAAAAAE9GssxFMjMz7cZ9+vRp9rkhISHq1q2bbVxdXa1du3Y5LLbPPvvM9nm3bt3sEnMAAAAAAAAAAABtGckyF9m9e7fduFOnTi06Pzk5udHrtVZeXp5OnjxpG6empto+P3LkiP7whz9o9OjR6tSpk4KDgxUdHa1evXrp9ttv15tvvqmKigqHxAEAAAAAAAAAAOAOAe4OwBcUFxcrNzfX7lj95FdT6q/ft2/fRcclNax4Cw8P1/nz5/Xkk09qwYIFqqystJuvrKxUUVGRDh48qHfeeUePP/64/vSnP+mOO+5wSDwAAAAAAAAAAACuRGWZCxQWFjY4FhER0aJr1F9/5syZi4qpzoEDB+zG1dXVuuaaa/Tcc8+psrJSt99+u1atWqWCggKVl5frwIEDeuGFFxQfHy9JOnHihO6880798pe/dEg8AAAAAAAAAAAArkRlmQuUlJQ0OBYcHNyia4SEhDR5zdYoKiqyGy9fvlyS5O/vr3feeUczZsywm+/Zs6cefvhh3X777UpPT9eePXskSc8995w6deqkn//85w6JS5Ly8/N16tSpFp1TXFysLVu2KCIiQlFRUercuXOLv9cAAAAAAAAAALQ158+f17Fjx2zjK6+8UlFRUe4LyIOQLHMBo8RW/eRXU5yVLCsuLjY8/qtf/apBouxCcXFx+uijj5SWlqbz589Lkn75y1/quuuuU/fu3R0S2yuvvKKnn37aIdcCAAAAAAAAAAA/+PDDD3XDDTe4OwyPQBtGL2W1Wh1yHaOkW2hoqH796183eW737t11zz332MZVVVV69tlnHRIXAAAAAAAAAACAK5Asc4Hw8PAGxyoqKlp0jfrrja7pKJMnT2729X/0ox/Zjd99913V1NQ4IywAAAAAAAAAAACHow2jC7Rv377BsfPnzyssLKzZ13BWsszoOkOHDm32+UOGDFFgYKCqqqokfV+plpmZqSFDhlx0bA888IBuvvnmFp2zZ88eu/aRH374oXr06HHRsQBAW1ddU6sfvfG1zpyrajA3vHuM5t/Q/6Kuf/Jsue78xzeGc7de3ll3j+p2UdcH0ExL75bydjU8fsX90mWzXB4OAAAAAMB1Dh06pKlTp9rGnTt3dl8wHoZkmQvExMQ0OFZcXGx43Ez9vcWio6MvOi5JioiIaHCsW7fmv2AZFBSkrl276sCBA7Zje/fudUiyLD4+XvHx8Rd1jR49eigtLe2iYwGAtm7NgVMqC0tSkMH7OH48eaDS0pIv6vppkkbtqNI3WYUN5jadaafn+vSVn5/lou4BoBk2hEpW/4bHuyZK/M0EAAAAAD4lODjY3SF4DNowukBkZKQ6duxodywnJ6dF16i/vnfv3hcdlyQlJCQ0OGaUQGtMZGSk3fj06dMXFRMAwPU+2n7C8Hi7QH9N6Nvw34rWuGFQkuHxnKJy7T1ZbDgHwMHM9r218FgAAAAAAPBdPBW7SL9+/ezGx48fb9H59ZNl9a/XWkbXsVha9s7+oKAgu3F5eflFxQQAcK2Kqhp9tuuk4dz4vgkKDXJMIfq1/RMV6G/8b8yaAwUOuQeAJlhrjY+TLAMAAAAA+DCeil1k0KBBduM9e/Y0+9yKigodPnzYNvb393dYsqx///4NkmMlJSUtukb99bGxsRcdFwDAdTL2n1LJ+WrDuSkDjKvBWiMqNEiDuxi3EV578JTD7gOgEabJMtqgAgAAAAB8F8kyF7n++uvtxps3b272uZmZmaqqqrKNr7zyyha3SjQTERGhAQMG2B3Lzs5u0TVyc3PtxsnJF7evDQDAtf69w7gFY0RIgMb0cuwbIMb0ijM8viXrjM5VGifsADgSbRgBAAAAAKiPp2IXGTlypBITE23jjRs3qrKyslnnZmRk2I2nT5/uyNB0yy232I23b9/e7HNPnjypU6d+qAYICAjQqFGjHBYbAMC5qmpqtXq/cVXXpH6JCg7wd+j9rjRJllXW1Orrw+x5CTgde5YBAAAAANAAT8Uu4ufnp3vuucc2Lioq0ieffNKsc99++23b55GRkQ2SWxfrtttuk7//Dy+Gfvrpp6qpqWnWuR9//LHd2JFVbwAA59uSdUalJi0Yr3dgC8Y6fRMj1CEsyHCOfcsAFzBrwyjaMAIAAAAAfBfJMhf65S9/qbi4H95R/8ILLzR5zmeffabdu3fbxo899phiYmIaPef06dN6/fXX9fLLLysnJ6fJe6SkpOj++++3jfPz8/X+++83eV5tba1effVVu2NPPvlkk+cBADxHxoF8w+NhQf66vGvj/960hp+fRaN6Grd2XMO+ZYDzUVkGAAAAAEADPBW7UHh4uP7whz/YxmvXrtU//vEP0/UlJSWaM2eObdy9e3c9/PDDjd7j2LFjSktL0+zZs/XQQw+pb9++2rFjR5OxzZ8/X/Hx8bbxY4891mAvsvpeeOEFbd261Ta+4447lJ6e3uS9AACeI2OfcYJqVM9YBQU458+EMT2NWzEePlWm42fOOeWeAP6PWWWZhcoyAAAAAIDvIlnmYvfcc4/uvvtu23j27Nl6/fXXVVtr/8LF0aNHNWHCBB04cEDS9+0Xly1bptDQ0Eav/+qrryovL882Li4u1rPPPttkXNHR0frPf/5ja6GYk5Ojq666yi4ZVqeqqkq/+93v9Mtf/tJ2bMSIEXrjjTeavA8AwHOcKCrX/rwSw7n0S+INjzvC6F7GlWWStPYgrRgBpzJNlvFYAAAAAADwXQHuDsAXvf766woLC9OCBQtUU1Oj2bNn6/nnn9eYMWMUGRmpgwcP6tNPP1VlZaUkKTk5WcuXL9eAAQOavLbVoLVO/UScmcsuu0wrVqzQ7bffriNHjmjfvn0aMmSIhg8frsGDB6t9+/Y6fvy4PvvsM5069UMlwqxZs/Tqq68qJCSkmd8BAIAnyNhv3vYw/RLj6i9HiA8PUZ/ECO3NLW4wt+bAKd12eRen3RvweVSWAQAAAADQAMkyN/Dz89OLL76o66+/XnPnztWGDRu0f/9+7d+/325dRESE7r33Xj311FOKjIxs1rXvu+8+/eMf/7Als9q3b6/HHnus2bENHz5cu3bt0jPPPKM333xTx44d04YNG7Rhwwa7dYGBgZowYYIef/xxjRw5stnXBwB4joz9xvuV9e4YrsTIdk6995iesYbJsnWHClRdU6sAf6pcAOdgzzIAAAAAAOojWeZG48eP1/jx45Wdna2NGzfq6NGjqqysVHR0tNLS0jR8+HAFBwe36JopKSnas2ePli1bpqqqKk2dOlWdOnVq0TVCQ0P13//935o/f762bt2qAwcOKDc3V1VVVerQoYNSUlI0YsQIhYWFtei6AADPUVldq/WHjFseOrMFY50xveL0tzWHGxwvqajWvpMl6pfcvDeJAGgh2jACAAAAANAAyTIPkJKSopSUFIddLzY2VrNnz77o61gsFl122WW67LLLHBAVAMCTbMkqVFlljeHcWCe2YKwzJDVaQQF+qqxu+ML9lqxCkmWAs5gly0QbRgAAAACA7+ItpAAA+KBVJi0Yw4MDNDgl2un3Dw7w14BOxgmxLdlnnH5/wGeZdGGksgwAAAAA4MuoLAMAwAetPWjcgnF0r1gFumi/sCGpMdqc1TAxtiXrjKxWqywWKl0Ah6MNIwDAjaxWq2pra2W1mr17AwAA32OxWOTn58frIG5GsgwAAB9TWFapfSdLDOfSezl/v7I6Q0wq2E4WVyinqFydokNdFgvgM0yTZTyUAQAcz2q16ty5cyouLlZpaamqq6vdHRIAAB7JYrEoMDBQkZGRioyMVGBgoLtD8jkkywAA8DHfHCk0nRvevYPL4riskXaP32afIVkGOIXJO/mpLAMAOJDValV+fr7Onj2rmhrjfXIBAMAPrFarKisrderUKZ06dUphYWFKSEhQcHCwu0PzGTwVAwDgYzYdOW14PDmqnTrHuC5BFRUapB7x7Q3nthi0ZwTgALRhBAA4mdVq1YkTJ1RYWEiiDACAViorK9PRo0dVVVXl7lB8Bk/FAAD4mE2HjSvLhnWNcXEk0tBU4+qyLdkkywCnoA0jAMCJ6hJlxcXF7g4FAACvV11drWPHjvHmExehDSMAAD7k7Lkq7T1p/OLFsG6uT5ZdlhKjd7851uD4vpPFKq6oUkQIPboBhzJLlolkGQDg4uXn5xsmykJCQhQeHq6wsDAFBATIwps0AACwqa2tVVVVlYqLi1VcXKza2h+e286fP6/c3Fx16tTJjRH6BpJlAAD4kM1ZhbKabFk0rKvr9iurM8Rk3zKrVco8WqQre8W5OCKgjTP7HwBtGAEAF8lqters2bN2xywWizp16qT27Y1bbwMAgO8FBQUpLCxMcXFxys7OVmVlpW2upKRENTU18vf3d2OEbR9PxQAA+BCz/coSIoKV0sF1+5XVSekQqtj2QYZz32YZt4sEcBHYswwA4CTnzp1r0CaKRBkAAC0TEBCgzp07N6jCLisrc1NEvoOnYgAAfMimI2b7lXVwSzsci8Wiy0yqy9i3DHAC08oy2mEBAC5O/faLISEhJMoAAGiFoKAghYbav6G5tLTUTdH4DpJlAAD4iJKKKu3KOWs45479yuoMTTW+d+bRIlXVmO2vBKB1aMMIAHCO+i/ihYeHuykSAAC8X/03nJAscz6eigEA8BFbss+o1oP2K6tjVllWXlWjvbkNN4gHcBFowwgAcAKr1arq6mq7Y2FhYW6KBgAA71e/sqympkZWs04hcAieigEA8BGbDhu3YIxtH6zuce57MSMtKVLBAcZ/kmzJohUj4FBmyTLRhhEA0Hq1tQ3/fQkICHBDJAAAtA3+/v4Njhn9ewvHIVkGAICP2Jxltl9ZjFv2K6sTFOCnAZ2jDOe2ZBvHDKCVTPcs47EAANB6Ru90d+fflwAAeDujf0epLHMunooBAPABldW12umB+5XVGZpq3IpxS9YZ/hgEHIk2jAAAAAAANMBTMQAAPmBvbrEqq41fJB/cxThR5UpDUowTdvkl53X8TLmLowHaMNNkGe/+BwAAAAD4LpJlAAD4gG3HigyPhwT6qXfHcNcGY6CxhB2tGAEHIlkGAAAAAEADJMsAAPABmUfPGB6/NDlKAf7u/3MgMjRQvRLaG85tzjKOHUBrsGcZAAAAAAD18VQMAIAPMKssG9QlyqVxNGZIqnErxm9JlgGOw55lAAAAAAA0wFMxAABtXGFZpbJOnzOcG9g5yrXBNGJIinErxgP5JTpbXuXiaIA2yGpSVSZJog0jAAAAAMB3kSwDAKCN225SVSZJgxrZK8zVhqQYV5ZZrdJWkzaSAFqgsWQZlWUAAAAAAB/GUzEAAG2c2X5lHSNC1DEyxMXRmOsc005x4cGGc1uyCl0cDdAGmbVglEiWAQAANFNeXp7mz5+vMWPGKD4+XkFBQerQoYP69u2ra665RjNnzpTFYjH9yMjIcPeXABf7+9//rqioKH4HAA/HUzEAAG1cphfsVyZJFovFtBXjFvYtAy5eo8ky2jACAADnS09PbzSRVP8jKyvL3SHbeeedd9S9e3fNnTtXa9eu1alTp1RVVaXCwkLt3btXn332md566y13h4l6vv32W7vfq5UrVzZYU1FRoeDgYNuaZ5555qLvm52drauvvlr33nuvzp49e9HXA+BcJMsAAGjDamut2maSLPOk/crqDEk1bsW4/XiRqmoaeaEfQDPQhhEAAKC1Pv30U915550qKyuTJN10003KzMxUeXm5Tp48qXfffVeJiYm29UeOHJHVatXcuXPdFTL+z7p162yf+/v7a9iwYQ3WfPPNN6qsrLSNR40a1er7Wa1WvfLKK+rXr5+++OKLVl8HgGvxVAwAQBt2uKBMJRXVhnOetF9ZHbPKsoqqWu3NLXZxNEAbQxtGAADgZhkZGbJarbaPlJQUu/lVq1bZzaempron0Hpqa2s1Z84c1dZ+//fUsGHDtGTJEg0cOFAhISFKSEjQrbfeSlWZh7owWTZw4ECFhYU1WLN+/Xrb58HBwbr88stbda9Dhw5p7NixevDBB1VaWqpOnTopPDy8VdcC4Fo8FQMA0IaZVZX5+1nUPznStcE0Q9+kCAUHGP95knm0yLXBAG0NbRgBAABaZd26dTp06JBtXLcvWX3jxo1Tu3btXBkamuHCRNiIESMM11yYUBsyZIiCg433027Miy++qAEDBmj16tWSpHvuuUe7d+9WTIxxBxUAnoVkGQAAbVjmUeO9vnp3DFe7IH8XR9O0QH8/XdrJOIm31eRrAdBMjSXLRLIMAADAzIXJFkkaMGCA4TqLxaLs7Gzl5uaqc+fOrggNTfjuu++Um5trG48cObLBGqvVqo0bN9rGo0ePbtW95s6dq3Pnzik1NVVffPGF3njjDUVERLTqWgBcj2QZAABt2I7jxpsIe+J+ZXUGm7SHpLIMuEhW9iwDAABojQuTLZIUGxtrujYuLk4dO3aUv7/nvTnRF11YMSYZV5bt3r1bZ8788ObM1u5X5ufnpwceeEA7d+7U+PHjW3UNAO4T4O4AAACAc1RW12r/yRLDuQEenCwb1CXK8PjRwnMqKD2v2PYtb4cBQOxZBgAA0EolJfbPVUFBQW6KBC11YbKsc+fOhhV/F1YOWiwWw+qz5lixYkWr9zoD4H48FQMA0EYdzC9RZY3xi+OeuF9ZnUEmlWUS1WXARWHPMgAAgFaxNlahD492YbLMLAl24Zp+/fopKiqqVfciUQZ4NyrLAABoo3bnFBseDwrwU4/49i6OpvkSIkKUHNVOOUXlDeYyj57RhL4JbogKaOOoLAMAAG1MVlaWVq9erZycHIWEhCgpKUmjR49WcnKyu0Nrlfz8fG3YsEEnT55UYWGhIiMjlZCQoGHDhrE/monTp09r//79trFRC0bJvrKstS0YAXg/nooBAGijdp0w3q+sT8dwBfp79p8AA01aMW49esbwOIBmoA0jAADwYkVFRbJYLKYfGRkZkqTjx49r6tSp6tatm2bNmqUnnnhCjz76qG677TZ16tRJN954o44dO9bovTIyMuyu/eabb9rNd+3a1TCGrKwsh3/dH3zwgS6//HJ17NhRN954o+6//3498cQTeuihh3TzzTerS5cu6tevn/73f/9XNTU1zf6azD7mzZtneo3x48fb1q1Zs8Z03axZs5r1s3KERYsWmd4nNjbWripwzpw5huuOHDliW/Pqq68arklPT3dYzAA8E0/FAAC0UbtPGFeWpXlwC8Y6g01aMe44flbVJq0lATShsWSZaMMIAAC83759+zRkyBAtX77ctHXihx9+qBEjRjSZMHO306dPa+zYsbrpppu0efNmWa1Wde3aVXfffbd+85vfaPbs2UpLS5Mk7d69W3fffbcuu+wyZWdnOyWe/Px8uyTX+++/75T7AIC70IYRAIA2qKbWqj1mybKkCBdH03KDTCrLzlXW6EBeqfp6wdcAeJzG9tqgsgwA4EbVNbXKPVvh7jDavMTIEAV4eIeJxoSFhendd9+1jZcuXaply5bZxmVlZZoyZYry8vKUnp6uSZMmqWPHjiouLtbq1av1wQcfqLb2+zcPHT9+XA899JCWL19ueK/09HS7ZNusWbPsqsuOHDmi1NRUB3+FP8jJyVF6eroOHTokSQoPD9crr7yiO+64o8HaFStWaNasWcrLy9P27ds1bNgwrVy5Un379rVbd+HXdNNNN+mDDz6wzW3fvl2XXnppozEtWbLErnJt6dKlWrBggfz9/RusXbRokRYtWiRJuuOOO/T2229r+vTpWrJkSfO+AQDgBiTLAABog44UlKq8yrgFR78kz68sS0uKUJC/nyoNqsi2Hj1DsgxoDdowAgA8VO7ZCo1+dpW7w2jz1j42Vp1jQt0dRqsFBgbq1ltvtY337dtnlyx79tlnlZ2drWXLlmnatGl25z700EP64osvNHnyZFVXV0uS/v3vfysrK8upSa/WqK6u1i233GJLlPn5+WnJkiWaOHGi4fprrrlGK1as0MiRI3Xu3Dnl5eVp2rRp2rx5s8LDww3PmTFjhl2ybPHixU0my+pXktVVmo0bN870nIqKCn300UeSpFtuuaXR67fWrFmzNGvWrAbH8/PzlZDww37Xb7zxhu65554G67p06WKrMnzkkUf0l7/8xSlxAvB8PBUDANAG7coxrirz97Poko7GD0yeJDjAX2nJxgmxzKNFrg0GaCsaTZbRhhEAAHi3NWvW6Pnnn2+QKKszYcIE3Xbbbbax1WrVp59+6qrwmm3BggVav369bXzbbbeZJsrqDBw4UA8//LBtvH//fv32t781XX/dddcpNPSHxOnixYsbvX5OTo7WrVvX4HhT533yyScqKSlRWFiYrr322kbXOtratWvtxmPGjGmw5ujRo3btOEePHu30uAB4LpJlAAC0QbtPnDU83jO+vUICG7bJ8ERm+5ZlHj3j4kiANoJkGQAAaMOSkpJ03333NbrmhhtusBtv377dmSG1WGVlZYPKpjlz5jTr3IceekiWC/6me/3111VQUGC4NiwsTJMnT7aNDx48qG3btplee/HixbJarUpLS1NYWJjt+LJly2yVekbqqtGmTJmidu3aNevrcJQLk2UdO3ZUr169Gl0jSaNGjXJ6XAA8F8kyAADaILPKsjQvaMFYx2zfssMFZTpTVunaYIA2gT3LAABA23XDDTcY7p91obS0NLtxXl6eM0Nqsa+++konTpywjePj4zV06NBmnZuYmKjBgwfbxufOndPSpUtN18+YMcNu3FiV2HvvvSdJ+vGPf6zrrrvOdvz06dP66quvDM8pKyvTJ598Isl5LRgbc2ElnFFVWf01vXv3VmxsrNPjAuC5eCoGAKCNsVqt2mVSWdbPpLWhJxpkUlkmSduOF7kuEKCtYM8yAADQhg0aNKjJNUlJSXbjkpISZ4XTKqtW2e/d179/f7tqsaYMGDDAbpyRkWG69tprr7WrEjNLlmVlZembb76R9H2CrX7iq/5eZnU++ugjnTt3ThEREbrmmmuaE77DlJaW2lXKNSdZRlUZAJ6KAQBoY44VlqukwrgVRr9k76ksS4oMUUJEsOFcZjatGIEWayxZJtowAgAA75aYmNjkmgv36ZLUaAtBd6jfFrJ79+4tOr/++sZaK4aGhtrtI/bdd99p69atDdbVVZVdfvnlSk1N1aRJkxQe/sM+2B9++KGqqqoanFeXRJs6daqCg42f65xl48aNqqmpsY2NkmVFRUXas2ePbcx+ZQAC3B0AAABwLLP9yiwWqU+i91SWWSwWDeocrRW7TzaYyzxW5PqAAG9npQ0jAMAzJUaGaO1jY90dRpuXGBni7hCc6sIqKTMBAZ79Umj9PcYiIlr2/FZ/vdmeZXVmzJhhV1G2ePFiu1aO0g9Jr7qKspCQEE2ZMkVvv/22JOnMmTP6/PPP7RJvxcXFWrFihSTp1ltvbdHX4AgX7kUWExOjfv36NVizYcMG1db+8GYyKssAePa/EAAAoMXMWjB27RCm9sHe9U//4JQow2TZtqNFqq21ys+Pahig2UiWAQA8VIC/nzrHhDa9EGhES9oVeqriYvu9p9u1a9ei8+uvP3vW+NmwzuTJk9W+fXuVlpZKkpYsWaI//vGPtvkDBw5o27Ztslgsuvnmm23Hb7nlFluyTPo+oXZhsuxf//qXzp8/r5iYGI0fP75FX0Nzpaena/Xq1U2uKywslJ9f03/rmlXxLVy4ULNmzWppeAC8EE/FAAC0Mbtyig2Pp3lRC8Y6ZvuWlZyv1qFTpS6OBvByje5Z5v0vLgEAAHi7+pVh5eXlLTr/3LlzduPIyMafAdu1a6frr7/eNj58+LC2bNliG9e1YBwxYoQ6d+5sOz5x4kS7ay9fvlznz5+3jeuq0aZNm6bAwMAWfQ0A4C4kywAAaGP2nTRJliV5TwvGOv2TIxVgUj2WeZR9y4CWobIMAADAk8XGxtqN61eaNaWkpKTR6xmZMWOG3fjCtoz1WzDWCQoK0tSpU+3irGu7WFhYqC+//NLwPADwZDwVAwDQhpwpq1Re8XnDOW/ar6xOSKC/+pok+bZmF7k2GMDbNVpZxmMBAACAuw0YMMBufOjQoRadX399/esZmTRpksLDw23jJUuWSJJ27typPXv2yM/PT9OnT29wXv0kW11ibdmyZaqqqlJcXJzGjnXeXoQZGRmyWq0NPn7xi1/Y1nTo0EG1tbUN1tRVzNXJzs42vJbVaqUFI+BDeCoGAKAN2XeyxHSud8dw0zlPNqhzlOHxzGNUlgEtQrIMAADAo9VPLu3YsUPWxvadrWf79u2NXs9IcHCwpkyZYhtnZWXpm2++sSW/Ro8ercTExAbnTZgwQTExMbbxv//9b5WXl9vOmz59uvz9/Zsdu6OsXLnS9vlVV11luJddXeWbJPXs2VNdunRxSWwAPBtPxQAAtCH7TVowRocGKj482MXROMbgFON9yw7ml6q4osrF0QBerLFkGQAAANxu3LhxSk5Oto0LCgq0adOmZp174sQJZWZm2sahoaG66aabmnWuUStGsxaMdQIDA3XjjTfaxqWlpVq4cKEyMjIkSbfeemuz7u1Ip0+f1o4dO2zj8ePHG6776quvbJ+PGzfO6XEB8A4kywAAaEP25xlXll3SMdzwHXXeYFBn42SZ1SptP1bk2mAAb9bYu5KpLAMAAHC7oKAgPfroo3bHFixY0KxzFyxYYFeFdu+99youLq5Z506cOFGRkZG28d/+9jcdOnRI/v7+jSbc6ifZfvWrX6mmpkZJSUkaNWpUs+7tSKtWrbL7Hhglwg4fPqwjR440ugaAb+KpGACANsSsDWPvjt63X1mdzjHtFNs+yHAu82iRa4MBvBltGAEAADzez372M40cOdI2fu+99/Tpp582ek5mZqZdUq1nz56aP39+s+9ZvxVjaWmppO/bOMbHx5ued9VVVyk2NrbBeTfffLP8/Fz/9+WFLRhTUlLUvXv3Bmu++OIL2+cWi8Wp+6oB8C48FQMA0EbU1lq13zRZ5p37lUnfP8AMNKku23qUfcuAZms0WeadlacAAABtTUBAgBYvXmxL9FitVs2YMUNvvfWW4foVK1Zo0qRJKi8vlyTFxcXpgw8+UEREy94wWb9KTDJvwXhhrNOmTWvxec5yYbLMrAXjhfuVDRw4UB06dHB6XAC8A8kyAADaiONnynWussZw7hIvTpZJ0qAuUYbHM48WtWjDa8C30YYRAAC4V3p6uiwWi+0jOzvbbn7s2LF281lZWXbzqamptrmnn37a9Nx58+bZjmdkZNhd80KrV682vF/9c958802787p27Wo3n5qaapvLysqym2sszvT0dMPvU1JSkjZt2mSbLy0t1cyZM9WtWzfde++9evzxx3X//ferf//+mjRpkvLy8iRJ/fv316ZNm9SvXz/D6zbm6quvVlRUlG0cEBBgtyeZmfqJsS5duuiKK65o8f0vVm5urvbv328bGyXLrFarVq1aZRs7ugVj/Z99c3/P6//OAnAPnooBAGgj9p0sNp3rleDdybLBXYwry86WVyn79DkXRwN4KfYsAwAA8BodOnTQqlWrtGzZMg0dOlQWi0VHjhzR3//+dz3zzDN67bXXtGvXLklSnz599PrrryszM1Ndu3Zt1f2CgoI0depU23j8+PHNqrq68sorlZCQYBvPmDHDLftlX1hVZrFYdNVVVzVYk5mZqdOnT9vGRmsA+K4AdwcAAAAcw2y/spQOoQoL9u5/8i/tFCk/i1Rr8Fr/9uNFSo0Nc31QgLdprA2jaMMIAACcLyMj46LOr19p1hzp6ekt7kbRmnPqpKamOrT7xbRp0zRt2jTl5+dr/fr1OnnypM6cOaOIiAjFx8dr2LBhSklJcci9Fi5cqIULF7boHH9/f508edIh978Yt99+u26//fZG1wwePNipnUkc/bMH4Fre/coZAACwMduv7BIvryqTpLDgAPWMD9f+vIZf47ZjRbphYLIbogK8DJVlAAAAXis+Pr5ZbREBAK3DUzEAAG2EWRvG3l6+X1mdAZ0jDY9vP1bk2kAAb9VYZRnJMgAAAACAD+OpGACANqCiqkZHCsoM53onRrg4GucY0DnK8PiuE8WqqmmsvRwASSTLAAAAAAAwwVMxAABtwKH8UsP9vCTpkrZSWdYpyvB4ZXWtaQtKABdoNFnGnmUAAAAAAN9FsgwAgDZgn0myKDjAT6kdwlwcjXNc0jFcwQHGf7psoxUj0AyN7VlGsgwAAAAA4LtIlgEA0AbsyzXer6xXQrj8/drGi+CB/n7ql8y+ZUCrmVWW0YIRAAAAAODjeDIGAKAN2J9nXFnWVlow1jFrxbj9eJFL4wC8kmkbxraRUAcAAAAAoLVIlgEA0AYcyi81PH5JQhtLlnU2riw7mF+q0vPVLo4G8DJWkzaMVJYBAAAAAHwcT8YAAHi5kooq5Z6tMJzrmdDexdE418DOUYbHrVZp5/Gzrg0G8DYkywAAAAAAMMSTMQAAXs6sqkySeraxyrIuMaGKCg00nKMVI9AE0z3LaMMIAAAAAPBtJMsAAPByB02SZWFB/kqKDHFxNM5lsVjM9y07VuTSWADvQ2UZAAAAAABGeDIGAMDLfWeSLOse316WNlgxMqCT8b5lJMuAJphWlvFIAAAAAADwbTwZAwDg5cwqy3rEt639yuoMMNm37MTZCuWXGO/dBkAkywAAAAAAMMGTMQAAXu5gfonh8Z7xbWu/sjqXmrRhlKQdx866LhDA25gly9T2KlABAAAAAGgJkmUAAHix8soaHT9TbjjXs41WlsWFBys5qp3h3PbjRa4NBvAmVrM9y0iWAQAAAAB8G8kyAAC82HenSk1f/26rbRglaaBJK8Zt7FsGmKMNIwAAAAAAhngyBgDAix0y2a8sKMBPnWNCXRyN6wzoHGl4fPuxIlnNsoeArzNNllFZBgAAAADwbSTLAADwYmb7lXWPay9/v7b7AvgAk33LiiuqlXX6nGuDAbyGWRtGHgkAAAAAAL6NJ2MAALzYwTzjyrK2ul9ZnX7JkTLLBW6nFSNgzHTPMh4JAAAAAAC+jSdjAAC82KFTxsmytrxfmSSFBQeoV0K44Rz7lgEmzNowqu1WoQIAAAAA0BwkywAA8FLnq2uUbdJysK1XlknmrRi3Hy9yaRyA16CyDAAAAAAAQzwZAwDgpbIKzqmm1vjF754JPpAs6xxleHz3iWJVVptV0AA+zKyyjGQZAAAAAMDH8WQMAICXOphfYng8wM+ilA5hLo7G9QZ0jjQ8Xlldq/0njb83gE8jWQYAAAAAgCGejAEA8FKH8o33K0uNDVOgf9v/J75XQrhCAo2/zm20YgQaMk2WuTYMAAAAAAA8Tdt/JQ0AgDbqoEmyzBf2K5OkQH8/9Usyri7bfqzItcEAXoE9ywAAAAAAMMKTMQAAXuo7k2RZDx9Jlknm+5ZtI1kGNEQbRgAAAAAADPFkDACAF6qttSrrdJnhXPc4kmXfnSpV6flq1wYDeDqzZBl9GAEAAAAAPo5kGQAAXujE2XJVVBm/8N0tLszF0bjPgE7GbRitVmnPiWIXRwN4OCttGAEAAAAAMMKTMQAAXujwKeOqMknqGus7ybIuMaGKCAkwnNtxvMi1wQCejjaMAAAAAAAY4skYAAAvdPiU8X5l8eHBCg8JdHE07mOxWNTfpLpsV85ZF0cDeDjTyjLaMAIAADRXXl6e5s+frzFjxig+Pl5BQUHq0KGD+vbtq2uuuUYzZ86UxWIx/cjIyHD3lwAX+/vf/66oqCh+BwAPR7IMAAAvdLjAuLLMl1ow1umXbJws20GyDKiHNowAAMC90tPTG00k1f/Iyspyd8h23nnnHXXv3l1z587V2rVrderUKVVVVamwsFB79+7VZ599prfeesvdYaKeb7/91u73auXKlQ3WVFRUKDg42LbmmWeeuej7Zmdn6+qrr9a9996rs2d5PgU8HU/GAAB4IbM2jF1j27s4Eve7NDnK8PiRgjKVVFS5NhjAk9GGEQAAoNU+/fRT3XnnnSor+/5Z7KabblJmZqbKy8t18uRJvfvuu0pMTLStP3LkiKxWq+bOneuukPF/1q1bZ/vc399fw4YNa7Dmm2++UWVlpW08atSoVt/ParXqlVdeUb9+/fTFF1+0+joAXIsnYwAAvNARk8qy7j5YWXapSRtGq1XafaLYxdEAHsw0WUYbRgAA4BoZGRmyWq22j5SUFLv5VatW2c2npqa6J9B6amtrNWfOHNXWfv/31LBhw7RkyRINHDhQISEhSkhI0K233kpVmYe6MFk2cOBAhYU1fG5ev3697fPg4GBdfvnlrbrXoUOHNHbsWD344IMqLS1Vp06dFB4e3qprAXAtkmUAAHiZ8soa5RSVG875YhvGTtHtFNnOeJ+2ncdpdQHYmCXLRLIMAACgMevWrdOhQ4ds47p9yeobN26c2rVr58rQ0AwXJsJGjBhhuObChNqQIUMUHBzc4vu8+OKLGjBggFavXi1Juueee7R7927FxMS0+FoAXC/A3QEAAICWMasqk6RuPtiG0WKx6NJOkVp7sKDB3E72LQN+YGXPMgAAgNa4MNkiSQMGDDBcZ7FYlJ2drZqaGsXFxbkiNDThu+++U25urm08cuTIBmusVqs2btxoG48ePbpV95o7d67OnTun1NRUvfHGGxo/fnyrrgPAPXgyBgDAyxwuKDU8HuhvUado33wXY/9k41aMJMuAC7BnGQAAQKtcmGyRpNjYWNO1cXFx6tixo/z9/Z0dFprhwooxybiybPfu3Tpz5oxt3Nr9yvz8/PTAAw9o586dJMoAL0RlGQAAXubwKePKspQOYQrw980Xvc2SZUcKylRcUaWIEOM2jYBPYc8yAACAVikpKbEbBwUFuSkStNSFybLOnTurc+fODdZcWDlosVgMq8+aY8WKFa3e6wyA+/nmK2oAAHixw6eMK8u6xfrefmV1+ncyTpZJ0i6qy4D/QxtGAACA1rCatbOGx7swWWaWBLtwTb9+/RQVFdWqe5EoA7wblWUAAHiZwyZ7lnWL8739yuokR7VTdGigzpyrajC38/hZjehu3iYF8Bm0YQQAAD4kKytLq1evVk5OjkJCQpSUlKTRo0crOTnZ3aG1Sn5+vjZs2KCTJ0+qsLBQkZGRSkhI0LBhwwyrpSCdPn1a+/fvt42NWjBK9pVlrW3BCMD78WQMAIAXsVqtpm0YfbmyzGKxqH+nKMM59i0D/o/pO6JpwwgAADxfUVGRLBaL6UdGRoYk6fjx45o6daq6deumWbNm6YknntCjjz6q2267TZ06ddKNN96oY8eONXqvjIwMu2u/+eabdvNdu3Y1jCErK8vhX/cHH3ygyy+/XB07dtSNN96o+++/X0888YQeeugh3XzzzerSpYv69eun//3f/1VNTU2zvyazj3nz5pleY/z48bZ1a9asMV03a9asZv2sHGHRokWm94mNjbWrCpwzZ47huiNHjtjWvPrqq4Zr0tPTHRYzAM9EsgwAAC9yquS8Ss9XG851i/PdZJkkXWqybxnJMuD/mCXLqCwDAABtxL59+zRkyBAtX77ctHXihx9+qBEjRjSZMHO306dPa+zYsbrpppu0efNmWa1Wde3aVXfffbd+85vfaPbs2UpLS5Mk7d69W3fffbcuu+wyZWdnOyWe/Px8uyTX+++/75T7AIC70IYRAAAv8p1JVZnk220YJamfSbIs+/Q5nT1XpcjQQBdHBHgY2jACADxVTbVUnOPuKNq+iGTJ33tfCgwLC9O7775rGy9dulTLli2zjcvKyjRlyhTl5eUpPT1dkyZNUseOHVVcXKzVq1frgw8+UG3t938PHT9+XA899JCWL19ueK/09HS7ZNusWbPsqsuOHDmi1NRUB3+FP8jJyVF6eroOHTokSQoPD9crr7yiO+64o8HaFStWaNasWcrLy9P27ds1bNgwrVy5Un379rVbd+HXdNNNN+mDDz6wzW3fvl2XXnppozEtWbLErnJt6dKlWrBggfz9/RusXbRokRYtWiRJuuOOO/T2229r+vTpWrJkSfO+AQDgBt77LyQAAD7ocEGp4fGo0EDFhAW5OBrPcmkn42SZJO06cVYje7BvGXycabKMNowAADcrzpFebPyFejjAz3dI0SnujqLVAgMDdeutt9rG+/bts0uWPfvss8rOztayZcs0bdo0u3MfeughffHFF5o8ebKqq7/v1PHvf/9bWVlZTk16tUZ1dbVuueUWW6LMz89PS5Ys0cSJEw3XX3PNNVqxYoVGjhypc+fOKS8vT9OmTdPmzZsVHh5ueM6MGTPskmWLFy9uMllWv5KsrtJs3LhxpudUVFToo48+kiTdcsstjV6/tWbNmqVZs2Y1OJ6fn6+EhATb+I033tA999zTYF2XLl1sVYaPPPKI/vKXvzglTgCej7eRAgDgRdivzFxiZIg6mCQMacUIiGQZAABo09asWaPnn3++QaKszoQJE3TbbbfZxlarVZ9++qmrwmu2BQsWaP369bbxbbfdZpooqzNw4EA9/PDDtvH+/fv129/+1nT9ddddp9DQUNt48eLFjV4/JydH69ata3C8qfM++eQTlZSUKCwsTNdee22jax1t7dq1duMxY8Y0WHP06FG7dpyjR492elwAPBfJMgAAvMiRApNkmY+3YJQki8Wi/ibVZTuPkywDJPYsAwAAbVdSUpLuu+++RtfccMMNduPt27c7M6QWq6ysbFDZNGfOnGad+9BDD8lywZugXn/9dRUUFBiuDQsL0+TJk23jgwcPatu2babXXrx4saxWq9LS0hQW9sMbNZctW2ar1DNSV402ZcoUtWvXrllfh6NcmCzr2LGjevXq1egaSRo1apTT4wLguXgyBgDAi2SfNk6WdaWyTJJ0qcm+ZTtyilwbCOCJ2LMMAAC0YTfccIPh/lkXSktLsxvn5eU5M6QW++qrr3TixAnbOD4+XkOHDm3WuYmJiRo8eLBtfO7cOS1dutR0/YwZM+zGjVWJvffee5KkH//4x7ruuutsx0+fPq2vvvrK8JyysjJ98sknkpzXgrExF1bCGVWV1V/Tu3dvxcbSuh/wZTwZAwDgJWpqrTpWWG44l9Ih1PC4r+lnkiw7VliuonOVLo4G8DBmyTLRhhEAAHi/QYMGNbkmKSnJblxSUuKscFpl1apVduP+/fvbVYs1ZcCAAXbjjIwM07XXXnutXZWYWbIsKytL33zzjaTvE2z1E1/19zKr89FHH+ncuXOKiIjQNddc05zwHaa0tNSuUq45yTKqygCQLAMAwEucLK5QZY3xi92pHagsk6RLO0WZzrFvGXyelTaMAACg7UpMTGxyzYX7dElqtIWgO9RvC9m9e/cWnV9/fWOtFUNDQ+32Efvuu++0devWBuvqqsouv/xypaamatKkSQoPD7fNf/jhh6qqqmpwXl0SberUqQoODm7R13GxNm7cqJqaGtvYKFlWVFSkPXv22MbsVwYgwN0BAACA5jFrwShJXagskyQlRAQrLjxYp0rON5jbmXNWo3vGuSEqwEPQhhEA4KkikqWf73B3FG1fRLK7I3CqC6ukzAQEePZLofX3GIuIiGjR+fXXm+1ZVmfGjBl2FWWLFy+2a+Uo/ZD0qqsoCwkJ0ZQpU/T2229Lks6cOaPPP//cLvFWXFysFStWSJJuvfXWFn0NjnDhXmQxMTHq169fgzUbNmxQbe0Pfx9TWQbAs/+FAAAANtmnzxkejw4NVERIoIuj8UwWi0X9kyO1cl9+g7mdx6ksg48zrSyjDSMAwM38A6ToFHdHAS/XknaFnqq4uNhu3K5duxadX3/92bONPwNNnjxZ7du3V2lpqSRpyZIl+uMf/2ibP3DggLZt2yaLxaKbb77ZdvyWW26xJcuk7xNqFybL/vWvf+n8+fOKiYnR+PHjW/Q1NFd6erpWr17d5LrCwkL5+TX95jCzKr6FCxdq1qxZLQ0PgBfibaQAAHgJs2RZCi0Y7fQ32bdsB8ky+DzaMAIAAHiy+pVh5eXGe1abOXfO/pkxMtL42ahOu3btdP3119vGhw8f1pYtW2zjuhaMI0aMUOfOnW3HJ06caHft5cuX6/z5H7p71FWjTZs2TYGBvLETgHfgyRgAAC9xtNC4DWMKLRjtmCXLcorKVVhW6eJoAA9CG0YAAACPFhsbazeuX2nWlJKSkkavZ2TGjBl24wvbMtZvwVgnKChIU6dOtYuzru1iYWGhvvzyS8PzAMCT8WQMAICXyCowqSyLIVl2of6dzN89uTOH6jL4MNNkmfe3LAIAAGgLBgwYYDc+dOhQi86vv77+9YxMmjRJ4eHhtvGSJUskSTt37tSePXvk5+en6dOnNzivfpKtLrG2bNkyVVVVKS4uTmPHjm1R/C2RkZEhq9Xa4OMXv/iFbU2HDh1UW1vbYE1dxVyd7Oxsw2tZrVZaMAI+hGQZAABewGq16mghbRibIyEiRAkRwYZzu0iWwZeZJctEsgwAAMAT1E8u7dixQ1azfWcNbN++vdHrGQkODtaUKVNs46ysLH3zzTe25Nfo0aOVmJjY4LwJEyYoJibGNv73v/+t8vJy23nTp0+Xv79/s2N3lJUrV9o+v+qqqwz3squrfJOknj17qkuXLi6JDYBnI1kGAIAXKCyrVOn5asM52jA2ZL5vWZFrAwE8idkLLbRhBAAA8Ajjxo1TcnKybVxQUKBNmzY169wTJ04oMzPTNg4NDdVNN93UrHONWjGatWCsExgYqBtvvNE2Li0t1cKFC5WRkSFJuvXWW5t1b0c6ffq0duzYYRuPHz/ecN1XX31l+3zcuHFOjwuAd+DJGAAAL5B12riqTJK6kCxroH9ylOHxncepLIMPY88yAAAAjxYUFKRHH33U7tiCBQuade6CBQvsqtDuvfdexcXFNevciRMnKjLyhzcc/u1vf9OhQ4fk7+/faMKtfpLtV7/6lWpqapSUlKRRo0Y1696OtGrVKrvvgVEi7PDhwzpy5EijawD4Jp6MAQDwAkcLywyPhwb5K669cctBX9a/U4Th8RNnK3SmrNLF0QAegj3LAAAAPN7PfvYzjRw50jZ+77339OmnnzZ6TmZmpl1SrWfPnpo/f36z71m/FWNpaamk79s4xsfHm5531VVXKTY2tsF5N998s/z8XP+y84UtGFNSUtS9e/cGa7744gvb5xaLxan7qgHwLiTLAADwAtkmlWVdYkINe7D7un5Jxm0YJWn3iWIXRgJ4EtowAgAAeLqAgAAtXrzYluixWq2aMWOG3nrrLcP1K1as0KRJk1ReXi5JiouL0wcffKCICOM3EJqpXyUmmbdgvDDWadOmtfg8Z7kwWWbWgvHC/coGDhyoDh06OD0uAN6BJ2MAALyAWbKM/cqMxUeEKNak4m7XCVoxwkfRhhEAALhZenq6LBaL7SM7O9tufuzYsXbzWVlZdvOpqam2uaefftr03Hnz5tmOZ2Rk2F3zQqtXrza8X/1z3nzzTbvzunbtajefmppqm8vKyrKbayzO9PR0w+9TUlKSNm3aZJsvLS3VzJkz1a1bN9177716/PHHdf/996t///6aNGmS8vLyJEn9+/fXpk2b1K9fP8PrNubqq69WVFSUbRwQEGC3J5mZ+omxLl266Iorrmjx/S9Wbm6u9u/fbxsbJcusVqtWrVplGzu6BWP9n31zf8/r/84CcA+ejAEA8ALZp43bMKZ2CHNxJN6jX7LxOympLIPPsppUlonqVAAAAE/ToUMHrVq1SsuWLdPQoUNlsVh05MgR/f3vf9czzzyj1157Tbt27ZIk9enTR6+//royMzPVtWvXVt0vKChIU6dOtY3Hjx/frKqrK6+8UgkJCbbxjBkz3NL95MKqMovFoquuuqrBmszMTJ0+fdo2NloDwHcFuDsAAADQtKOFJm0YqSwzlZYUoYz9pxoc301lGXyVWbKMyjIAAOAiGRkZF3V+/Uqz5khPT5fV9E1DjjunTmpqaqvPNTJt2jRNmzZN+fn5Wr9+vU6ePKkzZ84oIiJC8fHxGjZsmFJSUhxyr4ULF2rhwoUtOsff318nT550yP0vxu23367bb7+90TWDBw926M+mPkf/7AG4FskyAAA8XOn5ahWUVhrOpcRQWWYmzWTfsiMFZSo7X62wYP4Mgo+hDSMAAIDXio+Pb1ZbRABA6/BkDACAhzNrwSixZ1lj+pkky6xWaW8urRjhg0yTZbRhBAAAAAD4NpJlAAB4uKOnjVswBvpblBTVzsXReI/OMe0UHmJcPca+ZfBJJMsAAAAAADBEsgwAAA+XZZIs6xQdKn8/XuQ2Y7FY1DcxwnBuVw77lsEXsWcZAAAAAABGeDIGAMDDHS00bsNIC8am9Us2bsVIZRl8EnuWAQAAAABgiCdjAAA8XLZJZVlKDMmypqQlGVeWHcgr0fnqGhdHA7iZWbJMVKgCAAAAAHwbyTIAADycWbKsS4cwF0fifdKSjCvLqmutOphX6uJoADez0oYRAAAAAAAjPBkDAODBzlfX6MTZcsO5VNowNql7XJiCA4z/3Nl9gn3L4GNowwgAAAAAgCGejAEA8GDHz5SbFoOwZ1nTAvz91DvRuBXjrhz2LYOPMa0sow0jAAAAAMC3kSwDAMCDZZ8uMzxusUidokmWNYfZvmVUlsH30IYRAAAAAAAjPBkDAODBzPYrS4wIUUigv4uj8U79TPYt25tboppak+QB0BbRhhEAAAAAAEM8GQMA4MHMkmVdaMHYbGaVZeVVNTpSUOriaAA3MkuWAQAAAADg40iWAQDgwczaMKbEhLk4Eu91Scdw+fsZ78m0+wT7lsGHUFkGAAAAAIAhnowBAPBg2YXGlWUpsVSWNVdIoL96xrc3nCNZBp9iZc8yAAAAAACM8GQMAICHqqm16nhhueEclWUt09ekFeOunLMujgRwIyrLAAAAAAAwxJMxAAAeKvdsuSprjF/cTmHPshbplxRpeHz3iWJZzaptgLbGNFlm3KYUAAAAAABfQbIMAAAPdfS0cQtGSepCsqxF0kwqy86WVymnyLh6D2h7aMMIAAAAAIARnowBAPBQZvuVxYQFKSIk0MXReDezNoyStCuHfcvgI9izDAAAAAAAQzwZAwDgobJOlxke7xJDVVlLhYcEKtWkGm/PCfYtg48wa8Mo2jACAAAAAHwbyTIAADyUWRtGs6QPGpfWyL5lgE+gsgwAAAAAAEM8GQMA4KGyTZJlXTqEuTiStsGsFeMuKsvgK8wqy0iWAQAAAAB8HE/GAAB4IKvVqmyTNowptGFslX7JxpVlecXndarkvIujAdzANFnm2jAAAAAAAPA0JMsAAPBAp8sqVVZZYziXGkuyrDXSTCrLJGk31WXwBVSWAQAAAABgiCdjAAA8kFkLRknqEkMbxtaIbR+shIhgwzn2LYNvYM8yAAAAAACM8GQMAIAHMmvBGBrkr9j2QS6Opu3ol2TcinEPyTL4AirLAAAAAAAwxJMxAAAeyKyyLKVDmCwWNhhqLbNWjLtowwhfYJYsY9MyAAAAAICPI1kGAIAHOlpokiyLYb+yi9HXpLIs+/Q5lZ6vdnE0gItZacMIAAAAAIARnowBAPBAWSZtGFM6kCy7GGaVZZK0/yStGNHGkSwDAAAAAMAQT8YAAHigo420YUTrdYpup/DgAMO5PbklLo4GcDHTPctowwgAAAAA8G3GrxYBAAC3Kamo0umySsM5KssujsViUe/EcG3OOtNgbm8ulWVo66gsAwAA8HTLly/X/fffr9zcXEnSwoULNWvWLPcGBa9WUFCgzZs369ixYyosLJSfn5+io6PVpUsXXX755YqOjnZ3iIBHIFkGAICHyTapKpOkLuxZdtH6JEYYJsv2nCBZhjbOtLKMZBkAAHCN9PR0rV69utnrjxw5otTUVOcF5EEKCgo0Z84cvfvuu+4OxWvx+/WDHTt26L333tOyZct04MAB03UWi0VXXHGFHnjgAd12223y9/d3YZSAZyFZBgCAhzlaaJwsC/S3KCmqnYujaXv6JBrvW7b/ZIlqaq3y96MlHdoos2QZAAAA3GrJkiV68MEHderUKXeHAi+XkZGh3/3ud/rqq6/sjvfv31+XX3654uPjdf78eR06dEirVq1SSUmJNm7cqI0bN+rll1/WP//5T/Xo0cNN0QPuRbIMAAAPY1ZZ1jk6lESOA/Q1SZaVV9Uo+3SZusW1d3FEgItQWQYAANwsIyPDbpyamqrs7GzbeNWqVUpPT3dtUG6Ul5enBx54QB988IEkKTo6WsHBwTp58qSbI/NO/H5Jv/71r7Vp0ybb+NJLL9Ubb7yhyy+/vMHas2fP6sknn9Rf//pXSdLXX3+t0aNHa82aNerZs6fLYgY8BU/GAAB4mOzTZYbHu7BfmUNc0jFcZjnHvbklrg0GcCUre5YBAAB4ivfff199+/a1JcqmTp2qPXv26JJLLnFzZGgr0tLStHbtWsNEmSRFRkbqpZde0uOPP247dvLkSd14442qrq52VZiAx+DJGAAAD2NWWZbaIczFkbRNIYH+6hpr/L3ck3vWxdEALkRlGQAAgMd45plnVFhYqNjYWL3zzjv617/+pY4dO7o7rBZbtGiRLBaLLBZLm93/y1u9/PLLiogw7qxyofnz56t79+628e7du/WPf/zDmaEBHoknYwAAPIzZnmVdYqgscxSzfcuoLEObZposo70rAACAq1ksFt18883as2ePbrvtNneHgzamR48euvLKK5u11t/fX3fddZfdsffee88ZYQEejT3LAADwIOera3TibLnhXAptGB2mb1KEPt6R2+D43txiN0QDuAptGAEAADzF3/72N9P2eMDFGjVqVIvWDx8+3G68fv16Wa1WWXhjHXwIyTIAADzIscJy022FUmjD6DBmlWW5Zyt0pqxS0WFBLo4IcAH2LAMAAPAYJMrgDK+88oqKi4uVkpLSovMSExPtxlVVVSosLFSHDh0cGR7g0UiWeYCjR4/q66+/VnZ2tiorKxUTE6O0tDRdccUVCgrixToA8CVHC8sMj1ssUueYdi6Opu3qa5Isk76vLhvRI9aF0QAuYtaGUbxbFAAAtD1ZWVlavXq1cnJyFBISoqSkJI0ePVrJycnuDg1tgKf+fg0ePNhh16qtNXt+ANomkmVutHLlSs2dO1fr1q0znI+MjNRPf/pTPfnkk83ajPFizJs3T08//XSrz//5z3+u//mf/3FcQADgo7IKjPcrS4wIUXCAv4ujabviw4MVExakwrLKBnN7SJahraKyDAAAeLGioiJFR0ebzq9atUrp6ek6fvy4HnroIX300UeyGvz9M3XqVC1YsECdO3d2ZrjwMr7++3Xq1Cm7cXR0tGJjeS6Gb+HJ2A1qa2v1yCOPaNy4cbZE2SWXXKK7775b//Vf/6UpU6YoMDBQZ8+e1Z///Gf169dPmZmZbo4aAOAKRwuNk2W0YHQsi8ViWl22N7fExdEALmJWWUayDAAAtBH79u3TkCFDtHz5csNEhiR9+OGHGjFihI4dO+bi6ODt2vLv144dO+zGEyZMYL8y+Bwqy9zg/vvv1+uvvy5J8vf318svv6x7771Xfn4/vFBx9OhRzZgxQ5s2bdKxY8d01VVXac2aNerfv7+7wgYAuED2aeM2jCkdQl0cSdvXJzFc6w4VNDi+N7fYDdEALmCaLOMhGADgXtW11co7l+fuMNq8hNAEBfh570uBYWFhevfdd23jpUuXatmyZbZxWVmZpkyZory8PKWnp2vSpEnq2LGjiouLtXr1an3wwQe2tnJ11UHLly93+dcBz+Trv18rVqywG99zzz1uigRwH+/9F9JLLVy40JYok6TXXnvN8H8+Xbp00eeff66hQ4fqwIEDKioq0rRp07Rjxw61a+e8PWtmzpypRYsWOe36AIDGZZ82rizrQrLM4fqYVJYdzC9RZXWtggKotkEbQ7IMAOCh8s7l6Zpl17g7jDZvxU0rlNzee/frCgwM1K233mob79u3zy6Z8eyzzyo7O1vLli3TtGnT7M596KGH9MUXX2jy5Mmqrq6WJP373/9WVlaWUlNTXRI/PJsv/37l5ubq888/t42HDx+uCRMmuDEiwD14FciFSktL9etf/9o2HjVqVKNZ+oiICC1YsMA2PnTokF588UWnxggAcJ+aWquOnTFOlqXShtHhzJJlVTVWfXeq1MXRAK7AnmUAAKDtWrNmjZ5//vkGiYw6EyZM0G233WYbW61Wffrpp64KD16uLf9+Pffcc6qs/H4/74CAAP31r391c0SAe/Bk7ELPPfec8vPzbeNHHnmkyXMmTpyovn372sZ/+tOfdObMGafEBwBwrxNF5aqqMX4xu0sMlWWO1j2uvYL8jf8UohUj2iT2LAMAAG1YUlKS7rvvvkbX3HDDDXbj7du3OzMktCFt9fdr7969eumll2zjJ554QoMHD3ZjRID78GTsIlarVW+88YZtHBUVpWuvvbZZ595xxx22z4uKivT+++87PD4AgPsdLTSuKpPYs8wZggL81CO+veEcyTK0SWbJMtGGEQAAeL8bbrhB/v7+ja5JS0uzG+flsVcemqct/n5VVlbqRz/6kaqqqiRJ48eP129/+1s3RwW4D8kyF1m/fr1OnDhhG48YMUJBQUHNOjc9Pd1uvHTpUkeGBgDwEGb7lXUIC1J4SKCLo/ENZq0Y9+aWuDgSwAVMujBSWQYAANqCQYMGNbkmKSnJblxSwt/9RtLT02WxWJr18ZOf/MR2XnZ2drPPs1gsWrRokfu+yBZqi79f999/v7Zt2yZJ6t27t5YsWSI/P54N4Lv47XeRjz76yG48dOjQZp87aNAgBQb+8CLp6tWrVVzMO94BoK3JPl1meLwLVWVO0ycx3PD4ntxiWa1mmQXAS9GGEQAAtGGJiYlNrgkNtX+2qq6udlY4aGPa2u/XH/7wB/3v//6vJKlz58769NNPFRUV5d6gADcLcHcAviIzM9Nu3KdPn2afGxISom7dumn//v2Svv8f7a5duzRixAiHxggAcK8sk2RZCvuVOU3fJOPKssKySuWXnFdCRIiLIwKcyDRZRhtGAIB7JYQmaMVNK9wdRpuXEJrg7hCcKiwsrMk1AQG8FIrWaUu/X3/961/1xBNPSPo+Cfjll18qNTXVvUEBHsA7/gtuA3bv3m037tSpU4vOT05OtiXL6q7nrGTZ6dOn9d5772nFihXauXOnCgoKVFlZqZiYGCUkJGjYsGEaN26cbrzxxma3kgQANM2sDWNKh6b/KEfr9DVpwyh9X11Gsgxti0m1JJVlAAA3C/ALUHL7ZHeHAS9n4Q1ADpORkdHstYsWLbK1YkxJSVFWVpZzgnKztvL79corr2jOnDmSvn99etWqVerRo4ebowI8A8kyFyguLlZubq7dseTklv0RWH/9vn37LjouI2vWrFG3bt0M2zzm5eUpLy9PO3bs0BtvvKFOnTrpqaee0k9/+lOnxAIAvqS21mpaWdY1lmSZs0SFBikxMkS5ZysazO3NLdbYS+LdEBXgJLRhBAAAAHzWSy+9RKIMaATJMhcoLCxscCwiwvyd7Ebqrz9z5sxFxWTmyJEjkr7fU+2ee+7RVVddpaSkJNXU1OjYsWNasWKFnn/+eeXk5Oj48eOaPXu2Vq5cqUWLFikkxPPefX/rx7eq3bZ27g7DJSxyzztc3PXOGrd9vW66r/tu654btwtop6T2SUpqn6TO4Z3VP7a/BsYPVERQy/7f6U3ySipUUWX8QnYqyTKn6pMYYZgs23OC/UHRxpgly9z1jwwAAAAAl3jxxRf18MMPSyJRBpghWeYCJSUlDY4FBwe36Br1E1FG13QEi8WiP//5z/rFL34hPz/7dxn37dtXffv21ezZs3XLLbfok08+kSS9//778vPz0zvvvOPQWPLz83Xq1KkWnXPo0CG7cUVNheS5e2kCMFFcWay8c3nKzP9hv0eLLOoR3UPpndI1qesk9Yzu6cYIHe9IgXFVmSR1pQ2jU/VNjNDKffkNju/NJVmGNoY9ywAAAACf88ILL+iRRx6RRKIMaAzJMhcwSmy1tArL2cmy3r1764YbbtANN9xg6zNsJiwsTB988IEGDRqkPXv2SJLeffddXXXVVbrnnnscFtMrr7yip59+2mHXA+DdrLLq4JmDOnjmoN7Y+Ya6R3bXjT1v1E09b1L7oPbuDu+iZRUY71cWHRqoyNBAF0fjW/qY7Ft2pKBMFVU1Cgn0d3FEgJNY2bMMAAAA8CXPPfecfvnLX0pqfqLs4Ycf1rZt23TNNdfo17/+tSvCBDwCT8Zeymr2Ykcr3Xrrrfrwww+bTJTVCQoK0vPPP293bP78+Tp//rxD4wIAM9+d/U7PbXlOE5ZO0PNbnlf+uYaVQd7EbL8yWjA6X5/EcMPjtVZp/0nnVHIDbsGeZQAAAIDP+NOf/tTiRJkkbdu2TatXr9a+ffucHSLgUXgydoHw8IYvwlVUNNwbpTH11xtd09UmTJigzp0728bHjh3TF1984caIAPii0qpSLdy9UNd+cK1e3vayzlUZV2h5OrM2jLRgdL6UDmFqZ1I9todWjGhTzCrLaMMIAAAAtCXPPPOMrSqM1otA89CG0QXat2/YHuz8+fMKC2v+C6CemCzz8/PTyJEj9d5779mOffnll7ruuusccv0HHnhAN998c4vOOXTokKZOneqQ+wPwLhU1FXpt+2tadmCZHr7sYV3f7XpZvOgF4GyTyrIUkmVO5+9nUe/EcGUeLWowx75laDMa60pAZRkAAADQZvzud7/TU089JUlKTk4mUQY0E8kyF4iJiWlwrLi42PC4meJi+xfroqOjLzouR0hLS7Mb79q1y2HXjo+PV3x8/EVd48lhT6rrJV0dFFHTHN0es9n3NXunuLPv62tfr5vu677buufGtdZaFZ0vUk5pjo4WH9X2U9t1qvxUs88/VX5KT6x7Qp9lfaZ5w+cpLjTOidE6Rm2tVdmnjSviUmNDXRyNb+qTGEGyDG2bWQtGiWQZAAAA0EbMnz9fc+fOtY1zcnLUs2dPN0YEeA+SZS4QGRmpjh076uTJk7ZjOTk5Sk1NbfY1cnJy7Ma9e/d2VHgXpX7SrqCgwE2RGBvScYjSOqU1vRCAx7JarTpeelwbcjZoRdYKfZv3bbMSeWuOr9HU5VP15BVPalLXSS6ItPVyiyt0vtr4heyu7FnmEn0SIwyP7ztZIqvV6lVVioChxpJl4vcbAAC4Rnp6ulavXm06P3bsWLvxkSNH7F4/S01NVXZ2dpPnzp07V/PmzZMkZWRkNLhundWrV9v9rV//fs7WnOeMn/zkJ/rJT35id2zmzJlatGiRk6LyXvx+yS5RBqBleBupi/Tr189ufPz48RadXz9ZVv967hIUFGQ3Li8vd1MkANoqi8WizuGddUvvW7TwmoX6YvoX+umlP1VkcGST5xZXFuuxNY/p91//XlU1VS6ItnWyTPYrk6RUkmUu0aejcXvjkopqnTjbsn1GAY9EG0YAAAAAAExRWeYigwYN0pdffmkb79mzp9nnVlRU6PDhw7axv7+/xyTL6reH7NChg5siAeArEsIS9LNBP9Pd/e7Wvw79S69tf01F54saPee9/e9p/5n9+suVf/HItoxHTJJlHcKCFBES6OJofFMvk2SZJO0/WazkqHYujAZwAtowAgAAD5CRkXFR52dlZbX4nPT0dLdtI9EUT42rJWbNmqVZs2a5OwxJ/H5JbeN3CnAXnoxd5Prrr7cbb968udnnZmZmqqrqh4qIK6+8UhERxu2iWuO1117TvHnztG7duhafW79CLjEx0VFhAUCjQgNDdXuf2/XJtE80K22WAvwaf/9HZn6mbvn4Fu0r3OeiCJvPrLKMqjLXiQgJNE2I7TtZ4uJoACdoNFlGG0YAAAAAgG8jWeYiI0eOtEskbdy4UZWVlc06t/67IqZPn+7I0PTaa6/p6aef1uLFi1t87pYtW+zGY8aMcVRYANAsEUERenTIo1py3RL1ienT6NpT5af0kxU/0eaTzX/DgitknT5neDy1A8kyV7rEpLpsXy7JMrQBJMsAAAAAADBFssxF/Pz8dM8999jGRUVF+uSTT5p17ttvv237PDIyUrfccovD45OkNWvWtGj9iRMntHHjRtvYYrFo0qRJjg4LAJqlR3QPvX3t23pgwAPyt/ibriutKtXsL2bry+wvTde4WtZp48qyrrGhLo7Et/U2SZbtp7IMbQJ7lgEAAAAAYIYnYxf65S9/qbi4H/bKeeGFF5o857PPPtPu3btt48cee0wxMTGNnnP69Gm9/vrrevnll5WTk9Ps+LZv326X/GrKc889p5qaGtv4pptuUq9evZp9PgA4WqBfoO4feL/euPoNxYSY/7+yqrZKj65+VB8f/tiF0RmrqbXqqEllWQqVZS5lVln23alSVVY3UpUDeAP2LAMAAAAAwBRPxi4UHh6uP/zhD7bx2rVr9Y9//MN0fUlJiebMmWMbd+/eXQ8//HCj9zh27JjS0tI0e/ZsPfTQQ+rbt6927NjR7BjvvfdenT17tsl1n332mRYsWGAbR0VF6Zlnnmn2fQDAmYZ2HKr3r3tf/WP7m66ptdbqiXVP6LOsz1wYWUMnispVWWP8InZX9ixzqd4djfcDra616nBBqYujARyssWSZaMMIAAAAAPBtJMtc7J577tHdd99tG8+ePVuvv/66amvtX8A4evSoJkyYoAMHDkj6vv3ismXLFBraeEuuV199VXl5ebZxcXGxnn322WbHt3v3bg0fPlzr1q0znK+qqtILL7ygG264wVZVFhQUpCVLlqhHjx7Nvg8AOFvHsI5aeM1Cje8y3nRNrbVWv17za608utKFkdkza8EoSakky1yqW1yYAv2NkwbsWwavZ6UNIwAAAAAAZgLcHYAvev311xUWFqYFCxaopqZGs2fP1vPPP68xY8YoMjJSBw8e1KeffqrKykpJUnJyspYvX64BAwY0eW2rwQsh9RNx9U2dOlVZWVm2irK9e/dq9OjR6t27t4YPH66EhARVVVXp6NGj+uqrr1RYWGg7t1u3blq8eLEuu+yylnwLAMAlgv2D9dyVz+l3m36npQeWGq6ptlbr0dWP6pVxr2h40nAXRyhlFRgny2LbB6t9MP9Mu1Kgv5+6x7XXPoM9yoyOAV6FZBkAAAAAAKZ4MnYDPz8/vfjii/riiy80YsQISdL+/fv1xhtv6LnnntPy5ctVWVmpiIgIPfroo9q9e3ezk1H33Xef3b5o7du312OPPdboOfPmzdOJEyf01ltv6eabb1ZUVJQkad++fVq4cKH++Mc/6i9/+YuWLFmiwsJCWSwWXXrppfrb3/7WotgAwB38/fz12yt+q3v732u6prq2Wo9kPKIDZw64MLLvZZnsV9Y1tvFKYjhHb5N9y/afLHZxJICDNbpnGW0YAQAA6qSnp8tisTj0Iysry91fFjwEv1+A5+It6240fvx4jR8/XtnZ2dq4caOOHj2qyspKRUdHKy0tTcOHD1dwcHCLrpmSkqI9e/Zo2bJlqqqq0tSpU9WpU6cmzwsNDdWdd96pO++8U7W1tfruu++0e/dunThxQmfPnpWfn59iYmKUlJSkK664Qh06dGjtlw0ALmexWPSzQT+TJL2x8w3DNaVVpXrwqwf19uS3FR8a77LYDp8y3gsrtQMtGN3hko4Rkk40OL6fyjJ4PSrLAAAAAAAwQ7LMA6SkpCglJcVh14uNjdXs2bNbfb6fn5969uypnj17OiwmAHC3uoRZVW2VFu1eZLjmZNlJPfjVg1p0zSKFBbomWXXYpA1j1ziSZe5gVll24myFzpZXKbJdoIsjAhyk0coykmUAAAB1MjIy3B0C2jB+vwDPxZMxAMBnWCwWPXLZI7qt922ma/YV7tNT658y3APS0c5X1+hYoXEbxm6x7Z1+fzR0iUmyTKK6DF6usWSZaMMIAAAAAPBtJMsAAD7FYrHoV0N/pXFdxpmu+SL7Cy3cvdDpsRw9fU61Jjm57lSWuUViZIgiQowL79m3DF6tsTcAsGcZAAAAAMDHkSwDAPgcfz9/PTP6GV0ae6npmhe3vqiNJzY6NY7vThm3YPSzSF06hDr13jBmsVjUu2OE4dw+KsvgzWjDCAAAAACAKZ6MAQA+qV1AOy24aoE6te9kOF9rrdVjax5Tbmmu02I4XFBqeLxzTKiCA/yddl80zqwVI20Y4dVIlgEAAAAAYIonYwCAz+rQroNevOpFtQtoZzhfdL5Iv1r7K1XXVjvl/odNKsu6xdKC0Z0aS5a5Yi87wCkaTZbRhhEAAAAA4NtIlgEAfFqv6F56esTTpvOZ+Zl6Y+cbTrn34VPGlWXd4to75X5ont4mybKS89XKKSp3cTSAozS2ZxmPBAAAAAAA38aTMQDA503qOkk/7vtj0/nXtr+mzPxMh9/3cIFJZVkclWXu1MskWSbRihFerLGqSJJlAAAAAAAfx5MxAACSfnHZLzQ4frDhXK21Vr9e82uVVDouUVJYVqmic1WGc91iqSxzp4iQQCVHGbfm3EeyDN6qsTaMog0jAAAAAMC3kSwDAEBSgF+A/jTmTwoPMq4qOlF2Qn/85o8Ou59ZC0ZJ6k5lmduZtWIkWQavRWUZAAAAAACmeDIGAOD/dAzrqHnD55nOf/TdR1p7fK1D7nX4lHELxvbBAYoLD3bIPdB6l5gky/afLHZxJICDNFZZRrIMAAAAAODjeDIGAOACV6derZt63mQ6//TGpx3SjvG7AuPKsm5xYbJYaInmbmbJssOnylRZ3Vg7O8BDNZos4/85AAAAAADfRrIMAIB6Hhv6mFIiUgzn8s7l6S9b/nLR9zCrLOsWSwtGT9AnMcLweHWtVd810kIT8Fy0YQQAAAAAwAxPxgAA1BMaGKr5I+bLIuNqi2UHl+nr3K8v6h5me5Z1i2t/UdeFY3SNDVOgv/HPfx+tGOGNqCwDAAAAAMAUyTIAAAwMThis23rfZjr/u69/p8qaylZdu7qmVkcLzxnOdYujsswTBPr7qbtJ4nLfyYtvwwm4HHuWAQAAAABgiidjAABM/Hzwz5XcPtlwLrs4Wwt3LWzVdY+dKVdVjXFLtG6xVJZ5it4m+5btJ1kGb9RYssykihYAAAAAAF9BsgwAABN17RjNvLHzDR0vOd7i65q1YJS+b/8Hz3BJR+N9y0iWwStZ2bMMAAAAAAAzPBkDANCIyxMv19QeUw3nztec1zPfPCNrYy9CGzh8qszweHJUO7UL8m9piHCS3onGlWW5Zyt09lyVi6MBLhLJMgAAAAAATPFkDABAE35x2S8UEWRcZbTm+BqtOraqRdc7XGBcWcZ+ZZ7FrA2jJO07WezCSAAHaHTPMtowAgAAAAB8G8kyAACaEBMSo4cve9h0/rktz6mqpvmVRofyTZJltGD0KB0jQhQREmA4tz+PVozwNlSWAQAAAABghidjAACa4aaeN6l/bH/DuWMlx/TOvneadR2r1aqDJsmyHgnmlUxwPYvFot4m+5btY98yeJtGK8t4JAAAAAAA+DaejAEAaAY/i5+evOJJWWTcruxv2/+mMxVnmrzO6bJKFZnsd9Ujrv1FxQjHM9u3bD/JMnibxpJlJv9fAwAAANqiiooKvfHGG7r++uvVuXNntWvXTuHh4erZs6fGjBmjhx9+WPHx8bJYLIYf8+bNc/eXABdbt26dLrnkEn4H2jiSZQAANFPfDn11Y88bDedKqkr06vZXm7yGWQtGSeoRT7LM01xism/ZgbwSWa2NtLUDPE1jv69UlgEAABdJT083TUAYfQQEBCguLk69evXSsGHD9KMf/UgvvfSSvv32W1VXV7v7y/FJ8+bNa9HPcNGiRe4O2U5mZqb69u2rn/70p/r44491/PhxVVRUqLS0VIcOHdLatWv14osv6tSpU+4OFReora1VVFSU7ffqt7/9reG6MWPG2NZMnDjxou9bVlamn//85xozZowOHDhw0deDZ+PJGACAFvjZoJ8pNCDUcG7x/sU6XHS40fPNkmVRoYGKbR900fHBsXqZtMYsqajWyeIKF0cDXIRG2zBSWQYAADxTTU2NCgoKdPDgQX3zzTd69913NWfOHA0ZMkTJycmaO3eu8vLy3B0mvMTx48c1ceJEHTlyRJJ06aWX6rPPPlNxcbHOnj2r1atX6/LLL7etX7hwoaxWq1atWuWukPF/du7cqbNnz9rGI0eObLCmsrJSmzdvto1HjRp1UfdcuXKl+vfvrwULFvBmWR9BsgwAgBaIbRere/rfYzhXY63RgswFjZ5vlizrEddeFl6w9ji94s33kTuQZ14lCHgc02SZhWQZAABwmYyMDFmtVttHSkqK3fyqVavs5svLy3Xs2DFt27ZNixYt0syZM9WxY0dJUn5+vubPn68uXbroscceU2VlpTu+pEZlZGS0ufZ98+bNs/sZzZw5025+7ty5dvOzZs1yT6AGnnrqKVvFWPv27fX555/r6quvVnh4uCIiIjRmzBh9/PHHioqKcm+gaGDdunW2z/38/HTFFVc0WPPtt9+qouKHN7WOHj26VfcqKSnRfffdp/Hjx+vIkSNq166dUlNTW3UteBeSZQAAtNCdfe9UYlii4dxXR7/SzlM7Tc81TZbRgtEjRYYGKiEi2HDuYB77lsGLmCXLSJQBAAAPFhISok6dOmnAgAGaOXOmFi1apKysLL388stKTk6W9H01yZ///GcNHz5c+/fvd3PE8FTnz5/Xe++9ZxtPnjxZCQkJDdbFxcVp2LBhrgwNzXBhsiwtLU2RkZGNrgkMDGzVz/Grr75SWlqa/va3v8lqtWrUqFHavn27rrzyytYFDq9CsgwAgBYKCQjRw4MfNp1/MfNF0zmSZd7HrBXj/pMky+BNTNqGsF8ZAADwMsHBwXrggQe0Y8cOjR071nZ869atGj58uLZu3erG6OCptm7dald1NGDAANO177//vnJzc3XLLbe4IjQ0w/r1622fG7VgrL/msssuU7t27Vp8n5deeknHjh1TWFiYXnzxRa1Zs0Y9e/ZsecDwSjwdAwDQCtd0vUZ9YvoYzm3K3aSvc79ucLykosp0nyuSZZ6rp0krxgMmiU/AI5lWlvE4AAAAvFNMTIw+//xz3XDDDbZjZ86c0aRJk5STk+PGyOCJcnNz7caxsbGmayMjI9WxY8dWJVvgeEePHtWxY8dsY7Nk2YYNG2yfX8x+ZWPHjtXOnTs1Z84ctsvwMTwdAwDQCn4WP80ZPMd0fsHWhhvAmlWVSSTLPNklHY1/NgfzSlRbyya/8BKmG1Lz8AcAALxXQECAFi1apK5du9qO5efn684773RjVPBEJSX2nUGCgoLcFAlaau3atXbjESNGNFizf/9+2350Uuv3K3viiSf01Vdf2f0/Bb6DZBkAAK00MmmkLku4zHBuZ8FOrTy20u6YWbIsNMhfSZG8Y81T9TRpw3iuskY5ReUujgZoJbNkGZVlAADAy0VFRenVV1+1O7Zq1SotXbrUTRHBE9V/Myu8x4V7kXXs2FHdunVrdI3FYjGtPmvK0KFDqSbzYQHuDgAAAG9lsVj088E/148//bHh/GvbX9NVna+y/aF16JRxsqx7XHv5+fHHmKfq2UjV38H8EnWOCXVhNEAr0YYRAAC0YRMnTlS/fv20a9cu27FnnnlG06dPb9b5NTU12rt3r3bv3q2TJ0+qtLRU7du3V4cOHTRgwAClpaXJz8/9fzedO3dOO3fu1N69e3X69GlVVFQoKipKCQkJGjp0qFJSUtwdokMVFRXpq6++0nfffSdJiouL0+WXX660tDQ3R9Y6586d0/r163X06FGdOnVKISEhiouLU79+/RrdQ83XXbgXmVFVWf01vXv3VocOHZweF9oekmUAAFyEQfGDNKbTGK05vqbB3L7CfVp9fLXSO6dLkr4zqSyjBaNnCw8JVHJUO8Mqsv0nS3VV7wQ3RAW0kGmyjEQ9AABoG+6//349+OCDtvHWrVu1e/du08RKRUWF/vWvf2nJkiVauXKlzp49a3rt2NhY3XPPPfqv//qvJl+Enzdvnp5++mnDuaefftp0bubMmVq0aFGD4/n5+XrnnXe0fPlybdiwQZWVlab37t27t372s5/ppz/9qQICPPNl34EDB2r79u2Gc3PnztW8efNUUVGhJ598Ui+//LIqKhru+z1w4EAtWLCgyVZ7jVUI/eQnP9FPfvKTBscXLlyoWbNmNf5FtFBmZqbmzZunzz77TOfPnzdck5iYqLvuuku//OUvFRkZaXqt5lQ9XXnllcrIyDCc+93vfqennnpK0ve/j7/97W8N1y1atMjw+1On7mflCFlZWc1ue/jBBx80+T3Yu3ev6RoqDNEYz/y/JgAAXmTOoDmGyTLp++qyKztdKYvFooMky7xWz4T2hsmyg3klBqsBT0QbRgAA0LaNGTOmwbFPPvnENFk2fPhwbdu2zTb29/dXenq6unfvrtjYWJ0+fVpbtmzRt99+q4KCAv3xj3/UW2+9pSVLlphWtzhaQUGBkpOTVV1dbTsWGRmp9PR0paSkqF27djpx4oTWrl2rrKws7du3Tw8++KD+3//7f1q2bJkSExNdEqcjlZWV6eqrr9aGDRtM12zbtk3jx4/X8uXLdc0117gwupapqanRo48+qgULftjTPDo6WhMnTlSXLl1UXl6unTt3as2aNcrNzdXvf/97vfbaa3r//fc1btw4p8T0/vvv231uliwDfBHJMgAALtIlMZdoXJdx+uroVw3mdp/erXU56zQ0YYSOFZ4zPJ9kmefrlRCujP2nGhw/kE+yDF6CyjIAgBepPJ7jtGsHdkyQpRkVN1UnT8paXeOUGALiYuUXHNzkuupTp1R73ryKqDmCOiVf1PneJC0tTVFRUSoqKrId+/rrr03Xl5f/8Ga4CRMm6NVXX1X37t0brMvMzNRPfvITbd++XSdOnNC1116rjRs3qnfv3obXnTdvnq3iJiMjQ2PHjrXNtbQap7q62i5R9otf/EJz585tUHlktVq1bNky3XfffTp9+rQ2btyo6667TmvXrlVoqGe1jf/Tn/6kM2fOSJL27Nmj//7v/7abv/fee7Vhwwb17t1b06dPV7du3VRdXa1t27bp//2//6fi4mJJUmVlpe666y4dPHhQYWFhhve6sIqofqWUMyrILlRTU6OpU6fq448/th177LHHNH/+fAXX++//wIEDuuOOO7R582adPn1akyZN0ltvvaVbb721wXXrvqaXXnpJc+bMsR1/8cUX7cZG9uzZY9eqtG7cr1+/BmtnzZpl+/78/e9/17333quEhATl5OTI39+/6W8A4IVIlgEA4ACzL51tmCyTvq8u6zDoUtWaFHaQLPN8vRLCDY8fzCtVTa1V/uw5B0/HnmUAAC/y3fjxTrt29y+/bFYCKftHt6vqxAmnxNDlzTcVNuzyJtflPPKozm3efFH36rNv70Wd700sFot69uypzRd8zw4cONDkeQMGDNC//vUv04TLoEGDtGrVKg0dOlTfffedioqK9OCDD+qrr4yf/5zl7rvv1vPPP284Z7FYNH36dHXt2lXDhw9XVVWVtm7dqr/85S+2lnueYuLEibbPMzIy7JJlq1at0po1a/SrX/1Kv//97xskZX79619r5MiROnbsmCQpNzdXS5cu1cyZM10TfAv85je/sUuUPfHEE/rd735nuLZXr1764osvNHz4cO3du1dVVVW666671KdPH9O9zKZPn66HH35YtbXf/52/ePHiJpNl7733XoNj77//vmGyrP6auns6I1GWmppq2h6xT58+2rdvnyTp9ttv1//7f/+vwZo777zTdnzw4MH69ttvHR4jfANPxwAAOECfDn2U3indcG5HwQ6tOGzcpjHQ36KUGM96px8a6pVgnNA8X11rWjEIeBSzZJlI9AIAgLYjOjrabpyT03SV4sMPP2yaKLvwuhcmnVauXGnXwtEVnnjiiSbXXHbZZbr99ttt4//5n/9RTY1zKiSdYc2aNZo+fbr++Mc/GiZlOnfu3KAy7z//+Y+Lomu+b7/9Vs8995xt3LVr1ybbHUZGRurFF1+0jcvLyxvdMywxMVGjRo2yjTds2KDjx483eo8LWzDWWbx4caPn5Ofna9WqVZKkW265pdG1jlZQUKD9+/fbxkatViVp3bp1ts+b2scOaAzJMgAAHGT2gNmmcyuOvWt4vGtsmAL8+efY0zVW/XeAfcvgDcw2sqayDAAAtCH1k2VlZWWmax9//HG98MILuvHGG5t17QkTJtiNP//885YH2EIRERF64YUX9Pe//11du3Zt1jkXxllYWOh1VTbz589vdH7KlCl24+3btzsznFZ55pln7Cql7rvvPgUFBTV53oQJE3TJJZfYxpmZmY0mA2fMmGH73Gq1aunSpaZrMzMzdeDAAQUGBmrw4MG24wcOHGg08bt06VLV1NQoOTnZLjnnCuvWrbP7Pholy06cOKGsrCzb2NUxom3h6RgAAAfpF9tPo5KN/zDLrdwpv5CG7/KiBaN3CA0KUBeTCkCSZfAKtGEEAAA+wKyVm5Ef//jHevjhhxvs/2UmISHBbrxz584WxdYaoaGhevjhh3X33Xc3+xx3xOkoffr0UZ8+fRpdExsba/c15uXlOTusFikpKdHy5cvtjl177bXNPv+6666zG7/11luma6dPny4/vx/+nm+sSqyuBeP48eN177332s0ZVZzVn7v55ptlcfF+xxdWjMXHxxvuE7h27Vq7MckyXAyejgEAcKDZl5pXlwV1WN3gmNleWPA8Zq0YD+SVujgSoBVMK8towwgAANqOM2fO2I3bt3fcmxPrtwU8ffq0w67tSN4Sp5FBgwY1a11SUpLt85ISz3rz4tq1a1VdXW0bBwcHGyZ5zNTfoywjI8N0bUJCgl211ddff23bz62+ukTajBkzdNNNN9n9npgl2U6cOGFLWLm6BaNknwhrTgvGHj16qGPHjk6PC20XyTIAABxoYPxADY4fbDgXEL5LlsACu2Mky7xHT5OfFZVl8A60YQQAAG1f/WRZcnJyk+ecPHlSCxYs0PTp09W7d2/FxMQoMDBQFoulwceFzp1z7d7Fu3fv1ty5c3XNNdcoJSVFERER8vPzaxDj2LFj3RrnxUhMTGzWutDQH7p+eNqebPXbQqakpBjuv2ame/fuduO8vDydPHnSdH39VoxLlixpsObrr79WVlaWgoKCNHXqVMXFxdn9nhw+fFhbtmxpcN7ixYtVW1urlJQUXXHFFc3+Ghzh3LlzyszMtI3ZrwyuEODuAAAAaGvu6neXtq7c2uC4xWJVUId1On9yqu0YyTLvcYnJz+rwqTJV19Sy9xw8G20YAQBepPuXXzrt2oEdE5peJCnlnbdlrXbOi/ABcbHNWpf8/F9Ue77SKTG0RbW1tdq/f7/dsQv3f6qvrKxMTz31lP7617+qqqrK2eG12pEjRzRnzhx9/PHH7g7F6cLCwpq1LiDAc1/SLiiwf4NsREREi843Wl9QUGBaMXXTTTfpZz/7mS1puHjxYj3yyCN2a+paKU6cOFFRUVGSvq8U+/KC/9e+//77GjJkiOF57qgq+/rrr+3+uzRKlpWUlNi1GaUFIy6W5/6fBQAALzW602h1j+yu785+12AuMHKLKk+Nl7WmvYL8/ZTawXgfLHieniZtGCtrapV1+hz7z8GzmSXLRBtGAIDnCerUdDWQswV6QCuvgLg4d4fgVXbs2NGgJZ9ZNUxRUZEmTpyob775xnbs0ksv1c9//nONGTNGSUlJdtVLdVy9Z9P27ds1YcIEnTp1ynbsuuuu07333qshQ4YoNjZWQUFBdudkZGQ0qC7zFq7+/jpDcXGx3bhdu3YtOt9o/dmzZ03Xx8fH68orr9TKlSslSZs2bVJ2drZSUlIk2VebXZj0mjZtmh544AFbQmrx4sV69tlnbT+D7Oxsff311w3Oc6R58+bp6aefbtbagQMHNrnm7rvvNtzfb+bMmVq0aFELo4Mv4q2kAAA4mJ/FT7P6zTKcs/hVKzB6gySpe3x7qpG8SPe49vIzeXY7SCtGeDrTPcv4fxAAAGgbVq1a1eDYddddZ7j25z//uV2i7MYbb9SWLVt01113qUePHoaJMlc7f/68brnlFrtE2XPPPad///vfmjJlipKSkhokyuB+9SvDysvLW3S+UdvMyMjIRs+pn8y6sBXj2rVrlZOTo5CQEE2ZMsV2PCYmRuPGjbONjx49qk2bNtnGdVVlPXr00ODBxltNAG0NT8cAADjBtV2vVXxovOFcYPQmyVKlS0wqleCZQgL9ldrBuC3IfpJl8HSmbRi9/927AAAAVqtVr732mt2xYcOGqXfv3g3W5uTk6J///KdtHBwcrL/97W8KDAx0epwtsWzZMru2koMHD9ajjz7qxojQHLGx9m1W61eaNaV+daTRNeubNm2aXWvKxYsX2z6vS3pNnjxZ4eH2WwvUT7LVrZWk9957z3AN0JaRLAMAwAkC/QP1474/NpzzCyhTQMR29erIfmXexqwV48G8UhdHArQQe5YBAIA2bPny5Tpw4IDdsd/85jeGa7/88ktZL6i6v+KKKxTngS0vv/jiC7vx9ddf76ZI0BIDBgywG2dlZdn2E2uOQ4cO2Y0TEhJM9yurExsba9d6c/Pmzbb7Ll26VJJx0mvq1Kl21YlLliyR1WrVwYMHlZmZaXqeo8ybN09Wq7XBx/Lly+3W7dixo8GakydP2q156623DK9ltVppwYhm4+kYAAAnmdZzmkIDjNt3BMWsVy/2uPI6lyQYJzgPUFkGT0dlGQAAaKMKCgr00EMP2R2bOHGibrjhBsP1ubm5duPk5ObtkdeShIcjeEucsDd69Gi7Kq/Kykrt3bu32edv377dbpyent6s82bMmGE3Xrx4sVatWqX8/HyFhoYatiSNiorS1VdfbRvn5ORo3bp1tgqzPn36qH///s2O3VHq9l+Tvt+TrV+/fg3WfPnll3bjq666yulxoe0jWQYAgJOEB4VrZMIkwzn/kFxVBhwynIPn6mmSLDtSUKbKapNkBOAR2LMMAAC0PefPn9cdd9yhnJwc27HExMRGK0lCQkLsxmVlZc26V/3kVXP4+/vbja0G+8harVaVlpaqtLRUFRUVbokTjhMeHt4gUfvxxx83+/x///vfduM777yzWecZtWKsa6V43XXXme7DV79y7MLzbr311mbH7UgXJsvGjRsni8Eb/C5MlvXu3bvZyWSgMTwdAwDgRD1DJspqNa7c+Oz4UhdHg4vVyyRZVl1r1ZGC5j28Am5BG0YAANDGnDp1SldddZU+++wz27EOHTpoxYoVjbatq7+P2ddff92saqxPP/20xTHW3yPqwmRYnQMHDig8PFzh4eH60Y9+ZBrnunXrmnXP1sQJx3r88cftEjyvvfaaKisrmzxvxYoVOnjwoG08cOBAXXvttc26Z0xMjMaNG2cbf/vtt83ad+yGG26wS8wuWrRIu3fvltSwWs0VCgoKtGvXLtv4wq/pQl999VWTa4CW4ukYAAAnOnUmUjWllxjOrTq2UsdLjrs4IlyMrrFhCvAzTn7SihEezeBdzN+jDSMAAPAuFRUVevHFF3XppZdqw4YNtuOXX365Nm3apEsvvbTR88eOHauYmBjbOC8vTy+//HKj5xQWFur3v/99i2Pt2rWrXdLkwgq4Ovv377d93rdvX9vnN910k926Dz/8UFu3bm30ft98842thR7cZ/DgwfrlL39pG2dnZ2vu3LmNnnP27Fn94he/sI1DQkK0cOHCFt23fnKrrKxM4eHhmjx5suk54eHhuuaaa2zj0tLv9+MeMGBAg4StK6xcudKuAnP8+PEN1uzfv1/Hjh2zjUmWwVFIlgEA4EQH8kpUeWak4ZxVVr237z0XR4SLERTgp66xYYZzJMvg0cySZVSWAQAAD1ZRUaGcnBxt375db775pmbOnKmUlBQ9/PDDOnnypCQpODhYv/nNb7Ru3Tp17969yWsGBwfrd7/7nd2xRx99VC+99JJhhdm+ffs0btw4w0RXUyIjIzVo0CDbeNWqVSop+eG54fz581qwYIFtfGH7vqFDh9olP2pqajR58uQGezXV+eSTTzR58mTDlnVwvT/84Q92+4T98Y9/1GOPPWZaXTh+/Hjt27dPkhQQEKC///3vGjhwYIvueeONNyowMNDu2JQpUxq09KzPqIKssWo0Z7qwBWP37t2VkpLSYM2F/w34+fk1e183oCkWq1GzXMBL7d69227Tx127diktLc2NEQHwdUN//6VOlVQotNsL8g/ObzAfGRypL6d/qZCAxv94hed48O2t+mRnw30AJqYl6G93DnFDREAzfP2atOJXDY/Hp0kPbGh4HACAFqiurrZrHSZJPXv2tNs/B5Ck9PR0rV692iHXSkhI0H333acHHnhA8fHxLT7/scce05///Ge7Y507d9a4ceOUlJSk8vJybdu2TatXr1ZISIiWLFnSaEu8I0eOKDU1tcHxJUuW2CUjunbtaktqffnll7YEyc0336zFixfbnVtWVqbrrrtOGRkZdscHDhyoESNGKDo6WoWFhVq3bp127typ7t276ze/+Y3uuecewxhTUlKUlZXVyHelafPmzdPTTz/d7PULFy7UrFmzbONZs2bpzTffbPK8K6+80u7rbm4S8ML7tTRxeOHPMDU1VdnZ2c06z+zl9ZqaGj366KNasGCBbU10dLSuueYadenSReXl5dq5c6dWr16t2trv26bHxMTo3Xff1dVXX92i2OtMnjzZrhXnRx99pOuvv77Rc0pLSxUfH6/y8nLbsUOHDjUr+exovXr1sv17Mnv2bL322msN1tx444368MMPJUlDhgzR5s2bHRpDS372F6r/O3uxnPVvK6+fm+OvFgAAnKSwrFKnSs5LsqiqcKT8E//VYM3Z82f1efbnmtJ9iusDRKv0Sgg3TJYdyCt1QzRAM5nuWcY7jwEAgOfy9/dXZGSkoqOjFR0drR49emjEiBEaOXKkBgwYIH9//1Zf+9lnn9WVV16pefPmacuWLZKkY8eOadGiRbY1gYGBmjFjhn7/+9+rW7durbrPzTffrJdffllPPPGEioqKdOTIEbu2jwEBAbrrrrv0wgsvNDg3LCxMX375pV566SU9//zzttZz27Zt07Zt22zrIiIi9Pjjj+tXv/pVk60a4Tr+/v76n//5H82cOVPz5s3TZ599pjNnzujdd99tsDYhIUF33XWXHnvsMUVFRbX6nrfccostWRYZGamJEyc2eU779u117bXXaunS7/dVHzJkiFsSZTk5OXbJIaP2irW1tXYJqauuusoVocFHUFmGNoXMOABP8vXh07r19a+/H1gq1b7n72XxP99g3aVxl+rtyW+7ODq01qc7c3X/2w0fQP0s0p751ygksPUP7IDTbHxZ+uzxhsc79pfua95m8QAAmKGyDN7u8OHD2rRpk3Jzc1VRUaHo6GilpKRo9OjRCg8Pd8g9zp07p/Xr12vfvn0qLi5WcHCwUlJSNGbMGCUkJDR5fk1NjXbs2KHMzEwVFBTIarWqQ4cO6t27t6644gr+e/MC586d07p163T06FEVFBQoODhYcXFx6tevnwYMGEALTdihssz1+L8oAABOYreHlTVIVWcHKyhmY4N1O07t0L7Cfeod4/rNc9FyPROMH5ZrrdJ3p0qVlhTp4oiAZjCtLGPPMgAAgG7durW6cqy5QkNDNWHCBE2YMKFV5/v7+2vQoEF2e6DBu4SGhra6vSIA5+PpGAAAJ9l3ssRuXHXmCtO17+9/39nhwEFSO4QqyN/4Tyi7BCngSUiWAQAAAABgiqdjAACcZG9usd24tjJB1WVdDdd+cvgTlVay55U3CPD3U7e4MMM59i2DxzJLlolWLwAAAAAAkCwDAMAJamut2n+yYZVRVZFxdVl5dbk+Pvyxs8OCg/QyacV4kMoyeCqzbYqpLAMAAAAAgGQZAADOkF14Tucqaxocry5OU0RgtOE5Hxz8wNlhwUF6JbQ3PH4wn8oyeCjaMAIAAAAAYIqnYwAAnKB+C8Y6FkuAbux5o/E5hXu15/QeZ4YFB+kRb1xZdqzwnCqqGiZJAbczrSyjDSMAAAAAACTLAABwgn0mybKuHcJ0S+/ppudRXeYdeppUltVapcOnylwcDdActGEEAAAAAMAMT8cAADjBnlzjvav6JEaoc3hnDes4zHD+P4f/o4rqCmeGBgdIiQlVoL9xRc6hU7RihAeiDSMAAAAAAKZ4OgYAwAnM2jD27vh9+z6zVowlVSX68uiXTosLjhHg76eusWGGc4fyjBOlgFuZJctEG0YAAAAAAEiWAQDgYGfLq5RTVG441ycxQpI0PmW8IoIiDNfQitE79DTZt+xgPpVl8EDsWQYAAAAAgCmSZQAAOJjZfmWS1Cfp+wRZsH+wru12reGazSc361jxMafEBsfpHm+8b9khkmXwRLRhBAAAAADAFE/HAAA42L6Txm34IkIClBQZYhtP6znN9Br/OvQvh8cFx+ppkiw7UlCmqhqzlneAm5AsAwAAAADAFE/HAAA4mNl+ZX0SI2S5oOVZ75je6hPTx3Dtx4c/Vq3pHkPwBD1MkmXVtVZlnz7n4miAJpgmy2jDCAAAAAAAyTIAAByssWRZfWbVZblludpycotD44JjdY0Nk59JnuFQvnF1IeA+ZnuW8TgAAAAAAABPxwAAOFBNrVX784wTJX0Swxscm9R1kgL8AgzXf/TdRw6NDY4VEuivLjGhhnPsWwaPQxtGAAAAAABM8XQMAIADZZ0uU0WV8YvSRpVlkcGRSu+Ubrj+i+wvdK6Kdn6erEd8wwSoJB0kWQZPYzWpLBNtGAEAAAAAIFkGAIADmbVg9LNIvRKMEyvXd7/e8Pi56nNaeWylw2KD4/VMMN63jMoyeByzZBmVZQAAAAAAkCwDAMCR9pwwTpZ1i2uvkEB/w7nRyaMVHRxtOPfRIVoxerIeccbJsu9Olaq21qySB3AD2jACAAAAAGCKp2MAABxol0myzKgFY51A/0BN6jrJcO7r3K+VV5bnkNjgeGaVZRVVtcopKndxNEAjTJNltGEEAAAAAIBkGQAADmK1WrU756zhXP9k82SZJE3pPsX4mrLqkyOfXHRscI7uJpVlknQwv8SFkQBNMWvDSLIMAAAAAACSZQAAOMjJ4gqdLqs0nOuXFNnouX079FW3yG6Gc58e+fSiY4NzhAUHKDmqneEc+5bBo9CGEQAAAAAAUzwdAwDgILtyjFswSlJaE8kyi8Wi67tfbzi3r3CfDhcdvqjY4Dzd442ryw7mkSyDBzFLlonKMgAAAAAASJYBAOAgu0xaMHaOaafI0MAmz5/cdbLp3H+O/KfVccG5epoly6gsgyehsgwAAAAAAFM8HQMA4CC7Txgny5pqwVgnqX2SBsUPMpz7z5H/yGo12XMIbtXDJFn2XX4pPzN4DrPfRZJlAAAAAACQLAMAwFHM2jD2S25eskySJnWdZHj8WMkx7T69u1VxwbnMKstKzlcrr/i8i6MBTFBZBgAAAACAKZ6OAQBwgFMl53WyuMJwLi0potnXuTrlavlb/A3naMXomcwqyyTpEK0Y4SlMK8vYswwAAAAAAJJlAAA4gFkLRklKa2YbRknq0K6Drki8wnBuxZEVqqmtaXFscK6o0CDFtg82nDuYX+LiaAAztGEEAAAAAMAMT8cAADjArhzjZFnHiBDFhRsnUsxM7jbZ8Pip8lP6Nu/bFscG5zNrxUhlGTwGbRgBAAAAADDF0zEAAA5gvl9Z81sw1rmq81UK9jdOsH119KsWXw/OZ9aK8SDJMngKs2SZaMMIAAAAAECAuwMAAKAt2GXShrElLRjrtA9qrzGdxuiL7C8azG04saHF14Pz9UwwTpZ9R7IMnoI9ywAAAABJUkVFhf75z3/qo48+0rZt21RQUKCAgAB17NhRiYmJGjx4sN555x2dOnXK8Py5c+dq3rx5rg0aLnf27Fl9++23OnLkiAoLC1VTU6Po6GglJSXp8ssvV0JCgrtDhIORLAMA4CIVnavU8TPlhnP9klueLJOksZ3HGibLsoqzlFOao+T2ya26LpyjR5xxsux0WaUKyyoVExbk4oiAemjDCAAAPEB6erpWr17d7PX+/v6Kjo62fXTv3l3Dhw/XiBEjNGDAAAUE8NKmq82bN09PP/10s9cvXLhQs2bNcl5ALZSZmambbrpJR44caTB36NAhHTp0SGvXrnVDZGhMbW2tYmJidPbs929UfuqppzR//vwG68aMGWP7+V199dX67LPPWnSf7777Tu+9956WLl2q7du3y2r2pkNJ/fv313333ae77rpLISEhLboPPBNPxwAAXKTdJ4xbMEqta8MoScOThpvOrc9Z36prwnl6mFSWSexbBg9hmiyjsgwAAHiumpoaFRQU6ODBg/rmm2/07rvvas6cORoyZIiSk5M1d+5c5eXluTtMeInjx49r4sSJtkTZpZdeqs8++0zFxcU6e/asVq9ercsvv9y2fuHChbJarVq1apW7Qsb/2blzpy1RJkkjR45ssKayslKbN2+2jUeNGtXs69clUXv16qUnn3xS27Ztk9VqVY8ePfTjH/9Yjz32mP7rv/5LN998szp06GCL6cEHH9SgQYO0ZcuWi/jq4ClIlgEAcJF25hi3YIxtH6SOEa17d1Fsu1hdEn2J4dzGExtbdU04T1z7YEWEGL+r9WB+iYujAQxQWQYAADxARkaGrFar7SMlJcVuftWqVXbz5eXlOnbsmLZt26ZFixZp5syZ6tixoyQpPz9f8+fPV5cuXfTYY4+psrLSHV9SozIyMmSxWGwfbaF137x58+x+RjNnzrSbnzt3rt28J1WVPfXUU7bWiu3bt9fnn3+uq6++WuHh4YqIiNCYMWP08ccfKyoqyr2BooF169bZPvfz89MVV1zRYM23336riooK23j06NHNvv6f/vQnffDBB6qt/f65KSUlRStWrNDBgwf15ptv6k9/+pP+/Oc/a/HixTp+/Ljmz58vP7/vn6X27dunsWPHauNGXqvxdjwdAwBwkXYcLzI83jcpUpaLqNoYkTzC8Pim3E2qrq1u9XXheBaLRT0Twg3nqCyDZzDbs4zHAQAA4LlCQkLUqVMnDRgwQDNnztSiRYuUlZWll19+WcnJ37emr6ys1J///GcNHz5c+/fvd3PE8FTnz5/Xe++9ZxtPnjzZcM+puLg4DRs2zJWhoRkuTJalpaUpMrLhlhcXrgkMDGz1zzExMVHr1q3TxIkTDedDQkL01FNP6bXXXrMdKy0t1dSpU+2q3+B9eDoGAOAibT9m/MfQwE6t26+szsikhm0FJKmkqkQ7C3Ze1LXheD3jjVsxkiyDR6CyDAAAtBHBwcF64IEHtGPHDo0dO9Z2fOvWrRo+fLi2bt3qxujgqbZu3WpXdTRgwADTte+//75yc3N1yy23uCI0NMP69T9sR2HUgrH+mssuu0zt2rVr1b2eeeYZderUqcl19957r6688krbOD8/X3/84x9bdU94Bp6OAQC4CPklFcopKjecG9A56qKuPSh+kNoFGP9xx75lnqeHSbLsYB7JMngA042p2bMMAAB4p5iYGH3++ee64YYbbMfOnDmjSZMmKScnx42RwRPl5ubajWNjY03XRkZGqmPHjq1OtsCxjh49qmPHjtnGZsmyDRs22D5vyX5lF2rfvn2LkqQ//elP7cYXVi/C+5AsAwDgIuwwqSqTpEs7RV3UtYP8gzQkYYjh3IYTGwyPw33MkmUniytUUlHl4miAesySZVSWAQAALxYQEKBFixapa9eutmP5+fm688473RgVPFFJif1e0kFBQW6KBC21du1au/GIEQ23rNi/f79tPzqpZfuVXWjIkCH6/+zdeXzT9f0H8Nc3d5o0PehBy9FyiMgpKHI5TpkK6jwQNm9R1HlsOq859xN16nQ6HWyoczrRuU1Rp6h4c4iIKChyyn2V0rtN0+Y+vr8/2oam+X7TtE2+SdrX8/HgQb+fb/LNuwolySvv98dgiH7v+YkTJ4YcHz58mGF9CuOrYyIioi6Q26+sT6YRuen6Ll9/ch/pT0ztqN6BejdnYScTubAM4ChGSgIcw0hERETdVGZmJp577rmQtTVr1uCtt95KUEWUjETZSQuU7FrvRda7d28MHDgw4m0EQZDtPpPzwAMPYM2aNXj22Wc7dL+CgoKwtfLy8g5dg5KHJtEFEBERpbIfjkkHVqP7dW2/shaTCsM/MQUAIkR8XfY1zik+JyaPQ11XmGFEmk4Nh8cfdm5/ZSPG9M9KQFVEzWTDMo5hJCIiotR39tlnY8SIEdixY0dw7Y9//CPmzp0b1f39fj9+/PFH7Ny5E+Xl5WhsbITZbEavXr0wevRoDB8+HCpV4j9k5HA4sH37dvz444+oqamBy+VCZmYm8vPzMW7cOBQVFSW6xJiyWq1YtWoVDhw4AADIzc3FGWecgeHDhye4ss5xOBz46quvcPToUVRVVcFgMCA3NxcjRoyIuIdaT9d6LzKprrK2txk6dCh69erVoccYNmwYhg0b1rkC2wgEZF57UdJjWEZERNRJoijKdpaN7uIIxhbFlmIUmgpx3H487Nz3Fd8zLEsiKpWAQblmbC8ND1DZWUaJJzeGkWEZERERdQ+//OUvccsttwSPv//+e+zcuVM2WHG5XHjnnXfw5ptvYvXq1aivl5/ckZOTg+uvvx533XVXu2/CP/jgg3jooYckzz300EOy566++mosW7YsbL2yshL/+c9/sGLFCmzYsAEej0f2sYcOHYrbbrsNN9xwAzSa5Hzb99RTT8XWrVslzy1atAgPPvggXC4Xfv/732Pp0qVwuVyS11iyZEm7o/aECM91r732Wlx77bVh6y+//DKuueaayN9EB23ZsgUPPvggPvnkE7jdbsnbFBQUYMGCBbj77ruRkSH/4dtI31OLqVOnYu3atZLnHnnkEfzf//0fgKY/jw888IDk7ZYtWyb536dFy/+rWDh8+HDIKNVI/ve//7X73+DHH3+UvU2sOwxbj34Emv7/DBo0KKaPQcpJzp+aREREKeBorQNWh/ReVF3dr6yFIAgYXzAe7+x/J+zcnto9MXkMip2T8hiWUZLiGEYiIiLq5qZMmRK2tnLlStmwbOLEifjhhx+Cx2q1GtOmTcOgQYOQk5ODmpoabN68Gd999x2qq6vx+OOP49VXX8Wbb74p290Sa9XV1ejTpw98Pl9wLSMjA9OmTUNRURGMRiOOHz+OL7/8EocPH8bu3btxyy234LXXXsPbb78tOSIu2dntdvz0pz/Fhg3y+3T/8MMPOOuss7BixQqcc07yfoDU7/fjzjvvxJIlS4IhTVZWFs4++2z0798fTqcT27dvx7p161BWVoZHH30Uzz//PN544w3MnDkzLjW98cYbIV/LhWUUnW3btoUcjxs3DtnZ2QmqhrqKYRkREVEn/VBilVwXBGBk39iMYQSAYb2GSYZlu2t3IyAGoOKb3UljkMy+ZQeqGJZRgsmFZWBnGRERJR9btTNu1zZn6aFSt//8ubHOhYA/PnscpWXooNGq272dvd4Nv7dr47wsOcYu3T+VDB8+HJmZmbBarcG1jRs3yt7e6Tzx52zWrFl47rnnJDtCtmzZgmuvvRZbt27F8ePHMWfOHHz99dcYOnSo5HUffPDBYMfN2rVrMX369OC5jnbj+Hy+kKDsjjvuwKJFi8I6j0RRxNtvv42bbroJNTU1+Prrr3Heeefhyy+/RFpaWtSPp4QnnngCdXV1AIBdu3bhD3/4Q8j5hQsXYsOGDRg6dCjmzp2LgQMHwufz4YcffsBrr70Gm80GAPB4PFiwYAH27dsHk8kk+Vitu4jadkrFo4OsNb/fjwsvvBAffPBBcO2ee+7Bww8/DL0+dH/zvXv34oorrsCmTZtQU1ODc889F6+++ip+/vOfh1235Xv661//il/96lfB9cWLF4ccS9m1a1fIqNKW4xEjRoTd9pprrgn+93nxxRexcOFC5Ofno7S0FGp1+z+/eoqPP/445Pj6669PUCUUCwzLiIiIOmlrifSYjpPyzDDrY/dP7NBs6RdhDp8DJQ0lKLJ0r7n0qWxQrnRYVlLnhNvnh17DFxWUIOwsIyKiFPKv338dt2tf+cjEqAKk/z35PRpqw8e/xcKFd4xBn5Pb38/20xd34vg+a5ce65bnZ3Tp/qlEEAScdNJJ2LRpU3Bt79697d5v9OjReOedd2QDlzFjxmDNmjUYN24cDhw4AKvViltuuQWrVq2KWe3RuO666/D0009LnhMEAXPnzsWAAQMwceJEeL1efP/99/jzn/8cHLmXLM4+++zg12vXrg0Jy9asWYN169bh3nvvxaOPPhoWyvz2t7/F5MmTUVJSAgAoKyvDW2+9hauvvlqZ4jvgvvvuCwnK7r//fjzyyCOStx0yZAg+++wzTJw4ET/++CO8Xi8WLFiAU045RXYvs7lz5+L2228P7o+1fPnydsOy119/PWztjTfekAzL2t6m5THjEZQVFxfLjkc85ZRTsHv3bgDA5Zdfjtdeey3sNldeeWVwfezYsfjuu+9iXqMUl8sV0qlXVFSUlH8WKXp8dUxERNRJW+O8X1mLIVlDIMh0f/xY+2NMH4u6ZnCe9Atsf0DE0RqHwtUQtSI3m59hGREREXUjWVmhIWRpaWm797n99ttlg7LW120dOq1evTpkhKMS7r///nZvc9ppp+Hyyy8PHv/lL3+B3++PZ1kxtW7dOsydOxePP/64ZCjTr1+/sM68Dz/8UKHqovfdd9/hqaeeCh4PGDCg3XGHGRkZWLx4cfDY6XRG3DOsoKAAZ555ZvB4w4YNOHbsWMTHaB3stFi+fHnE+1RWVmLNmjUAgPnz50e8baxVV1djz54T209IjVoFgPXr1we/bm8fu1j6xz/+EbJn2ZIlS6DT6RR7fIo9vjomIiLqBK8/gJ3HpTvLRvXLjOljpWnTUJxRLHlud83umD4WdU3/bBPUKulgk6MYKaHYWUZEREQ9QNuwzG63y972d7/7HZ555hlcdNFFUV171qxZIceffvppxwvsIIvFgmeeeQYvvvgiBgwYENV9WtdZW1urWJdNrDz88MMRz19wwQUhx1u3bo1nOZ3yxz/+MaRT6qabbooqRJk1axZOPvnk4PGWLVsihoHz5s0Lfi2KIt566y3Z227ZsgV79+6FVqvF2LFjg+t79+6NGPy+9dZb8Pv96NOnT0g4p4T169eH/HeUCsuOHz+Ow4cPB4+VqrGyshKLFi0KHl999dVhfzYp9fDVMRERUSfsrWiAS2b/gFNj3FkGyI9i3F3HsCyZ6DQqFGVL7wlwoEr+hTpR3Ml2lnHPMiIiIuo+5Ea5Sbnqqqtw++23h+3/JSc/Pz/kePv27R2qrTPS0tJw++2347rrrov6PomoM1ZOOeUUnHLKKRFvk5OTE/I9VlRUxLusDmloaMCKFStC1ubMmRP1/c8777yQ41dffVX2tnPnzoVKdeLt/UhdYi0jGM866ywsXLgw5JxUx1nbc5deeikEhV87tO4Yy8vLk9wn8Msvvww5ViosW7BgQXDvvREjRmDp0qWKPC7FF8MyIiKiTvihxCq5rtOocHLv9Jg/nmxYxs6ypDNQZt+yA5XsLKNE4hhGIiIi6v5a3rxuYTZLPzfvjLZjAWtqamJ27VhKlTqljBkzJqrbFRYWBr9uaGiIVzmd8uWXX8Ln8wWP9Xq9ZMgjp+0eZWvXrpW9bX5+fki31caNG4P7ubXVEqTNmzcPl1xyScifE7mQ7fjx48HASukRjEBoEBbNCMbBgwejd+/eca/r4YcfxsqVKwE0/T/44IMP2h3lSqmBr46JiIg64fsjVsn1YQUW6DSx/+dVLiyrcdWgylEleY4SY1Cu9JNkjmGkhOIYRiIiIuoB2oZlffr0afc+5eXlWLJkCebOnYuhQ4ciOzsbWq0WgiCE/WrN4VB2T+KdO3di0aJFOOecc1BUVASLxQKVShVW4/Tp0xNaZ1cUFBREdbu0tBPTPJJtT7a2YyGLiook91+TM2jQoJDjiooKlJeXy96+7SjGN998M+w2GzduxOHDh6HT6XDhhRciNzc35M/JwYMHsXnz5rD7LV++HIFAAEVFRZgwYULU30MsOBwObNmyJXicLPuVvfbaa8F98zIyMvDhhx+iqKgo7o9LytAkugAiIqJU9P3ROsn1sf2zJNe76pRs+VEUP9b+iNy03Lg8LnXcILnOsio7RFFUfHQFEQD5sAz880hERMnnykcmxu3a5ix9VLe7+O6xCPijH+nXEWkZ7e9dBAA/vX44/DKj3ylcIBDAnj17QtZa7//Ult1ux//93//hb3/7G7xeb7zL67RDhw7hV7/6FT744INElxJ30XbnaDTJ+5Z2dXV1yLHFYunQ/aVuX11dLdsxdckll+C2224LhobLly/Hb37zm5DbtIxSPPvss5GZmQmgqVPs888/D7nN6aefLnm/RHSVbdy4MeTvpVRY1tDQEDJmNN4jGN99911ce+21EEUR6enp+Oijj0L2f6PUl7w/WYiIiJJUTaMbh6ql9586rSg+YVmWIQv5afmocITPY99TuwdT+kp/yoqUNyhP+gVeo9uHqgY38iwGhSsiAvcsIyKilGLJMSa6BJizEv+czZQRXbBHTbZt2xY2kk+uG8ZqteLss8/Gt99+G1wbNWoUfv3rX2PKlCkoLCwM6V5qofQH37Zu3YpZs2ahqurENJHzzjsPCxcuxOmnn46cnBzodKHh69q1a8O6y1JFd/hgoc1mCzk2Gjv280zq9vX19bK3z8vLw9SpU7F69WoAwDfffIMjR44Eu51ad5u1Dr0uvvhi3HzzzcFAavny5fjTn/4U/H9w5MgRbNy4Mex+sfTggw/ioYceiuq2p556aru3ue666yT397v66quxbNmyDlYXasWKFZg/fz58Ph8yMjLwySefYPz48V26JiUfzl0hIiLqoO+PWmXPjS3KjNvjynWX/Vj7Y9wekzpuYI78vgj7OYqREoVjGImIiKibW7NmTdjaeeedJ3nbX//61yFB2UUXXYTNmzdjwYIFGDx4sGRQpjS324358+eHBGVPPfUU3n//fVxwwQUoLCwMC8oo8dp2hjmdzg7dX2psZkZGRsT7tA2zWo9i/PLLL1FaWgqDwYALLrgguJ6dnY2ZM2cGj48ePYpvvvkmeNzSVTZ48OAe3z31zjvv4NJLL4XH42FQ1s3x1TEREVEHfXdEegRjn0wjCjLi9ynYk7OlR4jsrt0dt8ekjssy6dDLJP2i9UCVdEciUdzJhmWp/+ldIiIiIlEU8fzzz4esjR8/HkOHhu/9XFpain/961/BY71ej7///e/QarVxr7Mj3n777ZCxkmPHjsWdd96ZwIooGjk5OSHHbTvN2tO2O1Lqmm1dfPHFIaMply9fHvy6JfSaPXs20tPTQ+7XNmRruS0AvP7665K36WneeustzJs3D16vl0FZD8CwjIiIqIO+lwnL4jWCsYVcZ1lJQwkaPOFPqClxZPctq2RnGSUIO8uIiIioG1uxYgX27t0bsnbfffdJ3vbzzz+H2GpE9YQJE5Cbm3x7QH/22Wchx+eff36CKqGOGD16dMjx4cOHg/uJRWP//v0hx/n5+bL7lbXIyckJGb25adOm4OO+9dZbAKRDrwsvvDCkO/HNN9+EKIrYt28ftmzZInu/WHnwwQchimLYrxUrVoTcbtu2bWG3KS8vD7nNq6++KnktURQ7PYLxzTffxC9+8QuOXuxB+OqYiIioAzy+ALYes0qei3dYNrRX+KciW+yt2yt7jpQnt2/ZAY5hpISR27OMLweIiIgotVVXV+PWW28NWTv77LPxs5/9TPL2ZWVlIcd9+vSJ6nE6EnjEQqrUSaF+8pOfhHR5eTwe/Phj9FsnbN26NeR42rRpUd1v3rx5IcfLly/HmjVrUFlZibS0NMmRpJmZmfjpT38aPC4tLcX69euDHWannHIKRo4cGXXtsdKy/xrQtCfbiBEjwm7z+eefhxzPmDEjpjW8/vrrHQ7KHn/8cUybNg233357TGsh5fDVMRERUQfsKrPB7ZPu0Ih3WFZoKoRFZ5E8x1GMyUVu37KDHMNIicLOMiIiIuqG3G43rrjiCpSWlgbXCgoKInaSGAyGkGO7Pbrn6G3Dq2io1eqQ49Ydba3XGhsb0djYCJfLlZA6KXbS09PDgtoPPvgg6vu///77IcdXXnllVPeTGsXYMkrxvPPOk92Hr23nWOv7/fznP4+67lhqHZbNnDkTgsTo+NZh2dChQ6MOk6Pxn//8B1dccQX8fn+HOsp2796NL774Aj/88EPMaiFl8dUxERFRB8jtV2bUqjG0d7rkuVgRBAFDs6W7yw5aD8b1salj5DrLSq1OODw+hashAiDxxkwT7llGREREqamqqgozZszAJ598Elzr1asXPv7444hj69ruY7Zx48aourE++uijDtfYdo+o1mFYi7179yI9PR3p6em47LLLZOtcv359VI/ZmToptn73u9+FBDzPP/88PB5Pu/f7+OOPsW/fvuDxqaeeijlz5kT1mNnZ2Zg5c2bw+Lvvvotq37Gf/exnIcHssmXLsHPnTgDh3WpKqK6uxo4dO4LHrb+n1latWtXubTrjtddew1VXXdXhoIy6B4ZlREREHSC3X9mp/TKhUcf/n9UBGQMk1480HIn7Y1P05PYsA4BD1ewuowSQC8vYWUZEREQpxuVyYfHixRg1ahQ2bNgQXD/jjDPwzTffYNSoURHvP336dGRnZwePKyoqsHTp0oj3qa2txaOPPtrhWgcMGBASmrTugGuxZ8+e4NfDhg0Lfn3JJZeE3O7dd9/F999/H/Hxvv322+AIPUqcsWPH4u677w4eHzlyBIsWLYp4n/r6etxxxx3BY4PBgJdffrlDj9s23LLb7UhPT8fs2bNl75Oeno5zzjkneNzY2LR1wOjRo8MCWyWsXr06pAPzrLPOCrvNnj17UFJSEjyOVVj26quv4uqrr4bf74fFYmFQ1gPx1TEREVGURFHE5iO1kufiPYKxRZGlSHL9qO2oIo9P0emblQadTHh6gKMYKRE4hpGIiIhSkMvlQmlpKbZu3YpXXnkFV199NYqKinD77bejvLwcAKDX63Hfffdh/fr1GDRoULvX1Ov1eOSRR0LW7rzzTvz1r3+V7DDbvXs3Zs6cKRl0tScjIwNjxowJHq9ZswYNDQ3BY7fbjSVLlgSPW4/vGzduXEj44ff7MXv27LC9mlqsXLkSs2fPlhxZR8p77LHHQvYJe/zxx3HPPffIdheeddZZ2L27aXsFjUaDF198EaeeemqHHvOiiy6CVqsNWbvgggvCRnq2JdVBFqkbLZ5aj2AcNGgQiorC3wNp/XdApVJFva9bJMuWLcO1116LQKDpdZPNZsOECRMgCELUv1555ZUu10GJJYhSw3KJUtTOnTtDNn3csWMHhg8fnsCKiKg7KbU6Mfnx1ZLnXr5mHKYPzYt7DeuOrcMtq24JWxcgYNMVm6BX6+NeA0Xn7GfWYU9FQ9j6r2eehDtmDUlARdSj/e0MoHpP+Prsp4AzFipfDxERdSs+ny9kdBgAnHTSSSH75xABwLRp0/DFF1/E5Fr5+fm46aabcPPNNyMvr+Ovxe655x48+eSTIWv9+vXDzJkzUVhYCKfTiR9++AFffPEFDAYD3nzzzYgj8Q4dOoTi4uKw9TfffDMkjBgwYEAw1Pr888+DAcmll16K5cuXh9zXbrfjvPPOw9q1a0PWTz31VEyaNAlZWVmora3F+vXrsX37dgwaNAj33Xcfrr/+eskai4qKcPjw4Qj/Vdr34IMP4qGHHor69i+//DKuueaa4PE111wTVagwderUkO872hCw9eN1NDhs/f+wuLgYR45EN8FF7u11v9+PO++8E0uWLAneJisrC+eccw769+8Pp9OJ7du344svvgiGNNnZ2fjvf/+Ln/70px2qvcXs2bNDRnG+9957OP/88yPep7GxEXl5eXA6ncG1/fv3RxU+x9qQIUOC/57ceOONeP7558Nuc9FFF+Hdd98FAJx++unYtGlTlx+3I/+/29P2z25nxevfVr5/Lo/PWqhbYxZMRLG0+bB0VxkAjOmfqUgN/dP7S66LEHGs4RgGZSr/ZJakDcozSYZlB6oaE1ANkdwYRn7ymIiIiJKXWq1GRkYGsrKykJWVhcGDB2PSpEmYPHkyRo8eDbVa3elr/+lPf8LUqVPx4IMPYvPmzQCAkpISLFu2LHgbrVaLefPm4dFHH8XAgQM79TiXXnopli5divvvvx9WqxWHDh0KGfuo0WiwYMECPPPMM2H3NZlM+Pzzz/HXv/4VTz/9dHD03A8//IAffvgheDuLxYLf/e53uPfee9sd1UjKUavV+Mtf/oKrr74aDz74ID755BPU1dXhv//9b9ht8/PzsWDBAtxzzz3IzMzs9GPOnz8/GJZlZGTg7LPPbvc+ZrMZc+bMwVtvvQWgKYBKRFBWWloaEg5JjVcMBAIhQdSMGTOUKI16CHaWUbfSNhkfd+c/cemsiZgzshCnFKSzFZ2IuuT+d7bj39+EjzscnGfG57+ZqkgNXr8Xp//7dAQkRqotnr4YM/rziWKy+POne/DX1fvD1k8psOCjX/8kARVRj/bX04Ca8D+POO8Z4PQFytdDRETdCjvLKNUdPHgQ33zzDcrKyuByuZCVlYWioiL85Cc/QXp6ekwew+Fw4KuvvsLu3bths9mg1+tRVFSEKVOmID8/v937+/1+bNu2DVu2bEF1dTVEUUSvXr0wdOhQTJgwgX/fUoDD4cD69etx9OhRVFdXQ6/XIzc3FyNGjMDo0aP5viWFYGeZ8vhTlLq1Y3VOLF1zAEvXHMCAHBPmjCzA7JEFDM6IqFO+OSTdWTauWJn9ygBAq9ai0FSIY43Hws5x37LkMjDXJLl+sKoRgYAIlYr/DpGC5PYsA/8cEhEREQ0cOLDTnWPRSktLw6xZszBr1qxO3V+tVmPMmDEhe6BRaklLS+v0eEUiij/u6E3d2rU7V8LscQAADlXb8bc1+zF7yZeY+ecv8NQne7DruI2jGokoKtWNbuyvlB6fN35AL0VrKbKEb3ALAEcaYjNfm2JjUK5Zct3tC6DU6pQ8RxQ3cmGZwJcDRERERERERHx1TN3a+IofkeO0hq0flAjOfixjcEZE8r6V6SoDgDMGZCtYCdDfIr1vGTvLkstAmbAMaPp3iEhRcs9xGJYRERERERERMSyj7i/LLd0J0qIlODt3cVNw9udPGZwRUbhvDtZIrvfLNqIw06hoLbKdZTZ2liUTs16D3haD5LkDMl2KRHHDsIyIiIiIiIhIFvcso24vy9UQ9W0PVtvx19X78dfV+zEw98QeZ0N7c48zop5Obr8ypUcwAkC/9H6S6xWOCrh8Lhg00gENKW9QngnlNlfY+oEqhmWkMNkxjHx+Q0RERERERMSPklK3l+22dep+B6uagrNzF3+JmU83dZztLmfHGVFPZHV4sKdCOngfr/AIRkC+swwAShpKFKyE2iO3bxnDMlIeO8uIiIiIiIiI5PDVMXV7t57aC3+4cAQmDuwFVSc/PN0SnJ3zl6bg7GkGZ0Q9yreHamUnmE0YqHxnWaG5EGpBLXmO+5YlF/mwjHuWkcLkOsvAzjIiIiIiIiIijmGkbk9rq8OVE4pw5YQiVDW48fHOcny4rQzfHKpBoBNZ18EqO5as3o8lq/djUMuoxlEFODmfoxqJuiu5EYyFGQb0zVJ2vzIA0Kq06GPug6MN4cHYkQbuW5ZM5MKyqgY36p1eZBi1CldEPZbsGEZ+do6IiIiIiIiIYRl1e/6a6uDXuen6mAZnBySCszmjCjEk38zgjKgb+eZQjeT6+IG9EvZ3vb+lv2RYxs6y5DIw1yR77mBVI8b0z1KwGurRuGcZERERERERkSyGZdTt+aqqJdelgrOV247j20O1sQnORhVizsgCBmdEKc7m8mLXcem9D89IwH5lLYosRVhfuj5s/YiNnWXJpLfFgDSdGg6PP+zcwSo7wzJSjtwsWXaWERERERERETEso+7PVy0dlrXWOjirbHDhkx3lWLm9DN9E2KcokgNVdixZtQ9LVu3D4DwzZo8swHmjCjAkP70T3wERJdLmw/IB+vgEhmX90vtJrrOzLLmoVAIG5pqwozQ8cD1Q1ZiAiqjH4hhGIiIiIiIiIlkMy6jb81utEL1eCNro9oXJSzfgyonFuHJicUyCs/2VjQzOiFLY+n3SIxhz0/UYkCM/Yi/eiixFkuuVzko4vA6kadMUrojkDMo1MyyjxGNYRkRERERERCSLYRl1f6IIX20dtPl5Hb6rVHD2wbYyfHs4NsFZ0x5nDM6IktlX+6W7UyckcL8yAChKlw7LAKCkoQQnZ5+sYDUUyaBcs+T6gSq7wpVQjyY7hpGjoomIiIiIiIgYllGP4Kuu6lRY1lrb4OzjHeVY2cXgbPGqfVi8ah9Oau44Y3BGlFwqbS7sqWiQPPeTwTkKVxOqwFwAjaCBT/SFnTvacJRhWRKRC8uO1Njh9QegVbOzhxTAzjIiIiIiIiIiWQzLqEfw10iPUeusvHQDrppYjKsmFqPS5sLHO7sWnO2TCM7OG1WAkxicESXUVwfk9zw886TEhmUalQZ90/visO1w2LkjtiPKF0SyBuVJj+v0+kWU1DowUCZMI4otuc4yhmVEREREREREDMuoR/BVyb/h3VV5lvDg7INtZdgUo+BszqgCzBnJ4IwoEb7cJ/2zY2CuCYWZRoWrCScXlpXby5UvhmQV9zJBEKSn4B2osjMsI2Wws4yIiIiIiIhIFsMy6hF8Me4sk9M2OPtoRzlWbu9acPaXz/fhL5/vw5D85lGNDM6IFCGKItbLhGWJHsHYotBUKLleZi9TuBKKxKBVo2+WESW1zrBzB6saAeQrXxT1PAzLiIgojqT28g0EZP7tISIionZJ/Tsq9e8txQ7DMuoRfNVVij9mnsWAqycV4+pJsQnO9lY0Ym9FaHB23qgCDM5jcEYUD/srG1HZ4JY8NzlJwrLept6S6+wsSz6Dcs2SYdn+ysYEVEM9klxYBr7YIiKirlOpwj984fV6odPpElANERFR6vP5wveol/r3lmKHYRn1CP7q+I1hjEbr4KzC5sLHO5r2ONt0JDbB2ZyRhZgzqjeDM6IYkhvBqFYJmDCol8LVSJMLy9hZlnwG5pixdk/4BzeO1DgSUA31SHJPOPjJRCIiigFBEKDT6eDxeIJrNpsNJpP03q1EREQUWWNj6IdrdTodO8vijGEZ9Qi+amXGMEYjv01w9tH2Mny4vbyLwdlePPP5XgZnRDG0fr90WHZqv0xYDFqFq5EmF5Y1eBrg8DqQpk1TuCKSMyBH+v/FoRq7wpVQj8UxjEREFGcZGRmoqjrx4SCbzYbc3FxoNHzriYiIqCNEUYTNZgtZS0/ne73xxmcs1CP4EtxZJiffYsA1kwfgmskDYh6cnZyf3rTHGYMzog7z+gPYeFA6ZE+WEYyAfFgGNI1iHJg5UMFqKJLiHOlPVVc1uGF3+2DS8ykZxRnDMiIiirO2YVkgEMCRI0fQr18/jmMkIiKKkiiKKC0thdfrDVm3WCwJqqjn4Dsz1CMka1jWmlRwtnJ7GTYfqetUcLanogF7KhraBGcFGJxnjn3xRN3MlqNWODx+yXM/OSl5wrL8tHwIECAi/IdEmb2MYVkSKe4lP4LocI0dwwszFKyGehxRBCR+TgBgWEZERDGj1WphMplgt5/onPd4PDh48CDS0tJgNpuRlpYGtVrNMVJEREStBAIB+Hw+NDY2wmazhQVlWq0Wer0+QdX1HAzLqEcI2GwIeDxQpcin2VoHZ+X1Lny0owwfxjA4mzOqALNHMjgjkrNmT6Xkukmnxqn9MpUtJgKdWodexl6odoZ/IKDcXp6AikhOYaYROrUKHn94d8/hagfDMoqvSE8e+GYlERHFUH5+Po4ePQqfzxdcE0URdrs9JEQjIiKi6AiCgMLCQn7QRAEMy6jH8FdXQ1VYmOgyOqx3hgHXTh6Aa9sEZ5sO13XqensqGrDnswY8/dleDO3d1HHG4Iwo1Jrd0mHZxEG9oFUnVxdGgalAMiwrs5cloBqSo1YJ6JdtxIGq8DeJDnPfMoq7SGFZcv1MIyKi1KbX61FcXIySkhK43e5El0NERJTSBEFA//79kZbGPemVwLCMujXL7HORc8owaHJyoDKnfhgkFZyt3NbUcdYZu8sbsLs8NDibM6oAg3JT/78VUWeVWp3YXd4geW7G0HyFq2lfb1NvbK/eHrbOzrLkMyDHJB2WVTMsoziT268MYFhGREQxp9VqUVRUhLKyMjQ0SD+vJiIiosi0Wi0KCwsZlCmIYRl1a7k334zc4cMTXUZctA7Oyuqd+Gh7eXBUY2e0Dc7mjCzAbAZn1AOtlukqA4DpQ3MVrCQ6vU29JdcZliWfIpl9y9hZRnHHsIyIiBSmVqvRt29f+P1+2O12NDY2orGxEX6/9L7AREREBOh0OqSnp8NisUCv13P0osIYlhF1AwUZRiw4cwAWnBnb4OzPDM6oB1r9Y4Xk+ikFFhRkGBWupn2902TCMgfDsmRTnCMXljkUroR6HIZlRESUIGq1GhaLBRaLBUDT/mWBQABiZzbjJiIi6qYEQYBKpWI4lmAMy4i6GSWCszmjCjCQwRl1Q06PHxsO1Eiemzk0T+FqolNgLpBcL7eXQxRFPtFKIsW9pEcnVDW40ej2wazn0zKKk0hhGfgzgoiIlCMIAtRqdaLLICIiIgrDd2WIujGp4Gzl9jJ8F6Pg7LxRBZg9ksEZdR9fH6yG2yf9pvL0JA3L5DrL3H436tx1yDZkK1wRySmWGcMINO1bNqJPhoLVUI8S6dP7DNSJiIiIiIiIGJYR9RRtg7MPmzvOuhqcPfXpXpxSYMGckb0ZnFHKW/Wj9H5l2SYdTu2XqWwxUZLbswxo6i5jWJY8CjON0KlV8PjDA9kjNQ6GZRQ/HMNIREREREREFBHDMqIeqCDDiOvOHIDrzhyA41YnPtrRteDsxzIbfiyzMTijlCaKItbslg7Lpg3JhVqVnN0XvYy9oFFp4Av4ws6V2cswrNewBFRFUtQqAf2yjThQZQ87d7gmfI0oZhiWEREREREREUXEsIyohyvMDA/OVm47ju+PWjt1vbbBWcuoxgE58uPHiJLB7vIGHK93SZ5L1hGMAKASVMhPy0dpY2nYuXJ7eQIqokgG5Jgkw7JD1QzLKI4YlhERERERERFFxLCMiILaBmcfbi/Dh9vLuhycPfnJHgwrsGAOgzNKYp/slA6W1CoBU4bkKlxNxxSYChiWpQi5fcuOsLOM4ol7lhERERERERFFxLCMiCQVZhpx/U8G4vqfDIxJcLarzIZdDM4oiX20XTpYGlechQyjVuFqOkZu3zKGZcmnSOZn3qFqh8KVUM8SKSxjZxkRERERERERwzLq1hrWrkX1unXwlByD99gx9H5wEfQDBya6rJQjFZyt3F6GLTEMzuaMLEAxgzNKkANVjdhT0SB57pzh0kFUMikwFUiul9nLFK6E2jNAprOsutGNBpcX6YbkDmYpRXEMIxEREREREVFEDMuoW6t86s/I0OuDx57DhxmWdVHr4KzU6sRHMQzOhhdaMHskgzNS3sc75DuwzhkhHUQlE3aWpY7inDTZc0dqHBjRJ0PBaqjHYFhGREREREREFBHDMupRvCUliS6hW+kT4+Bs53Ebdh5ncEbK+2iHdAfW2P6Z6J1hULiajpMLy6qcVfAFfNCo+M99sijIMEKnVsHjDw8vDtfYGZZRfEQKy8A9y4iIiIiIiIj47hn1KJ5jpYkuoduSCs4+2FaGH0qsnbpe2+CsZVRjkcwIM6LOOlrjwI5Sm+S5c1OgqwyQD8sCYgBVjioUmFPj++gJ1CoB/XulYX9lY9i5IzXct4ziJGJnGcMyIiIiIiIiIoZl1KOws0wZrYOzY3UOfLS9HCu3dz04+9PHezCiz4mOMwZnFAsf75Tf1+ucEcm/Xxkgv2cZAJQ7yhmWJZniXibJsOxwtT0B1VCPIIry5ziGkYiIiIiIiIhhGfUs3tJjiS6hx+mblYaFUwZi4ZTYBGc7Sm3YUcrgjGLnI5n9ykb2yUC/bPn9pZJJui4dJq0Jdm942FLWWIYxeWMSUBXJKeol/eeqpI6dZRQn3LOMiIiIiIiIKCKGZUng6NGj2LhxI44cOQKPx4Ps7GwMHz4cEyZMgE6nS3R5QTt37sSYMWPg9XqDa2vWrMG0adMSV1QHeY6VQhRFCBw5lBBSwdkH28uwNUbB2ZyRhZgzsgD9Zd6IJmrruNUpu8deqnSVteid1hsH6g+ErZc7pMNASpx+WUbJ9ZJap8KVUI/BsIyIiIiIiIgoIoZlCbR69WosWrQI69evlzyfkZGBG264Ab///e9hsVgUri6UKIq44YYbQoKyVCQ6nfDX1ECTk5PoUnq81sFZSa0DH+0ow8rt5V0Ozp74eDdG9skIdpwxOKNI3tt6XPbcuSkWluWb8iXDsipHVQKqoUj6Zkn/XCq3ueDzB6BRM7ygGOOeZUREREREREQRMSxLgEAggLvuugvPPPNMcO3kk0/GmWeeiaysLOzduxcfffQR6uvr8eSTT+L111/HihUrMGZM4sZoPffcc9iwYUPCHj+WPCUlDMuSTL/sNNwwZRBumDIoJsHZ9tJ6bC+tZ3BGEYmiiP99Lz2adWjvdAzMNStcUdfkGKV/rlU7qxWuhNojN97THxBRVu9KmfGflEK4ZxkRERERERFRRAzLEuCXv/wlXnjhBQCAWq3G0qVLsXDhQqhUJ96sOHr0KObNm4dvvvkGJSUlmDFjBtatW4eRI0cqXu/x48dx3333Kf648eI9dgxIYPBIkUkGZ9vKsPVYfaeu1zY4mzOqKTjjm9G087gNeysaJc/97NQ+ClfTdbnGXMl1hmXJp6/MGEYAKKl18OcTxQHDMiIiIiIiIqJIGJYp7OWXXw4GZQDw/PPP4/rrrw+7Xf/+/fHpp59i3Lhx2Lt3L6xWKy6++GJs27YNRqP8m2zxcMstt8Bms0Gj0UCn08HhcCj6+LHmPSbdSULJp21w9uH2Mny4vevB2eMf7caovic6zvjGdM/0zpZSyXVBAC4cU6hwNV3HzrLUYdJrkG3SodbuCTt3rI77llEccM8yIiIiIiIiooj46lhBjY2N+O1vfxs8PvPMMyWDshYWiwVLliwJHu/fvx+LFy+Oa41t/e9//8O7774LALjzzjuRmyvduZBKPCUMy1JRv+w03Dh1EFbceia+vGc67jt3KEb3zej09bYdawrNfvKnNbjgb+vx/BcHUFKb2kEwRc/nD2DFD9L7lU0a1AsFGcp+KCEWGJalln4y3WUldfw5RHHAsIyIiIiIiIgoIr46VtBTTz2FysrK4PFvfvObdu9z9tlnY9iwYcHjJ554AnV1dXGpry2bzYbbbrsNADBw4EAsWrRIkceNN3aWpb54B2d/Z3DW7X25vxrVjW7JcxeN6atwNbEhF5Y1ehvh9LFbKdn0zZLuaOXPHoqLSGEZBMXKICIiIiIiIkpWDMsUIooi/vGPfwSPMzMzMWfOnKjue8UVVwS/tlqteOONN2Jen5R7770Xx483dV4899xzio9/jBfPsZJEl0AxJBWcjepicPbH5uDsZwzOuq13vpcewWjUqnHOiN4KVxMbcmEZwO6yZNQ3W/rfVI5hpLiI2FnGsIyIiIiIiIiIe5Yp5KuvvgoGTwAwadIk6HS6qO47bdq0kOO33noLN910UyzLC7Nhwwb8/e9/BwBcfvnl+OlPfxrXx1OSr7wCoscDIcr//pQ6WoKzG6c27XG2snmPs22d3ONs67F6bG0Oz0Y373E2m3ucpbwGlxef7CyXPHf28HyY9an5T2NumvyY3BpnDfql91OwGmqPbGcZxzBSPIii/DmOYSQiIiIiIiJiWKaU9957L+R43LhxUd93zJgx0Gq18Hq9AIAvvvgCNpsNFoslpjW28Hg8WLhwIURRRHZ2Np555pm4PE7CBALwlpVBV1SU6Eoojvplp+GmqYNw09RBOFrjwIc7GJxRk3e3lMLtk+6yuHhsao5gBIA0TRqMGqPkyMUqZ1UCKqJI5PYsq7C54fL6YdCqFa6IujXuWUZEREREREQUEV8dK2TLli0hx6ecckrU9zUYDBg4cGDw2OfzYceOHTGrra3HH38cu3btAtC0z1purny3QqrycN+yHqV/r6bg7L1bz8S6u6fjt+cOxcg+nR/VuLXNqMYX1nFUY6oQRRGvbTwqeS4vXY/Jg+VHGSY7QRBkRzFyDGPyiRS0H7dyFCPFGMMyIiIiIiIiooj46lghO3fuDDnu27dj3Qt9+vSJeL1Y2bNnDx577DEATeMfr7322rg8jlLUWZmS694ShmU9VUtw9v5tTcHZved0PTh77MPm4GzpV3hh3QEc4xi1pLXpcB32VDRInpt7Wl+oVam9d49cWFblYGdZsumTKb8PaAn3LaNYiziGMbV/7hERERERERHFAscwKsBms6GsrCxkrW341Z62t9+9e3eX62pLFEXccMMNcLvd0Ov1wT3LUpm2dwFw8GDYureUYRk1BWe/nDYIv5zWNKqxZY+z7aWdHNVYYsXWEise+3A3RvfLxJyRvTF7ZIHs3kSkvH9tPCK5LgjAZeP7K1xN7MmFZTWuGoUrofYYtGrkpetR2eAOO8dOVYo97llGREREREREFAnDMgXU1taGrXV0v7G2t6+rq+tSTVJefPFFrFu3DgBw//33Y8iQITF/jI6orKxEVVXHuiH2798fcqzJz5cMyzzsLKM2WgdnR2rs+HB7OVZuP44dpbZOXa9tcHbeyAKcO7I3g7MEqmxw4eMdZZLnZg7N6xb/bziGMbX0y06TDMuOsbOMYo1jGImIiIiIiIgiYlimgIaG8JFfer2+Q9cwGAztXrMrysvLcc899wBo2k/t3nvvjen1O+PZZ5/FQw891KVraHvnS657uWcZRVDUyxQSnLV0nHU1OHv0wx9xar9MzGFwlhDLN5XA65furrh8QpHC1cQHxzCmlr5ZRnx3JPzDLyUc5UqxxrCMiIiIiIiIKCKGZQqQCrbahl/tiXdY9qtf/QpWqxWCIOCFF16ATqeL6fUTRZMvE5aVlChcCaWqol4m3DxtMG6eNjgmwdkPJVb80CY4mz2qIOL+RdR1Pn8A//1W+u99v2wjpp6Uq3BF8ZFrlP4+apwcw5iM+skE5sc4hpFijWEZERERERERUUQMy1KUGGmj9g764IMP8OabbwIAFi5ciDPPPDNm1040Te/ekuv++nr46uqgycpSuCJKZa2Ds8PVdny4owwrt5Vh5/HYBGfnjSrAuSMZnMXDyu1lKLVKj7a7YnwRVCpB4Yrio5exl+R6jasG/oAfapVa4Yookr5Z0n/XOYaRYi5SWIbu8fOPiIiIiIiIqCsYlikgPT09bM3lcsFkMkV9DZfL1e41O6OxsRE333wzACA/Px9PPPFETK4bCzfffDMuvfTSDt1n//79uPDCC4PH2sJCqCwW6AcPbvVrEHSDB0OdmRnbgqlHKc4JDc5aOs66Gpw9svJHjOnfMqqRwVksiKKI59YekDyn06hw6en9FK4ofuQ6y/yiH1a3VTZMo8Toly3dWVZj98Du9sGk59M0ipFIH7ISGJYRERERERER8V0YBZjN5rA1t9udFGHZ7373O5Q0jyRcvHgxMpMoQMrLy0NeXl6XrqHJzsaQbzZC4BtBFEfFOSbcMn0wbpkem+Bsy1ErthxlcBYrq3dXYne59OjaC0YXItvUPcbOAvJ7lgFAtbOaYVmSkRvDCAClVieG5Mfm33oi+c4ygWEZERERERERERiWKSI7OztszWazSa7LsdlC33TPisH4wG+//RZLly4FAMyePRvz58/v8jWTjSAIDMpIUVLB2cptZdhVFrvgbPbIAhQyOIuKKIr425r9kucEAbhp6kCFK4qvLEMWBAgQEd5FUu2sxsk4OQFVkZyCTANUAhCQaPopqXUwLKPYkQvLuF8ZEREREREREQCGZYrIyMhA7969UV5eHlwrLS1FcXFx1NcoLS0NOR46dGiXavL5fFi4cCECgQBMJhOeffbZLl2PiMK1Ds4OVdvxYQyDs7H9MzGbwVm7Nh6sxZajVslz5wzvjcF53SuM0Kg0yDZko8ZVE3auylmVgIooEq1ahYIMo+R+eiW1jgRURN0WwzIiIiIiIiKiiBiWKWTEiBEhYdmxY8c6dP+2YdmIESO6VM+xY8ewbds2AIDdbu9QcNfa9OnTJdfFSHtjEPVAA2IcnH1/1IrvGZy169m10l1lAHDztMEKVqKcHGOOZFhW7axOQDXUnj5ZMmFZXfgaUafJPS9j9z0RERERERERAIAfJ1XImDFjQo537doV9X1dLhcOHjwYPFar1V0Oy4gocVqCsw9//ROsuWsa7j77ZJxSYOn09VpCs0mPr8bFz36Fl9YfQlk932jfeLAGX+6TDoh+clIORvbNULgiZeSkSe9bVuMMD9Ao8eT2LePfYYotubCMLwWIiIiIiIiIAIZlijn//PNDjjdt2hT1fbds2QKv1xs8njp1KiyWzr+xDgDFxcUQRbHDv4qKikKus2bNGsnbEVF0WoKzj379E6y+cyru+umQLgdnf/hgFyb+cTUueW5Djw3OAgERj6yU/1DCLdO7Z1cZAOQYpMMyjmFMToWZBsn141aXwpVQt8YxjEREREREREQRcQyjQiZPnoyCggKUlZUBAL7++mt4PB7odLp277t27dqQ47lz58ajRCJKsIG5Ztw64yTcOuMkHKxqbBrVuL0cP3ZyVON3R+rw3ZE6/OGDXTitKKt5VGNvFGR0/1GNK7aWYkep9H+3sf0zMX5AtsIVKSc3LVdynWMYk5Pc38eeGHJTHDEsIyIiIiIiIoqIr5AVolKpcP311wePrVYrVq5cGdV9//3vfwe/zsjIwPz582NeHxEll5bgLFYdZy2hWUvH2T/XH0J5fffsXHF5/Xjy4z2y5+89ZyiEbrxPT45RurOMYVlyKpDpLKtscMPrlwk4iDqKYRkRERERERFRRHyFrKC7774bubknPvH/zDPPtHufTz75BDt37gwe33PPPcjOjtwRUVNTgxdeeAFLly5FaWlp5wvu5kRRhL++PtFlELVLKjgb2ju909f77kgdHv5gFyb8cRXmdsPg7KX1h3Bc5vv56bB8jB/YS+GKlNXLKP39MSxLToUynWWiCFTYus/fS0owubAM3feDA0REREREREQdwTGMCkpPT8djjz2GhQsXAgC+/PJLvPTSS7juuuskb9/Q0IBf/epXweNBgwbh9ttvj/gYJSUlGDduHCoqKgAAv/vd7/Dll19i1KhRsfkmUpS/sRGubdvg3n8A7v37m34dOABBq8WQ9V8mujyiqLUe1XigqhEfbivDyu1l2F3e0KnrbT5Sh83N4dnpwVGNBeidId3tkuyO1jiwdM1+yXMalYDfnjtU4YqUl2uUHsNo99rh8DqQpk1TuCKKRK6zDADK6l3om8X/XxQDcvvJduMuWyIiIiIiIqKOSOqw7OjRowCA/v37J7iS2Ln++uuxceNGvPTSSwCAG2+8EX6/H9dffz1UqhONfkePHsW8efOwd+9eAE3jF99++22kpUV+0+y5554LBmUAYLPZ8Kc//QmvvfZaHL6b1OHatg1HF0iHkr66OmiyshSuiKjrBuWacdvMk3DbzPgEZ3NGFeDcEakTnAUCIu56ayscHr/k+SsmFGFgrlnhqpQnN4YRAGqcNQzLkozFoIVZr0Gj2xd27riV+5ZRjHAMIxEREREREVFESR2WFRcXQ6VSwecLfwMplb3wwgswmUxYsmQJ/H4/brzxRjz99NOYMmUKMjIysG/fPnz00UfweDwAgD59+mDFihUYPXp0u9cWJT45HAh0bs+TadOm4Ysvvoh4m+nTp4etHTp0CMXFxZ16zHjRDR4se86zfz8048YpWA1R7MUrOHvo/V0YV9zUcZbswdmyDYfx7aFayXMWgwa/nnmSwhUlhlxnGQBUOavQz9JPwWooGgUZBuyrbAxbL+tG41EpwRiWEREREREREUWU1GEZIB3+pDqVSoXFixfj/PPPx6JFi7Bhwwbs2bMHe/bsCbmdxWLBwoUL8X//93/IyMiI6to33XQTXnrpJVRVVQEAzGYz7rnnnph/D6lGk5sLVUYGAhJ7lLkPHEAawzLqRloHZ/srG/Hh9jJ82IXgbNPhOmw6HD6qMd+SPMHZwapG/OmT3bLnfzNrCLJMOgUrSpw0bRqMGiOcvvCuJO5blpwKMo3SYRk7yyhWZMMyjmEkIiIiIiIiAlIgLAOA3/72t5g3bx7Gjh2b6FJi6qyzzsJZZ52FI0eO4Ouvv8bRo0fh8XiQlZWF4cOHY+LEidDr9R26ZlFREXbt2oW3334bXq8XF154Ifr27dup+tauXdup+yUjQRCgHzQIzu+/Dzvn3ie9vxFRdzA4z4xfzTwJv4pBcCaK4cHZnJEFODfBwZnT48evX/8BLq/0m8HjB2TjqonFyhaVYLnGXBxtOBq2XuWsSkA11J5CmY7N4+wso1iR3bOMnWVEREREREREQIqEZU8++SSefPJJDBw4ED//+c8xb948jBw5MtFlxUxRURGKiopidr2cnBzceOONMbted6EfPFg6LNvPsIx6BqngbOW2Muyp6Fpw9tAHuzCuKBuzR/ZWPDgLBETc8cYP2F4a3jUKAGk6NZ6cOxoqVc/qnuhl7CUZltW6pMdUUmIVZBgl18vq2VlGscKwjIiIiIiIiCiSlHiFPGnSJADAgQMH8Nhjj+HUU0/FsGHD8PDDD2P3bvmxW0St6WX2LWNYRj1RS3D2yR1T8PlvpuCOs4bg5Pz0Tl1LFIFvD9fiwfd3YcIfV2He819j2VeHUGGLf1fMk5/uwcc7y2XP3zf7FPTvlRb3OpJNlj5Lct3qsipbCEWlQKazrMzKzjKKEe5ZRkRERERERBRRSrxC/vLLL3H06FE89dRTOP300yGKInbv3o2HHnoIw4cPx6mnnorHH38cBw4cSHSplMT0gwdJrvtrauCtrFS4GqLkMTgvHb8+K37B2SsbDqMyDsHZKxsO47m18j/3zxycgyvG94/546aCLIN0WFbnrlO4EopGQaZ0WFZj98Dl9StcDXVLDMuIiIiIiIiIIkqZV8h9+vTBb37zG3zzzTc4ePAgHn30UYwaNQqiKGLbtm24//77MWTIEIwbNw5//vOfUVJSkuiSKcnohw6VPefauVPBSoiSl1RwNiTf3KlrtQRni97bifF/XIV5f49NcBYIiHji491Y9J7839vCDAOenj8agtCzxi+2yDZkS65zDGNykhvDCADl3LeMYkEuLEPP/BlJRERERERE1FZSh2VTpkzBlClTwtaLi4tx3333YcuWLdi9ezcWLVqEoUOHQhRFfPfdd7jnnntQXFyMyZMnY8mSJSgrK0tA9ZRsNNnZ0BQWSJ5z7WBYRtRWS3D26R1T8dkdU3D7WSd1LTg71PXgrNHtw+1v/BCxo8ykU+Ola8YhL125vdOSjWxnmYudZcmoUKazDACOc98yigXZzjKGZURERERERERAkodla9euxZo1ayLeZsiQIVi0aBF27tyJrVu34r777sOAAQMgiiK+/vpr3HHHHejXrx+mTZuG559/XqHKKVkZhw+XXGdnGVFkJ+Wn4/azhiQsOAsERLz13TFMf2ot3tt6XPZ2KgH422VjcUqBpVO1dReZ+kzJdavbqmgdFJ00nQYZRq3kOe5bRjEhitLrHMNIREREREREBADQJLqAWBo5ciRGjhyJRx99FC+88ALuuusuNDY2QhRFrFu3Dl9++SVuuummRJdJCWQYPgINn30ets6wjCh6J+Wn4/bm8GxfRQNWbi/Dym1l2FfZ2OFrtQRn3x6qxYPv78SoPhmYPDgHY/tnQatRwe31Y+PBWqzeXYHDNY52r7fo/OGYPjSvM99WtyI3htHqtiIgBqDiG+RJpyDDgHqnN2y9jJ1lFAvcs4yIiIiIiIgoom4Vlm3fvh1vvPEGli9fjgMHmkZ0texXI8p9opZ6FINMZ5mvqgreikpo8/kmO1FHtA7O9lY0YOW2Mny4vfPB2dZj9dh6rL7D91UJwB8uHIHLxxd1+L7dkdwYxoAYQL27XvY8JU5hphG7yxvC1o9zzzKKBYZlRERERERERBGlfFj2448/BgOyPXv2ADgRjLUNyrRa6RFH1HMYRkiHZUBTdxnDMqLOG5KfjiGz0nHHrBPB2crtZdjfieCsI4xaNZZePgYzhubH9XFSiVxnGdC0bxnDsuRTkCG9b1mZlZ1lFAPcs4yIiIiIiIgoopQMy/bt2xcMyHY2j89rHZAJggBRFCGKIjQaDWbMmIH58+fjoosuSmTZlAQ0WVnQFBbAd7ws7Jxr506kz5iegKqIuh+lgrPeFgNeuOo0jOqbGdPrpjq5PcsAoM5dp1whFLXCTKPkehk7yyie2FlGREREREREBCCFwrJDhw5h+fLleOONN7B161YA8gGZWq3GtGnTMG/ePFxyySXIzpb/hD31PMbhI9AgE5YRUey1Dc4+aB7V2JXgTKsWsGDyANw6YzDSDewabsugMcCoMcLpC+9KqnMxLEtGcp1lx9lZRrHAMYxEREREREREESV1WFZSUhIMyL777jsAoXuPtQ7IVCoVpkyZgnnz5mHu3LnIzc1NVNmU5AzDh6Phs8/C1p07dySgGqKeZUh+On4zKx13nHUS9lY0YuX2jgVnggD8dFg+7j1nKAbmmuNcbWrLNmSjtLE0bL3WVZuAaqg9BRnSnWU2lw92tw8mfVI/ZaNkx7CMiIiIiIiIKKKkfuelqKgoGIi1aHs8efJkzJ8/H3PnzkXv3r0TUSalGMNw6X3L/FXV8FZUct8yIgUIgoCTe6fj5N5Nwdmhaju+2l+N9fur8d0RK+qdHggQAAHINGoxbkA2pp+ch2kn5yLHrE90+SkhS58lGZaxsyw5FWZKd5YBQFm9E4Pz0hWshrod7llGREREREREFFFSh2UthOYX8i1dZOPHj8f8+fNx6aWXok+fPgmujlKNYYR0WAY0jWJkWEakLEEQMDDXjIG5Zlw5sTjR5XQbWYYsyXXuWZacesuMYQSA41YXwzLqGrmwDAzLiIiIiIiIiAAgqWevDBo0KBiQAU1vqI4fPx533nknbrrpJgZl1CmarCxoCwslz7l2cBQjEXUPsmEZO8uSkl6jRo5ZJ3murJ77llEXtZrKEIJjGImIiIiIiIgAJHlYtm/fPmzevBl33nkn+vXrB1EU8c0332D+/PnIzc3FZZddhnfffRcejyfRpVKKkRvF6Nq5U+FKiIjiI0vPsCzVyO1bVlbvUrgS6na4ZxkRERERERFRREn/Cnns2LF48skncfjwYXz11Ve47bbb0Lt3b9jtdrz++uu45JJLkJeXh6uvvhorV66Ez+dLdMmUAgwjRkiuO3fuDNkTj4goVXEMY+opkBnFWM6wjLqKYRkRERERERFRRCn1CnnixIlYvHgxjh07hjVr1uCGG25Ar169YLPZ8K9//QsXXHAB8vLycN111+GTTz6B3+9PdMmUpNp2lglGI9ImTEDWvEsBrzdBVRERxU62IVtyvdZVq3AlFC25fcsqG9wKV0LdDsMyIiIiIiIioog0iS6gMwRBwNSpUzF16lQsXboUq1evxn//+1+8++67sFqtePnll7Fs2TJkZ2fj4osvxvz58zF9+nQIAjcxpybGUSORPmsWjKeNRdppp8EwdCgErTbRZRERxYxcZ5nVZYUoivw3MQnlW6TDsgobO8uoi2T3LOPPASIiIiIiIiIgxTrLpKjVasyaNQv//Oc/UVFRgRUrVuCyyy6D2WxGTU0NXnzxRcyaNQsFBQW49dZbE10uJQm1xYK+f12CXtdcA+PIkQzKiKjbydRnSq57Ah44fA5li6Go5KbrJdcrbOwso66SC8tS/qUAERERERERUUx0q1fIWq0W559/Pp5++mk88MADMJvNEEURoiiisrISzz33XKJLJCIiUoTcGEaAoxiTlVxnWY3dDZ9fZoweUTQ4hpGIiIiIiIgooqQew/jqq68CAK666qp2b1tVVYW3334by5cvx5dffolAoOlNgZYxU6Lc+BkiIqJuSG4MIwDUuerQL72fgtVQNPIt0p1loghUN3pk9zQjahfDMiIiIiIiIqKIkjosu+aaa6BSqWTDspqammBA9sUXXwQDspZgTBCE4NcqlQpTp05VpnAiIqIEM2vN0Kg08AV8YeesbqvyBVG78tPlw7AKm4thGXWebFjGPcuIiIiIiIiIgCQPy4DwjrDa2lr873//w/Lly7F27Vr4/f6Q2wmtXvQLgoAzzzwT8+bNw9y5c5Gfn69c4URERAkkCAKy9FmoclaFneMYxuSUmaaFTq2CR2LkYoXNlYCKqNuQC8vAsIyIiIiIiIgISIGwDACsVmswIFuzZg18vqZPyUsFZAAwefJkzJs3D5deeil69+6teL1ERETJIMsgHZbVueoSUA21RxAE5KbrUWp1hp2rbHAnoCLqNuTGkXMMIxERERERERGAFAnL8vPzJQOy1mMWJ06cGAzICgsLE1YrERFRspDbt4xhWfLKt8iEZewso67gnmVEREREREREEaVEWOb1egGEBmSiKOKMM87AvHnzMG/ePPTt2zfBVRIRESWXbH225Hqdm2FZssq3SO9LVmFjZxl1AcMyIiIiIiIioohSIixrHZCdfvrpwYCsf//+iS6NupGAxwPXjp1wfv8dHN9vgenMyci+7LJEl0VE1GnsLEs9eel6yfWKBnaWURcwLCMiIiIiIiKKKCXCsjFjxgQDsuLi4kSXQ92M9X/vwPq/t+Hath2ix3PiRCDAsIyIUlqmIVNynWFZ8sqT6SyrZGcZdYXsnmWC9DoRERERERFRD5MSYdnmzZsTXQJ1Y96y43Bu/i5s3fH99xD9fghqdQKqIiLqOrkxjLWuWoUroWjJjWGsZGcZdYlcWMbOMiIiIiIiIiIA4Ctk6vHSTjtNcj1gs8G160eFqyEiih3ZMYzcsyxpyY1hrG70wOuXGaVH1B6OYSQiIiIiIiKKKKk7y15++eVEl0A9gPHUUyHodKEjGJvZv/4axpEjElAVEVHXyYVldq8dHr8HOrVO4YqoPXKdZQBQ1eBGYaZRwWqo25ANyziGkYiIiIiIiAhI8s6yq6++GldffXWiy6BuTmUwwHjaWMlz9q83KFwNEVHsZOmlwzKA+5Ylq3yLdGcZAFQ2cN8y6iS5sAwMy4iIiIiIiIiAJA/LiJRimjhJct353fcIuLhPDBGlJrnOMoCjGJNVhlELnUb66VmFjf8eUSdxDCMRERERERFRREk9hlGKz+fD6tWrsXbtWvzwww+orq5GfX09MjIykJOTg9GjR2P69OmYMWMGNJqU+/YoQUwTJ6JKYl30eOD8/nuYJkmHaUREySxTnwkBAkSIYedqXbUJqIjaIwgC8tL1OFbnDDtXybCMOksM/xkAgGEZERERERERUbOUSZMCgQCWLl2Kp556CseOHQuui61e/AuCgE8++QR/+tOf0KdPH9x999245ZZboFLxjQCKzDDsFKgyMhCorw87Z/96I8MyIkpJapUaGfoMWN3WsHNWV/gaJYd8i0E6LOMYRuosdpYRERERERERRZQSr5ArKysxc+ZM3H777SgpKYEoisGQTBCE4C8AwXPHjh3D7bffjhkzZqC8vDyR5VMKENRqmMaPlzxn//prhashIooduVGMHMOYvOT2LeMYRuo0hmVEREREREREESX9K+S6ujpMmTIF69atgyiKksFY61/AiQBNFEWsW7cOU6dORW0tx01RZKaJEyTXXTt3wm+1KlsMEVGMZOozJdfr3eGdtJQc8tINkusVNnaWUSfJjmEUlK2DiIiIiIiIKEkl/RjGefPmYe/evSEBWW5uLkaOHIlBgwbBYrHAaDTC4XCgoaEB+/fvx/bt21FdXQ2gKTjbt28fLr30UqxatSqR3wolOdPEidInRBH2b76F5eyfKlsQEVEMZOgyJNcZliWvPHaWUayxs4yIiIiIiIgooqQOy959912sWrUqGJRddtlluO222zBeZlxeC1EUsXHjRixevBhvvvkmAGDt2rV45513cNFFF8W9bkpN2qIiaAoL4DteFnbO/vUGhmVElJIseovker2HYVmyypfpLKvinmXUaXKdZQzLiIiIiIiIiIAkH8P4+OOPAwDMZjM++ugjvPbaa+0GZUBTN9nEiRPx+uuv44MPPoDZbA65HpEUQRBku8vsX20IjvkkIkolGXp2lqWafIt0WFZj98Djk+kQIopEtrOMYxiJiIiIiIiIgCQOy6qqqrBp0yYIgoDnnnsOP/1p57p6zj33XCxduhSiKOK7775DVVVVjCul7sQ0cZLkurekBJ5DhxSuhoio6+TGMNrcNoUroWjJjWEEgKpGdpdRJ3AMIxEREREREVFESfsKecOGpk6eAQMG4LLLLuvSta688koMGDAAoihiw4YNMaqQuiPTpImyn7JuXLNW2WKIiGIgU58puc4xjMlLbgwjwH3LqJPkwjKws4yIiIiIiIgISOKwrLy8HAAwY8aMmFxv5syZIdclkqLJzoZx9GjJc41r1ypbDBFRDHAMY+qxGDXQa6SfolXa2FlGnSA3SpqdZUREREREREQAkjgsq62tBQDk5eXF5Hq5ubkAgLq6uphcj7ov87RpkuuO77+Hv55vLhNRarHoLZLrNo8NAdluE0okQRBk9y2rbGBnGXUCxzASERERERERRZS0r5AzMpo+Cd8SmnVVS0hmsUi/aUjUwjx9mvQJvx+N69crWQoRUZfJdZYFxAAavY0KV0PRykuX3reMYxipUxiWEREREREREUWUtK+Q8/PzAQDrYxROfPnllyHXJZKjHzIEmoICyXONa79QuBoioq7J0EmHZQBHMSazPIt0WFbVwDGM1AkMy4iIiIiIiIgiStpXyOPHjwcA7Ny5E5999lmXrvXxxx9j586dIdclkiMIAszTpkqes69bB9HnU7giIqLOk+ssAwCb26ZgJdQROWbpsKym0aNwJdQtyO5ZJihbBxEREREREVGSStqwrG/fvhg2bBhEUcQ111yDHTt2dOo6W7duxTXXXANBEDBs2DD07ds3xpVSd5Qus2+Zv74ezq1blS2GiKgLzFoz1IJa8pzVbVW2GIqaXFhW3cjOMuoMubAsaV8KEBERERERESkqqV8h33HHHQCA8vJyTJw4EYsWLUJFRUVU9y0vL8fvf/97TJ48GZWVlQCA3/zmN3GrlbqXtPHjIRgMIWuGYcOQc/PN0OT3TlBVREQdJwgCLDrp/To5hjF5yYdl7CyjTuAYRiIiIiIiIqKINIkuIJJrr70WS5YswY4dO2C32/HII4/g0UcfxWmnnYbRo0dj0KBBsFgsMBqNcDqdsNls2L9/P7Zu3Yrvv/8eoihCFEUIgoBRo0bhmmuuSfS3RClCZTAgfcYMBNxumKdNhXnKVGjz8xJdFhFRp2ToM1Dnrgtbr/cwLEtWOWad5HpVozv43IYoarJhGf8cEREREREREQFJHpapVCqsWLECEyZMQFVVVTD82rRpEzZv3ix7P7HNvgy5ubl49913+cYSdUifp/+c6BKIiGLComdnWarpJdNZ5vEF0OD2wWLQKlwRpTR2lhERERERERFFlPSvkIuLi/HZZ59h0KBBAJrGSQmCEAzOpH613AYATjrpJKxatQpFRUWJ/DaIiIgSJkOXIbnOsCx55cqEZQBQ3cB9y6iD5MIy8INkREREREREREAKhGUAMHLkSHz33Xe49dZbYTAYgp1jLaFY619AU2eZwWDAr371K2zevBnDhw9PZPlEREQJlaGXDstsHpvClVC0ctKlxzACQI2d+5ZRB7WZuhDEzjIiIiIiIiIiAEk+hrG19PR0LFmyBA888ADeeustrFmzBlu3bkV1dTVsNhssFgtycnIwevRoTJ8+HXPnzkVOTk6iyyYiIko4ubCMnWXJK02nQZpODYfHH3aOnWXUYRzDSERERERERBRRyoRlLXJycnDTTTfhpptuSnQpREREKYFjGFNTjlmPo7WOsPXqRoZl1EEMy4iIiIiIiIgi4itkIiKibs6it0iu13sYliWzHLP0KMaqRo5hpA7iGEYiIiIiIiKiiPgKmYiIqJvjGMbUlGPWS66zs4w6TLazTFC2DiIiIiIiIqIk1WPCsgULFuC6665LdBnUjfgbG+E+eDDRZRARtUtuDKPNbYMo13FCCZeTLhOWcc8y6jB2lhERERERERFFknJ7lnXWsmXLIAgCXnrppUSXQinMb7OhYfVqNHzyKezr10M/dCgGvLk80WUREUUk11nmE31w+BwwaU0KV0TRyDFJj2FkZxl1GDvLiIiIiIiIiCLqMWEZUVe4du9G5dNPw/71RsDrPbG+fTvchw5BP2BAAqsjIopMLiwDmkYxMixLTnKdZTV27llGHSQblrGzjIiIiIiIiAhIUFh29OjRRDwsUaepjEbY130pec72/gfI/dVtCldERBQ9uTGMQFNYVmguVLAaipbsnmUcw0gdxbCMiIiIiIiIKKKEhGXFxcUQOPaFUoiuqAiG0aPg2rot7Fz9Bx8g57Zb+WeaiJJWui5d9ly9p17BSqgj5MIyu8cPp8cPo06tcEWUsuTCMvC5CxEREREREREAJOzjpKIoKvqLqKsyzr9Act179ChcW7cqXA0RUfTUKrVsYFbvZliWrHLM0nuWAdy3jDpI7rkwO8uIiIiIiIiIACQwLGMXDqUay+xzAbX0p/jr33tf4WqIiDpGbhQjw7LkJbdnGQBUMSyjjuAYRiIiIiIiIqKIEjKGscXVV1+t2GO98sorij0WdU+a7GyYzzwTjV98EXbO9tFHyL/vtxC02gRURkTUvgx9Bo41Hgtbt3lsCaiGopGu10CnUcHjCw86uG8ZdQg7y4iIiIiIiIgiSmhY9vLLLyv2WAzLKBYsF5wvGZb56+rQ+NVXSJ82TfmiiIiikKFnZ1mqEQQBOSYdjte7ws5VN3oSUBGlLNnOMk56ICIiIiIiIgISOIaRKBWlz5gBVVqa5Dnbe+8pXA0RUfQ4hjE1yY1irOEYRuoIjmEkIiIiIiIiioivkIk6QGU0In3WLMlzDZ99Dl9dncIVERFFx6K3SK5b3VZlC6EOyTFLh2XVDMuoQziGkYiIiIiIiCiShIxhXLNmTY94TOqeLBecj/oVK8LWRa8Xtvc/QPZVVyagKiKiyDiGMTXlmHWS6xzDSB3CMYxEREREREREESUkLJs6dWqPeEzqnkwTJkBTWADf8bKwc9Y330TWlVdA4JtPRJRk5MYw2jw2hSuhjpDrLKtiZxl1BMcwEhEREREREUXEV8hEHSSo1ci86GLJc+59++Davl3hioiI2sfOstTEMYwUE3JhGfjhHiIiIiIiIiIgQZ1lADBjxgzJ9YEDB+LFF19UuBqijsm8+CJUP/ssIIbvAWJ9620YR41KQFVERPIihWWiKLIjNknlpMuEZQ0My6gD2FlGREREREREFFHCwrK1a9dCEASIbcKG6urqBFVEFD1tnz4wTZ4M+/r1YedsH3yA/HvvgcpkSkBlRETS5MIyT8ADl98Fo8aocEUUjRyT9J5lNpcPHl8AOg3DDoqCxId7ADAsIyIiIiIiImqWsLCsxYABA9C/f/+QY6JUkDn3EsmwLOBwwPbxJ8i8RHpUIxFRIsjtWQY0dZcxLEtOcp1lAFBjd6Mgg//fKAoMy4iIiIiIiIgiSnhYduONN+Kee+5JdBlEHWaeMQPqrCz46+rCztUtf4NhGRElFYveInuu3l2P3qbeClZD0ZLbswwAqhs8DMsoOhzDSERERERERBRRwsOySOT2NWtNEASsWrVKgWqIQql0OmRccAFqX3kl7Jxr6zY4d+yEccTwBFRGRBQuUmeZzWNTsBLqiEyjFmqVAH8gvDOoupH7llGUZMMy7lVIREREREREBCR5WNZ2XzOh+QW9KIrBdYEv8imBMi+dKxmWAUDdf/4D42OPKlwREZE0rVqLNE0aHD5H2Ll6d30CKqJoqFQCepl0qGwID8aqGJZR1DiGkYiIiIiIiCiSpA7LpkyZEhKGffHFFxAEAVOnTk1gVUQn6AcPRtr48XB8803YOdvKlci7+y5osrISUBkRUbhMfaZkWGZ1W5UvhqKWY9ZLhmXsLKOocQwjERERERERUURJHZatXbs25FilanpBv2bNmgRUQyQt67LLJMMy0e1G/f/+h17XXZeAqoiIwln0Fhy3Hw9bb/A0JKAailZOuh4oC1+vafQoXwylJo5hJCIiIiIiIoqIHycl6qL0mTOg6d07ZE2dm4Ocm2+G5bzzElQVEVG4dF265DrDsuTWy6STXK+zMyyjKLGzjIiIiIiIiCiipO4sI0oFgkaDrPnzULV4CYynnYbsyy9D+llnQdBJv7lJRJQo6VqGZakoK03635NaB8MyipJcWAZ2lhEREREREREBDMuIYiLz5z+Hefp0GIYOTXQpRESyZDvLvAzLklm2SSu5zs4yipooSq+zs4yIiIiIiIgIAMMyopjQZGVBk5WV6DKIiCLiGMbUlG3SS67XMCyjaDEsIyIiIiIiIoqox7xCnjFjBmbOnJnoMoiIiBKGYVlqYmcZdRn3LCMiIiIiIiKKqMd0lq1duxaCwH0ZiIio52JYlprk9iyze/xwef0waNUKV0Qph2EZERERERERUUR8hUxERNRDyIVlNo9N4UqoI3qZpcMyAKhzsLuMoiAblvGDZEREREREREQAwzIiIqIeg51lqUmuswwAajmKkaLCPcuIiIiIiIiIIuErZCIioh7CorNIrjt9TngDXoWroWhlpulkG4AYllFU2FlGREREREREFFHC9yx74okn8Pzzz3foPgMHDoxTNUTxEXA4YH3zTdg+/gRFryyDoJPvEiAiihe5zjIAsHvsyDRkKlcMRU2tEpBp1KLOER5oMiyjqHDPMiIiIiIiIqKIEh6W1dXVoa6uLurbi6KIw4cPx68gohjyNzSg7t//Qe0rr8Df/Oe8/v0PkHnJxQmujIh6okhhWYOngWFZEssy6RiWUecxLCMiIiIiIiKKKOFhmaDQ+BdRlNmrgShOqp59FrX/fBmBxsaQ9ZoXXkDGhT+DoFYnqDIi6qkihWU2r03BSqijepl0OFhlD1uvY1hG0ZALy8AxjERERERERERAEuxZJoqiIr+IlOarqAwLygDAc+QIGj75JAEVEVFPZ9aaIci8Od7gaVC4GuqIrDTp8b21DoZl1I5Iz4PZWUZEREREREQEIAk6y1555RX0798/ro8hiiJmzJgR18cgaqvXwuthfestwO8PO1f99xeQfu65inVWEhEBgEpQwaw1o8EbHowxLEtu2SaZsIydZdQehmVERERERERE7Up4WDZ+/HgMGTIk0WUQxZyub19knDcH9SveCzvn3rMHjWvWIn3G9ARURkQ9mVnHsCwVMSyjTpMdwQiGZURERERERETN+AqZKI56LVwoe676b3/jiFAiUpzcvmUMy5IbwzLqtIhhGTvciYiIiIiIiACGZURxpR88GOmzZkmec+3ahcZVqxSuiIh6OrmwzOaxKVwJdYTsnmV2r8KVUMphZxkRERERERFRuxL2CvnQoUM4ePAgBg4cqOjjESmt1003yp6rWvJXiIEIb2IREcUYO8tSU7ZZOiyrc3jYpUzt4J5lRERERERERO1J2CvkoqIiFBUVQaNRZtu0lscjUppx+HCYZ86UPOfeuxcNn3yicEVE1JNZdBbJ9UZPo8KVUEdky3SW+QMibE6fwtVQSuEYRiIiIiIiIqJ28eOkRArI/dVtsueq/rYUot+vYDVE1JOxsyw1ye1ZBgC1Du5bRhFwDCMRERERERFRu/gKmUgBhpNPRvo550ie8xw4ANvKlQpXREQ9FfcsS00RwzK7W8FKKOVECsvAzjIiIiIiIiIigGEZkWJyb7lZdtxR1eIlCHjYGUBE8Zeuleks87KzLJml6dTQaaSfttXavQpXQymFnWVERERERERE7VJmwzAigv6kk2CZMwe2Dz4IO+ctLYX19deRfdVVCaiMiHoSjmFMTYIgoJdJh7J6V9i5Ojs/bEERiKL8OYZlREREREREihJFET5PAB6XD16XHx6XDx6nD57mr0+stTl2+TD8J31w0un5if4Wui2GZUQKyrnlZtg++giQ2KOs+tnnkHHRRVCnS7+RTUQUCxadRXKdYVnyy0qTDstqGJZRJAzLiIiIiIiIFPPjhuMoO1APj9MPb3PI5XH54XH64HU3/R7pZVokfYdmx7ZYCsGwjEhB+gEDkDl3LqxvvBF2zm+1ouall5B3++3KF0ZEPYZZZ5Zct3vt8AV80Kj41CBZye1bVudgWEYRcAwjERERERH1YK07uTzOEx1bTd1cbY/9MrfzY+plQzBkXO92H690jxV7vimPy/fidfnicl1qwnfEiBSWc8vNqH/vPYhOZ9i52mWvIOuyy6DNy0tAZUTUE8iNYQSaArMMfYaC1VBHyIVltewso0gihmXSe6kSERERERElmiiK8HkD8Dh90Bs10OjU7d7n63f2o2x/fVgI1tlOrtY8juiCKp2h/To7XYMzfFoZxQ7DMiKFafPykH3N1ah57vmwc6LLharFi1H46KMJqIyIeoJIYZnNY2NYlsQYllHncAwjEREREREpRxRF+H2BprAq2L3Vumur1bpL4jbNx16nH4FA0+uZObeMQvHInHYfu/a4HWUH6uPyfXlc0QVVOmP8IhcPO8viimEZUQL0uu46WF9/A/66urBz9f97B9mXXw7DsGEJqIyIuju5PcsAoNHTqGAl1FEMy6hTOIaRiIiIiIiiJIoi/N4A3M6m8Mrt9CG7wASdof0Y4f2//oDKww3wuHwI+GPQytWKNxmCKmeUnWVxDcvYWRZPDMuIEkBtNiPnl79ExWOPhZ8URVT88XH0f/UVCByPREQxZtKaZM81eBoUrIQ6KothGXUGxzASEREREfUYPq8fbkerPbeaA6+Wzq2WEMzjaL3uP7HuDA+6Lrn3NPQe0P4UGo/TD5fdG5fvK9qOqmhCvU7XEG1Y1skxjFq9GjqDGjqjBlqDpunr5t+1Rg10ejWy+8i/p0Ndx7CMKEGyfj4ftf9+Dd4jR8NPatQI2O1Qm83KF0ZE3ZpGpYFJa4Ldaw87x7AsuWWnSYdldQzLKBJ2lhERERERpYS2HV0epw8FgzKi2qvr9Ue+RV25HQFfbDu6gA7s1RXXrq5oO8viuF9YlF1dWb1NOOn0vGDopTeq24RfGmiNauj0GuiMTWtavRqCih9mTDSGZUQJIuh0yL/nHhy75dbgmq6oCHn33gvz9GnsKiOiuEnXpUuGZTaPLQHVULTkxjA2uH3w+ALQaRh8kIRIYRn4XIOIiIiIKBaa9ujyhYVdLR1erY+lv/bD7wt/7n7Zg+OR1bv9bqKAX4xLUAYA7ig7qvRxDaqiq0EbbWeZ0NSF1hJWNX3d+ripwyt4G6MGlhxjVJfuc3IW+pycFV0dlFQYlhElkHnGDKRNmADXzp3IuflmZF9+GQSd9JuhRESxkq5LR7m9PGydnWXJTS4sA4A6hwf5FoOC1VDKECO8YGZnGRERERERgKawq2V8odvhg9vpRd+Ts6BSt/+c+cU718Ftjy7M6ahoO6riGlQlw15dUdbQ56RMjDtvAPRGDbTNnVx6Y3Mnl+FE+KXVq9moQGEYlhElkCAIKHjkD1ClpUGTnZ3ocoioh0jXpkuuN3gZliWzLJNW9lytnWEZyeAYRiIiIiLqAUJGGDaHXaHh14l9uprWvSHrPm/48+YFT50Jo7n9D7WrowjUOis5gqpoRyBGrqH1nlxNXVuturdadXAFu7xanU+zRNdcUDA4EwWDM6O6LVFbDMuIEkzXt2+iSyCiHsais0ius7MsuWXJ7FkGNIVlRJLYWUZEREREKSCks8vpQ36x9OvWtvd59f4NsmFXV7kdvqjCMn2aBg5bfF6TRTsCMa5hWZQjEE86PR+5/dJDg67mr7UGDVTck4uSXLcMyw4cOACbzYYxY8YkuhQiIqKkY9aZJdcZliU3rVoFi0EDm8QLFYZlJIudZURERESkAL8/ALc9dp1dv1w6rd0RiGqNCm67T3Kvr1hIiq6uKIMq2RoEQG8M3ZNL3xJiNf/St/m97e20+uhGPOb2T0duf+lJNkSpIOnDsnvuuQebN28OWTvjjDPw+OOPy95n48aNuOqqqzB8+HA89NBDuOiii+JdJhERUcpI18mMYWRYlvSyTTrJsKzOwbCMZEQMy/jJTiIiIiI6wef1w+P0RzXyztnowbtPb2kKvBxe+DyxDaw8Tj8M5vY/3KVL08AZr64uR3RBlT4tTm+xC4DPE90IxBFT+mDAqJyQwEvfHHQJ7OgiikpSh2VlZWX4y1/+Ar//xA8FURRhMLS/J4coiti5cyfmzp2LK6+8Ei+99BLU6vhtdEhERJQqGJalrmyTDodrHGHrNY0My0gOxzASERER9RSiKMLnberwcju8wSCr6XcfXG3WPA4fXK2O/d4AdAY1Fv5laruPpdGpUXvcHrfvxe30wmCW37e5hd6YBGGZTFeX1qCW6drSQN9qfy59WniXl86oga4DQVduv3Tk9mNXF1FXJHVY9q9//Qs+nw+CIEAUReh0OsyaNQs///nPI97vpJNOwmmnnYbvvvsueB0AWLZsWbxLJoobURQRsNuhNkuPTyMiihb3LEtdcvuW1Tu9CldCKYNjGImIiIi6HXu9Gxve3h8SfLWEXgFfhA9LRcHj8iMQENvdX0qjVUGlEbr8eHIS3dUldKCra+w5xRgxtQ90Rm1wfCH36CJKPUkdlr3//vvBry+//HI8/fTTyM3Nbfd+Z5xxBjZt2oQtW7bgl7/8Jb799lv861//wsUXX4wLLrggniUTxYWnpATlDz4E0edD/2UvQ+DYJCLqAnaWpa6MNOlPVlo5hpHkcAwjERERkeJEUYTX7W8KsextOrwkur5agi6dQYN5vxsXxQMAe7+tiFv9Hoev3a4uQRCgT9PGr6sryv3C5Lq6BKFpRKPeqIE+TdvUtdV8fGK95VgbPG65nVavjvr9t5y+/GA7UXeQtGGZ3W7Hxo0bIQgCFixYgH/84x8dvsaYMWOwbt06nHPOOVi7di0ee+wxhmWUUkSvFzXLlqF66bMQXS4AQP077yLzYu7DR0Sdx7Asdcl1llnZWUZy2FlGREREFFMOmwf7v6tsCrrszaMN7V64mkMwl71pPRDoeMeVzhDdFjK6eO2R1czliG4EoiGe+4XZowvLTju3CCOm9e1S2EVEBCRxWLZjxw74/X6kpaXhqaee6vR1dDodXn75ZQwePBibNm3C0aNH0b9//xhWShQfzm3bUPZ/D8C9Z0/IeuUTT8A8dQo0vXolqDIiSnVyYVmjtxEBMQAV30BPWplGuc4yhmUkI1JYBr55QERERD2D3xtoDrVkwi2HDzqDBhMvGtTutZwNHnz5xt641NmdRiAKKiE4krCznV3RKDwpK6rbERG1J2nDst27dwMApk2bhoyMjC5dq6ioCFOnTsWaNWvw7bffMiyjlFD59DNhQRkA+OvrUf7Qw+iz+C/8hAwRdYpcWCZCRKO3UXZPM0q8TI5hpI4SI7yBwmCciIiIUozfF4DD5mkOuXzNoZf3xLhDu7dppGHrMMzhg8/d/t5T6b0MUYVlepnn5LGSFCMQo/ww3pifFsHt8EGfpoHBFBqKsbOLiFJN0oZldXV1AIChQ4fG5HqjRo3CmjVrUFpaGpPrEcVb7wcewKGf/QyiN/wJSsOnn8K28kNknDcnAZURUaqzaOXDsAZPA8OyJJbBMYzUUQzLiIiIKMmIogiPyw9XozfY2aVSq9D35PY7hCoO1eOdP2+JS11ue3TPqfWm1BqBqNGqmjq50rQwpDV3c6Vpm39v/ro56Grp7rLkGKOqdeCpuVHdjogoFSRtWOZ0OgEABoMhJtdLS0sDADgcjphcjyje9AMHoNeNN6L6b3+TPF/+hz8g7Yxx0OblKVwZEaU6uc4ygPuWJTu5MYz1Tm9U41qoB+KeZURERBRHfm8ArubuLlejFy5H8+/NnV0t6y0dYHL7eeX0M2P+/We0+3jx7OryuPwI+ANQqSM/R9JoVVBrVPD7Io277rxoRyAOOSMfrkZfc9DVOgBrHYRpoNFGN86QiKinS9qwLDs7GwBQUVERk+uVl5eHXJcoFfS6YSEaPv0U7r3hs7AD9fUoX/Qg+j67lG3tRNQhJp1J9hzDsuSWJdNZJopAg8uHjDiPhKEUxLCMiIiIYqTikA0bVxw4EY7ZoxtvGA23Pdo9suL7fNft9MFoln7O3UIQBOhNGjjqOzYCUWtQB8MsQ6tQS5emCTm25ETXOHD67AEdenwiIoosacOy3r17AwBWrVoVk+utXr065LpEqUCl06Hgj4/h8PyfA77wJ46Na9ag/t0VyLzoQuWLI6KUpVVpYdQY4fQ5w84xLEtucnuWAYDV6WFYRuEihmX8sA0REVF35PP4wzq7XK07u9p0fuX0NePshSOiuu6x3XVxqdkV5R5ZhjiPQHTb2w/LACCvfzpcdi/0pqaAy5Cmhd6kDe7bZTA1jTY0tIw4NGra7VgjIqLEStqwbNKkSRAEAUeOHMFrr72GK664otPXeu2113D48GGoVCpMnjw5hlUSxZ9x+HDk3HgjqpculTxf8dhjME2cAC2DYCLqgHRdumRYZvPYElANRStSGFbn8KKol4LFUIrgnmVERETdgcPmQeVhW0jo5bL7QoIwd3Mw5vN2bDygVh/dmL5o9tHqLK/LD78/AHV7IxB1aqi1Kvg7+D22pdaomoItU3Owldb0tUoT3YeJ5twyukuPT0REySdpw7Lc3FyMGzcO3377LW655Rbk5+dj1qxZHb7OqlWrcMstt0AQBIwbNw45OTlxqJYovnJuuhENa1bDvevHsHOBhgaU3f979HvxHxzHSERRS9emoxKVYet2rz0B1VC00vUaqFUC/IHwAMTq6NgYGOohOIaRiIgoKYiiCK/bD1ejF87GE3t8GUxaFI1o/xNPZfut+PiFHXGpzdUYbVdXfKcYeBw+GNPb7+oypGlgbx6BqDOoQwKv1sFXS1eXoVXHV1PXlwYaHffxIiKiUEkblgHAvffei0suuQQNDQ0499xzcfnll+PWW2/FuHHj2r3v5s2b8be//Q3//ve/4ff7IQgC7r33XgWqJoo9QatF4R8fx6G5cwFv+JNY+1dfwbr8TWTNn5eA6ogoFZl1Zsn1Rk+jwpVQRwiCgEyjFjX28GCs3hndmxzUw3AMIxERUVz4PP6m0Kv5l9PuORGEtawFv/bAafci4Av/wFO/YdlRhWXx7Opy2RMblglC015kHpcfxvT2b3/x3adBq1dDl6ZptxONiIgoWkkdll100UWYNm0a1q5di0AggNdeew2vvfYa8vLyMGrUKAwaNAgWiwUGgwFOpxM2mw0HDhzA9u3bUVnZ9Gl5URQhCAKmTZuGCy+8MLHfEFEXGE4egtxbb0XVM89Inq984gmYJk6Arn9/hSsjolRk1kqHZewsS34ZadJhmTXKfR6oh5ENyxiUERERRevYnjp8/8mR5gCsKRTzebo2BrBF1F1d8RyB6PbD7wtArYkcPKm1Kmj0avjcftnbaPXqpk4uc1MHl6Gl68usDX5tMDd1fRnMTed1Bg0EVfTPTSw5xqhvS0REFK2kDssA4K233sIZZ5yBgwcPAmgKvyoqKvD555/j888/l7yPKDZ9UqdlJN2gQYPw1ltvKVMwURz1um4BGlatgmvbtrBzAYcDpXfeheJ/vwZB1/7YAiLq2Uxak+R6o5edZcku0yj9RkkdxzCSFLmwjCMYiYiomxIDItwOH5yNHjgbToRbwS4v+4mur94DLfjJvCHtXtPj8KFkV21c6nU2RvcczmiO7+t8l90LU4a+3duddnYRVGqhVfB1Yt8vg0nbbuBGRESUrJI+LMvOzsa6detw6aWX4uuvvw7Zk6klFGtNEITgbURRxOTJk7F8+XJkZWUpVjNRvAgaDQr/+BgOXXQxRE/4E2rX9u2o/Mti5N9zdwKqI6JUwjGMqSszTfqNEnaWkSSJ58sAGJYREVHKCPgDcNl9cDZ44Gz0wtnQHH4Fj5vHHLacs/sgSuzvKkVniG7fqriOQIyys0xv6vxbeDqDurnTSxsSbBlMmuC6Vh/df4vTZxd3ug4iIqJklvRhGQAUFhbiiy++wOLFi/H000+jrKws5LwgCMHgrOX3Pn364M4778Rtt90GtZqbdlL3oR80CLm3347KP/1J8nztP/8J04TxME+ZonBlRJRK2FmWujLTpN+s4Z5lJIlhGRERJRm/LxAMiEyZ7Xcy/bihDGv/vScutTiTYASizxOA1+OHVhf5vSu1WgWjRQdBQKuw60TgFRqCnRh3qDdxXy8iIqJopERYBgAajSYYfq1atQpr1qzB1q1bUVNTA5vNBovFgpycHIwePRrTp0/HzJkzodXG78kMUSJlX30VGtetg2PjRsnzx+/9LQa8+y60+XkKV0ZEqYJ7lqWuTKNcZxnHMJIEjmEkIqI483n9zd1d3pDuL2ejF65W3V8tax6nDwBw0ul5+On1I9q9fjzHD0bb1WWMQ1gmqAQYzFoYzVp4Xe2HZQBw7ROTQyYuERERUeykTFjWQqfT4dxzz8W5556b6FKIEkZQq1H4xBM4dNFF8NeGz03319Xh+L33ov9LL0JgZyURSZALy9hZlvzkOsus7CwjKbJhGd9oIyKi9lkrHSg/WA+nrWnvr9AArOl3r8vfqWtH3dWVHt8RiKIothtA6dM0gABAbrqjABjStMHwy2Bu9bVJJ7muM2ggqDr27zGDMiIiovhJubCMiJpo8/NQ+PgfUXLDjZLnHRs3ouYf/0DOTTcpXBkRpQK5PcvYWZb8ZMMy7llGUthZRkTU44miCLejec+vBi8cNg/SMnQoHJzZ7n1L99TFbwRiQ+K6ulr4fQH4PIF29+tSqVU47ZwiaPVqGM260DDMrIU+TQtVB4MvIiIiSi4My4hSmHnKFGQvWIDaf/5T8nz1s88h4+KLoc3jOEYiCsU9y1JXhlEuLOMYRpLCPcuIiLojvzfQ1OnVHH45GzxwNIdhzrbHDR4E/KH/Hpx0el5UYZkxPX4jEJ0N0T136WoNGr0axjadXQZTy7GuqWMsChN+NqhLdRAREVFy6zFhmUqlgkqlgs/nS3QpRDGVd/uv4di8Ga5t20LWNYUF6PPUnxmUEZEk2TGMnsaoRtFQ4mSlSb9hVO/0IhAQ+almCsUxjEREKavqaAMOba1qCsQaPMHOMGeDB25H197bcETb1RXHsKwjIxBVKgGBQFPgpzOoYUjXNQVgrX9Pbw7A2pzTRLEXGBEREVGPCcuAptEDRN2NoNOhz5+fwqGLLkagsakjJH3WWSj4wx+gzsxMbHFElLTkOsv8oh8uvwtGjVHhiihacmMYAyLQ4PbJdp5RD8UxjERECRPwB4KdXy1hl8PmQWZuGgaOyW33/lUlDdi08nBcaou2qyvNEr/nFYFA03hIgynyYwiCgHn3j4M+rSkMU2v5bxgRERHFXo8Ky4i6K12/fih4+CEc/+19yPvtvcj6xS/YFUJEEcl1lgFN+5YxLEtemUb5T3jXO7wMyyiUXFgW7cwpIiIKEQiIzR1eTcFX61/ONscuu1dyGu6gsXlRhWUpOQJRQHC8YVN3l7Zpj6/m31u6v4zpTft+6Y3Rpp6eZwABAABJREFUvS3Vq4/8c1ciIiKiWEhoWLZv3z4EAgGcfPLJkucffvhhhSsiSl2W2bNhHDsW2t69E10KEaUAs07+DYdGTyNyjDkKVkMdkSHTWQYAdQ4P+vdKU7AaSnpykxXYWUZEFFH5oXoc+L6qOQBzw2HzwmFzN48O7Nq1ow+q4vcBGGdjdOObtXo10rMN0BrUrUYdthp5aA5d05u0HAlNREREKSkhYZnP58PcuXPx/vvvAwDOOeccrFixAhpNaDkPPvggu2OIOoBBGRFFq73OMkpeFoMGapUAfyD8nTqrM7r9R6gH4RhGIuqhRLFpxF/bri9LjgEDRrff1VV73I4fPjsal9qiHoEYp84yrV4No0UHjzO6EYhXPTYpLnUQERERJZOEhGX/+c9/8N577wWPP/74Y/z73//G1VdfnYhyiIiIepw0rXz3UaO3UcFKqKMEQUCGUYtae/gbbVZHdG++UQ/CzjIi6kZEUYTX5W8OwNyw1zePQ6xv2hMsZBRigwcBX/jPwEFj86IKy+IVVAGAsyG6D7dEOwJREABDug5pLZ1f6TqkWVp9na6DsdWxVqfuSvlERERE3VJCwjKXywUAIV1jHo/8mztiV2ccEBERUQiVoIJJa5LsImv0MCxLdpkyYVk9O8uoLXaWEVEKqj7WgCM7amCv98BR74aj3gO7relrn0duL8boOGzuqG6XlhG/sMxl9yLgD0CljvyzWKtXo8/JmdAZNGEB2IkQTAtDmhYCRx8SERERdUlCwrLLL78czz33HLZu3QoAGDVqFC677DLZ269Zs6ZLjyeKImbMmNGlaxB1J/7GRjSu/QIZ581JdClElECyYRk7y5Ke3L5lVgfDMmpDNizjm6pEFH9+X6Cpy6veA3u9G0azFgWDM9u9X+WRBmx892Bcaoq2qyvNEtuwTFAJMJq1wX2/vJ4A9Mb2P7hw4R1jY1oHEREREUlLSFhmMpmwadMmrFq1CqIoYubMmdBq5edkT506VcHqiLo398FDOHbrrfAcPAiIAWScf36iSyKiBDFrzahEZdg6w7Lkl2mUft5UxzGMFIZjGIko9jwuX9Pow+ZRiKFfn1hz2UODqUFj86IKy2IdVLXmqI+usyyqEYgCYDRrkWZp7vqy6JBm0SMtXYe0DF1wPc2ig8HE7i8iIiKiZJaQsAwANBoNzj777EQ9PFGP1LBqFY7fcy8C9qZOkrLf3Q9tQQHSTj89wZURUSKYdWbJdaluM0ouWWnSb+DVs7OM2mJnGRF1kMPmQc2xRtht7mBHWPD35i4xr9vfyWtHF1SZMvSdun40PC4/fB4/NO3s26XWqFA8KgdavTok9DK2/tqsbXeUIhERERGlhoSFZdHo379/yL5mXb2WSsUnsdQziYEAqv/2N1Q/+1zouteLY7fehuI3XoeuqChB1RFRopi10mEZO8uSn+wYRu5ZRm1xzzKiHk8URXhdfvh9gai6pY7sqMHqV3+MSy32+ug6oOOxX5g+TdO855cO3ijCMgCYc/OomNdBRERERMkpqcOyw4cPJ+W1iFKNc+tWVD/3vOQ5v9WKkhtvQvHr/4U6M1PZwogooUxak+S63cPOsmSXaZR+E9HKMYzUFsMyom7N5/HD3tz1Zbc2/6r3wG51B8chNlrd8Ln9GDQ2D+fcMKLda5riEFS1cNS7IYpiux+KNabrIAiAKDNJtoXWENr11TL+0JiuQ1qG/kQHWLoWGm374RgRERER9VxJG5bZ7XbcdtttYetXXnklpk+fnoCKiFJX2pgxyLvrLlQ++aTkec/hwzh226/Q/6UXIeji9+KYiJKLXGdZg7dB4UqoozLZWUbRkgvLwDGMRMnM7w/AafPAbm0bhJ0Iw+xWN9wOX9TXjHavrnh0dbXweQLwuv3QGSK/FaFSCehzchZUahVMLXt/Zeibvm4JwTJ00EbRHUZEREREFI2kDct+/PFHLFu2LOwTZ6effjrDMqJOyF5wLTxHjsC6fLnkecemTSh7YBEK/vhYzMafElFyk+0s455lSU82LOOeZdSWXFsGO8uIktLBH6qw9j974GzwAO10VXWUPdqwzBKf/cJUGgFpFh3cDl+7YRkA/Oz2MXGpg4iIiIhIStKGZXv27Al+LYoi1Go1Jk6ciCFDhiSwKqLUJQgCev/f7+E9dgz2DRskb1P/7rvQFfVHzi9/qXB1RJQIZp3MnmUe7lmW7DLT5McwBgIiVCp+6IGacQwjkWIC/kCw66uxrqnzq9Hqhr3OhczeJpxx3oB2r6HRquC0xWekrt3qiW4EolkLlUpAIBBdWqc1qGFq7vZq3fkV/DpDB1OGHvo0DT+UR0RERERJK2nDsurqagBNQZnZbMbatWsxduzYBFcVH0ePHsXGjRtx5MgReDweZGdnY/jw4ZgwYQJ0CRqJV11djZ07d2L//v2wWq1wuVywWCzIzc3F6NGjcfLJJ0Ol4pssqUbQatFn8V9w+Be/gGf/AcnbVC1eAnVODrIuvVTh6ohIaXJjGNlZlvwyjdKdZQERaPT4YDFIn6ceiJ1lRDHh9fhhbx2AtQ7E6lxotLrhtHlk/8oVDMqIKiwzZcanqwsA/L4A3A4fDKbI/0YIKgFpGTr4fQGkWVpGH7YOwVoCMB3SLHpo9RyFSERERESpL2nDMru96Y06QRBwww03dMugbPXq1Vi0aBHWr18veT4jIwM33HADfv/738NiscS1FpfLhY8//hgrV67E2rVrsX///oi3z8/PxxVXXIF77rkHeXl5ca2NYkudno5+z/8dh+fPh7+mRvI25YsehCYrC+lnnaVwdUSkJLmwrNHLzrJkJzeGEQDqHV6GZXQCO8uIotZQ60LJrtpgN1ij1QO7tSkIc9uj3xtMSqM1uhGIpoz4hWUAYLe62w3LAODKRyexS5mIiIiIepSkDctah0PDhw9PYCWxFwgEcNddd+GZZ54Jrp188sk488wzkZWVhb179+Kjjz5CfX09nnzySbz++utYsWIFxoyJz8z2jz/+GPPmzUNDQ0PI+kknnYRJkyahoKAAfr8fJSUlWLNmDSoqKlBRUYE///nPeOmll/DSSy/h4osvjkttFB+6vn3Q79mlOHLV1RDdEi/cAwGU/uZO9HvxHzCdcYbyBRKRIkw67lmWqjKN8p3nVocX/bIVLIaSm2xYxjfBqfsTAyIcDR74vQFYcozt3r62zI41r+2OSy12qxtiQITQTgClN2mg1qjg98n83Y2gZRyiKbOp+6vp6+ZfGTqYMvUwZ0UXxjEoIyIiIqKeJmnDsmHDhgW/9njiM7M9UX75y1/ihRdeAACo1WosXboUCxcuDBlrePToUcybNw/ffPMNSkpKMGPGDKxbtw4jR46MeT3l5eUhQVmfPn3w4osv4pxzzgm7rdfrxdKlS3HvvffC4/HAarVi3rx5ePvtt/Gzn/0s5rVR/BhHj0bhE4+j9PY7JM+LHg+O3XwLiv71KgynnKJwdUSkBNnOMk9jVHuaUOKkGzRQCU1jF9uqc3Sv503UVXJjGPn3m1KbKIpw2b1orG0eg1jX9HtDq2O71Y2AX0TvgRZccs/p7V7THMcRiAG/CGejF2mWyGP2BUGAKVMHW7UruKbWqIIBWFpLGJbZKgxrDsJ0hqR9eU9ERERElPSS9tn0T37yE2RlZcFqtWLr1q1dvt6AAQOgUqlw4ID0Pk1Kefnll4NBGQA8//zzuP7668Nu179/f3z66acYN24c9u7dC6vViosvvhjbtm2D0dj+pyI7y2KxYO3atRg8eLDkea1Wi9tvvx3p6enBuv1+P2688UZMnz497uMiKbYs55wD3++qUPHYY5LnA42NOLrwBhT/59/Q9e+vcHVEFG9yYZlP9MHtd8OgMShcEUVLpRKQYdSizuENO2d1hq9RD8YxjJSiPE4fGlpCsNoTYVjT701rPm903VdRj0CMY1gGNHWXtReWAcBP5g2BSi0EAzG9ScMPsBARERERxVnShmVarRZ33XUX7r//frz99tt44oknkJ6e3unrHTlyJOEvMBobG/Hb3/42eHzmmWdKBmUtLBYLlixZEuzw2r9/PxYvXhxyjVi7++67ZYOy1hYsWIBnnnkGO3fuBABUVFTgf//7H6655pq41UbxkX3VlfDV1qDm+b9LnvdXV+Poddej6N+vQcv96Yi6FZNWegwj0LRvGcOy5JaZppMMy+rZWUatMSyjFFFT2ogN/zvQFIjVuuBx+WN2bYfVE90IxDQNNDoVfJ6Oj0BsS6NTBccemjMNMGXqoU+L7uV38aicLj8+ERERERF1TNKGZQBw77334osvvsCnn36K66+/Hq+//nrCA6+ueOqpp1BZWRk8/s1vftPufc4++2wMGzYMu3btAgA88cQTuPHGG5GVlRWXGn/xi19EdTtBEDB79uxgWAYAX3zxBcOyFJX761/DX1ML65tvSp73lpSg5PqF6P/KMmji9GePiJQn11kGNO1blmPkm3XJLMOolVy3SgRo1IMxLCOFBfwB2Os9wW4wURQx5Ize7d5PFIGjO2viU1Pz3mWmjMidY00jEPWor3RGvJ0+TQNzlh6mTAPMmTqYsgwwZ+phytI3/d4cjKXya1ciIiIiop4mqcMylUqFFStW4JZbbsE///lPHD9+HE899RTGjx+f6NI6TBRF/OMf/wgeZ2ZmYs6cOVHd94orrsDvfvc7AIDVasUbb7yBm266KWa19evXD3PmzIFer8egQYOivl9xcXHIcXl5ecxqImUJgoDeDy6C32pFw2efSd7GvXcvjl53HYpefhnqjAyFKySieDDr5MOyRm+jgpVQZ8iFZTYXwzJqRS4sA9/Ep87xuHxoqHWhoaapA6yh1n3iuM4Fu9UNsdVWeenZhqjCMnNW/EcgtheWAUBO33TojZrmrjADTJm65t/1wUBMq1PHtVYiIiIiIlJeUodlDz/8MICm/bumTZuGtWvXYtKkSSguLsYZZ5yBvn37wmw2p8Qn9r766iscP348eDxp0iTodO3PqweAadOmhRy/9dZbMQ3LZs6ciZkzZ3b4fm3/u+v18X2BS/ElqNUofOpJlNxwIxzffCN5G/euH3H0+oXo/8+XoO7CWFQiSg5pmjTZc3aPXcFKqDMsMmFZPfcso9ZapxatsbOMJIiiCGeDNxh+NdS2BGKu4Jrb4evQNe1WNwIBEapoRiDq1fC5Yzd+sbXGOjfyitq/3Tk3jIjL4xMRERERUXJL6rDswQcfDAtkRFHEoUOHcPjw4cQU1UnvvfdeyPG4ceOivu+YMWOg1Wrh9Ta9+fXFF1/AZrPBYrHEtMaOKikpCTkeOnRogiqhWFHp9ei79G84ctVVcO/6UfI2ru3b0fDpp8i85BKFqyOiWFOr1EjTpMHhc4Sda/A2JKAi6ogMo/TTOJuzY29kUzfHsIyiYK10YOXSbWiodcHv7fp+Xa0FAiKcNg9Mme2PQEzP0qOuPPzfpPaoVE3jE83ZTd1g5iw90rObfm/pCjOapT9gQEREREREBCR5WNZCFEUIgpASHWRytmzZEnJ8yimnRH1fg8GAgQMHYs+ePQAAn8+HHTt2YNKkSTGtsaM+azOu7+KLL05QJRRLarMZ/f/xDxy5/Ap4JELp3DvuYFBG1I2YtWbJsMzuZWdZsrMYOIaRosA9y3qUkBGJdW54nD6MPbv9dipDmhbWio6HVNFqqHO1G5YBTaMYw8IyAUizNI1CTG8Ov4KhWLYe6VkGGC26djvXiIiIiIiIIkmJsAxoCsxS2c6dO0OO+/bt26H79+nTJxiWtVwvkWHZ+++/j82bNwePL774YpxxxhkJq4diS9OrF/q/sgxHrrwK3qNHg+t5996LXtdek7jCiCjmTDoT4Axfb/Rwz7JkxzGMFBXZsIzBQipyO31oqHHCVt0UiNlqnMFxiVIjElUaAWNm9YfQ3ghEU5xHINa6gQHt3+7kCQXoc3JWUzCWfaIrTK1huEtERERERPGVEmHZAw88gOnTp3f6/qIoYsaMGTGsqGNsNhvKyspC1vr06dOha7S9/e7du7tcV2d9/vnnuOKKK4LHp512Gl566aWE1UPxoc3PR9Gyl5sCs9JS5P/+98i+4vJEl0VEMWbWmiXX2VmW/DJkwjJ2llEIdpalFK/b3xSAVbtgaxWG2aqdndovLOAT4WjwwJQRvxGIkWj1apizDVH/cTt5fO+YPj4REREREVG0UiIsGzZsGKZOnZroMjqttrY2bK2j+421vX1dXV2XaoqWKIpobGzE8ePHsWnTJrz++utYuXIlAEClUuHGG2/En/70J5jN0m+2UmrTFhai/yvL4Ni8GZkXXpjocogoDuTCskYvO8uSnewYRu5ZRiHk9ixjZ1my8Dh9WPGXLWiodcHZEPuwu6HG1W5YBgDpvQwdCssEAU37hGUZkN7LgPTs5m6wbENwvzCdUZPSo/SJiIiIiKjnSImwLNU1NDSEren17b9gbc1gMLR7zVj7/e9/j0cffTRsffjw4Zg7dy6uueYaFBcXx+3xKysrUVVV1aH77N+/P07V9Fy6vn2h6+DYUCJKHWYdO8tSlcUo/TTO5vIiEBC5fw81YWeZovzeQHAkYkOtC6dMLmg3LNIa1Kg5boffK/P/qosaal3oPTCj3dulZ4e+3lBrVWEB2IlQzABTlh5qNf8cERERERFR95DUYdmoUaMgCAKysrK6fK2rrroqYZ9qlAq22oZf7UlEWCZn165deP3119HY2IgFCxZg2LBhcXmcZ599Fg899FBcrk1ERE1MWpPkeoMncf/OUHTkxjCKItDo8cl2nlEPw7AspsSACHu9G7ZqJ+qrmsYjnhiV6IK93h3SzDdgdA6M6bqI1xQEAZYOdnV1REOtK6rbnTKpEH2HZgcDMWO6ll1hRERERETUYyR1WPbDDz/E7FrLli2L2bWSgSjKjNSJoUceeQSPPPIIAoEArFYrDh06hHXr1uHvf/879uzZgz179uCZZ57BggUL8Je//AUmk/QbrtSz1L3+BtLPmglNTk6iSyGiKHDPstQVKQyzOb0My6iJXFgGhiByvG5/cxjmbArDqptDseav/b7oO8BsNa52wzKg4yMQ2yUApgx9U+hlju5nQf4AC/IHdGxUPBERERERUXeR1GFZV4iiiJ07d2Lw4MEd7uKKtfT09LA1l8vVoXDJ5Qr9RKjUNeNFpVIhOzsb2dnZOO200/DrX/8ajzzyCBYtWoRAIIAXX3wR3333HVavXo3MzEzF6qLkU/PSS6h88inUvvIK+i97Gdr8/ESXRETtkOss455lyc8i01kGNO9b1vXGfOoO2FnWrk0rD8Fa4WgKyKpdcNo8Mbt2Q40L+cXtB1CWXsYOXVelEmDO1iO9lxGWXqHjEdN7GWDK1EOt4f9jIiIiIiKiaCV1WHb06FEAQP/+/Tt8X4fDgVGjRkGv12PWrFl4+OGHceqpp8a4wuiYzeGf2ne73SkTlrWlUqnwwAMPwOl04vHHHwcAbNmyBVdeeSXef//9mD3OzTffjEsvvbRD99m/fz8uvPDCmNVA0av912uofPIpAIDn0CEc+cVl6PfSi9APGJDgyogoEnaWpS6LQf5pXL3Tq2AllNTkphF087DM6/FDrVFFtXff7q/LYKuOblRhR9mqnVHdLr1X6If7BAEwZelhaRWGWXKMwd9NGTqouF8YERERERFRzCR1WFZcXAyVSgWfz9fpa7jdbqxcuRKff/45Pv74Y0yZMiWGFUYnOzs7bM1ms0muy7HZbCHHsdjHraseeOABvPzyy6ioqAAAfPDBB1i1ahVmzpwZk+vn5eUhLy8vJtei+KpbvhwVjz4asuY9fhxHLr8C/V54AcYRwxNUGRG1x6ST6SzzsLMs2WnUKph0atg9/rBzNhfDMmrWTcMyURThsHlgq3KivtoJW1XTiMSW0YkOmwfzfz8OOX3b/4CZJccYt7CsoSa66xaN6AWDWdscjBlhztZDzTCMiIiIiIhIMUkdlgGd35tLq9Vi/vz52Lt3L7Zs2QKXy4WFCxdiz549Ma6wfRkZGejduzfKy8uDa6WlpSguLo76GqWlpSHHQ4cOjVV5nWY0GnHxxRfjueeeC6698sorMQvLKDXYPv0U5YselDznr63F0auuQt+//RWmSZOULYyIopKulX4jmZ1lqcFi1EqHZewsoxYpPIZRDIiw17thrXSivtKB+qqmfcTqK52or3LA54m8d5ityhVdWJZrBHbXxarsIKNFF/UoxF59zOjVR7rTl4iIiIiIiOIv6cOyztLpdPjvf/8LAPj8888xe/Zs7N+/H9988w3Gjx+veD0jRowICcuOHTvWofu3DctGjBgRk7q6avz48SFh2VdffZXAaigR0saOhX7wYLj37ZM8H3A4cPTGm9DnT0/Acu65CldHRO2R27OswdsAURQhCO2PMKPEyTBqUVYf3rnCMYwUJBuWJcff7UBARGOtq1UQ1ioUq3LC740ciEVSH+UIxIycju0X1kKfpoElx9j0q5cBlpymrrD05rGJWp26U9clIiIiIiIi5XXbsKy1s846CxdeeCHefvtt/PDDDwkJy8aMGYPPP/88eLxr166o7+tyuXDw4MHgsVqtTpqwrO2YxNaBIPUMmpwc9H/1FZQsvAGuHTukb+T1ovQ3d8JXW4vsyy9XtkAiisisk+5k8AV88AQ80Kv1CldEHWExaCXXba7Oj7Cm7kZuDGNyhGUrntmC4/uscbl2tPuFWWTCMkElID1b3xSG5RqR0RyMZeQ2BWIGk/TfPyIiIiIiIko9PSIsA4CBAwcCAGpraxPy+Oeffz6efPLJ4PGmTZuivu+WLVvg9Z74hPjUqVNhsVhiUld9fT22b98OAJg0aRJUqo6N5AkEQj/t29H7U/egycpC/2XLUPqr22Df8LX0jUQRFX94BL7KKuTe/mt2qxAlCbnOMqBp3zK9kWFZMrMYpZ/KcQwjBSk0htHvC6ChxgVrc2dYv1OykV0g//OlRXovAyDdnN5l0YZl2YUmDBqbGwzCWrrFuG8YERERERFRz9FjwrJ9zSPitNrEfAJ08uTJKCgoQFlZGQDg66+/hsfjgU6na/e+a9euDTmeO3duzOrasmULpk+fDgDYv38/Bg0a1KH7tx0P2bt375jVRqlFbTah7/PPo+y3v4Xtw49kb1fz97/De+wYCv74GFRR/Pknovgya+X3yLF77ehl7KVgNdRRsp1lDMuoRQzDMjEgoqHOhfoKJ6yVDlgrHMHfG2pcaL3V8JSfD4kqLMvI7dwIxGjUV0UZlhWYcM4NI+NWBxERERERESW/bh2Wud1ulJaW4r333sO7774LIHFhjkqlwvXXX48//OEPAACr1YqVK1fioosuave+//73v4NfZ2RkYP78+XGp8auvvupwWLZ69eqQ4wkTJsSyJEoxKp0OhU89BXVWNupa/blty7ZyJbzl5ej7t79Ck5WlYIVE1FbEzjJvo4KVUGdYjHJjGBmWUbNOhGXORg+sFc5gGFbfEopVRr+HWLRBVUZe18MynUEdMibRkmuEJceAjNy0Ll+biIiIiIiIeoaEh2VqdeSNr0VRbPc20RBFEYIgJDTMufvuu/H888+jqur/2bvz8Kjqs33g9zmz79n3kIV9FwEVFBDEuhQU97qLSLW1tb5ttbavVmv71qqt/dW21qq4onW3tm5VURQFqyA7smcj+z5JZp85vz8mhITMmTlJJpOZzP25rlzJnG2eKITJued5vo0AgD/+8Y8Rw7L//Oc/2L17d8/j22+/HWlpaWHPaW5uxmuvvQav14sVK1YgPz9fUX1/+9vfcPXVVysej3f48GG8/vrrfbZdeumlis6l0UsQRWTf+b9Qpaeh6eE/yx7n3LIFFd+5HIWP/R3aoqIYVkhEvUXqLKP4JhuWOblmGXWTC8sgoL3RicbKjj4dYm0NDri7hv7nR3FYpjDQ0ps1sGUaYMsywJZphC3TgJQsI6yZwbXDON6ZiIiIiIiIhmLEwzJJkll0fIDHRCIIApYsWYJx48YN+VqDZbFY8Nvf/harV68GAGzYsAFr1qzBqlWrQh7f0dGBW265pefx2LFjceutt4Z9jqqqKsydOxf19fUAgF/84hfYsGEDZsyYEbG+L774Ar/97W/xv//7vxGP7ejowKWXXtpnLbXTTz8dy5cvj3gujX6CICDz+9+HOi0ddffeCwRC36jzVFSg/LLvoOCRR2A8cVaMqyQiAFCJKhjUBjh9/W9sd3g6RqAiGgirPvRLuXaOYaSj5F5HCyJ2b6jG1vcrh+Vp2xscio7rPYbRYNUiJdPQHYoZu4Ox4IfOODKj1ImIiIiIiCg5jHhYBgRvrEcjEAtn+vTpeOaZZ4b1OZS44YYb8MUXX2DNmjUAgBtvvBF+vx833HADRPHYOJzKykpceuml2L9/P4Dg+MXXXnsNRmP4d9/+7W9/6wnKAMBut+OBBx7A2rVrFdV355134sCBA/jVr36FIplun48++gjf//73sW/fvp5t48aNw7PPPqvoOSh5pH7nMqizMlH9k59CcoZ+h7m/rQ2V112H3P/7P9iWL4txhUQEBLvLQoVl7CyLfzaOYUx6kiTB1elFa50DrXVdaKt3ILPIgglzc44eEPpEQURK9vCNKWxvciIQkCCK4Tu+9CYNLrtzLqwZBmhlwl8iIiIiIiKi4Tbiv5EuXLhQdmzKJ598AkEQsHDhwgFfV6VSwWKxoKSkBEuWLME555wTlXGO0fDYY4/BZDLh4Ycfht/vx4033oiHHnoICxcuhM1mw4EDB/Duu+/C4/EAAPLz8/Hmm29i5syZEa8dKnQMyHT1AEBxcTEWLFiADRs29Gx75pln8Nxzz2H27NmYOXMmMjIyIEkS6urq8Nlnn+HQoUN9rrFs2TI89thjyM3NVfqfgJKIZckSFD33HKq+dxP8jU0hj5E8HtTcdhvc+/cj89YfQYiTv6tEycKkMaHR2dhvO8Oy+Cc/hpFh2WgTCEiwNznRVucIBmP1XWitDX4+fmzi+DlZvcIy+TXLUrKGJywzp+pgyzLA4/RBb4rcEZZRYBmWOoiIiIiIiIiUGvGwbP369bL7jnZaffzxxzGqJjZEUcSf/vQnLF++HHfffTc2btyIffv29enUAgCr1YrVq1fjrrvugs1mU3Ttm266CWvWrOlZF81sNuP222+XPb64uBiffvop9uzZgxdffBHvvfcetmzZgkAggK+++gpfffVVyPNMJhPOO+88rFq1CmeccYbC75ySlWHaVJS8+CKqbroJ7gMHZY9rfvxxuA8cQN7vH4TKLL+OEhFFl1ET+oY5w7L4Z9WHDiK6PH54/QFoVGLI/RS/vG4/2uqDXWJHu8Va64JriQV8yiYxtDX06hQNF5YNobPMaNUiJdsY/OgemZiSZYQ1Qw+1lm96ISIiIiIiosQy4mFZMlu6dCmWLl2KiooKbNq0CZWVlfB4PEhNTcXUqVMxb9486HS6AV2zqKgIe/bswWuvvQav14sVK1agoKAg4nlTpkzBvffei3vvvRednZ3Yu3cv9u3bh5aWFnR0dEAURVitVqSnp2PatGmYNGlS3HTqUWLQ5Oej6IUXUP2jH6Fr4ybZ4zrXr0f9//0Weff9NobVESU3ozr0DXOHT9maQzRy5MYwAkCHy4c0kzaG1dBAeJw+NFR2oO1oKFbvQGttFzpb3UO+dlu9A5IkBac3yIZlgMGigVavgsflD3mIRq9CarYRtqzuUCw7GIilZBmhNfDXCCIiIiIiIho9+FtuHCgqKpJdH2wwMjIycOONNw76fLPZjDlz5mDOnDlRq4kIAFQWCwr//nfU/upXaH/1tZDHqHNykPWTH8e4MqLkZtKYQm53eBmWxTtrmMDC7vQyLItj1Qfa8M4jO4bl2l63H452D0wpOgDya5YJgoD0fDNcXd6eDrGjoZgtywijVSs7Lp2IiIiIiIhoNInrsCzcWltElJgEjQa5v/41dCUlaPj9H4Be6+wJej0K/voXqDMyRrBCouTDMYyJS27NMgBo57plMeP3B2BvdKKlpgt+XwATTsqJeE7qEEYgKtFW7wiGZWHGMALABT89kYEYERERERERJb24DsuIaHQSBAHpq1ZBN24cqn/yUwQ6OwEAeff9FoapU0e4OqLkI9dZxrAs/pm1aogCEAjRPGR3MSyLNr8/gPZ6J1pqu9BS24XW7s9t9Q4E/MH/CZY0vaKwzJqhh6gSes6LBp1RjZRsI1Kze41JjBCWMSgjIiIiIiIiYlhGRCPIvGgRil96EVXf/z6s554L6znnjHRJREmJa5YlLlEUYNFrQnaR2Z2+EahodPD7AmhrcKCl5lgg1lLrQHu9A4FQyWQvHS0ueFw+aPXhX2aLKhG2LCNaawceSlvS9EjNMSI1x4SUHGPP1waLpn/4FSEsIyIiIiIiIqIEDcva29vx1VdfYfv27WhubkZbWxseeeSRnv2NjY3Q6XSwWq0jWCURKaEbOxYlr74K0RS6s4WIhh/XLEtsVoM6ZFjGMYyR+b3doVhtV59grL3BGTEUC6et3oGsosivQ9Ny5MMylVoMdonlGJGSY0RadzCWkm2ERqtSXoxcWAZ2lBEREREREREdlVBh2Ztvvom//vWv+OijjyBJfW9g9A7LPvroI1x33XW4+OKLcc8992Ds2LGxLpWIBkBlsQzoeNf+/dCVlkJQJ9SPMKK4xTGMic1m0KAKzn7bOYZRnsfpwyu/24z2RiekIYRiclpquhSFZSk5Rhgsmu5QzBQMxrKNSMs1wZymhyhGIdCSZL4/dpYRERERERER9UiIO811dXW47rrr8MEHHwBAv6As1FoLbrcbL7zwAl5//XX87W9/wzXXXBOTWoloeHkqKlBx5VXQTZyA/N//HpqcyOvCEFF4Rk3oMYwMyxKDVa8Jud2ehJ1lR18jRlqHS6NXwdXpHZagDABaFI5WPGlZCU45f5jf1MWwjIiIiIiIiCiiuA/LampqMH/+fFRVVUGSJAiC0OcGyPHBGQDk5eUhLS0NLS0tcDqdWLlyJURRxFVXXRXL0okoygIOB4788BYEOjrg3LwFZSsuQN79v4N50aKRLo0ooZnUMmMYuWZZQpALy0b7GEa304eW6k4013T1fG6u7sR37joZ5lRd2HMFQUB6vgnV+9uiWpMgANZMQ8T1yo4SVTEIrLhmGREREREREVFEcR2WBQIBLFu2DJWVlT0BmSRJ0Ov1KC0thdVqxRdffNHvvAULFqCurg5r1qzBHXfcgfb2dtx4441YtGgRCgsLY/1tEFEUSJKE2l/eDff+/T3b/G1tqLrxJqStuh5Zt94KQRP6hjERhSfXWcY1yxKD1RD65Zzd5YtxJcPD7w2gtb4LzdVdaKnpRHN1MBTrbHWHPL65pjNiWAYAafnmQYdlgijAlmlAWp4JabkmpOYakZZrRkq2AWrNANYTiwXZsIxrlhEREREREREdFddh2ZNPPolt27ZBEASIoojVq1dj5cqVmD17NkQx+G7Yo5+Pp1arewKyhQsXorm5Gb/5zW/w97//PZbfAhFFSeva52F/662Q+1rWPAnnlq+R/9AfoMnLi3FlRIlPbs0yl98FX8AHtRjXLxeSns0wOsYwSpKErjY3mo50oulIJ5qrg8FYe70DgQGMS2yp7kLR1PSIx6Xnhf5z35soCrBlGYKBWHcwlpZrQkqWESpNgnRmMSwjIiIiIiIiiiiu73499NBDAIC0tDS88847mDt37oCvMWnSJDzyyCO49NJL8fLLL+Mvf/kLNOw+IUooga4uNEUIup3btuHwBRci9957YT3rWzGqjGh0kOssA4KjGK1aawyroYFKxDGMfm8ALbVdwVDsSCeaqjvQdKQT7q6hd8M113QqOi4939zztagSkJJtRGqOqU+3WEqWESp1goRisrhmGREREREREVEkcRuWVVVVYe/evRAEAc8+++yggrKjLr74YhQXF6OiogJbt27FSSedFMVKiWi4iSYTSl5+CdU//gmc27bJHhdob0f1j36EzosvQs7Pfw7RFLlrgIjk1ywDgqMYGZbFN6tcZ5krfsOy9x7fhfIdTcNy7eZq5WHZWaunIS3PBFuWAapYrB82ErhmGREREREREVFEcftb8pdffgkAmDp1Ks4555whX2/RokUAgN27dw/5WkQUe5q8PBQ99yzSb1gV8dj2V19D2YUXwblzVwwqI0p8YTvLuG5Z3JMfwxjbNcv8/gA8CtdJS88fvjcztNYqG9uo0akwbnYW0nJNozcoAxiWERERERERESkQt51lDQ0NAIDTTjstKtfL617HqKWlJSrXI6LYEzQaZP30pzDOnYuan90Bf1ub7LGeigqUX345Mm+5BemrroegUsWuUKIEI7dmGQB0ebtiWAkNhtUQ+uXccHaWuR1eNFZ1j1A8Ehyh2FLbhRPPKsLJy0sjnp9RYIlaLVq9Cun5ZqTlm5GeZxrWIC4hyYVl4JplREREREREREfFbVjW1n0TPC0tLSrXc7vdAACvN35HEhGRMuZFi1DyzzdQ/ZOfwrlli/yBPh8aH3oIXZ99htzf/hbagvzYFUmUQAxqg+y+Lh/Dsngnt2aZxxeAy+uHXjO0Nws47B40VnagsaoDTd2f7U2ukMc2H1E2AjGjwBz5oOOIagGpOcEwLD3PjLQ8E9LzzTCn6iAIDH5kSVyzjIiIiIiIiCiSuA3LUlNTARzrMBuq8vJyAEBGRkZUrkdEI0uTk4OiZ55G0yN/Q9OjjwIBuXfOA44vv0TZeech646fIeWSS3hTleg4oiDCqDbC4es/cpFjGOOf3BhGALA7vYrDMkmS0NHiQlNlJxqrgqFYY2UHHO0exbU0KQzLrJkGqLUifJ7QP7vNaTpkFFiQUXAsFBvV64oNJ4ZlRERERERERBHFbViWm5sLAPjwww+HfC23291znfx8dpYQjRaCWo3MW34I06nzUXPb7fDW1MgeG3A4UPfLu9HxwYfI/fW90OTkxLBSovhn1IQOyziGMf5Zw4VlLi+yrPp+26WAhLYGB5qqOnu6xhqrOuDuGto6Zx3NLridPuhkRkMeJYoC0vPNaKrqRFqeCRkFZqQXmIOf883Qm+S/JxogrllGREREREREFFHchmWnnnoqRFFERUUF/vKXv+AHP/jBoK/1u9/9Dna7HRqNJmproBFR/DDOno2SN/+Jul/dC/tbb4U9tmvDBhxefh6y//cXsJ1/PrvMiLqZNCY0OZv6bWdnWfyTG8MIAO3O/uOnaw624a0/b4fX7R+WepqPdCJvfErE4865aToMZg1EdosNL4ZlRERERERERBHF7W/JGRkZOOWUUyBJEn784x/jiSeeGNR1Hn/8cfz617+GIAhYuHAhLJboLShPRPFDZbEg//cPIu/BByCaTGGPDXR0oPaOn+PID34If/f6iETJzqg2htzONcvin14jQisTONmd/TvFrOn6YQvKAOWjGE02HYOyWJANy2JbBhEREREREVE8i+s7FHfeeScAwO/348Ybb8SCBQvw8ssvo6OjI+x5fr8f7733Hs4++2zcdNNNCHSvZXTXXXcNe81ENLJsy5ej5M1/wjB7dsRjPWVlEPT9x5MRJSOTJnTIzM6y+BUISGiu6cS+L+pwpkuDFV3afsfYXf07y0wpOhgs0RlzqDOpkT8xFTPPKMQZ107Gpf87F1NPy4vKtSlauGYZERERERERUSRxO4YRAM4++2xccMEFeOONNwAAGzduxMaNGyGKIiZPnoyxY8f2HHvNNdego6MD1dXV2L17N1wuF4DgYvWCIOCyyy7DwoULR+T7IKLY0hYUoOjZZ9Dy7HNo/OMfIXk8/Q8SReTd91uIDMuIAATXLAuFa5bFBykgob3RiYYKOxoqOtBQYUdjVSd83R1iU7rf/2QIAM5eGUioMYyCICCj0IKqPS0DqsGUokNmoRkZYyzILLQgc4wF5lQdx9nGO45hJCIiIiIiIooorsMyAFi7di0WLVqEzZs3AwiGX36/H7t27cLu3bt7tj3//PM9Xx919ObN3Llz8dRTT8W4ciIaSYJKhfSV18G8cAFq7vg5XDt39tmfvno1DDNnjlB1RPHHpJbpLPOxsyzWJElCR7OrJxRrqOhAY2UHPCFGKh4v2y+iXDwWjthDhGUAkBkhLLNmGpBZaEbmGAsyCoPhmNHav3ONEgDDMiIiIiIiIqKI4j4sMxgM+Oijj3DDDTfg5Zdf7vfu5aOPj3aQ9X4sSRIuvfRSrFmzBjqdLua1E9HI040di+J/vIDmJ9ag8a9/Bbxe6CZMQMbN3x/p0ojiCjvLRo7D7kF9WXswHCsPhmOurtAhVyQ5fhHlmmPhSIc7dMCWUWgGAAgCkJprQkahOdgtVmhBRqEZOmN0xjRSHGBYRkRERERERBRR3IdlAGA2m/Hiiy/isssuw+9+9zt89dVXIY/r3VU2Z84c/OIXv8CKFStiVCURxStBrUbGTTfCvPh01N55F3Lv/RVELTskiHqTW7OMYVn01ZfZUXuoDfVldtSX2dHR4oratXN8fQOQDlfosKxwchouun020gvM0GhVUXt+ikNyYRk4PpOIiIiIiIjoqIQIy4664IILcMEFF2Dv3r34+OOPsX37djQ1NcFut8NqtSIjIwMzZ87E4sWLMWnSpJEul4jijH7iRBS//NKA1tdpWfs8DNOncWQjjXpyYZnDyzGM0bbpn4dQva91WK6d41cWlulNGuSU2oalBoozksx2dpYRERERERER9UiosOyoSZMmMQwjokEZSFDm2rMH9ffdBwQCSL3ySmTeeitU5tCBAlGiM6pDj2HkmmXKSQEJghj5Z0x2iTWqYZkoCvBYVNjtdKFOFQiGI91ldLoGN86RRhGOYSQiIiIiIiKKKCHDMiKi4Sb5fKi98y7A7wcAtK5di44PPkD2z++A5ayzBhS6ESUCrlk2MD6vH01VncFRiuV21Je1Y+qCfJx4VlHEc7OLrYN+3qNrjGUVWZBVZEVWkRXpBSb85ZNDeP/DA/2Ol+ssoyTCsIyIiIiIiIgoIoZlREQhtDz7HFx79vTZ5quvR/Wt/wPjvFOQc9dd0JWWjlB1RNHHNcvC62pzo/ZQO+oOBz8aKzsQ8Pedb1d3uF3RtbJLlIdlKdnGnmAss8iCzEILNLr+a4yZdaFf0jEsI/mwjG/6ICIiIiIiIjoqacIyURQhiiJ8Pt40IqLwPEeOoPHPf5bd79j0BQ6fvwLp112LjJtugmjiaEZKfHJhmdPnjHElIy/gD6C5ugt1h9uDAdmhdnS0uCKeV19uhyRJETtPTTYdzGk6dLa4+2y3pOmRVWxFVnF3ODbGAp1B2Us1q14Tcnunm697kh7DMiIiIiIiIqKIkiYsAwBJklvhnIjomI733oPkjBAQeL1ofvwJtP/7LWTf8TOOZqSEJ7dmmdPnhD/gh0rs3800Wri6vKgvs/eEY/Xldvjc/gFfx9HuQWerG5Y0fcRjCyenwd7kQk6JFdklVmQVW2Gy6QZTPgDAog/9ks7ONcsIMq9/OYaRiIiIiIiIqEdShWVEREqk33ADtKVjUXfvvfDV1YU91ldXh+pb/wem+fOQfeedHM1ICUuuswwAHD4HLFpLDKsZPpIkob3B2TNSsfZQO1prozdqsr7MrigsW3L15Kg9JwCYZcKyTrcPgYAEUWSYn7S4ZhkRERERERFRRAkTlrndbmzYsAHbtm1DXV0d7HY7RyoS0bCxLFkM40knoenPD6Nl7fOAP3yXSdfGTTh8/gqkXXM1Mm66CSrL6AgWKHkYNaE7y4DgumWjJSxrb3Ti+bu/GLbr15e1Y9zsrGG7vhyLzBhGSQIcXr/smmaUBBiWEREREREREUUU93dOnE4n7rnnHjz22GOw2+0jXQ4RJRGV2YTsn/8ctgsvQt2v74Vz85bwJ3i9aFnzJNrf+Ccyb7kFKZdcDEE1ekfX0egSqbNstLBlGmCwaODsiM54QrVOhawxFuSUWpFdbEN2qTUq1x0ouTGMANDh8jIsS2YMy4iIiIiIiIgiius7J21tbViyZAm2b9/eZ70xrgtERLGknzgBRc89B/tbb6H+gQfgb2wKe7y/pQV199yD1hdeQPYdP4Np/vwYVUo0eHJrlgGAwxu/YVlXuxu1B9tRc7AN81aMhUYXPqAWBAE5pTaUbQ//91iOLdOAnLE25JQGP9LyTHEx4jB8WOZDri2GxVB8kV2zd+T/3BIRERERERHFi7gOy370ox9h27ZtAII3t44GZpLsL/1ERMNDEATYli+HefFiNP35L2hZuzbiaEb3/v2ovH4VzIsXI+v226ArKYlRtUQDF2kMYzyQJAn2JidqDrSj9mAbag60ob3R2bO/ZGYGCielRbyO0rBMpRaRVWQJBmPdAZnRqh3S9zBcLLrQYxiBYFhGSUzudTM7y4iIiIiIiIh6xG1Y1tDQgLVr1/Z0kUmShGXLlmHFihWYPHky0tLSoNfrFV1LkiSUlpYOZ7lElCRUZjOyf34HbBdeqGw0I4DOjz9G54YNSLvyCmR8//tQ2djiQfFHFEQY1AY4fc5++0YqLJMCEppruoLBWHc45mj3yB5fc6BNUViWOzb030GjVYvcsceCscxCC1SaxAgU9BoRalGAL9A/GOlwRWfkJCUojmEkIiIiIiIiiihuw7KPP/64p4NMFEW8/vrrOP/880e4KiKioIGOZoTPh9YXX0LatdcyLKO4ZdKYQoZlsVqzTApIaKruRM3+NhzZ14rag21wO5R3RdUebFN0XGaRBWqNiJQcI3J7dY1Z0vUJO+pZEARY9Gq0OvoHY+wsS3IMy4iIiIiIiIgiituwrLq6GkDw5s+FF17IoIyI4s7R0YyWJUvQ9PjjaHnqaUhut+zx6auuhyYvL4YVEg2M3Lplw7Vm2dHOsep9raje34qaAwMLx45Xd9gOvy8AlTp8CKDWqLDqDwug1oZf3yzRmGXCsk43w7KkJhuWJWYwTERERERERDQc4jYs83qP3exZvHjxkK/31FNPDfkaREShiCYTsm69FamXXIKGPzwE+zvv9DtGnZWF9FWrRqA6IuVMGlPI7dEcw9jR4kLZ9kZU729Dzf42uLqiNyLQ7w2gsbIDOaWRuzdHW1AGHF23rH9nIMcwJjmGZUREREREREQRxW1YVlxc3PO12Wwe8vWuvfbaIV+DiCgcTX4+8h/6A1Kvugr1v/sdXDt29OzL/J//gWgKHUQQxQujJnRnWTTDstpDbdjw0oGoXe8oa6YBeeNToNGNvhBMKYs+9Ms6jmFMdv3XsQPAMYxEREREREREvcRtWLZ48WKo1Wr4/X6Ul5ePdDlERIoZT5yF4hf/Aftbb6HhDw9BnZEB2/nnKTpXkiT4amqgyc8f5iqJ+pPrLIvmmmX5E1KHfhEBSM8zI298CnLH2ZA3PgUmm27o101wDMsoJK5ZRkRERERERBRR3IZlWVlZuO666/DEE0/g5Zdfxp133glhCONiSkpKIIoiDh06FMUqiYhCE0QRtvPOg2XpUviamyGIym5KdvznfVT/9KdIufgiZNx0EzQ5OcNcKdExJrVMWBZmzbKudjeO7G1FW70DJ59XGvk5bDqkZBvRVq88gBNVArKKLN3hWApyx9qgM2oUn58sLPrQ/00YliU5hmVEREREREREEcVtWAYAf/jDH7Bx40bs2bMHt912G37/+98P+loVFRVDCtuIiAZDNBqhNYYebXc8yetF4x//CPh8aHvxJbS//gZSvnMZMlavhjozc5grJVI2htHj8qHmQBuOfNOKqr0taKk5tm/GkgIYzNqIz5M/ISVsWCaqBeSU2JA3IQX5E1KRXWKFZhSuMRZt8p1lXLMsqUkcw0hEREREREQUSVyHZRaLBZ988gkuueQSPPTQQ9i5cyfuvPNOLFiwYKRLIyKKurbXXoenoqLnseTxoPXZ59D28itIu+pKpK1aBXVqFEbYEckIFZaJARGBWj2+fKsMR/a2oP6wHYFA6JvvR/a2Yvyc7IjPkz8xFbs31Bx7DpWA7BIr8iekIn9CCrJLbQzHBsGsC/2yrtPNzrKkJtdZBr6JjIiIiIiIiOiouA7LACA9PR0fffQR/v73v+NHP/oRPvzwQ6SkpGD69OnIzs6G0WhkxxgRJbyAw4HGv/4l5D7J5ULzE2vQ+o8XkXbtNUi77jqorNYYV0jJwKQxARKQ6sxFQfsE5LdPQF77OGgDenyFsojnKw3L8sanIKfUhvyJwc6xnLEMx6KBYxgpJHaWEREREREREUUU92GZz+fDvffei4cffhherxeSJKG1tRUbNmwY6dKIiKKm5dln4W9sCntMoKsLTY/8DS1rn0f6yuuQevXVUJnNMaqQRjOH3YOqPc1QbRyDq8vuhclrG9R1juxtUXScyabDRbfPHtRzkDyOYaSQuGYZERERERERUURxHZZ5PB6cffbZ+OSTTyBJEgRBYBcZEY1KmsJCqPNy4aupjXhswG5H458eRvPTzyDtmquRdvXV7DSjAfH7Aqg73I7K3S2o3NOMpqrO7j0mmIZwXXuTC+2NTtgyDdEokwZIPixjZ1lSY1hGREREREREFFFch2V33nkn1q9fDwAQBAGS3BgZIqIEZ/v2t2E580y0vfoqmh/9O3wNDRHPCbS3o+nPf0HLU08j9aorkXbttVzTjCLa81kNPnvlALxuf1Svm5JtRMGkVPA9LSNHNizjmmXJTTYsi20ZRERERERERPEsbsMyu92Ov/71r306yVasWIHzzz8fkyZNQmpqKnQ6naJrSZKE0tLS4SqViCgqRK0WaVdcgZQLL0Triy+i+bHH4W+JPNYu0NmJ5kf/jtZnn0PqFZcjbeVKqNPTY1AxJSJTii4qQZnBqkXBxFQUTk5FwaQ0WNL0UaiOhkJuzTKPLwC3zw+dmuvCJSV2lhERERERERFFFLdh2fr16+F0OgEAoiji9ddfx3nnnTfCVRERDT9Rr0f6ddch9ZJL0PL8C2heswaB9vaI5wUcDjQ/sQYta59H6mWXIW3V9dBkZcWgYkokeRNSoFKL8PtkbqDLUOtE5E9IReGkNBRMSkVanomjkeOMXGcZEBzFqDMzLEtOMpMZGJYRERERERER9YjbsOzgwYMAguMXL7jgAgZlRJR0RJMJGd9djdTLv4OWZ55Fy9NPI9DZGfE8yeVCyzPPoPUf/4DtgguQvup6aMeMiUHFFGs+jx/V+9tQsbMJrfUOnH/rrIjnaLQq5I23oeqb1rDHBeBHvaUC1bZ9OGLbj1dXPQebkWvjxTOzTv5lXafLhwyzso58GmXYWUZEREREREQUUdyGZR6Pp+frxYsXD/l6Tz311JCvQUQ0ElQWCzJ/cDPSrroSzc88g9bn1ioLzTwetL30EgwzZjAsG0U6Wlyo2NWMip1NOLK3FT7vsRvhbfUOpGQbI16jcEp6yLDMlKHGF+p1OGLbhxrrQXjV7p59LskJGxiWxTO5MYxAsLOMklC49X4ZlhERERERERH1iNuwbEyvG7tW69Bvzl177bVDvgYR0UhSpaQg60c/QvrKlWh57jm0PPtcxPGM6uxs2JYvi1GFNBwC/gDqyuyo2NmMil1NaK7ukj22fGcTTsiOHIyOmZqGja8BGr0KBRNTMWZqOsZMSYPTYMcfXr055DkOn2PQ3wPFRrjOsg6XN4aVUNyQ6yoDAHCMKhEREREREdFRcRuWLV26FBqNBj6fD1VVVSNdDhFR3FBZrci8+WakXXstWl/4B1qeegr+1tAj9dJWXgdBq41xhTRUrk4vKnY3o2JXMyp3N8PtUNYVVLGrGScsjRyWpeWacMFPT0R2iRUq1bHuEtHjlz3H4WVYFu9UogCTVoWuEP8fO9zsLEtK7CwjIiIiIiIiUiRuf0vOysrCjTfeCEmS8MYbbwz5ekuWLMEZZ5wRhcqIiOKDymxGxndXY9y6D5H1s59BlZHRZ79osyH1kktGqDoaqLYGB7Z+UIk3/vA1nrxtAz58ag8OfFWvOCgDgJoDbfAoGLcnCALyxqX0CcoAwKA2yJ7T5ZXvaKP4ITeKkWMYk1S4zjKGZUREREREREQ94razDAAeeOABbN68Gf/973/x4IMP4rbbbhv0tdavXw9B4LgZIhp9RKMR6SuvQ+rl30HbK6+iec0a+OrqkHblFRBNJkXXaH7yKfg77Ei74gqoMzOHuWICACkgob7CjrLtTSjb3oTW2qGHUQG/hKpvWjB2VtagzleJKhjUBjh9zn77GJYlBotejTp7/+0cw5ikGJYRERERERERKRLXYZler8eHH36I1atX44477sA333yDu+66CyUlJSNdGhFR3BH1eqRdfRVSL7sU7W+9DfPpixSdF3A60fzYY/C3taHliTWwLluGtOuuhX7ixGGuODm11HZh+0dVKN/RBEe7JyrX1JnUGDMlHcXT05E/IXVI1zKqjaHDMh/DskRg1od+adfJzrLkxLCMiIiIiIiISJG4DsvuvfdeAMDEiROxYMECPP3003jmmWcwffp0zJw5E9nZ2TCZTOwYIyLqRdBqkXLhBYqPb3/zX/C3tQEAJK8X7W+8gfY33oBx3ilIv+46mBYsgCDypmq0uB0+7NlQM+TrpOebUTQ9HcXT0pFdaoMoRuffQqPGiGZXc7/toQI0ij+yYxi5ZllyChuWxa4MIiIiIiIiongX12HZPffc0y8IkyQJO3bswM6dO0eoKiKi0UMKBNDyzDMh9zk2fQHHpi+gLSlB2rXXwnb+eRAN8mtakTLZJVYYLBo4OwY2Fk+tFVEwKQ1F09JRNC0dljT9sNQnt26Z08uwLBFYZDrLOIYxWUnyu9hZRkRERERERNQjrsOyoyRJgiAI7CAjIoqyrg0b4CkrC3uMp6wMdffcg8b/9/+Q8p3LkPqd70CTkxOjChNHe6MD1gxDxH+rRFFA8YwMfPN5bcRrWjP0KJqegeJp6cibkAK1RhWtcmUZ1caQ2x0+x7A/Nw2dVTYsY2dZUuIYRiIiIiIiIiJFEiIsA4KBGRERRVfriy8pPtbf1obmR/+O5sefgOWMM5B6xRUwnnxS0r6RQZIktNR24dDXjTi8tQHN1V245OdzkFVkjXhuSZiwLKvYipIZGSiZmYG0vNiPGjZqQodlHMOYGMw6hmXUC8MyIiIiIiIiIkUSIiz75S9/icWLFw/6fEmSsGTJkihWREQ0OuQ9+ADaXn0Vrc8+B2+NwnW0/H50vP8+Ot5/H9pxY5F25ZWwLj8PKrNpeIuNA5IkoamqE4e+bsChrY1oq+/bbXXo60ZFYVnB5DSoNSJ83gBEtYCCiWkomZmBkhkZMKXohqt8ReTGMDq87CxLBLJrlnEMY3IK92YzhmVEREREREREPRIiLJsyZQoWLVo00mUQEY06KrMZ6dddh7SrrkLHh+vQ8vTTcG7bpvh8z8FDqPvVvWj4/R9gu+ACpF5xBXSlJcNX8AiQAhLqy+049HUDDm9rhL3JJXvsoa0NOGVFacRuMI1WhVNWjIUpRYcxU9OglRmdNxI4hjGxya1Z1ulmZ1lSCtdZhuTsCiYiIiIiIiIKJX7uzhER0YgR1GpYzz4L1rPPgnPbNjQ/8ww6/vM+EAh3o/WYQFcXWteuRevatTDNn4/UK6+A+fTTIaiGf42t4SBJEurL7DjwVT0ObW1EV5tb0XntDU601HQhPd8c8diZZxQOtcxhIddZxjGMiYFjGKkPdpYRERERERERKRLXYdmMGTMgCAJSU1OHfK1rrrkmadfVISIaCMMJJ6DghBPgOVKN1rVr0fbqqwh0dio+v2vjRnRt3Ajr8uXIf/CBYaw0uo6OWDywuR4HNzego0W+gyycQ183KArL4pXcmmXsLEsM8mMYGZYlJa5ZRkRERERERKRIXIdl2wYwCiySp59+OmrXIiJKBtqCfGTf8TNk/OBmtL/xT7S+8AI8ZWWKz7eefdYwVhc9LTVdOLC5Hgc216O9YejdU+1Nid2BJTeG0elN7O8rWVjDjGEMBCSIIt84lFQYlhEREREREREpEtdhGRERjTyV2Yy0q69C6lVXwrFpE1qefwGdH38cdkSjOi8X5tNPj12RA9TW4MDBzQ04sLkeLTVdQ7uYAOSNS0HprEyUnpAJS5o+OkWOEI5hTGzmMOvfdXp8sMp0ntEoFTYsY3BKREREREREdFTShGV2ux0AYLVaR7gSIqLEJAgCTPPnwzR/PrzV1Wh98SW0vfIK/G1t/Y5NvfxyxeuVSYEABDF2HQ6SJOHNP25FZ6uydchCEUQB+RNSMPbELJSekAmjVRvFCkcWxzAmNrkxjEBwFCPDsiTDsIyIiIiIiIhIkaQJy1JSUiCKInw+rtlBRDRUmvx8ZP3kx8j4wc2wv/MuWp9/Hq5duwAAglaLlIsvVnQd96FDqFr9XaRccjFsF14ETXbWcJYNIBj6jZuTjW0fVA7oPFEtoHByGsbOykTJjEzozaMzdJDtLOMYxoRgCddZxnXLkpAkv4tjGImIiIiIiIh6JE1YBgS7CYiIKHpEnQ4pF6xAygUr4NyxA63PPw9Bp4c6NVXR+W0vvwJvTQ0a//QwGv/yV5gXLoTtwgtgWbQIgnb4urXGz8lSFJaJKgFjpqZj3OwslMzIgNYw+v/ZlFuzjJ1licGsk/8z2uHyxrASigtcs4yIiIiIiIhIkdF/14+IiGLCMGMGDDNmKH5jQsDtRvs//3lsg9+Pzo8/RufHH0OVmgrbecthu/BC6CdOjHgtKSCh5kAb3A4fSmdlRjw+c4wF1kwD7I39u6UEUUDBxBSMm5ON0hMyoTeNzg4yOeHWLJMkCQJHt8U1vUYFrUqEx98/JOlgZ1nyYVhGREREREREpEhch2X33nvvSJdAREQDpDRM6Xj/ffjb20Pu87e2ouWZZ9HyzLPQT5kC24UXwrbs21ClpPQ5rqWmC/v+W4f9X9ahs9UNc5oOJTMzIIjhaxAEAePnZGHLuxXdG4C8cSkYPycLpbOyRtUaZAMlt2aZX/LDE/BAp9LFuCIaKItejeYuT7/tdnaWJZ9wb15gWEZERERERETUI67DsnvuuYfvYCciGqXaXnpZ0XGuPXvg2rMHDfffD/PSM6A75wJUC0XY92U9mqo6+xzb2eJG7aE25I2PPAZy/JxsVH3TivFzsjBudhbMqfpBfR+jjVxnGRBct4xhWfyTC8vYWZaEwnWWga+xiYiIiIiIiI6K67BssI4fAcbAjYgovvgaG+HcsUPx8QFBhWbbFGyvKkLza25IwiHZY/d9UacoLEvPN+OSO+YoriFZyK1ZBgTXLUtBSuyKoUEx60O/vOtyMyxLOuwsIyIiIiIiIlIkIcIypevf9HY0IJMkaVDnExHR8FFnZmLcJ+vR/sY/0fbyy/CUl4c8rtOUh9qceajLnguv1qLo2ge/bsSC70yAWqOKYsXJw6CR7yxzeB0xrIQGy6RlWEbduGYZERERERERkSIJEZZ9/PHHio7r6upCU1MTdu/ejXfffRe7du3CuHHjcP/99yMtLW2YqyQiooFQp6Yi/fqVSFt5HZxbtqDt9Tdgf+89eDxAffZc1Oacgg7LmAFf1+P0oWxzLcbPKxiGqke/cJ1lTp8zhpXQYJl1oV/edTAsSz4My4iIiIiIiIgUSYiwbNGiRQM+5/7778eHH36I7373u7j55pvx5ptvYu7cucNQHRERDYUgCNCfOBtefQnKCy9B2Y5mBKTBjc8VAl5kNO9C4Ks6YN4VUa40OejV8mu3OXzsLEsEHMNIPcKGZRxTTkRERERERHRUQoRlg7V06VJ89tlnOPHEE7F8+XJ88cUXKC4uHumyiIiom73JiT2f12Dvxlp0tXu6tw78Bq6t7SBy6v+LrMat0ATcKH1EWUcy9ScKIgxqQ8guMnaWJQaTTGdZl9sf40poxDEsIyIiIiIiIlIkrsOyX/7ylz1rjw1WXl4e7r77btx888347ne/i/fffz9K1RER0WA57B6se3oPKr9pAQa5rKTBUY/cuv8iu+ErGFwtPdtN8+dDk50VpUqTk1xYxjXLEoPcGMZOdpYloTA/YDmGkYiIiIiIiKhHXIdl99xzT1Sus2zZMtx8881Yt24dDh48iHHjxkXlukRENDh6swYtdV0DDso0WhFj0rqQdeAD6Lf8J2QPmu388xRdy9faivbXX4f1nHOgycsbWCGjnFFtRAta+m3nGMbEYNIyLKNuXLOMiIiIiIiISJG4DsuiJTc3t+frDRs2MCwjIhphoihgyql5+PLfZYqOz5+QgknzczF2VhY0OhWAb8NTUYH2f7+F9n/9C97KSgCAYDDAsnSpomt2/Od9NDz4ezQ8+HsYZs2C9dxzYT37LKgzMwf7bY0aBo0h5HaOYUwMXLOMejAsIyIiIiIiIlIkKcIyu93e83VdXd0IVkJEREdNnp+Hr94uhxQI3V5mTtNh0im5mDQvF7bM/uGNtqgImT+4GRk3fx+u7dvR/q9/AaIKosmk6Pnt777b87Vz61Y4t25F/X33wXjSSbCeew4sZ54JdWrq4L65BGdUG0Nu5xjGxGDWqUJuZ2dZEpLCte9yzTIiIiIiIiKio5IiLPv00097vtbr9SNYCRHR6BUISKjY2QSfJ4Dxc7MjHm9O1aF4ejrKtjf1bFNpRJSekInJ83NRMDEVghj5Zq4gCDCccAIMJ5yguFZvQwMcX34Z6puA44sv4PjiC9Td+2uY5s+D9dxzYTnjDKgsFsXXT3RyYRk7yxKDSWbNMnaWJSF2lhEREREREREpMurDsvb2dtx11109j/Pz80ewGiKi0cfV6cWez2uw65NqdLS4YErRofTETKhUkW/ETjktD2Xbm5Ceb8bUBXmYcFI2dEbNsNfc8d5/InRcAPD50PXpBnR9ugF1Gg1Mp54Ky7e+BcuSxVClpAx7jSPJoA49hpFrliUGubCMnWVJKNzPOYZlRERERERERD1GXVjmcrnQ0tKCQ4cOYf369fj73/+O2tranv0LFy4cweqIiEaPhgo7dq4/ggNfNcDvO9a90NXmRtm2JoybnRXxGmOmpuPiO+Ygq8gCQYjdSDD7O+8M6HjJ60Xn+vXoXL8etWo1TCedFAzOlp4BdUbGMFU5cowadpYlMotMWOb1S3D7/NCpQ49ppFGInWVEREREREREisR1WKZSDf1mjtT9jlpBEHDeeechJydnyNckIkpWfm8AB79uwM71R1BfZpc9btcnRxSFZaIoILvYGs0SI5IkCeYzliDgcsG9d+/AL+DzoWvjRnRt3Ii6e++FcfbsYHD2rTOhyY48fjIRyHaWcc2yhCDXWQYAXW6GZUmFYRkRERERERGRInEdlkmRRmRFIAgCBEGAJEnIzc3Fww8/HKXKiIiSS0eLC7s/rcaez2vg7PBGPL56fxuaqzuRnm+OQXUDIwgCMlavRsbq1XAfPgz7O+/C/vbb8JSVDfxigQAcX30Fx1dfof7//g+GmTNhu/BCpF52afQLjyG5Ncs4hjExmMOGZT6kmbQxrIZGVNiwLHbdvERERERERETxLu7fUjqUsVxHw7Zly5Zh06ZNKCwsjFZZRERJoe5wO957bBee+9+N2PJehaKg7Khdn1QPY2XRoSstReYPbkbpO2+j5J9vIH31amiGsLalc/t2OHfuiGKFI8OgCd1ZxjGMiSFcZ1mHi+uWJZdwa5YxLCMiIiIiIiI6Kq47y45atGiR4mPVajXMZjNycnIwc+ZMnH322SguLh6+4oiIRpmAP4DD25qw7cPKsKMW5YhqAeNmZ2HSvNxhqG54CIIA/aRJ0E+ahMwf/w9cO3fC/vY7sL/7LnwNDQO6lvVb3xqmKmNHtrOMYxgTgkknP2axy8OwLKnIdZZxBCMRERERERFRHwkRln388ccjXQIR0ajncfqw5/Ma7PjoCDpaXAM+35yqw9SF+Zhyah6M1sQd8yYIAgwzZsAwYwayfnY7nNu2o+P999Hx/vvw1tSEPVe0WGA65RRFz+Pavx/aMWMg6vXRKDuq5MIydpYlBp1aBa1KhMffPyjpdDMsSyoMy4iIiIiIiIgUSYiwjIiIho+9yYkd649gz2c18Lr8Az4/f2Iqpp+ej5IZGRBVo+sGrCCKMJ44C8YTZyHrZ7fDtWt3T3Dmqajod7xlyWII2shBoSRJqPrujfC3tcF06qmwLFkC8+LToU5LG4bvYuDkxjByzbLEYdKp4HH0D0q6GJYlF4ZlRERERERERIowLCMiSmKfvXIAOz6qghRmWZtQNDoVJp6Sg+mLCpCWZxqe4uKMIAgwTJ8Gw/RpyPzx/8C9/0BPcOY+cAAAYFE4gtG1ew98dXUAgM5169C5bh0gCDDMmgXLGUtgXrIEupKSYfteImFnWeIz6dRodfRfY7CTa5YlF9kf7lyvjIiIiIiIiKi3uA7LysrKRroEIqJRzZyqG1BQlpJtxPTTCzDplBxoDXH9T8iwEgQB+okToJ84AZk//AHcZWXo+OBDmE49VdH5nR+t679RkuD8+ms4v/4aDQ/+HtqSEpiXLIZ50SIYZ82CoNFE+buQZ1CH7ixzep2QJAmCwBvt8c6sC/33k2MYk4zcD3h2lhERERERERH1Edd3OouKika6BCKiUW3KqXn48q2yiOMXCyal4oSlYzBmShoEkUHJ8XQlJdB9d7Xi4zvWfRTxGE9ZGVrWlKFlzZPBtdBOOxXmRYtgXrhw2Mc1GjWhO8t8kg/egBdaVeKuSZcs5MKyLvfAR61SAuMYRiIiIiIiIiJF4josi6Z7770XgiDgrrvuGulSiIjihtagxpTT8rD9w6p++0S1gAlzszHzjDHIKDCPQHWjk+fIEbj37RvQOYGODnS8+x463n0PEAToZ0wPBmeLFkE/ZUrUO73kxjACwVGMDMvin0kuLPOwsyypMCwjIiIiIiIiUiRpwrJ77rmHYRkRJQ1nhwc6oxqiKvIN0RmLC7Bj3bF1y/QmDaYtyse0Rfkw2XTDXGny8VRUQJWSAn9b2+AuIElwbd8B1/YdaHr4z1BnZsK0aCHMixbBNG8+VOahryEnN4YRABxeB2w625Cfg4aXXGdZB9csSy4My4iIiIiIiIgUSZqwjIgoGdibndj2QRW++bwGi6+ehAkn5UQ8x5puwNgTs9Bc3YmZZxRi4sk5UGtVMag2OZlPPRXjP/8Mzq1b0bHuI3R8tA7eispBX8/X2Ij2V19D+6uvQdBokP/Hh2BZunRINcqNYQSCnWUU/0y60H+Hu7hmWXKRDctiWwYRERERERFRvGNYRkQ0CrQ3OrDlvQrs21SHQCDYIvb1fyoxfm62ohF9p185EVq9muuRxYigUsE4Zw6Mc+Yg6/bb4Dl8GB3rPkLnunVw7tiBnja/AZK8XugmTR5yfWE7y3yOIV+fhp9Zpwm5nWFZspH5WcLOMiIiIiIiIqI+RiQsU6nYsUBEFA2tdV3Y8l4F9n9ZDynQ96Zoc3UnKne3oGhaesTr6Iyhb6zT8BMEAbqxY6EbOxYZ310NX2MjOtavR+f6T9C1aRMkh/JwSjtuLLQF+YqOlSRJNkjVq/Sy5zm8DMsSgVmms6yTYVly4RhGIiIiIiIiIkVGJCyTBvmOeSIiCmqu6cSWdytwcHN92Cakr/9ToSgso/ihzsxE6iWXIPWSSxDweOD48it0fvIJOj/5BN7K8OMazYsWKXoOX3MzDq9YAdO8eTAvWADT/PlQpx/7c6ISVTCoDSFHLnIMY2IwyaxZxrAsyTAsIyIiIiIiIlJkxMYwCoIQs9Asls9FRDScmo50YPM75Ti0tVF2ulZvNQfaUHuoHbljbcNfHEWdqNXCfNqpMJ92KqRf/ByesvKe4MyxeTPg6xt8KA3LujZuhL+xCfZ//Rv2f/0bAKCfOhWm006DecFpMMycKRuWcQxjYpALyziGMcnIvf5lWEZERERERETUx4iuWbZI4U29aPjkk09i9lxERNHWXN2JL98qw+GtjQM6z2jTwtnhGaaqKJYEQYCutAS60hKkr7wO/s5OdH2+MRieffopJLcbxlmzFF2rc8OGfttcu3fDtXs3mv/+d4hGI35YKOHLwgB2Fgs4kgGge2QjO8sSg0Uv11nmj3ElNKLkOsvA9SmJiIiIiIiIehvRsOzjjz+O2XOJIt9BS0SJp63egS/fKsOBzfWKOsmOsqTrMfvsIkw6JRcqDX/+jUYqsxnWs74F61nfghQIwFtdDUETee05KRBA1+cbwx4TcDgwdR8wdV/wcasJ2FksYGexAG9JHTA+Gt8BDSeTlp1lBHaWERERERERESk0omEZERGFZm9y4qu3y7Dvi7qwa5Idz5ZlwOyzizHh5GyoVLwZmiwEUYS2sFDRse69e+Fvbh7Q9VO7gIW7JSzcLQFv/xmHSt+G6ZRTYJo/D8aTToLKah1M2TSM5MYwOr1++PwBqPnzITlwzTIiIiIiIiIiRRiWERHFkY4WF7a8W45vPq9FIKA8JUvNMWLOucUYNzsLIm+CUxidGz4b8jU8hw/Dc/gwWl94ARBF6KdPg2nePJjmzYdh1gkQtdooVEpDYZYJywCgy+OHzcCfE0mBYRkRERERERGRIiMSlj311FNJ8ZxEREo57B5sebccuzZUI+BTHpKl55sx59xijJ2VCUHkGjQUWdpVV0I3YTy6NnyGzs8/g7eicmgXDATg2r4Dru070Pzo31H84j9gOOGEqNRKg2eWWbMMCI5itBkij+ykUUA2LOO/F0RERERERES9jUhYdu211ybFcxIRKfX5awew/7/1io/PKDRj7rdLUDIjgyEZDYhoMsGyeDEsixcDADyVlej87DN0bfgMXf/9LySHY/DXNpuhnzYtWqXSEJh0Ktl9XLcsiTAsIyIiIiIiIlKEYxiJiOLA3HNLcOCrBkgRRi+m5Zlw0rISlJ7ATjKKDu2YMUi74gqkXXEFJI8Hzh070LXpC3zz/ktIO9gE1QDWzDOedBIEdeSXFgGXC20vvQTjSSdBN3EiBJEj4aIt3BjGDoZlSUTmLzDHMBIRERERERH1kdBhWUNDA5qamtDe3g6bzYaMjAxkZWWNdFlERAOWkm3E1NPysOvT6pD7bVkGnLSsBOPmZENkSEbDRNBqYZwzB8Y5c/D0KU68svUZTK6UML08+DGmKfz5pnnzFD2Pc9s21N/3OwCAaLPBOHcOTCedDOPJJ0E3fjzDsygwaFQQBSBU/s7OsiTCNcuIiIiIiIiIFEm4sOy9997Ds88+i/Xr16O+vv/IsuzsbJx++um4+uqrcc4554xAhUREgzPn28XY+0UtfJ5jNzct6XrM/XYJJp6cDVHFm5sUOwa1AU6dgK/HC/h6fHBbSqeE81qLcWXndHRt2gTfcf8Om+YrC8scX37Z83WgvR2dH65D54frAACqlBQY586F8eSTYTxpLnTjxjE8GwRBEGDSqdHh6h+MMSxLIgzLiIiIiIiIiBRJmLBs586dWLlyJbZu3QoAkKTQY2Xq6urw0ksv4aWXXsKsWbPw1FNPYfr06bEslYioD0mSIChYH8Zk0+GEpWOw+Z1ymFJ0mHNuMSbPz4VKzZuaFHtGjbHftjazgM1FJty27D5IkgRPWRm6Nm1C16ZN8JSXQ1taqujaXb3CsuP529rQ8cEH6PjgAwCAKjUVxjmzYZg9G8bZc6CfPEnRqEcKjmIMFZZ1uv0jUA2NCJnXywA7lImIiIiIiIh6S4i7TS+//DKuv/56OJ3OnpvOkW48S5KEr7/+GqeccgrWrFmD73znOzGqlogoyGH34L//PgwAWHzlJEXnzDpzDPRmDaYuyINaoxrO8ojCMqr7h2UA4PQ5AQQ7l3SlpdCVliLtyisVh8IBpxPO7TsU1+FvbUXHBx+i44MPAQCi0QjDrFk9AZphxgyIer3i6yUTk8y6ZZ0ub4wroRHDzjIiIiIiIiIiReI+LPvoo49w9dVXw+v19oRkcl1lvR29Yed0OnHttdciMzMTZ5xxxnCXS0QEvzeA7R9XYcs75fC4/IAATFuQj8wxlojnag1qzFxSGIMqicIzqA0htzu8jpDblQRlQHC9MngHH9YEHA50ff45uj7/PPi8Gg3006Z1r7U2G4bZc6AymwZ9/dFELizr8rCzLGnIvWZmWEZERERERETUR1yHZXa7HZdddhl8Pl9PSDZx4kQsW7YMM2fOxNixY2G1WmEwGOBwONDR0YGDBw9i+/bt+Pe//40DBw5AEAR4vV585zvfwaFDh2C1Wkf62yKiUUqSJBze2oiNrx+EvcnVawfw2SsHsOLHsxQHCkQjLdQYRuBYZ9lQGObMDnaXDSE0O0ryeuHcuhXOrVvR/PjjKHjkEViWLB7ydUcDsy50d2on1yxLHuwsIyIiIiIiIlIkrsOyBx98EM3NzRAEAZMmTcKf/vQnLF26NOw58+bNw9VXX43f//73eO+99/DjH/8Ye/fuRUtLCx588EH8+te/jlH1RJRMGis78NkrB1BzoC3k/poDbSjb1oTSWZmxLYxokGQ7y3yhO8uUMs2bB9O8ecFxjNu2oevLL+H475dw7twZlfDMeOKsIV9jtDDLdZYxLEsesmEZ37hBRERERERE1Ftch2VPPvkkBEHA3Llz8f777w+4K+zss8/G/PnzccYZZ2DLli1Ys2YNwzIiiiqH3YNN/zyEvZtqgQgTYj9/7QCKpqVDpeE7+in+ya1Z5gv44PV7oVFphnR90WDoCc6A4HhF57Zt6Prvl3B82R2e+QYW6ujGj4cqJSXicVIggOof/wT6SZNgmDULhunTIBpDf7+JTH7NMoZlSYNhGREREREREZEicRuW7dixA7W1tVCpVFi7du2gxydarVY8//zzmDJlCurr67Fjxw7MmDEjytUSUbIJ+APY9Wk1/vvm4eC6ZArZm51IzeF6ShT/5DrLgGB3mU1li+rziUYjTPPnwzR/PgAg0NUFx9ZtcGzZDOfmLXDu2AHJ7Q57DePcOYqey1Nejo733kPHe+8FN6hUx4KzWSfAeOKJ0OTmDun7iQdynWUcw5hEOIaRiIiIiIiISJG4Dct27doFAFi4cCHGjRs3pGtNmDABixYtwvr167Fr1y6GZUQ0JDUH2/DpP/ajubpT0fFavQqzzy3GzMWF7CqjhCG3ZhkQXLfMpotuWHY80WSC+bRTYT7tVABAwOOBa9duOLZshmPzZji/3opAR0efcwyzZyu6tnPr1r4b/H64du+Ga/dutK5dCwBQ5+QEg7NZs2CYNQv6SZMgaIbWTRdrcp1lXR6GZclDpuWZYRkRERERERFRH3EbljU2NgIApk+fHpXrTZ8+HevXr++5LhHRQDnsHmx6/SD2flGn6HhBAKacloeTlpfCaNUOc3VE0SU3hhEY+rplgyFqtTCeOCu4Jtnq1ZD8frgPHIBj85aeAM04R1lnmeP4sCwEX10dOt59Dx3vBrvPBL0ehmnTYDjxRBhmnQDDCSdAnZo6pO9puMl3linvhqUEx84yIiIiIiIiIkXiNixzuVwAAINBfgzUQBy9jjvCCCciouP1jFz8Vxk8TmUdGQWTUnHaJeORnm8e5uqIhke4MYxOrzOGlYQmdI9O1E+ahLSrroQkSRAUrsPk3LptwM8nuVxwbA6Gckdpi4thmDkD+hkzYJgxE/qJEyBo4ycYlw3LXN4YV0IjhmEZERERERERkSJxG5ZlZmYCACorK6NyvaPXycjIiMr1iCg51B5swycv7kfzEWUjF1OyjTj1onEomp6u+MY9UTyKtGZZvFH6983f1gbPoUNReU5PeTk85eVof/NfwRq0WmR8/3vIuOmmqFx/qGTHMLKzLHlIMmMYwX+fiIiIiIiIiHqL27BszJgxAID//Oc/8Hq90AxhnRC324333nuvz3WJiMJxdXmx6Y1D2PNZjaLj1ToV5p5bjJlnFEKl5jv2KfGpRBV0Kh3c/v4d2U7fyHeWDZYkSci89VY4t26FY9s2BNrbo3dtjweqlPgZzWjWqUJu73JzzbKkIReWsbOMiIiIiIiIqI+4DctOPfVU6HQ6tLa24u6778Zvf/vbQV/r7rvvRmtrK/R6PU477bQoVklEo1H5ziZ89NxeOO0eRcePm52FUy8eB3OqfpgrI4oto9oYMixzeOOvs0wpdWoqMm66EQAgBQLwlJfD+fXXcGzdCufWbfAcPjyk6xtmzlB0XPubbyLgdMIwYwZ0EyZAUEf/JZlZF/qNRp0e34DGVlIC4xhGIiIiIiIiIkXiNiwzGAz41re+hX//+9+4//77odFocNddd0E9gJtJPp8Pd999Nx544AEIgoCzzjoLej1vZhNRBBIUBWUp2UYs/M4EFE5Oi0FRRLGnV+uBEEt9JnJnWW+CKEJXWgpdaSlSLr4YAOBrbYVz+3Y4t26Dc+tWOHfsgNS9jmrE6xkM0I0fr+jY5meegXvPN8Hz9Hrop06FYcYMGGZMh376dGjy84ccZplkOsskCXB4/LJjGmkUkQ3LGJQSERERERER9RbXd0nuuecevPXWWwCA3/zmN3j++efxve99D+eeey4mTZoU8iaSJEn45ptv8NZbb+HRRx9FRUUFgOBaJvfcc08syyeiBFU8IwPjZmfh4JaGkPvVWhFzv13CkYs06smtW+byKwuPEpE6NRWW00+H5fTTAQCS1wvX3n3B4GzbVji2boOvtjbkuYapUxV1iAWcTrj37e95LLlccG7ZAueWLT3bVDYb9NOmQT99GgzTpkE/bRrU2dkDCtDMYcKwLrePYVkyYGcZERERERERkSJxfZdk1qxZ+OEPf4iHH34YgiDg8OHDuP3223H77bdDp9OhqKgIVqsVBoMBTqcTdrsd5eXl8HiCHSFS9zoNgiDglltuwcyZM0fy2yGiBHLapeNR9U0L3I6+a/uMPTE4ctGSxi5VGv3kwrLR0lmmhKDRwDB9GgzTpwHXXA0A8NbWBrvPtu+Ac8cOuHbvhuRyQa9wBKNrzx7A7w97jL+9HV2ff46uzz/v2abKzIBhajA4M0zvDtDS02WvES4M63T7kKWoWkpo7CwjIiIiIiIiUmTEwrIlS5ZAEASsW7cu7HEPPfQQDh06hLfffhuCIPQEYC6XC/v27QOAPtt7O7p92bJl+MMf/hD9b4KIRi2TTYf5F43Dx8/tBQBYM/RYdMVEjJkif2OaaLTRq0OHwskUloWiyc2FJjcX1rPPBhDsPnMfOADRYlF0vnP7jkE9r7+xCZ3r16Nz/fqeberc3J7OM/20qTBMnQpVSgoAwKwP11kWPqyj0aL/62MA7CwjIiIiIiIiOs6IhWXr169XNEpIFEW8+eabuOOOO3oCr1DnHb/taHh2++2347e//S0XsSeiAZs8PxcHvqpH5hgL5i4rgUYbev0fotFKdgyjb/SOYRwMQaOBfsoUxcc7dwwuLAvFV1uLjtpadHzwAQBANBoxYfNXEEQRJq38y7wOtzdqNVAc4xhGIiIiIiIiIkUS4jdlURTxwAMP4Msvv8SFF14IlUoFSZJkP1QqFS666CJs3rwZv/vd7yCKCfFtEtEw8/sD+Pr9CridvsgHIxjCL7/lBMy/cByDMkpKHMM4PPSTJsFwwgkQtNqoX1s3ZTKE7tc9KlGAQRP6Z1eXS9nPQUpwDMuIiIiIiIiIFBnxNctWr16N66+/HvPmzYt47OzZs/Hqq6+is7MTGzZswPbt29HU1AS73Q6r1YqMjAzMnDkTCxYsgNlsjkH1RJQomqs78eHTe9BU1YnWOgfOuGayovNEkV2plLwYlg2PjJtuRMZNN0LyeODat6977bPtcO3cBU9Z2ZCubZg6rc9jk04Np7f/yEVp85c4cPMfoZ88GfopU6CfOgX6yZOhzslhN/5oEmJMOQCGZURERERERETHGfGw7Mknn8STTz6JiRMn4oYbbsDVV1+NzMzMsOeYzWacc845OOecc2JUJRElqoA/gK0fVOLLf5ch4A/eNNy7sRZjT8hE8YyMEa6OKL7pVVyzbDgJWi0M06fDMH06gCsBAP7OTrh274Fr1044d+2Ca9dueKuqFF9TP316n8dmnQpNnSGe++A++Orq0FlXh86PP+7ZrkpNDYZnU7pDtMmToRkzpqdbjRKMXGcZGIgSERERERER9TbiYVlOTg5qa2uxd+9e3Hbbbfj5z3+O5cuX4/rrr8c555zDdzcT0aC11nVh3TPfoL7M3m/fx2v34vJfngy9WTMClRElBnaWxZ7KbIbp5JNgOvmknm2+1tbuAG0XXLt3wblzF3x1dSHPN0yb2uexSRf6pZ6u7EDI7f7WVnR9/jm6Pv+8Z5toMkE/eTJ0RwO0KVOgKy2FoB7xl5EUCTvLiIiIiIiIiBQZ8bscVVVVeOedd7BmzRq8/fbb8Hq9eOONN/DGG28gNzcX1113HVauXImxY8eOdKlElCCkgIQdHx/Bpn8egt8b+l31DrsHn760H99aNTXkfiICDJrQYZnL54pxJclNnZoK82mnwnzaqT3bfI2NPZ1nrl274Ny1C5LHA82YMX3ONWlDv9QzVhxS/PyBri44Nm+GY/Pmnm2CTgfdxInBMY6TJwW/njABosk0wO+OhpXsmmV8MxoRERERERFRbyMelomiiGXLlmHZsmVoaGjAM888g6eeegp79+5FTU0N7rvvPtx3331YuHAhbrjhBlx00UXQ60OPhSIi6mx1Y90ze3Bkb2vEYyv3NKOz1Q1zqi4GlRElHo5hjF/qzExYFi+GZfFiAIAkSfC3tvYbl2jUqfqda/S6YGqsGdLzS243XDt2wLVjR5/tmjFjkPXjH8N69llDuj5FiWxYxs4yIiIiIiIiot7i6jflrKws3HbbbdizZw8+//xzrFy5EiaTCZIk4ZNPPsE111yD3Nxc3Hzzzdjc693NREQAcHhrI178zX8VBWXFMzJw+S9PZlBGFIbcGEZ2lsUfQRCgTkvrtz1UZ1lJ+9CCsnC8lZUQtNphuz4NEMMyIiIiIiIiIkVGrLOsrKws7P558+Zh3rx5ePjhh/Hiiy/iySefxKZNm9De3o5HH30Ujz76KKZNm4YbbrgBV155JdJC3CAiouTgdfvx2SsHsOezyDeAtQY1Flw6HhNPyeGaiEQRcM2yxGfU9u8sK7Pl4Z0rb8e1mW649nwD15498B45ErXn1E+aqOi42nvuQcDeAd2kSdBPmgjdxElQZ2XyZ3M0cQwjERERERERkSIjFpYVFRUpOs5kMmHVqlVYtWoV9u3bhyeeeALPPfccGhoasHPnTtx66624/fbbsWLFClx//fU488wzh7lyIoonjZUdeH/NbrTVOyIeWzglDUuungRzKke5Eikh21nmZ2dZojDp+r/Uc2j02FtUhIxr5vRs87e3w/XNXrj27Al+fPMNPIcPA5I0oOcTrVaoc3MVHduxbh38jU3AO+/0bFOlpkI3aSL0EycFP0+aBG1pKUR2qw2SzP8/dpYRERERERER9THia5YNxMSJE/Hggw/ivvvuw1tvvYU1a9bgvffeg9vtxssvv4yXX34ZhYWFWLlyJa677jrFgRwRJR5JkrB9XRU2vXEIAX/4m7lqnQqnXjQOUxfksWOBaAD0aq5ZluhCdZYBgMPj6/NYZbPBdMrJMJ1ycs+2gMMB1759fQI094GDgNcr+3z6iRMV/Zz1NTcHg7Lj+Ftb4dj0BRybvuhVnArakmLoxo+HfsIE6CZMgG78eGgKCvqt0UbH4RhGIiIiIiIiIkUSKiw7Sq1WY8WKFVixYgVqa2vx9NNP46mnnsLBgwdRWVmJe++9F7/+9a+xZMkS3HDDDVixYgW0fEcy0ajh6vJi3TPfoHxH/xutx8suseLM66fAlmmMQWVEo0u4MYwBKQCRN9zjXqjOMgDocvsjnisajTDOmgXjrFk92wIeD9wHDsD9TXB8o2vvPrj37UOgqwsAoJs0SVFdrr17FR0HAPD74Tl4CJ6Dh9Dx7ns9mwWjEbpx46AbP65PiKbOyFB+7dGOYRkRERERERGRIgkZlvWWm5uLn//85/j5z3+OTz/9FE888QRef/11OBwOrFu3DuvWrUNqaiquuuoqrFy5EjNnzhzpkoloCOoOt+M/T+xCZ4s77HGCAMw+pxhzvl0MlYo3BYkGQy4sAwC33x12P8UHpZ1lSolaLQxTp8IwdWrPNikQgLe6Gq69e6HJy1N0HffefYN6/t4khwOuHTvg2rED7b22qzIyMP6jdRD4Rin5MZoMy4iIiIiIiIj6GFW/KS9cuBDPPvssamtr8ctf/hKCIECSJLS0tODPf/4zZs+ePdIlEtEgSQEJX79fgTd+/3XEoMycpsOKH5+Ik88rZVBGNARyYxgBjmJMFCbt4DvLlBJEEdrCQljPPLNPiBaOa98AOssGSDQaFQVlUiAAKcxIyVFBrrMMHElMRERERERE1FvCd5b1FggE8Pbbb+OJJ57Au+++C0mSetbNkAa4QD0RxQ+v24//PL4LFbuaIx47fk4WFl0xETqjJgaVEY1u4TrHXD5XDCuhwTLqottZFi2288+HJjcP7r174dq3D766uqhdWzd+vKLjPIcP4/CKC6AtLoJu7LjgSMdxY6EbNw7aoqLR0ZnGzjIiIiIiIiIiRUZFWHbw4EGsWbMGzzzzDOrr6wEcC8eULDJPRPFNrRWhUoe/safWilj4nYmYNC+Hf++JoiRcWMbOssQg21nmiV5n2WCYTz0V5lNP7Xnsa22Fe98+uPbuhXvvPrj27YPn4MFBdX7pJigLy9z79wM+37H10P7zn2M71Wpoi4qgGzv2WIA2dhy0JcUQEylEk12zjP9OEhEREREREfWWsGGZy+XCK6+8gjVr1mDDhg0A+naP9b5ZLkkS1Go1zj333JjXSURDJwgCllw7GS21XWird/Tbn5Znwlk3TENanmkEqiMavRiWJT65Ncs8vgC8/gA0cTKqVp2aCvUpp8B0yik92ySvF56KCrj374frwAG49x+Ae/9+eKuqwl5LP2GCoud07d8vv9Png+fQIXgOHULH+722q1TQjhkD3bix0I4bF+xIGz8O2uJiiDqdoueNKdmwLD7+vxMRERERERHFi4QLy7Zs2YI1a9bgH//4B+x2O4DQXWRHt40fPx7XX389rr32WuTk5MS+YCKKCp1BjbNvnIZXf7cZPs+xm3+TT83FgssmQCNzQ5iIBk+v4pplic6kk3+p5/D4YTPEb2giaDTdoxHHwdpre6CrC+5Dh+Devx/uAwfg2r8f7v0H4G8OjupVOobRfeDgwIvy++EpK4OnrAz44MNj20UR2jFjoB03Frqx42A6+SSY5s8f+PWjjZ1lRERERERERIokRFjW1taGtWvXYs2aNdixYweA0F1kR7cZjUZcfPHFWLVqFRYsWBD7goloWKTnmbHkmsl4/4ndUOtUOP2KiZh4MkNwouGiElXQilp4Ap5++xiWJQa5zjIguG6ZzZB46zuKJhMMM2bAMGNGn+2+5ma4DxyAtrhY0XXc4TrLBioQgKe8HJ7ycnR+uA7+9rY4D8viNyQlIiIiIiIiGgkjFpYtWbIEgiBg3bp1ssd89NFHWLNmDd544w243e6wYxYBYO7cuVi1ahUuv/xyWCyW4SueiEbM+DnZ6Gpzo2haOlJzOHaRaLgZNAZ43P3DMpfPNQLV0ECF6yzrco/sumXRpk5Phzo9XdGxga6uiOMch0I3dpyi4+zvvIOur76CrqQU2tJS6EpLoM7JgSBGK8ySQm9mWEZERERERETUx4iFZevXr+8TeB1VXV2Np59+Gk8++STKy8sBhB+zmJ6ejquuugqrVq3CtGnThr9wIhpxJywdM9IlECUNvUqPdrT3287OssQQqbMsWQl6PUrefBOeQwfhPngQ7oOH4D50CJ7ycsA/9BBRN26souM6N3yG9jfe6FubwQBdSQm0paXQlpZAV1oKbUkptMVFA18XjZ1lRERERERERIrExRhGv9+Pf/3rX3jiiSfw/vvvIxAIhO0iE0URZ555JlatWoUVK1ZAo0m8EUJEFOT3B/D5ywdQOisTBZPSRrocIjqOQW0IuZ1hWWIwapOns2wgBJUK+okToJ84oc92yeOBp6KiT4DmPngAnvIKwKc8XNSNU9ZZ5jl8uN82yemEa88euPbs6btDFKEpKOgbpI0dC21JCdSpqaGfQGJnGREREREREZESIx6W3XbbbXjuuefQ2NgIIHwXWVFREVauXImVK1eisLAw9sUSUVQ5Oz147++7UHOgDfs31+OSO+bAlmkc6bKIqBe5sIxjGBODShSg14hweft3GCVzZ5kcQauFbvx46MaP77Nd8nrhqayE+8BBuA8dhOfQoeDX5eWA19vnWNFmgyojI+JzSZIEd1mZ8uICAXgrK+GtrAQ++aTPLlVqas8YR21JKbQlxTCccALUcp1l6D/dgYiIiIiIiCiZjXhY9tBDD4XtItPpdFixYgVWrVqFpUuXjkSJRDQMmqs78fYjO9DRHLzh7u7y4e1HduLi22dDaxjxH01E1I2dZYnPpFXD5e2/7lyXJ3k7ywZK0GigGzsWurFjAZzVs13y+YIh2sFjAZqg04UcNX48f3MzAnZ7VOrzt7bCuWULnFu29Gwr+NsjsLCzjIiIiIiIiEiREb8jLUlSyC6yGTNmYNWqVbjqqquQKjdahogSUvnOJrz/xG54jxsB1lrbhQ+e2oNzb5oOQeS73onigWxY5mdYliiMOhWau/pvd7jZWTZUgloNXWkpdKWlAz7Xfaj/CMZo0hYXAzVya5Yd+ze28ZFHAJ8P2uLing+V1TqstRERERERERHFmxEPywRB6AnIbDYbLr/8cqxatQqzZ88e4cqIaDjsXH8EG17aL7uMSvmOJvz334dxyvljY1sYEYWkV+tDbnd6GZYlCpPMumXsLBtZqpQUpFz+HXgOl8Fz+DB83SPJo3NxFbQFBYDcGMZenWVtL70MX31939PT0oLBWcmxAE1XXAzNmDEQdbro1UlEREREREQUJ0Y8LAOARYsWYdWqVbj44ouh14e+KTeaVVZW4osvvkBFRQU8Hg/S0tIwdepUnHLKKdBqtTGvx+/3Y9euXdi1axeamprQ2dkJq9WK9PR0zJw5E5MnT4YocnwPDUwgIGHj6wex/cOqsMfpzRqMmZIWo6qIKBKOYUx8Rq0q5HZ2lo0s/cQJyL377p7H/o4OeMrK4D50GJ7Dh+EuOxwM0iorAd/A/l9pCwogaDQRw7JAV1e/oAwA/C0tcLa0wPn118edJ0CTl3esC62kpOdrTW4OBFXoP2tERERERERE8W7Ew7L9+/dj7Njk7CD56KOPcPfdd+Ozzz4Lud9ms+G73/0u7rzzTliHeRxOV1cX/vnPf+KVV17BBx98AIfDIXtsSkoKrr76atxyyy0YN27csNZFo4PX48eHT+7B4W3h3zWfnm/Gud+bDmtG6JvzRBR7cp1lLr8rxpXQYJl07CxLBCqLBYYZM2CYMaPPdsnrhaeqKhigdXehucsOw3PoMAKdnSGvpS0u7j45/BhGT2XlwIqUJHirq+GtrkbX55/3vaRWC01hIbRjxkA7Zgw0RWOQsmIFRKNxYM9BRERERERENAJGPCxLxqAsEAjgpz/9Kf74xz/2bJs4cSJOO+00pKamYv/+/Xj33XfR3t6OBx98EC+++CLefPNNzJo1K+q12O12PPTQQ/jLX/6C5ubmnu1WqxULFizA+PHjYTQa0djYiI0bN2L37t1oa2vDn//8Zzz++OP4zW9+g5/85CdRr4tGD4fdg7cf2YGGcnvY40pPyMQZ102GVj/iP5aIqBd2liU+2c4yDzvLEoGg0fSsi2bptV2SJPgaG4PdZ2XdQdqhQ/CUl0Pbs4aazMzj7s4yT3l51OqUPJ7g8x861LMt5cILo3Z9IiIiIiIiouHEu9Ij4Hvf+x4ee+wxAIBKpcJf//pXrF69us9ow8rKSlx66aX473//i6qqKixZsgSffvoppk+fHtVaNm7ciF/96lc9j1UqFe6880789Kc/hdls7nf8xx9/jOuuuw6VlZVwuVz46U9/ipqaGvzhD3+Ial00OrTWdeHff96OjubwHSgnnlWEU84vhSAKMaqMiJTSq2Q6y3zsLEsUsmuWudlZlsgEQYAmKwuarCyYTjm5z76j6wFHGsPoLisbtvrUOTkQFYxXD7jdOHzeedAWBjvStEVjoBkzBtqiYmgK8iGOwEhyIiIiIiIiSj4jFpY99dRTI/XUI+qpp57qCcoA4NFHH8UNN9zQ77gxY8bg/fffx9y5c7F//360tbXhwgsvxI4dO2AwDN+IusceewzXX3+97P7Fixdj48aNmDVrFhq7F6J/6KGHMGfOHFx++eXDVhclnvpyO976y3a4Or2yxwiigEWXT8DUBfkxrIyIBsKoCT1CjZ1licOoY2dZshG6xyxCCt9ZpisdC8vZZ8NTXg5PeTkkV/RCcO2YMYqO8x45Am9FJbwVleg6fqcoQpObeyxAG1MEbVH3mMcxYyDqdFGrl4iIiIiIiJLbiIVl11577Ug99Yjp7OzEHXfc0fP4tNNOCxmUHWW1WvHwww/j7LPPBgAcPHgQf/rTn/pcI5pOP/30sEHZUfn5+XjggQewcuXKnm233XYbLr30Uqi4sDsBqNrTgnf+vhO+MF0LGr0KZ6+ehjFT02NYGRENFMcwJj7ZzjKuWTb6Regss559Fqxnn9V9aAC+hoae4MxTFvzsLi+D90g14B/YnxdtUZGi4zwVYdZNCwR61kjDxk3HfQ8C1Dk50BYWQlNYAG3hmO7PhdAUFkKVknIsNCQiIiIiIiKKgGMYY+j3v/89Ghoaeh7/+Mc/jnjOWWedhSlTpmDPnj0AgPvvvx833ngjUlNTo15fuODueFdccQV+8IMfoKsr+B7g6upqfPbZZ1i0aFHU66LEcuCrenz49B4E/DLvZgdgTtXh2zfPREZB/1GfRBRf5MYwMixLHEaZsMzhZmfZqCcXlqF/iCSIIjQ5OdDk5MB0yil9L+PxwHOk+liQ1uvD1+u1bW/aImWdZZ7KCkXH9SNJ8NXWwldbC3z5Zb/dotkMwwknYMwTjw/u+kRERERERJRUGJbFiCRJePzxY7+sp6Sk4Nvf/raic6+66ir84he/AAC0tbXhpZdewk033RT1Gk877TTFx2q1WsyePRuffvppzzaGZbTj4yPY8PJ+QD4nQ0ahGctunglTCkcnESUCdpYlPpPMGEZ2liWBCGMYlRK0WuhKS6ArLem3z9/ZBU9FObyVlfBUVMJTWQlPRQV0EyYoura3Mkxn2RAEOjsRcCr7OeVraYHjv/+FpqAQ2sICqFJShqUmIiIiIiIiil8My2Lk888/R01NTc/j+fPnQ6twwfLTTz+9z+NXX301amHZSSedhI8//hhAcJ20gcjNze3zuK6uLio1UeKRJAlf/rsMm98pD3tc4eRUnH3jdGj1/NFDlCj06tCdZS5f9NY2ouEl21nGNctGP9kxjNEbT6gym2CYOhWGqVMHdX7YMYxDpC0oUHSca9cuVP/PsYkPotUKbUEBNIXB8ExTUAjtmOB4R01ODgSNZrhKJiIiIiIiohHCO9Yx8q9//avP47lz5yo+d9asWdBoNPB6vQCATz75BHa7HVardch1paWl9QvjBisQkBv1Q6OZJEn47OUD2PHxkbDHjZ+ThTOumwKVemDvZieikRWus0ySJK4JlABkO8vCrCtJo0SENcviQfqq62GaPz/YkVZZAW9FJby1tfJdcQOgGVOo6DhPVVWfxwG7Ha49e+DqHoPeh0oFTW5ucH20gkJoxhQGg7X8fGgKCqBKTeXPRSIiIiIiogTEsCxGtm7d2ufx5MmTFZ+r1+tRWlqKffv2AQB8Ph927dqF+fPnR7XGgWpsbOzzePz48SNUCY2kbzbWRgzKpi8uwIJLxkMQefOIKNHIhWUSJHgCHuhUHKka79hZlsQSICwzzZ8P03GvaQMeD7xHjsBTUdE93rGiZ8Sjt7oaUPgGLW2hsrDMW1kV+aCj/H54jxyB98gROPBFv92C0Qhtfh40ecHwzDhnNqznnKP8+kRERERERDQiGJbFyO7du/s8LlA4Fuao/Pz8nrDs6PVGOizbuXNnn8ff+ta3RqgSGkkTT8lB2fYmlO9oCrn/5PNKMfucIr7LmihByYVlAOD0OhmWJQCTNnRnmcPjRyAgQeQbGUavGIxhHA6iVgtdaSl0paX99kkeD7w1NcFOtPIKeKuPwFNZBe+RKniqjkByHRsRqylQ2Fl2JPybfgZCcjjgPnAQ7gMHAQTXTlMSlvk7uwApAJXFErVaiIiIiIiISDmGZTFgt9tRW1vbZ1t+fv6ArnH88Xv37h1yXUOxZcuWPp1l8+fPx5QpU0awIhopKpWIs1dPwzuP7kDl7pae7YIALLpiIqYuGNifdSKKL2HDMp8TKUiJXTE0KEad/Ms9p9cPU5j9lOhkRhnGUWfZQAlaLbTFxdAWFwML++6TJAm+xsZg51dVFXTjxym6prdqAJ1lA6RR+Jq//c1/ov7Xv4Fos0GTnwdt/rHRjpr8PGjy86HNz4doMg1brURERERERMmMd0dioKWlpd+2ga43dvzxra2tQ6ppqJ5++uk+j+++++6RKYTigkoj4pwbp+Otv25H9b42iCoB37phKsbOyhrp0ohoiPRqvew+p98Zw0posOQ6ywCgy+NjWDaaJcAYxmgSBAGarCxosrKAE09Ufp5eD0Gng+R2R70mjcJpEt7qGgBAoL0d7vZ2uPd8E/I4VWpqd4CWD21B/rFALTcXmrw8iEZj1GonIiIiIiJKJrw7EgMdHR39tul0Axtbpdf3vVkZ6pqxUltbi6eeeqrn8QUXXDAsIxgbGhr6rYsWycGDB6NeBymj1qpw7vdm4N1Hd2LmGYUonp4x0iURURRE6iyj+Beus8zh9gOc+jZ6SaOvs2w4lLz8EqRAAL7GpuA4x8oqeKuq4DlSBW/VEXiqquBvCj1uOhKlnWVehaMg/a2t8Le2wnXcOPSjVCkp0OTlBbvR8vKgzs2Fcc5cGKZNVVwzERERERFRMmJYFgOhgq3jw69I4iksu+2229DV1QUAyM7OxiOPPDIsz/PII4/gV7/61bBcm4aHVq/GeT86geuTEY0i4TrLXD6X7D6KH5E6y2gUS7LOsqEQRBGa7CxosrNgnD273/6AwwHPkSPwHjkCT2VlMETrDtO81dWyXWnaAoVhWXX1kOo/yt/WBn9bG1x79vRsy/jBDxSFZQGHA4JWC0HNXxGJiIiIiCj58DehBCXJvVN4mL3yyit4/vnnAQAqlQovvPACcnJyRqQWik8MyohGF42ogVpUwxfoH6qwsywxGLVhOss8/hhWQjEnF5aB/1YPlGg0Qj9hAvQTJvTbJ0kS/E1N8FZXw3OkGt7qYx/q7GxF11faWTYYmtxcRcc1/ulhtKxdC3V2VrA7LS8Pmty8Y1/n50GTmwvRIN9xTERERERElKgYlsWAxdJ/vpHL5YJpAAt0u1x9370f6prDbdeuXVi1alXP47/85S9YsmRJzOug2Ar4A+hsc8OazhsjRMnKoDagw9O/o5lhWWLQqkVoVAK8/v5vtOlys7NsVJMdw8iwLJoEQYA6MxPqzEwYTjhhwOf7Ozvhb2+PfmHdNPl5io7z1tQAfj98NbXw1dTCiS0hj1Olph4L0PKCa6Wp846FaqqUFL55ioiIiIiIEg7Dshgwm839trnd7oQKy2pqarB8+fKe8Y933XUXbrrppmF9zu9///u45JJLBnTOwYMHsWLFiuEpKAkFAhI+fGoPjuxrxfm3zkJ6fv8/y0Q0+hlUBnSgf1jGMYyJw6hVo93p7bednWWjHMcwJgTRaMS4dR/CU10Nb+/OtCNH4Kmphq+uHgjIdQlGpslTGJbV1io6rmfdtN27Q+4XDAZocnKgyc2BOicXmpwcWM5cCv3kyYprJiIiIiIiijWGZTGQlpbWb5vdbg+5XY7dbu/zODU1dch1KdXY2IilS5eivLwcAPCTn/wE995777A/b1ZWFrKysob9eSg0KSDho2e/wYHNDQCAfz60FefdegIyC2Pf1UhEI8ugMQAhmsjYWZY4TFpVyLCMnWWjHMOyhCCIIjT5+dDk5wMn9d8veTzw1tcfC9B6h2pHjsDX2CjfRQhArXBkuremZrDfQt96nU54ysrgKSvr2aYZU6goLPOUlwOCAHVODkSdLir1EBERERERKcGwLAZsNhtycnJQV1fXs626uhrFxcWKr1F93KLfkyZNilZ5YTU2NmLJkiX45ptvAAA/+9nP8Lvf/S4mz00jRwpIWP/8Xuz74tifWVeXF2/+cSvO+9EJyCqyjmB1RBRrepU+5HaGZYnDqAv9ko+dZaMcw7JRQdBqoS0shLawMOT+gMcDX10dvDW18NbUHPuorYHkckPUaiM+R8DphL+lJdql99DkKFs3rf7B36Nz3ToAgCotDZrcXKhzc6DJye3uVMuBJjfYrabOyoKg5q+zREREREQUHfztIkamTZvWJyw7MsBFvI8Py6ZNmxaVusKpr6/HGWecgd3dI1buuOMO3HfffcP+vDSyJEnC568fxJ7P+4/icTt8ePOPW7H8lhOQU2obgeqIaCQY1KHXLGRYljhMWlXI7V0edpaNarJhGdeTGk1ErRbaMWOgHTNm0NdQOoJxsDS5yrrbfL3q8Le0BAM8mXGPEEWos7KCwVm/QC0PmtwcqNLSIIgMh4mIiIiIKDKGZTEya9YsfPjhhz2P9+zZo/hcl8uFw4cP9zxWqVTDHpbV1dX16ShjUJY8tr5fie0fVsnul6Swk36IaBTSq9lZluiMWpnOMjc7y0Y3mX+w2VlGx9EWFKDkzX/CW32sK613l5q/sWlI11c8CrLXmwsjCgTgq6uDr64O2Bb6EEGjgTonB+rsLGT9+CcwnjhL+fWJiIiIiCipMCyLkeXLl+PBBx/sefzVV18pPnfr1q3weo+tM7Jo0SJYrcM3Bq+2thaLFy/Gvn37ADAoSyZ7Pq/BpjcOye5Xa0Us+8EM5I5lVxlRMpHrLHP5XDGuhAbLpGNnWVKSe3cLwzI6jqDVQj9xIvQTJ4bcH/B44Ks9Oubx+HGPtcHONG//dREBQJWermj9sYDbHfVRkJLXC29VFbxVVUBA2ZsDWl98Ef6OjmDHWnY2NNnZUGdnQ9SHfuMIERERERGNDgzLYuTUU09Fbm4uartHi2zatAkejwdaBWsIrF+/vs/jiy++eDhKBADU1NRg8eLF2L9/PwBlQdm2bdtw6623AgBefPFF5Ch85yjFl8PbGrF+7V7Z/SqNiG9/fwbyxqfGsCoiigccw5j42FmWpLhmGUWJqNVCW1QEbVFRyP1SIABfYxO8NdXB9dNq6+Ctq4Wvtg6i0ajoOXwD6SobBKXdba3/eBHu7jcN9qay2YJdajnZ0GRlBz/n5ECdlQ1NTnegZrFA4JhTIiIiIqKExLAsRkRRxA033IBf//rXAIC2tja8/fbbuOCCCyKe+/zzz/d8bbPZcNlllw1LjdXV1Vi8eDEOHDgAQHlHWVtbGz755BMAwZGRlHiq97fi/Sd2y74BXRQFnHPjdBRMSottYUQUF9hZlvjYWZak5MIy8GY+RZcgitBkZ0GTnTXoa/gaGqJYUX/qLGW1+errQ273t7fD394eMkg7SjAaezrRjn7uHarpxpZCNIT+N5WIiIiIiEYWw7IYuu222/Doo4+isbERAPDHP/4xYlj2n//8B7t7LWp9++23Iy0tfGDR3NyM1157DV6vFytWrEB+fn7E2qqqqrB48WIcOhQcwcfRi8mjsbID7zyyA36f3A01YMm1k1E0LT2GVRFRPGFnWeKT7SzzsLNsVGNnGSUQ49y5mPj1Fnjr6uGtrenXoeatq4OvthYBh2PA11alpUFUMNEj4HLB39Y2iOqDJIcDnrIyeMrKQu4veuF5GE88MXIdbrei0ZVERERERBQ9DMtiyGKx4Le//S1Wr14NANiwYQPWrFmDVatWhTy+o6MDt9xyS8/jsWPH9ow7lFNVVYW5c+eivvsdkb/4xS+wYcMGzJgxQ/acyspKLF68GIcPHwYA/OxnP2NQliTsTU78+y/b4XHJ3yw97ZLxmHgyR2sSJTO9OvQ6LU4/w7JEYdLKdJa52Vk2qsmuWcbOMopPotEIXWkJdKUlIfdLkoRAR0cwROsVqPnqaruDtWCgJh23fpo6O1vR8w93d5tGYR1lF14EX20t1FlZfT402X0fqzMzuZYaEREREVGUMCyLsRtuuAFffPEF1qxZAwC48cYb4ff7ccMNN0AUj73Lt7KyEpdeemnP2mE2mw2vvfYajBFm/v/tb3/rCcoAwG6344EHHsDatWtDHl9RUYHFixejrNe7H++//37cf//9g/4eKTG4HV689ZftcNo9ssfMPrsIM88ojGFVRBSP2FmW+Iw6dpYlJXaW0SgjCAJUVitUViv0EyeEPEaSJPhbWuCtqQ12pdU3KF43zTvc66ZlZio6ztfQgIDDAU95OTzl5WGPVdls/UI1dVZmcAzk0cfp6RA0mih8B0REREREoxfDshHw2GOPwWQy4eGHH4bf78eNN96Ihx56CAsXLoTNZsOBAwfw7rvvwuMJhhj5+fl48803MXPmzIjXlkK8gzgQkB+v99RTT/UJyig5+P0BvPfYLrTWyY+xmXJaHk4+vzSGVRFRvGJYlvhkO8u4ZtnoxrCMkpAgCFCnp0Odng7D9GkDOlfU6WA67TT46uvhra9HwG6PWl2qjAwISkZBOhwIdHQovm7PWmrd606HJAhQpadDnZWJgocegra4WPH1iYiIiIiSBcOyESCKIv70pz9h+fLluPvuu7Fx40bs27cP+45bLNpqtWL16tW46667YLPZFF37pptuwpo1a3rWRTObzbj99tuj/j1Q4pIkCZ++sA9H9rbKHlM6KxOLrpgIgWOaiAjyYxhdPleMK6HBkl2zzM3OslFNNizjv+9EoRhmzsSYJx7veRxwOOCtr4ev+8NbVw9ffR289Q3BEZAN9fA3NcuPPO1Fk5WlqAZf9+9xUSVJ8Dc1wd/UBMEQ+g0wx6u799cAAHVWJtSZ3R8ZGVBnZkKVlgZBFfpNGEREREREiYph2QhaunQpli5dioqKCmzatAmVlZXweDxITU3F1KlTMW/ePOgGuLBzUVER9uzZg9deew1erxcrVqxAQUGB7PH33HMP7rnnniF+J5RItn5QiT2f18ruzxufgjOvnwJR5I00IgpiZ1niM+nYWZac5NYsY2cZkRKi0QhdSQl0JaHXUAMAyeOBr7ExGKDV13UHavXw1tfB1xOqNUCdo2wN4GFdN00UoU5PV3Ro+5tvItDVFXqnSgV1WhpUmRnHgrTjAjV1ZhbUmRkQB/j7LBERERHRSGFYFgeKiopQVFQUtetlZGTgxhtvjNr1aPQ4tLUBm944JLs/JduIc26aDrWG7xQlomMMqtBhGTvLEodsZ5nHD0mS2Ek8Wsl1uzAsI4oaQauFJj8fmvx82WOkQACSU9kbTLzDGJap09MhqCPfAvB3dskHZQDg98PX2AhfYyPc+CbstUSrtV+Ylv7d1VCnpg60fCIiIiKiYcWwjChJ1Jfb8eGTe2TfZK43abDsBzOgN3HxbyLqK1xnGYOWxCDXWeYPSHD7AtDzTRKjE9csI4oLgihCMJkUHWs+7TQUvfA8fA0NwQ61hgb4GhqDj7s/wgZZYagVj4KMXmAXsNvhsdvhOXTsDXvpN6xSdG7Lc2shGvTB0Y9HO9bS0zkCkoiIiIiGBcMyoiTQ2erC24/sgM8b+qaZqBZwzvemw5ZpjHFlRJQI5NYs80t+eANeaFXaGFdEAyXXWQYEu8sYlo1SDMuIEo7KZoPxxBPDHuPv7IKvsSE45rHxWIjWJ1irr4fk8fQ5T3FY1jAM66b1FKGGSkFXmSRJaHjwwX7fA0QRqrS07k61DKgzeo9/zIA6PT0YrGVkQDSb+YYeIiIiIlKMYRlREpAkwGTTwmn3hNx/xjWTkTcuJbZFEVHCkOssA4LdZQzL4p8pTFjW5fYhzcT/h6OSXFgG3jwmSmQqswkqc4S11CQJgfb2PgGaOkPZemXDuW6aOj0dghg5sA/Y7f2DMgAIBOBvaoK/qQnu8BMgIeh0fcIzdXo61JkZUKWnI2XFCogKu/2IiIiIKDkwLCNKApY0PS66bTbWP78P+/5b12ffSctLMOEkZQuOE1FyihSW2XS2GFZDg2GUGcMIBDvLaJTimmVESUsQBKhSUqBKSQEmTBjQuZr8fKRcckmwQ617bTJfczMQkAvglVNnZio6ztc49O42ye2Gt6YG3pqafvtsy5crukbbG/+EaDZBnX6sc000choHERER0WjEsIwoSai1Kpxx3WRkFVvw2SsHIQUkTDw5B3POLR7p0ogozsmNYQQAl88Vw0posMJ2lnl8MayEYkp2DCM7y4hInvHEWTCeOKvPNsnvh7+19Vh41tgIX2NT38dNwceSS/61gTojQ1ENvqamIX0P4QhaLUSLJeJxUiCA2jvvBPx931QiGo3BbrX0dKgzMqDKSO/uXDtuFGR6OkSD/BuOiIiIiCi+MCwjSiKCIGDG4kJkFJix/aMjWHzVJM7xJ6KIInWWUfzTa0QIQuhGI4ebnWWjFtcsI6IoEVSqYCCUkQFMnix7nCRJCHR29g/TmoKf9VOmKHq+aHSWyVFlpCv6Hcjf3t4vKAOAgMOBQGUlvJWVEa8hmkzdgdpx4Vp6BmznnwdRL/+GJCIiIiKKLYZlREkob3wq8sZHXlibiAhgWDYaCIIAk1aNTnf/LjJ2lo1iDMuIKMYEQYDKYoHKYoGutHTw19HroZ869dgIyBCh1WCpM2I3CjLQ1QVPVxdQUdFvn235MkXXaHnhheB/07S0YOCWng5VaioENW/nEBEREUUTX10RERFRWBpRA5Wggl/qf6OKYxgTh1GrCh2WhdhGo4XcmmXsKiei+GY980xYzzwTQHAcYt8RkMeNf2xshK+5Cf6mZgS6uiJeW52erqgGf3PzkL6HcASjUdHaZ5LPh/p7fx1ynyolBar0dKjT0oKf09OhSk+DOq37c8+2dIgmEyeKEBEREUXAsIyIiIjCEgQBerUeXd7+N6DYWZY4TDo10OHut93h4RjGUSnUzM2j2FlGRAlEEMWe4AeTJoU9NuB0wtfcDF9jI/zNzcF11Jqa4WvqftzYBN3ECYqedzjXTVOnpSmroaVFdp+/rQ3+tjZ4Dh2KeB1Bq+0VrKUF11dLT0PG974H0WRSXDcRERHRaMawjIiIiCLSq0KHZS4/O8sShUGjCrndybBsdJIbwQgwLCOiUUs0GKAtKIC2oCAKVxOgKSiAr6kJkiu6r3cUd7eFCcsGQvJ44Kutha+2ts/2jB/+UNH59b+7H6LZDHV62rHQLS0NqtRUqGw2CCL/XSEiIqLEx7CMaJRoq3dg/fN7cfpVk5CSFXmkBxHRQOjVoReg5xjGxGHQyoRlXoZloxLDMiKiIbEtXwbb8mWQJAmBLgf8TY3dXWtN8DU3wdcUHP3o6+5g8zcFt0keT8RrqxSGZb5hHAUpms0QdbqIx0keD1qeflr+AJUKqpQUqNNSoUoNhmjHvk4NBmu9v05J4XprREREFJf4CoVoFPB7A/jPE7vQVNWJl//vK5x+5URMOClnpMsiolHEoDaE3M7OssRhlAnLOIZxlGJYRkQUFYIgQGU2QWU2QVtcHPZYSZIQ6OyEr7EJ/u5AzdfU3Ddca2qCbmypouceznXTVOlDHwUJAPD74W9uVl6rIEBltQY709LSUPjo36CyWJSdS0RERDSMGJYRjQIb3ziIpqpOAIDX7ccHT+7Bkb2tWHDZBGh0oW+OEhENhE4V+p3H7CxLHPJjGH0xroRiIlxYBiFmZRARJRNBEKCyWILhT2nJ0K+n0UA7biz8zS3wt7WFX49ygNTpGYqOi3p3myTB394Of3s7UFYGUR96esHxDi8/D6LR2B2yhehYS+3uaEtLg2gI/SYvIiIionAYlhEluLLtjdjx0ZF+27/ZWIu6w+04/39mwWSLPF6DiCgc2TGM7CxLGOwsSzLhbqiys4yIKCFYzzkH1nPOAQBIPh/8ra3wtbTA39wMX3ML/C3Bz77mJvibW3rta464zppaYWdZtNZNC0W02SBoNBGPCzgccB84oPi6gsEAdWrqsWCtezzksWAtFaqUVKhSU6BOTQ3WIfCNJERERMmOYRlRAutsdWHds9/I7jen6WG0aGNYERGNVlyzLPEZtKFf9jm4ZtnoFHYMI28IEhElGkGthjozE+rMTEXHB7q6joVnLS3wNTcHA7XukYmGmTMUXWc4101Tp6Yqq6GldUDXlZxOeJ1OeGtqFB0/4YtNUKWkRDzOuWs3VFYLVKmpEM1mBmxERESjDMMyogQV8Afw/prdcHeFHp9lsGqx9LopEES+gCeioTOoZNYsY1iWMOQ6y5zsLBuduGYZEVFSE00maE0moLBwSNdRp2fAvGRJn9BNcjiiUqMqPV3Rcf7W4etugyhCtFojHiZJEsovvxzweoMb1GqoUlKgTk3p7lI7+hHsVut5fHRfSgpEk5EBGxERURxjWEaUoL56pxy1B9tD7xSAM1dOgdHKrjIiig6dWmbNMo5hTBjyYxi5ZtmoxLCMiIiiwLzgNJgXnNZnW8Dlgr+lBb6WVvhbW4593dICX2sL/Md9HejoCHltdZqyzrLhHAWpSkmBIEb+dzHQ1XUsKAMAnw/+pib4m5oUP5eg0fQK1XoFaympSLt+JVRm82C+BSIiIooShmVECajmYBs2v1Muu//Es4pQOFnZDHoiIiX0Ko5hTHQGdpYlF45hJCKiYSLq9RDz8qDJy1N0vOTxwNfa1i9Y0+QrO9/XOrAxjAOhZPwiAPijUIPk9cLX0ABfQ0O/fWnXXavoGrW/vBuCVgtVagpUKX0/1CkpEG3sYCMiIhoshmVECcbr9mPdM98AUuj9OaU2nLS8JLZFEdGoZ1BzDGOiM2rkOssYliUddpYREVEMCVotNNlZ0GRnDep8w4yZyP7lXf061oJftwaDLP/gXs+oFK6bFo2wTL4IFUSLJeJhUiCAttdei/i9ChoNxBQb1CkpUNlSIKbYesK0PgGbzdbna0HLyTRERJTcGJYRJZhNbxyCvdEZcp/OqMaZq6ZApeJNMCKKLr1aprOMYxgThlEb+mUfw7JRimMYiYholNCVlkBXKv+GUCkQQMBu7xkL6WvpDtN6f300WGtpgb+1FZLHAwBQpaYoqmE4wzJVaqqiTrBAR4eiUFDyeuFvbIK/UfmISAAY99E6Rd2Crn37IBoMwXXYLBZ2sRER0ajBsIwogRzZ24Kd64/I7l989SRY00N3fxARDYVOJbNmGTvLEobcGEaXl2HZqMSwjIiIkoQgij0dUkDkKSuSJEFyOgcUgA3nKEh1HAR2AKCy2RQdV3HNtQi0d6+frlIFO9R6d6nJdbD1Gh0p6kL/bkFERDSSGJYRJQiP04ePnt0ru3/SvByMnTW4sRZERJHIjmFkZ1nCMHAMY3JhWEZERBSSIAgQjEaIRqPic2znnw/L0qXwt7XB3z360d/a2j0G8rhtbd3b2toUdYKpUpSNghzOwE7QaCAo+O8h+f0I2O3HNvj9wW69lpaBPV93Z1rfkM2GzJtvhjozc6DlExERRQXDMqIE8fnrB9HREvqmtDlVh9MunRDjiogomehVMmMY2VmWMIwynWVOrx+BgARR5AidUSVcWAb+vyYiIhoIQRCgMpuhMpuBggJF50iBAAKdnaGDtbZjj3Xjxym6nr+1bQjfQXiqlBRF4xT9djsgySygPgCS0wmf0wlfbW2f7Rk33qjo/MrvfheS0wVVig3i0c42WwpUVitUKbZj3W42G0RbCkSTkeMiiYgoIoZlRAmgcncz9myokd2/+OpJ0Bn415mIhg/XLEt8cmMYAcDl88uuaUYJKtyNLN4sIiIiGnaCKAbDG6sVKCoa8vXUmRmwXXDBsS62tmD3WjQCrOAIy8j8bW1Dep6IdSgcBen8eisCnZ3KL6xWB/9f9AnRrMGArWeMZPCz4cQTg6EoERElHd4VIYpzbocXHz0nP35xyoI8jJmSHsOKiCgZ6dRcsyzRhQvDHB6GZaMOxzASERGNKobp02G4b3q/7ZLfD7/dDn9bGwLt7fAdDdF6f7S3d3/d3rNNcjp7rhEPYZmg1UIwRF6DXfJ6BxaUAYDPp3hcZMm/3oRqQuTJPS1rn4fk8XSHbdbuAK67wy3FxnXZiIgSEO+KEMW5z145gK42d8h9lnQ9Tr1I2cgGIqKhMKhk1ixjWJYw5MYwAoCT65aNPgzLiIiIkoKgUkGdmgp1qrK1z44KuN09AZrSCc3+9vZBVKiM4lGQHR3DVgMAqGwpio5refJJeGvkJwAJev2xrjWrFWJK33GRotUClbU7aLNaIR7tfLNYIGg0UfpuiIhoIBiWEcWxil3N2LupTnb/kmsmQ6vnX2MiGn7hxjBKksQ1ABJAuDGMDoZlo0/YsIx/X4mIiJKdqNNBzM6GJjtb8TnmRYsw4asv+3eutfbuXuvf1aakE0xxd9swBnYAoLJZo1KH5HLB53LBV18/4BqK/vECjLNmRTzOuW0bpIB0LHCz2SBqtQN+PiIiCuJddqI45XX78ckL+2T3T19cgIKJA3vnGBHRYMmFZQDg9rvD7qf4EK6zzOHxxbASigl2lhEREVGUCYIAlcUClcUCFBYqPk/yevuGaSGCNVVGhqJrBYYxLBP0eoj6yL/XSF4vAl1dw1aHyqossKu9+x649/W9byTo9d3rs1khWqzHvrbaen1t7VlPr6ejzWqFoNfzTZBElNQYlhHFqS//fRgdLaHHm9kyDZi3YmyMKyKiZKZXyf/S6PK5GJYlAL2aYxipG8MyIiIiiiFBo4E6IwNqhYFYOOqcHGTdfjv89vZg11p7e3AttvZjH4FBjmpU2WyKjhv2UZAKwzK/3d5vW09HW0PDgJ9X0GiC665ZLMj9v9/AeOKJEc/xtbYGzzOZGLQRUcJjWEYUp1QaEYIoQApIfXcIwJJrJ0Ojk7/pSUQUbeHCMJef65YlAlEUYNCo4PT2D8Y4hnEUYmcZERERjUKanBykX78y7DGSzwd/R0cwSOv90dYeNmRTpacpqsHfNryjIEWFYVm0u+wkrxf+pib4m5qgdCG76h/eAsfmzYBKBZXFAtFmDa7F1ruLzdK9RpvFCpXVEux4s5i791kgWq0Qdbqofi9ERIPBsIwoTp1y/liMm52Fj9fuQ0P5sXcLTVuQj7xxKSNXGBElpUidZZQYjNrQYVmobZTgGJYRERFRkhLUaqhTU4HUgS1dIUlS5IO6GefOhd9u7wnaJKdzoGWGJOh0ioIjyetFwOGIynOGonjttqPdbX5/z0hN7yCeT9Bqe4VnwWAt4/vfU9TdJvl8ENS8xU1EQ8efJERxLKPAgotun41dn1TjizcPQaNT4ZQLOH6RiGKPnWWjg14TuiuZYxhHoXBhmcJ3ChMRERElE6VjBHWlJSh67tk+2wJud7BjrVeA1tO5Zj+uk81u795mD4509B97La54BOMwj4IULRZldYQYBTkYksfTq6stKO2aqxWde+SHt6Dr88/7hW09XWy9P5st3Y8twTXbuj8LOh3HSBIRwzKieCeKAmYsLkDpCRnoaHZBZ+BfWyKKvbBhGTvLEoZRGzosc3h8Ma6Ehl24d0azs4yIiIgoqkSdDmJWFpCVNaDzJElCoMuBgD0Yokkej6LzAp2dEDQaSN7B9HFFpnj9tiiFZaEoDuw67CHDtoEQNJo+YyGPhm6pl18O00knDeqaRJR4eNedKEGYU/Uwp8rfrCYiGk5aUQsBAiT0vwHv9EVn5AgNP9mwjGMYR5+wYxj5rlkiIiKieCAIAlRmE1RmEzR5eYrP044Zg4k7tkNyuXrGQQbs9u6uNXt3h9vRr9uPfd1xbLvkCv2mx4GMgpSGcxSk0rXb7EPvspO8Xvibm+Fvbu6z3XLGUkXn1/zv/6Lz4/V9wzaLBaLFDJW5+7Ml2NkW/Np6bJvFApXZDEGjGfL3QURDw7CMiIiIIhIEAXq1PmQw5va7R6AiGgyDTFjGMYyjENcsIyIiIhrVBEGAYDBANBigyc4e8PkBjyc4HrI7WAt0dIdobmW/3w1nVxkwkM6y4RtJqbIqrKGlFf6WFvhbWgb9XIJe3ytcCwZoosWClIsuhHnhwojnS5LEUZJEQ8SwjIiIiBQxqA0hwzKOYUwcRm3ol34OhmWjD8MyIiIiIgpD1GohZmZCnZk5qPNVNhtK333nWEdbe9/ONb+9HYGOzu4QrgP+DjsC9o5gyOaP/PuH8s6y+BgFOVSSywW/ywV/Y99RkqZ5pyg6v/7Xv0Hb66+HDNyOrtfWZ5/FfGyb1QrRHOx0E9SMCyh58U8/ERERKaJThR7FwTGMiUOus4xh2SjEMYxERERENIwEtRq6kpIBnydJEiSnE/6OjmDQ1tHRPSKy1+eODghKRkH6fAh0dQ2mfEViOQpSjmhWGNh1dsgGbgMhGAw9IdvRcM224nzYli+PeG7A44EgigzcKGHxTy7RCAsEJIgib1oRUfzTq0Ovm+jys7MsURg1cmMYfTGuhIZf//UFe7CzjIiIiIhGiCAIEIxGiEYjMIjxkcddDEUvvNC/e63n87FArncwB5+y338UB1XDOQrSYlZ0XKCjMyrPJzmd8DmdQGNjzzbjSScpOrfpkUfQ/OjfIRiNxwI3swkqU6+vzWaIxz829/66e5/RCEHk7y0UWwzLiEbYxtcP4v+39+dxdtbl/fh/zT5ZyCQhCYRAEtZAwiIossimorRaJFIFWv0UFBD3Vgp81WKB9oP+VArFuiCUaq1+xAUJ1IVFBWQXZE9kCUsCSSAJWSbb7Of3x5AhM3Pfk3NmzpyZ+5zn8/HgUe71XLHO8b7nlet6N6/aEkeevFdM3GnsSJcDkKqxJjksa+2wZllWjNVZVjlywjIAAMpbVU1NjD3k4IKuyeVy3R1YzRt6Qra0sK2mKTujILuGMbCrLjCwy23eHB2bN0esXDm0zx037vXwbHxMfP/7Y8czz9zuNR2rV0fn2rWvh3HjhW4URFgGI2jdq5vjidtfjq7OXCx58rU48B27xVveMzsaxvjRBEaftM6yLZ3GMGbFmJQ1y7a0C8vKjjXLAACgn6qqqqgaMyaqx4yJ2GlaUe4544rLe4duW9dr27ghOjds7B4tuXHD62u4bYiuzZvzvnf1+PyCqs6NxeksS1KTb2C3sbiBXdemTd1jNl99NTrXrcvrmvU33hgrv37ZGzuqqt4I3Xp1ub2+PX6bf99hh+6ut/Hjo2b8uDfOGzc+qseNjSrj7Mue38jDCLr3F4ujq7P7b353debi0duWxtP3r4i3nrhHzH3b9Kiu8cssYPRI6yxr6TCGMSvSOsu26CwrP8IyAAAoifHHHFPQ+bnOzujauLE7SNu44fV12jZ2h209IVt3uFY7dWpe9xzWzrJ8A7sijYJMriHftdv61JDLRdfGjdE11DCxqiqa3v/+2OXLl2731LaXX46WJxe+vubb66Mlx3f/e9VYodtoJiyDEbLs6bXxwmP9F9zcsqE9HvrVC7HPW3eKemEZMIqkrlkmLMuMMSlrlhnDWIYGCsvCyxkAAIyUqpqaqGlqipqmpqLdc5evfz061619I3jbuOH1brfeXW2dG9/4v7k8O9xqJuQ5jnJYA7tx+dWwcdPwFJDLRVVdXV6nbrrvvnjlS/+cfDCp061nu3tf9bht1nbrOa/7nJrJk6NuqGv9kUpYBiMgl8vFvb9YnHr88PfvGfWNfjyB0SUtLGvttGZZVoxJ6ywzhrH8WLMMAAAqRqFrt0VE5Do6ujvctgZoGzZs83/fGCNZN2NGXvcb1lGQeXa3jfrAboidbuOOOTpmXn31oK5l+/w2HkbAcw+vipVLkr+8p83aIea8decSVwSwfWljGLd0WLMsK9LGMG5u6yhxJQy7Accw6iwDAIBKV1VbGzUTJ0bNxIlFud+Mr301OtasfWOM5MZNrwdDr3e0vb7duXGbYxs2ROemTREdA7+TVue7btqm8g7s8q2BwRGWQYl1dnbF/QueSz3+tg/sHVXVfokFjD7GMGZfelims6zspIZlVcIyAACg6Br23jsaBnFdLpeLXGvr6+u4vR6kbdq4zbpuG6Nhnzl53Ws4u9vyXTdtOAO76nH5dbcxOMIyKLFFdy2P9auSuzBmHzgldtl7YmkLAshTaljWKSzLijH1yY9+W4Rl5SctLDOCEQAAGEWqqqqiqrExqhsbo3bKlCHda7dvfzshcNumk23TGwFc18aN0blp4+sjJ7dub+ruDOvq/z5VnWdX17AGduN0lg0nYRmUUFtLRzz4qxcSj1VVRRw+f48SVwSQvzE1YxL36yzLjrTOso6uXLR1dEV9rSClbKSGZbrKAACA8lQ9ZkxUjxkTMW3w98jlcpHbsmWb0ZEbomvjxqjfc8+8rq+qrYvqHXboXpdsoLWkByHfwI7BEZZBCT1++8uxZUN74rF9j5geO+7iCw8YvRpqkwcq6CzLjjF1yWFZRHd3mbCsnKS8lOksAwAASFVVVRVVY8dG9dixgwrdpl9ycUy/5OLu0G3z5ujc2uW2YUN0bdr0Rgi3aZvut40bo2vT5t4db5s29XTE5VpbIyKierwxjMNJWAYl0rqlIx69bWnisZq66njribuXuCKAwjTWWLMs69I6yyIiNrd3RFPUlbAahlXa32AUlgEAAAy7qqqqqBo37vV1xobQ6hYRufb26Nq0KarqvLMPJ2EZlMhjv3spWjd3JB478O27xvhJyb+EBhgtxtQmj2Fs7WwtcSUM1tiUNcsirFtWdqxZBgAAUBaq6uqiZuLEkS6j7HlbhhJo2dQej/02uausrrEmDnn3rBJXBFC4xtrkUH9Lx5YSV8JgjRmos0xYVl6EZQAAAJA3b8tQAo/+dmm0tST/EvKgd+4WjeO10AKjX0NNypplxjBmxoBrlrULy8pKWlgWVSUtAwAAALJAWAbDbMvGtnj89y8nHmsYWxtveuduJa4IYHDSOstaOlsil7Y+EqNKfW111FYnhyU6y8qMNcsAAAAgb96WYZg99ruXor01+ReQbzp+t2gYq6sMyIa0Ncu6cl3R0ZW8JiOjT9ooxi1t/n9YVlLHMOosAwAAgL6EZTCMWrd0xBN3LEs81jiuLg58h64yIDsaa5I7yyIitnRatywrxqaEZTrLyow1ywAAACBv3pZhGD1xx8vRtiX5b+of/O6ZUd9YW+KKAAavoTZ5zbII65Zlydj65P/tEZaVGZ1lAAAAkDdhGQyT9rbOeOx3LyUeaxhbG/sfO6PEFQEMzZia5DGMEcKyLBlTlzaGUVhWVnSWAQAAQN68LcMwWXTX8mjZ2J547MC376qrDMicxtr0MYwtncKyrDCGscIJywAAAKAfb8swTF58YnXi/rqGGmuVAZk0YFimsywzxqSFZe3JY4PJKJ1lAAAAkDdvyzBMTvzsm+KEs/ePKbuN77V//2NmROO4uhGqCmDwGmqsWVYO0jrLWnSWlRdhGQAAAOTNHDgYJtXVVbHXm6fFnodMjSVPvhZ/+s2SWLV0Qxx0vK4yIJuqq6qjoaYhWjtb+x0zhjE7xtYnP/4Zw1hm0sKyqCppGQAAAJAFwjIYZlVVVTH7gCkxa/8dY/2qLTGuKb0zA2C0a6xtTA7LdJZlRvoYRmFZWcnlkvfrLAMAAIB+vC1DiVRVVcXEaWNHugyAIWmsSV63TGdZdoypSw7LtugsKy+pYxh1lgEAAEBfwjIAIG+NtSlhmc6yzEhbs2xzW0eJK2FYWbMMAAAA8uZtGQDIW1pn2ZaOLSWuhMFKG8Oos6zMCMsAAAAgb96WAYC8pXWWJa1jxug0NmUM42ZhWXkxhhEAAADyJiwDAPJmDGP2ja2vTdwvLCs3ueTdOssAAACgH2/LUARdXbnIdaX8UgqgjBjDmH2pYxjbhWVlJScsAwAAgHx5W4YieO5PK+P/XfJAPPb7l6J1S8dIlwMwbFI7yzp1lmXF2JSwbHOb//0qK9YsAwAAgLwlz+EBCvLEHS/Hulc3x90/fTbuv/H5mHPYznHAsTNixxnjR7o0gKJK6yxr7bBmWVakdZa1tHdFV1cuqqutaVUWhGUAAACQN2/LMESrXtoQK55b37Pd0doZC/+wLK771z/Gw7cuGcHKAIpPZ1n2pa1ZFhHR0mEUY9lIC8tCGAoAAAB9CctgiJ684+XUYzPn7ljCSgCGnzXLsi9tDGNExOY2YVnZSF2zTFgGAAAAfQnLYAhaNrXHM398NfHY9L2aYsquxjAC5SW1s6xDZ1lWjKlLD8u2CMvKhzGMAAAAkDdvyzAEz/zxlehoT/5l1AHH7VriagCGX1pY1tppzbKsSFuzLEJnWVkRlgEAAEDevC3DIOVyuVh094rEY2Ob6mOPN00tcUUAw88YxuwbeAxjRwkrYVgJywAAACBv3pZhkFYt3RCvLduYeGzu23aJmlo/XkD5MYYx+xprjWGsCKlhmTXLAAAAoC+/zYdBWnRPcldZVEXsd+T00hYDUCLGMGZfdXVV6rplxjCWk1zybp1lAAAA0I+3ZRiE9rbOePaPryQe23XOpJgwZUyJKwIojTE1yd9vOsuyJW0U4+Z2YVnZyAnLAAAAIF/elmEQnnt4ZbS1JP9Cce5Ru5S4GoDSaahtSNy/pdOaZVkyJiUsa9FZVj6sWQYAAAB587YMg7Do7uWJ+xvG1cYeB00tcTUApdNYkzyGsaOrIzq6OkpcDYOVNoaxpUNYVjaEZQAAAJA3b8tQoHWvbo4Vi9cnHtv3sOlRU+fHCihfY2rTx8xatyw70jrLtugsKx9pYRkAAADQj9/qQ4GefiB5rbKIiP3eNr2ElQCUXmNtcmdZRMSWDqMYs6IxpbNsizXLyoc1ywAAACBv3pahALlcLp75Y3JYNm32hNhxxvgSVwRQWg01yWuWRUS0dLSUsBKGIm0Mo7CsjBjDCAAAAHnztgwFeOX55mhenfzL4H0P37nE1QCU3kCdZcKy7Ehds8wYxvIhLAMAAIC8eVuGAqR1lVVXV8Veb5lW4moASs+aZeWhMWV9TZ1lZURYBgAAAHnztgx56uzoisUPrUw8NnP/HWPM+PoSVwRQegONYbRmWXaMqU8bw5gSsJA9qWFZVWnrAAAAgAwQlkGeli5aEy2b2hOP7fPWnUpcDcDIqK2ujdrq2sRjLZ3GMGZFY9qaZcYwlj+dZQAAANCPt2XI0zMPJI9grGusidkHTilxNQAjp7Emed2y1g5jGLMidc0yYxjLhzGMAAAAkDdvy5CHti0d8cLjqxOP7Xnw1KhLGWcFUI7SRjHqLMuOtLDMmmVlRFgGAAAAefO2DHl49cXmyHXmEo/tc9jOJa4GYGQ11qZ0lnXqLMuK1DXLjGEsH2lhGQAAANBP8qIjQC+77Tc5PvL1o+LFJ1bHcw+viqWLXouujlyMbaqPGftMGunyAEoqtbOsQ2dZVqStWWYMYxnRWQYAAAB5E5ZBnhrH1cW+h0+PfQ+fHm1bOuLFJ1ZHZ0dXVFdXjXRpACWVFpbpLMsOYxgrQC65I15YBgAAAP0Jy2AQ6sfUxj5vNX4RqExpYxitWZYdqWMYhWXlQ2cZAAAA5M3bMgBQkNTOsg6dZVmR1llmDGMZEZYBAABA3rwtAwAFaaxJ7iwzhjE70tcs64qurpTxfWRLalhmfDQAAAD0JSwDAArSUJvcWWYMY3akjWGMiGjtSAlZyBhrlgEAAEC+vC0DAAUxhjH7GuvSHwGtW1YmcsIyAAAAyJe3ZQCgIGljGHWWZUfammURwrKyYc0yAAAAyJu3ZQCgIGljGK1Zlh0DhmVtwrKyYM0yAAAAyFvtSBcAo9Wie5ZHTW11zJw3OcaMrx/pcgBGjbTOMmMYs6NxgDXLWnSWlYe0sCyEZQAAANCXsAwS5HK5+OP/vhCb1rVGVVXEzns0xawDdozZB0yJybuMiyp/KxuoYGlrlhnDmB3GMFYAa5YBAABA3rwtQ4LVL2+MTeu6OyRyuYgVz62P+xc8H9f96x/jhcdWj3B1ACOrsTals8wYxsyoq6mO2urkv/hhDGOZsGYZAAAA5M3bMiRY8kRyIFZdXRUz5kwqcTUAo0tqZ1mHzrIsSesu01lWJoRlAAAAkDdvy5DgxSdeS9w/fe+J0TDG9FKgsqWFZTrLsiVt3TJrlpUJYRkAAADkzdsy9LG5uS1efbE58djsA3YscTUAo48xjOUhtbPMGMbykBqWWXcVAAAA+hKWQR9LnnwtIpd8bPYBU0pbDMAoZAxjeTCGsULpLAMAAIB+vC1DH2nrlU3caWxM3GlsiasBGH0aa3SWlYO0MYzCsjJhDCMAAADkzdsybKOzoyuWLlqTeGyWEYwAERHRUJvcWdaZ64z2rvYSV8NgjalLfgxsaU8JWcgWYRkAAADkzdsybGPF4nXR3pr8N+qNYAToltZZFhHR2qG7LCsaU8YwtugsKw/WLAMAAIC8CctgGy89tTZxf31jTUzfq6nE1QCMTmlrlkVEtHRatywrUtcsaxOWlYW0sCyEZQAAANCXsAy28fKfk0cw7rrv5Kip8eMCEJE+hjHCumVZkhqW6SwrD7lc8n5jGAEAAKAfb8vwupZN7bFy6YbEY7vuO6nE1QCMXsYwlofGemFZWbNmGQAAAOTN2zK8btkzayNS/hL2bvtNLm0xAKPYQJ1lxjBmR1pnWYsxjOVBWAYAAAB587YMr3v5z8nrlY2f1BBN08aUuBqA0WvAzjJjGDPDGMYyJywDAACAvHlbhte99FTKemX7TY6qqqoSVwMwetVV10VVJH8vtnToLMuKMcYwlrfUNcs80wAAAEBfwjKIiA1rWmL9yi2Jx3azXhlAL1VVVdFYm9xdprMsOxrTOsuMYSwTaWGZx38AAADoy9syRMTLKV1lERG77mu9MoC+GmqS1y2zZll2pK5ZprOsPBjDCAAAAHnztgwR8VLKemU7zhgXYyfUl7gagNEvLSxr7dBZlhVj6pMfA41hLBOpYZkxjAAAANCXsIyKl8vlUjvLdJUBJDOGMfvSOsuMYSwTOssAAAAgb96WqXhrlm+KLRvaE4/tar0ygESpYxg7jGHMirQ1y1raU0IWsiUtLAudZQAAANCXsIyKt2LxusT91dVVscveE0taC0BWNNboLMu6tLCsrbMrOrtyJa6Gosul/P9QZxkAAAD0422Zirf21c2J+6fO2iHqG2tLXA1ANjTUpnSWdeosy4q0MYwRES3WLcs+YxgBAAAgb5IAKt7Rp+wTh5wwK155bn2seG59rFi8Lla9tDGm7zVxpEsDGLXSxjC2dugsy4ox9elh2Zb2zhjX4DEx04RlAAAAkDe/BYGIGNfUEHseMi32PGRaRES0t3ZGpzVbAFKljWHUWZYdA3WWbWnTWZZ5qWMYrVkGAAAAfQnLIEFdQ03UNaT/EhGg0qWNYbRmWXakrVkWYQxjWdBZBgAAAHnztgwAFCyts8wYxuzY3hhGsi6ts8zjPwAAAPTlbRkAKFjammXGMGZHY236Y6AxjGVAZxkAAADkzdsyAFAwYxizr7amOuprkh8FdZaVgdSwzJplAAAA0JewDAAoWNoYxpYOnWVZ0liX/ChozbIykBaWhbAMAAAA+hKWAQAFSxvDqLMsW9LWLdNZVgZy1iwDAACAfHlbBgAK1lib3FkmLMuWMXUpYVlbWlcSmWHNMgAAAMibt2UqUmdnVzz74Kuxca1xYQCDkdZZZgxjtjSmhWU6y7JPWAYAAAB5qx3pAmAkvPbyxrj12oUREbHD5MbYec+m2GWvpth5z4mx4y7joqraeh4AAzGGsTykjWG0ZlkZMIYRAAAA8iYsoyKtXLKh5983rGmJDWta4tkHX43auuo469+PiZoQlgEMJG0MY0unzrIsaaxNG8MoLMu81M4yzzgAAADQl79aSkVataQ5cf+U3XaImho/FgDbk9pZ1qGzLEvSOsuMYSwHOssAAAAgX96WqUgrl25I3D911g4lrgQgmxprkjvL2rraoiuto4VRZ0zKmmXGMJYBa5YBAABA3rwtU3E62jtjzbJNicemCcsA8tJQm9xZFmHdsixpTAnLdJaVAWEZAAAA5M2aZVSc15Ztiq6u5NFEU2cKy2DEbHglYsm9ESsei+hojWiaETFxZsTUfSOm7GOdnVEmrbMsonsU45jaMSWshsEaU58cnOgsKwPWLAMAAIC8CcuoOGnrldXWV8eknceVuBqoYLlcxLI/RSy8IeLp30SseS793GlzI477QsR+J/pF7yiRtmZZRERLZ0sJK2Eo0sYwbmkTlmVe6jhU36EAAADQl7CMipO6XtluO0R1tV8gwbDaNiBbdFPE+qX5XbdyUcRP/0/E9DdFvPv/Rux+9LCWyfY11g7QWWYMY2akhmU6y7Ivl9xFbwwjAAAA9Ccso+KsSgvLjGCE4ZHLRSx7OGLhLwoLyJKseDTiv/8q4vhLIo76h2JVyCAM2FnWobMsKxrr08KytK4kMsOaZQAAAJA3YRkVpaO9M9Ys25R4bOosYRkUzdaAbNENEQtvHFpAluS3F0Vsfi3iXf9iLOMIGSgs01mWHWmdZS3GMGafzjIAAADIm7CMivLay5uiqyv5l0fTZk4ocTVQZnK5iOUPvz5i8caIdUUOyPq69xsRW9ZGnHhlRHXyL/wZPsYwlgdjGMuYzjIAAADIm7CMirJqaXPi/tqGmpi489gSVwNloCcgWxCxaEFxArKJsyLGT4vY8Or2O9Ie+Z+I+nERf/nVoX8uBamuqo666rpo72rvd8wYxuwYkzqGUViWealhmW5cAAAA6EtYRkVZuSRlvbJdx0d1tV8eQV5yuYjlj7zeQbZg6AFZdW3EHm+PmDc/Yq/jI3bY+Y1jry6M+P2lEU//Kv36B66KmHlE9/WUVGNNY2JYprMsOxqNYSxjxjACAABAvoRlVJSVS1PCspnWK4MBbQ3IFi3o7iJbt2Ro99s2IJvznoixk5PP22lexN/8v4jHfhKx4BMRuZRf4N/0mYjpB0ZM3mNodVGQhtqG2NDe/3u1pVNnWVakhWU6y8qAMYwAAACQN2EZFaOjrTPWLt+UeGzaLGEZ9DNSAVmSg06NaGyK+NnpEUkj/lqbI352RsRHb42oS19Li+JqqGlI3N/aobMsK9LWLOvoykV7Z1fU1QhWMssYRgAAAMibsIyK8dryTdHVlTySaOrMCSWuBkapXC5ixaPd4djCG4oUkB0XMe/9hQdkfc35i4i/+XHED/86+ZfAKx6L+P2/Rpxw6eA/g4I01iQHkzrLsiMtLIvo7i4TlmWYzjIAAADIm7CMirEmpaustq46Ju48tsTVwCiybUC2aEHE2heHdr+tAdnc+RH7vndoAVlfe74j4tjPR9zx5eTj938n4pC/i5g6p3ifSaqG2pTOMmuWZcaY+vTgpKWtMyY01pWwGooqLSwLnWUAAADQl7CMirFmRXJYNmn6uKiu9osjKkwu192JtfCG4gVkux/b3UFW7ICsr2POi1h6b8Tzd/Q/luuMuOWLER++fvg+nx5pnWXGMGZH2pplEREt7WlhC5mQS+6m11kGAAAA/QnLqBhrU8KyybuMK3ElMEK2BmSLFnSHZEMNyKpqXh+xOD9i378a3oBsW9U1ESf/Z8RVb4vY+Gr/44t/G/HMrRH7vLs09VSwtDXLjGHMju2NYSSjcrmIEJYBAABAvoRlVIy0MYyTpwvLKGO5XMQrj3eHYwsXRKx9YWj3q6qJ2GNrB1kJA7K+xk+NOOHLEdefmXz8li9G7Pn2iBoj5IaTMYzZN6ZeWFaW0rrKIoRlAAAAkEBYRkVoa+mIDWuSOx2EZZSdnoBswesdZEUKyObO7w7Ixu1YjCqHbv+/jvjj1REvPdD/2GvPRjz4nxGHf6L0dVWQtDGMLR06y7KisXaAsKxNWJZZqeuVhbAMAAAAEgjLRoGlS5fG/fffH0uWLIm2traYPHlyzJs3Lw4//PCor68f0drWrFkTf//3fx8//OEPIyJi1qxZ8eKLL45oTYOx9pXNqceMYaQs5HIRrzzxxhpka54f2v2qaiJ2P+aNDrLREpBtq6oq4i++EnHNO5KP3/VvEW8+I6JuTEnLqiRpYxh1lmVHdXVVNNRWR2tH/3ClRWdZdg0YllmnFQAAAPoSlo2g3//+93HRRRfF3XffnXi8qakpPvaxj8WFF14YEyZMKHF1Eb/4xS/ik5/8ZLz6asKaQBlT11ATc4/eJdau2BRrlm+K1s0dERFRW18dO0xO7oyAUW9rQLZ1DbKiBWTzI/Y9cXQGZH3NeHPEQX8b8dj/639s06qIR/9fxKEpoxoZssba5O9PYVm2jKmvSQzLNussyzBjGAEAAKAQwrIR0NXVFeedd15cccUVPfvmzJkTRx11VEyaNCmeeeaZ+M1vfhPr16+Pr3/963HdddfFjTfeGAcffHBJ6lu5cmV8+tOfjp/97Gcl+bxSmDx9XLz9Q/tGREQul4vNzW2xZsWm2NLcFlXV/oY1GdIrIFsQsea5od0viwFZX+/854hFN0a0J6xLeO9/dHeXVaePmmPwjGEsD92jGNv77ddZlmHGMAIAAEBBhGUj4BOf+ERcffXVERFRU1MT3/rWt+Lss8+O6uo3fnmxdOnSOOWUU+KBBx6Il156Kd7xjnfEH/7whzjggAOGtbYf//jH8dnPfjZWr14dERFz586NRYsWDetnllpVVVWMa2qIcU3J48Ng1MnlIl598o01yIoSkB39+ojFjAZk25owvTsQu/9b/Y+tfSHizzd1/1kpuoZaYxjLQWNdcnjS0iEsyyxjGAEAAKAgwrIS+973vtcTlEVEXHXVVXHWWWf1O2/mzJlx6623xqGHHhrPPPNMrFu3Lk4++eR4/PHHY8yY4q+/s3r16jjrrLPixhtvjIiIHXfcMa688sqYMWNGvP3tby/65wHbsW1AtmhBxGuLh3a/quruDrK58yP2OzFi3JQiFDmKHPHJiD9+N6Kro/+xu/+9+8/tF8RFl9pZ1qmzLEsa65I7L1vaBwhcGN0GCsvCdyEAAAD0ZQ5LCW3cuDE+//nP92wfddRRiUHZVhMmTIhvfOMbPduLFy+OK6+8clhqu/vuu3uCspNPPjkWLlwYH/rQh4bls4AUuVzEK09G/O5fI775loirjoq467LBB2VV1RG7HxvxV/8ecd6zEX93Y8RbPlJ+QVlERNOuEQd8MPnYikcjXvhDScupFA01KZ1lHTrLsqQhNSzTWZZZOWuWAQAAQCF0lpXQZZddFitXruzZPvfcc7d7zQknnNBrFOJXv/rVOOecc2LSpElFr2/q1KnxzW9+M0455ZSi3xtIkctFvLrw9TXIbihOB9nso99Yg2z81GJUmQ1HfibisR8nH7v3GxF7HFvaeipAY21yZ5kxjNnSWJscnrQKy7LLmmUAAABQEGFZieRyubjmmmt6tidOnBjvfe9787r2wx/+cHzxi1+MiIh169bFT37yk/j4xz9e1PoOPPDAWLRoUUyZUoYdJzDa5HIRKxd1h2MLF0S89uzQ7ldVHTH7qDfWIKukgGxbO82L2PvdEc/e2v/Y4t9FrFsaMXFm6esqY2mdZcYwZkvqGMYOYxgzS1gGAAAABRGWlcg999wTy5cv79k+8sgjo76+Pq9rjzvuuF7bP//5z4selu2xxx5FvR/QR09AtuD1DrIiBWRz50fs977KDcj6ets/JIdlkYt45EcRb/9CqSsqaw21xjCWg8a65PDEGMYMM4YRAAAACiIsK5Gbbrqp1/ahhx6a97UHH3xw1NXVRXt7e0RE3HnnndHc3BwTJkwoao1AkeVyESv/3B2OLVoQsfqZod2vqjpi1tu6O8gEZMlmHRkxbV7EyoX9jz36o4hjL4ioTu6ioXCNNcljGHWWZUtqZ5mwLLsG7CyrKl0dAAAAkBHCshJ55JFHem3vt99+eV/b2NgYe+yxRzz99NMREdHR0RFPPvlkHHnkkUWtESiCrQHZ1jXIihaQzX89IJtWjCrLV1VVxCH/J+Lmz/c/tv6liOfviNjrnSUvq1yljWFs7WyNXC4XVX4pnwmNtWlhmTGM2aWzDAAAAAohLCuRhQt7dznsuuuuBV0/Y8aMnrBs6/2EZdvX3toRt//wqZg8fVz3P7uMi7FN9X6BS/Ft7SBbuCBi9dPbPX1AArKhOfDUiNv+OaKzrf+xR/5HWFZEjbXJnWVdua7o6OqIupq6ElfEYBjDWIasWQYAAAAFEZaVQHNzc6xYsaLXvhkzZhR0j77nP/XUU0Oua7RbuXJlrFq1qqBrFi9e3Gu7+bWWWHT3a732NYytjUk7j4v3furAaBznF7kMwco/v7EG2VADsqjqXoNMQDZ0YydH7PtXEQt/0f/YU7+K2Lym+xyGLK2zLKJ7FKOwLBtSxzB26CzLLGEZAAAAFERYVgJr1qzpt6/Q9cb6nr927doh1ZQF3/72t+OSSy4Z0j02rW3tt691c0esemlDNIzxX38GYWtAtmhBxKqhhtavB2RzT+oOyHbYqQgFEhHdoxiTwrLOtojHfxJx+CdKX1MZSluzLKJ7FOMOsUMJq2GwUsOyNp1lmWXNMgAAACiItKAENmzY0G9fQ0P638ZP0tjY+xeSSfekv41rWyOi/y8BJ+zYGFXVfllEnlY+1d09VqyAbNsRiwKy4bH7cRFNMyPWL+1/7JEfCcuKpKF2gM6yjpYSVsJQpHeWCcsya6CwLDz/AAAAQF/CshJICrb6hl/bIywbnI3rWiJiXL/9E6aMKX0xZMvKp7rDsYU3CMiyqLo64uAPRdzxlf7HXn0iYvXiiCl7lb6uMjPgGEZhWWZYs6wM5XLpx4xhBAAAgH6EZRmVG+iXIGXik5/8ZHzwgx8s6JrFixfH/Pnze7Y3rW2NKmEZ+Vr1dHc4tnBBxKo/D/FmVRGzjoyY9/6I/U6M2GHnYlRIId70t8lhWUTEohsijjm/tPWUoe2NYSQbUjvL2q1ZllnWLAMAAICCCMtKYIcd+q/Z0tLSEuPG9Q9x0rS09P4b+kn3LDfTpk2LadOmDekeG9a1RtLqcBOmFNbZRxlb9XR3OLbwhuIFZHPnR8x9n4BspE2cGbHrWyNe/mP/YwtvFJYVwYBjGDt1lmWFzrIyJCwDAACAggjLSmD8+PH99rW2tgrLSmDzutaYMLH/fp1lFW7VM2+sQbZy0RBvVhUx84juDjIB2egz96TksOzVJyJeey5ixz1LX1MZqauui5qqmujM9Q9VdJZlR2NtWmeZsCyzjGEEAACAggjLSmDy5Mn99jU3NyfuT9Pc3Nxre9KkSUOuqxKk/cVqnWUVaNUzb6xBVrSAbH73GmQTphehQIbF3JMibv2n5GMLb4g45rzS1lOG6mvqY0vHln772zrbRqAaBiN1DGOHMYyZNWBnWVXp6gAAAICMEJaVQFNTU+y8887xyiuv9OxbtmxZzJ49O+97LFu2rNf2vvvuW6zyKtKEHXWWVYSegGxBxMqFQ7yZgCyTJu4WMeMtEcse6n9s0QJhWRE01DQkhmXGMGZHQ8oYxraOrujqykV1tXAle3SWAQAAQCGEZSWy//779wrLXn755YKu7xuW7b///kWpqxI1jquL+jH+q1+2Vj/7xhpkRQnIDu8esSggy65585PDsleMYiyGhprkdct0lmVHWmdZRERrR1eMqU8/zihlzTIAAAAoiMSgRA4++OD47W9/27O9aFH+Y+BaWlri+eef79muqakRlg2BEYxlaGtAtmhBxKtPDv1+M4+ImDu/ew2yCbsM/X6MrLknRdx6YfKxRQsijv7HkpZTbtLCMmuWZUfammUR3euWCcsySFgGAAAABRGWlciJJ54YX//613u2H3zwwbyvfeSRR6K9vb1n+9hjj40JEyYUtb5KMmGKEYxlYfXi7u6xYgVku73eQSYgKz8TZ0bMeHPEsj/1P7boRmHZEDXUpoRlHcKyrGhMGcMYEdHS0VnCSigaa5YBAABAQYRlJfK2t70tpk+fHitWrIiIiPvuuy/a2tqivr5+u9fecccdvbY/8IEPDEeJFUNYlmGrF0csuqG7i6xoAdn87hGLTTOGfj9Gr7nzk8OyFY9FNK8wYnMIGqp1lmXdQGMYW9oHCF0YvQYKy0JYBgAAAH2Zw1Ii1dXVcdZZZ/Vsr1u3Ln71q1/lde2PfvSjnn9vamqKU089tej1VRJjGDNm9eKIP3w94jtHRXzzzRG//79DC8p2OyziL/5/EZ9bFHHmLRGHf0JQVgn2OzH92OLfph9ju+prkv/ShzXLsmPgsExnWSblcunHjGEEAACAfnSWldD5558fV111VaxatSoiIq644op4//vfP+A1t9xySyxcuLBn+4ILLojJkycPeM1rr70W119/fbS3t8f8+fNjxgxBwLZ0lmXAa891j1hcuCDi1SeGfr/dDnt9DbKTBGOVavLuEVPmRKx+uv+xZ2+NOOT/lL6mMtFYm/wXEFo6W0pcCYM1ZoCwbIuwLJusWQYAAAAFEZaV0A477BBf/vKX4+yzz46IiLvuuiuuvfbaOPPMMxPP37BhQ3z2s5/t2d5zzz3jH/7hHwb8jJdeeikOPfTQePXVVyMi4otf/GLcddddceCBBxbnD1EGdJaNUlsDskULIl4pQkC261vfWIOsadeh34/s2/tdyWHZc7dHdLRF1G5/LC796SzLvobaAdYsE5Zlk84yAAAAKIiwrMTOOuusuP/+++Paa6+NiIhzzjknOjs746yzzorq6jd+ebF06dI45ZRT4plnnomI7vGL119/fYwdO3bA+3/nO9/pCcoiIpqbm+NrX/ta/PCHPxyGP032VFVFjJ8sLBs1XnuuOxxbeEMRA7L5r3eQCcjoY+93R9z3zf772zZEvHR/xO7HlL6mMtBQY82yrKuuror62upo6+jfjdRqzbJs0lkGAAAABRGWjYCrr746xo0bF9/4xjeis7MzzjnnnLj88svjmGOOiaampnj22WfjN7/5TbS1df+t/BkzZsSNN94YBx100HbvnUv4m8RdXfn9ouviiy+OSy65ZMBzlixZElVV/ReGf+GFF2L27Nl5fc5IGj+pMWpq/JJoRPUEZAsiXnl86PcTkJGvmUdE1O/QHY719eytwrJBEpaVh8aUsExnWUYNGJb1f44DAACASicsGwHV1dVx5ZVXxoknnhgXXXRR3HvvvfH000/H00/3Hg82YcKEOPvss+NLX/pSNDU15XXvj3/843Httdf2rIs2fvz4uOCCC4r+Z8iqCVN1lY2INc93h2MLbyhSQHbo6yMWBWQUoLY+Ys/jIv78v/2PPXtbxLv/b8lLKgfCsvLQWFcTzS0d/fa3dAjLsskYRgAAACiEsGwEHX/88XH88cfHkiVL4r777oulS5dGW1tbTJo0KebNmxdHHHFENDQk/xIyzaxZs2LRokVx/fXXR3t7e8yfPz923TW/MOHiiy+Oiy++eBB/kuyYMGXMSJdQObYGZIsWRKx4bOj32/XQiLnzuwOyibsN/X5Upr3fnRyWrXoqYu2SiEmzSl9TxqWGZR3CsixprKtJ3N9iDGM2GcMIAAAABRGWjQKzZs2KWbOK9wvaKVOmxDnnnFO0+5WTCTsKy4ZVsQOyGW95o4NMQEYx7PWu9GPP3hrx1rNLV0uZ0FlWHhrrkgMUYxgzSlgGAAAABRGWUVGMYRwGa154fQ2yG4oYkM1/PSCbOfT7wbYmTI/Y+cDkcaDCskERlpUHnWVlxpplAAAAUBBhGWVtxpyJMalhfDSv3hLtLZ06y4qlJyBbELHi0aHfb8abt+kgE5AxzPZ+d3JY9uI9ER1t3WubkbeGWmFZOWisTQvLdJZlUmpYJigDAACAJMIyytoxp82JefPmRS6Xi5ZN7VHf6L/yg7b2xe5wbOENxQvItq5BZp0oSmnvd0XcdVn//e2bIpY/HDHz8NLXlGE6y8pDQ9oYxg5hWSblcsn7jWAEAACARJIDKkJVVVWMGa9bpGBbA7JFCyKWPzL0++1yyBsdZAIyRsqMN0fUjesOx/p64S5hWYHqa5K/W9s620pcCUORNoax1RjGbErrLBOWAQAAQCJhGdDb2iVvrEFWtIBs/usB2eyh3w+GqqYuYtaREYtv63/shTsjjj2/9DVlWGNN8lqQLZ0tJa6EoUhfs0xnWSbpLAMAAICCCMuAbQKyBd1j6IZql4O36SCbPfT7QbHtfkxyWPbSHyPat0TUWd8wXzrLykNjbcoYRmFZNqV2llmzDAAAAJIIy6BSrV0SsejG1zvIihSQzZ3f3UUmIGO02/2Y5P2drd2B2R7HlraeDLNmWXkYU5/WWWYMYzbpLAMAAIBCCMugkqxb+sYaZMv+NPT7bQ3I5p4UMXn3od8PSmXnAyIaJ0a0rOt/7IU/CMsKMFBYlsvlokonSyakjWHcorMsm6xZBgAAAAURlkG5K3ZANv1Nb4xYFJCRVdU1EbOPinjql/2PvfCH0teTYWlhWVeuKzpyHVFXVVfiihgMYxjLjLAMAAAACiIsg3K0bukbIxaLFpDN7+4iE5BRLnY/JjksW/aniNYNEQ07lL6mDEoLyyIiWjtao65eWJYFDSmdZS0dxjBmkjXLAAAAoCDCMigX617q7h5buCBi2UNDv9/0g7bpINtj6PeD0SZt3bJcZ8SS+yL2eXdp68moAcOyztYYH+NLWA2DlTaGsVVnWTalhWUhLAMAAIAkwjLK2isvrI/pkzbF2Kb6aBhbW35r56x7aZsOsiIFZHPnd3eRCcgod1P3jRg3NWLTqv7HXvyDsCxPA4VlbZ1tJayEoWisM4axrORyyfuNYQQAAIBEwjLK2u0/eCqe+mVLRER86JLDY+JOY0e4oiLYGpAtWhDx8oNDv9/OB77RQbbjnkO/H2RFVVV3d9mT1/c/Zt2yvDXUpodlLZ0tJayEoWisTRnD2G4MYyZZswwAAAAKIiyjYoydUD/SJQze+pff6CArWkA2v7uLTEBGJZt9dHJY9soT1i3Lk86y8pA2hrGlQ2dZJgnLAAAAoCDCMipCTV111DUm/yJw1OoJyBZEvPzHod9v5wNe7yCbLyCDrWYflbw/1xXx8kMRe769tPVkUH1N+l9EaO1sLWElDIUxjGXGGEYAAAAoiLCMijB2Qn021itbv2ybDrIiBWRz53eHZAIy6G/HvSLG7hix+bX+x156QFiWh4E6y4Rl2ZHaWdbeFblcLhv/G8obUjvL/P8RAAAAkgjLqAijegTj1oBs0YLuX84PlYAM8ldVFbHbYRFP/7r/saX3l76eDKquqo666rpo72rvd0xYlh1pnWUREa0dXalhGqOVzjIAAAAohLCMijDqwrLm5W90kBUjINvpgO41yARkULi0sOzlhyK6OiOqhQTb01DTICzLuIba9P+et7YLyzLHmmUAAABQEGEZFWFUhGU9AdmCiJeK0LGy0wER806KmPv+iCl7Df1+UKlmHp68v21DxKsLI6YfWNp6MqihpiE2tm/st7+1Q1iWFQOFYS0dndEUdSWshiEzhhEAAAAKIiyjIoxYWFb0gGz/7g4yARkUz/Q3RdTUR3S29T/20gPCsjykrVumsyw7BhrD2NLeWcJKKAqdZQAAAFAQYRkVoaRhWfPyiEU3vT5isUgB2dz53SHZlL2Hfj+gt7rGiF0OTh6JuvT+iLeeXfqaMqa+Jvk7VliWHWMG6ixrTwleGL3SwrLQWQYAAABJhGVUhLETkrseiqZ5RXcH2aIF3b9cj9zQ7jdtXvf6YwIyKI3dDksOy4qxpmAFaKxtTNwvLMuOgcYwbtFZlj25lOcQnWUAAACQSFhGRRgzHJ1lzSsi/vx6B1nRArL53V1kU/cpQoFA3mYeHnHvN/rvX/9SxPplEU0zSl9ThqR1lrUljbZkVBpwzTJhWfYYwwgAAAAFEZZREYo2hrEnIFsQsfS+GHpANre7g0xABiNrt8PSj710f0TTX5eulgxqrEnuLGvpbClxJQxWTXVV1NVURXtn//9dE5ZlkLAMAAAACiIsoyIMKSzb8Moba5AVKyDbugbZ1DlDuxdQHOOmROy4V8Rri/sfW/pAxP7CsoHoLCsPjbU10d7Z0W+/NcsyyBhGAAAAKIiwjLJX11ATdQ3p46USbQ3IFi2IWHJvCMigAux2eHJYZt2y7WqoSV4X0ppl2dJQVxMbWvuHZa0dOssyJ7WzrKq0dQAAAEBGCMsoe3l3lW149Y01yIoRkE3dr3vEooAMsmHmYRGP/rD//lefjGhviahLHjWIsKxcNNYldx0Zw5hFOssAAACgEMIyyt7YpgHCsp6AbEHEknuiOAHZ/O4usmn7Du1eQGntemjy/q6O7sBs17eUtp4MEZaVh8a65C5sYxgzSGcZAAAAFERYRtkbu0OfsKzoAdm+3R1kAjLItin7RNSNi2jf1P/Ysj8JywZgzbLyoLOsjKSGZTrLAAAAIImwjLI3dkJ98QOyKXPeGLE4bb8iVAmMuOqaiF0Ojlhyd/9jyx4ufT0Z0liTPKKypaOlxJUwFI21OsvKhrAMAAAACiIso+yNee6nEZdfnv6Lo3wJyKD8zUgLy/5U+loyRGdZeUgdw9ihsyxzUp95jGEEAACAJMIyyt7Y5scixg4yKJsypzscm/d+ARlUghlvTt7/2rMRLesjGptKW09GpK1Z1tKpsyxLjGEsI7mUDnqdZQAAAJBIWEbZG1u9trALpuyzzRpk+0VU+VvYUDF2OST92PJHIvY4rmSlZEljbfIYRp1l2dKQ1llmDGP2GMMIAAAABRGWUfbGVq/f/klT9ukOx7Z2kAnIoDJNnBkxdkrE5tX9jy17WFiWIm0MY2tna4krYSjGpIRlrTrLskdnGQAAABREWEZZq472GFuT0lm2497brEE2V0AGdH8PzDgk4tlb+x+zblmqxprkzjJhWbakjWHcIizLntTOMs86AAAAkERYRlk7Zcd/jPHV2/xNeQEZsD27pIRlyx8pfS0ZobOsPDTWpo1hFJZljjGMAAAAUBBhGWWtqiqiaspeb6xBttM8ARkwsBlvTt7fvCxiwysRO+xc2noyoKGmIXG/sCxbGq1ZVkaMYQQAAIBCCMsob6f+MOKYkwRkQP5mHJJ+bNnDEfu+p3S1ZERqWNYhLMuStDGMLR06yzLHGEYAAAAoiL9eSnmbsrdfDAGFGTclYuLM5GPLHy5tLRmRFpa1dbVFLpfS4cKoo7OsjBjDCAAAAAXxxgwAfe2S0l227E+lrSMj0tYsi+gOzMiGhpSwrNWaZdmTFpaFv0AEAAAASYRlANBX2ijGFY9F6JTqp7G2MfVYS0dLCSthKBprU8YwCsuyJ+17SmcZAAAAJPLGDAB97XJw8v7Nr0U0Ly9tLRkwYGdZp86yrEgdw9hhDGPmGMMIAAAABfHGDAB97bR/+rFXHi9dHRnRWDNAZ1mnzrKsSF+zTGdZ5gjLAAAAoCDemAGgr7GTI5pmJh9bISzrS2dZeWisSx/DmDN+NFuMYQQAAICCeGMGgCTTD0zer7Osn4aahtRjrZ2tJayEoUjrLOvKRbR3CssyJbWzrKq0dQAAAEBGCMsAIMnOwrJ8DTSGUViWHY21yWFZRERLh1GM2aKzDAAAAArhjRkAkqR1lq1bGrFlbWlrGeVqq2ujKpI7VoRl2TGmPv2x0LplGaOzDAAAAAoiLAOAJGmdZRERrzxRujoyoKqqKnUUozXLsqNhgM6y1vaU8IXRKTUs8+gPAAAASbwxA0CSCbtEjJmcfGyFUYx9NdQmh2UtHS0lroTBSluzLCJii86ybBGWAQAAQEG8MQNAkqqq9FGM1i3rp6E6OSwzhjE7GuuMYSwbaWFZyrhUAAAAqHTCMgBIkzaKUWdZP/U19Yn7jWHMjoE6y1qMYcyWXC55v84yAAAASOSNGQDSTD8oef/qZyLat5S2llGusbYxcX9LpzGMWVFXUx011cmdRzrLMsYYRgAAACiIN2YASJPWWZbrjFi5qLS1jHI6y8pDY23yo6GwLGN0lgEAAEBBvDEDQJod94yoG5t8zCjGXhprdJaVg7RRjK0dxjBmis4yAAAAKIg3ZgBIU10TsdO85GOvCMu2pbOsPDSkdJYJyzImNSxLHrMJAAAAlU5YBgADSRvFqLOsl4aahsT9rZ2tJa6EoWhI6SwzhjFr0sYwCssAAAAgibAMAAYyPSUsW/nniC7dNlulhmUdwrIs0VlWJoxhBAAAgIJ4YwaAgUxLGcPYvili/dLS1jKK6SwrD2mdZa0dOssyRVgGAAAABfHGDAADmbZv+rFXF5WujlHOmmXlIa2zrKVdZ1mmCMsAAACgIN6YAWAgDTtETJyVfGzlwtLWMoo11jYm7m/pbClxJQxFo86y8pAWloU1ywAAACCJsAwAtmenlFGMOst66CwrD6lrluksy5ZcLnm/zjIAAABI5I0ZALZn2n7J+1cKy7ayZll5SA3LOoRlmWIMIwAAABTEGzMAbM+0ucn7Vz8b0SEMihCWlYvUMYztxjBmis4yAAAAKIg3ZgDYnrQxjLnO7sAMYVmZ0FlWJnSWAQAAQEG8MQPA9uy4V0R1XfIxoxgjQlhWLhpqUzrLOnSWZUpqWFZV2joAAAAgI4RlALA9NXURU+ckH3t1YWlrGaWEZeWhsS750bClXWdZtqSNYRSWAQAAQBJhGQDkI23dMp1lEZEelrV1tpW4EoZCZ1mZMIYRAAAACuKNGQDyMW2/5P2vCssi0sOylo6WElfCUDSkdJZZsyxjhGUAAABQEG/MAJCPneYl729+OWLLupKWMhrpLCsPjbVpYxh1lmVKWlgWxjACAABAEmEZAOQjbQxjRMSqp0pXxyhVX1OfuL8j1xEdXR0lrobBaqhLG8OosyxTcmlrlnn0BwAAgCTemAEgH027RjQ0JR97dWFpaxmFGmsbU4/pLsuOhpTOstZ2YVmmGMMIAAAABfHGDAD5qKpKX7dspXXL0jrLIiJaO1tLWAlD0ZjSWdbSYQxjpugsAwAAgIJ4YwaAfKWFZa8Ky9LWLIsQlmWJzrIyobMMAAAACuKNGQDytdO85P2rny5tHaOQsKw8NNSmrVnWGbm0biVGn9SwrKq0dQAAAEBGCMsAIF9T5yTv3/xaxKbVpa1llBGWlYeGuuRHw65cRHunsCw70sYwCssAAAAgibAMAPI1JSUsi4hYVdndZQOGZR3CsqxoTOksi+juLiMjjGEEAACAgnhjBoB8jZ8W0Tgx+ViFj2LUWVYe0jrLIiJaO6xblhnCMgAAACiIN2YAyFdVVfooxgrvLKupronaqtrEY21dbSWuhsFqqBWWlQVhGQAAABTEGzMAFEJYlqqupi5xf1unsCwrGuvSxzC2tBvDmBlpYVlYswwAAACSCMsAoBBp65YJy1JHMRrDmB0Ddpa16yzLjFwueb/OMgAAAEjkjRkACpHWWbZheURLc2lrGWXqa+oT9+ssy46G2vTOstYOnWWZISwDAACAgnhjBoBCpIVlERGrny1dHaOQzrLsG6izrEVnWXZYswwAAAAK4o0ZAAoxYdeIurHJx1Y9VdpaRpm0sExnWXZUV1dFfU3y46HOsgwRlgEAAEBBvDEDQCGqqyOm7J18bHVlr1tWV12XuF9Yli1p3WWtHTrLMiM1LKsqbR0AAACQEcIyACjU1H2T9696prR1jDLGMJaHhrrkdcta2nWWZUfammXCMgAAAEgiLAOAQk3ZJ3m/MYyJ+4Vl2aKzrAwYwwgAAAAF8cYMAIVK6yxbtySifUtpaxlF6mvqE/cbw5gtDXXCsswTlgEAAEBBvDEDQKGmzknen+uKeG1xaWsZRdI6y9q6hGVZ0libPIax1RjG7BCWAQAAQEG8MQNAoSbtHlFdl3xs1dOlrWUUqatJ/s9EZ1m26CwrA2lhWVizDAAAAJIIywCgUDW1ETvulXxs9TOlrWUUsWZZeUhds0xnWXbkUvbrLAMAAIBE3pgBYDCm7pO8f9VTpa1jFBGWlYfGuuQxjC06y7LDGEYAAAAoiDdmABiMqfsm719duWuW1dfUJ+43hjFbdJaVAWEZAAAAFMQbMwAMxo57J+9f81xEV2V24KR1lgnLsqWhNrmzzJplGSIsAwAAgIJ4YwaAwZiSsmZZR0tE88ulrWWUqK9O7iwzhjFbUjvLhGXZkRqWVZW2DgAAAMgIYRkADMbkPdOPrX62dHWMIsYwlofUNcuMYcyQXPJuYRkAAAAkEpYBwGA0TogYv3PysdeeK20to0TaGMbWLp1lWaKzrAwYwwgAAAAF8cYMAIO1Y8ooxtd0lm1LZ1m2NNSlhWU6yzJDWAYAAAAF8cYMAIOVtm7Za4tLW8cokdZZJizLlsbatDGMOssyQ1gGAAAABfHGDACDldpZVplhWVpnWWunMYxZorOsDORS1iwLa5YBAABAEmEZAAzWjnsn71/3UkT7ltLWMgoYw1geGlI6y1p1lmVHWlimswwAAAASeWMGgMFK6yyLXMSaF0paymiQNoZRZ1m2NKZ0lrXoLMsOYxgBAACgIN6YAWCwJs2KqK5NPvbas6WtZRRIC8vau9qjK+2X94w6OsvKgLAMAAAACuKNGQAGq6YuYtLs5GMVuG5ZXXVd6rH2rvYSVsJQNNSmrVkmLMuM1LDMmmUAAACQRFgGAEORNopxdeWFZWmdZRFGMWZJY11yZ1lLuzGM2ZG2ZpmwDAAAAJIIywBgKNLCsgrsLBsoLGvrbCthJQzFQJ1luVxKCMPoYgwjAAAAFMQbMwAMhbCsR31NfeoxnWXZ0VCX/njY1mkUYyYIywAAAKAg3pgBYCim7J28f8uaiM1rSlvLCDOGsTw01CaPYYyIaGkXlmWCsAwAAAAK4o0ZAIYirbMsouK6ywbqLGvvbC9hJQxF4wCdZa0d1i0b9QYclWnNMgAAAEgiLAOAoRi/U0T9DsnHVj9b2lpGmDGM5WGgzrJWnWWj30Bhmc4yAAAASOSNGQCGoqoqYsc9k49VWmdZtbCsHAy0ZpnOsgxIG8EYISwDAACAFN6YAWCo0tYte62yOstqqmuitro28VhbZ1uJq2GwrFmWccIyAAAAKJg3ZgAYqrR1y9a8UNo6RoGGmobE/TrLsqOhdqDOMmHZqCcsAwAAgIJ5YwaAoZq8R/L+Nc8PvH5QGUobxdjWpbMsKwYOy4xhHPUGDMuqSlcHAAAAZIiwDACGKi0sa98csfHV0tYywuprUsIyYxgzo6qqKjUwazWGMQMGCOiFZQAAAJBIWAYAQ5UWlkV0d5dVEGMYy0NqWKazbPQzhhEAAAAK5o0ZAIZqzKSIxqbkYxW2bpnOsvLQUFeTuN+aZRkgLAMAAICCeWMGgKGqqhp43bIKorOsPDTWJT8itrTrLBv1hGUAAABQMG/MAFAMk3ZP3l9hYZnOsvLQUKuzLLNyA6xZFtYsAwAAgCTCMgAoBp1lESEsKxepa5a1C8tGvYHCMp1lAAAAkMgbMwAUQ2pY9sJ2Oj3KizGM5aExZc0yYxgzwBhGAAAAKJg3ZgAohrSwrHV9xOY1pa1lBAnLykNqZ5kxjKOfsAwAAAAK5o0ZAIohLSyLiFj7QunqGGHGMJaH9LBMZ9moJywDAACAgnljBoBiGD8tom5c8rEKWresvjolLOsSlmVJ+hhGnWWj3oBhWVXp6gAAAIAMEZYBQDFUVUVM3j35WCWFZTrLyoLOsiwbYI1EYRkAAAAkEpYBQLEIy6xZViYaapM7y6xZlgHGMAIAAEDBvDEDQLGkrVsmLBOWZUxjXfIjYku7zrJRT1gGAAAABfPGDADFIiwzhrFMNKSsWaazLAOEZQAAAFAwb8wAUCyTUsYwbn4tomV9aWsZIcKy8pC6Zlm7sGzUyw2wZllYswwAAACSCMsAoFjSOssiIta8ULo6RpAxjOWhMbWzzBjGUW+gsExnGQAAACTyxgwAxTJhRkRKWFQpoxh1lpWHtM6yFp1lo58xjAAAAFAwb8wAUCzV1RGTZicfq5CwTGdZeUgdw6izbPQTlgEAAEDBvDEDQDGljWKskDGMOsvKQ0Nt2hhGnWWjnrAMAAAACuaNGQCKafLuyfvXVkhYVp0SlnUJy7Kkoc4YxswaMCyrKl0dAAAAkCHCMgAopklpYdmS0tYxQoxhLA/pnWXGMI5+ufRDwjIAAABIJCwDgGKaNCt5f/OyiI7yD4zSxjB2dHVEZ5egJSvSOsuMYcwAYxgBAACgYN6YAaCYJs1OOZCLWP9yKSsZEWmdZRFGMWZJY0pnWVtHV3R1DdC5xMgTlgEAAEDBvDEDQDFNnJl+rALWLUvrLIuIaOsUlmVFWmdZRERbp+6yUW2gsCyMYQQAAIAkwjIAKKa6MRHjd04+tvbFkpYyEoRl5aGhNv0RsbVdWDaqDdT4p7MMAAAAEnljBoBiS1u3bO2S0tYxAgYaw9jaWf5rtpWLxrrkMYwRES0d1p4b1YxhBAAAgIJ5YwaAYktbt6wCOssGXLNMZ1lm6CzLMGEZAAAAFMwbMwAU28SUzrJ15d9ZNtAYRp1l2dFQm95Z1qqzbHQTlgEAAEDBvDEDQLFVcGdZfbWwrBw01qU/IrboLBvdBgzLqkpXBwAAAGSIsAwAii1tzbKW9RFb1pa2lhIbqLOsvau9hJUwFDrLsiyXfkhnGQAAACTyxgwAxZbWWRYRsba8RzFWV1VHXXVd4jGdZdlRV1OV2oTU2qGzbFTTWQYAAAAFE5YBQLHtMD0ircOqAtYta6hpSNwvLMuOqqqqaEzpLmtp11k2qqWFZbrKAAAAIJW3ZgAotuqaiKbdko9VwrplKUFhW2dbiSthKOprkx8T23SWjW7CMgAAACiYt2YAGA5poxjLfAxjRHpYprMsWxpSwjJjGEe51DGMRjACAABAGmEZAAyHSbOS91dAZ1naGEadZdmisyyjcin7dZYBAABAKm/NADAc0jrLKmDNMmMYy0N6Z5k1y0Y1YxgBAACgYN6aAWA4TEzpLFu3NKKrvMOGhurkzjJjGLOlobYmcb8xjKOcsAwAAAAKVjvSBRCxdOnSuP/++2PJkiXR1tYWkydPjnnz5sXhhx8e9fXJfzu/FLq6uuLBBx+Mxx9/PFatWhU1NTUxY8aMOPTQQ2POnDkjVhdAJqR1lnW2RWxYEdG0a0nLKSWdZeUhbQyjsGyUE5YBAABAwYRlI+j3v/99XHTRRXH33XcnHm9qaoqPfexjceGFF8aECRNKVldbW1tcccUVceWVV8aKFSsSzznggAPiwgsvjFNOOaVkdQFkStqaZRERa5dUZFimsyxb0scwCstGtdSwrKq0dQAAAECGCMtGQFdXV5x33nlxxRVX9OybM2dOHHXUUTFp0qR45pln4je/+U2sX78+vv71r8d1110XN954Yxx88MHDXtuSJUvipJNOisceeywiIqqrq+P444+PefPmxZYtW+KBBx6IRx55JJ544ok49dRT4+c//3n893//d4wZM2bYawPIlDGTIhqbIlrW9z+29sWI2W8reUml0lCTPIaxrUtnWZakd5aV9xjR7Msl7xaWAQAAQCph2Qj4xCc+EVdffXVERNTU1MS3vvWtOPvss6O6+o1fSi1dujROOeWUeOCBB+Kll16Kd7zjHfGHP/whDjjggGGra8WKFXHcccfFiy++GBERe++9d9xwww0xb968XufdcMMN8eEPfzg2b94cP/vZz6K5uTl++ctfRm2t/zoB9DJxVsQrj/ffv25J6WspIWMYy0PammVtOstGN2MYAQAAoGDemkvse9/7Xk9QFhFx1VVXxTnnnNMrKIuImDlzZtx6662xzz77RETEunXr4uSTT44tW7YMW21/8zd/0xOUTZ06Ne68885+QVlExPvf//64/vrre7ZvueWWuPjii4etLoDMSlu3bO2Lpayi5NI6y4xhzJaGOmMYM0lYBgAAAAXz1lxCGzdujM9//vM920cddVScddZZqedPmDAhvvGNb/RsL168OK688sphqe2nP/1p3HnnnT3bX/nKV2L69Omp5//FX/xFnHbaaT3bl112WSxZUt6dEgAFS1u3bN3S0tZRYsKy8tBQk/yYqLNslBOWAQAAQMG8NZfQZZddFitXruzZPvfcc7d7zQknnBBz587t2f7qV78aa9euLWpdHR0d8U//9E8921OmTIm/+7u/2+5129bf2toa//zP/1zUugAyb2JaWPZSaesosbrqusT9xjBmi86yjMqlrFkW1iwDAACANMKyEsnlcnHNNdf0bE+cODHe+9735nXthz/84Z5/X7duXfzkJz8pam2//e1vY/HixT3bH/zgB6OuLvkXnds69NBDe8ZERkRcd9110dzcXNTaADJt4szk/RuWR3S2l7aWEkrrLBOWZUvammWt7Z0lroSCpIVlOssAAAAglbfmErnnnnti+fLlPdtHHnlk1NfX53Xtcccd12v75z//eTFL63e/t7/97Xlfu21tbW1tcdNNNxWrLIDsa9oteX+uK6J5WWlrKaH6muT/fROWZUt9bcoYxk6dZaOaMYwAAABQMG/NJdI3RDr00EPzvvbggw/u1el15513FrWD63//938HXdtb3/rWXtvCMoBtTEwJyyLKet0ya5aVh4aUsKy1XVg2qgnLAAAAoGDemkvkkUce6bW933775X1tY2Nj7LHHHj3bHR0d8eSTTxalrmXLlvVaR23MmDExe/bsvK+fN29er+1HH320KHUBlIWGHSLGTEo+VsbrlgnLykN9TdqaZcYwjmrCMgAAACiYt+YSWbhwYa/tXXfdtaDrZ8yYMeD9Bqvvffp+zvb0Pf+5556LlpaWIdcFUDbS1i1bX75hWV1N8rqXxjBmS0OdMYyZlBqWlbYMAAAAyBJhWQk0NzfHihUreu0baij11FNPDbmupPsUWtf06dOjuvqN/xp1dXXFs88+W5TaAMpC2rplFTiGsa1LWJYlDbU1ifuNYRztcsm7dZYBAABAKm/NJbBmzZp++yZMmFDQPfqev3bt2iHVtFXf2gqtq7a2NsaMGdNrX7FqAygLE2cl76/AsMwYxmypT1uzrENYNqoZwwgAAAAFqx3pAirBhg0b+u1raEj+RWKaxsbG7d5zMPrep9C6Irpr27RpU+o9B2vlypWxatWqgq5ZtGhRr+3FixcXpRaAQVtTE7EyYY2nLc9EFGmk7mizfNnyaFnWfyTv2rq1RRsjzPB7dckr0bZqSb/967Y0xMKF00agIvKy+KXk75y21rL9zgEAACA/fX9f3trqLzZvJSwrgaTwqG/4tT2lCssKrSvpmmLV9u1vfzsuueSSId1j/vz5RakFoPiejfja/iNdRMntf0Hl/ZnLzYqI2P8bI10FhftzxFf8/AEAAPCGl156KQ455JCRLmNUMI8lo3K5lPUoRoHRXBsAAAAAABCxbt26kS5h1BCWlcAOO+zQb19LS//xVAPpe37SPQej730KrSvpmmLVBgAAAAAADI/m5uaRLmHUMIaxBMaPH99vX2tra4wbNy7vewxXINW3tsHMKB2u2j75yU/GBz/4wYKuefTRR+PDH/5wz/ZPf/rTmDt3blHqASiGxYsX9xoRu2DBgthrr71GriCAbfiOAkY731PAaOY7ChjtFi1aFKecckrP9lve8pYRrGZ0EZaVwOTJk/vta25uTtyfpm/CO2nSpCHXFdG/tkKT5I6OjtiyZUuvfcWqbdq0aTFt2rQh3WPu3Lkxb968otQDMBz22msv31PAqOU7ChjtfE8Bo5nvKGC0mzBhwkiXMGoYw1gCTU1NsfPOO/fat2zZsoLu0ff8fffdd8h1Jd2n0LpWrFgRXV1dPdvV1dWx9957F6U2AAAAAACA4SYsK5H999+/1/bLL79c0PV9Q6y+9xusvvcZaoi35557xpgxY4ZcFwAAAAAAQCkIy0rk4IMP7rW9aNGivK9taWmJ559/vme7pqamaGHZjBkzYurUqT3bW7ZsiRdeeCHv65988sle2wcddFBR6gIAAAAAACgFYVmJnHjiib22H3zwwbyvfeSRR6K9vb1n+9hjjy3qLNGh1Nb33Pe9731FqQkAAAAAAKAUhGUl8ra3vS2mT5/es33fffdFW1tbXtfecccdvbY/8IEPFLO0fvfr+3kD2fbc+vp6YRkAAAAAAJApwrISqa6ujrPOOqtne926dfGrX/0qr2t/9KMf9fx7U1NTnHrqqUWt7fjjj4899tijZ/tnP/tZr062NA8++GA888wzPdunnHJKNDU1FbU2AAAAAACA4SQsK6Hzzz+/1/pgV1xxxXavueWWW2LhwoU92xdccEFMnjx5wGtee+21uPrqq+Nb3/pWLFu2bLufUVdXF5deemnP9urVq+MHP/jBdq+7/PLLe/69vr4+/uVf/mW71wAAAAAAAIwmwrIS2mGHHeLLX/5yz/Zdd90V1157ber5GzZsiM9+9rM923vuuWf8wz/8w4Cf8dJLL8W8efPinHPOiU9/+tMxd+7cePzxx7db26mnnhpHH310z/YXvvCFWLFiRer5t9xyS1x33XU92+eee27svvvu2/0cAAAAAACA0URYVmJnnXVWnHnmmT3b55xzTlx99dXR1dXV67ylS5fGu971rp4xh01NTXH99dfH2LFjB7z/d77znXj11Vd7tpubm+NrX/vaduuqqqqKH//4xzFz5syIiFi1alUce+yxvbratlqwYEGcfPLJPdvHH398/Ou//ut2PwMAAAAAAGC0qR3pAirR1VdfHePGjYtvfOMb0dnZGeecc05cfvnlccwxx0RTU1M8++yz8Zvf/Cba2toiImLGjBlx4403xkEHHbTde+dyuX77+gZxaWbMmBF33HFHvO9974snn3wynn322TjwwAPjXe96V8ybNy+2bNkS999/fzzyyCM915x88snxP//zP1Fb679KAAAAAABA9kg4RkB1dXVceeWVceKJJ8ZFF10U9957bzz99NPx9NNP9zpvwoQJcfbZZ8eXvvSlaGpqyuveH//4x+Paa6+NVatWRUTE+PHj44ILLsi7tt133z0eeuihuPzyy+PKK6+MV199NW655Za45ZZbep03b968uPDCC+O0007L+94AAAAAAACjjbBsBB1//PFx/PHHx5IlS+K+++6LpUuXRltbW0yaNCnmzZsXRxxxRDQ0NBR0z1mzZsWiRYvi+uuvj/b29pg/f37suuuuBd2joaEhvvCFL8QFF1wQDz74YDz22GOxevXqqKmpiV122SUOPfTQ2G+//Qq6Z6lMnTo1Lrrool7bAKOJ7ylgNPMdBYx2vqeA0cx3FDDa+Z5KV5VLmtsHAAAAAAAAFaB6pAsAAAAAAACAkSIsAwAAAAAAoGIJywAAAAAAAKhYwjIAAAAAAAAqlrAMAAAAAACAiiUsAwAAAAAAoGIJywAAAAAAAKhYwjIAAAAAAAAqlrAMAAAAAACAiiUsAwAAAAAAoGIJywAAAAAAAKhYwjIAAAAAAAAqVu1IFwDFsnTp0rj//vtjyZIl0dbWFpMnT4558+bF4YcfHvX19SNdHgBAQZYtWxZ/+tOfYvny5bF27dqoq6uLSZMmxZ577hlvectbYvz48UX7rPb29rjvvvti4cKFsWbNmqivr4+ZM2fG4YcfHrNmzSra50R4ZoNy0draGk899VT8+c9/jlWrVkVzc3M0NjbGxIkTY86cOfGmN72paN9TvqMAAIbG89T2CcvIvN///vdx0UUXxd133514vKmpKT72sY/FhRdeGBMmTChxdUAW/Od//mecd955sX79+oiIuP322+O4444r2v09kAD5uvfee+OnP/1p3HDDDbF06dLU86qrq+Od73xnfPrTn473ve99g/68DRs2xKWXXhrf/e53Y926dYnnHHnkkXHJJZfE8ccfP+jPifDMBuXg0UcfjRtuuCF+//vfxx//+Mdoa2tLPbeuri7+8i//Mj73uc8N+rnKdxRQbLlcLo4++ui45557evadfvrp8f3vf39I9/XOB+TjxRdfjN13333Q1zc1NaU+E6XxPJW/qlwulxvpImAwurq64rzzzosrrriiZ9+cOXPiqKOOikmTJsUzzzwTv/nNb6K9vT0iInbbbbe48cYb4+CDDx6pkoFRZsmSJXH22WfHbbfd1mt/scIyDyRAvm644Yb48pe/HA899FDPvqqqqnjLW94ShxxySOy4446xadOm+POf/xx/+MMfoqWlpee89773vXHttdfGTjvtVNBnPvbYY3HSSSfFkiVLIuKNX2zvs88+sXbt2rjrrrvimWee6Tn/s5/9bFxxxRVRXV3YJHfPbFAe9tlnn3j22Wd77ZswYUIce+yxsffee0djY2OsWbMm/vjHP8bDDz/c67yPfvSjcdVVV0VdXV3en+c7ChgOV111VXziE5/otW8oYZl3PqAQpQ7LPE8VKAcZ9bGPfSwXEbmIyNXU1OSuuuqqXGdnZ69zlixZkjvssMN6zps4cWLu8ccfH6GKgdGiq6sr961vfSs3fvz4nu+Hbf+5/fbbh/wZjz76aG7WrFk996yrq8u9733vy5133nm5M888M7fPPvv0+szPfvaz/b7D8tHZ2Zn73Oc+1+tec+bMyZ155pm58847L/e+970vV1dX13Nst912yz388MND/vMBxbXTTjv1+jk+9thjc0899VTiucuXL8998IMf7HX+vvvum3v11Vfz/rwnn3wyN3ny5J7rDz/88NySJUt6ndPZ2Zn7zne+k6upqek578wzzyz4z+aZDcrDtt85VVVVuQsvvDC3cePGxHMfeOCBfs86f/3Xf533Z/mOAobD8uXLc01NTf3e/04//fRB3c87H1CoF154IfH3UPn+09TUlPdneZ4qnLCMTPqv//qvXl8U11xzTeq569ev7/WAstdee+U2b95cwmqB0eTZZ5/NHXvssT3fCbvuumtuhx12KGpY5oEEKNS2Ydk73vGOXFtb24Dnd3V15T70oQ/1+u464YQT8vqsLVu25ObMmdMraGtubk49/6qrrsr7uasvz2xQPrb9Wf7qV7+63fOXLVuWmzZtWq/rrrvuuu1e5zsKGC4nn3xy4i+fBxOWeecDBmPbsGw4eZ4aHGEZmbNhw4ZeL11HHXXUdq+5+eabe/3QfuUrXylBpcBo8+///u+5sWPH9nwXnHXWWbn169f3+tuAQw3LPJAAg7E1LKutrc0tXrw4r2vWrVuXmzBhQq/vgZtvvnm71331q1/tdc1vf/vbAc/v6urKHXHEET3nT506dcDvta08s0F52fpzuc8+++Q6OjryuuZrX/tar5/pY489drvX+I4ChsOCBQt6fnb7dpcVGpZ55wMGq1RhmeepwRGWkTkXXXRRrx+oX/ziF3ldN3fu3F5/w2bNmjXDXCkw2mx9KZo9e3butttu69lfzLDMAwkwGFvDsuOPP76g684+++xeP9dnnHHGgOevWbMmN3HixJ7zDzzwwLw+56c//Wmvz/nnf/7n7V7jmQ3Ky9afywsvvDDvaxYuXNjre6CmpmbAoM13FDAcmpubc7vuumsuInK777577vzzzx9SWOadDxisUoRlnqcGr7CV2mCE5XK5uOaaa3q2J06cGO9973vzuvbDH/5wz7+vW7cufvKTnxS9PmB0q66ujk9+8pPxxBNPDHlx5SRr166Nr3zlKz3bBx54YLzzne8c8Jqqqqr43Oc+17O9atWquOyyy7b7WZdddlmsXLmyZ/vcc8/d7jUnnHBCzJ07t2f7q1/9aqxduw7bVr8AABuCSURBVHa71wGlc9RRRxV0/hFHHNFrO23B961+8pOf9FoQ+kMf+lBen3PiiSf2Wij+mmuuiVwul3q+ZzYoP+9973vjve99b7z73e/O+5rZs2f32u7s7IzVq1ennu87ChgOX/jCF+Lll1+OiIjvfOc7MXbs2EHfyzsfMNp5nho8YRmZcs8998Ty5ct7to888sior6/P69rjjjuu1/bPf/7zYpYGZMDNN98c3/rWt2L8+PHDcn8PJMBg/eIXv4jbb789PvaxjxV03fTp03ttv/LKKwOe3/f55+1vf3ten9PY2BiHH354z/aKFSvinnvuST3fMxuUn1/+8pfxy1/+Mo4++ui8r6mqquq3r6GhIfV831FAsd1///3xne98JyIi/vZv/zZOOOGEId3POx8w2nmeGjxhGZly00039do+9NBD87724IMPjrq6up7tO++8M5qbm4tWGzD6vfWtbx3W+3sgAQbryCOPjOOOO65f+FWorq6u1GPNzc1x55139mzX19fHgQcemPe9+36H9n0uG+iYZzaoTC+99FKv7Z133jkmTpyYeK7vKKDY2tvb4+yzz46urq6YNGlSXHHFFUO+p3c+YDTzPDU0wjIy5ZFHHum1vd9+++V9bWNjY+yxxx492x0dHfHkk08WrTagsnkgAUbCqlWrem3vvffeqec+8cQT0dHR0bO9xx57DNjh0de8efN6bT/66KOp53pmAyIibrvttl7bJ598cuq5vqOAYvvqV7/a8/P59a9/PaZNmzak+3nnA0Y7z1NDIywjUxYuXNhre9dddy3o+hkzZgx4P4DB8kACjITHH3+81/ZAo4VK+RzlmQ3YuHFjfP3rX+/Zbmpqis9//vOp5/uOAorpmWeeiUsvvTQiIo499tj46Ec/OuR7eucDiqmrqyt+/etfx5lnnhkHHXRQTJo0Kerq6mLSpEmx1157xfve9764/PLL+3XqD8Tz1NAIy8iM5ubmWLFiRa99fX+otqfv+U899dSQ6wKI8EACjIybb76559+rqqoG/EVQ3+eeoT5HLV++PDZs2NDvPM9swMqVK+PEE0+MJUuWRETEmDFj4ic/+Unstttuqdf4jgKK6ZxzzomWlpZoaGiI7373u4lrKBbKOx9QTIcccki8973vjf/6r/+Kxx9/PNatWxcdHR2xbt26eO655+J///d/4x//8R9jzz33jDPPPDPWrFmz3Xt6nhoaYRmZkfSFsO3iqPnoe/7atWuHVBPAVh5IgFL705/+1OtvCZ922mkxZ86c1PP7PksN9TkqIvlZyjMbVJ6WlpZYsWJF3HrrrfG5z30u9t1337jjjjsiovsXQffcc8+Ana8RvqOA4rn22mt7voO+8IUvDPh8VAjvfEAxPfbYYzFp0qT44he/GA888ECsWrUqWltb4+WXX46f/vSnPc9O7e3t8V//9V9xyCGHDNiRGuF5aqhqR7oAyFfSA0Qh7e4R3a3o27snwGAM1wPJDjvsMODnFOOzRsMDCVC4L3/5yz3/PmHChPja17424Pl9n3uG+hyVdM+0fZ7ZoDwtXrw4ca3ECRMmxEc/+tE47bTT4vjjj8+ro8N3FFAMr776apx//vkREbHvvvvGF77whaLd2zsfUEzHH398/PCHP4yddtqp1/4ZM2bEBz/4wfjgBz8Y1157bXzsYx+Lrq6uWLJkSfzFX/xF/PGPf4yZM2cm3tPz1NAIy8iMpB+YpB/ggYzGH0KgPHggAUrpt7/9bfziF7/o2b7yyiu3O56n78/6UJ+jku6Zts8zG1SW5ubmuOmmm2LdunWxcePGOOmkk6K6euDBNr6jgGL4+7//+1i7dm1UVVXF1VdfHfX19UW7t3c+YKjGjh0bJ510UkybNi2uvPLKGDNmzIDnn3nmmfHKK6/EhRdeGBHdfyHgb//2b+Puu+9OPN/z1NAYw0hFy+VyI10CUCY8kAClsmbNmvjIRz7Ss/2Rj3wkzjjjjGH/3KTOkFI9S3lmg9Fpr732ilwuF7lcLjZs2BDPPfdcXHfddTF//vxYs2ZN/OIXv4iTTz45DjnkkHjooYeGtRbfUcCvf/3r+MlPfhIR3b9gPvroo4t6f+98wFBNmzYtFixYEFdfffV2g7KtLrjggl7rvt5zzz3xm9/8Zljqq/TnKWEZmdG3LT2iezZ+Ifqen3RPgJFQ6Q8kQH46OjritNNOi5dffjkiIo455pi46qqr8rq273NPoc9RW7Zs2e490/Z5ZoPyN378+Nhjjz3i1FNPjRtuuCHuuuuu2GWXXSKie02OY445Jm6++ebU631HAUOxadOm+OQnPxkRETvttNN2x1OPBO98wGDU1dXF3/3d3/Xad+211yae63lqaIRlZMb48eP77WttbS3oHqPxhxAoDx5IgFL45Cc/GbfddltERBx44IGxYMGCvMcL9X2WGupzVETy94dnNiAi4sgjj4xf//rXPd0NW7ZsiVNPPTWef/75xPN9RwFDceGFF8aSJUsiIuLf//3fY9KkSUX/DO98wEjp2yl7++23R1dXV7/zPE8NjbCMzJg8eXK/fc3NzQXdo+/5w/HwBFQmDyTAcDvvvPPimmuuiYiI/fbbL2677baCnmX6PksN9TkqIvlZyjMbsNVBBx0UH/vYx3q2m5ub46KLLko813cUMFgPPfRQ/Md//EdERPzlX/5lnHbaacPyOd75gJEyb968Xttr1qyJ5cuX9zvP89TQCMvIjKampth555177Vu2bFlB9+h7/r777jvkugAiPJAAw+v/+//+v/i3f/u3iIg44IAD4s4774xp06YVdI++zz1DfY6aPn16TJgwod95ntmAbX3oQx/qtf2zn/0ssbvCdxQwGB0dHXH22WdHZ2dnjB07Nr797W8P22d55wNGStLP8OrVq/vt8zw1NMIyMmX//ffvtb11vY589f0h7Hs/gMHyQAIMl/PPP79n3Y0DDjggfve738XUqVMLvk8pn6M8swFbvfnNb47a2tqe7dbW1njooYf6nec7ChiMyy+/PB599NGIiLjkkkti9uzZw/ZZ3vmAkZI0ej/pLx95nhoaYRmZcvDBB/faXrRoUd7XtrS09JqPX1NTMyp+CIHy4IEEGA7nnntuXHbZZRExtKBs6/U1NTU9288991xBI32efPLJXtsHHXRQ6rme2YCtampq+nVJvPLKK/3O8x0FDMavf/3rnn8///zzo6qqarv/XHLJJb3u8d///d+J533/+9/vdZ53PmCkJHWX7rjjjv32eZ4aGmEZmXLiiSf22n7wwQfzvvaRRx6J9vb2nu1jjz028W/wAAyGBxKg2P7hH/4hrrjiiogYelAWETFhwoQ49thje7bb29vjsccey/v6vs9d73vf+1LP9cwG5eWhhx6Ku+++O1asWDGo6/suQF9d3f9XEb6jgNHOOx8wFPfff39cfPHF8c1vfrPga/sG5lVVVf06UCM8Tw2VsIxMedvb3hbTp0/v2b7vvvuira0tr2vvuOOOXtsf+MAHilkaUOE8kADF9JnPfCauvPLKiMg/KDvttNPiuOOO6/e3oLfV9/mn7/NRmpaWlrj//vt7tnfeeed429velnq+ZzYoLx/4wAfi6KOPHtRaQFu2bIm1a9f22pf0y52tn7Mt31HA9txxxx2Ry+UK+ueiiy7qdY/TTz898bwzzjij13ne+YChuP/+++OSSy6JL37xiwVf23eE9UEHHZT6c+15avCEZWRKdXV1nHXWWT3b69ati1/96ld5XfujH/2o59+bmpri1FNPLXp9QGXzQAIMVS6Xi0996lM9f9uwkI6y+++/P+6888548cUXU8859dRTo6mpqWd72+ejgfzv//5vr9EfZ511VmJnyFae2aA83XPPPQVfc+edd0ZnZ2fPdmNjY2o3he8oYLTzzgcM1YYNG3rWWszXz3/+817b73nPe1LP9Tw1eMIyMuf888/v9QujreOJBnLLLbfEwoULe7YvuOCCfnPzAYbKAwkwFLlcLj7xiU/0dG4UY/RiX5MnT47Pf/7zPduPP/54/O53v9tuXds+b+24445x/vnnb/ezPLNB+bnzzjt7/YzmY+u6i1u95z3vifHjxyee6zsKGO288wHF8J3vfCfvcx955JG49dZbe7bHjh0bn/3sZ1PP9zw1BDnIoGuuuSYXET3//Od//mfquc3Nzbl99tmn59w999wzt2nTphJWC4x2s2bN6vWdcvvttw/6Xl/5yld63eu3v/3tgOd3dXXljjjiiJ7zd9xxx9z69eu3+znNzc25qVOn9lx39NFHb/eam2++uVdtl156ad5/LmB4dXV15c4+++yen8/9998/t3LlyoLusfW77KKLLhrwvM2bN+f23nvvns/ab7/9chs2bEg9/6qrrur13XHVVVflXZNnNigP2z4rvfnNb87rWSWXy+UuvfTSXt8B9fX1uaeeemrAa3xHAcPtoosu6vWzf/rppxd0vXc+YDCuuOKKnp/Nmpqa3M0337zda9asWZM74IADev1cf/3rX9/udZ6nBkdYRmadeeaZvb5gvvvd7+Y6Ozt7nbNkyZLcYYcd1nNeU1NT7tFHHx2hioHRqphhmQcSoFBdXV29nmuG+s/2wrJcLpd7/PHHcxMnTuy55ogjjsgtWbKk1zmdnZ25q666KldTU9Nz3hlnnFHwn88zG2Rf32elfffdN3fLLbfkurq6Es9/+eWXc2eccUava2pqanL/8z//k9fn+Y4ChtNQwzLvfMBgbBuWRUSuoaEh92//9m+5LVu2JJ5/99135+bOndvrmo9+9KN5f57nqcIJy8iszs7O3Gc/+9leXxhz5szJnX322bnzzjsvd9JJJ+Xq6+t7js2YMSP30EMPjXTZwChUzLAsl/NAAhTmhRdeKFpQlm9Ylsvlcg8//HBut91267muvr4+d9JJJ+XOP//83FlnnZWbM2dOr/t+6lOfynV0dBT85/PMBtl37rnn5saNG9fv+2a33XbLnXLKKbl//Md/zP3TP/1T7lOf+lTuqKOOytXV1fU6b+bMmblf/epXBX2m7yhguAw1LMvlvPMBhbvrrrty8+bN6/c8NWnSpNxJJ52UO/fcc3Nf/OIXc2eddVa/kKy2tjb3ta99LfUvKqXxPFUYYRmZd9ttt+WOPPLI1F8YTZgwIfeP//iPuXXr1o10qcAIG8ovpPP95fNWHkiAfI1UWJbL5XLr1q3LXXDBBbmmpqbU+x1++OG5W265Zch/Ts9skG3r16/PXXPNNbn58+fnJkyYsN3voqqqqtxhhx2W+4//+I9Bdzb4jgKG6nvf+96wPU955wMG45577sl97nOf6/cdkfTPlClTcp/5zGdyzz///KA/z/NU/qpyuVwuoAwsWbIk7rvvvli6dGm0tbXFpEmTYt68eXHEEUdEQ0PDSJcHjAIvvvhi7L777oO69qKLLoqLL764oGvWr18fX/7yl+O73/1urF+/PvGcww8/PC655JJ497vfPai6tvrtb38bF110Udx7772JxydMmBBnn312fOlLX+q1IDVARERbW1vce++9sXDhwli7dm3U19fHbrvtFkcccUTMnj27qJ/lmQ2yr7OzM55//vn485//HMuXL4/m5uZoa2uL8ePHx8SJE2OvvfaKAw88MCZMmFCUz/MdBQzW97///fjIRz5S8HX5vv955wOGYvXq1fHEE0/E888/H2vXro3W1tZoamqKKVOmxIEHHhj77bdfVFVVFeWzPE9tn7AMAIaZBxIAAIDy5Z0PIPuEZQAAAAAAAFSs6pEuAAAAAAAAAEaKsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYtWOdAEAAACMHu3t7fHjH/84Nm/eHB/+8Idj/PjxI10SAADAsNJZBgAAMMqcccYZUVVVVZJ/vv/97/f67Pnz58fpp58en/jEJ+LYY4+N9vb2kfkPAQAAoESEZQAAAERExFNPPRW//vWve7Yffvjh+P3vfz+CFQEAAAw/YRkAAMAoNWvWrMjlcgP+c/vttxd8zQsvvJD4eblcrt++rq6uYfmzAQAAjBbCMgAAACIiYr/99osTTjihZ/uAAw6Id77znSNYEQAAwPCrHekCAAAAGD1uuumm+PGPfxybN2+OD33oQ1FfXz/SJQEAAAwrYRkAAAA96uvr4/TTTx/pMgAAAEpGWAYAADDK7LnnnnHYYYfF9OnTh+X+DQ0Ncdhhh0VExNSpU4flMwAAALKiKpe0gjMAAACZcMcdd8Tb3/72nu1Zs2bFiy++OHIFAQAAZIzOMgAAAIZVLpeLe+65J/70pz/Fpk2bYsqUKfHWt7413vSmNw14zb333hsPP/xwbNiwISZPnhwHHnhgHHbYYVFTUzOkerq6uuLBBx+Mp59+OlauXBkREVOmTIndd989jjjiCOu0AQBAhRGWAQAAVLjjjjsu7rzzzsRjp59+enz/+9/vt3/BggXx/ve/P/WeW4eY3HnnnfHxj388nnrqqX7nvOlNb4pvfetbceSRR/baf/PNN8dnPvOZWLx4cb9rZs6cGVdeeWXMnz9/gD9RsjVr1sSll14aP/jBD2L16tWJ54wdOzZOOumkuOSSS2Lvvfcu+DMAAIDsqR7pAgAAAChPP/3pT+P4449PDMoiIh599NF4+9vfHr/85S979n3729+O97znPYlBWUTE0qVL4+STT44f/OAHBdXym9/8Jvbcc8+4/PLLY/Xq1VFXVxfvfve749xzz43zzjsvTjrppBg3blxs3rw5fvzjH8fcuXPjyiuvLOgzAACAbLJmGQAAQIYVe82yF198MXbfffee7bTOsmXLlsVdd93Vs/0v//Iv8ec//7ln+4knnoi3vOUtUVtbG6eeemq85S1viTFjxsTixYvjhz/8YSxZsqTn3Kampnjuuefisccei3e9611RW1sbH/zgB+PII4+McePGxeLFi+N//ud/el2zww47xDPPPBM777zzdv9MP/rRj+KMM86Ijo6OiIh461vfGj/60Y9ir7326nXemjVr4lOf+lRcd911vf5cX/rSl7b7GQAAQHYJywAAADJspMKyvvqOcjzmmGPilVdeiVtuuSVmz57d69zNmzfHCSecEHfffXfPvosvvjh++MMfxqZNm+LWW2+N/fffv98173rXu+Lee+/t2XfppZfGF7/4xQHrevTRR+OII46IlpaWiIjYZ5994sEHH4wJEyYknt/V1RUnn3xy3HjjjRERUV1dHXfccUccffTR2/3PAAAAyCZjGAEAACi6++67L2666aZ+QVlE97pg3/zmN3vt+/KXvxyLFy+O6667rl9QtvWab3zjG732bTu+Mc0ZZ5zRE5RFRPzHf/xHalAW0R2OffOb34za2u4lvru6uuLTn/70dj8HAADILmEZAAAARXfaaafFnDlzUo8fdNBBMWvWrJ7ttra2OPbYY+OYY45JvebNb35z7Lrrrj3bjz/+eAw0LOVXv/pVPPbYYz3bc+bMiXe/+93brX3XXXeNd73rXb0+Z9suOAAAoLwIywAAACi6+fPnb/ecfffdt9f2SSedtN1r9ttvv55/37RpU2zYsCH13B/84Ae9tv/qr/5qu/ff6m1ve1uv7euvvz7vawEAgGwRlgEAAFB0Bx100HbPmTRpUsHXTJ48udd2c3Nz6rl33HFHr+3DDz98u/ffap999um1/cADD+R9LQAAkC3CMgAAAIpup5122u45DQ0NBV/T2NjYa7ujoyPxvBUrVsTKlSt77dtzzz23e/+t+q5rtu04RwAAoLzUjnQBAAAAlJ9x48YVfM3YsWOL9vmrV6/ut++QQw4Z9P02b94cLS0t/cI6AAAg+3SWAQAAUHRVVVUluSbNQOMZB2vdunVFvycAADDydJYBAABQdvqOUYyIePbZZ2OvvfYagWoAAIDRTGcZAAAAZWfKlCn99m3YsGEEKgEAAEY7YRkAAABlZ/r06TFt2rRe+5YtWzZC1QAAAKOZsAwAAICydNxxx/XafvTRRwu6fs2aNXHdddfFddddF7/73e+KVxgAADCqCMsAAAAoS//n//yfXts33XRTQdf/93//d/zN3/xN/M3f/E3ccsstxSwNAAAYRYRlAAAAlKW/+qu/ioMOOqhn+8EHH4x77703r2tbW1vjG9/4RkREVFdXx0c+8pFhqREAABh5wjIAAADK1ve+971obGzs2T777LNj7dq1273u7//+7+PFF1+MiIgzzjgj9ttvv+EqEQAAGGHCMgAAAMrWwQcfHP/5n/8ZtbW1ERGxaNGiOO644+LBBx9MPP+VV16J0047Lb773e9GRMS8efPiyiuvLFm9AABA6VXlcrncSBcBAABAfl588cXYfffd8z7/2GOPjTvuuGPAc4477ri4884787rfCy+8ELNnzy6ojttvvz2OO+64iIiYPXt2LFmyZLvXfO9734szzjijoGsuuuiiuPjiixOP3XbbbXHaaafFmjVrevYddNBBcfjhh8eOO+4YmzdvjieffDLuvPPOaG9vj4iIo48+On7xi1/ElClTtvvZAABAdtWOdAEAAAAw3N71rnfF888/H5dddllce+21sWLFinjsscfiscce63fuIYccEp/5zGfi9NNPj6qqqhGoFgAAKCWdZQAAAFScxx57LJ544olYtWpVbN68OXbYYYeYOXNmvPnNb47ddtttpMsDAABKSFgGAAAAAABAxaoe6QIAAAAAAABgpAjLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYgnLAAAAAAAAqFjCMgAAAAAAACqWsAwAAAAAAICKJSwDAAAAAACgYv3/AaSXX3R9lxvmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "process_and_plot(fxRK4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Oh no! What happened? How come the results look very bad? In fact, is that a *negative height*? And those flow rates don't add up to the pump flow rate? We need to do something different." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Neural Differential Algebraic Equations**\n", + "\n", + "The constraints we saw in the problem setup should probably be obeyed - but how? The governing equations for the system are:\n", + "$$\n", + "\\frac{dh_1}{dt} = \\frac{1}{A_1 \\left( h_1 \\right)}q_1\n", + "$$\n", + "$$\n", + "\\frac{dh_2}{dt} = \\frac{1}{A_2 \\left( h_2 \\right)}q_2 . \n", + "$$\n", + "$$\n", + "0 = q_\\text{pump} - q_2 - q_2.\n", + "$$\n", + "$$\n", + "0 = h_1 - h_2\n", + "$$\n", + "The above equations constitute a Differential-Algebraic Equation; that is, a system of equations where some states evolve according to ODEs and others evolve according to algebraic relationships. Here, the heights of the tanks are *differential* variables and the flows $q_i$ are *algebraic* variables. We need an algorithm to handle these appropriately.\n", + "\n", + "In explicit timestepping for ODEs, we obtain a future state by recursive application of a rule. For example, in Forward Euler, we write:\n", + "$$\n", + "\\mathbf{x}\\left(t+\\Delta t\\right) = \\mathbf{x}(t) + \\Delta t f\\left( \\mathbf{x}(t)\\right) = \\text{ODESolve}\\left( f, \\mathbf{x}(t)), \\Delta t \\right),\n", + "$$\n", + "where $f$ is the right-hand-side of the ODE. This works fine for differential states, but we need an additional update rule for algebriac states. The simplest strategy is to add an algebraic variable update step to this relationship as:\n", + "$$\n", + "\\mathbf{y}\\left(t + \\Delta t\\right) = h\\left( \\mathbf{x}\\left(t\\right), \\mathbf{y}\\left(t\\right),\\mathbf{u}\\left(t\\right) \\right)\n", + "$$\n", + "$$\n", + "\\mathbf{x}\\left(t + \\Delta t\\right) = \\mathbf{x}\\left(t\\right) + \\Delta t \\cdot f\\left( \\mathbf{x}\\left(t\\right), \\mathbf{y}\\left(t + \\Delta t\\right),\\mathbf{u}\\left(t\\right) \\right), \n", + "$$\n", + "where $\\mathbf{x}$ are differential states, $\\mathbf{y}$ are algebraic states, and $h$ is an update rule for algebraic states or surrogate thereof. Let's use this approach to re-do our modeling problem:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Definition of Update Rules:**\n", + "\n", + "First we need to define what the update rules should be. We'll use a couple of custom classes to define the evolution of differential states and algebraic states and how they might interact:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Class for 'black-box' differential state evolution\n", + "class BBNodeDiff(physics.Agent):\n", + " def __init__(self, state_keys = None, in_keys = None, solver = None, profile = None):\n", + " super().__init__(state_keys=state_keys)\n", + " self.solver = solver\n", + " self.in_keys = in_keys\n", + " self.profile = profile\n", + "\n", + " def intrinsic(self, x, y):\n", + " # We want only positive values here; negative are nonphysical:\n", + " return self.profile(x)\n", + "\n", + " def algebra(self, x):\n", + " return x[:,:len(self.state_keys)]\n", + "\n", + "# Class for 'black-box' algebraic state evolution\n", + "class BBNodeAlgebra(physics.Agent):\n", + " def __init__(self, state_keys = None, in_keys = None, solver = None, profile = None):\n", + " super().__init__(state_keys=state_keys)\n", + " self.solver = solver\n", + " self.in_keys = in_keys\n", + " self.profile = profile\n", + "\n", + " def intrinsic(self, x, y):\n", + " return torch.zeros_like(x[:,:len(self.state_keys)])\n", + "\n", + " def algebra(self, x):\n", + " # Learning the convex combination of stream outputs that equal the input\n", + " param = torch.abs(self.solver(x[:,1:]))\n", + " return torch.cat((x[:,[0]]*param,x[:,[0]]*(1.0 - param)),-1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to construct the mappings that these classes will use to update our states:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "ode_rhs = blocks.MLP(insize=4, outsize=2, hsizes=[5],\n", + " linear_map=slim.maps['linear'],\n", + " nonlin=nn.LeakyReLU)\n", + "\n", + "algebra_solver_bb = blocks.MLP(insize=4, outsize=1, hsizes=[5],\n", + " linear_map=slim.maps['linear'],\n", + " nonlin=nn.LeakyReLU)\n", + "\n", + "# Define differential agent:\n", + "diff = BBNodeDiff(in_keys=[\"h_1\",\"h_2\",\"m_1\",\"m_2\"], state_keys=[\"h_1\",\"h_2\"], profile=ode_rhs)\n", + "\n", + "# Define algebraic agent:\n", + "alg = BBNodeAlgebra(in_keys = [\"m\",\"h_1\",\"h_2\",\"m_1\",\"m_2\"], state_keys=[\"m_1\",\"m_2\"], solver=algebra_solver_bb)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we link these two objects (diff and alg) together in the GeneralNetworkedODE and GeneralNetworkedAE class:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "agents = [diff, alg]\n", + "\n", + "couplings = []\n", + "\n", + "model_ode = ode.GeneralNetworkedODE(\n", + " states=states,\n", + " agents=agents,\n", + " couplings=couplings,\n", + " insize=nx+nu,\n", + " outsize=nx,\n", + ")\n", + "\n", + "model_algebra = ode.GeneralNetworkedAE(\n", + " states=states,\n", + " agents=agents,\n", + " insize=nx+nu,\n", + " outsize=nx ,\n", + ")\n", + "\n", + "fx_int = integrators.EulerDAE(model_ode,algebra=model_algebra,h=1.0)\n", + "dynamics_model = System([Node(fx_int,['xn','U'],['xn'])])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# construct constrained optimization problem\n", + "problem = Problem([dynamics_model], loss)\n", + "optimizer = torch.optim.Adam(problem.parameters(), lr=0.005)\n", + "\n", + "trainer = Trainer(\n", + " problem,\n", + " train_loader,\n", + " dev_loader,\n", + " test_loader,\n", + " optimizer,\n", + " epochs=10000,\n", + " patience=50,\n", + " warmup=50,\n", + " eval_metric=\"dev_loss\",\n", + " train_metric=\"train_loss\",\n", + " dev_metric=\"dev_loss\",\n", + " test_metric=\"dev_loss\",\n", + " logger=None,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 0 train_loss: 849.6705932617188\n", + "epoch: 1 train_loss: 705.6165161132812\n", + "epoch: 2 train_loss: 572.7742309570312\n", + "epoch: 3 train_loss: 432.4482116699219\n", + "epoch: 4 train_loss: 302.3821105957031\n", + "epoch: 5 train_loss: 164.21371459960938\n", + "epoch: 6 train_loss: 14.299507141113281\n", + "epoch: 7 train_loss: 91.94690704345703\n", + "epoch: 8 train_loss: 173.82485961914062\n", + "epoch: 9 train_loss: 198.77064514160156\n", + "epoch: 10 train_loss: 175.2755889892578\n", + "epoch: 11 train_loss: 127.6873779296875\n", + "epoch: 12 train_loss: 75.75501251220703\n", + "epoch: 13 train_loss: 31.82185935974121\n", + "epoch: 14 train_loss: 5.7364654541015625\n", + "epoch: 15 train_loss: 17.254058837890625\n", + "epoch: 16 train_loss: 60.90523147583008\n", + "epoch: 17 train_loss: 83.7533950805664\n", + "epoch: 18 train_loss: 87.12175750732422\n", + "epoch: 19 train_loss: 75.34745025634766\n", + "epoch: 20 train_loss: 51.25229263305664\n", + "epoch: 21 train_loss: 20.778589248657227\n", + "epoch: 22 train_loss: 2.8006489276885986\n", + "epoch: 23 train_loss: 4.656417369842529\n", + "epoch: 24 train_loss: 10.224528312683105\n", + "epoch: 25 train_loss: 13.077993392944336\n", + "epoch: 26 train_loss: 11.877503395080566\n", + "epoch: 27 train_loss: 7.869598388671875\n", + "epoch: 28 train_loss: 3.525679588317871\n", + "epoch: 29 train_loss: 1.6780056953430176\n", + "epoch: 30 train_loss: 3.0050816535949707\n", + "epoch: 31 train_loss: 4.396859169006348\n", + "epoch: 32 train_loss: 3.574174404144287\n", + "epoch: 33 train_loss: 1.9082112312316895\n", + "epoch: 34 train_loss: 1.2800568342208862\n", + "epoch: 35 train_loss: 1.6049607992172241\n", + "epoch: 36 train_loss: 1.5115845203399658\n", + "epoch: 37 train_loss: 1.0684599876403809\n", + "epoch: 38 train_loss: 1.229943871498108\n", + "epoch: 39 train_loss: 1.4827473163604736\n", + "epoch: 40 train_loss: 1.1849251985549927\n", + "epoch: 41 train_loss: 0.7738586664199829\n", + "epoch: 42 train_loss: 0.9762413501739502\n", + "epoch: 43 train_loss: 1.049922227859497\n", + "epoch: 44 train_loss: 0.7135979533195496\n", + "epoch: 45 train_loss: 0.6754766702651978\n", + "epoch: 46 train_loss: 0.8424441814422607\n", + "epoch: 47 train_loss: 0.6474434733390808\n", + "epoch: 48 train_loss: 0.44090449810028076\n", + "epoch: 49 train_loss: 0.5679388642311096\n", + "epoch: 50 train_loss: 0.46573638916015625\n", + "epoch: 51 train_loss: 0.348449170589447\n", + "epoch: 52 train_loss: 0.42487406730651855\n", + "epoch: 53 train_loss: 0.3041667640209198\n", + "epoch: 54 train_loss: 0.2893065810203552\n", + "epoch: 55 train_loss: 0.29250648617744446\n", + "epoch: 56 train_loss: 0.18776582181453705\n", + "epoch: 57 train_loss: 0.24293726682662964\n", + "epoch: 58 train_loss: 0.1601080596446991\n", + "epoch: 59 train_loss: 0.15986937284469604\n", + "epoch: 60 train_loss: 0.14985980093479156\n", + "epoch: 61 train_loss: 0.09640300273895264\n", + "epoch: 62 train_loss: 0.12747398018836975\n", + "epoch: 63 train_loss: 0.06466156989336014\n", + "epoch: 64 train_loss: 0.09041417390108109\n", + "epoch: 65 train_loss: 0.05479564517736435\n", + "epoch: 66 train_loss: 0.05420614033937454\n", + "epoch: 67 train_loss: 0.05142757669091225\n", + "epoch: 68 train_loss: 0.02863232046365738\n", + "epoch: 69 train_loss: 0.04467485100030899\n", + "epoch: 70 train_loss: 0.01669974811375141\n", + "epoch: 71 train_loss: 0.03466540202498436\n", + "epoch: 72 train_loss: 0.014078070409595966\n", + "epoch: 73 train_loss: 0.024286672472953796\n", + "epoch: 74 train_loss: 0.015420927666127682\n", + "epoch: 75 train_loss: 0.016529163345694542\n", + "epoch: 76 train_loss: 0.017406290397047997\n", + "epoch: 77 train_loss: 0.012021021917462349\n", + "epoch: 78 train_loss: 0.018448829650878906\n", + "epoch: 79 train_loss: 0.010364719666540623\n", + "epoch: 80 train_loss: 0.01851635053753853\n", + "epoch: 81 train_loss: 0.010376457124948502\n", + "epoch: 82 train_loss: 0.017888132482767105\n", + "epoch: 83 train_loss: 0.011123910546302795\n", + "epoch: 84 train_loss: 0.016925442963838577\n", + "epoch: 85 train_loss: 0.011959457769989967\n", + "epoch: 86 train_loss: 0.015845494344830513\n", + "epoch: 87 train_loss: 0.012517930939793587\n", + "epoch: 88 train_loss: 0.014747384935617447\n", + "epoch: 89 train_loss: 0.01271422766149044\n", + "epoch: 90 train_loss: 0.013684144243597984\n", + "epoch: 91 train_loss: 0.012553879991173744\n", + "epoch: 92 train_loss: 0.012677846476435661\n", + "epoch: 93 train_loss: 0.01213698647916317\n", + "epoch: 94 train_loss: 0.011735182255506516\n", + "epoch: 95 train_loss: 0.011547736823558807\n", + "epoch: 96 train_loss: 0.010876285843551159\n", + "epoch: 97 train_loss: 0.010885218158364296\n", + "epoch: 98 train_loss: 0.01010335423052311\n", + "epoch: 99 train_loss: 0.010210853070020676\n", + "epoch: 100 train_loss: 0.009432937949895859\n", + "epoch: 101 train_loss: 0.009579123929142952\n", + "epoch: 102 train_loss: 0.00886269100010395\n", + "epoch: 103 train_loss: 0.009015338495373726\n", + "epoch: 104 train_loss: 0.008396720513701439\n", + "epoch: 105 train_loss: 0.008538356982171535\n", + "epoch: 106 train_loss: 0.008025512099266052\n", + "epoch: 107 train_loss: 0.008146176114678383\n", + "epoch: 108 train_loss: 0.007742505520582199\n", + "epoch: 109 train_loss: 0.007837396115064621\n", + "epoch: 110 train_loss: 0.0075313979759812355\n", + "epoch: 111 train_loss: 0.007598227821290493\n", + "epoch: 112 train_loss: 0.0073799630627036095\n", + "epoch: 113 train_loss: 0.007416673935949802\n", + "epoch: 114 train_loss: 0.0072718458250164986\n", + "epoch: 115 train_loss: 0.007277742959558964\n", + "epoch: 116 train_loss: 0.007193808443844318\n", + "epoch: 117 train_loss: 0.007169373799115419\n", + "epoch: 118 train_loss: 0.00713275745511055\n", + "epoch: 119 train_loss: 0.007080433890223503\n", + "epoch: 120 train_loss: 0.007079132832586765\n", + "epoch: 121 train_loss: 0.007002753205597401\n", + "epoch: 122 train_loss: 0.0070251948200166225\n", + "epoch: 123 train_loss: 0.006930495612323284\n", + "epoch: 124 train_loss: 0.006966084707528353\n", + "epoch: 125 train_loss: 0.006860688794404268\n", + "epoch: 126 train_loss: 0.006899779662489891\n", + "epoch: 127 train_loss: 0.006793689914047718\n", + "epoch: 128 train_loss: 0.006828539073467255\n", + "epoch: 129 train_loss: 0.006728642620146275\n", + "epoch: 130 train_loss: 0.006750592961907387\n", + "epoch: 131 train_loss: 0.006664225831627846\n", + "epoch: 132 train_loss: 0.006668476387858391\n", + "epoch: 133 train_loss: 0.0066005755215883255\n", + "epoch: 134 train_loss: 0.006585494615137577\n", + "epoch: 135 train_loss: 0.006537640932947397\n", + "epoch: 136 train_loss: 0.006505092140287161\n", + "epoch: 137 train_loss: 0.0064749950543046\n", + "epoch: 138 train_loss: 0.0064300172962248325\n", + "epoch: 139 train_loss: 0.006412138231098652\n", + "epoch: 140 train_loss: 0.006361937150359154\n", + "epoch: 141 train_loss: 0.006348852999508381\n", + "epoch: 142 train_loss: 0.006300852634012699\n", + "epoch: 143 train_loss: 0.006285686511546373\n", + "epoch: 144 train_loss: 0.006245489232242107\n", + "epoch: 145 train_loss: 0.00622383039444685\n", + "epoch: 146 train_loss: 0.0061935014091432095\n", + "epoch: 147 train_loss: 0.006164850201457739\n", + "epoch: 148 train_loss: 0.006142603699117899\n", + "epoch: 149 train_loss: 0.006109765265136957\n", + "epoch: 150 train_loss: 0.0060911765322089195\n", + "epoch: 151 train_loss: 0.006058705970644951\n", + "epoch: 152 train_loss: 0.006039031781256199\n", + "epoch: 153 train_loss: 0.006010532844811678\n", + "epoch: 154 train_loss: 0.005987119860947132\n", + "epoch: 155 train_loss: 0.005963449366390705\n", + "epoch: 156 train_loss: 0.005936787463724613\n", + "epoch: 157 train_loss: 0.005916031543165445\n", + "epoch: 158 train_loss: 0.005888774059712887\n", + "epoch: 159 train_loss: 0.0058678830973804\n", + "epoch: 160 train_loss: 0.0058426340110599995\n", + "epoch: 161 train_loss: 0.005819737911224365\n", + "epoch: 162 train_loss: 0.005797211080789566\n", + "epoch: 163 train_loss: 0.005772686563432217\n", + "epoch: 164 train_loss: 0.0057515669614076614\n", + "epoch: 165 train_loss: 0.005727221257984638\n", + "epoch: 166 train_loss: 0.005705693736672401\n", + "epoch: 167 train_loss: 0.005682912655174732\n", + "epoch: 168 train_loss: 0.005660293158143759\n", + "epoch: 169 train_loss: 0.005639024544507265\n", + "epoch: 170 train_loss: 0.005616077687591314\n", + "epoch: 171 train_loss: 0.005595138296484947\n", + "epoch: 172 train_loss: 0.005573099013417959\n", + "epoch: 173 train_loss: 0.005551653448492289\n", + "epoch: 174 train_loss: 0.005530793685466051\n", + "epoch: 175 train_loss: 0.005509176291525364\n", + "epoch: 176 train_loss: 0.005488807335495949\n", + "epoch: 177 train_loss: 0.005467801354825497\n", + "epoch: 178 train_loss: 0.005447289906442165\n", + "epoch: 179 train_loss: 0.005427155643701553\n", + "epoch: 180 train_loss: 0.005406638607382774\n", + "epoch: 181 train_loss: 0.0053869192488491535\n", + "epoch: 182 train_loss: 0.005366923287510872\n", + "epoch: 183 train_loss: 0.005347215570509434\n", + "epoch: 184 train_loss: 0.0053278482519090176\n", + "epoch: 185 train_loss: 0.00530826672911644\n", + "epoch: 186 train_loss: 0.005289211869239807\n", + "epoch: 187 train_loss: 0.005270102992653847\n", + "epoch: 188 train_loss: 0.00525111285969615\n", + "epoch: 189 train_loss: 0.00523246917873621\n", + "epoch: 190 train_loss: 0.005213724449276924\n", + "epoch: 191 train_loss: 0.005195290315896273\n", + "epoch: 192 train_loss: 0.005176971200853586\n", + "epoch: 193 train_loss: 0.005158690735697746\n", + "epoch: 194 train_loss: 0.005140736699104309\n", + "epoch: 195 train_loss: 0.005122855305671692\n", + "epoch: 196 train_loss: 0.00510512525215745\n", + "epoch: 197 train_loss: 0.0050875348970294\n", + "epoch: 198 train_loss: 0.005069904960691929\n", + "epoch: 199 train_loss: 0.005052470602095127\n", + "epoch: 200 train_loss: 0.00503516523167491\n", + "epoch: 201 train_loss: 0.005017912946641445\n", + "epoch: 202 train_loss: 0.005000862758606672\n", + "epoch: 203 train_loss: 0.004983894992619753\n", + "epoch: 204 train_loss: 0.00496706971898675\n", + "epoch: 205 train_loss: 0.004950440488755703\n", + "epoch: 206 train_loss: 0.004933878779411316\n", + "epoch: 207 train_loss: 0.004917461425065994\n", + "epoch: 208 train_loss: 0.004901193082332611\n", + "epoch: 209 train_loss: 0.004884997848421335\n", + "epoch: 210 train_loss: 0.004868943244218826\n", + "epoch: 211 train_loss: 0.0048530325293540955\n", + "epoch: 212 train_loss: 0.004837308544665575\n", + "epoch: 213 train_loss: 0.004821791313588619\n", + "epoch: 214 train_loss: 0.004806390032172203\n", + "epoch: 215 train_loss: 0.004791087470948696\n", + "epoch: 216 train_loss: 0.004775924142450094\n", + "epoch: 217 train_loss: 0.004761384334415197\n", + "epoch: 218 train_loss: 0.004747727885842323\n", + "epoch: 219 train_loss: 0.0047342292964458466\n", + "epoch: 220 train_loss: 0.004720874596387148\n", + "epoch: 221 train_loss: 0.004707649350166321\n", + "epoch: 222 train_loss: 0.004694551229476929\n", + "epoch: 223 train_loss: 0.004681597463786602\n", + "epoch: 224 train_loss: 0.004668754991143942\n", + "epoch: 225 train_loss: 0.004656035453081131\n", + "epoch: 226 train_loss: 0.004643441643565893\n", + "epoch: 227 train_loss: 0.00463096983730793\n", + "epoch: 228 train_loss: 0.004618611186742783\n", + "epoch: 229 train_loss: 0.004606340080499649\n", + "epoch: 230 train_loss: 0.004594156518578529\n", + "epoch: 231 train_loss: 0.004582061432301998\n", + "epoch: 232 train_loss: 0.0045700399205088615\n", + "epoch: 233 train_loss: 0.00455809198319912\n", + "epoch: 234 train_loss: 0.004546213895082474\n", + "epoch: 235 train_loss: 0.004534399136900902\n", + "epoch: 236 train_loss: 0.004522654227912426\n", + "epoch: 237 train_loss: 0.004510968923568726\n", + "epoch: 238 train_loss: 0.0044993446208536625\n", + "epoch: 239 train_loss: 0.004487771540880203\n", + "epoch: 240 train_loss: 0.004476260393857956\n", + "epoch: 241 train_loss: 0.004464806988835335\n", + "epoch: 242 train_loss: 0.0044534108601510525\n", + "epoch: 243 train_loss: 0.004442065022885799\n", + "epoch: 244 train_loss: 0.004430775064975023\n", + "epoch: 245 train_loss: 0.004419546574354172\n", + "epoch: 246 train_loss: 0.004408359527587891\n", + "epoch: 247 train_loss: 0.004397230222821236\n", + "epoch: 248 train_loss: 0.0043861474841833115\n", + "epoch: 249 train_loss: 0.004375120624899864\n", + "epoch: 250 train_loss: 0.0043641347438097\n", + "epoch: 251 train_loss: 0.004353186581283808\n", + "epoch: 252 train_loss: 0.004342294298112392\n", + "epoch: 253 train_loss: 0.004331449046730995\n", + "epoch: 254 train_loss: 0.0043206424452364445\n", + "epoch: 255 train_loss: 0.0043098777532577515\n", + "epoch: 256 train_loss: 0.004299158230423927\n", + "epoch: 257 train_loss: 0.004288487136363983\n", + "epoch: 258 train_loss: 0.004277857020497322\n", + "epoch: 259 train_loss: 0.004267268814146519\n", + "epoch: 260 train_loss: 0.004256721120327711\n", + "epoch: 261 train_loss: 0.004246210679411888\n", + "epoch: 262 train_loss: 0.00423576170578599\n", + "epoch: 263 train_loss: 0.004225363489240408\n", + "epoch: 264 train_loss: 0.004214999731630087\n", + "epoch: 265 train_loss: 0.004204686731100082\n", + "epoch: 266 train_loss: 0.004194411914795637\n", + "epoch: 267 train_loss: 0.00418417202308774\n", + "epoch: 268 train_loss: 0.004173982888460159\n", + "epoch: 269 train_loss: 0.004163827747106552\n", + "epoch: 270 train_loss: 0.004153712186962366\n", + "epoch: 271 train_loss: 0.0041436124593019485\n", + "epoch: 272 train_loss: 0.004133542068302631\n", + "epoch: 273 train_loss: 0.0041234963573515415\n", + "epoch: 274 train_loss: 0.004113438539206982\n", + "epoch: 275 train_loss: 0.004103414248675108\n", + "epoch: 276 train_loss: 0.004093421623110771\n", + "epoch: 277 train_loss: 0.004083453677594662\n", + "epoch: 278 train_loss: 0.004073524847626686\n", + "epoch: 279 train_loss: 0.004063631407916546\n", + "epoch: 280 train_loss: 0.0040537649765610695\n", + "epoch: 281 train_loss: 0.004043936263769865\n", + "epoch: 282 train_loss: 0.004034134559333324\n", + "epoch: 283 train_loss: 0.004024372436106205\n", + "epoch: 284 train_loss: 0.004014636389911175\n", + "epoch: 285 train_loss: 0.004004939924925566\n", + "epoch: 286 train_loss: 0.003995271399617195\n", + "epoch: 287 train_loss: 0.003985638730227947\n", + "epoch: 288 train_loss: 0.00397604051977396\n", + "epoch: 289 train_loss: 0.003966475836932659\n", + "epoch: 290 train_loss: 0.0039569479413330555\n", + "epoch: 291 train_loss: 0.003947445657104254\n", + "epoch: 292 train_loss: 0.003937982488423586\n", + "epoch: 293 train_loss: 0.00392855005338788\n", + "epoch: 294 train_loss: 0.003919149748980999\n", + "epoch: 295 train_loss: 0.003909782040864229\n", + "epoch: 296 train_loss: 0.0039004478603601456\n", + "epoch: 297 train_loss: 0.003891151398420334\n", + "epoch: 298 train_loss: 0.00388188473880291\n", + "epoch: 299 train_loss: 0.0038726446218788624\n", + "epoch: 300 train_loss: 0.0038634436205029488\n", + "epoch: 301 train_loss: 0.0038542719557881355\n", + "epoch: 302 train_loss: 0.0038451356813311577\n", + "epoch: 303 train_loss: 0.0038360299076884985\n", + "epoch: 304 train_loss: 0.0038269530050456524\n", + "epoch: 305 train_loss: 0.0038179117254912853\n", + "epoch: 306 train_loss: 0.003808897454291582\n", + "epoch: 307 train_loss: 0.003799917409196496\n", + "epoch: 308 train_loss: 0.003790969494730234\n", + "epoch: 309 train_loss: 0.00378204882144928\n", + "epoch: 310 train_loss: 0.00377316540107131\n", + "epoch: 311 train_loss: 0.003764308989048004\n", + "epoch: 312 train_loss: 0.0037554835435003042\n", + "epoch: 313 train_loss: 0.003746687900274992\n", + "epoch: 314 train_loss: 0.0037379239220172167\n", + "epoch: 315 train_loss: 0.0037291860207915306\n", + "epoch: 316 train_loss: 0.0037204832769930363\n", + "epoch: 317 train_loss: 0.0037118084728717804\n", + "epoch: 318 train_loss: 0.003703163005411625\n", + "epoch: 319 train_loss: 0.003694544779136777\n", + "epoch: 320 train_loss: 0.0036859577521681786\n", + "epoch: 321 train_loss: 0.0036774021573364735\n", + "epoch: 322 train_loss: 0.0036688726395368576\n", + "epoch: 323 train_loss: 0.0036603703629225492\n", + "epoch: 324 train_loss: 0.0036518978886306286\n", + "epoch: 325 train_loss: 0.0036434554494917393\n", + "epoch: 326 train_loss: 0.0036350428126752377\n", + "epoch: 327 train_loss: 0.003626655787229538\n", + "epoch: 328 train_loss: 0.003618299961090088\n", + "epoch: 329 train_loss: 0.0036099711433053017\n", + "epoch: 330 train_loss: 0.003601666074246168\n", + "epoch: 331 train_loss: 0.0035933915060013533\n", + "epoch: 332 train_loss: 0.0035851439461112022\n", + "epoch: 333 train_loss: 0.0035769236274063587\n", + "epoch: 334 train_loss: 0.003568680491298437\n", + "epoch: 335 train_loss: 0.0035604028962552547\n", + "epoch: 336 train_loss: 0.003552142297849059\n", + "epoch: 337 train_loss: 0.0035438991617411375\n", + "epoch: 338 train_loss: 0.0035356732551008463\n", + "epoch: 339 train_loss: 0.003527467604726553\n", + "epoch: 340 train_loss: 0.0035192847717553377\n", + "epoch: 341 train_loss: 0.0035111221950501204\n", + "epoch: 342 train_loss: 0.0035029847640544176\n", + "epoch: 343 train_loss: 0.0034948682878166437\n", + "epoch: 344 train_loss: 0.0034867776557803154\n", + "epoch: 345 train_loss: 0.003478708676993847\n", + "epoch: 346 train_loss: 0.003470663446933031\n", + "epoch: 347 train_loss: 0.0034626410342752934\n", + "epoch: 348 train_loss: 0.0034546435344964266\n", + "epoch: 349 train_loss: 0.003446667455136776\n", + "epoch: 350 train_loss: 0.003438715822994709\n", + "epoch: 351 train_loss: 0.0034307846799492836\n", + "epoch: 352 train_loss: 0.003422878682613373\n", + "epoch: 353 train_loss: 0.003414996899664402\n", + "epoch: 354 train_loss: 0.0034071365371346474\n", + "epoch: 355 train_loss: 0.003399301553145051\n", + "epoch: 356 train_loss: 0.0033914903178811073\n", + "epoch: 357 train_loss: 0.00338370050303638\n", + "epoch: 358 train_loss: 0.003375935135409236\n", + "epoch: 359 train_loss: 0.0033681970089673996\n", + "epoch: 360 train_loss: 0.0033604807686060667\n", + "epoch: 361 train_loss: 0.0033527894411236048\n", + "epoch: 362 train_loss: 0.0033451225608587265\n", + "epoch: 363 train_loss: 0.0033374836202710867\n", + "epoch: 364 train_loss: 0.003329865401610732\n", + "epoch: 365 train_loss: 0.0033222732599824667\n", + "epoch: 366 train_loss: 0.0033147053327411413\n", + "epoch: 367 train_loss: 0.0033071665093302727\n", + "epoch: 368 train_loss: 0.0032996549271047115\n", + "epoch: 369 train_loss: 0.0032921745441854\n", + "epoch: 370 train_loss: 0.003284729551523924\n", + "epoch: 371 train_loss: 0.003277326002717018\n", + "epoch: 372 train_loss: 0.0032699760049581528\n", + "epoch: 373 train_loss: 0.003262702375650406\n", + "epoch: 374 train_loss: 0.003255545860156417\n", + "epoch: 375 train_loss: 0.0032485814299434423\n", + "epoch: 376 train_loss: 0.0032419587951153517\n", + "epoch: 377 train_loss: 0.003235945012420416\n", + "epoch: 378 train_loss: 0.0032310369424521923\n", + "epoch: 379 train_loss: 0.0032282250467687845\n", + "epoch: 380 train_loss: 0.003229415975511074\n", + "epoch: 381 train_loss: 0.0032384779769927263\n", + "epoch: 382 train_loss: 0.00326328631490469\n", + "epoch: 383 train_loss: 0.0033201384358108044\n", + "epoch: 384 train_loss: 0.0034426834899932146\n", + "epoch: 385 train_loss: 0.0037031834945082664\n", + "epoch: 386 train_loss: 0.004254254512488842\n", + "epoch: 387 train_loss: 0.00543381180614233\n", + "epoch: 388 train_loss: 0.007955962792038918\n", + "epoch: 389 train_loss: 0.013439006172120571\n", + "epoch: 390 train_loss: 0.025071658194065094\n", + "epoch: 391 train_loss: 0.04966822266578674\n", + "epoch: 392 train_loss: 0.09588269144296646\n", + "epoch: 393 train_loss: 0.06520993262529373\n", + "epoch: 394 train_loss: 0.045613132417201996\n", + "epoch: 395 train_loss: 0.03098156675696373\n", + "epoch: 396 train_loss: 0.01820002868771553\n", + "epoch: 397 train_loss: 0.008745894767343998\n", + "epoch: 398 train_loss: 0.003763641696423292\n", + "epoch: 399 train_loss: 0.0036025973968207836\n", + "epoch: 400 train_loss: 0.006955863907933235\n", + "epoch: 401 train_loss: 0.01138025987893343\n", + "epoch: 402 train_loss: 0.014430124312639236\n", + "epoch: 403 train_loss: 0.01435752771794796\n", + "epoch: 404 train_loss: 0.011450975202023983\n", + "epoch: 405 train_loss: 0.007222977466881275\n", + "epoch: 406 train_loss: 0.003992268815636635\n", + "epoch: 407 train_loss: 0.003117295913398266\n", + "epoch: 408 train_loss: 0.00442633917555213\n", + "epoch: 409 train_loss: 0.006537912413477898\n", + "epoch: 410 train_loss: 0.007850642316043377\n", + "epoch: 411 train_loss: 0.007596461568027735\n", + "epoch: 412 train_loss: 0.0060149794444441795\n", + "epoch: 413 train_loss: 0.004190284758806229\n", + "epoch: 414 train_loss: 0.003121705260127783\n", + "epoch: 415 train_loss: 0.0031949069816619158\n", + "epoch: 416 train_loss: 0.004049425944685936\n", + "epoch: 417 train_loss: 0.004948980640619993\n", + "epoch: 418 train_loss: 0.00530192069709301\n", + "epoch: 419 train_loss: 0.004930916242301464\n", + "epoch: 420 train_loss: 0.004132464528083801\n", + "epoch: 421 train_loss: 0.0033631992992013693\n", + "epoch: 422 train_loss: 0.0029864555690437555\n", + "epoch: 423 train_loss: 0.0030794497579336166\n", + "epoch: 424 train_loss: 0.003463959088549018\n", + "epoch: 425 train_loss: 0.00385827268473804\n", + "epoch: 426 train_loss: 0.0040357778780162334\n", + "epoch: 427 train_loss: 0.00393268559128046\n", + "epoch: 428 train_loss: 0.003623030846938491\n", + "epoch: 429 train_loss: 0.0032683697063475847\n", + "epoch: 430 train_loss: 0.003010557033121586\n", + "epoch: 431 train_loss: 0.002922002226114273\n", + "epoch: 432 train_loss: 0.0029894926119595766\n", + "epoch: 433 train_loss: 0.0031420073937624693\n", + "epoch: 434 train_loss: 0.003294238355010748\n", + "epoch: 435 train_loss: 0.003380759619176388\n", + "epoch: 436 train_loss: 0.0033775726333260536\n", + "epoch: 437 train_loss: 0.003294390393421054\n", + "epoch: 438 train_loss: 0.0031678280793130398\n", + "epoch: 439 train_loss: 0.0030369064770638943\n", + "epoch: 440 train_loss: 0.002934069139882922\n", + "epoch: 441 train_loss: 0.0028753166552633047\n", + "epoch: 442 train_loss: 0.0028615668416023254\n", + "epoch: 443 train_loss: 0.0028826913330703974\n", + "epoch: 444 train_loss: 0.0029235335532575846\n", + "epoch: 445 train_loss: 0.0029693422839045525\n", + "epoch: 446 train_loss: 0.0030086056794971228\n", + "epoch: 447 train_loss: 0.0030351292807608843\n", + "epoch: 448 train_loss: 0.0030464278534054756\n", + "epoch: 449 train_loss: 0.003044357057660818\n", + "epoch: 450 train_loss: 0.0030314710456877947\n", + "epoch: 451 train_loss: 0.0030122040770947933\n", + "epoch: 452 train_loss: 0.002989501692354679\n", + "epoch: 453 train_loss: 0.0029666118789464235\n", + "epoch: 454 train_loss: 0.002945120446383953\n", + "epoch: 455 train_loss: 0.002926719142124057\n", + "epoch: 456 train_loss: 0.002911890856921673\n", + "epoch: 457 train_loss: 0.0029015152249485254\n", + "epoch: 458 train_loss: 0.002895897254347801\n", + "epoch: 459 train_loss: 0.002896052785217762\n", + "epoch: 460 train_loss: 0.0029029769357293844\n", + "epoch: 461 train_loss: 0.002919212682172656\n", + "epoch: 462 train_loss: 0.002947881817817688\n", + "epoch: 463 train_loss: 0.002995018381625414\n", + "epoch: 464 train_loss: 0.003069138154387474\n", + "epoch: 465 train_loss: 0.0031859041191637516\n", + "epoch: 466 train_loss: 0.003367761382833123\n", + "epoch: 467 train_loss: 0.0036562809254974127\n", + "epoch: 468 train_loss: 0.0041123307310044765\n", + "epoch: 469 train_loss: 0.004850839264690876\n", + "epoch: 470 train_loss: 0.006038418505340815\n", + "epoch: 471 train_loss: 0.007998601533472538\n", + "epoch: 472 train_loss: 0.011165350675582886\n", + "epoch: 473 train_loss: 0.016397394239902496\n", + "epoch: 474 train_loss: 0.02456994168460369\n", + "epoch: 475 train_loss: 0.03735845535993576\n", + "epoch: 476 train_loss: 0.05458608642220497\n", + "epoch: 477 train_loss: 0.07590290904045105\n", + "epoch: 478 train_loss: 0.09076500684022903\n", + "epoch: 479 train_loss: 0.043324004858732224\n", + "epoch: 480 train_loss: 0.010585850104689598\n", + "epoch: 481 train_loss: 0.0033525642938911915\n", + "epoch: 482 train_loss: 0.018139785155653954\n", + "epoch: 483 train_loss: 0.03835569694638252\n", + "epoch: 484 train_loss: 0.04611130803823471\n", + "epoch: 485 train_loss: 0.03290434926748276\n", + "epoch: 486 train_loss: 0.012095711193978786\n", + "epoch: 487 train_loss: 0.00270291930064559\n", + "epoch: 488 train_loss: 0.010470992885529995\n", + "epoch: 489 train_loss: 0.02205522358417511\n", + "epoch: 490 train_loss: 0.021808389574289322\n", + "epoch: 491 train_loss: 0.010872508399188519\n", + "epoch: 492 train_loss: 0.0029045511037111282\n", + "epoch: 493 train_loss: 0.006120404228568077\n", + "epoch: 494 train_loss: 0.01326476689428091\n", + "epoch: 495 train_loss: 0.013308320194482803\n", + "epoch: 496 train_loss: 0.006721116602420807\n", + "epoch: 497 train_loss: 0.0026506923604756594\n", + "epoch: 498 train_loss: 0.005419593304395676\n", + "epoch: 499 train_loss: 0.009348173625767231\n", + "epoch: 500 train_loss: 0.008225908502936363\n", + "epoch: 501 train_loss: 0.004068680107593536\n", + "epoch: 502 train_loss: 0.002705658320337534\n", + "epoch: 503 train_loss: 0.005088291596621275\n", + "epoch: 504 train_loss: 0.006833753082901239\n", + "epoch: 505 train_loss: 0.005276973359286785\n", + "epoch: 506 train_loss: 0.002924810629338026\n", + "epoch: 507 train_loss: 0.002920033410191536\n", + "epoch: 508 train_loss: 0.0045819939114153385\n", + "epoch: 509 train_loss: 0.005080944858491421\n", + "epoch: 510 train_loss: 0.003740650601685047\n", + "epoch: 511 train_loss: 0.0025895251892507076\n", + "epoch: 512 train_loss: 0.0030118348076939583\n", + "epoch: 513 train_loss: 0.003987567964941263\n", + "epoch: 514 train_loss: 0.0039584701880812645\n", + "epoch: 515 train_loss: 0.003033663611859083\n", + "epoch: 516 train_loss: 0.00253023998811841\n", + "epoch: 517 train_loss: 0.0029490310698747635\n", + "epoch: 518 train_loss: 0.0034703039564192295\n", + "epoch: 519 train_loss: 0.0033083551097661257\n", + "epoch: 520 train_loss: 0.002734112786129117\n", + "epoch: 521 train_loss: 0.0025163977406919003\n", + "epoch: 522 train_loss: 0.0028134468011558056\n", + "epoch: 523 train_loss: 0.0030915169045329094\n", + "epoch: 524 train_loss: 0.0029514862690120935\n", + "epoch: 525 train_loss: 0.002606959082186222\n", + "epoch: 526 train_loss: 0.0024938026908785105\n", + "epoch: 527 train_loss: 0.002674237359315157\n", + "epoch: 528 train_loss: 0.002835826715454459\n", + "epoch: 529 train_loss: 0.0027542293537408113\n", + "epoch: 530 train_loss: 0.002548003103584051\n", + "epoch: 531 train_loss: 0.002466339385136962\n", + "epoch: 532 train_loss: 0.0025610642042011023\n", + "epoch: 533 train_loss: 0.0026655595283955336\n", + "epoch: 534 train_loss: 0.0026365837547928095\n", + "epoch: 535 train_loss: 0.002515738597139716\n", + "epoch: 536 train_loss: 0.002444066107273102\n", + "epoch: 537 train_loss: 0.0024793404154479504\n", + "epoch: 538 train_loss: 0.0025478529278188944\n", + "epoch: 539 train_loss: 0.0025543542578816414\n", + "epoch: 540 train_loss: 0.0024916676338762045\n", + "epoch: 541 train_loss: 0.0024306192062795162\n", + "epoch: 542 train_loss: 0.0024264648091048002\n", + "epoch: 543 train_loss: 0.002463206648826599\n", + "epoch: 544 train_loss: 0.002485603792592883\n", + "epoch: 545 train_loss: 0.0024648322723805904\n", + "epoch: 546 train_loss: 0.0024225988890975714\n", + "epoch: 547 train_loss: 0.0023981938138604164\n", + "epoch: 548 train_loss: 0.002405540319159627\n", + "epoch: 549 train_loss: 0.0024247034452855587\n", + "epoch: 550 train_loss: 0.002428536769002676\n", + "epoch: 551 train_loss: 0.00241039227694273\n", + "epoch: 552 train_loss: 0.0023858360946178436\n", + "epoch: 553 train_loss: 0.0023734867572784424\n", + "epoch: 554 train_loss: 0.00237714103423059\n", + "epoch: 555 train_loss: 0.0023855362087488174\n", + "epoch: 556 train_loss: 0.002385588362812996\n", + "epoch: 557 train_loss: 0.0023742886260151863\n", + "epoch: 558 train_loss: 0.00235914858058095\n", + "epoch: 559 train_loss: 0.002349425572901964\n", + "epoch: 560 train_loss: 0.0023480786476284266\n", + "epoch: 561 train_loss: 0.002350707072764635\n", + "epoch: 562 train_loss: 0.002350687049329281\n", + "epoch: 563 train_loss: 0.0023448944557458162\n", + "epoch: 564 train_loss: 0.0023353910073637962\n", + "epoch: 565 train_loss: 0.002326695714145899\n", + "epoch: 566 train_loss: 0.002321775071322918\n", + "epoch: 567 train_loss: 0.002320278435945511\n", + "epoch: 568 train_loss: 0.0023195473477244377\n", + "epoch: 569 train_loss: 0.0023169703781604767\n", + "epoch: 570 train_loss: 0.0023117640521377325\n", + "epoch: 571 train_loss: 0.002305111149325967\n", + "epoch: 572 train_loss: 0.0022989159915596247\n", + "epoch: 573 train_loss: 0.0022943858057260513\n", + "epoch: 574 train_loss: 0.0022914637811481953\n", + "epoch: 575 train_loss: 0.0022891508415341377\n", + "epoch: 576 train_loss: 0.002286315895617008\n", + "epoch: 577 train_loss: 0.0022823726758360863\n", + "epoch: 578 train_loss: 0.002277502790093422\n", + "epoch: 579 train_loss: 0.0022723881993442774\n", + "epoch: 580 train_loss: 0.0022677001543343067\n", + "epoch: 581 train_loss: 0.0022637536749243736\n", + "epoch: 582 train_loss: 0.0022604260593652725\n", + "epoch: 583 train_loss: 0.002257317304611206\n", + "epoch: 584 train_loss: 0.002254018560051918\n", + "epoch: 585 train_loss: 0.002250322140753269\n", + "epoch: 586 train_loss: 0.0022462368942797184\n", + "epoch: 587 train_loss: 0.0022419400047510862\n", + "epoch: 588 train_loss: 0.002237675478681922\n", + "epoch: 589 train_loss: 0.002233607228845358\n", + "epoch: 590 train_loss: 0.0022297962568700314\n", + "epoch: 591 train_loss: 0.002226193668320775\n", + "epoch: 592 train_loss: 0.0022226900327950716\n", + "epoch: 593 train_loss: 0.0022191759198904037\n", + "epoch: 594 train_loss: 0.002215566346421838\n", + "epoch: 595 train_loss: 0.002211842220276594\n", + "epoch: 596 train_loss: 0.002208020305261016\n", + "epoch: 597 train_loss: 0.002204149728640914\n", + "epoch: 598 train_loss: 0.002200281247496605\n", + "epoch: 599 train_loss: 0.002196453046053648\n", + "epoch: 600 train_loss: 0.002192689338698983\n", + "epoch: 601 train_loss: 0.0021889926865696907\n", + "epoch: 602 train_loss: 0.002185354009270668\n", + "epoch: 603 train_loss: 0.002181758638471365\n", + "epoch: 604 train_loss: 0.0021781865507364273\n", + "epoch: 605 train_loss: 0.002174623776227236\n", + "epoch: 606 train_loss: 0.002171059837564826\n", + "epoch: 607 train_loss: 0.002167485421523452\n", + "epoch: 608 train_loss: 0.0021639049518853426\n", + "epoch: 609 train_loss: 0.002160316798835993\n", + "epoch: 610 train_loss: 0.002156756119802594\n", + "epoch: 611 train_loss: 0.0021531987003982067\n", + "epoch: 612 train_loss: 0.0021496457047760487\n", + "epoch: 613 train_loss: 0.002146096434444189\n", + "epoch: 614 train_loss: 0.002142559736967087\n", + "epoch: 615 train_loss: 0.002139040268957615\n", + "epoch: 616 train_loss: 0.0021355377975851297\n", + "epoch: 617 train_loss: 0.002132052555680275\n", + "epoch: 618 train_loss: 0.002128592925146222\n", + "epoch: 619 train_loss: 0.002125161699950695\n", + "epoch: 620 train_loss: 0.0021217497996985912\n", + "epoch: 621 train_loss: 0.002118379808962345\n", + "epoch: 622 train_loss: 0.002115059643983841\n", + "epoch: 623 train_loss: 0.0021118069998919964\n", + "epoch: 624 train_loss: 0.0021086556371301413\n", + "epoch: 625 train_loss: 0.002105646999552846\n", + "epoch: 626 train_loss: 0.0021028502378612757\n", + "epoch: 627 train_loss: 0.002100396668538451\n", + "epoch: 628 train_loss: 0.0020984807051718235\n", + "epoch: 629 train_loss: 0.002097412943840027\n", + "epoch: 630 train_loss: 0.002097743097692728\n", + "epoch: 631 train_loss: 0.0021003568544983864\n", + "epoch: 632 train_loss: 0.002106820233166218\n", + "epoch: 633 train_loss: 0.0021198135800659657\n", + "epoch: 634 train_loss: 0.00214405101723969\n", + "epoch: 635 train_loss: 0.0021878161933273077\n", + "epoch: 636 train_loss: 0.002266236115247011\n", + "epoch: 637 train_loss: 0.002406022511422634\n", + "epoch: 638 train_loss: 0.002657383680343628\n", + "epoch: 639 train_loss: 0.0031098751351237297\n", + "epoch: 640 train_loss: 0.003937491215765476\n", + "epoch: 641 train_loss: 0.00544710224494338\n", + "epoch: 642 train_loss: 0.008250575512647629\n", + "epoch: 643 train_loss: 0.013364753685891628\n", + "epoch: 644 train_loss: 0.022830471396446228\n", + "epoch: 645 train_loss: 0.03931455686688423\n", + "epoch: 646 train_loss: 0.06756697595119476\n", + "epoch: 647 train_loss: 0.10719527304172516\n", + "epoch: 648 train_loss: 0.05650829151272774\n", + "epoch: 649 train_loss: 0.021936500445008278\n", + "epoch: 650 train_loss: 0.004424174316227436\n", + "epoch: 651 train_loss: 0.0035250727087259293\n", + "epoch: 652 train_loss: 0.014745747670531273\n", + "epoch: 653 train_loss: 0.029635265469551086\n", + "epoch: 654 train_loss: 0.03793090209364891\n", + "epoch: 655 train_loss: 0.03449889272451401\n", + "epoch: 656 train_loss: 0.02041568048298359\n", + "epoch: 657 train_loss: 0.0065089063718914986\n", + "epoch: 658 train_loss: 0.0021813903003931046\n", + "epoch: 659 train_loss: 0.008107831701636314\n", + "epoch: 660 train_loss: 0.01604335941374302\n", + "epoch: 661 train_loss: 0.017078226432204247\n", + "epoch: 662 train_loss: 0.010658296756446362\n", + "epoch: 663 train_loss: 0.003541508223861456\n", + "epoch: 664 train_loss: 0.002494137268513441\n", + "epoch: 665 train_loss: 0.006781968288123608\n", + "epoch: 666 train_loss: 0.010149860754609108\n", + "epoch: 667 train_loss: 0.00859055109322071\n", + "epoch: 668 train_loss: 0.004180255811661482\n", + "epoch: 669 train_loss: 0.0019972105510532856\n", + "epoch: 670 train_loss: 0.003681651782244444\n", + "epoch: 671 train_loss: 0.006205730140209198\n", + "epoch: 672 train_loss: 0.006205732934176922\n", + "epoch: 673 train_loss: 0.003836478106677532\n", + "epoch: 674 train_loss: 0.0020520533435046673\n", + "epoch: 675 train_loss: 0.00257641589269042\n", + "epoch: 676 train_loss: 0.004148011561483145\n", + "epoch: 677 train_loss: 0.004556445404887199\n", + "epoch: 678 train_loss: 0.0033643576316535473\n", + "epoch: 679 train_loss: 0.0021201693452894688\n", + "epoch: 680 train_loss: 0.0021401315461844206\n", + "epoch: 681 train_loss: 0.0030383337289094925\n", + "epoch: 682 train_loss: 0.00350115355104208\n", + "epoch: 683 train_loss: 0.0029727451037615538\n", + "epoch: 684 train_loss: 0.002163793658837676\n", + "epoch: 685 train_loss: 0.0019711777567863464\n", + "epoch: 686 train_loss: 0.0024250373244285583\n", + "epoch: 687 train_loss: 0.0028231556061655283\n", + "epoch: 688 train_loss: 0.0026653814129531384\n", + "epoch: 689 train_loss: 0.0021830156911164522\n", + "epoch: 690 train_loss: 0.0019269194453954697\n", + "epoch: 691 train_loss: 0.002095093484967947\n", + "epoch: 692 train_loss: 0.0023820470087230206\n", + "epoch: 693 train_loss: 0.0024145038332790136\n", + "epoch: 694 train_loss: 0.0021747546270489693\n", + "epoch: 695 train_loss: 0.0019429915118962526\n", + "epoch: 696 train_loss: 0.0019397319993004203\n", + "epoch: 697 train_loss: 0.0021009226329624653\n", + "epoch: 698 train_loss: 0.0022042319178581238\n", + "epoch: 699 train_loss: 0.0021329934243112803\n", + "epoch: 700 train_loss: 0.0019761116709560156\n", + "epoch: 701 train_loss: 0.0018954540137201548\n", + "epoch: 702 train_loss: 0.001943956594914198\n", + "epoch: 703 train_loss: 0.0020343870855867863\n", + "epoch: 704 train_loss: 0.002056053839623928\n", + "epoch: 705 train_loss: 0.001989253330975771\n", + "epoch: 706 train_loss: 0.0019063819199800491\n", + "epoch: 707 train_loss: 0.0018814371433109045\n", + "epoch: 708 train_loss: 0.0019186228746548295\n", + "epoch: 709 train_loss: 0.001962851732969284\n", + "epoch: 710 train_loss: 0.0019638948142528534\n", + "epoch: 711 train_loss: 0.001922332914546132\n", + "epoch: 712 train_loss: 0.0018780932296067476\n", + "epoch: 713 train_loss: 0.0018659722991287708\n", + "epoch: 714 train_loss: 0.001885273028165102\n", + "epoch: 715 train_loss: 0.0019078936893492937\n", + "epoch: 716 train_loss: 0.0019087216351181269\n", + "epoch: 717 train_loss: 0.001886750920675695\n", + "epoch: 718 train_loss: 0.001860919175669551\n", + "epoch: 719 train_loss: 0.0018496529664844275\n", + "epoch: 720 train_loss: 0.001855716691352427\n", + "epoch: 721 train_loss: 0.001867357175797224\n", + "epoch: 722 train_loss: 0.0018708808347582817\n", + "epoch: 723 train_loss: 0.0018620023038238287\n", + "epoch: 724 train_loss: 0.0018470837967470288\n", + "epoch: 725 train_loss: 0.00183590454980731\n", + "epoch: 726 train_loss: 0.00183348439168185\n", + "epoch: 727 train_loss: 0.001837373012676835\n", + "epoch: 728 train_loss: 0.0018411085475236177\n", + "epoch: 729 train_loss: 0.00183974695391953\n", + "epoch: 730 train_loss: 0.0018330136081203818\n", + "epoch: 731 train_loss: 0.0018244503298774362\n", + "epoch: 732 train_loss: 0.0018182008061558008\n", + "epoch: 733 train_loss: 0.0018160284962505102\n", + "epoch: 734 train_loss: 0.0018166729714721441\n", + "epoch: 735 train_loss: 0.0018173388671129942\n", + "epoch: 736 train_loss: 0.0018158305902034044\n", + "epoch: 737 train_loss: 0.0018118001753464341\n", + "epoch: 738 train_loss: 0.0018065061885863543\n", + "epoch: 739 train_loss: 0.00180173316039145\n", + "epoch: 740 train_loss: 0.001798596465960145\n", + "epoch: 741 train_loss: 0.001797054777853191\n", + "epoch: 742 train_loss: 0.0017962008714675903\n", + "epoch: 743 train_loss: 0.0017949745524674654\n", + "epoch: 744 train_loss: 0.0017927472945302725\n", + "epoch: 745 train_loss: 0.0017895456403493881\n", + "epoch: 746 train_loss: 0.0017859124345704913\n", + "epoch: 747 train_loss: 0.00178249622695148\n", + "epoch: 748 train_loss: 0.0017797035397961736\n", + "epoch: 749 train_loss: 0.0017775732558220625\n", + "epoch: 750 train_loss: 0.0017758393660187721\n", + "epoch: 751 train_loss: 0.0017741225892677903\n", + "epoch: 752 train_loss: 0.0017721293261274695\n", + "epoch: 753 train_loss: 0.0017697449075058103\n", + "epoch: 754 train_loss: 0.0017670565284788609\n", + "epoch: 755 train_loss: 0.0017642374150454998\n", + "epoch: 756 train_loss: 0.0017614909447729588\n", + "epoch: 757 train_loss: 0.001758950762450695\n", + "epoch: 758 train_loss: 0.0017566460883244872\n", + "epoch: 759 train_loss: 0.001754529308527708\n", + "epoch: 760 train_loss: 0.0017524966970086098\n", + "epoch: 761 train_loss: 0.001750448253005743\n", + "epoch: 762 train_loss: 0.0017483049305155873\n", + "epoch: 763 train_loss: 0.001746048335917294\n", + "epoch: 764 train_loss: 0.0017436891794204712\n", + "epoch: 765 train_loss: 0.0017412842717021704\n", + "epoch: 766 train_loss: 0.0017388733103871346\n", + "epoch: 767 train_loss: 0.0017364886589348316\n", + "epoch: 768 train_loss: 0.0017341566272079945\n", + "epoch: 769 train_loss: 0.0017318821046501398\n", + "epoch: 770 train_loss: 0.0017296692822128534\n", + "epoch: 771 train_loss: 0.0017275011632591486\n", + "epoch: 772 train_loss: 0.0017253574915230274\n", + "epoch: 773 train_loss: 0.0017232242971658707\n", + "epoch: 774 train_loss: 0.0017210857477039099\n", + "epoch: 775 train_loss: 0.0017189347418025136\n", + "epoch: 776 train_loss: 0.0017167719779536128\n", + "epoch: 777 train_loss: 0.0017145947786048055\n", + "epoch: 778 train_loss: 0.001712411642074585\n", + "epoch: 779 train_loss: 0.0017102238489314914\n", + "epoch: 780 train_loss: 0.0017080312827602029\n", + "epoch: 781 train_loss: 0.0017058433732017875\n", + "epoch: 782 train_loss: 0.0017036604695022106\n", + "epoch: 783 train_loss: 0.0017014858312904835\n", + "epoch: 784 train_loss: 0.0016993205063045025\n", + "epoch: 785 train_loss: 0.0016971650766208768\n", + "epoch: 786 train_loss: 0.0016950225690379739\n", + "epoch: 787 train_loss: 0.0016928896075114608\n", + "epoch: 788 train_loss: 0.001690769218839705\n", + "epoch: 789 train_loss: 0.0016886636149138212\n", + "epoch: 790 train_loss: 0.0016865723300725222\n", + "epoch: 791 train_loss: 0.0016844961792230606\n", + "epoch: 792 train_loss: 0.001682437490671873\n", + "epoch: 793 train_loss: 0.0016804072074592113\n", + "epoch: 794 train_loss: 0.001678412314504385\n", + "epoch: 795 train_loss: 0.0016764672473073006\n", + "epoch: 796 train_loss: 0.001674599014222622\n", + "epoch: 797 train_loss: 0.0016728341579437256\n", + "epoch: 798 train_loss: 0.0016712222713977098\n", + "epoch: 799 train_loss: 0.0016698450781404972\n", + "epoch: 800 train_loss: 0.0016688350588083267\n", + "epoch: 801 train_loss: 0.001668408396653831\n", + "epoch: 802 train_loss: 0.00166888942476362\n", + "epoch: 803 train_loss: 0.0016708384500816464\n", + "epoch: 804 train_loss: 0.0016751771327108145\n", + "epoch: 805 train_loss: 0.0016834206180647016\n", + "epoch: 806 train_loss: 0.0016980725340545177\n", + "epoch: 807 train_loss: 0.0017235775012522936\n", + "epoch: 808 train_loss: 0.0017675383714959025\n", + "epoch: 809 train_loss: 0.00184338609687984\n", + "epoch: 810 train_loss: 0.0019742115400731564\n", + "epoch: 811 train_loss: 0.0022023585624992847\n", + "epoch: 812 train_loss: 0.002600492909550667\n", + "epoch: 813 train_loss: 0.00330590782687068\n", + "epoch: 814 train_loss: 0.004551417659968138\n", + "epoch: 815 train_loss: 0.006788899190723896\n", + "epoch: 816 train_loss: 0.010744450613856316\n", + "epoch: 817 train_loss: 0.017849896103143692\n", + "epoch: 818 train_loss: 0.029987920075654984\n", + "epoch: 819 train_loss: 0.05063418298959732\n", + "epoch: 820 train_loss: 0.08082680404186249\n", + "epoch: 821 train_loss: 0.12058524042367935\n", + "epoch: 822 train_loss: 0.04275821894407272\n", + "epoch: 823 train_loss: 0.0054796920157969\n", + "epoch: 824 train_loss: 0.0066272965632379055\n", + "epoch: 825 train_loss: 0.034274403005838394\n", + "epoch: 826 train_loss: 0.0659637302160263\n", + "epoch: 827 train_loss: 0.07423736900091171\n", + "epoch: 828 train_loss: 0.05180101841688156\n", + "epoch: 829 train_loss: 0.01594151183962822\n", + "epoch: 830 train_loss: 0.0018202068749815226\n", + "epoch: 831 train_loss: 0.01698160171508789\n", + "epoch: 832 train_loss: 0.034257952123880386\n", + "epoch: 833 train_loss: 0.028736013919115067\n", + "epoch: 834 train_loss: 0.008558844216167927\n", + "epoch: 835 train_loss: 0.002360472222790122\n", + "epoch: 836 train_loss: 0.014057286083698273\n", + "epoch: 837 train_loss: 0.020521968603134155\n", + "epoch: 838 train_loss: 0.011093741282820702\n", + "epoch: 839 train_loss: 0.0018678511260077357\n", + "epoch: 840 train_loss: 0.006278288550674915\n", + "epoch: 841 train_loss: 0.013139357790350914\n", + "epoch: 842 train_loss: 0.009233598597347736\n", + "epoch: 843 train_loss: 0.0022092415019869804\n", + "epoch: 844 train_loss: 0.0036886013112962246\n", + "epoch: 845 train_loss: 0.008590053766965866\n", + "epoch: 846 train_loss: 0.006938613019883633\n", + "epoch: 847 train_loss: 0.0021629403345286846\n", + "epoch: 848 train_loss: 0.0027337144128978252\n", + "epoch: 849 train_loss: 0.00604794267565012\n", + "epoch: 850 train_loss: 0.005111426115036011\n", + "epoch: 851 train_loss: 0.0019799359142780304\n", + "Early stopping!!!\n" + ] + } + ], + "source": [ + "best_model = trainer.train()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABroAAAUYCAYAAAD3VwLwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXicZb3/8c9M9n3fmrRN9yxt0nSje9OWsm9aEDguoIIiq/gTZZGLVg4ioqIc1AOKgnpQlEorRwsUutC9dMnapHvSNs2+NGn2yTy/P3IYOiTNTCaT/f26rlzkfuZ7f+976jld5pPnuU2GYRgCAAAAAAAAAAAAhhnzYG8AAAAAAAAAAAAAcAVBFwAAAAAAAAAAAIYlgi4AAAAAAAAAAAAMSwRdAAAAAAAAAAAAGJYIugAAAAAAAAAAADAsEXQBAAAAAAAAAABgWCLoAgAAAAAAAAAAwLBE0AUAAAAAAAAAAIBhiaALAAAAAAAAAAAAwxJBFwAAAAAAAAAAAIYlgi4AAAAAAAAAAAAMSwRdAAAAAAAAAAAAGJYIugAAAAAAAAAAADAsEXQBAAAAAAAAAABgWCLoAgAAAAAAAAAAwLBE0AUAAAAAAAAAAIBhiaALAAAAAAAAAAAAwxJBFwAAAAAAAAAAAIYlgi4AAAAAAAAAAAAMSwRdAAAAAAAAAAAAGJYIugAAAAAAAAAAADAsEXQBAAAAAAAAAABgWCLoAgAAAAAAAAAAwLBE0AUAAAAAAAAAAIBhiaALAAAAAAAAAAAAwxJBFwAAAAAAAAAAAIYlgi4AAAAAAAAAAAAMSwRdAAAAAAAAAAAAGJYIugAAAAAAAAAAADAsEXQBAAAAAAAAAABgWPIc7A1g6DIMQ0uWLNHOnTtt1+644w699tprferb3t6u3bt3Kz8/XzU1NfL29ta4ceM0f/58jR8/vo+7BgAAAAAAAAAAowVBFy7p5Zdftgu5+qqhoUHPPPOMXn75ZdXV1XVbs3DhQq1du1aXX36529YFAAAAAAAAAAAjE0EXulVaWqpHH33Ubf2ys7N14403qri4WJLk5eWlq6++WlOnTlVtba22b9+uo0ePateuXVq1apUefPBBvfDCCzKbebomAAAAAAAAAADoHkEXunX//ffr/PnzbumVn5+vFStWqKamRpI0f/58vfnmmxo3bpytxmq16pVXXtH999+vjo4Ovfjii2psbNTvfvc7t+wBAAAAAAAAAACMPNwugy42bNigf/zjH5KkkJCQPvVqaWnR6tWrbSFXUlKS3n//fbuQS5LMZrPuuece/epXv7Jde/XVVwm6AAAAAAAAAADAJRF0wU5DQ4Puv/9+SdKECRP0jW98o0/9XnzxRR05csQ2fumllxQUFHTJ+m984xtasGCBbfz444+roaGhT3sAAAAAAAAAAAAjE48uhJ3HHntMZ8+elST95je/0e7du13uVVtbq2effdY2TktL08qVK3ucYzKZ9PDDD9vWrays1E9/+lOtXbvW5X24Q11dnbZt22Ybjx07Vj4+PoO4IwAAAAAAAAAABl9ra6vOnDljGy9btkyhoaEDtj5BF2z27Nmj3/zmN5Kk//iP/9CVV17Zp6DrzTffVF1dnW38xS9+0al5119/vYKDg1VfXy9J+u1vf6s1a9bIZDK5vJe+2rZtm2666aZBWx8AAAAAAAAAgOFg/fr1uvHGGwdsPR5dCElSe3u77r77blmtVoWFhemFF17oc8+33nrLbrx8+XKn5vn6+mr+/Pm2cWlpqXbu3Nnn/QAAAAAAAAAAgJGFoAuSpOeee055eXmSpOeff17R0dF96ldfX2/3qD9vb2+lpaU5PX/evHl243/+85992g8AAAAAAAAAABh5eHQhdPToUT3zzDOSOp+d+bWvfa3PPXNzc2WxWGzjiRMn9upMq9TUVLtxVlZWn/fUF2PHjrUbr1+/XpMnTx6k3QAAAAAAAAAAMDQcP37c7uifz36e3t8IuqBvfvObamlpkY+Pj15++WW3nIWVn59vN05ISOjV/Pj4+B77DbTPhnSTJ0/uEsYBAAAAAAAAADDa9eamF3cg6BrlXn31VW3dulWS9Nhjj2natGlu6VtYWGg3/mxw5chn68+dO6eGhgYFBQX1eW8VFRWqrKzs1Zzjx4/3eV0AAAAAAAAAAOBeBF2jWHl5uR555BFJUlJSkh577DG39a6pqbEbBwcH92p+d/W1tbVuCbp+/etfa+3atX3uAwAAAAAAAAAABpd5sDeAwfPQQw+ptrZWJpNJr7zyiry9vd3Wu6GhwW7c21sVfX19HfYEAAAAAAAAAACjG0HXKPXvf/9bb775piTp61//upYsWeLW/p8NpboLrnpC0AUAAAAAAAAAABzh0YWjUGNjo+69915JUkxMjH7yk58M8o66MplMXa4ZhuGW3vfee69uueWWXs05fvy4brrpJresDwAAAAAAAAAA3IOgaxT6wQ9+oOLiYknSL37xC4WFhbl9jc+epdXS0tKr+c3NzQ57uio6OlrR0dFu6QUAAAAAAAAAAAYPjy4cZfbv36//+q//kiRdffXVuu222/plncDAQLtxa2trr+Z3F4y5K+gCAAAAAAAAAAAjA0HXKGKxWHT33Xero6ND/v7++vWvf91va4WHh9uN6+vrezW/u/r+uPMMAAAAAAAAAAAMXwRdo8jPf/5zZWVlSZLWrl2rxMTEflsrKSnJblxSUtKr+Z+tj4uLU3BwcJ/3BQAAAAAAAAAARg6CrlHk3//+t+37Rx55RCaTyeHX2rVr7Xq8/vrr3da99tprdnXTp0+3G589e7ZXe/1s0PXZfgAAAAAAAAAAAARd6BczZsyQh4eHbXzixIlendOVl5dnN05PT3fb3gAAAAAAAAAAwMhA0DWKbN26VYZh9Orrqaeesutxxx13dFt355132tUFBwdr2bJltnF7e7uys7Od3uvHH39sN77hhht6/4YBAAAAAAAAAMCIRtCFfnPzzTfbjbdu3erUvJaWFu3Zs8c2jo2N1aJFi9y5NQAAAAAAAAAAMAIQdKHf3HrrrQoJCbGN/+d//sepee+8847q6+tt47vuuktmM/+nCgAAAAAAAAAA7HkO9gYwcoWHh+vRRx/VY489JknKycnRhx9+qJUrV15yjmEYeuGFF2zjiIgIPfLII/2+16HIMAxZrVYZhjHYWwEAtzKZTDKbzTKZTIO9FQAAAAAAAAxzBF3oVw899JB+//vf69ixY5KkBx54QPv27VNgYGC39a+88op2795tGz/zzDMKDg4ekL0OBe3t7Tp//rzOnz+v9vZ2Qi4AI5bJZJKXl5dCQkIUEhIiLy+vwd4SAAAAAAAAhiGeB4d+5efnp3Xr1ik0NFSSVFBQoCuuuEKnT5+2q7NarXr55Zd133332a7deeed+uY3vzmQ2x00ra2tOn36tI4fP67Kykq1tbURcgEY0QzDUFtbmyorK3X8+HGdPn1ara2tg70tAAAAAAAADDMEXbB57bXXZDKZ7L7Wrl1rV/P66693qVmzZk2PfWfMmKHNmzdr7NixkqTdu3drypQpuummm/S9731Pd999t1JSUnTPPfeoo6NDknTffffpd7/7Xb+8z6Gmvb1dp0+fVmNj42BvBQAGTWNjo06fPq329vbB3goAAAAAAACGER5diAGRkZGh3Nxc/ehHP9LLL7+s8+fPa8OGDV3q5s+fr7Vr1+qKK64YhF0OvI6ODp05c0YWi2WwtwIAg85isejMmTMaP368PDw8Bns7AAAAAAAAGAZMBs9HwwBra2vTrl27lJ+fr9raWnl7e2vs2LFasGCBEhMTB3t73crPz9f06dNt47y8PKWmpva579mzZ9XQ0GB3zWw2Kzg4WMHBwfLy8pLZzI2XAEYWq9Wq9vZ21dfXq76+Xlar1e71oKAgJSQkDNLuAAAAAAAA0Bv99fm5s7ijCwPO29tbmZmZyszMHOytDKqOjo4uIZe3t7fGjx8vT0/+XxPAyObt7a2AgABFRUWpuLhYbW1tttcaGhrU0dHBXV0AAAAAAABwiFtFgEHy2TO5TCaTxo4dS8gFYFTx9PTU2LFjZTKZ7K5zbiEAAAAAAACcQdAFDJLP3s3l7+8vb2/vQdoNAAweb29v+fv72127cOHCIO0GAAAAAAAAwwlBFzBIPnu3QlBQ0CDtBAAGX2BgoN2YoAsAAAAAAADOIOgCBoFhGOro6LC75ufnN0i7AYDB99k7ujo6OmQYxiDtBgAAAAAAAMMFQRcwCKxWa5drHh4eg7ATABgauvs9sLvfKwEAAAAAAICLEXQBg6C7uxRMJtMg7AQAhobufg/kji4AAAAAAAA4QtAFAAAAAAAAAACAYYmgCwAAAAAAAAAAAMMSQRcAAAAAAAAAAACGJYIuAAAAAAAAAAAADEsEXQAAAAAAAAAAABiWCLoAAAAAAAAAAAAwLBF0AQAAAAAAAAAAYFgi6AIAAAAAAAAAAMCwRNAFABj21qxZI5PJ1O1XYmLiYG9vWLFYLHr22Wfl6+tr+zUsKioa7G0BAAAAAAAA3SLoAoAh5s4777xkaOPur9dee22w3y66sW7dOrv/nU6ePNml5uTJk3Y1f/nLX/q8bk5OjubPn6/HH39cra2tfe4HAAAAAAAA9DeCLgDAsLdmzRoZhmH7Gj9+/GBvqU927Nhh+z42NlYTJ07ssUaSFi9e7PJ67e3tWrNmjebMmaMDBw643AcAAAAAAAAYaARdADBEjR8/3i686e5ry5YtvZ5z6tSpQXpHcNbFIdaiRYu6rdm5c6ft+/Hjx2vs2LEurXXgwAHNmTNHa9euVXt7u1JSUlzqAwAAAAAAAAwGgi4AAIaQxsZGZWVl2cYLFy7stu7iMMyVu7msVqsef/xxzZ8/Xzk5OfL09NTjjz+ugwcP9roXAAAAAAAAMFg8B3sDAADgU3v27JHFYrGNu7ujq7a2VgUFBbbxkiVLer1OfX29nn32WUlSWlqa/vCHP2jWrFku7BgAAAAAAAAYPNzRBQDAEHLxnVq+vr7dhk87d+6UYRi2savnc3l5eempp57S/v37CbkAAAAAAAAwLHFHFwAMMZMmTdJll12muLi4funv4+Ojyy67TJIUFRXVL2vAdRcHXXPnzpWXl1eXmovP5woPD3fpXC1fX1/t379faWlprm0UAAAAAAAAGAIIugBgiHnyySf15JNP9lv/uLg47dmzp9/6w3UdHR3au3evbdzdYwsl+zBs0aJFMplMvV7L19eXkAsAAAAAAMAFzZZmHas9pumR02U28eC8wUbQBQCwMQxDx44dU25urs6dO6f6+nr5+fkpPDxc06dPV3p6erd3GLlDUVGRtm3bppKSEvn6+mrMmDFasmSJ4uPj+2W9oSg7O1sNDQ228cKFC7vUtLW1af/+/baxq48tBAAAAAAAgGse3/64Pjj9gf71uX9pXPC4wd7OqEfQBQCjnMVi0caNG/Xmm29q06ZNqqiouGRtYGCg7rjjDn3ve9/TuHE9/yFeV1ensLCwS76+ZcsWZWZm6uzZs7r//vv1z3/+0+7cqU/cdNNNevHFFzV27Fjn35QTioqKNGHCBId1d9xxh1577TW3rbtmzRqtXbvWqdobbrjBYc33v/99ff/73+9y3d37BgAAAAAAGMkMw1CbtU0+Hj4Oa6eFT9MHpz9QYU0hQdcQQNAFDEOWDqtKz7cM9jZGvLgQX3l6jPxbj2+55RatX7/e7tqiRYs0bdo0xcbGqq6uTtnZ2dq9e7cuXLigX/3qV/rzn/+s119/XTfeeGOf1i4sLFRmZqbKy8svWbN+/Xrt379fu3btcnvYBQAAAAAAgNGn3dquk3UnVVhTaPs6UnNEtyXdpgdnPehwflJ4kiSpsKZQVyRe0d/bhQMEXcAwVHq+RUt+smWwtzHibf/eco0N9x/sbfS75uZm2/cZGRn6wx/+oPT09C51J06c0N13360tW7bo/Pnz+sIXvqD3339fy5Yt67ZvQECA/vKXv9jGb731ltatW2cbNzY26oYbblB5ebkyMzN19dVXKzY2VvX19dq2bZv+8Y9/yGq1SpLtrq8NGza4620rMTHRdgfZo48+queee05ms1kvvfSSvvWtb7ltHQAAAAAAAAyexvZGHak5YhdqHa87rnZre5fagpoCp3peHHRh8BF0AQAkSfHx8dq4caNiYmK6fX3SpEnauHGjMjMztWfPHrW1tekb3/iGDh8+LA8Pjy71Xl5euu2222zjwsJCu6DrJz/5iYqLi7Vu3Tp9/vOft5t7//33a9OmTbrmmmtksVgkSe+8846KioqUmJjohnfbyWKx6K677tLrr78uHx8f/fnPf9bNN9/stv7dWbNmjdasWdPl+t69ezV//nzbeNOmTbr88svtalpaWhQSEqK2tjZJ0osvvqgHHnigX/cLAAAAAAAwXFQ2VdoFWoU1hTrdcNrp+UdqjjhVF+Mfo1CfUIKuIYKgCwAgSbrrrrsuGXJ9wsfHRz/+8Y+VmZkpSTp69Kjeeecd3XTTTb1e76OPPtJLL73UJeT6xKpVq3T77bfrT3/6k6TO5yRv3LjRbXdbNTU16ZZbbtG///1vBQUFaf369VqxYoVbertix44dtu89PT21YMGCLjV79+61hVyStGTJkgHZGwAAAAAAwFBiNaw6XX9ahbWFKqz+NNSqbqnuU9/K5kpVNVcp0i+yxzqTyaSk8CRlV2brfOt5hfiE9Gld9A1BFwCMcvfcc4+uuuoqrV692qn6xYsXy9fXVy0tnefEvf/++y4FXWPGjNE999zTY82NN95oC7okKTs7u9frdKe6ulrXXXed9uzZo+joaG3cuFGzZs1yS29Xbd++3fb97NmzFRAQ0KXm4jAsODhYaWlpA7I3AAAAAACAoSK/Kl9ffe+rarY0Oy52wZGaI4qM7znokqTnlz6vIO8geZi7PukIA4ugCwBGud6GVB4eHoqMjNTZs2clSbm5uS6te+ONN3b7yMOLpaam2o3Ly8tdWutip0+f1pVXXqnCwkJNnDhR7733niZPntznvn21c+dO2/eXOvfs4qBr4cKFMpvN/b4vAAAAAACAoSQhKKHfQi6p85yuRfGLHNaF+ob22x7QOwRdAIBeuzigqq527ZbwjIwMhzVjxoyxGzc0NLi01ify8vJ01VVXqaSkRCkpKfrwww8VGxvbp57uUFBQoKqqKtt46dKlXWqsVqt2795tGy9evHhA9gYAAAAAAOBuhmGovKlcBdUFtscPnrlwRm9d/5bMpp5/sDfEJ0RxAXEqbSzt8z68zF6aHDpZSeFJtq9p4dP63BcDi6ALGIbiQny1/XvLB3sbI15ciO9gb2FA1dXV6a233tLmzZuVk5OjsrIy1dfXq729vcd5TU1NLq0XFxfnsMbf399ubLFYXFpL6rwb6vrrr1ddXZ0kqaqqSoZhuNzPnS6+U8tsNncbYuXm5ur8+fO2MedzAQAAAACA4cBitai4vlgFNQU6UnPE9t+61routSUNJRobPNZhz2nh03oddAV5BWla+DS7UGtiyER5eXj1qg+GHoIuYBjy9DBrbLi/40LACRaLRc8995yeffZZNTY2Dti63Z1B9Vmenu75Y2rDhg267bbbbOeKSVJFRYW+/OUv6/333x/0RwBefD5XWlqaQkK6HmB68aMNvb29NW/evAHZGwAAAAAAgLOaLc06VntMhTWFtq9jtcfU0tHieLKkwtpCp4Ku5PBkbT2z9ZKvx/jH2AVaSeFJig+Ml8lkcvKdYDgh6AKAUaytrU2rV6/W//7v/9quTZgwQQ8//LBWrlypcePGKTAwsMu8xMREFRcX92ntgfqLRWlpqVavXq2Ojg5985vf1Pr1621nfX344Yd69tln9cQTT/T7Ppz9NcvKynL4a9PW1iY/P79uX9uyZYsyMzNd2SIAAAAAAIDTzreeV2FNoQqqC1RQU6DCmkIV1RfJalhd7llQXaBV41c5rPvk8YJmk1mJwYmaFj5NyeHJtkcPhvuGu7wHDD8EXQAwij3zzDN2Idf8+fO1adOmbsOt4aqtrU2S9KMf/UiPPfaYbr75Zl155ZWyWjv/0vXUU08pMzNTixY5PmQUAAAAAABgtPvxvh9ry+ktOtd4zu29j9Qecapubuxc/c81/6MpYVPk59n9DwNj9BjcZzUBAAZNS0uLfvGLX9hde/nll0dUyCVJHh4e+t3vfqfHHntMknT55Zfbvpekjo4O3X777aqtrR2sLQIAAAAAAAwbNc01/RJySVJhdaFTdcHewUqLSiPkgiSCLgAYtfbu3av6+nrbePz48UpLSxvEHfWPhIQEff3rX7e7tnbtWi1ZssQ2PnPmjL72ta/16z6KiopkGEaXr8997nO2mlmzZnVb8+Mf/9hW4+fnp5aWlm7rDMPgsYUAAAAAAMAp7dZ2Hak5orePva1n9z6rXed2OTUvKSLJrfuID4zXynErde/Me/XkgidlGIZb+2Pk49GFADBKlZaW2o3j4+OdntvR0eHu7QwoDw8P/eUvf9HMmTNVVVUlSVq/fr1eeukl3X///QO2D6vVqm3bttnGK1eu7Lbugw8+sH2/ePFi+fj49PveAAAAAADAyNHU3qSjtUdtZ2kVVBfoeN1xtVvbbTWeZk8tHLPQYa+kcNeCLg+ThyaGTrSdpfXJeVrB3sEu9QM+QdAFAKOUr6+v3bixsdGpeRaLxRYODWfx8fF6/fXXdd1119l+Uui73/2uFi9erJkzZw7IHrKyslRTU2MbX3755V1qWltbtXPnTtv4UmEYAAAAAACAJNW11H0aaP3ff4vOF8lQz3dKFdY499jA5PBkhzX+nv6aFj5N08KmKTkiWdPCp2ly6GT5ePDDu3A/gi4AGKWSkux/+iY/P1+1tbUKCwvrcd6WLVvU0tLSn1sbMNdcc42+853v6Gc/+5mkzlDp1ltv1cGDBxUQENDv62/evNn2vbe3txYvXtylZseOHWpubraNCboAAAAAAIAkGYah8qZyFVTbh1qljaWOJ3ejoKZAhmHIZDL1WBfmG6bYgFiVNZZJksJ9w5UUntR5p1ZEkpLCkjQueJzMJk5OwsAg6AKAUSopKUkpKSk6fPiwpM47tZ5++mn9/Oc/v+Sc1tZWPf744wO1xQHx7LPPaseOHdq7d68k6ejRo7r33nv1+uuv9/vaFwddCxculL+/f5eaix9bGBoaqlmzZvX7vgAAAAAAwNBUXF+sdcfWqbC6UIU1haptrXVb74a2BpVcKFFCUILD2u/M/o78Pf2VFJ6kaP9oh+EY0J+IVAFgFHv++eft/iLywgsv6Ac/+EG3d2ydPXtW1157rfbv3y8PD4+B3Ga/8vLy0l//+leFhobarv3xj3/Un/70p35d12KxaMeOHbaxM+dzLV++XGYzf3QDAAAAADBa1bTU6A95f9Du0t1uDbk+4ezjC6+ecLWWjV2mmIAYQi4MOj4tA4BhpKioSCaTyfa1fPlyu9eLi4vtXs/MzOyx3zXXXKNf/vKXdsHVM888o3HjxumLX/yiHn/8cT3yyCO65pprNGnSJG3dulW/+93vlJDw6U/2fHbNrVu32l5LTEy0XV+7dq3d2suXL7e9tmbNGtv1rVu32vW72LZt2+xeKyoq6nZOcXGxU/vLzMyUyWTShAkTVFdXZ7fWV77yFducxMTEHn8dXbFv3z41NDTYxt2dz1VbW6uDBw/axu5+bOFnf926+zWXpAkTJnSpee2119y6FwAAAAAARqOm9iYdqjikd4vedap+Wtg0meTeYMnL7KWUiBStnrJa0f7Rbu0NDAQeXQgAo9wDDzygOXPm6IknntCWLVskSZWVlXrjjTdsNWazWVdccYWeffZZzZw5U08//fRgbXfE+OTXWpKCg4M1Z86cbmusVqttvGLFigHZGwAAAAAAcL/allrbOVqF1Z1nahXXF8uQIR8PH10+7nJ5mnv+yN7fy1/jg8erqL7IpT0EeAVoWtg0JUck287Vmhg6UV5mL5f6AUOByTAMY7A3AQx1+fn5mj59um2cl5en1NRUl/tZLBYdO3bM7tqUKVPk6Un2jMFVUlKiPXv26MyZM2psbFRoaKji4+O1dOlShYeHD/b2MILx+yIAAAAAYKQwDENljWW2UOuT/5Y1lvU47+0b3tbksMkO+39v2/e0sWijw7pw33Alh3cGWkkRSUoJT1FCUILMJh70Bvdy9+fnvcWnRwAAm/j4eK1evXqwtwEAAAAAADAsdFg7VNxQrMLqQrtQq661rte9CmoKnAq6kiKSugRd8YHxnYFWeJJSIlKUFJ6kKL8ozs/CqEDQBQAAAAAAAACAE47UHFF+db4KqjsDrSO1R9RsaXZL78KaQl0/6XqHdbNjZuvaidcqOTxZyeHJmhY+TSE+IW7ZAzAcEXQBAAAAAAAAAOCEH+z8gQprCvuld0FNgVN16VHpSo9K75c9AMMRD+MEAAAAAAAAAIxa9W31amxvdKo2KTypX/YQ6BWoAK+AfukNjHTc0QUAAAAAAAAAGBWqm6ttZ2kdrj6sguoCnb1wVmsWrNHqqY7PLXdH0BXhG6GkiCQlhyd3nqkVnqL4oHiZTdyXAriCoAsAAAAAAAAAMKIYhqGKpgoV1BSooLpAh2s6Q63ypvJu6519bGBKREqv9hEfGG8LtJIjOs/UivKP6lUPAD0j6AIAAAAAAAAADFuGYejshbOdd2pdFGrVtNQ43cPZoGta2DSZZJIhw+662WTWxJCJSgpP6gy1wpM1LXyaQnxCevVeAPQeQRcAAAAAAAAAYFjosHaouKFYBdWdd2oV1HR+NbQ19Knv0Zqjslgt8jT3/JG5v5e/poRNkZfZy3aHVlJ4kqaETZGfp1+f9gDANQRdAAAAAAAAAIAhb/PpzXp0+6NqtjS7vXdLR4uKzhdpcthkh7VvXf+WTCaT2/cAwDWcbgcAAAAAAAAAGPJiAmL6JeT6xJHaI07VEXIBQwt3dAEAAAAAAAAABkxTe5OO1h7V4erDKqgpUKulVT9Z9hOH86aETpGnyVMWw9LnPUT7RXc+evD/Hj+YEpGiGP+YPvcFMPAIugAAAAAAAAAA/aK+rV5Hao7YQq2C6gIV1RfJalhtNZ4mT7V1tMnbw7vHXt4e3pocNlmFNYW92kN8YLySwz8NtZIjkhXpF+nS+wEw9BB0AQAAAAAAAAD6rKalRoXVhTpcc1gF1QUqqCnQmYYzDudZDIuO1R1TakSqw9rk8ORLBl0mmTQ+eLySI5KVEp6i5IhkJYUnKcQnpNfvBcDwQdAFAAAAAAAAAHCaYRiqbK5UQXWBXahV1ljmcs+C6gLngq6IZL19/G15mDw0MXSi7bGDyeHJmhY+TQFeAS7vAcDwRNAFAAAAAAAAAHDolZxXdKjikAqqC1TdUu3W3gXVBU7VXT7uck2PmK4pYVPk6+nr1j0AGJ4IugAAAAAAAAAADm07u005lTn90rugxrmgK8o/SlH+Uf2yBwDDE0EXAAAAAAAAAIwyFqtFJ8+fVEF1gTKiMzQueJzDOcnhyW4NugK8ApQcnqzkiGSlRaa5rS+A0YWgCwAAAAAAAABGsPaOdh2vO67D1Yd1uPqwCmoKdLT2qFo7WiVJj857VF8M/qLDPikRKS7vIdQn1BZqJUckKyU8RQlBCTKbzC73BACJoAsAAAAAAAAARoy2jjYdqztmC7UOVx/Wsdpjare2X3KOs+djJYcnO1UX5RfVGWiFfxpqxQbEymQyOTUfAHqDoAsAAAAAAAAAhqHWjlYdq/1MqFV3TBarpVd9nD0fa3LoZHmaPe36jwkYYxdqJYcnc4YWgAFF0AUAAAAAAAAAQ1xrR6uO1Byxe/zg8drjshi9C7W6c6LuhFo7WuXj4dNjnZeHl76S8hWF+IR0BlvhyQr1De3z+gDQFwRdAAAAAAAAADDEvVf0np7Y8US/9O4wOnS89rhSI1Md1j48++F+2QMAuIqT/gAAAAAAAABgkDj7mMGU8JR+Wd/T7Knk8GQ1WZr6pT8A9Dfu6AIAAAAAAACAAdDY3qjCmkK7M7XMJrPevvFth3MnhEyQn6efmi3NLq/vbfbWtPBpSolIUXJ4slIiUjQ5dLK8PLxc7gkAg42gCwAAAAAAAADc7ELbBRXUFNiFWsX1xTJk2NWZZFJje6MCvAJ67Odh9tC0sGnKqsxyan0fD5/OUCs8RSkRnV8TQyfKy0yoBWBkIegCAAAAAAAAgD6ob6tXQXWBCqr/L9iq6Qy1nGHI0JGaI5oVM8thbXJEcrdBl5+nn6aFTbMFWskRyZoYMlGeZj7+BTDy8TsdAAAAAAAAADjpfOt5Ha4+bHe31pmGM33qebj6sFNBV0pEivw8/WyPHfzkEYQTQibIw+zRpz0AwHBF0AUAAAAAAAAADjy16yntLd2rkgslbu99uPqwU3XXTrhW10+8nlALAC5C0AUAAAAAAAAADpxpONMvIZfkfNDl5cH5WgDwWQRdAIBhb82aNVq7dm23r40fP15FRUUDu6Fh6NSpUzp48KDKy8tVV1cnX19fhYWFKSkpSRkZGfL19R3sLQIAAACA21Q1V9keO7h87HJNC5/mcE5yeLI+LvvYLesHeQcpJTzF9vjBlIgUt/QFgNGIoAsAhpg777xTr7/++oCs9Yc//EF33nnngKwF561bt04333yzbXzixAlNnDjRrubkyZOaNGmSbfzGG2/o9ttvd3oNq9WqDz/8UH/729/0z3/+UxUVFZes9fLy0g033KAHH3xQS5cu7cU7AQAAAIDBV9lUaQu1Dlcf1uGaw6po+vTfQD4ePk4FXa6GUSE+IUoJT1FyxKfnaiUEJshkMrnUDwBgj6ALADDsrVmzRmvWrLGNExMTVVxcPHgb6qMdO3bYvo+Nje0Scn22RpIWL17sVG/DMPT73/9ezz//vI4cOWK77unpqQULFigtLU2hoaGqr69XVlaWdu/erfb2dq1bt07r1q3TnXfeqf/6r/9SYGCgi+8OAAAAAPrPJ6FWfnW+8qvzdbj6sKqaq3qc4+xjA50JusJ8wpQSYR9qjQkYQ6gFAP2IoAsAhihnHrm3detWLV++vFdzioqKNGHCBDfsEP3l4hBr0aJF3dbs3LnT9v348eM1duxYp3q3trbqrrvusrt2880364UXXlBCQkKX+uPHj+vuu+/W1q1bJUmvvfaaTpw4oXfffVf+/v5OrQkAAAAA/eGTxw/mV+frcFXn3VoVzZd+WsWlOBt0jQ8eL39PfzVZmiRJ4b7hnaFWeLJSI1KVEpGi2IBYQi0AGGAEXQAADCGNjY3KysqyjRcuXNht3cVhmLN3c3Xny1/+sv74xz9e8vXJkyfr/fff16pVq7Rt2zZJ0vbt2/Xwww/r5ZdfdnldAAAAAOiN+rZ6ZVdkfxpsVR9WeVO5W3qfbjithrYGBXkH9VhnNpn1vbnfU5hv511bMf4xhFoAMAQQdAEAMITs2bNHFovFNu7ujq7a2loVFBTYxkuWLHFprbCwML344osO67y8vPTqq69q6tSpslqtkqTf/e53euihh5SSwoHJAAAAAPrf7nO79d1t3+23/oU1hZobO9dh3eqpq/ttDwAA15gHewMAAOBTF9+p5evrq1mzZnWp2blzpwzDsI1dvaNr9erVCg0Ndap20qRJWrlypW1stVr197//3aV1AQAAAOATLZYWp+qcOR/LFTH+MVo+drm8Pbz7pT8AoP9xRxcADDGTJk3SZZddpri4uH7p7+Pjo8suu0ySFBUV1S9rwHUXB11z586Vl5dXl5qLz+cKDw93+a6q3gZkCxYs0KZNm2zji/cKAAAAAI7Ut9XrcHXnWVr5VZ2PHzRk6N3V7zqcmxCYoGDvYNW31bu8flxAnFIiUmznaqVEpCjCL8LlfgCAoYGgCwCGmCeffFJPPvlkv/WPi4vTnj17+q0/XNfR0aG9e/faxt09tlCyD5gWLVrUq2fCe3t7a8uWLZKk9PT0Xu3vs+FrWVlZr+YDAAAAGD0a2hpUUF1gd6bW6YbT3dbWtdQp1De0x34mk0kpESnaU+rcv2fjAuKUGpH6abAVkaxw3/Devg0AwDBA0AUAsDEMQ8eOHVNubq7OnTun+vp6+fn5KTw8XNOnT1d6enq3dxi5Q1FRkbZt26aSkhL5+vpqzJgxWrJkieLj4/tlvaEoOztbDQ0NtvHChQu71LS1tWn//v22cW/vyjKbzcrMzHR5jxf75LwuAAAAAKNbY3ujCqoLlF+dr/zqfBVUF6iovsjp+YdrDmvhmK7//vms1IjUboOuGP8YpUakKjXy02CLUAsARg+CLgAY5SwWizZu3Kg333xTmzZtUkVFxSVrAwMDdccdd+h73/uexo0b12Pfuro6hYWFXfL1LVu2KDMzU2fPntX999+vf/7zn3bnTn3ipptu0osvvqixY8c6/6acUFRUpAkTJjisu+OOO/Taa6+5bd01a9Zo7dq1TtXecMMNDmu+//3v6/vf/36X6+7etyRVVlbajadMmeLW/gAAAACGvqb2JhXWFNpCrcPVh1V0vkiGuv57zlmHq50LulIiUhTtF62UyBS7u7Ui/SJdXhsAMPwRdAHDUYdFqi8Z7F2MfMHxksfI/23ylltu0fr16+2uLVq0SNOmTVNsbKzq6uqUnZ2t3bt368KFC/rVr36lP//5z3r99dd144039mntwsJCZWZmqry8/JI169ev1/79+7Vr1y63h13onZycHLvxlVdeOUg7AQAAADDQntv3nHaf262T50/2KdTqTn5VvlN1l4+/XFckXuHWtQEAw9/I/wQXGInqS6Rfpg32Lka+h3KksPGDvYt+19zcbPs+IyNDf/jDH7o9u+nEiRO6++67tWXLFp0/f15f+MIX9P7772vZsmXd9g0ICNBf/vIX2/itt97SunXrbOPGxkbdcMMNKi8vV2Zmpq6++mrFxsaqvr5e27Zt0z/+8Q/bo/E+uetrw4YN7nrbSkxMtN1B9uijj+q5556T2WzWSy+9pG9961tuW2eksFgs+vDDD23jgIAA3XbbbYO4IwAAAAAD6VT9KZ04f6Jfeh+uPuxUndlk7pf1AQDDG0EXAECSFB8fr40bNyomJqbb1ydNmqSNGzcqMzNTe/bsUVtbm77xjW/o8OHD8vDw6FLv5eVlF4QUFhbaBV0/+clPVFxcrHXr1unzn/+83dz7779fmzZt0jXXXCOLxSJJeuedd1RUVKTExEQ3vNtOFotFd911l15//XX5+Pjoz3/+s26++Wa39e/OmjVrtGbNmi7X9+7dq/nz59vGmzZt0uWXX25X09LSopCQELW1tUmSXnzxRT3wwAP9ut9PbNiwQbW1tbbxgw8+2OOjKQEAAAAMXa0drTpac1T51fnKiM7QtPBpDuekRqRqZ8lOt6wf5hOmlMgUpYSnKDUyVakRqW7pCwAYnQi6AACSpLvuuuuSIdcnfHx89OMf/1iZmZmSpKNHj+qdd97RTTfd1Ov1PvroI7300ktdQq5PrFq1Srfffrv+9Kc/SZIMw9DGjRvddrdVU1OTbrnlFv373/9WUFCQ1q9frxUrVriltyt27Nhh+97T01MLFizoUrN3715byCVJS5YsGZC9GYahZ5991jYeN26cHn/88QFZGwAAAEDftHW06VjtMbsztY7XHpfF6Pyhwvtm3udU0JUSkeLS+iE+IbbztD75b1xAnEwmk0v9AAD4LIIuABjl7rnnHl111VVavXq1U/WLFy+Wr6+vWlpaJEnvv/++S0HXmDFjdM899/RYc+ONN9qCLknKzs7u9Trdqa6u1nXXXac9e/YoOjpaGzdu1KxZs9zS21Xbt2+3fT979mwFBAR0qbk4DAsODlZa2sA8wvTVV1/VgQMHJElms1m///3vFRgYOCBrAwAAAHBee0e7jtUdswVa+VX5OlZ3TBar5ZJz8qudOx/LmbuugryDuoRa8YHxhFoAgH5F0AUAo1xvQyoPDw9FRkbq7NmzkqTc3FyX1r3xxhu7feThxVJT7f8hVV5e7tJaFzt9+rSuvPJKFRYWauLEiXrvvfc0efLkPvftq507P30EyKXOPbs46Fq4cKHM5v5/Pv2JEyf0ne98xzZ+6qmntHLlyn5fFwAAAEDPLFaLTp4/qfyqzju18qrydLT2qNqt7b3q4+z5WDH+MQr3DVdNS40kKcgrSCkRKZ1fkSlKDU9VQlACoRYAYMARdAEAeu3igKq6utqlHhkZGQ5rxowZYzduaGhwaa1P5OXl6aqrrlJJSYlSUlL04YcfKjY2tk893aGgoEBVVVW28dKlS7vUWK1W7d692zZevHhxv+/rwoUL+vznP2/7db/tttv05JNP9vu6AAAAAOxZDauK64s7Hz/4f8FWYU2hmi3Nfe5d0VShyqZKRflH9VhnMpn0YMaD8vfyV0pEisYGjZXZ1P8/fAcAgCMEXcBwFBwvPZQz2LsY+YLjB3sHA6qurk5vvfWWNm/erJycHJWVlam+vl7t7T3/NGBTU5NL68XFxTms8ff3txtbLJd+3IYjO3bs0PXXX6+6ujpJUlVVlQzDcLmfO118p5bZbO42xMrNzdX58+dt4/4+n6u9vV233nqrcnI6f6+5/PLL9dprr/HTmQAAAMAg2HZmmx7c8mC/9T9cfVjL/Lt/ssTFVk917pH3AAAMJIIuYDjy8JTCxg/2LjBCWCwWPffcc3r22WfV2Ng4YOt2dwbVZ3l6uuePqQ0bNui2226znSsmSRUVFfryl7+s999/f0AeAdiTi8/nSktLU0hISJeaix9t6O3trXnz5vXbfjo6OvSlL31J//73vyV1hmobNmyQj49Pv60JAAAA4NJSIx2fj+UKP08/JYUnycPc82PlAQAYygi6AGAUa2tr0+rVq/W///u/tmsTJkzQww8/rJUrV2rcuHEKDAzsMi8xMVHFxcV9Wnug7gwqLS3V6tWr1dHRoW9+85tav3697ayvDz/8UM8++6yeeOKJft+Hs79mWVlZDn9t2tra5Ofn1+1rW7ZsUWZmpitblNQZcn35y1/W3/72N0nSihUr9M4773S5uw4AAABA79W21NrO08qvzld5Y7n+dv3fHM6L9o9WlF+UKpsrXV7b18NX08KnKTUiVamRqUoJT9GEkAmEXACAYY+gCwBGsWeeecYu5Jo/f742bdrUbbg1XLW1tUmSfvSjH+mxxx7TzTffrCuvvFJWq1WS9NRTTykzM1OLFi0azG0OCRaLRV/60pf05ptvSiLkAgAAAPqioa1Bh6sP24Ktw9WHVXKhpEtdRVOFov2jHfZLjUzV1jNbnVrbx8NH08KnKSU8pTPUikjRxJCJ8jTzUSAAYOThTzcAGKVaWlr0i1/8wu7ayy+/PKJCLkny8PDQyy+/rK9//euSOs+aeuyxx/TMM89I6ryD6fbbb1d2drbCwsIGc6uDymKx6D/+4z/097//XRIhFwAAANAbTe1NKqwptAu1iuqLnJqbV5WnFeNWOKxLjeg+6PI0e2pq2FRNj5iu1MhUpUakamLoRHmZvXr3JgAAGKYIugBglNq7d6/q6+tt4/HjxystLW0Qd9Q/EhISbCHXJ9auXauPPvrIdjbWmTNn9LWvfU1vv/12v+2jqKio2+uf//znbevOmjVLBw4c6FLz3HPP6dFHH5Uk+fn5qba21q3nZVksFt12221at26dJEIuAAAAoCdtHW06WnvU9vjBvKo8nTx/UlbD6lI/Z4Ou6ZHTZTaZNSl0klIjUm3B1tSwqfL28HZpbQAARgKCLgAYpUpLS+3G8fHxTs/t6Ohw93YGlIeHh/7yl79o5syZqqqqkiStX79eL730ku6///4B24fVatW2bdts45UrV3Zb98EHH9i+X7x4sVtDrvb2dt166622sM3ZkOuTc8AeffRRXXXVVW7bDwAAADAUvVf0nvaW7lV+db6O1h6VxWpxW+/D1YedqpsXO0+7b98tfy9+IA0AgIuZB3sDAIDB4evrazdubGx0ap7FYrGFQ8NZfHy8Xn/9dZlMJtu17373u8rKyhqwPWRlZammpsY2vvzyy7vUtLa2aufOnbbxpcIwV7S1temWW27pdcglSdu2bdO2bdtUVlbmtv0AAAAAQ9W/T/5bfz/6dx2uPuzWkEuS8qrzZBiGwzpvD29CLgAAukHQBQCjVFJSkt04Pz9ftbW1Dudt2bJFLS0t/bWtAXXNNdfoO9/5jm3c2tqqW2+91enQr682b95s+97b21uLFy/uUrNjxw41Nzfbxu4Kutra2rR69Wpt2LBBEo8rBAAAwOhiGIbONJxReWO5U/WpkaluXT/KL0qZYzN138z79OMlP3b5sYcAAIBHFwLAqJWUlKSUlBQdPtz5mAyLxaKnn35aP//5zy85p7W1VY8//vhAbXFAPPvss9qxY4f27t0rSTp69Kjuvfdevf766/2+9sVB18KFC7sNmS5+bGFoaKhmzZrV53VbW1u1evVq/etf/5IkLV++nJALAAAAI5ZhGCpvKld+db7yq/I7/1udr/Ot53X3jLv14KwHHfaYHjHd5fVDfUKVGpGq1MjUzrO1Iqcr2j/a5X4AAMAeQRcAjGLPP/+8rrvuOttjMl544QX5+/vrBz/4QZdHG549e1Z33nmn9u/fLw8Pj2F/TtcnvLy89Ne//lUZGRmqq6uTJP3xj3/U5Zdfri9/+cv9tq7FYtGOHTtsY2fO51q+fLnM5r7djN3a2qrPfe5z2rhxo+3ali1bFBAQ0Ke+AAAAwFBR3VxtC7M+Cbaqmrt//Hp+db5TPVMiUpyqC/QKVEpEii3USo1IVXxgvN0j0wEAgHsRdAHAMFJUVKQJEyZc8vXi4mK7f0AtW7ZMW7duvWT9Nddco1/+8pd6+OGHbcHVM888o1deeUWrVq3S+PHj1d7ervz8fH344Yfq6OjQ7373Oz399NMqLi7uds0tW7YoMzNTkpSYmGir+6zly5fbvn/qqae0Zs0aSdLWrVvtXrvYtm3b7NY6deqUEhMTe5zT0/4yMzO1bdu2bud95Stf0Ve+8hVJ0vjx41VUVNRtnav27dunhoYG27i787lqa2t18OBB29gdjy3cvXu3XcgFAAAADGcNbQ06XH1YuVW5Olx9WHlVeSptLHV6fn51vgzDcBhEhfqGKiEwQWcvnLVd8/XwVXJEst3dWuODx8ts4qQQAAAGEkEXAIxyDzzwgObMmaMnnnhCW7ZskSRVVlbqjTfesNWYzWZdccUVevbZZzVz5kw9/fTTg7XdEeOTX2tJCg4O1pw5c7qtsVo/fVb/ihUrBmRvAAAAwFDU2tGqIzVHlFuVq/yqfOVW5aqovqhPPc+3ntfZC2c1Nmisw9qrJ1yt+rZ6W7A1MWSiPM18tAYAwGAzGZ88rwrAJeXn52v69E+fx52Xl6fUVNcPorVYLDp27JjdtSlTpsjTk78gY3CVlJRoz549OnPmjBobGxUaGqr4+HgtXbpU4eHhg709jGD8vggAAIBLOVl3Uo9uf1THao/JYljc3v/5pc/rqglXub0vAACjhbs/P+8tPj0CANjEx8dr9erVg70NAAAAALAJ9w1XQU1Bv/Q2yWT3OEIAADD8EHQBAAAAAABgwFQ1VymvKk9Hao7oG2nfcOp8rLFBY3Wm4Uyf144PjNf0yOlKjUjV9MjpSg5PVqB3YJ/7AgCAwUPQBQAAAAAAgH7R0Nagw9WHlVeV1/lVnaeyxjLb69dMvMap87GmR0zvddAV7R+t6RHTlRqZqukR05USkaJQ39DevgUAADDEEXQBAAAAAACgz1o7WnWk5ohyq3KVX5WvvOo8nTp/qsc5+VX5TgVdqZGp2li08ZKvh/mEdQZa/3e3VmpEqqL8o3r9HgAAwPBD0AUAAAAAAIBe6bB26OT5k3Z3ah2tPSqL1dKrPrlVubpqwlUO66ZHfnrAvZ+nn1IiUjQjcobtbq34wHiHj0AEAAAjE0EXAAAAAAAALskwDJ29cLbzLq2qPOVW5aqgpkDNluY+986rynOqLiUiRT9c+EPNiJyhCSET5GH26PPaAABgZCDoAgAAAAAAwCU9tespvX387X7pXVBTIIvVIk9zzx9R+Xn66XNTPtcvewAAAMObebA3AAAAAAAAgKFrUuikfukbGxCrxfGLdaHtQr/0BwAAowN3dAEAAAAAAIwCbR1tOlJzRHnVnedqTQ2bqjtS73A47+LzsVwV6hNqO0/rk7O1Iv0i+9wXAACAoAsAAAAAAGCE6bB26NT5U8qtylV+defZWkdqj8hitdhqZkXPciroSg5PltlkltWwOrW2n6efksOTNT3y01ArITBBJpPJ5fcDAABwKQRdAAAAAAAAw5hhGCptLFVuVa7yqjrv1jpcfVhNlqYe5xXUFKjD2iEPs0ePdf5e/poUOknHao91ec3T5KkpYVM0I3KGpkdOV2pkqiaGTHR45hYAAIC78LcOAAAAAACAYeR863nlV+UrtyrX9lXTUtPrPs2WZp08f1JTwqY4rJ0eMV3Hao8pMTjRdpfWjMgZmhY+TT4ePq68DQAAALcg6AIAAAAAABiiLFaLCqoLlFOVY7tbq6i+yG3986rynAq67s+4X4/MfURB3kFuWxsAAMAdCLoAAAAAAACGqBZLi7747y/KkNEv/fOq8vS5KZ9zWBftH90v6wMAAPQVQRcAAAAAAMAQFegdqEmhk3S87rjbevp5+ik5PFnTI6drUfwit/UFAAAYDARdAAAAAAAA/aypvUn51fnKq8qznav18uUva2LoRIdzp0dOdzno8jR5akrYFE2PnG47W2tiyER5mvlICAAAjAz8rQYAAAAAAMCNLFaLTtSdsJ2rlVuVqxN1J2Q1rHZ1uVW5TgVdMyJnaP3x9U6tnRicqOmR021fSeFJ8vHwceVtAAAADAsEXQAAAAAAAC4yDEPnGs8ptypXeZWdodbh6sNq6WhxODe3Klc3Tr7RYd2MyBndXo/wjdCMqBmaETlD0yOnKzUiVSE+Ib1+DwAAAMMZQRcAAAAAAICTzreet92l9cl/a1pqXOqVW5XrVN3ksMkK8wnTxNCJSotMsz2GMDYgViaTyaW1AQAARgqCLgAAAAAAgEsori/WjpIdtmCruL7Ybb2P1hxVa0erw0cLepm9tPXWrTKbzG5bGwAAYKQg6AIAAAAAALiEnSU79eN9P+6X3hbDosKaQqVHpTusJeQCAADoHkEXAAAAAAAYdZotzfLz9HNYlxaV5tZ1g72DbWdqzYicoUkhk9zaHwAAYLQh6AIAAAAAACNaU3uT8qvz7c7VivKL0hvXvuFw7tSwqfIye6nd2t7rdb3MXkoOT9aMqE+DrXFB4zhXCwAAwI0IugAAAAAAwIjRYe3Q8brjyq3KVW5VrnIqc3Ty/ElZDatdXXVztdo62uTt4d1jP28PbyWFJym3Ktfh2hNCJtju1kqLTOsMyTy8+vR+AAAA0DOCLgAAAAAAMGxVNFUotzJXOVU5yqnMUX51vpotzQ7ntVvbdbT2qKZHTndYOyNyRpegK9IvUjMiZ9iCrdTIVAV7B7v8PgAAAOAagi4AAAAAADAsNFuadbj6sF2wVd5U7nK/3Kpcp4Ku2TGzdbT2aGewFdUZbsX4x/AIQgAAgCGAoAsAAAAAAAxZ75x4R1kVWcqtytXR2qPqMDrc1ju3Mle3J93usO6KxCt0ReIVblsXAAAA7kPQBQAAAAAAhqw/Hf6TCmoK+qW3M+duAQAAYGgj6AIAAAAAAAOqraNNHUaH/Dz9HNbOiJzhtqAr2DvYdqbWjMgZSo1MdUtfAAAADB6CLgAAAAAA0G8Mw9DZhrO2M7Vyq3JVWFOoxy57TLdMvcXh/BlRM/S3o3/r9bqeZk8lhyfbnas1Lmgc52oBAACMMARdADCEZWZmatu2bU7Xe3h4KCwszPY1adIkLViwQAsXLlR6ero8PfltHwAAAP2rvq1eeZV5tmArrypPta21XepyK3OdCrrSItOcWjchMEEzomYoLTJNM6JmKCk8ST4ePr3ePwAAAIYXPvEEgBGko6NDVVVVqqqqkiTt27dPf/nLXyRJ0dHRuueee3TvvfcqJiZmMLcJAACAEaLd2q5jtceUW5lrC7aK6oucmptTmeNUXWJIooK8gtTQ3mC7FuQV1Pn4wYuCrXDfcFfeAgAAAIY5gi4AGMK2bt1qN05MTFRxcbFtvGXLFmVmZtrGLS0tqqqqUnV1tbKysrRlyxa99957KisrU0VFhX74wx/qxz/+sR566CH953/+p7y9vQfonTi2detWLV++3DZ+6qmntGbNmsHbEAAAAOwYhqGyxjLlVOUotzJXuVW5Olx9WC0dLS71O3n+pC60XVCgd2CPdWaTWddOvFZWw2oLthJDEmU2mV1aFwAAACMLQRcAjCC+vr5KSEhQQkKC0tPTdccdd6i1tVWvvvqqfvSjH6mkpERtbW16/vnn9eGHH+qNN97QtGnTBnvbAAAAGKLKG8v1zsl3bMFWZXOl23obMpRXnaf5cfMd1j4x/wm3rQsAAICRhR9/AoARzsfHR/fee69ycnLs7pg6ePCgFixYoIMHDw7i7gAAADCU1bXW6ZcHf6nNZza7NeT6RF5Vntt7AgAAYHThji4AGCXCw8P1/vvv6+abb9aGDRskSbW1tbr66qt18OBBxcfHD/IOAQAAMFDOt55XiE+Iw7pJoZPk5+mnZktzn9c0yaRJoZM0I3KG0qLSNCNyhiaFTupzXwAAAIxuBF0AMIp4enrqtdde06xZs3Tq1ClJUkVFhb785S9r8+bNg7w7AAAA9If2jnYV1hQqpypH2RXZyqnKUXljuXb/x275evr2ONfT7KmUiBQdKD/Q63UjfCNsZ2qlRaUpNSLV4XlcAAAAQG8RdAHAKBMaGqrf/OY3uuqqq2zXtmzZorfeeks333zzIO4MAAAAfWUYhsqbypVdma3symzlVOaooLpAbda2LrUFNQXKiM5w2DMtKs1h0OXj4aPk8GS7YCsuIE4mk8nl9wIAAAA4g6ALAEahK6+8UtOnT1de3qdnIjz77LNOBV0dHR0qKChQfn6+ysrKdOHCBQUGBioiIkLp6elKTU2V2Tz4R0A2NTUpNzdXBQUFqq6uVktLi0JDQxUTE6O5c+dq/Pjxg71FAACAPmuxtOhw9WHlVObYgq2K5gqn5uZU5jgXdEWmdbmWGJyoGZEzbMHW1LCp8vLw6vX+AQAAgL4i6AKAUepb3/qW7rvvPtv44MGDys/PV2pqapfalpYWvf322/r73/+uzZs36/z585fsGxkZqbvuukvf/e53FRER0eMe1qxZo7Vr13b72tq1ay/52h133KHXXnuty/WKigq98cYb2rBhg3bt2qW2tq4/ufyJpKQkPfDAA/rGN74hT0/+OAQAAEOfYRg623BW2VXZtmDraM1RWQyLS/2yK7OdqkuLStOi+EVKj0zXjKgZmhE5w6nzvQAAAICBwCd7wAhQcqGk33rH+MfI0+z4t4qyxjJ1GB39sodIv0j5ePg4rKtqrlJrR2uf1ooPjO/T/OFk6dKlXa7961//6jboWrBggbKysmxjDw8PZWZmatKkSYqMjFR1dbX279+vAwcOqKqqSj/+8Y/1xz/+UX//+9+1cOHC/nwbNlVVVYqPj5fF8ukHPSEhIcrMzNT48ePl5+enc+fOafv27SoqKlJhYaHuu+8+/fnPf9a6desUFxc3IPsEAADojfyqfO06t8t2t1Zta63bejsbdEX7R+u/L/9vt60LAAAAuBNBFzACXLXuKsdFLnp39btOhT93bLxD5xrP9csefn/l7zU3dq7Duke2PaL95fv7tFbuHbl9mj+cpKamKjQ0VHV1dbZre/bs6ba2ubnZ9v2qVav0m9/8RpMmTepSd+jQIX31q19Vdna2zp07p2uvvVa7d+9WUlJSt33XrFmjNWvWSJK2bt2q5cuX21576qmnbK85w2Kx2IVcDz/8sJ566imFhNj/tLFhGFq3bp3uueceVVdXa/fu3bruuuu0fft2+fv7O70eAADAQPjniX/qjcI3+qV3RVOFKpoqFO0f3S/9AQAAgIEw+IeoAAAGhclk0pQpU+yuHT16tMc56enpevvtt7sNuSQpIyNDW7Zssb1eV1dn93jEgfL1r39dP//5z7uEXFLn+7755pv13nvvycur8xyJgwcP6mc/+9lAbxMAAIxiHVbnnoaQHpXutjX9PP00J2aOvjb9a/rF8l9oyxe2EHIBAABg2OOOLgAYxcLCwuzGJSU9Pwbz29/+tgICAhz2fPLJJ3XnnXdKkjZv3qysrCzNnDmzL1vtlSeeeMJhzezZs/XFL37RdtbXL37xCz3++OPy8PDo590BAIDRxmK16ETdCWVXZtseQZgWlaZnFj/jcG5aVJrL6yYGJyotKk1pkWlKj07X5NDJTj2WHAAAABhO+BsuAIxinw26Ghsbu617/PHHVVNTo8997nNO9V21apXd+P333+/3oCs4OFgvvPCCgoKCNGHCBKfmrFq1yhZ01dTU6MCBA5o3b14/7hIAAIwG1c3VyqnMUU5VjnIqc5RblatmS7NdjSHDqV7xgfEK9w1XTUtNj3WBXoGaETmjM9j6v3Ar1DfU1bcAAAAADBsEXbApKSnRgQMHdO7cOdXW1srLy0thYWGaNGmS5syZo8DAQLet1d7ert27dys/P181NTXy9vbWuHHjNH/+fI0fP95t6wDomWE49wHLV77ylV71jYmJsRvn5vb/2Wf+/v769re/3as53e2ToAsAAPRGe0e7jtQesd2plVOZo7MXzjqcV1xfrNqWWoX5hvVYZzKZlB6Vri1ntnx6TSZNCp2k9Kh0pUWlKT0qXRNCJshs4nQCAAAAjD4EXaPcrl279Le//U1vv/22Tp8+fck6s9mslStX6v7779cNN9zg8noNDQ165pln9PLLL6uurq7bmoULF2rt2rW6/PLLXV4HgHNqa2vtxu4KtD/7+L/q6mq39HW34bJPAAAwdJQ3liunKkfZFdnKqcrR4erDau1odalXblWuliYsdVi3cMxCdRgdSovsvFtrRuQMBXq77wcRAQAAgOGMoGuUevvtt/WjH/1I+/fvt10zmUyaM2eOZs2apYiICDU2NqqgoEAfffSRWlpatGnTJm3atEnXXnutXn311S53QjiSnZ2tG2+8UcXFxZIkLy8vXX311Zo6dapqa2u1fft2HT16VLt27dKqVav04IMP6oUXXpDZzE8lOvLu6nf7rXeMv3P/O79+9evqMJw7ULu3Iv0inap7ftnzLn/IMFp9NuiKj4/vsb6srEx/+9vf9NFHHykvL08VFRVqaGiQxWLpcV5TU1Of99ob+fn5+tvf/qa9e/eqoKBAtbW1unDhgsM72AZ6nwAAYGjrsHYotyrX7myt8qZyt/XPrsx2Kui6Lek23ZZ0m9vWBQAAAEYSgq5R6lvf+pbKyz/9B9qyZcv08ssva9q0aV1qS0tL9dBDD+nvf/+7JOlf//qXMjMztW3bNkVHRzu1Xn5+vlasWKGams7nys+fP19vvvmmxo0bZ6uxWq165ZVXdP/996ujo0MvvviiGhsb9bvf/a4vb3VUiA/sOZwYCLEBsYO9BacDMXSyWq06cuSI3bXufg+QOs/uevLJJ/XSSy+pvb19ILbnklOnTunBBx/U//7v/w72VgAAwAhxzwf3qLG9+3NM+yqnMqdf+gIAAACjCbfKQCtWrNCmTZsu+QF3XFyc3nzzTX3xi1+0XSssLHT6zJ6WlhatXr3aFnIlJSXp/ffftwu5pM7HI95zzz361a9+Zbv26quvEnQB/SQnJ0cNDQ121+bPn9+lrq6uTitWrNALL7xgC7nS0tL06quv6tixY2psbJRhGF2+Blp2drYuu+wyu5Druuuu04YNG1RSUqLW1tYue9yyZUsPHQEAwGjnYfbQ9MjpbuvnZfZSWlSavpT8JT2/9Hn9cOEP3dYbAAAAGK24o2uU8/T01CuvvCIvL68e60wmk371q1/pnXfeUX19vSTpvffe03vvvacrr7yyx7kvvvii3V0jL730koKCgi5Z/41vfEOvv/66du/eLUl6/PHHdeutt/Y4B0DvdRfyXHfddV2uPfTQQ9q3b59t/LnPfU5vvvmmw983BlJra6tuvfVWVVZW2q799Kc/1f/7f/9vEHcFAACGksqmStsjCLMrs/XtWd/WrJhZDufNjJqpvaV7XVpzTMAYpUWl2b6Sw5Pl7eHtUi8AAAAA3SPoGuUyMzM1adIkp2pDQkJ066236re//a3t2l//+tceg67a2lo9++yztnFaWppWrlzZ4zomk0kPP/ywLeiqrKzUT3/6U61du9apfQJwzDAM/fd//7fdtcsuu0xJSUl210pKSvSnP/3JNvbx8dHLL788pEIuSVq3bp1doD5r1ixCLgAARrF2a7uO1h5VVkWW7WytkgsldjUHKw46FXSlR6U7taavh69SI1OVFpWm9Mh0zYiaoWh/5x71DgAAAMB1BF2j3OLFi3tVv2DBAruga8eOHT3Wv/nmm6qrq7ONL378YU+uv/56BQcH2+4e++1vf6s1a9bIZDL1ar8AurdhwwYdPXrU7tpjjz3Wpe6DDz6wewzh/PnzFRUV1e/7661NmzbZja+//vpB2gkAABgMNS01yq7ovFMrqzJL+VX5aulo6XFOdkW2U73TotK6vT4uaJzSo9Jtd2tNCZsiL/PQ+mEgAAAAYDQg6Bql/vGPf6itre2S53JdSlxcnN24rKysx/q33nrLbrx8+XKn1vH19dX8+fP1/vvvS5JKS0u1c+fOXgdzALqqqqrS/fffb3ftyiuv1I033tiltrS01G4cHx/v1BodHR2ub9AFw2WfAACg7yxWi47XHbcFW9mV2TrdcLrXfbIrs2UYhsMfpgvxCdGMyBny9/JXWmSaZkbP1IzIGQrzDXP1LQAAAABwI4KuUWrhwoVu6WO1Wi/5Wn19vbZt22Ybe3t7Ky2t+5+G7M68efNsQZck/fOf/yToAvqotbVVX/rSl1RS8umje+Li4vTaa691W+/r62s3bmxsdGqdzwZPzvDw8LAbX3wn2cXXPtmDp6enbX8DuU8AADCwzree77xTqyJLOZU5yq3KVZOlqc99a1trdabhjMYFj3NY+z/X/A9PlwAAAACGKPNgbwDDS2Vlpd14ypQpl6zNzc2VxWKxjSdOnCgfHx+n10pNTbUbZ2VlOT0XQFeVlZVasWKF3nvvPdu1iIgIvfvuu4qNje12zmfP7NqzZ49Td0Ft3Lix1/sLCgqyG7e0dH3c0NGjRxUUFKSgoCD9x3/8xyX36eixqn3ZJwAAGDgfnf1Ii/+6WPd9eJ9+m/tb7S3b65aQ6xNZlVlO1RFyAQAAAEMXQRd6JScnx2585ZVXXrI2Pz/fbpyQkNCrtT776LHP9gPgnJaWFv3yl79UWlqadu3aZbs+b9487d27t8c7LZcvX67w8HDbuLy8XL/61a96XK+mpkbPPPNMr/c5YcIEuw+RLr7r7BNHjhyxfZ+SkmL7fvXq1XZ169ev18GDB3tcb9++fXrzzTd7vU8AADBwpoZNdXvPhMAEXTvxWj1x2ROaHTPb7f0BAAAADCweXYheeffdd23fm0wmfe1rX7tkbWFhod3Y2TNzLlV/7tw5NTQ0dLnrA8CnWlpaVF1draqqKmVlZWnz5s169913VVFRYavx8fHRd77zHa1du1ZeXj0fmO7j46P//M//1L333mu79v/+3/+TyWTSvffe2+Vxg4WFhbr99tu7DakcCQkJUUZGhi2g2rJli93/z7e2turFF1+01V98ptjcuXP1hS98QX/7298kdZ69dc011+jPf/6zLr/88i5r/etf/9Idd9zBT2cDADCArIZVReeLlF2ZrVP1p/Sd2d9xOCc2IFYx/jEqbyp3aU0fDx+lRqQqPTpdM6NmKi0qTZF+kS71AgAAADA0EXTBaQcOHFBeXp5tfNttt2natGmXrK+pqbEbBwcH92q97upra2v7HHRVVFR0eQSjI8ePH+/TmoCrMjMz7c66+6zly5c73SsmJkb33HOP7r33XkVHRzs971vf+pZOnTql559/XpJksVj04IMP6vnnn9fKlSs1ZswYNTc3KysrS9u2bZOvr682bNiga6+91tZj27ZtdqHSqVOnlJiY2GWtRx99VF/4whckdYbb6enpuuaaa2QymfTBBx/YAvRbbrlFc+fOtZv7+9//XhUVFdq6daukzrvPVq1apZkzZ2rhwoUKCwtTTU2NduzYodzcXE2aNEnPPfec7rrrLluPtWvXau3atZKk8ePHq6ioyOlfJwAAYO9C2wXlVuUquzJb2ZXZyqnMUX1bve31r6R8xanQKT0qXe8Xv++wTpLGBIxRelS6LdiaGj5VXuaef7AHAAAAwPBG0AWn/ehHP7J9HxwcrJ/85Cc91jc0NNiNe3M+lyT5+vo67OmKX//617YPsoGRxsPDQyEhIQoLC1NYWJgmT56shQsXatGiRUpPT+9yB5azfvKTn2jZsmVas2aN9u/fL0k6c+aMXnvtNVuNl5eXvvCFL+iZZ57RxIkTXVrnlltu0a9+9Ss98cQTqqur06lTp+welejp6amvfe1reuGFF7rMDQgI0AcffKD/+q//0s9//nOdOXNGUuf5fhef8RccHKzHH39c3//+9x0+3hAAADjHMAwV1xfbQq3symwdqz0mQ8Yl52RXZGvl+JUOe8+Mntlt0OVl9lJKRIpmRs1UenS60qPSFe3v/A/zAAAAABgZCLrglA8++ED/+Mc/bONf/vKXDs/c+mwo1V1w1ZP+CrqA4eSTu5OGgmuvvVbXXnutTp48qb1796q0tFQtLS0KCwvT+PHjtWTJErs7Lg3j0h9s9eTee+/VnXfeqZ07d6qwsFD19fXy8fHR+PHjtXTpUsXExFxyroeHh7797W/rgQceUE5Ojg4dOqSqqioZhqGIiAglJSVp/vz58vTs/OMvMzPT5X0CADCatVhadLj6sA5VHFJWZZayK7JV21rbqx7Zlc4FXelR6ZKkaP/ozru1otI1M3qmksOT5e3h7dL+AQAAAIwcBF1wqKamRl/96ldt469+9au68847+33d7s7O4QNpYPBNnDjR5Tu2nOXv769Vq1Zp1apVLs338PBQRkaGMjIy3LwzAABGp6rmKmVVZNmCrcPVh2WxWvrUM7sy26m65Ihkbbp5k2IDYvu0HgAAAICRiaALPbJYLLrtttt09uxZSdLSpUv13//9307N/exZWi0tLb1au7m52WFPV9x777265ZZbejXn+PHjuummm/q8NgAAADCcvJb3mt488qbOXjjr9t55VXlq72iXl0fPZ2h5mb0IuQAAAABcEkEXenTvvfdq06ZNkqS0tDStX79e3t7OPR4kMDDQbtza2tqrtbsLxtwRdEVHRys6mmf3AwAAAI40W5rdHnJ5mDw0NWyq0qPS1WRpUohHiFv7AwAAABhdCLpwSd/97nf129/+VpKUnJysTZs2KSwszOn54eHhduP6+vperd9dfW/WBwAAAGDPMAyVXChRi6VFk8MmO6yfGT2zz2uG+YR1nq0V3Xm+VmpEqvy9/PvcFwAAAAAkgi5cwve//3397Gc/kyTNmDFDH374oaKionrVIykpyW5cUlLSq/mfrY+Li1NwcHCvegAAAACjWXtHuwpqCpRVkaWsyixlVWSpsrlSS+KX6NeX/9rh/LSoNJlNZlkNq1PrmU1mTQmdYhdsjQsa1+35uwAAAADgDgRd6OKRRx7RT3/6U0muh1ySNH36dLvxJ+d8OeuzQddn+wEAAACwV9tSq+zKbB2qOKSsiizlV+ertaPrI8SzK7NlNawym8w99gvwCtDUsKkqrCns9vVAr0BbqDUzaqbSotIU4BXglvcCAAAAAM4g6IKd73znO3rhhRck9S3k+mS+h4eHOjo6JEknTpxQa2urfHx8nJqfl5dnN05PT3dpHwAAAMBIZDWsKjpf1Blq/d/dWkX1RU7NrW+r16nzpzQpdJLD2vSodFvQNTZorGZGzdTM6M6vSSGT5GH26MvbAAAAAIA+IeiCzbe//W398pe/lNT3kEuSgoODtWzZMm3evFmS1N7eruzsbM2bN8+p+R9//LHd+IYbbnB5LwAAAMBw12xpVl5Vnt1jCOvbencO7sWyKrKcCro+P+XzWhC3QOnR6Yr0i3R5PQAAAADoDwRdkCQ98MADeumllyQ5H3LddtttKisr05133qk777yz25qbb77ZFnRJ0tatW50KulpaWrRnzx7bODY2VosWLXLinQAAAAAjg2EYeq/4PWVXdD6K8EjNEVkMi9v6Z1VmafXU1Q7rUiJSlBKR4rZ1AQAAAMCden4gO0Y8wzB033339TrkkqQ9e/Zo27ZtKioqumTNrbfeqpCQENv4f/7nf5za1zvvvKP6+k9/OvWuu+6S2cz/uQIAAGD0MJlMemH/C/pzwZ+VX53v1pBLkupa6tzaDwAAAAAGA3d0jWKGYehb3/qWXn75ZUnueVzhZ4WHh+vRRx/VY489JknKycnRhx9+qJUrV/a4r0/OCZOkiIgIPfLII27bEwAAADBcpEen69ypc33u4+fppxmRMzrP1oqaqbSoNIX4hDieCAAAAABDHEHXKGUYhr75zW/qt7/9rSRp+vTpbg+5PvHQQw/p97//vY4dOyap8zGJ+/btU2BgYLf1r7zyinbv3m0bP/PMMwoODnb7vgAAAICBYBiGShtLdbDioLIqsnSw4qDun3m/Voxb4XBuRnSGNp7a2Os1YwNilRGVofTodM2MnqlpYdPkaeaffwAAAABGHv6lMwoZhqG7775br776qu1aXl6eoqOj+2U9Pz8/rVu3TkuXLlVdXZ0KCgp0xRVX6K9//avGjRtnq7Narfrtb3+r++67z3btzjvv1De/+c1+2RcAAADQHzqsHTpae1SHKg7pUMUhHaw4qIqmCruag+UHnQq6ZkbNdFjjYfJQUniS7W6tmdEzFRsQ6+r2AQAAAGBYIegahYqLi+1CroEwY8YMbd68WTfeeKPOnDmj3bt3a8qUKbr66qs1depU1dbWavv27Tpy5Ihtzn333adf/vKXA7pPAAAAoLea2puUU5XTGWyVH1JOVY4a2xt7nHOo4pBTvaeETZG/p7+aLE22a0HeQbZAKyM6Q6kRqfL38u/TewAAAACA4YqgCwMmIyNDubm5+tGPfqSXX35Z58+f14YNG7rUzZ8/X2vXrtUVV1wxCLsEAAAAelbZVGm7W+tQxSEV1hSqw+joVY/DNYfVbGmWn6dfj3WeZk9dmXilrIZVGdEZmhk9UxNCJshsMvflLQAAAADAiEHQNQolJibKMIxBWTskJETPPfecnn76ae3atUv5+fmqra2Vt7e3xo4dqwULFigxMXFQ9jaQTCZTl2uD9b8JAAwFVqu1y7Xufq8EgIFmNaw6df6UDlYc1KHyzmDr7IWzfe5rsVqUV5WnubFzHdb+cNEP+7weAAAAAIxUBF0YFN7e3srMzFRmZuZgb2VQmM1dfwK3vb1dXl5eg7AbABh8Fouly7Xufq8EgIFUWFOor7/3ddW31fdL/0MVh5wKugAAAAAAl0bQBQwCk8kkb29vtbW12a5duHBB/v6crQBgdLpw4YLd2Nvbmzu6AAy6sUFjdaH9guPCXpgUMkkZMRnKiM7QvNh5bu0NAAAAAKMRQRcwSIKCglRdXW0b19fXKyoqig92AYw6hmGovt7+bomgoKBB2g2AkcwwDJ1pOKOsyixdN/E6h+dcBXgFaFrYNBXUFLi0nrfZW9MjpysjOsN2vlaIT4hLvQAAAAAA3SPoAgbJZ4Ou9vZ2lZSUKD4+nrALwKhhGIZKSkrU3t5udz04OHiQdgRgJGm3tquwulCHKg7ZvqpbOv/+lRKeoslhkx32yIjOcDroCvUJ1czomcqIztCs6FlKiUiRt4d3n94DAAAAAKBnBF3AIPH19ZWXl5fdh7sNDQ06ceKEgoODFRgYKE9PT86oATDiWK1WWSwWXbhwQfX19V1CLi8vL/n4+AzS7gAMZw1tDcqpzNHBioM6VHFIuZW5aulo6bb2UOUh54KumAy9UfhGt6+NCxqnmdEzNSt6ljJiMjQheAI/sAQAAAAAA4ygCxgkJpNJY8aM0enTp2UYhu16e3u7qqur7e72AoDR4pPfG/mgGIAzSi+U6lDFIR2sOKisiiwdrT0qQ4bjiZIOlR/SLVNvcViXEZUhSfI0eSo5ItkWbM2MnqlIv8g+7R8AAAAA0HcEXcAg8vf317hx47qEXQAwGplMJo0bN07+/v6DvRUAQ5DVsOp43XEdLD9ou2OrrLHM5X6HKg45VRcTEKPXr3pdSeFJ8vfi9ycAAAAAGGoIuoBB9knYde7cuS6P7wKA0cLLy0tjxowh5AJg5+T5k9p6ZqsOlncGW/Vt9W7rffbCWVU2VSrKP8ph7ayYWW5bFwAAAADgXgRdwBDg7++vSZMmqbW1VfX19WpoaFBbW9tgbwsA+pW3t7eCgoIUHBwsHx8fHlcIoIvd53brhQMvuL2vSSZNDZuqquYqp4IuAAAAAMDQRdAFDBEmk0m+vr7y9fVVdHS0DMOQ1WrlkYYARhyTySSz2UywBcCh2TGz3dLH18NXaVFpyojOUEZ0htKi0hTkHeSW3gAAAACAwUXQBQxRJpNJHh4eg70NAACAPjMMQ2cazuhgxUEdLD+olo4W/WTpTxzOmxI6RYFegbrQfqFX60X4RthCrVkxszQtfJq8zF6ubh8AAAAAMIQRdAEAAABwqw5rh47VHdOB8gO287Uqmyttr3uaPdViaZGvp2+PfTzMHkqPTtfOkp091k0ImaBZ0bNs4dbYoLHcNQoAAAAAowRBFwAAAIA+ae1oVV5Vng6WH9SBigPKrsju8S4si9Wi3KpczY2d67D37OjZdkGXp8lTKZEpmh09WzOjZyojOkNhvmFueR8AAAAAgOGHoAsAAABAr9S31SurIksHyw/qYMVB5VXlqd3a3qseB8sPOhV0zYubpwVlCzQrZpZmx8zW9Mjp8vP0c3XrAAAAAIARhqALAAAAQI8qmio679YqP6BDFYd0tPaoDBl96nmw4qBTdelR6Xrlilf6tBYAAAAAYOQi6AIAAADQrd9k/Ub/PPFPnb1w1u29syqyZLFa5GnmnyQAAAAAANfxr0oAAAAA3aptrXVryGWSSVPDpmpWzCzNip4lw+jbXWEAAAAAABB0AQAAAKNIa0erLrRdUIRfhMPaWTGz9JfCv7i8lpfZSzMiZygjOkOzYmZpZvRMBXsHu9wPAAAAAIDPIugCAAAARrDG9kZlV2Rrf/l+HSg/oNyqXF038Tr9cNEPHc6dFT2rV2sFegVqZvRMzYqepVkxszQ9crp8PHxc3ToAAAAAAA4RdAEAAAAjyPnW8zpYflAHyg/oQPkBFdQUqMPosKs5UH7AqV7R/tFKCEy45OMLo/yiNCtmljKiMzQ7ZramhE6Rh9mjz+8BAAAAAABnEXQBAAAAw1hlU6UOVBzQgbIDOlBxQMdqjzmcc7rhtCqaKhTtH+2wdlbMLFvQlRic+GmwFT1bCUEJMplMfX4PAAAAAAC4iqALAAAAGCYMw9C5xnO2u7UOlB9QcX2xS70Olh/UVROuclj3hWlfUObYTGVEZyjSL9KltQAAAAAA6C8EXQAAAMAQZRiGTtWfsgu2yhrL3NJ7f/l+p4Ku9Kh0t6wHAAAAAEB/IOgCAAAAhiDDMHTNP6655PlYfVVQU9AvfQEAAAAAGEgEXQAAAMAQZDKZNDZorNuCrnDfcM2OmW37mhI6xS19AQAAAAAYTARdAAAAwABpsbQotypX8YHxGhM4xmH97JjZ2l2626W1YvxjNCd2ji3YmhA8QSaTyaVeAAAAAAAMVQRdAAAAQD9pbG9UVkWW7Xyt3KpctVvb9dCsh3TXjLsczp8dM9vptcYHj7e7Y2tMwBiCLQAAAADAiEfQBQAAALjJ+dbzOlh+0BZsFdQUqMPo6FJ3oPyAU0HXjKgZ8jJ7qd3a3uW1KWFTNDt6tmbHztbs6NmK8o9yy3sAAAAAAGA4IegCAAAAXFTTUqMD5Qe0v2y/9pfv17HaYzJkOJx3qOKQOqwd8jB79Fjn4+GjGZEzlF2ZreTwZNvdWhnRGQr1DXXTuwAAAAAAYPgi6AIAAACcVNVcpQPlB/Rx2cc6UH5Ax+uOu9Snsb1RR2qPKCUixWHt04ueVoRfhAK8AlxaCwAAAACAkYygCwAAALiEyqZK7S/fr4/LPtb+8v06df6U23ofKD/gVNA1Lnic29YEAAAAAGCkIegCAAAAulHWWKZVb63ql95BXkFqsbT0S28AAAAAAEYTgi4AAACgGzH+MYoLiFNpY2mfe4X7htvO15oTM0eTQyc7PJ8LAAAAAAA4RtAFAACAUcEwDJVcKNH+8v1aPna5QnxCeqw3mUyaEzNH75x8p9drxfjHaE7sHFu4NSF4gkwmk6tbBwAAAAAAl0DQBQAAgBHJMAydbTirj8s/1v6y/dpfvt92d9YvMn+hleNXOuwxJ9a5oCs+MF6zY2ZrbuxczYmZo/jAeIItAAAAAAAGAEEXAAAARgTDMFRcX6z95fv1cdnH2l++XxVNFd3W7i/f71TQNTdmbrfXxwaN1ZyYObZgKy4wrk97BwAAAAAAriHoAgAAwLBkGIZOnT+l/eX7bXdsVTZXOjV3f/l+p+oSghIU4x8jP0+/zvO1YudoTswcxQbE9mXrAAAAAADATQi6AAAAMCwYhqETdSfsHkVY01LjUq8jNUd0vvW8U+d0bbhpgwK8AlxaBwAAAAAA9C+CLgAAAAxJhmHo5PmT+rjsY+0r26f9ZftV21rrnt4ydLD8oJaPW+6wlpALAAAAAIChi6ALAAAAQ9Kuc7t0zwf39EvvqWFTZTWs/dIbAAAAAAAMHIIuAAAADEkzo2fKw+ShDqOjT31MMmla+DTNiZmjObFzNDt6tkJ9Q92zSQAAAAAAMKgIugAAADBgzjac1aGKQ7pu4nUymUw91gZ4BSg1IlU5VTm9WsNsMispPElzYuZobuxcZURnODyLCwAAAAAADE8EXQAAAOg3pRdK9XH5x9pXuk8fl32sc43nJEmpEamaGDrR4fy5sXMdBl0eJg+lRKTY7tjKiM5QkHeQW/YPAAAAAACGNoIuAAAAuE1FU4X2lXWGWvtK9+nshbPd1n1c9rFTQde82Hl6Ne9Vu2ueJk+lRKZobsxcW7AV4BXglv0DAAAAAIDhhaALAAAALqtqruoMtf4v3CquL3Zq3r6yfbo16VaHdTOjZ8rXw1dTw6ZqbuxczYudp5nRM+Xv5d/XrQMAAAAAgBGAoAsAAABOq2mp0cdlH9vCrVPnT7nUZ3/5fhmG4fCcLn8vf22/bbt8PX1dWgcAAAAAAIxsBF0AAAC4pLqWOu0v32+7Y+t43XG39K1pqdHxuuOaEjbFYS0hFwAAAAAAuBSCLgAAAHTrnRPv6PEdj/dL76lhU3W+9Xy/9AYAAAAAAKMHQRcAAAC6NTVsqtt6TQ6drLmxczU3dq7mxMxRmG+Y23oDAAAAAIDRi6ALAABgFGntaNWJuhNKiUhxWDslbIpCfUJV11rX63UmhEzQvNh5mhM7R3Nj5irCL8KF3QIAAAAAAPSMoAsAAGAEs1gtyqvK076yfdpXuk+HKg5JknbevtPh2Vdmk1lzYubog9MfOFxnfPD4zju2Yjrv2oryj3LL/gEAAAAAAHpC0AUAADCCWA2rjtYe1d7SvdpXtk8Hyg+osb2xS11WZZbmx8132G9u7Nxug66EwATNi5unOTFzNDd2rmIDYt2yfwAAAAAAgN4g6AIAABjGDMNQUX2R9pXu096yvfq47GOnHjW4r3SfU0HXvNh5kqS4gDjNjZ2rebHzNC92nuIC4/q6dQAAAAAAgD4j6AIAABhmSi+Uam/ZXlu4VdFU0esee8v2OlU3KXSSNn5+oxKCEnq9BgAAAAAAQH8j6AIAABjiqpur9XHZx7Zw63TD6T73zK/K14W2Cwr0DuyxzmQyEXIBAAAAAIAhi6ALAABgiHqv6D39d/Z/63jdcbf39vfyV1F9kaZHTnd7bwAAAAAAgIFC0AUAADCEuSvk8vP006zoWZoXN0+XxV2mpLAkeZg93NIbAAAAAABgsBB0AQAADDDDMGQymRzWzY2d6/IanmZPpUel67LYy3RZ3GWaETlDXh5eLvcDAAAAAAAYigi6AAAA+pnVsOpY7THtKd2j3aW7Vd1crb9f/3eH88J9wzU1bKqO1h51WGs2mZUSnmK7YysjOkN+nn7u2D4AAAAAAMCQRdAFAADQD0oulGjPuT3aU7pHe0v3qra11u710guliguMc9hnXuy8SwZdk0Mna37cfM2LnafZsbMV7B3slr0DAAAAAAAMFwRdAAAAblDXUqe9ZXu1p3SP9pzbo7MXzvZYv69sn26cfKPDvpfFXaY/F/xZkjQ2aKwui7tMl8VepjmxcxTpF+mWvQMAAAAAAAxXBF0AAAAuaLY061DFIVuwVVhTKEOG0/OdDbrmxMzR04ue1rzYeRoTOKYvWwYAAAAAABhxCLoAAACc0GHt0OHqw53BVukeHao4pHZru8v99pTukWEYMplMPdYFegfqpsk3ubwOAAAAAADASEbQBQAAcAlnG85qe8l27Tm3Rx+XfayG9ga39a5oqlBxfbESQxLd1hMAAAAAAGC0IegCAAC4hHdOvqNfZ/3abf08zZ6aGTVTl8Vdpvlx8xUfFO+23gAAAAAAAKMRQRcAAMAlzI+b3+egKyk8SfPj5mt+3HxlRGfI38vfTbsDAAAAAAAAQRcAABg12jvalVOVo7LGMl078VqH9dMjp8vf019Nlian14gPjLcFW/Pi5incN7wvWwYAAAAAAEAPCLoAAMCIZRiGjtUd055ze7SndI/2l+9Xs6VZAV4BujLxSnmae/6rkJfZS3Nj52rb2W2XrAnxCdFlsZdp/pjOcGts0Fh3vw0AAAAAAABcAkEXAAAYUaqaq7T73O7Or9Ldqmqu6lLT2N6ovKo8zYye6bDfZXGX2QVdPh4+mh0z23bOVlJ4kswmszvfAgAAAAAAAJxE0AUAAIa1ZkuzDpYf1O5zu7WrdJeO1R5zat7e0r1OBV0L4hZoRuQM2+MI06PT5ePh08ddAwAAAAAAwB0IugAAwLBiNaw6UnNEu87t0u7S3TpUfkht1rZe99lTukffTP+mw7rJYZP1xrVvuLJVAAAAAAAA9DOCLgAAMOSVNZbZHkW4t3Svalpq+twzqzJLTe1N8vfyd8MOAQAAAAAAMBgIugAAwJC14fgG/T7v9zp5/qRb+/p7+mtu7Fydbz1P0AUAAAAAADCMEXQBAIAhy2K1uCXk8jR5Ki0qTfPHzNeCuAVKjUyVl9nLDTsEAAAAAADAYCLoAgAAQ9aCMQtcnpsYnKgFYxZo4ZiFmhs7VwFeAW7cGQAAAAAAAIYCgi4AADAgLrRd0L6yfdp1bpdqW2r1s8yfOZwzJnCMEoMTVVRf5LA21CdU8+Pma8GYBVoQt0BxgXFu2DUAAAAAAACGMoIuAADQLzqsHcqtytXu0t3afW63cipz1GF0SJJMMqmupU6hvqEO+8yPm99t0OVp9tSs6FmdwdaYBUoOT5bZZHbzuwAAAAAAAMBQRtAFAADcpqyxTLvO7dLOkp3aU7pH9W313dYZMrS3bK+uTLzSYc+FYxbqr0f+KkmaHDpZ8+Pma+GYhZodM1v+Xv5u3T8AAAAAAACGF4IuAADgstaOVh0oO6Cd53Zq17ldOl533Om5u8/tdiromhc3T/+56D81P26+YgJi+rJdAAAAAAAAjDAEXQAAwGmGYejU+VPaeW6ndp7bqf1l+9Xa0epSr93ndsswDJlMph7rArwCdOPkG11aAwAAAAAAACMbQRcAAOhRfVu99pbu1c6SznCrrLHMLX3PNZ5TcX2xEkMS3dIPAAAAAAAAow9BFwAAuKQ/Hf6Tfrb/Z+owOtzWM8ovSgvGLNCCMQsU6Rfptr4AAAAAAAAYfQi6AADAJSUGJ/Y55PL18NXs2NlaGLdQC8cs1KTQSQ4fVwgAAAAAAAA4g6ALAIBRyGpYZTaZHdbNiZ0jb7O32qxtveo/OXSyFo1ZpIXxCzU7ZrZ8PHxc3SoAAAAAAABwSQRdAACMAoZhqLi+WDvP7dTOkp0603BG/7zpnw7vrPLz9NOsmFnaU7qnx7pg72AtGLNAi8Ys0oIxCxQbEOvO7QMAAAAAAADdIugCAGCEutB2QXvL9mpnyU7tOrdLJRdK7F4/XndcU8KmOOyzaMyiLkGX2WTWjMgZtru2pkdMl4fZw637BwAAAAAAABwh6AIAYIQwDEPH6o5pR8kO7SjZoUPlh2QxLJes33Vul3NBV/wi/ezAzxTtH63F8Yu1cMxCzY+brxCfEHduHwAAAAAAAOg1gi4AAIaxC20XtLd0r7aXbNeOkh0qbyp3eu6Okh26I/UOh3WTQydr/Y3rNTFkosNHHQIAAAAAAAADiaALAIBhpLd3bfXkYPlBNVua5efp12OdyWTSpNBJLq0BAAAAAAAA9CeCLgAAhri+3LXVkzZrm/aX7deShCVu6QcAAAAAAAAMNIIuAACGsH+d/Jd+sOMHLt+19VkmmTQ9croWxS/SojGLND1yulv6AgAAAAAAAIOBoAsAgCFscujkPodcUX5RWjhmoRbHL9b8uPkK9Q11z+YAAAAAAACAQUbQBQDAEDY1bKqi/aNV0VTh9BwPk4fSo9K1JGGJlsQv0dSwqTKZTP24SwAAAAAAAGBwEHQBADBAGtsbtad0j3aU7ND+sv36+/V/l6+nb49zTCaTlsQv0bpj63qsi/KL0uL4xZ13bY2Zr2DvYHduHQAAAAAAABiSCLoAAOgnhmHoVP0pbT+7XdvPbteBigOyWD99DOHHZR9rScISh30Wxy/uEnRdfNfW4vjFmhY2jbu2AAAAAAAAMOoQdAEA4EatHa3aX7ZfH539SB+d/UhnL5y9ZO2Okh1OBV3z4+bL0+SpMN8wLYpfpMXxi7VgzALu2gIAAAAAAMCoR9AFAEAflTeWa3vJdn109iPtKd2jZkuzU/N2lOxwqi7QO1Drb1qvcUHjuGsLAAAAAAAAuAhBFwAAvdRh7VBedZ62ndmm7SXbVVhT6FKf0w2nVVxfrPHB4x3WOlMDAAAAAAAAjDYEXQAAOKG+rV67Snbpo7MfaUfJDtW21rql746SHYRYAAAAAAAAgIsIugAA6MGJuhN6es/TyqrIUofR4ZaeUX5RdmdtAQAAAAAAAHANQRcAAD0I8w3TwfKDMmS43MNsMistMk1LE5ZqScISTQubxllbAAAAAAAAgBsQdAEA0INw33DNiJqhnMqcXs0L8g7S4jGLtSRhiRbHL1aYb1g/7RAAAAAAAAAYvQi6AACjitWwKq8qT1vPbNXtSbcryj/K4Zyl8UudCromh07WkoQlWpawTOlR6fI088csAAAAAAAA0J/4BA4AMOI1tTdpT+kebT2zVR+d/UjVLdWSpPjAeK2eutrh/KUJS/VS1ktdrnubvTUvbp6WJSzTkoQlig+Md/fWAQAAAAAAAPSAoAsAMCKVN5Zr29lt2npmq/aW7lWbta1Lzbaz25wKupLCkxTtF62K5grF+MdoacJSLUtYpnlx8+Tn6dcPuwcAAAAAAADgDIIuAMCIYBiGCmoKtO3MNm05s0UFNQUO5+wp3aO2jjZ5e3j3WGcymbRm4RpF+0drathUmUwmd20bAAAAAAAAQB8QdAEAhq3WjlbtLd2rbWe2advZbSpvKu/V/GZLs/aX7dfC+IUOa5ckLHF1mwAAAAAAAAD6CUEXAGBYqWqu0vaz27X1zFbtLt2tZktzn/p9VPKRU0EXAAAAAAAAgKGHoAsAMKQZhqHjdce19cxWbT27VbmVuTJk9Lmvt9lb8+LmaWbUzD73AgAAAAAAADA4CLoAAEOaxWrRl/79JTVZmvrcK9w3XEsTliozIVMLxiyQv5e/G3YIAAAAAAAAYLAQdAEAhjQvDy8til+kTcWbXJo/OXSyMsdmalnCMs2InCEPs4ebdwgAAAAAAABgsBB0AQAGjWEYMplMDusyx2Y6HXR5mjw1O3a2lo9drmUJy5QQlNDXbQIAAAAAAAAYogi6AAAD6uT5k9p8erO2nN6ileNX6mvTv+ZwzpL4JTKbzLIa1m5fD/YO1pKEJcocm6lFYxYpyDvI3dsGAAAAAAAAMAQRdAEA+pXVsCqnMkebz3SGW0X1RZ++aJJTQVeYb5jSo9J1qOKQ7VpicKKWJSxT5thMzYyeKU8zf6QBAAAAAAAAow2fCgIA3K61o1V7S/dq8+nN2npmq6pbqruty6nMUWVTpaL8oxz2XDlupcwmszITMrVs7DJNCJng5l0DAAAAAAAAGG4IugAAbnG+9by2l2zX5tObtaNkh5otzU7N23Jmi74w7QsO6+5IvUN3pN7R120CAAAAAAAAGEEIugAALitrLNPm05u1+cxmHSg7IIth6XWPzWc2OxV0AQAAAAAAAMBnEXQBAJxmGIZO1J3QB6c/0ObTm1VQU9DnnvtK96mpvUn+Xv5u2CEAAAAAAACA0YSgCwDgUGFNod499a4+PP2hiuqL+tzPJJPSo9K1YtwKLR+7nJALAAAAAAAAgEsIugAADr155E29dfStPvXwNntr/pj5WjF2hZaNXaZIv0g37Q4AAAAAAADAaEXQBQBwaNW4VS4FXcHewVqasFQrxq3QojGLuHMLAAAAAAAAgFsRdAHAKGYYhkwmk8O6ubFzFeQdpIa2Boe1cQFxWj52uVaMW6FZMbPkZfZyx1YBAAAAAAAAoAuCLgAYZS60XdBHZz/SB6c/UHF9sd66/i2HYZeXh5cyEzL1zsl3un19Wtg0LR+3XCvGrlBSeJJT4RkAAAAAAAAA9BVBFwCMArUttdp6Zqs+OP2Bdp/brXZru+21o7VHNS18msMeK8evtAVdJpk0K2aWVoxdoRXjVighKKG/tg4AAAAAAAAAl0TQBQAjVFVzlT4o/kAfFH+g/eX71WF0dFv3wekPnAq6Fo5ZqGUJy7Rs7DItH7tckX6R7t4yAAAAAAAAAPQKQRcAjCCVTZXaVLxJ7xe/r4PlB2XIcDjng+IPdN/M+xzW+Xn66aWVL7ljmwAAAAAAAADgFgRdADDMVTRVdIZbRe/rUMUhp8Ktix2vO65T509pQsiEftohAAAAAAAAAPQPgi4AGIbKG8v1wekPXA63Pmvrma0EXQAAAAAAAACGHYIuABgmyhrL9EHxB3q/uDPc6qtov2itHL9Sl4+7XLNiZrlhhwAAAAAAAAAwsAi6AGAYOFF3QjdtuKnPfRICE7Rq/CqtHL9SMyJnyGwy931zAAAAAAAAADBICLoAYBiYGDJR8YHxKrlQ4tLcVeNXadX4VZoaNlUmk6kfdggAAAAAAAAAA4+gCwCGAZPJpFXjV+m1/Necqp8UMklXJF6hK8Zfoclhk/t3cwAAAAAAAAAwSAi6APx/9u47usoq/dv4dU4qvXdIqEoVQXpRimLH3rD37szoqKOjY5tR1HEc+9grdlHsovTekSbSCb1DaCHtvH/wg1cUzTkhJyfl+qzFWjzJc+/nG1yPhH1n760Y2bZnGz8s/4EjahxBsyrN8rz/+IbH/2Gjq2nlpvRL7Ue/hv1oUrlJASaVJEmSJEmSpKLJRpckFaKdWTsZnjacb5d9y/hV48kOZXNRi4u4s9Odeda2qtbqN9sXNq3clH4N+3F86vE0rtw4mtElSZIkSZIkqcix0SVJUZaRncGYVWP4Zuk3jF45mj05ew74/LfLvuWvHf5KXDDuD8fZt33huNXj9q/calzJ5pYkSZIkSZKk0stGlyRFQVZOFhPWTOCbpd8wPG04u7J3/e69G3dvZNq6aXSq0ynPcW9pfwu3dbitIKNKkiRJkiRJUrFlo0uSCkhObg5T1k3h26Xf8v3y70nPTA+79ptl34TV6EoIJhxKREmSJEmSJEkqUWx0SdIhCIVCzNo4i6+XfM13y75jU8amfI3z/fLvubvz3TayJEmSJEmSJCkCNrokKR+WbVvGV0u/4qslX7Fi+4pDGqtuubqc0OgEMrIzSEi00SVJkiRJkiRJ4bLRJUlh2rh7I98t+44vF3/JnE1zDmms6mWqc3zD4zmh4Qm0rdGWQCBQQCklSZIkSZIkqfSw0SVJYXr3p3d5efbL+a6vlFSJ41KP48SGJ3JUraOIC8YVYDpJkiRJkiRJKn1sdElSmE5pfErEja5yCeXom9KXExqeQJe6XTyDS5IkSZIkSZIKkI0uSQpT48qNaVG1BT9t/ukP70uOS+bo+kdzUqOT6FG/B0lxSYWUUJIkSZIkSZJKFxtdkkq11TtW883Sb7ik1SVhrbY6pfEpB210xQXi6Fa3Gyc1PoneDXpTLqFcNOJKkiRJkiRJkn7BRpekUmdX1i5+SPuBzxd9zqS1kwBoWrkpxzQ4Js/aExudyBPTniA3lAvAETWO4ORGJ3N8w+OpVqZaVHNLkiRJkiRJkg5ko0tSqZAbymXaumkMWTSEocuHsjt79wGf/3LJl2E1umqUrcEZTc+gVtlanNz4ZFIqpkQrsiRJkiRJkiQpDza6JJVoK9JX8PmSz/li8Res2rHqd+8bsWIEOzJ3UD6xfJ5j3t/t/gJMKEmSJEmSJEnKLxtdkkqcHZk7GLp8KEMWDWH6+ulh1ezJ2cOwtGGc1vS0KKeTJEmSJEmSJBUUG12SSoTcUC5T1k7h00WfMmz5MDJyMiIe46slX9nokiRJkiRJkqRixEaXpGJt/a71DFk0hMELB7Nyx8p8j3N4lcPDOqNLkiRJkiRJklR02OiSVOxk52YzZuUYBi8czOhVo8kN5eZrnKrJVTmp0Umc1vQ0mldtXsApJUmSJEmSJEnRZqNLUrEy6KdBvDr7VTbs3pCv+vhgPL3q96J/k/70qN+DhGBCASeUJEmSJEmSJBUWG12SipWM7Ix8NblaVWtF/yb9OanRSVROrlzwwSRJkiRJkiRJhc5Gl6Ri5bSmp/HMjGfICeXkeW/1MtU5pfEp9G/Sn2ZVmhVCOkmSJEmSJElSYbLRpZhJS0tj4sSJLF++nMzMTKpWrUqrVq3o0qULiYmJsY6nIqp6meocU/8Yhq8YftDPxwfi6Z3Sm9Obnk63ut2ID/q/OUmSJEmSJEkqqZwBVqEbPnw49913H2PHjj3o5ytVqsQ111zDPffcQ8WKFQs5nWJhxfYVfL74c6454pqwzsw667CzftPoalixIWc1O4tTm5xKtTLVohVVkiRJkiRJklSE2OhSocnNzeWvf/0rTz755P6PHX744fTo0YMqVaqwYMECvvnmG7Zt28bjjz/O+++/z5AhQ2jXrl0MUytacnJzGLNqDO///D7jV40nRIhmlZvRr2G/PGu71e1GzbI1Sd+TTr+G/Tir2Vm0q9mOQCBQCMklSZIkSZIkSUWFjS4Vmuuvv56XXnoJgLi4OJ577jmuvvpqgsHg/nvS0tI499xzmTRpEitWrKBPnz6MHj2aNm3axCq2CtjG3Rv5dOGnfLTgI9bsXHPA5z78+cOwGl3xwXie6v0UqRVTqZBYIVpRJUmSJEmSJElFnI0uFYrXX399f5ML4H//+x9XXXXVb+5LSUlh6NChdOzYkQULFrB161bOPPNMZs2aRZkyZQozsgrYjxt+ZNBPg/h++fdk52Yf9J5JayexZOsSGldunOd4rau3LuiIkiRJkiRJkqRiJpj3LdKh2bFjB3/729/2X/fo0eOgTa59KlasyNNPP73/etGiRTz11FNRzajoyMrN4pul33DhVxdy0dcX8c3Sb363ybXPhws+LKR0kiRJkiRJkqTizkaXou7f//4369ev339966235llz/PHH07Jly/3Xjz76KFu2bIlKPhW8bXu28crsVzjhkxO4Y/QdzNo4K+zazxd9zq6sXVFMJ0mSJEmSJEkqKWx0KapCoRAvv/zy/uvKlStz8sknh1V70UUX7f/91q1b+eCDDwo8nwrWkq1LeGjCQxz70bE8Nf0p1u9an3fRLxxe5XD+0uEvxAXjopRQkiRJkiRJklSSeEaXomrcuHGsXr16/3W3bt1ITEwMq7ZXr14HXH/88cdcd911BRlPBWT6uum8Nuc1Rq0cFXFtQjCB4xsez3mHn0fbGm0JBAJRSChJkiRJkiRJKolsdCmqPv/88wOuO3bsGHZtu3btSEhIICsrC4BRo0aRnp5OxYoVCzSjIrd54URmff4UW44fwKcrPmLG+hkRj1GvfD3OPfxcTm96OlWTq0YhpSRJkiRJkiSppLPRpaiaMePABkiLFi3Crk1OTqZx48b8/PPPAGRnZzNnzhy6detWoBkVmcxd2/lx8BU8XTWHRdPmRFzftU5XLmp5ET3q9SAYcPdUSZIkSZIkSVL+2ehSVM2dO/eA6/r160dUX69evf2Nrn3j2eiKrZmv3EDLzLUsS6gbdk1iMJFTm5zKhS0upFmVZlFMJ0mSJEmSJEkqTWx0KWrS09NZs2bNAR+rV69eRGP8+v758+cfci7l36jP3+CYzXu3o+y/YyeDK5T/w/trlKnB+c3P5+zDznZ7QkmSJEmSJElSgbPRpajZvHnzbz4W6flav75/y5Yth5QJYP369WzYsCGimkWLFh3yc4u7H3/6mTbT/g6BvdeXbUvn0/LlCAUCv7m3RdUWXNLqEo5PPZ6EuIRCTipJkiRJkiRJKi1sdClqtm/f/puPJSUlRTRGcnJynmNG6vnnn+eBBx445HFKmwaJO8iKKwe5OwBolJXNsbt28325svvv6bw7gyu3buMw2lCtTnewySVJkiRJkiRJiqJgrAOo5DpYU+rXjau8RKPRpfyp2uQoqtw6iRlVjt//sSu2phMIhThu5y7eX7WWV9aup2vGHqot/Ypd/+1I6OdvYphYkiRJkiRJklTS2ehSsRIKhWIdoVRLLF+Fdn/6kLFHPs62UDlaZ2YydMVq/rN+I60yMw+4t+yeDQTeO589H10Du7fGJrAkSZIkSZIkqURz60JFTYUKFX7zsYyMDMqVKxf2GBkZGXmOGakbbriBc845J6KaRYsWcfrppx/ys0uKHqdfw6xm3cj6+BqOypn7h/cmzf2APUtGknTGs3BYv0JKKEmSJEmSJEkqDWx0KWrKly//m4/t2bMn5o2umjVrUrNmzUMep7Q7olVr1tb9njdf+TsX7HiLxEDO796btHsdvHsOWW3OJ+HER6Bs1UJMKkmSJEmSJEkqqdy6UFFTtepvmxnp6ekRjfHr+6tUqXJImVSwalcpx/l/eYIXmv6Pxbl18rw/Yfb77Plve0Iz3wW3oZQkSZIkSZIkHSIbXYqaSpUqUbt27QM+tmrVqojG+PX9zZs3P+RcKlhJ8XHcctE5TDlhCK/lnkxuKPDH92duIfDZ9ex69RTYtLiQUkqSJEmSJEmSSiIbXYqq1q1bH3C9cuXKiOp/3ej69XgqGgKBAOd3O5zuN7zIreUfYWlurTxryq4cS/azXdgzfCBk7ymElJIkSZIkSZKkksZGl6KqXbt2B1zPmzcv7NqMjAyWLFmy/zouLs5GVxF3eO0KDPzzNQxq9y6vZp+Y5+qu+FAmSaMfIf0/Hcme/20hpZQkSZIkSZIklRQ2uhRVp5566gHXU6ZMCbt2xowZZGVl7b8+5phjqFixYoFlU3QkJ8RxzxkdaHH5s9yU9E+W5NbOs6biruXEv38eq5/vT+b6RYWQUpIkSZIkSZJUEtjoUlR1796dOnXq7L+eMGECmZmZYdWOHDnygOuzzz67IKMpyro1qc5jt13Hu0e9xzM5Z5IZisuzpu76UfB8Z6a/9mfS07dGP6QkSZIkSZIkqViz0aWoCgaDXHXVVfuvt27dyldffRVW7aBBg/b/vlKlSpx33nkFnk/RVT4pnntOa8+xNzzFnTVeYFJu8zxrEsmmfdrr7HqiHYPfeorVW3YVQlJJkiRJkiRJUnFko0tRd/vtt1OjRo39108++WSeNd999x1z587df33HHXdQtWrVqORT9LWoU5H/3Hgua07/mH/GXc+2UNk8a2oHNnPmkn+w4sk+PPbmJ8xbnV4ISSVJkiRJkiRJxYmNLkVdhQoVePjhh/dfjxkzhldfffV379++fTu33HLL/usmTZrw5z//OZoRVQgCgQCnt2/An25/iNfafcRHub3JDQXyrOsc/InbllzJ5Oev5NqXf2DMwg2EQqFCSCxJkiRJkiRJKupsdKlQXHXVVVx55ZX7r6+99lpeeuklcnNzD7gvLS2N4447jgULFgB7tyz85JNPKFs27xVAKh4qJCfwl9N70O3W93i+6YvMzG2SZ01cIMRl8UN5eOVlfPXGQE59ahSfzVhFVk5unrWSJEmSJEmSpJIrEHJphApJbm4uf/nLX3j66af3f+zwww/n6KOPplKlSixcuJBvvvmGzMxMAOrVq8eQIUM46qijYhV5v7lz59K6dev913PmzKFVq1YxTFRyLNuwnemfP8fRac9TPbAtrJpZuY24P+tS1lY8git6NOL8TimUT4qPclJJkiRJkiRJ0q/Fev7cRpcK3Q8//MB9993H+PHjD/r5ihUrcvXVV3PvvfdSqVKlQk53cLF+UUuDzZs2sOzjezlizQfEE95KrU9yejIw6wIykqtzYedULu/ekFoVk6OcVJIkSZIkSZK0T6znz210KWaWL1/OhAkTSEtLIzMzkypVqtCqVSu6du1KUlJSrOMdINYvammSsWouWwb/hTqbJoV1//ZQGZ7KPpM3c46HuAROP7IeVx/dmMNqVYhyUkmSJEmSJElSrOfP3etLMZOamkpqamqsY6iISa7Xijo3fUfOvCFkfnUXZXat/sP7KwR2c0/CIC6IG85D2Rfz0bQQH01bSe/Da3DN0U3o0rgqgUCgkNJLkiRJkiRJkgpTMNYBJOk3AgHiWp1OmT9PI3T0HeQGE/MsaRJcwxuJj/FKwuOkBtYy4ucNXPDyRE57bhxf/Lia7JzwtkOUJEmSJEmSJBUfNrokFV2JZQn0+TvBm6dA81PCKjk2bgZDE+/gzvj3KMduZq3cxs3vzaD3EyN5Y9xSdmVmRzm0JEmSJEmSJKmw2OiSVPRVaQjnD4KLBkP1w/K8PSmQzfXxXzA86TbOCI4hQC4rNu/m/i/m0fWR4fz7u5/ZsH1P9HNLkiRJkiRJkqLKRpek4qNpX7huHPT7JyRWyPP2WoGtPJn4Ah8nPkCbwBIAtu3O4tkRi+j+6HDuGjyLxRt2RDu1JEmSJEmSJClKbHRJKl7iE6HbzXDzNDjywrBKjgouZEjivQyMf4lqbAMgMzuX9yavoO8To7jqzalMWbaZUCgUzeSSJEmSJEmSpAJmo0tS8VShFpz+PFw1DOodleftwUCI8+NHMiLpVq6M+5p4/v9ZXT/8tI5z/jeBM18Yzzez15CTa8NLkiRJkiRJkooDG12Sirf6HeDKH+D0F6BczTxvrxjYzb0J7/Bt4t/oGZx1wOdmpG3l+kHT6fvESN6euJyMrJxopZYkSZIkSZIkFQAbXZKKv2AQjhywdzvDbrdAMCHPkqbB1bydOJCXE54gJbDugM8t27SLez+bQ7eBw/nvDwvYtGNPtJJLkiRJkiRJkg6BjS5JJUdyRej3ENwwEZr1C6vkuLhpfJ94O7fHv09ZMg743Oadmfz3h4V0Gzicez6bzbKNO6ORWpIkSZIkSZKUTza6JJU81ZvChR/BgA+hapM8b08KZHNj/OcMT7qN04JjgQPP6NqTncs7E9Po/cRIrn9nGtPTtkQpuCRJkiRJkiQpEja6JJVchx0PN0yAYx+AxPJ53l47sIWnEp/no8QHaBVY+pvPh0LwzZy1nPn8eM7533i+n7eO3NzQQUaSJEmSJEmSJBUGG12SSrb4JOjx573nd7W9IKySjsEFfJF4Dw/Hv0xV0g96z5RlW7j6rakc++Qo3pucRkZWTgGGliRJkiRJkiSFw0aXpNKhQm04439w5Q9Qt12etwcDIQbEj2Bk0q1cHvcN8WQf9L4lG3Zy1+DZ9Hh0OE8PW8jmnZkFnVySJEmSJEmS9DtsdEkqXRp0hKuGw2nPQbkaed5eMbCL+xLe5uvEu+genP27923ckcl/vl9At4HDuOez2SzduLMgU0uSJEmSJEmSDsJGl6TSJxiEdhft3c6w600QjM+z5LDgKgYlPsKLCf+hQWDd796XkZXLOxPT6PPESK5+aypTlm0mFPIcL0mSJEmSJEmKBhtdkkqv5Epw/L/g+gnQpG9YJcfHTeWHxDu4Lf5DypDxu/eFQvD9vHWc878JnP78eL6ctZrsnNyCSi5JkiRJkiRJwkaXJEGNw+CiT+CC96FKozxvTwpkcXP8ZwxL+iunBscDf7xi68cVW7np3Rn0+vdIXh+3lJ17Dn7elyRJkiRJkiQpMja6JAkgEIDDT4QbJ0Hf+yChXJ4ldQObeSbxWT5IfIhWgWV53r9yy24e+GIeXR8ZxsBv5rN22++vCJMkSZIkSZIk5c1GlyT9UnwS9Lx17/ldR5wXVknn4Hy+SPo7/4p/lSqk53l/ekY2/xu1mJ6PDefWD2fy05q8ayRJkiRJkiRJv2WjS5IOpmIdOPMluGIo1Dkyz9uDhLgwfhijy9zGpXHfEUdOnjVZOSEGT1/FiU+N4eJXJzFqwQZCoT/eBlGSJEmSJEmS9P/Z6JKkP5LSGa4eDqc+DWWr53l7hdBOHkh4k5EV7qVrcG7YjxmzcCOXvjaZE58aw0dTV7AnO+9GmSRJkiRJkiSVdja6JCkvwTg46tK92xl2uRGC8XmWNMhaxnuJ/+LzGv+jYdzGsB81f+12bv94Fj0fHcFzIxaxbVfWoSSXJEmSJEmSpBLNRpckhatMZTjhYbhuHDTuHVbJEdtHMyL5Dt5t8gO1krPDftT67Xt4/Luf6TpwGPd/Ppe0TbvyGVqSJEmSJEmSSi4bXZIUqZrN4eJP4fx3oUrDPG8P5GTQbdVrTKhwJ292WEaDKslhP2pXZg5vjF9Gr3+P4IZB05ietuUQgkuSJEmSJElSyWKjS5LyIxCA5ifDDZOgz72QUDbPkuD2NRwz525GV3uUQSclcGSDymE/LjcEX89ey5nPj+fsF8bz7Zy15OSGDuELkCRJkiRJkqTiz0aXJB2KhGQ4+q9w01Roc05YJYGVk+g+/Bw+rTeIzy5pyvGtahEIhP/Iqcu3cN070+j7xEjenrCM3Zk5+QwvSZIkSZIkScWbjS5JKgiV6sFZr8Dl30LtI8IqCcwcxJGf9eXFRmMZ/ueuXNwlleSE8P+3vGzTLu4dMpduA4fxxNCf2bB9T37TS5IkSZIkSVKxZKNLkgpSale4ZiSc+hSUrZb3/Znb4Yf7aPR+Hx5qnsaEO/tw23GHUb18UtiP3LIri2eGL6L7wOHc+fEsFq7bnv/8kiRJkiRJklSM2OiSpIIWjIOjLoObp0OXGyEYn3fNlqXw/gVUGXweN7fJZuydvXn0rDY0rVk+7Mdm5uTywdQVHPfkaC57fTLjF20kFPIcL0mSJEmSJEkll40uSYqWMpXhhIfh+gnQ9NjwapaMgBe6k/z9XZzXqjxD/3w0r1/WkW5Nwlgd9gsjf97AgFcmcfLTY/lsxiqycnIjzy9JkiRJkiRJRZyNLkmKthqHwUWfwICPoFrTvO8P5cDkF+GZ9gSnvkLvZlV59+oufHlzD04/si5xwUDYj563Jp0/fzCTox8bwUujF5OekXUIX4gkSZIkSZIkFS02uiSpsBzWb+/qrn7/gqSKed+/ewt8/Vd4sScsGUnrepX47/ntGHNHb645ujEVksLYEvH/rNmWwcNfz6fbI8P555fzWLV19yF8IZIkSZIkSZJUNNjokqTCFJ8I3W7ae35X+0uBMFZnrZ8Hb50G718Im5dSt3IZ7j6pBePv6sM9J7egXuUyYT9+x55sXhm7lKMfG8HN781g1sqt+f5SJEmSJEmSJCnWbHRJUiyUrwH9n4ZrR0FKt/Bq5n8Jz3WCH+6HPdupkJzAVT0bM/L2Xjx1/pG0qVcp7Mfn5Ib44sfV9H92HOe+OIGhc9eSkxvK39ciSZIkSZIkSTFio0uSYqlOW7j8azj7dajUIO/7czJh7JPwzFEw813IzSUhLshpR9bj85u68/41XejbvGZEESYv3cw1b0+j7xMjeWvCMnZlZufzi5EkSZIkSZKkwmWjS5JiLRCA1mfCjZOh190QH8ZWhDvWwWfXwyt9YcWU/xsmQJfG1Xj1so78cOvRXNCpAYnx4f9vftmmXfxjyFy6PjKcx76dz7r0jPx+RZIkSZIkSZJUKGx0SVJRkVgWet0JN0+FNueEV7N6Orx6LAy+BtJX7/9w05oVeOTMIxj/tz7c0rcZVcslhh1j2+4snh+5mB6PDufWD2Yyd/W2SL8SSZIkSZIkSSoUNrokqaipVB/OegWu+A7qHBlezawP9m5nOPpxyNq9/8PVyydx63GHMf5vffjXGa1pVL1c2DGyckIMnrGKk58eywUvTWTYT+vI9RwvSZIkSZIkSUWIjS5JKqpSusDVI+C056BcGOduZe2C4f+E5zrBvCEQ+v9NqeSEOC7snMqwW4/h5Us60KlR1YiiTFiyiSvfnMqxT45i0KTl7M7MifSrkSRJkiRJkqQCZ6NLkoqyYBDaXQQ3T4Puf4JgQt41W9Pgw0vgzVNh7exfDRfguJa1+PDarnx+U3dOO7Iu8cFA2HGWbNjJ3z+dQ7eBw3hi6M+s3+45XpIkSZIkSZJix0aXJBUHyRXhuAfhxklw+Enh1SwbAy8eDV/+BXZu/M2nj6hfmafOb8foO3pz7TGNqZAcH3acLbuyeGb4InoMHMHtH/3I/LXpYddKkiRJkiRJUkGx0SVJxUm1JnDBe3DRYKjRPO/7Q7kw9TV4pj1MfAFysn5zS93KZbjrxBZMvKsv95/akpSqZcOOk5mTy0fTVnLCf8dw8auTGPnzekIhz/GSJEmSJEmSVDhsdElScdS0L1w3Fk58DJIr5X1/xjb49m/wQjdY+MNBbymXFM9l3Rsx4q+9+N9F7emQWiWiSGMWbuSy16fQ78nRvD85jYwsz/GSJEmSJEmSFF02uiSpuIpLgM7Xws0zoONVEAjjf+kbF8Cgs2DQubBx0cGHDQY4oXUdPr6+G5/e0I1TjqhDXATneC1cv4O/DZ5N94HD+e8PC9i4Y0/YtZIkSZIkSZIUCRtdklTclasGJz+xd4VXo6PDq1n4HTzfBb77+97VXr+jXUoVnh3QnlG39+KqHo0onxT+OV6bdmby3x8W0m3gcP72ySwWrtsedq0kSZIkSZIkhcNGlySVFLVawSWfw3mDoHJq3vfnZsGEZ+Hp9jDtTcj9/a0G61cpyz2ntGTCXX245+QW1KtcJuxYmdm5vD9lBcc9OZpLX5vM2IUbPcdLkiRJkiRJUoGw0SVJJUkgAC1OgRsnQ9/7IKFc3jW7NsIXt8BLvWD5+D+8tUJyAlf1bMyo23vx3ID2HNmgckTxRi3YwEWvTuLEp8bw0dQV7Mn2HC9JkiRJkiRJ+WejS5JKooRk6Hkr3DwN2g4Ir2btLHj9RPjoctia9oe3xscFOfmIOnx2Y3c+ub4rJ7auTQTHeDF/7XZu/3gW3QeO4JlhC9m8MzP8YkmSJEmSJEn6Pza6JKkkq1gHzngBrhoO9TqEVzN3MDzbEYb/E/bsyPP2o1Kr8sJFRzHyr725vHtDyiXGhR1v4449PPH9AroNHMbfP53N4g15P0+SJEmSJEmS9rHRJUmlQf2j4Mrv4YyXoEKdvO/PzoDRj8OzHWDme5Cbm2dJSrWy3HdqK8bf1Ze7T2pOnUrJYcfLyMpl0KQ0+j4xiivfmML4xZ7jJUmSJEmSJClvNrokqbQIBqHteXDTVOj5V4hLyrtm+xr47Dp4pS+kTQrrMZXKJHDN0U0YfUdvnjr/SNrUqxRRzGHz1zPg5Umc8sxYPp2xkszsvJtskiRJkiRJkkonG12SVNoklYe+98JNk6FF//BqVk+H1/rBx1fA1hVhlSTEBTntyHp8flN3Pry2K/1a1iIQwTlec1en85cPfqTnY8N5fuQitu7yHC9JkiRJkiRJB7LRJUmlVZWGcN7bcOkXUKt1eDVzPtm7neHwf4V1fhdAIBCgU6OqvHRJB0bc1otLuqZSJiH8c7zWpe/hsW9/pusjw/nHkDks27gz7FpJkiRJkiRJJZuNLkkq7RodDdeOhlOehLLV8r4/OwNGPxbR+V37NKxejgdPa82Eu/pwxwmHU6tiGNsn/p/dWTm8NWE5vZ8YydVvTWXikk2e4yVJkiRJkiSVcja6JEkQjIMOV8DN06HrTRBMyLsmH+d37VO5bCI39GrKmDv68OR5bWlZp2LYtaEQfD9vHee/NJFTnhnL4Ome4yVJkiRJkiSVVja6JEn/X5nKcPy/4MZJcPjJ4dXsP7/ryrDP79onMT7IGe3q89UtPXj36s70bV4zovq5q9O59cMf6fHocJ4dvpDNOz3HS5IkSZIkSSpNbHRJkn6rWhO44F24ZAjUbBlezZyP///5XZmRnaMVCATo1qQ6r17WkWG3HcOFnVNITgj/r6j12/fw76EL6PrIMO4aPJuF67ZH9HxJkiRJkiRJxZONLknS72vcC64dAyf/J7Lzu545Cn58P6Lzu/ZpUqM8/zqjDeP/1pe/9juMGhXCP8drT3Yu701O47gnR3PJa5MZtWCD53hJkiRJkiRJJZiNLknSH4uLh45XRn5+16fXwqvHworJ+Xps1XKJ3NSnGWPv7M2/z2lL89oVIqofvWADl742mX5Pjua9yWlkZOXkK4ckSZIkSZKkostGlyQpPAec33VSeDWrpsGrx+09v2vbynw9Nik+jrOPqs83f+rJO1d2pvfhNSKqX7h+B3cNnk23gcN5YujPrE/PyFcOSZIkSZIkSUWPjS5JUmSqNYEL3oOLP4vs/K5nOsCIhyM+v2ufQCBAj2bVef3yTvxwa+TneG3emckzwxfR/dHh3PrhTOau3pavHJIkSZIkSZKKDhtdkqT8adI7wvO7dsOoRw/p/K59mtbce47XxLv6cscJh1O7YnLYtVk5IQZPX8XJT4/lvBcnMHTuWnJyPcdLkiRJkiRJKo5sdEmS8u8353fF511TAOd37VO5bCI39GrKmDt789T5R3JE/UoR1U9auplr3p5GnydG8sa4pezck31IeSRJkiRJkiQVLhtdkqRDt+/8rhvycX7XJ1fl+/yufRLigpx2ZD2G3Nidj67rygmtahMMhF+/fNMu7v9iHl0eGcbDX//Eqq27DymPJEmSJEmSpMJho0uSVHCqN/2/87s+hRotwquZ/dEhn9+1TyAQoGPDqvzv4qMYdXtvrujeiPJJYawy+z/bM7J5afQSjn5sBDe+O53paVsOKY8kSZIkSZKk6LLRJUkqeE36wHVj4eQnoEzVvO/ff35XB/jxg0M6v2ufBlXL8o9TWzLhrj7ce0pLGlQtE3ZtTm6Ir2at4cznx3P6c+P44sfVZOcceiZJkiRJkiRJBctGlyQpOuLioeNVcMuMCM7vWg2fXrN3S8MVUwokRoXkBK7s0YiRf+3N/y5qT8eGVSKqn7liKze/N4OjHxvBi6MWs213VoHkkiRJkiRJknTobHRJkqLrl+d3HXZieDWrpsKrxxbI+V37xAUDnNC6Dh9d143Pb+rOaUfWJT6Cg7xWb8vgkW/m0/WRYdw3ZA7LNh7aNouSJEmSJEmSDp2NLklS4ajeFAa8n8/zux455PO7fumI+pV56vx2jL2zD9f3akKlMglh1+7KzOHNCcvp/cRIrnpzCuMXbyQUChVYNkmSJEmSJEnhs9ElSSpc+Tq/a+DehtesDwvk/K59aldK5s4TmjPhrj788/TWNK5RLuzaUAh++Gk9A16exMlPj+XjaSvZk51TYNkkSZIkSZIk5c1GlySp8O0/v2s6dLkx/PO7Bl9doOd37VM2MZ6LuqTyw1+O4fXLOtKjafWI6uetSeevH/1Ij0dH8PSwhWzasadA80mSJEmSJEk6OBtdkqTYKVMFTnj4/87vOiG8miic37VPMBigd/OavHNVZ779c0/O7VCfxPjw/6rcsH0P//l+Ad0GDudvn8xiwbrtBZpPkiRJkiRJ0oFsdEmSYq96UxjwAVw0OObnd+3TvHZFHju7LeP/1oc/H9uM6uUTw67dk53L+1NW0O/J0Vz86iRG/rye3FzP8ZIkSZIkSZIKmo0uSVLR0bTv3vO7Tvp35Od3zXyvQM/v2qd6+ST+fOxhjL2zD4+ffQTNa1eIqH7Mwo1c9voU+v13NIMmLWd3pud4SZIkSZIkSQXFRpckqWiJi4dOV//f+V03hH9+12fXwSt9YPn4qMRKTojjnA4N+OZPPXn3qs70bV4zovpF63fw90/n0HXgMB79dj5rtu2OSk5JkiRJkiSpNLHRJUkqmspUgRMegRsmhn9+1+oZ8PqJ8MHFsHlpVGIFAgG6Na3Oq5d1ZPhtx3Bxl1TKJMSFXb91VxYvjFxMj0dHcPN7M5ietiUqOSVJkiRJkqTSwEaXJKloq97sF+d3NQ+v5qfP4blOMPReyNgWtWiNa5TnodNbM+GuPtx5QnNqV0wOuzYnN8QXP67mzOfHc/pz4xgycxVZOQW/9aIkSZIkSZJUktnokiQVD037wnXj/u/8rip535+TCeOfhqfbwZRXICc7atEql03k+l5NGHNnb56+oB1tG1SOqH7miq386f2Z9Hx0BM+NWMSWnZnRCSpJkiRJkiSVMDa6JEnFx/7zu2ZAlxshmJB3za5N8NVt8L8esOiHqMZLiAvSv21dPruhG59c35WT2tQmGAi/fm16Bo9/9zNdHhnGXYNnsWDd9uiFlSRJkiRJkkoAG12SpOKnTBU44WG4cRIcfnJ4NRt+gnfOgnfOhvXzoxovEAhwVGpVnr/wKEbd3purejSiQlJ82PV7snN5b/IK+j05motemcTw+evIzQ1FMbEkSZIkSZJUPNnokiQVX9WawAXvwqVfQO024dUs+h5e6LZ3ldfOTdHNBzSoWpZ7TmnJhLv78kD/VjSqXi6i+rGLNnLFG1Pp+59RvDl+GTv2RG8LRkmSJEmSJKm4sdElSSr+Gh0N14yC/s9C+Vp53x/K2Xtu19PtYPwzkL0n6hHLJ8VzabeGDLv1GF67rAM9mlaPqH7pxp3c9/lcuj48jH9+OY8Vm3dFKakkSZIkSZJUfNjokiSVDME4aH8x3DwNev4V4pPzrtmzDYbeA891hp++gFD0twcMBgP0aV6Ld67qzHd/PpoLOjUgKT78v46378nmlbFLOebxEVz79lQmLdlEqBByS5IkSZIkSUWRjS5JUsmSVAH63gs3TYU254RXs2UpfHARvHEKrJ4Z1Xi/dHjtCjxy5hFMuKsvtx9/OLUqJoVdmxuC7+au47yXJnLy02P5eNpK9mTnRDGtJEmSJEmSVPTY6JIklUyVG8BZr8CVP0D9TuHVLB8LL/WCz26A9DVRjfdLVcslcmPvpoy9sw9PX9COIxtUjqh+3pp0/vrRj3QfOJwnv1/A+u0Z0QkqSZIkSZIkFTE2uiRJJVuDjnDlUDj7NaiUEkZBCGYOgmfaw8hHIbPwzsJKiAvSv21dPruxO4Nv6MapbesSFwyEXb9xRyZPDVtIj4EjuPXDmcxZtS2KaSVJkiRJkqTYs9ElSSr5AgFofRbcNBn6/gMSy+ddk7ULRj4Mz3aAHz+A3Nzo5/yF9ilVeOaCdoy9szc39GpC5bIJYddm5uQyePoqTnlmLOe+OIFv56whJ9dzvCRJkiRJklTy2OiSJJUeCWWg521w83RofwkQxmqp9FXw6TXwSl9Imxj1iL9Wp1IZ7jihORP+1pdHzmxDs5phNOl+YfLSzVz3znSOeXwEL49ewrbdWVFKKkmSJEmSJBU+G12SpNKnQi3o/wxcNwYaHR1ezerp8Nrx8OGlsGVZVOMdTJnEOC7olMLQvxzN21d2ok/zmhHVr9yym399/RNdHxnGfUPmsGTDjigllSRJkiRJkgqPjS5JUulVuw1c8jlc8D5UaxpezbzP4NlO8P19kJEe1XgHEwgE6NmsBq9d1pHhtx3DJV1TKZsYF3b9rswc3pywnD5PjOKKN6YwZuEGQiG3NZQkSZIkSVLxZKNLklS6BQJw+Ilw/QQ4YSAkV867JmcPjPsvPNMepr4OuTnRTnlQjWuU58HTWjPhrr78/aQW1KtcJqL64fPXc/Grkzn+v6N5b3IauzNj83VIkiRJkiRJ+VUqGl05OTl8+eWXLFmyJNZRJElFVXwidLkebpkBna+DYHzeNTs3wJd/hv/1hMXDox7x91Qqk8DVRzdm1O29+N9F7enUqGpE9QvW7eCuwbPpOnAYj307nzXbdkcpqSRJkiRJklSwik2ja/To0YwePTpftRkZGfTv359mzZpxxBFH8O233xZwOklSiVG2Kpz4KNwwEQ47Mbya9XPh7TNg0LmwYUF08/2B+LggJ7Suw4fXduXLm3twZvt6JMaF/1f91l1ZPD9yMT0fHcHN781getqWKKaVJEmSJEmSDl0gVEwO5ggGgwSDQbKzsyOu3blzJxUqVDhgrPfff5+zzz67ICOqBJs7dy6tW7fefz1nzhxatWoVw0SSCs2SkfDd32HdnPDuD8RBxyuh1117m2Yxtn57BoMmpjFo0nI27siMuP7IBpW5okcjTmxdm4QImmaSJEmSJEkqHWI9f16sGl2BQICcnMjPD8nKyuK+++7j559/5ptvviEjI4M6deqQlpZGXFxcFNKqpIn1iyopxnJzYMY7MPyfsHN9eDXJleCYO6Hj1Xu3RYyxPdk5fPHjGl4bu5R5a9Ijrq9dMZmLu6YyoFMKVcrF/uuRJEmSJElS0RDr+fNS0ej6pTlz5tClSxd2797N8OHDOeaYYwoooUqyWL+okoqIPdthzH9gwnOQsye8mqpNoN9DcPhJEAhEN18YQqEQk5du5rVxS/l+3jpyI/wuICk+yBnt6nFZ94Y0r10xOiElSZIkSZJUbMR6/rzU7UHUunVrzjzzTGDvH74kSWFLqgDH3gc3TYFWZ4ZXs3kxvD8A3jwV1syKbr4wBAIBOjeuxosXd2DU7b25qkcjKiTFh12/JzuX96es4IT/jmHAyxMZOnctOZF2yyRJkiRJkqQCUuoaXQB16tQBYNu2bTFOIkkqlqqkwjmvw5XfQ70O4dUsGwMvHg1DboT0NdHNF6YGVctyzyktmXB3Xx7o34qG1cpGVD9+8SaueXsaxzw+gpdHL2HbrqwoJZUkSZIkSZIOrlQ2umbOnAlAUlJSbINIkoq3Bp32NrvOfAUq1g+jILT3rK9n2sPIgZC5M+oRw1E+KZ5LuzVk+G29ePXSDvRoWj2i+pVbdvOvr3+iyyPDuOez2Sxavz1KSSVJkiRJkqQDhb9XUSFIS0vL854VK1YQ6bFioVCIjIwMVq1axeeff873339PIBCgfv1wJiUlSfoDwSAccQ40P3nv2V1jn4SsPBpYWbtg5CMw7Q3ocy+0vWDvODEWDAbo26IWfVvU4ue123lj/FIGT1/FnuzcsOp3Z+XwzsQ03pmYRs9m1bm8e0N6HVaTYDD2Z5NJkiRJkiSpZAqEIu0aRVEwGCQQOPhk2L6Yv/f5SIRCIYLBIMuWLbPZpbDE+jA9ScXI9rUw/CGYMQgI86/Y2m2g37+g8TFRjZYfm3dm8t7kNN6asIx16Xsirk+tVpZLuzbknA71qZCcEIWEkiRJkiRJiqVYz5/H/sfHDyIUCv3m1x99LpJfsLdZdvbZZ9vkkiQVvAq14bTn4NpR0LBneDVrZ8Nb/eHd82HDgujmi1DVconc2LspY+/sw9MXtKN9SuWI6pdv2sWDX86jy8PDuP/zuSzZsCM6QSVJkiRJklQqFclGVzSFQiFOPPFEXnrppVhHkSSVZHXawqVfwHmDoGrj8GoWfAPPd4Gv/go7N0U3X4QS4oL0b1uXwTd0Z8iN3TmjXT0S4sJfZb0zM4c3xi+jzxOjuOz1yYz8eT25uUVmUbkkSZIkSZKKqSK1deHll1/+u5978803CQQCXHLJJRGPGxcXR4UKFWjUqBF9+vQ5YAmdFI5YL72UVMxlZ8LUV2HkQMjYGl5NUiU4+jbodC0kJEc1Xn6t357Bu5P2nsm1cUfk2xo2rlGOy7o15Mz29SmfVKSODZUkSZIkSVKYYj1/XqQaXX9k3/ldOTk5sY6iUijWL6qkEmLXZhj9b5j8EuRmhVdTOQWOvR9anQkFcE5lNGRm5/L17DW8Pm4pP67cFnF9haR4zu3YgEu6ppJarVwUEkqSJEmSJClaYj1/Xuq2LpQkKWbKVoUTHoYbJ0GL/uHVbE2Dj6+AV/vBisnRzZdPifFBTm9Xj89u7M7gG7rRv21d4oPhN+W278nm1bFL6fXvkVz15hTGLtxIMfk5HEmSJEmSJMVYsWl0paSkkJqaGusYkiQdumpN4Ly34fJvoG778GpWToZXj4OPLoMty6KZLt8CgQDtU6rw9AXtGHtnH27u05Rq5RLDrg+F4Ief1nPRq5Po9+RoBk1azq7M7CgmliRJkiRJUnFXbLYulGIp1ksvJZVgubkw5xMY9gBsWxFeTVwidL4Oet4GZSpHNd6hysjK4ctZe7c1nLs6PeL6isnxnN8phYu7pNKgatkoJJQkSZIkSdKhiPX8uY0uKQyxflEllQJZu2Hi8zDmScjcHl5NmarQ6y7ocDnEJUQ33yEKhUJMXb6FN8Yt49u5a8nJjezbj2AAjmtZi8u6NaJL46oEiuh5ZZIkSZIkSaVNrOfPi83WhQWpT58+9O3bN9YxJEn6/xLK7F2hdcsM6HAFBML4K3r3Zvjmdni+K8z/eu/ef0VUIBCgY8OqPHdhe0bf0ZvrezWhctnwm3O5Ifhu7joueHkiJz41hg+mpJGRlRPFxJIkSZIkSSoOSuWKrmAwSCAQICfHCTKFJ9YdaUml0PqfYOi9sOj78Gsa9oTj/wV12kYvVwHKyMphyMxVvD5uGfPXhrmK7Rcql03ggv/b1rBu5TJRSChJkiRJkqS8xHr+vFSu6JIkqcir2QIu+hgu/hRqhvmNwbIx8OIx8On1kL46uvkKQHJCHOd1TOGbP/Xkvau7cHyrWgQj2JFw664sXhi5mJ6PjeDGQdOZsmwzpfDndyRJkiRJkkq1+FgHyK/du3cze/Zs1q1bx/bt28nOzo51JEmSCl6TPnDdGJg5CIb/E3asy6MgBD++C3M/he63QLdbIKl8oUTNr0AgQNcm1ejapBorNu/i7YnLeX9yGukZ4f3dnpMb4qvZa/hq9hpa1a3I5d0bccoRdUhOiItyckmSJEmSJMVasdu6cMiQITz99NOMHj2a3NzcfI0RCoXculARifXSS0kCYM8OGPcUjH8GsneHV1O+NvT5Oxx5IQSLT+NnV2Y2n85YxRvjlrFw/Y6I66uVS2RA5xQu6pJKrYrJUUgoSZIkSZIkiP38ebFpdIVCIa644greeuut/df5EQgEbHQpYrF+USXpANtW7V3d9eN7QJh/H9ZqDf3+CU16RzVaQQuFQoxbtIk3xi9l2Pz1RPrXf3wwwElt6nBZ94a0a1CZQCCCvRElSZIkSZKUp1jPnxebM7oeffRR3nzzzf0NrvxOVBWTvp4kSb+vUj044wW4ZiQ07Blezbo58PbpMOgcWD8/mukKVCAQoEez6rxyaUdG/rUXV3RvRIWk8Hdezs4N8fmPqznz+fGc/tw4Pp2xkszs/K0IlyRJkiRJUtFTLFZ0ZWRkUKdOHdLT04G9zaqKFSvSu3dvWrRoQZ06dShbtizx8eFNfF1++eWu6FJEYt2RlqTfFQrBz9/A9/fCpkXh1QTi4KjLoNddUL5GVONFw4492QyevpI3xi1jycadEdfXqJDEgE4pXNg5hZpuayhJkiRJknRIYj1/XiwaXcOGDeO4447bv4rrmmuu4d///jflypXL13jBYNBGlyIS6xdVkvKUkwVTX4eRj8DuzeHVJFaAnrdClxsgofg1fHJzQ4xeuIE3xi9j5M8bIq5PiNu7reGl3dzWUJIkSZIkKb9iPX9eLLYuXLBgwf7ft23blhdeeCHfTS5JkkqkuATofA3cMgO63QxxiXnXZG6HYQ/Asx1h9sdEfABWjAWDAXodXpM3Lu/E8NuO4dKuqZRLjAu7PisnxJCZe7c1PO25cXwybSUZWf4QjCRJkiRJUnFSLBpdW7du3f/7s88++5DHu+SSS7jkkksOeRxJkoqcMpWh3z/hxsnQ6ozwaralwSdXwit9IW1iVONFS+Ma5XngtNZMuLsv/zilJanVykZUP2vlNm776Ee6DxzO49/NZ8223VFKKkmSJEmSpIJULBpdFSpU2P/7Bg0aHPJ4b7zxBq+//vohjyNJUpFVtRGc8wZcMRTqdwyvZtU0eO14+PAS2LwkqvGipWJyAlf0aMTw23rx6qUd6NmsekT1m3Zm8tyIxfR4dAQ3DJrG5KWbKQa7PEuSJEmSJJVaxaLR1a5du/2/37VrVwyTSJJUzKR0hiu/h7Nfg8op4dXMGwLPdoLv/g67t0Q3X5TEBQP0bVGLt6/szPd/OZoLO6dQJiH8bQ1zckN8PXst5744gZOeHsv7k9PYnem2hpIkSZIkSUVNsWh0devWjUaNGgEwderUQx4vLS2NtLS0Qx5HkqRiIRCA1mfBjVPguAchqWLeNblZMOFZeOpImPA8ZGdGPWa0NKtVgX+d0YaJd/Xl7ye1oEHVMhHV/7Qmnb8Nnk3XgcN45OufWLHZH7qRJEmSJEkqKgKhYrIfz+eff87pp59OhQoVmD9/PnXq1Mn3WMFgkGAwSHZ2dgEmVEk2d+5cWrduvf96zpw5tGrVKoaJJOkQ7NwIIwfC1NcgFOYqpSoN4dj7oeXpextnxVhObogR89fz5oRljFm4MeL6YAD6tqjFZd0a0q1JNQLF/M9DkiRJkiTpUMR6/rxYrOgC6N+/P//+97/ZsWMHp556KuvXrz+k8YpJf0+SpIJXrjqc/G+4YSIcdmJ4NVuWwUeXwav9IG1SNNNFXVwwwLEt925r+MOtx3BJ11TKJYa/rWFuCL6ft44LX5lEvydH8/bE5ezc4w/PSJIkSZIkxUKxWdG1z9ChQ7nxxhvZuHEjN954I2eccQZt2rQhMTEx7DGCwSCBQICcHM/aUHhi3ZGWpKhaMgqG/h3Wzg6/pkX/vSu8qjWJWqzCtD0ji4+nreStCctZunFnxPUVkuM556gGXNI1lYbVy0UhoSRJkiRJUtEU6/nzmDe6GjduHHFNVlYWq1at2r9VUFxcHJUrV6ZcuXJhbR+0bNkyG12KSKxfVEmKutwc+PF9GPYg7FgbXk0wATpeBcfcAWWrRjdfIcnNDTF64QbeHL+MkQs2EOl3SYEA9DqsBpd2a8jRzWoQDLqtoSRJkiRJKtliPX8e80bXvtVVkcTY18w6lOg2uhSJWL+oklRoMnfC+Gdh3FOQFebKpqRKcPRt0OlaSEiObr5CtGzjTt6euJwPp65ge0bkWxM2ql6OS7qmcvZR9amQnBCFhJIkSZIkSbEX6/nzItPoKkyhUMhGlyIS6xdVkgrd9nUw8mGY/haEcsOrqZQCx94Hrc6EYLE5BjRPO/dk8+mMVbw5fhkL1++IuL5cYhxnHVWfS7o2pGnN8lFIKEmSJEmSFDuxnj8vMo2ulJSUQnvm8uXLbXQpIrF+USUpZtb/BN//AxYODb+mbjvo909o2CN6uWIgFAoxYfEm3hi/jB9+WkduPr6D6tmsOpd2bUjv5jWJc1tDSZIkSZJUAsR6/jy+0J6Uh6VLlxbas4Il6KfMJUmKqpot4MKPYMlIGHoPrJ2dd83qGfDGyXD4yXDcA1C9WdRjFoZAIEC3ptXp1rQ6Kzbv4p1Jy/lgygq27soKe4wxCzcyZuFGGlQtwyVdGnJuhwZUKuu2hpIkSZIkSflVZFZ0Febqqlg8U8VbrDvSklQk5ObCrA9g+EOQviq8mkAcdLgcjvkblK8R3XwxsDszh89/XMUb45fz05r0iOvLJMRxert6XNotlea1K0YhoSRJkiRJUnTFev7cpU2SJCk8wSAceQHcPA36/gMSK+RdE8qBKa/A0+1gzBOQtTv6OQtRmcQ4zuuYwte39ODDa7tycps6EW1JuDsrh/cmp3HCf8dw/ksT+HbOGrJzwjwTTZIkSZIkSbHfuvDJJ58s9GeOGDGi0J8pSVKJkVAGet4G7S6BUQNh6ut7G1p/JHM7DHsQprwKfe6FI87b2zgrIQKBAJ0aVaVTo6qs2babQRPTeG9yGpt2ZoY9xsQlm5m4ZDN1KyVzUddUzu+YQtVyiVFMLUmSJEmSVPzFfOtCqTiI9dJLSSrSNiyAH+6Hn78Kv6b2EdDvIWjcK1qpYi4jK4evZq3hzQnLmLVyW8T1ifFBTmtbl0u7NaR1vUpRSChJkiRJknToYj1/XnJ+lFqSJMVGjcPggnfhsq+hbrvwatbOgrdOg0HnwPqfopsvRpIT4jjrqPoMubE7g2/oxmlH1iUhLvxtDTOzc/lo2kpOeWYsZ78wni9+XE2W2xpKkiRJkiQdoNis6OrTpw+BQIBhw4bFOopKoVh3pCWp2MjNhbmD4YcHYFtaeDWBILS/BHrdDRVqRTdfjK3fnsG7k9IYNCmNDdv3RFxfs0ISF3ZOZUDnFGpUSIpCQkmSJEmSpMjEev682DS6gsEggUCAnJw8zgCRoiDWL6okFTtZGTD5RRj9BOwJc9u+hHLQ/U/Q7SZILBfdfDGWmZ3LN3PW8Ob4ZUxP2xpxfUJcgJPb1OHSbg05skFlAoHwV4pJkiRJkiQVpFjPn9voksIQ6xdVkoqtXZth1GMw5WXIzQ6vpnxt6HMPHDkAgnHRzVcEzF65jTfGL+OLWavJzI58a8I29SpxSddUTm1bl+SEkv/nJUmSJEmSipZYz58Xu0bXsmXLKIjIgUCA8uXLU6VKlQJIp5Iu1i+qJBV7mxbDD/fDT5+HX1OzFfR7EJoeG7VYRcmmHXt4f8oK3pm4nDXbMiKur1I2gXM7NuCizqk0qFo2CgklSZIkSZJ+K9bz58Wu0RWNcZs1a0avXr244oor6NChQ4E/Q8VfrF9USSox0ibB0L/Dyinh1zTpA8c9BLVb531vCZCdk8vQeet4Y/wyJi/dHHF9IAB9m9fikq6p9GhanWDQbQ0lSZIkSVL0xHr+vNg1uqIVd18T7dRTT+W1116jatWqUXmOiqdYv6iSVKKEQjDvs70rvLYsC7MoAEdeCH3+DhXrRi9bETNvdTpvTVjGZzNXkZEV+baGjauX4+KuqZx1VH0qJidEIaEkSZIkSSrtYj1/XqwaXfv8emXXH30J4dy7755QKEQgEKBhw4aMHj2aevXqHUpklSCxflElqUTK3gNTXtl7hlfG1vBq4stAt5uh+y2QVCGq8YqSrbsy+WDKCt6euJyVW3ZHXF82MY4z2tXjkq4NObx26flzkyRJkiRJ0Rfr+fNi0+i67LLLCAQCZGRk8PHHH5OTkwNAjRo1aNmyJdWqVaN8+fL7V33t3LmTTZs2MXfuXDZs2ADsbZadfvrpVKiwd4Jn165dbNu2jZ9//pnly5cD7K/v0qULo0ePJj4+PjZfsIqUWL+oklSi7d4Co/8Nk1+CnMzwasrVhN53QbtLIK70/F2dkxti+Pz1vDVhGWMWbszXGJ0bVeXSbg05rmUtEuKCeRdIkiRJkiT9gVjPnxebRhfA4sWLOeuss5g3bx7XXXcdV111FUcccUSedXPmzOHll1/mf//7H40bN2bw4MG0aNHigHtWr17Na6+9xmOPPcaOHTsIBAK88sorXH755dH6clSMxPpFlaRSYcsyGPYgzPkk/Jrqh0O/h6BZv72HU5Uiizfs4O0Jy/lk2kq278mOuL52xWQu7JzC+Z1SqFEhKQoJJUmSJElSaRDr+fNi0+jasWMH7dq1Iz09na+++ooOHTpEPMa0adM46aSTKFOmDDNnzqRy5cq/uWfhwoX06tWLNWvW0KpVK2bPnl0A6VXcxfpFlaRSZeVUGHoPpE0Iv6ZhT+j3T6h7ZNRiFVU792Tz6YxVvDVhGQvW7Yi4PiEuwElt6nBJ14a0T6n8m22fJUmSJEmS/kis58+LzX41d955J0uWLOHNN9/MV5ML4KijjuLNN98kLS2N22+//aD3NGvWjJdeegmAefPmsWbNmnxnliRJ+VC/A1z+DZw3CKo2Ca9m2Rh46RgYfA1sTYtuviKmXFI8F3VJ5bs/H817V3fhpDa1iQuG36zKygkxZOZqznphPKc8M5YPp6wgIysnioklSZIkSZIKTrFY0ZWRkUHt2rVJSUlh1qxZhzxe27ZtWbp0KevWraNMmTIHvadp06YsXbqUjz/+mDPOOOOQn6niLdYdaUkqtXKyYOrrMPIR2L05vJq4ROh8LfS8DcpUiW6+ImrNtt28OymN9yansXFHmOee/ULlsgmc26EBF3VOJaVa2SgklCRJkiRJJUWs58+LxYqu0aNHk56eTs+ePQtkvB49erBz505Gjx79u/fse9batWsL5JmSJCkf4hKg8zXwp5nQ4y8QF8ZZUjmZMP4ZeOpIGP8sZO+Jdsoip06lMtzW73DG/a0PT51/JO1TKkdUv3VXFi+NXsIx/x7BlW9MYeTP68nNLfI/GyVJkiRJkkqhYtHoWrlyJQBVqhTMT2XvO5tr37gHU7t2bQC2bt1aIM+UJEmHILkSHHs/3DwVjjgvvJqMrTD07/BsB5j1EeTmRjNhkZQUH8dpR9Zj8A3d+fLmHpzboT5J8eF/+xcKwbD567ns9Sn0eWIkr45dyrbdWVFMLEmSJEmSFJli0ehav349UHCrq9atWwfAxo0bf/eeYHDvH018fHyBPFOSJBWAyilw5ktwzUhoGOZK761pMPgqeLkXLBkVzXRFWut6lXjs7LZMvKsvd5/UnAZVD7598+9ZtmkXD305jy4PD+OuwbP5aU16lJJKkiRJkiSFr1g0uvat5Bo6dOghjxUKhfaPs29l18GsXr0agPLlyx/yMyVJUgGr2w4u/QIu+ACqHx5ezZof4a3+8M7ZsG5edPMVYVXKJXLN0U0Y+dfevHppB445rEZE9buzcnhvchonPjWGc1+cwJezVpOVU/pWy0mSJEmSpKKhWDS6GjVqBMCqVav473//e0hjPfnkk/u3LNw37sGMHTsWgPr16x/S8yRJUpQEAnD4CXD9eDj1KShfK7y6Rd/D/7rDkBshfXV0MxZhccEAfVvU4s0rOjHir724onsjKiRHtpJ98tLN3PTuDHo8OpynfljI+vSMKKWVJEmSJEk6uEAoFCryJ4tnZmZSo0YNduzYQVxcHI8//jh/+tOfIh7nP//5D3/729/Izs6mYsWKrF+/nsTExN/c99lnn3HmmWcSCASYO3cuzZs3L4gvo0hbunQp06dPZ926dWzdupXk5GSqVKlC8+bNadeuHcnJyQX6vF27djFu3Djmz5/Ptm3bKFu2LI0aNaJ79+7UrFmzQJ9VEObOnUvr1q33X8+ZM4dWrVrFMJEk6Tcyd8KE52DcU5C5I7ya+DLQ9Qbo/mdIrhjVeMXBrsxsPpuxmrcmLGP+2u0R18cHA5zYpg6XdE2lQ2oVAoFAFFJKkiRJkqSiJNbz58Wi0QVw66237l/NFQgEaNmyJddeey0nnHACTZs2/d26BQsW8M033/DSSy8xf/58QqEQgUCAv/zlL/z73//+zf1Dhw7l3HPPJT09nSpVqrBp06ZofUkxlZuby7Bhw/jwww/5/PPP95+DdjAJCQn079+fW265haOPPvqQnrtu3Truv/9+3nzzTXbv3v2bzweDQfr168dDDz1Ehw4dDulZBSnWL6okKQI71sPIgTDtDQjlhFdTthoc8zc46jKI/+0PwZQ2oVCIKcu28OaEZXw3Zy3ZuZF/u9iiTkUu7ZrKaUfWo0xiXBRSSpIkSZKkoiDW8+fFptG1Y8cOWrZsyapVq9gXed9PCScnJ9OwYUMqVKhAcnIyGRkZpKens2zZMvbs2QPAL7/M1NRU5syZQ7ly5fZ/7JVXXuGNN95gwoQJ+5thp59+Op988kkhfpXRFwqFeO2113j88cf5+eef9388Pj6erl27csQRR1C5cmXS09OZOXMmEyZMIDs7e/99l112Gc8880y+zi4bPnw455xzDps3bwagXLlynHTSSTRq1Ih169YxbNiw/dtKBoNBHn74Ye68885D/IoLRqxfVElSPmxcCD/cD/O/DL+mamPoex+0PG3v1ohiXXoG705K493JaWzYvifi+orJ8ZzboQEXd00ltVq5vAskSZIkSVKxEuv582LT6AL4+eef6dWrF+vWrSMQCHCw6Hl9vHbt2owePfo3q8C6du3KpEmTDrj/3Xff5bzzziv4LySGMjIyKFOmzAEfO/vss3nyyScPeh7ZokWLuPrqqxk5cuT+j/Xs2ZNvv/2WsmXLhv3cESNGcOKJJ+5vPPbv359XX32V6tWr778nMzOTf/3rXzz44IP7P/bQQw9xzz33hP2caIn1iypJOgRpE2HovbBycvg19TvCcQ9Batfo5SpmMrNz+XbuWt4av4ypy7dEXB8IQK/DanBJt4Yc06wGwaCNREmSJEmSSoJYz58Xq0YXQFpaGpdddhkjR44M+9yHfV9i7969ef3110lJSfnNPS+88AJpaWn7rwOBAPfddx9JSUkFE7yI+HWj6+KLL+att976w5qsrCyOO+44Ro0atf9j11xzDS+++GJYz1y/fj2tW7dmw4YNAPTq1YuhQ4eSkJBw0PvvuusuBg4cCOz97/Dtt9/Sr1+/sJ4VLbF+USVJhygUgp8+37vCa/OS8Ouan7J3hVeNw6IWrTiau3obb09YzmczV5GRlRtxfWq1slzcJZVzjmpApbIH/35AkiRJkiQVD7GePy92ja59PvzwQ5599lnGjh2b5709e/bkpptu4pxzzimEZEXbLxtdVapUYcmSJVSuXDnPusWLF3PYYYeRm7t3MisYDDJ79mxatmyZZ+0NN9zACy+8AOw972vWrFk0b978DzO2bNmSpUuXAtCqVSt+/PFH4uJid75HrF9USVIBycnae3bXyIGwa2N4NYE4OOrSvWd4VagV1XjFzbZdWXw0bQVvTVhO2uZdEdcnJwQ5rW09Lu6aSut6laKQUJIkSZIkRVus58+LbaNrn3Xr1jF+/Hjmzp3L5s2b2b59OxUqVKBq1aq0atWKbt26UauWk1L7/LLRddVVV/Hyyy+HXduvXz++//77/df3338/99133x/WLFq0iBYtWuw/56t///4MGTIkz2c9/vjj3HHHHfuvX3vtNS6//PKwsxa0WL+okqQClpEO45+G8c9C9u7wahLKQfc/QdcbISnysypLstzcEKMWbOCtCcsYuWAD+fnusl1KZS7ukspJbeqQnBC7H26RJEmSJEmRifX8eXyhPSlKatWqxRlnnMEZZ5wR6yjFTo8ePSK6v2vXrgc0usJZTffKK6/sb3IBXHjhhWE9a8CAAdx55537t5188cUXY9rokiSVMMkVoc890OEKGPEwzBwEoTy24MvaCSMfhqmvQq+7oN3FEFfsv5UqEMFggN7Na9K7eU2WbdzJOxOX8+HUFaRnZOdd/H9mpG1lRtpW/vnVT5zboQEXdk6hQdXwzwOVJEmSJEmlUzDWAVS4EhMTGTFiBCNGjKB///4R1dapU+eA67Vr1+ZZ88knnxxw3atXr7CeVa9ePZo1a7b/evLkyaxYsSKsWkmSwlaxLpz2LFw3DpqFeR7kjnXw5Z/hha4w/2vytXypBGtYvRz3nNKSSXcfy8Az29CiTsWI6jfvzOR/oxZz9OMjuPKNKYz8eT25uf4ZS5IkSZKkgyuVja7Ro0czevToWMeIiWAwSK9evejVqxdVqlQ5pLH2ndf1e+bNm8eiRYv2X6emplKzZs2wx+/UqdP+34dCIb744ovIQ0qSFI5aLeHCj+CSz6HOkeHVbFwA718Ab5wMK6dFNV5xVCYxjvM7pfD1LT34+LqunNq2LvHBQNj1oRAMm7+ey16fQu8nRvLy6CVs3ZUZxcSSJEmSJKk4KpWNrl69etGnT59Yxyh2NmzYcMD1L1dcHcyMGTMOuG7RokVEz/v1Hp4zZ86MqF6SpIg1PgauHgFnvQqVU8KrWT4OXukDH10Gm5dENV5xFAgE6NCwKs9c0I7xf+vDX449jJoVkiIaY/mmXfzr65/o/PAw/vrRj8xauTU6YSVJkiRJUrFTKhtdwP6znxS+WbNmHXB9/PHH/+H9c+fOPeC6fv36ET2vXr16fzieJElREQxCm7Phpqlw/MOQXDm8urmfwrOd4Ju/wc5NUY1YXNWsmMyfjm3GuL/14fkL29OlcdWI6vdk5/LxtJX0f3Ycpz07lo+nrSQjKydKaSVJkiRJUnFQahtdikx2djbDhg3bf12uXDnOP//8P6yZP3/+Ade/blzl5df3/3o8SZKiKj4Jut4If5oJ3W6BuDBWIeVmwaQX4OkjYcx/IGt3tFMWSwlxQU5qU4f3r+nK9385mku6plI+KT6iMX5cuY2/fvQjXR4ZxsNf/0Tapl1RSitJkiRJkoqyyGYUoiQ9PZ0PPviA3Nxczj333IOeHeVWg7E1ZMgQtmzZsv/6lltuyfOMr82bNx9wXbFiZIfR//r+rVu3EgqFCATCP9/jYNavX/+bbRjz8suzxiRJpUyZKtDvIeh0NQz/F8x6P++aPekw7AGY8gr0/ju0PR+CcdHPWgw1q1WBB09rzR0nNOezGat4e8Jyfl63Pez6rbuyeGn0El4es4Reh9Xg4q6pHHNYTeIiOA9MkiRJkiQVX4FQjPfw27BhAx07dmTFihUA1K1bl2nTplGzZs0D7gsGg4fc4NhnX7MkJ8etbsIRCoXo2LEj06ZNAyAlJYW5c+dSvnz5P6w76qijmD59+v7rZ599lhtvvDHs586ZM4c2bdoc8LEdO3ZQrly5CNL/1v33388DDzxwSGPMmTPnN2eISZJKiTU/wtB7Yemo8GtqtYbjHoAmfaGAvp8pqUKhEFOWbeGtCcv4ds5asnMj/1a1QdUyXNg5lXM7NKBqucQopJQkSZIkSfvMnTuX1q1b778u7PnzmG9d+MEHH5CWlgbsndhYvXo1H374YYxT6ZdeffXV/U2uYDDIa6+9lmeTC2D79gN/Gjs5OTmi5x7s/l+PKUlSoavTFi4ZAhd9AjXD/KZt3Rx45yx4+/S9jTL9rkAgQKdGVXl2QHvG39WHW487jNoVI/seYsXm3Qz8Zj5dHhnGrR/MZEbaFs9nlSRJkiSphIp5o6tOnTr7f79vxdYvP/ZroVDokH/F0k033UQgEIj6r/vvv79A8i5evJhbb711//V9991H3759C2Ts/Ij1fz9JkoC9q7KaHgvXjYHTX4CKYZ5DuWQkvHg0DL4GtqZFNWJJULNCMrf0bcbYO3vzv4va071ptYjqM7NzGTxjFWc8P55Tnx3Lh1NWsDvTFf2SJEmSJJUkMT+j66yzzuL666/nxRdfJBQKcc0113DWWWf97v25ubmH/MxgMOb9vWJhx44dnHnmmftXUZ1//vnce++9YddXqFDhgOuMjIyInn+w+389Zn7ccMMNnHPOORHVLFq0iNNPP/2Qny1JKmGCcXDkAGh1Bkx8AcY+ufd8rrzM+gDmfrb33K+et0HZqlGPWpzFxwU5oXUdTmhdh0Xrd/DOxOV8Mm0l2/dkhz3GnFXp3PHJLP719U+cc1R9LuySSqPqh7YdsiRJkiRJir2YN7oAnnvuOR5//HEAypYtG+M0AsjKyuK8885j1qxZABx77LG88cYbEZ2T9uvtDffs2RNRhl83ugKBwCGfzwVQs2bN35wBJ0nSIUkoAz1vhfaXwujHYcorkJv1xzU5e2DCszD9bej5F+h83d5x9Iea1izP/f1bcfvxhzNk5mremrCM+WvD39p42+4sXhm7lFfGLuXow2pwcZdU+jSvSVzQs9MkSZIkSSqOikSjC0pPg+v666/nhBNOiPpzDjvssHzX5uTkcNFFF/H1118D0LNnT4YMGUJSUlJE41SteuBPp6enh/ET7n9wf+XKlSNqtEmSVOjKVYMTB0Lna2DYgzD307xr9myDH+6HyS9D77uh7QV7V4rpD5VLimdA5xQu6NSAacu38PbE5Xw9ew1ZOeFvczx6wQZGL9hAvcplGNA5hfM6NqB6+ci+35EkSZIkSbFVZBpdebnkkksKrMlRkGNFqlWrVrRqFebB9TGQk5PDxRdfzIcffghAnz59+OKLL/LViGzevPkB16tWrYqo/tf3/3o8SZKKrKqN4Zw3oOtNMPReSBufd036KhhyI4x/Fo69Hw47fu9ZYPpDgUCADg2r0qFhVe45uSUfTl3BoInLWb0t/C2TV23dzePf/cxTPyzkpDa1ubhrKu1TqvgDNpIkSZIkFQPFptH1xhtvFMmxSpLs7GwuuugiPvjgA+DQmlwArVu3PuB65cqVEdX/utH16/EkSSry6neAy7+GBd/C9/fBxp/zrtnwE7x3HqR2h+Me3DuGwlKjQhI39m7KtUc3Zvj89bw9cTljFm4Muz4zJ5fPZq7ms5mraVmnIhd3TeW0I+tSNrHYfMssSZIkSVKpE4x1ABUN2dnZDBgwoMCaXADt2rU74HrevHkR1c+ZM+eA67Zt2+Y7iyRJMRMIwOEnwvXj4ZT/Qvla4dUtHwev9IUPLoaNi6IasaSJjwvSr1Vt3r6yM8NvO4YrezSiYnJkzap5a9K5a/BsOj88jAe+mMviDTuilFaSJEmSJB2KQCgUCv8gA5VI2dnZnH/++XzyySdAwTS59mnatCmLFy/ef71u3Tpq1qwZVu3hhx/OggUL9l8vX76clJSUQ86UH3Pnzj1gRdmcOXOK9BaUkqQiLHMnTHwexj4FmdvDqwnEwVGXwTF3QoUwG2U6wO7MHD7/cRVvTVjO3NWRnRu6T4+m1bmoSyrHtqhJfJw/LyZJkiRJEsR+/rzY/wt99uzZvPLKK9x8880MGDCAk08++YDPL1u2jPnz58coXdGXlZXFueeeG3GTq1evXvTq1Ytvv/32D+8766yzDrgeOXJkWLlWrVrFwoUL91936tQpZk0uSZIKVGI5OPp2+NNM6HwdBBPyrgnlwNRX4el2MOJh2BNmg0z7lUmM47yOKXx5cw8G39CNM9rVIzHCZtXYRRu57p1p9HxsBM8MW8j67eGfAyZJkiRJkqKjWDa6srKyeOqpp2jevDlHHnkk1157Lc8//zzvv//+bxovkyZNolWrVvTs2ZNx48bFKHHRlJmZyTnnnMOnn34KRLaSa9SoUYwaNYq1a9f+4X1XXnkl8fH/f6ugQYMGhZXt3Xff5ZeLDa+55pqw6iRJKjbKVYcTH4WbpkDrs8OrydoJox7d2/Ca/DJkZ0Y3YwkUCARon1KFJ887kgl39eHOE5pTr3KZiMZYsy2DJ75fQPeBw7n5vRlMWrIJN0mQJEmSJCk2il2ja86cOXTo0IFbb72VBQsWEAqF8pxYCIVCjB8/nmOOOYaHHnqokJIWbZmZmZx11lkMGTIEKNjtCn/psMMO48orr9x//c033+S5wi4jI4MXXnhh/3Xz5s257LLLCjSXJElFRtVGcParcM1IaHRMeDU7N8DXf4XnOsGcwWCTJV+qlU/i+l5NGH1Hb169tAPHHFYjovqsnBBf/Lia816ayPH/Hc1bE5axPSMrSmklSZIkSdLBFKtG108//USvXr2YM2cOoVCIQCBAIBAA+N1mV7NmzWjTpg2hUIjc3Fzuv/9+Hn300cKMXeTs2bOHM888ky+//BKA3r17R6XJtc/9999PtWrVgL2r8W644Qays7N/9/4HHniApUuXAnt/6vrJJ58kLi4uKtkkSSoy6raDS4bARYOhdpvwarYshY8vh5f7wNLR0c1XgsUFA/RtUYs3r+jEyL/24uqejahUJowtJX9hwbod/GPIXDo/PIy7Bs9m7uptUUorSZIkSZJ+qdg0ujIyMjj55JPZvHnzAR9v0qQJJ510Eueff/5B69q3b8+PP/7IN998Q0pKCqFQiHvvvZe5c+cWRuwiZ8+ePZxxxhl89dVX+z82YsQIypUrt79xGM6vSNSuXZsPPviAxMTE/c87++yz2bRp0wH3ZWZmcv/99zNw4MD9H/vHP/7BCSeccAhfsSRJxUggAE37wjWj4YyXoFKY51Oung5vngrvnA1r50Q3YwnXsHo5/n5ySybd3ZfHzj6CNvUqRVS/KzOH9yancfLTYznj+XF8Mm0lGVk5UUorSZIkSZICoWJyoMDjjz/OnXfeSSAQoEKFCtx9991ceuml1KpVa/89wWCQQCBATs7BJxPWrl1L9+7dWbZsGeeddx7vvvtuYcUvMkaOHEnv3r0LbLzXX3897G0Fv//+e8477zy2bNkCQPny5TnppJNo2LAh69evZ9iwYaxYsQLY+9/yoYce4u677y6wrIdi7ty5tG7dev/1nDlzaNWqVQwTSZJKhew9MOUVGP047N4SZlEA2l4Ave+Gyg2iGq+0+HHFVt6asJwvZq0mMzs34vrKZRM4t0MDBnRKoWH1clFIKEmSJElS7MR6/rzYNLoaNmzIihUraNiwIcOHDyc1NfU39+TV6AIYPnw4xx57LGXKlGHDhg1R266vqIplowv2Nhvvu+8+3nrrLTIyMn7z+UAgwHHHHcc///lPOnbsWGA5D1WsX1RJUim3eyuM+y9MfAGyf/v350HFJUHna6DHrVC2ajTTlRqbd2by0dQVvDNpOSs2787XGD2bVeeiLqn0bV6T+Lhis7mCJEmSJEm/K9bz58Wi0bVgwQKaN29OMBhk3LhxdO7c+aD3hdPoAmjVqhXz589n1KhR9OjRIxqRlYedO3cybtw45s+fT3p6OsnJyTRq1Iju3btTu3btWMf7jVi/qJIkAZC+GkY8DDMHQSjMlUXJlfY2uzpfCwllopuvlMjNDTFqwQbembic4T+vJz/fTdeplMwFnVI4v2MDalZMLviQkiRJkiQVkljPn8cX2pMOwYwZMwDo0KHD7za5ItG9e3fmz5/P/PnzbXTFSLly5ejXrx/9+vWLdRRJkoqPinXhtGeh640w7EH4+eu8azK2wQ/3weSXoPffoe35EIyLftYSLBgM0Lt5TXo3r8nKLbt4b3IaH0xZwcYdmWGPsWZbBv/5fgFPD1tIv1a1uKhzKl2bVIv4LFRJkiRJkkq7YrFfyoYNGwDo1KlTgYxXs2ZNgP1nRUmSJBUrNVvABe/B5d9A/TC3+k1fBUNugP/1gAXfka9lSPqN+lXKcvvxzRn/t748fUE7OjWKbJvI7NwQX89ey4BXJtH3P6N4bexStu3OilJaSZIkSZJKnmLR6NqxYwcAFSpUKJDxdu7cCUAx2LVRkiTp96V2gyu/h3PfhmpNw6tZPw/ePRfeOAVWTo1uvlIkMT5I/7Z1+fDargz9y9Fc2jWV8kmRbZ6wZMNOHvxyHp0f/oE7Pv6RWSu3RiesJEmSJEklSLFodFWrVg2AVatWFch4ixYtAqB69eoFMp4kSVLMBALQsj/cMAlOeRLK1wqvbvlYeKUvfHgJbFoc3YylzGG1KvDAaa2ZdHdfHj6jDS3rVIyoPiMrlw+nrqT/s+Po/+xYPpy6gt2Zf3wGrSRJkiRJpVWxaHTVq1cPgO+++46srEPbymXbtm0MHz4cgNTU1EPOJkmSVCTExUOHK+CWGdD7HkgMcyX8vCHwXCf48lbYsT66GUuZcknxDOicwle39GDwDd04s309EuMj+/Z71spt3PHxLDo//AMPfjGPxRt2RCmtJEmSJEnFU7FodPXo0YP4+HjWr1/PAw88cEhj3X333ezevZukpCS6d+9eQAklSZKKiMRycMzt8KeZ0OlaCCbkXZObDVNfhaeOhBGPwJ7t0U5ZqgQCAdqnVOE/5x7JpLv6cvdJzUmtVjaiMdIzsnlt3FL6PjGKAS9P5OvZa8jKyY1SYkmSJEmSio9i0eiqWLEiffr0IRQK8cgjj3DPPfeQnZ0d0Ri5ubn8/e9/54UXXiAQCHDCCSeQnJwcpcSSJEkxVq46nPQY3DQZWp8VXk3WThg1EJ5uB5NfhpxDW0mv36pSLpFrjm7CiNt68dYVnejXshbBQGRjjF+8iRsGTaf7wOH8Z+jPrNm2OzphJUmSJEkqBgKhUCgU6xDhmDRpEl27diUQ2DsT0LBhQ6699lpOOeUUWrZsCUAwGCQQCJCT8//PMFi9ejWff/45zz33HPPmzSMUChEMBpk2bRpt27aNydei4mfu3Lm0bt16//WcOXNo1apVDBNJkhShVdPhh/tg6ejwa6o2hr7/gJan7z0LTFGxZttu3pu8gvcnp7F++56I6+OCAfo2r8lFXVLp0bQ6wUg7Z5IkSZIkHYJYz58Xm0YXwI033rh/RVYoFNrf9CpfvjyNGzfmxx9/JBAI0L17d7Zv386qVavYtGkTAPu+zEAgwJ/+9Cf+85//xOzrUPET6xdVkqQCEQrB4mHw/f2wbnb4dXXbw3EPQqOeUYsmyMrJ5ft563hn4nLGL96UrzEaVivLgM4pnHNUA6qUSyzghJIkSZIk/Vas58+LVaMrNzeX0047ja+++mp/s+tgDva5fR879dRT+eyzz/Y3yaRwxPpFlSSpQOXmwuwPYfg/YduK8OuaHgt974M6R0QvmwBYvGEHgyam8fG0FaRnRLZlN0BifJBTjqjDRV1Sadegst/7SpIkSZKiJtbz58XijK59gsEgQ4YM4fbbb9//sUAg8Jtfv/74PnfccQeffvqp/9CXJEmlWzAIbc+Hm6ZCv39BmSrh1S36AV7sCZ9cDVuWRTViadekRnn+cWpLJt19LI+ddQRH1K8UUX1mdi6Dp6/izOfHc/LTY3l3Uho790TeMJMkSZIkqagrViu6fmnGjBk8/PDDDBkyhOzs3/9He3x8PKeddhp333037dq1K8SEKkli3ZGWJCmqdm+FsU/CpP9BdkZ4NcEE6HAFHH07lK8R1Xjaa9bKrbwzcTmf/7iajKzciOsrJMVzZvt6XNQllWa1KkQhoSRJkiSpNIr1/HmxbXTts2PHDsaMGcOPP/7Ixo0bSU9Pp2LFilSvXp22bdvSs2dPypcvH+uYKuZi/aJKklQotq2CkQ/DzHchFGYjJbE8dLsZut4ISTZPCsO2XVl8PH0lgyYtZ8mGnfkao1OjqlzUJZUTWtUmMb5YbfIgSZIkSSpiYj1/XuwbXVJhiPWLKklSoVo3D4Y9CAu+Cb+mbHU45g446nKIT4xeNu0XCoWYsHgT70xaztC568jOjfzb+urlEzm3QwMGdE6hfpWyUUgpSZIkSSrpYj1/bqNLCkOsX1RJkmJi+Xj4/j5YOTn8msqp0OdeaH3W3rPAVCjWpWfw/uQVvDc5jbXpYW4/+QuBAPQ6rAYXdUml1+E1iQt6pq0kSZIkKTyxnj+30SWFIdYvqiRJMRMKwc9f713htWF++HW120Df+6Fp371dFBWK7Jxchs1fzzsTlzNm4cZ8jVG3UjIXdErhvI4NqFkxuYATSpIkSZJKmljPnxeJRlcwGCQYDJKdnV0in6fiL9YvqiRJMZebAz++ByMehvRV4dc17AnHPgD1j4peNh3Uso07eXdyGh9OXcHWXVkR18cFAxzXohYXdkmhe5PqBF3lJUmSJEk6iFjPnxeZRlcgECAnJ6dEPk/FX6xfVEmSioys3TD5ZRjzBGRsDb+uRX/o+w+o3ixq0XRwGVk5fDVrDe9MWs6MtK35GiO1WlkGdErh7KPqU618UsEGlCRJkiQVa7GeP7fRJYUh1i+qJElFzu6tMO6/MPF/kL07vJpAHLS7CHr9DSrWjWY6/Y65q7fxzsQ0hsxcxa7MyL8XTowLcmKb2lzYOZWODasQcFtKSZIkSSr1Yj1/XqQaXcuWLaMw4jRs2NBGlyIS6xdVkqQiK30NjBoI09+GUJjfW8WXgS7XQfc/Q5nK0Uyn35GekcWn01cxaNJyFqzbka8xmtUsz4WdUzijfX0qlUko4ISSJEmSpOIi1vPnRarRVVhCoZCNLkUk1i+qJElF3saFMPwhmDck/JrkytDzVuh0DSSUiVo0/b5QKMS05VsYNCmNr2atITMnN+IxkhOC9G9blws7p3JE/Uqu8pIkSZKkUibW8+dFqtFVmFFsdCkSsX5RJUkqNlZOgx/ug2Vjwq+pWA963QVtL4C4+Ohl0x/avDOTT6atZNCk5SzbtCtfY7SuV5ELO6fSv21dyiX531KSJEmSSoNYz58XqUZXYXFFlyIV6xdVkqRiJRSCxcPgh/th7ezw66ofDn3/Ac1PBlcFxUxubogJSzYxaNJyhs5dR3Zu5P9cKJ8Uzxnt6jGgcwot6lSMQkpJkiRJUlER6/nzIvVjlkWg5yZJkqRDFQhA02OhcR+YOxiGPQhbl+ddt/Fn+OBCqN8Jjr0fGnaPelT9VjAYoHvT6nRvWp316Rl8OHUF701ewaqtu8MeY8eebN6euJy3Jy6nfUplLuycyslH1CE5IS6KySVJkiRJpVGRWtEVyQqr/NQURK1Kp1h3pCVJKtayM2HaGzD6Mdi5Ify6ZsfDsfdBLf/OjbWc3BCjFqzn3UlpDJ+/nnws8qJSmQTOPqo+Azqn0KRG+YIPKUmSJEmKiVjPn9voksIQ6xdVkqQSYc92mPA8jH8aMneEWRSAI86D3ndDldSoxlN4Vm3dzQeT03h/ygrWb9+TrzG6Nq7GhV1S6NeyNonxwQJOKEmSJEkqTLGeP7fRJYUh1i+qJEklyo4NMObfMOVVyM0KryYuETpeBT3/CuWqRTefwpKVk8uwn9YxaFIaYxZuzNcY1csncm6HBlzQKYUGVcsWcEJJkiRJUmGI9fx5kWh0NWzYkGAwyJIlS8KuOZRmVX6ep9It1i+qJEkl0pZlMOJhmPUhEOa3pIkVoPst0OUGSHL7u6Ji2cadvDc5jQ+nrmDLrjCbl78QCMAxh9Xgws6p9D68BvFxrvKSJEmSpOIi1vPnRaLRlR+uylJhivWLKklSibZ2NvzwACz6PvyacjXhmDvgqMsgLiFq0RSZPdk5fDtnLYMmpTF56eZ8jVGnUjLnd0zhvI4NqF0puYATSpIkSZIKWqznz210SWGI9YsqSVKpsGwsfH8frJoafk2VRtDnHmh1JgRdBVSULFy3nUGT0vhk+kq2Z2RHXB8XDHBsi5pc2DmVHk2rEwwGopBSkiRJknSoYj1/bqNLCkOsX1RJkkqNUAjmf7l3hdemheHX1WkLx94PTfpELZryZ3dmDl/MWs2gSWn8uGJrvsZIqVqWCzqlcE6H+lQvn1SwASVJkiRJhyTW8+c2uqQwxPpFlSSp1MnJhpmDYORA2L46/LpGx+xteNVrH7Voyr85q7YxaFIaQ2auYldm5N/HJ8QFOKF1HS7snELnRlUJBFzlJUmSJEmxFuv5cxtdUhhi/aJKklRqZe2GSS/C2P9Axrbw61qevndLw+rNohZN+bc9I4vPZq5m0MTlzF+7PV9jNKlRjgs7p3JW+/pUKus5bZIkSZIUK7GeP7fRJYUh1i+qJEml3u4tMPbJvU2v7IzwagJx0O5COOZvUKledPMpX0KhENPTtjJo0nK+mrWGPdm5EY+RFB/k1LZ1GdA5hXYNKrvKS5IkSZIKWaznz210SWGI9YsqSZL+z7ZVMGogzHgHQmE2ReKSoPM10ONWKFs1uvmUb1t3ZfLJ9FUMmrScJRt25muM5rUrcGHnFE5rV4+Kya7ykiRJkqTCEOv58yLR6EpLSwMgJSUl7JpDaXTl53kq3WL9okqSpF/Z8DMMexDmfxl+TVJF6HYLdLkekspHL5sOSSgUYuKSzQyatJzv5q4lKyfyf66USYjj1LZ1GNA5lbb1K7nKS5IkSZKiKNbz50Wi0RUMBgkGg2RnZ0dUk99GV36ep9It1i+qJEn6HSumwA/3w/Kx4deUqwFH3wFHXQbxidFKpgKwYfsePpq2gncnpbFyy+58jdGyTkUu6JzC6UfWpYKrvCRJkiSpwMV6/rzINLoibVodaqPLbQ8ViVi/qJIk6Q+EQrDoB/jhAVg3O/y6yinQ++/Q5hwIxkUvnw5Zbm6I0Qs3MGhSGsN+WkduPv4FUzYxjv5t63JBpxSOcJWXJEmSJBWYWM+f2+iSwhDrF1WSJIUhNxfmDobhD8GWZeHX1WwJfe6Fw08Emx9F3pptu3l/8gren5LGuvQ9+RqjVd2KDOicwmlH1qN8UnwBJ5QkSZKk0iXW8+dFqtE1cuRIwo3Tq1eviGt+XWujS+GK9YsqSZIikJ0JM96CUY/BjnXh19XvBMfeDw27Ry2aCk52Ti7D5q/n3UlpjF64gfz8q6ZsYhynHVmXAZ1SaVO/UsGHlCRJkqRSINbz50Wq0RWJfbHzs+VIKBSy0aWIxPpFlSRJ+ZC5Eyb9D8Y+BXu2hV/X9Djo+w+oc0T0sqlArdi8iw+mrOCDqSvYsD1/q7za1KvEBZ1S6H9kXVd5SZIkSVIEYj1/XqQaXZFE2dfgym98G12KRKxfVEmSdAh2bYZxT+1temVnhF/X+qy9Z3hVaxK9bCpQWTm5DPtpHe9OXsGYfK7yKpcYx2nt6jGgUwqt67nKS5IkSZLyEuv58yLV6CosruhSpGL9okqSpAKQvnrvdobT34JQmN8HBuOh/SVw9B1QsU5086lArdi8i/cmp/Hh1JVs3JG/VV5H1K/EgE4pnNq2LuVc5SVJkiRJBxXr+fMi1ehKSUkplOctX77cRpciEusXVZIkFaBNi2HEv2DOJ+HXxJeBLtdB9z9BmSrRy6YCl5WTyw/z1vHu5DTGLNyYrzHKJ8XvPcurcwqt6rrKS5IkSZJ+Kdbz50Wq0VVYjafCfp6Kv1i/qJIkKQrW/AjDHoRFP4Rfk1wJuv8ZOl8HiWWjFk3RsXzTTt6fsoKPpq5g447MfI3RtkFlLuyUwilt61A20VVekiRJkhTr+XMbXVIYYv2iSpKkKFo2Fn54AFZODr+mfG045nZofynEJUQvm6IiMzuX7+et493Jyxm3aFO+xqiQFM/p7eoxoHMKLepULOCEkiRJklR8xHr+3EaXFIZYv6iSJCnKQiH4+Zu9K7w2/BR+XZVG0OceaHUmBIPRy6eoWbZxJ+9NSePjqSvZtDN/q7zapVTmgk4pnHpEXcokxhVwQkmSJEkq2mI9f14kGl29evUiEAgwYsSIEvk8FX+xflElSVIhyc2B2R/tPcNra1r4dbXaQN9/QLPjIBCIXj5FzZ7sHIbOXcd7k9MYvzifq7yS4zmzXT0u6JxC89qu8pIkSZJUOsR6/rxINLqkoi7WL6okSSpk2Xtg2hsw6jHYtTH8upRucOx9kNIlatEUfUs27OD9KSv4eNpKNudzlVf7lMoM6JzKKUfUITnBVV6SJEmSSq5Yz5/b6JLCEOsXVZIkxcie7TDxBRj3NGRuD7/usBOh771Qy+8XirM92Tl8N3cd705azsQlm/M1RsXkeM5sX58BnVM4rFaFAk4oSZIkSbEX6/lzG11SGGL9okqSpBjbuQnG/gcmvww5e8IsCsAR50Kvu6Bqo6jGU/Qt3rCD9yen8fG0lWzZlZWvMTqkVuGCTimc7CovSZIkSSVIrOfPbXRJYYj1iypJkoqIbSth5ECYOQhCueHVBBOgw+Vw9O1QvmZ08ynqMrJy+G7uWt6dlMakpflb5VWpTAJntq/HgE4pNHOVlyRJkqRiLtbz5za6pDDE+kWVJElFzIYFMOKfMG9I+DUJZaHLDdD9FkiuFL1sKjSL1u/gvclpfDJ9JVvzucqrY8MqDOicwomtXeUlSZIkqXiK9fy5jS4pDLF+USVJUhG1ahoMexCWjAy/pkwV6HErdLoaEspELZoKT0ZWDt/O2bvKa/Ky/K3yqlw2gTPb1eeCTg1c5SVJkiSpWIn1/LmNLikMsX5RJUlSEbdkJPzwAKyeHn5NhbrQ60448iKIi49aNBWuheu28+7kNAZPX8W23Yd2ltdJbepQJtFVXpIkSZKKtljPn9voksIQ6xdVkiQVA6EQ/PQFDH8INi4Iv65qE+jzd2h5BgSD0cunQpWRlcPXs9fw7qQ0pi7fkq8xKiTHc2a7epzfKYUWdSoWcEJJkiRJKhixnj+30SWFIdYvqiRJKkZysuHH92DkQEhfGX5d7TbQ5x/Q7DgIBKKXT4VuwbrtvDspjcHTV5KekZ2vMY5sUJkLOjXglCPqUi7JFYCSJEmSio5Yz5/b6JLCEOsXVZIkFUNZGTD1VRj9b9gdwblNKV2h7z8gtVv0sikmdmfm8NXsNbw3OY1p+VzlVT4pnv5H1mVApxRa16tUwAklSZIkKXKxnj+30SWFIdYvqiRJKsYy0mHCszD+WcjaGX5d02Ohz71Q98ioRVPszF+bznuT0hg8YxXb87nKq3W9ilzQKYX+betSITmhgBNKkiRJUnhiPX9uo0sKQ6xfVEmSVALs2ABjnti7yisnM/y6lqdB73ugxmHRy6aY2Z2Zw5ezVvP+lBX5XuVVJiGO/m3rcn6nBhzZoDIBt76UJEmSVIhiPX9uo0sKQ6xfVEmSVIJsWb73/K5Z70MoN7yaQBDaDoBed0LllOjmU8wsWLed9yanMXj6KrbtzsrXGM1rV+CCTimc3q4elcq4ykuSJElS9MV6/txGlxSGWL+okiSpBFo/H0b8E376IvyauETocAX0vA3K14xeNsVURlYO385Zy7uT05i8NILz3X4hOSHISW3qMKBTCkelVnGVlyRJkqSoifX8uY0uKQyxflElSVIJtmoaDP8nLB4efk1CWehyPXS7BcpUjlo0xd6i9Tv4YEoan0xfxeadEWx5+QtNa5bn/I4NOKt9faqUSyzghJIkSZJKu1jPn9voksIQ6xdVkiSVAkvHwLAHYeXk8GuSK0H3P0PnayGxXNSiKfb2ZOcwdO463p+SxrhFm/I1RmJckBPb1Ob8jil0aVzVVV6SJEmSCkSs589tdElhiPWLKkmSSolQCBZ8B8MfgnVzwq8rVxOOvh2OugziXbFT0i3buJMPpq7go6kr2bhjT77GaFy9HOd1bMBZR9WnevmkAk4oSZIkqTSJ9fy5jS4pDLF+USVJUimTmwtzB8OIf8HmJeHXVU6BXnfBEedBMC56+VQkZOXkMuyndbw7eQVjFm4gP/+yS4gL0K9lbc7v1IDuTaoTDLrKS5IkSVJkYj1/bqNLCkOsX1RJklRK5WTBzEEw8lHYvjr8uuqHQ597oMWp4PZ0pcKKzbv4cOoKPpy6gnXp+Vvl1aBqGc7vmMI5R9WnZsXkAk4oSZIkqaSK9fy5jS4pDLF+USVJUimXtRumvApjnoDdm8Ovq9sO+v4DGve24VVKZOfkMuLnDbw/OY0RP68nNx//2osLBujbvCYXdE7h6GY1iHOVlyRJkqQ/EOv5cxtdUhhi/aJKkiQBkJEOE5+H8c9C5vbw6xr23NvwatApetlU5KzZtpsPp6zkgylprN6Wka8x6lUuw7kdGnBux/rUqVSmgBNKkiRJKgliPX9uo0sKQ6xfVEmSpAPs3ATjnoTJL0N2BA2Mw07cu6Vh7dZ536sSIyc3xOiFG3hvUhrD5q8nJx/LvIIB6H14Tc7vlELvw2sQHxeMQlJJkiRJxVGs589tdElhiPWLKkmSdFDpq2HUYzDjbcjNDrMoAK3Pgt53Q7UmUY2nomd9egYfTVvJ+1PSWLF5d77GqFUxae8qrw4NaFC1bAEnlCRJklTcxHr+3EaXFIZYv6iSJEl/aNNiGDkQZn8EhPntfSAO2l8MR98BlepFNZ6KntzcEOMWb+T9ySv4bu5asvOxyisQgJ7NajCgUwP6tqhFgqu8JEmSpFIp1vPnNrqkMMT6RZUkSQrL2jkw4l/w89fh18QlQaerocetUK5a9LKpyNq4Yw+fTFvJe5PTWLZpV77GqF4+iXM61Of8jg1IrVaugBNKkiRJKspiPX9uo0sKQ6xfVEmSpIismALDHoBlY8KvSSwPXW+CrjdCcsXoZVORFQqFmLhkM+9NTuPbOWvJzMnN1zjdmlTjvI4NOL5VbZIT4go4pSRJkqSiJtbz5/GF9iRJkiRJhaNBR7j0C1gyEoY9CKun512TuQNGDYTJL0GPv+xd5ZVQJupRVXQEAgG6NqlG1ybV2Lwzk8HTV/L+lBUsWr8jonHGL97E+MWbqFw2gTPa1eP8jikcXrtClFJLkiRJKu1c0SWFIdYdaUmSpHwLhWD+VzD8IdgwP/y6CnXgmDug3cUQlxC9fCrSQqEQU5dv4b3JaXw1aw17svO3yuvIBpW5oFMDTjmiLuWS/HlLSZIkqSSJ9fy5jS4pDLF+USVJkg5Zbg7M/ghGPAxbl4dfV6UR9P47tD4LgsHo5VORt21XFp/NXMV7k9OYv3Z7vsYolxjHqW3rcn6nFNrWr0QgECjglJIk/T/27jvKyurs+/j3TGdgGOrAzACKivRepNm7AmJPTH1iYmIvaT5JnkSTmG7vKSYxzY4ClthREJQ2DF0QlWn0DtPnvH9MwhtQ431mzuGe8v2sxVre5Fz7XK7lJnD9uPeWJB1qYc/PDbqkAMLeqJIkSXFTUwWL/gxv/Br2bAxelzMQTvoB9D0TDCdatWg0SkHRDv7xznpmLCmjvLq2Qev0657FxaN7cu7wfDpkpsW5S0mSJEmHStjzc4MuKYCwN6okSVLcVe2rv49r9u1QsSN4XY/R9YHXESckqjM1I7srqnmmoJRH5q9nWcmuBq2RlpLEmYO6c/Honozt3ZmkJINUSZIkqTkJe35u0CUFEPZGlSRJSpjyHTD3Hph7H1TvDV53+LFw8g+h55iEtabmZVnJTh6Zv55nFpeyu7KmQWsc1jmTi0f35IIRPchpnxHnDiVJkiQlQtjzc4MuKYCwN6okSVLC7dkMs2+D+b+H2qrgdX1Or3/DK3dI4npTs1JeVctzS8t4ZP565n+wvUFrJCdFOKlfDp8d05Pj+nQlJdn74SRJkqSmKuz5uUGXFEDYG1WSJOmQ2VEEs34JBX+DaF3wugFT4cTvQ9ejE9aamp+1m/bw2IIinlxYzNa9MQSo/6F7+wwuHNWDi0b1pGenzDh3KEmSJKmxwp6fG3RJAYS9USVJkg65LWvgtVtg+bTgNZEkGPIZOP470Kl34npTs1NVU8fLKzfyyPwi3lyzmYb8KTQSgYlHdeHi0T05dUA30lOS49+oJEmSpJiFPT836JICCHujSpIkhaZsCbzyE1j7UvCapBQY8UU47tvQPi9xvalZKtq2j8cXFvP4giLKdlY0aI1ObdM4b3g+F4/uSZ9uWXHuUJIkSVIswp6fG3RJAYS9USVJkkK3fl594PXh7OA1KRkw+qsw8Xpo2yVxvalZqq2L8saazTzyznpeWbmJmrqG/dF05GEd+czonpw9JJfMtJQ4dylJkiTp04Q9PzfokgIIe6NKkiQ1CdEorHsdXv0JlCwMXpfWDsZeDuOugjYdEtWdmrFNuyt4alEJj84v4v0texu0Rrv0FKYMy+Ozo3sxKL89kUgkzl1KkiRJ+jhhz88NuqQAwt6okiRJTUo0Cqufr7/Da+Oy4HUZ2TDhWhjzdUhvl7j+1GxFo1Hefn8bj84v4rmlZVTW1DVonQG57fnMmJ6cMyyf7Dapce5SkiRJ0n8Ke35u0CUFEPZGlSRJapLq6mD5U/D6z2Hr2uB1bbvCxBtg1FcgNSNx/alZ27mvmqcLSvjHO+tZtWF3g9ZIT0ni7MG5XDy6J2N6d/ItL0mSJCkBwp6fG3RJAYS9USVJkpq02hpY8g+Y9UvYWRS8rn0+HPdtGP55SPatG328aDTK0pKd/OOdIqYXlLC3qrZB6xzRpS0Xj+7JeSN60DUrPc5dSpIkSa1X2PNzgy4pgLA3qiRJUrNQUwmLHoY3fg17Ngav69gbTvhfGHwBJCUnrj81e3sra3h2aRmPvLOeRet3NGiNlKQIp/TvxmfG9OTYPl1JTvItL0mSJKkxwp6fG3RJAYS9USVJkpqVqn0w/3cw+3Yo3x68rms/OPH70H8yeMScPsW7G3fz6PwinlpUzPZ91Q1aIy87gwtH9eSi0T3J79Amzh1KkiRJrUPY83ODLimAsDeqJElSs1SxC+bdB2/dA1Ux3LGUOxRO+j846hQDL32qyppaXly+kUfnFzF77ZYGrRGJwHF9uvKZ0T05uX830lKS4tylJEmS1HKFPT836JICCHujSpIkNWv7tsGcO+Dt30JNefC6XuPgpB/A4RMT1ppalvVb9/HYgiIeX1jExl2VDVqjS7s0zhvRg4tG9eSonHZx7lCSJElqecKenxt0SQGEvVElSZJahN0b4c1bYeEfobYqeN0RJ8LJ/wf5IxPXm1qUmto6Zr27mUfmF/Hqqk3U1jXsj70jD+vIxaN6cvaQXNqmp8S5S0mSJKllCHt+btAlBRD2RpUkSWpRdqyHWb+Cgr9DtDZ4Xd+z4aTvQzd/H6bgNu6q4ImFxTw6v4j12/Y1aI22aclMHprHRaN7MrxnByIeqSlJkiTtF/b83KBLCiDsjSpJktQibVkLr/8clj0JBP1jSQQGnQ8nfg86H5nI7tTC1NVFmbduK4/ML+KFZRuoqq1r0Dp9ctpx8eienDs8n87t0uPcpSRJktT8hD0/N+iSAgh7o0qSJLVoG5fDq7fA6meD10SSYdglcPx3oEOvxPWmFmn73iqmLS7hkfnreXfjngatkZoc4ZT+3bhodE+O69OV5CTf8pIkSVLrFPb83KBLCiDsjSpJktQqFC+EV38C614LXpOcBiO/DMd+C7K6Jaw1tUzRaJSCoh08Or+I6UtK2VcVw1Ga/yE3O4MLRvbgolE96dkpM85dSpIkSU1b2PNzgy4pgLA3qiRJUqvywWx45SdQNC94TUobOOYymHAdZHZKWGtqufZU1vBsYSmPzi9i0fodDV5nwlGduWhUT04f2J2M1OT4NShJkiQ1UWHPzw26pADC3qiSJEmtTjQKa1+pf8OrrCB4XXp7GHcljL0CMtonrD21bGs27ubR+UU8tbiEbXurGrRGdptUpg7L46LRPRmYlx3nDiVJkqSmI+z5uUGXFEDYG1WSJKnVikZh5Qx47RbYvCp4XZtOMPE6GP01SPMoOTVMVU0dr6zcyKMLinjj3c3UNfBPz4Py23Px6F5MGZpHdpvU+DYpSZIkhSzs+blBlxRA2BtVkiSp1aurhaVPwOs/g+0fBK9r1w0m3lB/j1dqRqK6UytQtrOcJxYU89jCIoq2lTdojfSUJM4anMtFo3oy9ohORCKROHcpSZIkHXphz88NuqQAwt6okiRJ+pfaalj8V3jj17CrJHhd+3w47tsw/POQ7Bs1ari6uihz123l0flFvLB8A1U1dQ1a57DOmVw0qicXjOxBt/aGsJIkSWq+wp6fG3RJAYS9USVJknSQ6gpY8BC8eSvs2xK8rsNhcPx3YcjFkJySuP7UKuzYV8UzBaU8Or+IFWW7GrRGUgRO7JvDRaN7clK/HFKTk+LcpSRJkpRYYc/PDbqkAMLeqJIkSfoElXvgnQdhzp1QsTN4Xeej4IT/hYHnQZLBghpvWclOHp1fxNMFJeyuqGnQGl3apXP+iHwuGt2TI7u2i3OHkiRJUmKEPT836JICCHujSpIk6VOU74C598C8+6FqT/C6nAH1gVf/yeB9SYqDiupanl9WxqPzi5i3bluD1xl1WEcuGt2TSUNyyUzz7UNJkiQ1XWHPzw26pADC3qiSJEkKaO8WmH07zP891FQEr+s+BE76AfQ5zcBLcfPBlr08vrCIJxYWs3FXZYPWaJeewuShuVw0qifDenYg4n+fkiRJamLCnp8bdEkBhL1RJUmSFKNdZTD7Nlj4J6itCl6XP6o+8DriBAMvxU1NbR1vrNnMI+8U8eqqTdTUNeyP4Ud3a8dFo3py3ogedGqbFucuJUmSpIYJe35u0CUFEPZGlSRJUgPtKII3fg2L/wrR2uB1h02AE78Ph09IXG9qlTbvruSpRcU8uqCIdZv3NmiN1OQIpw7oxkWjenJsn64kJxnKSpIkKTxhz88NuqQAwt6okiRJaqRt62DWr6DwUYjWBa874sT6N7x6jEpcb2qVotEoCz/czqPzi5hZWEZ5dQxB7H/Iy87ggpE9uHBUT3p2yoxzl5IkSdKnC3t+btAlBRD2RpUkSVKcbH4XXv85LH8qtrqjz4ATvwe5QxPTl1q13RXVzCws49H5RRQU7WjQGpEITDiyCxeN7slpA7qRkZoc3yYlSZKkTxD2/NygSwog7I0qSZKkONu4HF77GayaGVtd/yn1gVdO/8T0pVbv3Y27eXR+EdMWl7Btbwz3y/2H7DapnDs8nwtH9WBgXnacO5QkSZIOFPb83KBLCiDsjSpJkqQEKV1cH3iteTGGoggMvgCOvxG6HJWw1tS6VdXU8fLKjTwyv4g312ymoX9yH5jXnotG9eScYXl0yEyLb5OSJEkS4c/PDbqkAMLeqJIkSUqwonfg1Z/C+7OC10SSYehn4fhvQ8fDE9aaVLKjnCcWFPPYgiJKdpQ3aI205CROG9iNi0b1ZMJRXUhOisS5S0mSJLVWYc/PDbqkAMLeqJIkSTpE3n8TXrsF1s8NXpOUAiO+CMd+C7LzE9ebWr26uihvvbeVRxcU8c9lG6iqrWvQOnnZGVwwsgcXjOxJr86Zce5SkiRJrU3Y83ODLimAsDeqJEmSDqFoFN57BV69BUoXBa9LTodRX4GJ10NWt8T1JwHb91bxdEEJj84vYtWG3Q1eZ9wRnblwVA/OHJRLm7TkOHYoSZKk1iLs+blBlxRA2BtVkiRJIYhGYfXz9Xd4bVwavC6lDYz5Gky4Dtp2Tlh7EkA0GmVpyU4enV/E9IJSdlfWNGidrPQUJg3N46JRPRjWswORiEcbSpIkKZiw5+cGXVIAYW9USZIkhaiuDlZOrw+8tqwOXpfWDsZeDuOugjYdEtae9G/lVbW8sLyMx+YXM3fd1gav0yenHReN6snU4fl0zUqPY4eSJElqicKenxt0SQGEvVElSZLUBNTVwrIn4fWfw7Z1wesysmHc1TD2G5Celbj+pP+wfus+nlhYxBMLiyndWdGgNVKSIpzUL4eLRvXkhL5dSUlOinOXkiRJagnCnp8bdEkBhL1RJUmS1ITU1sCSf8CsX8HO9cHr2nSCidfB6K9BWmbC2pP+U21dlDlrt/DYgiJeXL6Rqtq6Bq3TNSud80bkc+HInhyV0y7OXUqSJKk5C3t+btAlBRD2RpUkSVITVFMFix+GN34Du8uC17XNgWO/CSO/DKkZCWtPOtiOfVVMX1LKYwuKWFayq8HrjDysIxeN6sHZQ/Jol54Sxw4lSZLUHIU9PzfokgIIe6NKkiSpCasuhwV/hNm3wd7Nweva58Nx34Jhn4eUtMT1J32M5aU7eXxBMU8XlLBjX3WD1miTmsxZg3O5aFQPxvTuRCQSiXOXkiRJag7Cnp8bdEkBhL1RJUmS1AxU7YV3fgtz7oTy7cHrOvSC42+EIRdDsm/H6NCqrKnl5RWbeGxBEW+s2UxDJwSHd87kwlE9OX9ED7pn+6aiJElSaxL2/NygSwog7I0qSZKkZqRiF8y7H+beA5UxHA/X+aj6wGvQeZCUnLj+pE9QuqOcpxYV89iCYtZv29egNZIicNzRXbloVE9O7p9Deor/LUuSJLV0Yc/PDbqkAMLeqJIkSWqG9m2rD7vmPQDVe4PXdekLJ9wIVG2mcQAAk+pJREFUA6ZCUlLC2pM+SV1dlHc+2MZjC4p4bmkZFdV1DVqnY2YqU4fnc9GonvTPbR/nLiVJktRUhD0/N+iSAgh7o0qSJKkZ27sFZt8O838PNRXB63IGwAn/C/0mGXgpNLsrqplZWMZjC4pYvH5Hg9cZnJ/NRaN6MGVoPtmZqfFrUJIkSaELe35u0CUFEPZGlSRJUguwewO8eSss/BPUVgWv6z4YTvge9D0TIpGEtSd9mrWbdvP4gmKeXFTClj2VDVojLSWJMwZ256JRPRl/ZGeSkvxvWpIkqbkLe35u0CUFEPZGlSRJUguyowje/A0s/ivU1QSvyxteH3j1OdXAS6Gqrq3j9dWbeWxBEa+u2kRtXcPGCvkd2nDByB5cMLIHPTtlxrlLSZIkHSphz88NuqQAwt6okiRJaoG2vQ+zfgWFj0A0hjuQ8kfBid+DI08y8FLoNu2u4OnFJTy2oJi1m/Y0eJ3xR3bmolE9OWNQdzJSk+PYoSRJkhIt7Pm5QZcUQNgbVZIkSS3YljUw65ew9Akghj+e9RxbH3gdcXzCWpOCikajLC7aweMLipixpIw9lTG8rfgfsjJSmDI0j4tG9WRIj2wihrmSJElNXtjzc4MuKYCwN6okSZJagU2rYNYvYPm02OoOPxZO+F84fEJi+pJitK+qhueXbuCxBUW8/f62Bq/Tt1sWF47qwbnD8+ncLj2OHUqSJCmewp6fG3RJAYS9USVJktSKbFwOr/8cVs6Ire6IE+rv8Op1TELakhriw617eWJhMU8sLKZsZ0WD1khNjnBSvxwuGNmTE/p2JTU5Kc5dSpIkqTHCnp8bdEkBhL1RJUmS1AqVLYHXfwGrn4ut7qhT6gOvHiMT05fUALV1UWav3cJjC4p4aflGqmpjuJfuP3Rpl865w/O4cFRPju6WFecuJUmS1BBhz88NuqQAwt6okiRJasVKFtW/4bXmxdjqjj6j/kjDvGEJaUtqqO17q3imoIRHFxSzsmxXg9cZ2iObC0b2YMrQfLIzU+PYoSRJkmIR9vzcoEsKIOyNKkmSJFE0H17/Gbz3amx1/SbBCTdC98GJ6UtqhGUlO3l8QRFPF5Sys7y6QWukpSRx2oBuXDCyB8f26UpyUiTOXUqSJOm/CXt+btAlBRD2RpUkSZL2+3BufeD1/hux1Q04p/4Nr5z+ielLaoSK6lpeWrGRxxYUMXvtFho6qejePoPzRuRzwcgeHNG1XXyblCRJ0scKe35u0CUFEPZGlSRJkj7i/TfhtZ/B+rdiKIrAoPPg+Buh69EJa01qjJId5Ty5sJjHFxZRtK28weuMPKwjF47swdlDcsnK8GhDSZKkRAl7fm7QJQUQ9kaVJEmSPlY0Cu/PgldvgeJ3gtdFkmDwhXD8d6HzkYnrT2qEuroob7+/jccXFvH80g2UV9c2aJ2M1CTOHJTLhSN7MPaIziR5tKEkSVJchT0/N+iSAgh7o0qSJEn/VTQK771S/4ZXycLgdZFkGPpZOO5b0Kl34vqTGmlPZQ3PFZbx+MIi5n+wvcHr9OjYhvNH9OCCkT3o2Skzjh1KkiS1XmHPzw26pADC3qiSJElSINEorHkRXrsFypYEr0tKgWGfqw+8OvRKXH9SHHywZS9PLCzmyUXFlO2saPA6Y4/oxIUje3Lm4O5kpqXEsUNJkqTWJez5uUGXFEDYG1WSJEmKSTQKq56F138OG5cFr0tKhRFfhGO/Cdn5ietPioPauihvvbeFxxcU88LyDVTV1DVonbZpyZw9JJcLR/Vk1GEdiUQ82lCSJCkWYc/PDbqkAMLeqJIkSVKD1NXByun1gdfmVcHrktNg5P/AxOuhfW7i+pPiZGd5NTOWlPLEwmIKinY0eJ3DO2dywcgenDeiB3kd2sSvQUmSpBYs7Pm5QZcUQNgbVZIkSWqUulpYPg1e/wVsXRO8LiUDRl0KE6+DdjkJa0+KpzUbd/PEwmKeWlzC5t2VDVojEoGJR3XhgpE9OH1gdzJSk+PcpSRJUssR9vzcoEsKIOyNKkmSJMVFXS0sfQJm/QK2rQtel9IGxnwNJlwLbbskrj8pjmpq63hjzWYeX1DMyys3Ul3bsPFHVkYKU4bmceGongztke3RhpIkSQcJe35u0CUFEPZGlSRJkuKqtgYKH4VZv4QdHwavS20Lx3wdxl8NmZ0S158UZ9v2VjG9oITHFxazvHRXg9fpk9OOC0b24NwR+eRkZcSxQ0mSpOYr7Pm5QZcUQNgbVZIkSUqI2moo+Du88WvYWRS8Li0Lxl4O466ANh0T15+UACtKd/H4wiKeKShl296qBq2RnBThhKO7csHIHpzcvxtpKUlx7lKSJKn5CHt+btAlBRD2RpUkSZISqqYKFv8F3vgN7C4NXpfevj7wGnsFtOmQsPakRKiqqePVVZt4YmERr63eTG1dw8YjHTNTOWdYPheM7MGg/Ow4dylJktT0hT0/N+iSAgh7o0qSJEmHRHUFLHoY3rwV9mwIXpeeXf921zHfMPBSs7R5dyVPLy7h8YVFvLtxT4PX6Z/bngtH9uCcYXl0bpcexw4lSZKarrDn5wZdUgBhb1RJkiTpkKouhwV/hNm3wd7NwesysmHslTD2G/X/LDUz0WiUwuKdPLGwmGcKSthVUdOgdVKTI5zUL4cLR/bk+L5dSU32aENJktRyhT0/N+iSAgh7o0qSJEmhqNoL8/8Ac+6AfVuD12Vkw7ir6t/wymifsPakRKqoruWlFRt5YmExb67ZTANPNqRLu3TOHZ7HhaN6cnS3rPg2KUmS1ASEPT836JICCHujSpIkSaGq3APv/BbeugvKtwevy+gA46+CMV838FKztmFnBU8uKuaJhcW8v2Vvg9cZ2iObC0b2YMrQfLIzU+PYoSRJUnjCnp8bdEkBhL1RJUmSpCahYhe8/SDMvRsqdgava9PxX294fR3SfaNFzVc0GmXR+u08vqCYmYVl7Kls2NGGaclJnDqgG+ePzOe4Pl1J8WhDSZLUjIU9PzfokgIIe6NKkiRJTUrFzn8FXvfEHniNvxrGXGbgpWZvX1UNLyzbwBMLi3nrvRiO9jxI16x0pg7L44KRPenb3X0hSZKan7Dn5wZdUgBhb1RJkiSpSSrfAW8/AHPvg8pYAq9OMOEaGP01SG+XsPakQ6Vo2779RxsWby9v8DqD87M5f0Q+U4bl06ltWhw7lCRJSpyw5+cGXVIAYW9USZIkqUkr3wHz7od590HlruB1mZ1h/DUw5muQ1jZh7UmHSl1dlLff38bjC4t4fukGyqtrG7ROanKEk/rlcMHInpzQtyupHm0oSZKasLDn5wZd+kTl5eUMHjyY9957b//P/ehHP+Kmm25q9Nr79u1jzpw5rFq1ip07d5KZmUnv3r2ZMGECOTk5jV4/3sLeqJIkSVKzUL79X4HX/TEGXl3+9YbXVw281GLsqazhucIyHl9YxPwPtjd4nc5t0zhnWD7nj8xnYF52HDuUJEmKj7Dn5ymH7JvU7Nx8880HhFzxsHHjRm666Sb+/Oc/U17+0eMckpKSOO200/jJT37CqFGj4vrdkiRJkhKsTUc48XtwzDfq3+6a9wBU7f70un1b4KUfwlt3w4RrYdSlkJaZ+H6lBGqXnsJFo3ty0eievL9lL08sLOKpRSWU7ayIaZ2te6t4aM77PDTnffrntuf8EflMHZ5Pl3bpCepckiSpefGNLn2swsJCRo4cSU1NzQE/35g3ul599VUuvPBCtm3bBkDbtm0566yz6N27Nxs3buSVV16huLgYqA+8fvazn/Hd7363Uf8e8RJ2Ii1JkiQ1S/u2wdx76+/xqtoTvK5tV5hwHYz6ioGXWpTauihz39vKk4uKeX5ZGRXVdQ1aJyUpwgl9u3LByB6c2C+H9JTkOHcqSZIUXNjzc9/o0kfU1dXx1a9+9SMhV2O89tprnHXWWVRWVgIwZcoU/vCHP9ClS5f9n6mqquKWW27hxz/+MXV1ddx4441UV1fzgx/8IG59SJIkSTqEMjvByf8H466EuffA2w8GC7z2boYXvw9z7oSJ19UHXqltEt6ulGjJSREm9unCxD5d+PE5A3l+6QaeWFTMO+9vi2mdmrooL6/cxMsrN9EhM5VzhuZx/sgeDM7PJhKJJKh7SZKkpsnbTPURd999N/PnzwcgO7vx539v2rSJiy++eH/IdcIJJ/DEE08cEHIBpKWlcfPNN3PjjTfu/7kf/vCHvPjii43uQZIkSVKIMjvByT+Eawth4vWQGvAerr2b4J/fgzuH1t/7Vf3R48+l5iorI5WLRvfksa+P441vn8i1J/ehR8fYA90d+6r589wPmXLPHE6/4w0enPUem3bFdjyiJElSc2bQpQMUFRXtf4Nq3LhxTJkypdFr3nTTTWzevBmA1NRU7r//flJTUz/x8z/60Y/o3bs3ANFolBtuuIHa2tpG9yFJkiQpZG07wyk3wXVL648mDBp47dkIL9wIdw6rv/er2iG+WpZenTO5/tSjeePbJ/KPr43lgpE9yEyL/TjCdzfu4efPr2Lsz1/hy398h5mFpVRU++dpSZLUshl06QBXXHEFe/bsITU1ld/+9rckJTXuP5G1a9fyu9/9bv/zmWeeSb9+/f5rTUZGBpdffvn+5+XLl/Pwww83qg9JkiRJTUjbznDqzXBdIUy4FlID3sO1ZwO88F24a1j9MYgGXmphkpIijDuyM7+5cCjzv38Kt144lPFHdo55nboovL56M1f9fTFjbnmZ709byqL12/GadkmS1BIZdGm/Rx99lJkzZwLw7W9/+4DL4xrq97///QF3fX3uc58LVHfJJZcccK74gw8+2OheJEmSJDUxbbvAqT+uP9Jw/NWQEvDYtt1l8Px34K7h8M7voKYysX1KIWibnsL5I3vw96+NZfZ3T+Sbpx7NYZ0DhsL/YVdFDX97ez3n3fcWJ982i3tfW0vZTo8BlSRJLYdBlwDYsWMH1113HQBHHXUU//d//xeXdZ988skDnk844YRAdfn5+fTp02f/8zvvvENRUVFcepIkSZLUxLTrCqf9tP4Nr3FXxRB4lcJz3zLwUovXo2MmV5/ch9e/dQJPfGMcnxndk3bpKTGvs27zXn79z9WM/8WrfOEPb/NMQQnlVR5tKEmSmjeDLgHwrW99iw0bNgDwwAMPkJGR0eg1V6xYwdq1a/c/H3bYYeTk5ASuHzNmzP5/jkajzJgxo9E9SZIkSWrC2uXA6bfAtUtg7JWQEvDPJbtK/hV4jYD5fzDwUosViUQYdXgnfnH+EOZ//xTu/Mwwju3Thf84ECWQaBTeXLOFax8pYPQtL3Pjk4XM/2CbRxtKkqRmyaBLzJo1i4ceegiAL37xi5x88slxWXfx4sUHPPfv3z+m+oEDBx7wXFBQ0NiWJEmSJDUHWd3gjJ/VH2k49ooYAq9iePaG+sBrwUNQU5XYPqUQtUlL5pxh+fzl0mN468aT+PbpfTmia9uY19lTWcMj84u48IG5nPib17nrlTUUb9+XgI4lSZISw6CrlausrOTrX/860WiUzp07c+utt8Zt7eXLlx/w3KNHj5jq8/Pz/+t6kiRJklq4rG5wxs/r3/A65nJITg9Wt6sYZl4Pd4+ABX808FKLl5vdhitPPIpXbjieaVeM53PH9KJ9RuxHG36wdR+3vfQuE3/5Gp/97TyeXFjMvqqaTy+UJEkKUey/61GL8tOf/pTVq1cDcOutt9KlS5e4rb1q1aoDng8Orj7NwZ8/eL2G2rRpE5s3b46p5j+PYJQkSZJ0iGV1hzN/AROuhdm3w8I/QW2A4wl3FsHM6+DN2+C4b8LQSyAlLdHdSqGJRCIM79WR4b068n+TBvDyyo08ubCYWe9upi7GUwnnrtvK3HVb+eEzyzhzcC4XjOzBmMM7kZQU4zmJkiRJCWbQ1YotX76cX/3qVwCcdNJJfOlLX4rr+tu2bTvguX379jHVH/z5HTt2EI1GicR6+PhB7rvvPm6++eZGrSFJkiQpBO1z4axfwcTr/iPwCvC21s71MONaeONWOPYGGPY5Ay+1eBmpyUwaksekIXls2lXBtMUlPLmomHc37olpnb1VtTyxsJgnFhbTo2Mbzh/Rg/NH9KBX58wEdS5JkhQbjy5spaLRKJdddhlVVVVkZGTwwAMPxP07du/efcBzenrAY0b+JSPjwHP46+rq2LfPc8IlSZKkVq99Hpz1a7imAEZ/DZIDhlY719e/4XX3CJj/B6gJ8FaY1ALktM/g68cfyT+vO47pV03gS+MOo0NmaszrFG8v585X1nDcr1/jogfn8tj8IvZUerShJEkKl0FXK3X//ffz1ltvAfCDH/yAPn36xP07Dg66Dg6uPs3Hff7gNSVJkiS1Ytn5cPZv4JrFMOpSSAo4uN9ZBM/eAHeNgPm/N/BSqxGJRBjSowM3nzOIt793Mg98fgSn9O9GcgOOI3zn/W1858lCRv30Ja57ZDFvvLuZ2ljPR5QkSYoDjy48xK666iruvffehH/Pj370I2666aaP/d9KS0v53//9XwAGDhzId77znYT3Ey/RaON/03zFFVdw4YUXxlSzdu1apk6d2ujvliRJkpQA2T1g0m0w8XqYfRss+gvUVX963a5iePab9Xd4Tbwehn8BUmP7C3pSc5WekswZg3I5Y1AuW/ZU8kxBKU8sLGZl2a6Y1qmoruPpglKeLiilW/t0pg7P54IRPejTLStBnUuSJB3IoKsVuvLKK9m1axeRSITf/va3pKbGflxBEFlZB/6mtqKiIqb6j/v8wWs2RE5ODjk5OY1eR5IkSVIT06EnTLq9PrR68zZY/NeAgVcJPPet/x94jfiigZdalS7t0rl0Ym8undib5aU7eXJhCc8UlLB1b4A78P7Dxl2VPDhrHQ/OWsfg/GzOG5HPlKF5dG4X21UGkiRJsfDowlbmqaee4umnnwbg61//OuPHj0/Yd7Vr1+6A58rK2I4DOTjoikQitG3bttF9SZIkSWrhOvSCyXfANYtg5P8EP9Jwdyk8/224axjMewCqyxPZpdQkDczL5oeTBzDveyfzuy+O4oyB3UlNjv1ow6UlO7l5xgqO+dkrfPXPC3h+aRmVNbUJ6FiSJLV2vtF1iF1++eWcccYZCf+eo48++iM/t2vXLq6++moAcnNz+cUvfpHQHjp16vSR74/FwZ/v0KEDkUjsv7mWJEmS1Er9O/A69puxHWm4uwxe+C7Mvh0mXgcjvwypbRLcrNS0pCYnceqAbpw6oBvb9lYxY0n90YZLS3bGtE5NXZSXV27k5ZUbyW6TyuShuZw3ogfDe/pnfEmSFB8GXYfYwIEDGThwYCjffeONN1JaWgrAXXfdRXZ2dkK/r1+/fgc8l5SUxFR/8OcPXk+SJEmSAvn3kYbHfrM+vFr0MNQGOJJtzwZ44cb6mgnX1r8dlpaZ+H6lJqZT2zS+NP5wvjT+cFZv2M2Ti4qZtriEzbtjO7llZ3k1f523nr/OW88RXdpy3oh8pg7Pp0dH95UkSWo4jy5sRZ577rn9/3zhhRcSiUQ+9cef//znA9a4+eabP/Zzr7/++ke+b9CgQQc8FxcXx9TvwUHXwetJkiRJUkyye8DZt8I1BTD6a5CcFqxuz0b45/fgzqHw1j1QtS+hbUpNWd/uWXzvrP7MvfEk/vg/o5k8NI/0lNjHS+u27OU3L77LxF++xmd/O4/HFxSxp7ImAR1LkqSWzje6lDDDhw8/4HnFihUx1S9btuyA56FDhza6J0mSJEkiOx/O/g0cewPMvgMW/glqA7yZsncTvPh9mHMHjL8GRl8Kad4jrNYpJTmJE/vmcGLfHHZVVPNcYRlPLSrhnQ+2xbzW3HVbmbtuKz98ZjlnDOrOeSPyGX9kF5KTPNpQkiR9ukg0Go2G3YSari9/+csHvNX1ox/9iJtuuilw/VFHHcV77723/3njxo3k5OQEqu3bty/vvvvu/ucPP/yQXr16Bf7ueFq+fPkBb5QtW7YstCMoJUmSJMXZrrL68Grhn6CmInhdZheYcA2M/qqBl/Qv67fu46nFxTy1qIT12xr+9mP39hlMHZ7P+SPy6dMtK44dSpKkeAt7fu7RhUqo888//4Dnjzvi8OOUlJSwZs2a/c9jxowJLeSSJEmS1MK1z4UzfwnXLoGxV0BKRrC6fVvgpR/CHYPr7/Gq3JPYPqVmoFfnTK475WhmffsEnvjGOD47pidZ6bEfKLRhVwUPzHqPU29/g8l3z+ZPc95n657Y7gSTJEmtg0GXEurSSy8lJeX//4b2b3/7W6C6v//97/zny4aXXXZZ3HuTJEmSpANkdYczfg7XFsLYKyGlTbC6fVvh5ZvqA683b4PK3QltU2oOIpEIow7vxM/PG8L8H5zC3Z8dzol9uzboOMKlJTu5acYKjvnZK3z1zwt4YVkZlTW1CehakiQ1RwZdSqijjz6aSy+9dP/z888/z6pVq/5rTUVFBffff//+5379+vHlL385US1KkiRJ0oGyusEZP4PrCmHcVcEDr/Jt8MrN9YHXG7+Bil2J7VNqJjJSk5k8NI8//s8Y5v7vSfzg7P70z20f8zo1dVFeXrmRb/x1EWNueYUfPL2Uxeu3460ckiS1bgZdSribbrqJzp07A1BdXc0VV1xBTU3NJ37+5ptv5v333wfq/wbY7bffTnJy8iHpVZIkSZL2a5cDp99SH3iNvxpSM4PVlW+HV38Cdw6BN35t4CX9h5ysDL567BE8f+2xPHfNsXzt2N50aZce8zo7y6v567z1nHvfW5x86yzueXUNJTvKE9CxJElq6gy6lHDdu3fn0UcfJS0tDYDXXnuNCy64gK1btx7wuaqqKm666SZ+8Ytf7P+5H/7wh5xxxhmHtF9JkiRJOkC7HDjtp/VHGk64FlLbBqsr3w6v/rT+Da9Zv4KKnYntU2pmBuS15/tnD2De/57EH/9nNJOG5JKWEvuoat2WvfzmxXeZ8ItX+exv5/H4giL2VH7yX7CVJEktSyTq+936l5tuuombb7455ro//vGPgY4WfOmll7j44ovZvn07AO3ateOss87i8MMPZ9OmTbzyyisUFRUBkJSUxE9+8hO+973vxdxPIixfvpxBgwbtf162bBkDBw4MsSNJkiRJodm7Bd66G975HVTvDV6XkV1/99cxX4c2HRLWntSc7Syv5vmlZTy5qJj5H2xv8DptUpM5Y1B3zhuRz/gjuzTobjBJkhRM2PPzlEP2TWr1Tj31VFasWMGPfvQjHn74Yfbs2cNjjz12wGcikQinnnoqP/3pTxk9enRInUqSJEnSf9G2C5x6M4y/BubeA+/8Fqr2fHpdxU54/Wcw914Ye3n9DwMv6QDZbVL5zJhefGZMLz7cupdpi0t4alEJ67fti2md8upapi0uYdriErq3z2Dq8HzOH5FPn25ZCepckiSFxTe6FIq9e/cyZ84cVq1axa5du8jIyKB3795MmDCB7t27h93eR4SdSEuSJElqwvZtqw+83v4tVO0OXpeeDWO/8a/Aq2Pi+pOauWg0yoIPt/PUomJmLiljdyOOJRzSI5vzhuczeWgenRtwN5gkSfqosOfnBl1SAGFvVEmSJEnNwL5tMO8+ePtBqNwVvC69ff1xhmOvgMxOietPagEqqmt5acVGnlpUzBtrtlBb17CxVkpShBP75XD+iHxO7JdDekpynDuVJKn1CHt+btAlBRD2RpUkSZLUjJRvh3n31/+IJfBKy6oPvMZdaeAlBbBpdwXTC0p5clEJK8ti2GsH6ZCZyuQheZw3Ip9hPTsQiXiflyRJsQh7fm7QJQUQ9kaVJEmS1AyVb4d5D/wr8NoZvC6tHYy5DMZdBW07J64/qQVZUbqLpxYV83RBKVv2VDZ4nSO6tuXcYflMHZ5Pz06ZcexQkqSWK+z5uUGXFEDYG1WSJElSM1a+o/44w3n3QkWsgdfX/hV4dUlYe1JLUlNbx5trt/DkwmJeXLGRqpq6Bq81pncnzhuez1lDcmmfkRrHLiVJalnCnp8bdEkBhL1RJUmSJLUAFTvrA6+590LFjuB1qZkw+lIYfw20y0lYe1JLs7O8mueXlvHkomLmf7C9weukpSRxav9unDs8n+P7diU1OSmOXUqS1PyFPT836JICCHujSpIkSWpBKnbBO/8KvMpjGL6nZMDI/4EJ10L73MT1J7VAH27dy7TFJTy1qIT12/Y1eJ3ObdOYPDSPc4fnM6RHtvd5SZJE+PNzgy4pgLA3qiRJkqQWqGIXvPNbmHtPbIFXcjqM+CJMvA6yeySsPaklikajLPhwO08tKmbmkjJ2V9Y0eK0jurblvOH193n16Oh9XpKk1ivs+blBlxRA2BtVkiRJUgtWuRve+R28dTeUbwtel5QKwz8PE6+Hjoclrj+phaqoruWlFRt5alExb6zZQm1dw0dkx/TuxHkj8jlzsPd5SZJan7Dn5wZdUgBhb1RJkiRJrUDlHpj/r8Br39bgdUkpMPSzcOwN0OmIxPUntWCbdlcwvaCUaYtLWF66q8HrpKckccqAbpw3PJ/jjvY+L0lS6xD2/NygSwog7I0qSZIkqRWp3AMLHoK37oK9m4PXRZJhyEVw7Legy1GJ609q4VZv2M1Ti4t5ZnEpG3ZVNHidf9/ndd6IfAbne5+XJKnlCnt+btAlBRD2RpUkSZLUClXtg4V/gjl3wp4NwesiSTDo/PrAK6dfwtqTWrrauijz1m3lqUUlvLCsjL1VtQ1e68iubTlvRA/OGZbnfV6SpBYn7Pm5QZcUQNgbVZIkSVIrVl0Bi/8Cs2+HXSUxFEZgwDlw3Leh+6BP/7ikT7SvqoYXl2/kqcUlzF6zmUZc58UxvTtx/ogenDm4O1ne5yVJagHCnp8bdEkBhL1RJUmSJImaSij4G7x5O+xcH1ttv0lw/Hcgd2hiepNakU27Kpi+pJSnFpWwoqxx93mdOqAb543I59g+3uclSWq+wp6fG3RJAYS9USVJkiRpv9pqWPIIvPkb2P5BbLVHnwnHfxvyRyakNam1+fd9Xk8vLmHjrsoGr+N9XpKk5izs+blBlxRA2BtVkiRJkj6itgaWPg5v/Bq2vRdb7VGnwPHfhZ5jEtOb1MrU1kWZ+95WnlpczAvLNrCvEfd5HZXTjnOH5zN1eD75HdrEsUtJkhIj7Pm5QZcUQNgbVZIkSZI+UV0tLHuqPvDasjq22iNOgOO+A4dPSEhrUmsUr/u8IpH6+7zOG+59XpKkpi3s+blBlxRA2BtVkiRJkj5VXS2seKY+8Nq0IrbawybW3+HV+7j66bqkuNi0q4JnCkp5anEJKxt5n9dpA7tz3vB8ju3ThRTv85IkNSFhz88NuqQAwt6okiRJkhRYXR2sfhZm/RI2LI2ttufY+sDryJMMvKQ4W7VhF9MWlfB0QePu8+rS7l/3eQ3vwaD89t7nJUkKXdjzc4MuKYCwN6okSZIkxSwahXdfqA+8ShfHVps/sv4Orz6nGXhJcbb/Pq9FxbywvPH3eZ03Ip+pw/LJ8z4vSVJIwp6fG3RJAYS9USVJkiSpwaJRWPsKzPoFFM+PrTZ3aH3g1fcsAy8pAfZV1fDP5Rt4alEJc9ZuadR9XmN7d+bcEfmcOcj7vCRJh1bY83ODLimAsDeqJEmSJDVaNArrXq9/w2v93Nhquw2G474F/adAkncDSYmwcVcF0wtKeXJRMas27G7wOhmpSZw6oDvnjcjn2KO8z0uSlHhhz88NuqQAwt6okiRJkhQ30Sh8MLs+8Prgzdhqu/avD7wGngtJyYnpTxIry3YxbXEJTy8uYdPuxt/nde7wfAbnZ3uflyQpIcKenxt0SQGEvVElSZIkKSE+nAtv/AreezW2us594Lhvw6DzITklMb1JorYuylvvbWHaohKeX7aB8uqG3+d1RNe2nDssn6nD8+nZKTOOXUqSWruw5+cGXVIAYW9USZIkSUqoovn1gdeaF2Or69i7/g2vIRdDsncCSYm0t7L+Pq9pixt3nxfAqMM6MnV4PmcPzqVj27T4NSlJapXCnp8bdEkBhL1RJUmSJOmQKFkEb/wGVj8bW12HXnDsN2HoJZDi0FxKtI27KnimoISnFpU06j6v1OQIJ/TN4dzh+ZzUL4eMVI8klSTFLuz5uUGXFEDYG1WSJEmSDqmyQnjj17Byemx17XvAsdfD8C9ASnpiepN0gBWlu5i2uJhnCkobdZ9XVkYKZw3KZerwfI7p3YmkJO/zkiQFE/b83KBLCiDsjSpJkiRJodi4oj7wWj4NiGF8kJULE66FEV+CNO8Ckg6F2rooc9ZuYdriEl5o5H1eedkZTBmWz7nD8+nbPSuOXUqSWqKw5+cGXVIAYW9USZIkSQrV5tXw5q2w9HGI1gWva9sVxl0Foy+FdIfl0qGyt7KGF1dsYNriUmav2dyo+7z657bn3OF5TBmaT/fsjPg1KUlqMcKenxt0SQGEvVElSZIkqUnY+l594LXkEYjG8LZIm44w9goYcxm06ZCw9iR91KbdFcxYUsbTi0tYWrKzwetEIjD+yM5MHZbPGYO6k5WRGscuJUnNWdjzc4MuKYCwN6okSZIkNSnb3ofZt0HB36GuJnhdevv6sGvsFdC2c+L6k/Sx1m7azdOLS5m2uISSHeUNXic9JYlTB3Tj3OH5HHd0V1KTk+LYpSSpuQl7fm7QJQUQ9kaVJEmSpCZpx3qYfQcs/gvUVgWvS82EUV+B8ddAVreEtSfp49XVRVm4fjvTFpfwbGEZO8urG7xWp7ZpTBqSy9Th+Qzv2YFIJBLHTiVJzUHY83ODLimAsDeqJEmSJDVpO0tgzp2w8E9QWxm8LjkdRn4JJlwL2T0S1p6kT1ZZU8vrqzfz9OISXlm5iaraGO7hO8hhnTOZOiyfqcPz6d2lbRy7lCQ1ZWHPzw26pADC3qiSJEmS1Czs3gBv3Q0LHoLqfcHrklJh2CUw8Xro1Dtx/Un6r3buq+b5ZWVMW1zC2+9va9Raw3p24Nzh+Uwakkvndulx6lCS1BSFPT836JICCHujSpIkSVKzsncrzLsX3v4tVO0OXhdJhiEXwcQboOvRietP0qcq2VHOMwUlTFtUwppNexq8TnJShOOP7srU4fmc2r8bbdKS49ilJKkpCHt+btAlBRD2RpUkSZKkZql8O7zzO5h7L1TsiKEwAgPPheO+Bd38s5cUpmg0yoqyXTy9uIRnCkrZtDuG40kP0jYtmTMG5XLu8HzGHdmZ5CTv85KkliDs+blBlxRA2BtVkiRJkpq1yt0w//fw1j2wb0tstX3Prg+88kckpjdJgdXWRZn73lamLS7hhWVl7K2qbfBaOVnpnDMsj6nD8xmQ255IxNBLkpqrsOfnBl1SAGFvVEmSJElqEar2waI/w5w7YXdZbLVHnQLHfQd6HZOY3iTFpLyqlpdWbuTpxSXMencztXUNHzEe3a0dU4fnc86wfPI7tIljl5KkQyHs+blBlxRA2BtVkiRJklqU6goo+BvMvgN2ro+t9vBj4bhvQ+/jwDdApCZhy55Kni0s46nFJSwp2tGotY7p3Ylzh+dz5uBcstukxqdBSVJChT0/N+iSAgh7o0qSJElSi1RbDYWPwpu3wrZ1sdX2PKY+8DrqFAMvqQl5f8tenl5cwtMFJXy4dV+D10lLTuLk/jlMHZ7PCX27kp6SHMcuJUnxFPb83KBLCiDsjSpJkiRJLVptDSyfBm/+Bjaviq02d1h94NX3LEhKSkh7kmIXjUZZXLSDpxeXMGNJKdv3VTd4rew2qZw9JJdzh+czsldHkpIMtyWpKQl7fm7QJQUQ9kaVJEmSpFahrg5WzYQ3fg0bCmOrzRkAx34TBp4LSb75ITUlVTV1vLlmM08tLuHlFRuprKlr8Fr5HdowZVgeU4fl07d7Vhy7lCQ1VNjzc4MuKYCwN6okSZIktSrRKKx5EWb9CkoWxFbb+aj6wGvwhZDs/T5SU7OropoXlm3g6cUlzF23lcZMJvt1z2Lq8HymDM0jr0Ob+DUpSYpJ2PNzgy4pgLA3qiRJkiS1StEorHsd3vgNfDg7ttoOh8HE62HYJZCSnpD2JDVO2c5ypheUMm1xCas27G7wOpEIjDm8E1OH53PWoFyyMw25JelQCnt+btAlBRD2RpUkSZKkVu/Dt+qPNHzv1djq2ufDhGthxBch1Tc+pKZqZdkuni4o4ZnFpWzYVdHgdVKTI5zQN4epw/I5uX8OGakeZSpJiRb2/NygSwog7I0qSZIkSfqX4gX1b3i9+3xsdW1zYPzVMOorkN4uMb1JarS6uijz3t/K04tLeH7pBnZX1jR4raz0FE4f1J2pw/IZd2RnkpMicexUkvRvYc/PDbqkAMLeqJIkSZKkg5QVwpu/gRXTgRhGG206wtgr4ZjLICM7Ye1JaryK6lpeWbmJaYtLmPXuJqprGz7GzMlKZ/LQPM4Zlsfg/GwiEUMvSYqXsOfnBl1SAGFvVEmSJEnSJ9i0CmbfBksfh2hd8Lr07Pqwa+wVkNkpcf1Jiovte6t4blkZzywu5Z0PtjVqrSO6tuWcoflMHZ7HYZ3bxqlDSWq9wp6fG3RJAYS9USVJkiRJn2LrezD7dljyD6iL4aiz1LYw+lIYdxVkdUtcf5Lipnj7PmYsKeOZghJWbdjdqLWG9ezA1GF5TBqaR5d26XHqUJJal7Dn5wZdUgBhb1RJkiRJUkA71sOcO2HRX6C2MnhdSgaM/DKMvway8xPWnqT4WrVhF08vLmV6QQmlOysavE5yUoSJR3XhnGF5nD6wO23TU+LYpSS1bGHPzw26pADC3qiSJEmSpBjtKoO37oYFD0FNefC6pFQYdglMvA46HZGw9iTFV11dlPkfbOPpglKeW1rGzvLqBq+VkZrEqQO6M3VYHscd3ZXU5KQ4dipJLU/Y83ODLimAsDeqJEmSJKmB9m6BuffCO7+DqhiOOIskwaAL4NgbIKd/4vqTFHdVNXXMenczTxeU8PKKjVTWxHB/30E6ZqZy9pBczhmWz8heHUlKisSxU0lqGcKenxt0SQGEvVElSZIkSY20bxu881uYdx9U7Iyttt8kOO5bkDc8Mb1JSpjdFdX8c/lGnikoYc7aLdQ1YhKa36EN5wzLY+rwfI7ulhW/JiWpmQt7fm7QJQUQ9kaVJEmSJMVJxS6Y/3uYew/s2xpb7ZEn1wdeh41PTG+SEmrT7gpmLinjmYISlhTHGHgfpH9ue6YOy2PKsDxys9vEqUNJap7Cnp8bdEkBhL1RJUmSJElxVrUXFv4J5twFezbEVttrHBz7LTjqZIh4jJnUHK3bvIdnCkp5pqCED7bua/A6kQgc07sTU4flc+agXLIzU+PYpSQ1D2HPzw26pADC3qiSJEmSpASproDFf4E5d8LOothqc4fVv+HV92xISkpIe5ISKxqNsqR4J08vLmFmYSlb9lQ1eK205CRO6NuVqcPzOalfDhmpyXHsVJKarrDn5wZdUgBhb1RJkiRJUoLVVkPhYzD7Nti6Nrbarv3h2Btg4HmQnJKY/iQlXE1tHW+9t5WnC0r457IN7K2qbfBaWekpnDGoO1OH5zP2iM4kJ/n2p6SWK+z5uUGXFEDYG1WSJEmSdIjU1cKKZ+DN22Dj0thqOx4OE6+HoZ+FlPSEtCfp0CivquXllRt5pqCE11dvpqau4SPUnKx0Jg/NY+qwfAbltyfikaeSWpiw5+cGXVIAYW9USZIkSdIhFo3Cu/+EN38DxfNjq83KgwnXwIgvQVpmYvqTdMhs31vFc8vKeGZxKe98sK1Rax3RtS1Th+VzzrA8DuvcNk4dSlK4wp6fG3RJAYS9USVJkiRJIYlG4f036gOv99+IrTazM4y9AsZ8DTKyE9OfpEOqePs+pi8p5ZnFpazeuLtRaw3v1YFzhuZx9pA8umb5Fqik5ivs+blBlxRA2BtVkiRJktQEFM2vD7zefSG2uvTs+rBr7BXQtnNiepN0yK0s28XTBSXMKCildGdFg9dJisCEo7owZWgepw/qTvuM1Dh2KUmJF/b83KBLCiDsjSpJkiRJakI2LIU3b4XlTwMxjFVSM2Hk/8D4q6F9bqK6k3SI1dVFmf/BNp4uKOW5pWXsLK9u8FppKUmc3C+HKUPzOLFfDhmpyXHsVJISI+z5uUGXFEDYG1WSJEmS1ARtWQOz74DCR6CuJnhdchoM+xxMvA46Hp6g5iSFobKmllmrN/NMQSkvr9xIZU1dg9fKSk/h9EHdOWdYHuOO6ExKclIcO5Wk+Al7fm7QJQUQ9kaVJEmSJDVhO9bDnLtg0cNQWxm8LpIMgy+EY2+Arn0T15+kUOyuqOafyzfyTEEJc9Zuoa4RU9gu7dKYNCSPKcPyGN6zA5FIJH6NSlIjhT0/N+iSAgh7o0qSJEmSmoHdG2HuPbDgIajaE0NhBPpPhuO+BblDE9aepPBs2lXBjMIynikoobB4Z6PW6tmpDVOG5nHOsHyO7pYVpw4lqeHCnp8bdEkBhL1RJUmSJEnNyL5t8PaD8PYDULEjttqjTq0PvHqNTUhrksK3bvMepi8pZXpBKeu27G3UWv26Z3HOsHwmD82lR8fMOHUoSbEJe35u0CUFEPZGlSRJkiQ1Q5W7Yf4f6t/y2rs5ttrDJsJx34QjTgSPKJNapGg0yvLSXTxTUML0JaVs3BXD0acfY9RhHTlnWB5nDc6lc7v0OHUpSZ8u7Pm5QZcUQNgbVZIkSZLUjFWXw6K/wJw7YVdxbLX5I+HYb8LRZ0JSUmL6kxS62roo77y/jelLSnhu6QZ2llc3eK3kpAgTj+rCOcPyOG1gd9qlp8SxU0n6qLDn5wZdUgBhb1RJkiRJUgtQUwWFj8Ls22DbuthqcwbUB14Dz4Wk5MT0J6lJqKqp4413N/PMklJeWrGBiuq6Bq+VnpLEKQO6MWVoHif07Up6ir9+SIq/sOfnBl1SAGFvVEmSJElSC1JXC8unwZu3wablsdV2OgImXg9DPgMpaYnpT1KTsbeyhpdXbuSZglLeeHczNXUNH+VmZaRw1qBcpgzLY+wRnUlO8lhUSfER9vzcoEsKIOyNKkmSJElqgerq4N0X4M3fQMnC2Grb94AJ18CIL0Jqm8T0J6lJ2ba3iueXlfFMQSnvvL+tUWvlZKUzaUge5wzLY0iPbCLeBSipEcKenxt0SQGEvVElSZIkSS1YNArrXoc3b4UP3oyttm1XGHcljLoUMtonpD1JTU/pjnJmLCnlmYJSVpTtatRah3fOZMrQPKYMy+eonHZx6lBSaxL2/NygSwog7I0qSZIkSWol1r9d/4bXmhdjq8vIhjFfh2O+AW07J6Y3SU3S2k27mV5QyjNLSvlw675GrTUwrz3nDMtj0pA88jr4tqikYMKenxt0SQGEvVElSZIkSa1M2ZL6N7xWTAdiGN2kZsLI/4HxV0H7vIS1J6npiUajLCneyfSCUmYUlrJ5d2Wj1hvTuxPnDMvjrEG5dGzrnYCSPlnY83ODLimAsDeqJEmSJKmV2rwaZt8OhY9BtDZ4XVIqDPssTLgOOh+ZsPYkNU21dVHmrdvK9IJSnltWxu6KmgavlZIU4biju3LOsDxO6d+NtukpcexUUksQ9vzcoEsKIOyNKkmSJElq5bZ/AHPuhMV/hdqq4HWRJBgwFY69AboPTlR3kpqwyppaXl+9mekFpby8ciOVNXUNXqtNajKnDujGlKF5HHd0V9JSkuLYqaTmKuz5uUGXFEDYG1WSJEmSJAB2lcHce2DBQ1Ad4108fU6DY78JvcYmpjdJTd7uimpeWrGRZwpKmb12C7V1DR8NZ7dJ5azBuZwzLI8xh3ciKSkSx04lNSdhz88NuqQAwt6okiRJkiQdYO9WePsBePtBqNwZW22v8fWB11EnQ8TBtNRabdlTyXNLy5heUMqCD7c3aq3u7TOYNCSXKcPyGJyfTcRfW6RWJez5uUGXFEDYG1WSJEmSpI9Vsav+7a6598LeTbHVdh9Sf6Rh/ymQlJyY/iQ1C0Xb9jGjsJTpBaWs2rC7UWsd3jmTyUPzmDI0jz7dsuLUoaSmLOz5uUGXFEDYG1WSJEmSpP+qurz+/q637oId62Or7XwUTLgOhlwMKWkJaU9S87F6w26mLynhmYJSireXN2qtft2z9odePTtlxqlDSU1N2PNzgy4pgLA3qiRJkiRJgdRWw7InYfbtsHlVbLXt82H8NTDii5DmQFpq7aLRKIuLdjC9oJSZhaVs2VPVqPWG9+rA5CF5TBqSS077jDh1KakpCHt+btAlBRD2RpUkSZIkKSZ1dbD6OXjzVihdFFttZmcYezmM/hq06ZCQ9iQ1LzW1dbz13laeKSjln8s3sKeypsFrRSIwtndnpgzL48xB3emQ6ZukUnMX9vzcoEsKIOyNKkmSJElSg0Sj8P6s+sDr/Tdiq03LgtGXwrgroV1OYvqT1OxUVNfy2qpNPFNQyqurN1FVU9fgtVKSIhx3dFemDM3jlAHdaJeeEsdOJR0qYc/PDbqkAMLeqJIkSZIkNVrxAnjzNlj9bGx1KRkw/PP1xxp2PCwxvUlqlnZVVPPPZRuYvqSUt97bSm1dw0fNGalJnNyvG5OH5nFC365kpCbHsVNJiRT2/NygSwog7I0qSZIkSVLcbFwBc+6ApU9AtDZ4XSQZBl8IE6+HnH4Ja09S87RlTyXPLy1j+pJS5n+wvVFrZaWncNrA7kwZlsf4IzuTmpwUpy4lJULY83ODLimAsDeqJEmSJElxt/0DmHMXLP4r1FbGVttvEhx7A+SPTEhrkpq30h3lzCwsZfqSUpaV7GrUWp3apnHW4O5MHpLH6MM7kZQUiVOXkuIl7Pm5QZcUQNgbVZIkSZKkhNm9AebdB/P/AFV7Yqs94gSYeAP0Pg4iDp8lfdS6zXuYsaSM6UtKeG/z3katlZudwaQhuUwemsfg/Gwi/rojNQlhz88NuqQAwt6okiRJkiQlXPl2eOd3MO9+KN8WW23+qPo3vI4+E5I8YkzSR0WjUVaW7WZGYSkzlpRSvL28Uesd3jmTyUPzmDI0jz7dsuLUpaSGCHt+btAlBRD2RpUkSZIk6ZCp2gsL/wxv3Q27S2Or7dq/PvAaeB4kpySmP0nNXjQaZdH6HcxYUsrMwjK27Inx+NSD9OuetT/06tkpM05dSgoq7Pm5QZcUQNgbVZIkSZKkQ66mCgofhdm3w7b3YqvtcBhMuAaGfR5SMxLTn6QWobYuyrx1W5mxpJTnl21gZ3l1o9Yb3qsDk4fkMWlILjnt/fVHOhTCnp8bdEkBhL1RJUmSJEkKTV0trHgGZt8GG5bGVtuuG4y9AkZ9BTLaJ6Y/SS1GVU0db67ZzPQlpby0YiP7qmobvFYkAmN7d2bKsDzOHNSdDplpcexU0n8Ke35u0CUFEPZGlSRJkiQpdNEorH0Z3rwN1r8VW21GNoz5OhzzDWjbOTH9SWpR9lXV8OqqTUwvKOX11Zupqq1r8FopSRGOO7orU4bmccqAbrRL92hVKZ7Cnp8bdEkBhL1RJUmSJElqUj58qz7wWvtSbHWpmTDyyzDuKsjOT0hrklqeXRXV/HPZBqYvKeWt97ZSW9fwkXZGahIn9+vG5KF5nNC3KxmpyXHsVGqdwp6fG3RJAYS9USVJkiRJapLKltTf4bX8aSCGEVNSKgz9DEy8HjofmajuJLVAW/ZU8vzSMqYvKWX+B9sbtVZWegqnDezOlGF5jD+yM6nJSXHqUmpdwp6fG3RJAYS9USVJkiRJatK2rIU5d8CSR6CuOnhdJAkGnFMfeOUOTVh7klqm0h3lzCwsZcaSMpaW7GzUWp3apnHW4O5MHpLH6MM7kZQUiVOXUssX9vzcoEsKIOyNKkmSJElSs7CzBObeAwv/BNX7Yqs98uT6wOvwiRBxwCwpNus272HGkjKmLynhvc17G7VW9/YZTBqSy+SheQzpkU3EX5Ok/yrs+blBlxRA2BtVkiRJkqRmZe9WePsBeOdBqIjxLYv8UfWBV9+zIMljxCTFJhqNsrJsNzMKS5mxpJTi7eWNWq9Xp0wmDcll0pA8+udmGXpJHyPs+blBlxRA2BtVkiRJkqRmqWIXLPwjvHUP7N0UW22XvjDxOhh0AaSkJaQ9SS1bNBpl0fodzFhSyszCMrbsqWzUekd2bcukIXlMHprHUTnt4tSl1PyFPT836JICCHujSpIkSZLUrFVXQMFfYc6dsGN9bLXte8D4q2DEFyGtbWL6k9Ti1dZFmbduKzOWlPL8sg3sLI/hPsGP0a97FpOH5jF5SB69OmfGqUupeQp7fm7QJQUQ9kaVJEmSJKlFqK2BZU/C7Nth88rYatt0gmO+DmMug8xOielPUqtQVVPHm2s2M31JKS+t2Mi+qtpGrTe0RzaThuRx9pBc8jq0iVOXUvMR9vzcoEsKIOyNKkmSJElSi1JXB+++ALNvg+L5sdWmtoWRX4ZxV0J2fkLak9R67Kuq4dVVm5heUMrrqzdTVVvXqPVGHdaRyUPzOHNwd3KyMuLUpdS0hT0/N+iSAgh7o0qSJEmS1CJFo/DhW/VveK19KbbapFQYcjFMuBa6Hp2Y/iS1Krsqqvnnsg3MLCxj9tot1NY1fHSeFIGxR3Rm0pA8zhzUnY5tvWtQLVfY83ODLimAsDeqJEmSJEktXlkhzLkDlk+DaCxvVESg/ySYeD3kj0xUd5JamW17q3hh2QZmLCll3vtbacwUPSUpwsQ+XZg0JI/TBnajfUZq/BqVmoCw5+cGXVIAYW9USZIkSZJajW3r4K27YfHfoLYyttrex9UHXkecCJFIYvqT1Ops2lXBc0vLmFlYxoIPtzdqrbTkJI7v25XJQ/M4pX8OmWkpcepSCk/Y83ODLimAsDeqJEmSJEmtzu4NMO9+mP8HqNodW23usPrAq/9kSEpOSHuSWqeSHeU8V1jGjMJSCot3NmqtjNQkTu7fjclDcjmhbw4Zqf56peYp7Pm5QZcUQNgbVZIkSZKkVqt8Byx4CObdB3s3x1bb6cj6O7yGfgZS0hPSnqTW68Ote5lZWMaMJaWs2hBjIH+QdukpnDqgG5OH5jLxqK6kpSTFqUsp8cKenxt0SQGEvVElSZIkSWr1qsuh4O8w507Y8WFstVm5MO5KGPllSM9KSHuSWre1m3YzY0n9m17rNu9t1FrZbVI5Y2B3Jg3NZdwRnUlJNvRS0xb2/NygSwog7I0qSZIkSZL+pbYGVjwNs2+Hjctiq83IhjGXwTHfgLZdEtKepNYtGo2ysmw3MwpLmVlYStG28kat17ltGmcO7s7kIXmMPrwTSUneP6imJ+z5uUGXFEDYG1WSJEmSJB0kGoW1L8Obt8H6t2KrTWkDI74A46+GDr0S05+kVi8ajbKkeCczl5Qys7CMDbsqGrVet/bpnD04j0lDcxneswORiKGXmoaw5+cGXVIAYW9USZIkSZL0X6yfB7PvgHefj60ukgyDL6y/x6vbgIS0JkkAdXVRFq7fzowlpTy3tIwte6oatV6Pjm04e0guk4fkMTCvvaGXQhX2/NygSwog7I0qSZIkSZIC2LgC5twBS5+AaG1stUefCcfeAD3HJKQ1Sfq3mto63n5/GzMLS3l+2QZ27Ktu1Hq9u7Rl8pBcJg3N4+hu3kOoQy/s+blBlxRA2BtVkiRJkiTFYPuHMPceWPQw1MR4VNhhE2Di9XDUKeAbEpISrLq2jtlrtzBjSSkvLt/InsqaRq3Xt1sWk/4VevXu0jZOXUr/Xdjzc4MuKYCwN6okSZIkSWqAPZvhnQfhnd9Cxc7YarsNhonXwYCpkJySiO4k6QAV1bXMenczM5aU8srKTZRXx/hm6kEG52czaUguZw/JpUfHzDh1KX1U2PNzgy4pgLA3qiRJkiRJaoTK3bDgjzD3XtizIbbajofD+Gtg2OcgNSMh7UnSwfZV1fDKyk3MLCzltdWbqaqpa9R6I3p1YPLQPM4enEtOe38tU3yFPT836JICCHujSpIkSZKkOKiphCWPwJw7Ydt7sdW2zYGxl8PoSyEjOzH9SdLH2F1RzUsrNjJjSSlvrtlCTV3DR/qRCIw5vBOThuRyxqBcumalx7FTtVZhz88NuqQAwt6okiRJkiQpjupqYeV0mH07lC2JrTa9fX3YdczlkNUtMf1J0ifYsa+KF5ZtYGZhGW+9t4VGZF4kRWDsEZ05e0guZwzsTud2hl5qmLDn5wZdUgBhb1RJkiRJkpQA0Sise60+8Hr/jdhqk9Nh2CUw/mrofGRi+pOk/2Lz7kpeWFbGjCVlzP9wG42Z9CcnRRh/ZGfOHpzL6QO707FtWvwaVYsX9vzcoEsKIOyNKkmSJEmSEqx4Icy5HVbOBGIZl0VgwBSYcB3kj0hQc5L035XtLOfZwjJmFpZRULSjUWulJEWYcFQXJg3J5bQB3cnOTI1Pk2qxwp6fG3RJAYS9USVJkiRJ0iGyeTXMuQsKH4G6mthqex9XH3gdeVL9RTiSFIKibfuYWVjGjCWlrCjb1ai1UpMjHNunK5OG5HLKgG60zzD00keFPT836JICCHujSpIkSZKkQ2xnMcy9Dxb+Ear3xVbbfXB94DVgKiSnJKI7SQrkvc17mLmkjBmFpazdtKdRa6UlJ3Hc0V2ZPDSXk/t3o126v76pXtjzc4MuKYCwN6okSZIkSQrJvm3wzm/h7QegfHtstR0Oq7/Da9jnIC0zMf1JUgDRaJR3N+7h2cJSZhaWsW7L3katl5aSxIl9uzJpSB4n9cuhraFXqxb2/NygSwog7I0qSZIkSZJCVrUXFj0Mb90Nu0piq83sDMd8A0Z/FTI7JaY/SQooGo2ysmw3zy6tD70+3BrjW6sHyUhN4qR+OUwakseJfXNok5Ycp07VXIQ9PzfokgIIe6NKkiRJkqQmorYalj4Bc+6EzStjq01tCyO+COOuhA49E9OfJMUgGo2yvHQXMwvLmFlYSvH28kat1yY1mZP714deJ/TtSkaqoVdrEPb83KBLCiDsjSpJkiRJkpqYujpY8yLMuQPWz42tNikFBl0AE66FbgMS0p4kxSoajVJYvJOZhaU8W1hG6c6KRq3XNi2ZUwZ0Y9KQPI47ugvpKYZeLVXY83ODLimAsDeqJEmSJElqwta/XR94rX4u9to+p8PE66DXOIhE4t2ZJDVIXV2UguIdzFxSxnNLy9iwq3GhV1Z6CqcO6MakoblMPKoraSlJcepUTUHY83ODLimAsDeqJEmSJElqBjavhjl3QeGjUFcdW22PMfVvePU9C5IcAEtqOurqoixav52ZhWU8u7SMzbsrG7Ve+4wUTh/YnbOH5DLhqC6kJvtrXnMX9vzcoEsKIOyNKkmSJEmSmpGdJTDvPlj4J6jaE1ttl6Nh/DUw5CJISU9Ie5LUULV1URZ8sI2ZhWU8v6yMLXuqGrVeh8xUzvhX6DXuiM6kGHo1S2HPzw26pADC3qiSJEmSJKkZKt8O8/8Abz8AezfHVpuVC2OvgJFfhoz2CWlPkhqjti7K2+9vZWZhGS8s28C2vY0LvTq1TeOMQd2ZNDiXY47oTHKSx7k2F2HPzw26pADC3qiSJEmSJKkZqy6HJf+oP9Zw+/ux1aZnw+ivwDGXQ1a3xPQnSY1UU1vHvHXbmFlYygvLN7BjX4zHtx6kS7s0zhyUy9lDchl9eCdDryYu7Pm5QZcUQNgbVZIkSZIktQB1tbByOsy+A8oKYqtNTodhn60/1rDzkYnoTpLiorq2jjlrt/BsYRn/XL6BXRU1jVovJyudswbXh14je3UkydCryQl7fm7QJQUQ9kaVJEmSJEktSDQK78+qD7zWvRZjcQQGTIEJ10L+yER0J0lxU1VTx+y1m5lZWMZLyzeyu7JxoVf39hn7Q68RvToQiRh6NQVhz88NuqQAwt6okiRJkiSphSotgLfuguXTIFoXW+3hx8LE6+DIk8Fhr6QmrqK6ljfXbOHZwlJeWrGRvVW1jVovv0MbzhrcnbOH5DG0R7ahV4jCnp8bdEkBhL1RJUmSJElSC7ftfZh7Dyz+K9RUxFbbfTBMuA4GTIXklER0J0lxVVFdy+urN/Ps0jJeWbmRfY0MvXp0bMPZQ3I5e3Aug/MNvQ61sOfnBl1SAGFvVEmSJEmS1Ers2QzvPAjv/A4qdsRW26EXjLsahn8e0jIT0p4kxVt5VS2vrd7Es4VlvLJqIxXVMb7depCendpw9uA8zh6cy6D89oZeh0DY83ODLimAsDeqJEmSJElqZSr3wKKHYe69sKs4ttrMzjDm6zDma5DZKTH9SVIC7K2s4dVV9aHXa6s3UVnTuNCrV6fM+ju9DL0SKuz5uUGXFEDYG1WSJEmSJLVStdWw9AmYcydsXhlbbWomjPgSjLsSOvRMTH+SlCB7Kmt4ZeVGZiwp4413N1NVG5/Qa9KQXAbmGXrFU9jzc4MuKYCwN6okSZIkSWrl6upgzYsw5w5YPze22kgyDL4AJlwL3ZxnSGp+dlVU8/KKjcwsLOPNNZuprm1crNGrU+b+O70MvRov7Pm5QZcUQNgbVZIkSZIkab/1b9cHXqufi722z2kw4To4bDw42JXUDO3cV82LKzYws7CMOWu3UFPXuIjjsM7//3hDQ6+GCXt+btAlBRD2RpUkSZIkSfqIzathzl1Q+CjUVcdWmz+y/g2vfpMgKTkx/UlSgm3fW8U/l2/g2aVlvPXeVmrjEHqdPTiXswy9YhL2/NygSwog7I0qSZIkSZL0iXaWwLz7YOGfoGpPbLWdjoBxV8GwSyC1TULak6RDYdveKl6MY+h1+L/f9BqSy4BcQ6//Juz5uUGXFEDYG1WSJEmSJOlTlW+H+X+Atx+AvZtjq83sAsd8HUZ/FTI7JaY/STpEtv3rTa/n4hh6nT2k/k0vQ6+PCnt+btAlBRD2RpUkSZIkSQqsuhyW/KP+WMPt78dWm5oJw78A466AjocnpD1JOpT+HXo9W1jG3HWND716d2nLWYO7G3r9h7Dn5wZdUgBhb1RJkiRJkqSY1dXCyukw+w4oK4itNpIEA8+F8ddA3rAENCdJh97WPZX8c/lGnlsav9Dr33d69c/NarWhV9jzc4MuKYCwN6okSZIkSVKDRaPw/qz6N7zeeyX2+t7Hw4Rr4MiToZUOcSW1PP8OvZ5dWsrc97bSyMyLI7q05eZzBnJsn67xabAZCXt+nnLIvkmSJEmSJEnSoReJwBEn1P/YsBTeuhuWPgHR2mD178+q/9FtMIy/GgadB8mpiexYkhKuc7t0LjmmF5cc04steyr33+nV0NBr3Za9dMxMi3+j+lRJYTcgSZIkSZIk6RDpPhjO+y1cuwTGXgmpbYPXblwK0y6DO4fB3Pugck/C2pSkQ6lLu3Q+d8xh/O2rY3nn+6dwy7mDGH9kZ5JieIn18M6ZDMxrn7gm9YkMuiRJkiRJkqTWpkNPOONncMNyOPmH0DYneO2uYvjn/8LtA+CVH8PujYnrU5IOsX+HXn//Wn3o9dOpwUKvswbntto7usJm0CVJkiRJkiS1Vm06wrHfhOuWwuS7oPNRwWsrdsKbt8Idg2D6NbBlTeL6lKQQdGmXzufHBgu9zh6Se+gbFOAdXZIkSZIkSZJSM2Dkl2D4F+Dd52HOnVD0drDa2ipY9GdY9DD0PQsmXAu9jklsv5J0iP079Pr82MPYvLv+Tq9nC8t4+/2t9OqUyYBcjy0Mi0GXJEmSJEmSpHpJSdDv7Pof6+fBnLtg9bMBi6P1n139LPQcCxOugaPPrF9TklqQrlkHhl7F2/d5bGGIDLokSZIkSZIkfVSvsfU/Nr8Lc++GJY/Uv70VRNE8eGQedO4D46+GIRfXvzUmSS1M16x0umalh91Gq+Zfp5AkSZIkSZL0yboeDVPurr/Ha+INkJEdvHbrGphxDdw5pP4+r/LtietTktQqGXRJkiRJkiRJ+nRZ3eGUH8H1y+H0n0H7HsFr92yEV34Mtw+CF74HO4oS16ckqVUx6JIkSZIkSZIUXHoWjLsSri2Ac38L3QYFr63aA/PuhbuGwVOXwYZliepSktRKeEeXPqK8vJz58+fz7rvvsnXrVmpqamjXrh35+fn06dOHgQMHkpLSuP909u3bx5w5c1i1ahU7d+4kMzOT3r17M2HCBHJycuL0byJJkiRJkqSESU6FoRfDkIvgvVdhzp3w/qxgtXU1UPho/Y8jT4YJ10Lv4yASSWzPkqQWx6BL+82dO5fbbruNGTNmUFlZ+Ymfa9OmDaNHj+bMM8/kyiuvJCsrK/B3bNy4kZtuuok///nPlJeXf+R/T0pK4rTTTuMnP/kJo0aNatC/hyRJkiRJkg6hSASOOrn+R2kBvHUXLJ8G0bpg9e+9Uv8jd2h94NX/HEh2bClJCiYSjUajYTehcO3evZurrrqKhx9+eP/PjRgxgiFDhtCtWze2b9/OunXreP3116mpqTmgdunSpQwaFOz19FdffZULL7yQbdu2AdC2bVvOOussevfuzcaNG3nllVcoLi4G6gOvn/3sZ3z3u9+N079l4yxfvvyAf89ly5YxcODAEDuSJEmSJElqwrZ/AHPvg8V/gep9sdV2OAzGXQXDPwdpbRPSniQpfsKen/tXI1q5TZs2cdppp7FkyRIAJk2axO23385RRx31kc9+8MEHXH/99Tz99NMxf89rr73GWWedtf9NsSlTpvCHP/yBLl267P9MVVUVt9xyCz/+8Y+pq6vjxhtvpLq6mh/84AcN+5eTJEmSJElSODoeDmf9Ck64Eeb/Ht5+EPZtCVa740N4/tvw+s9gzGX1P9p2+fQ6SVKrlBR2AwpPRUUFkyZN2h9yfec732HGjBkfG3IBHH744Tz55JOMHz8+pu/ZtGkTF1988f6Q64QTTuCJJ544IOQCSEtL4+abb+bGG2/c/3M//OEPefHFF2P6PkmSJEmSJDURmZ3g+O/A9cvg7NugY+/gteXbYdYv4faBMPMG2Ppe4vqUJDVbBl2t2C233ML8+fMBOP300/nFL37xqTVJSUl8+9vfjul7brrpJjZv3gxAamoq999/P6mpqZ/4+R/96Ef07l3/m55oNMoNN9xAbW1tTN8pSZIkSZKkJiS1DYy+FK5eCBc9DPkjg9fWVMCCP8DdI+HRL0DR/MT1KUlqdgy6Wqk1a9bw61//GoBIJMIvf/lLIpFIoNqTTjqJ+++/n/vvv5/8/Pz/+tm1a9fyu9/9bv/zmWeeSb9+/f5rTUZGBpdffvn+5+XLlx9wf5gkSZIkSZKaqaRkGHAOfPUV+PJz0Of0GIqjsHI6/OEU+MPpsHIm1NUlrFVJUvNg0NVK3XzzzfuPEhw7dixDhw4NXNu+fXu+8Y1v8I1vfIOOHTv+18/+/ve/p6amZv/z5z73uUDfcckllxwQvD344IOB+5MkSZIkSVITF4nA4RPgc4/BFfNg2Ocg6ZNPAPqIonnw6OfgnlGw4CGoLk9cr5KkJs2gqxXavXs306ZN2/88ZcqUhH3Xk08+ecDzCSecEKguPz+fPn367H9+5513KCoqimdrkiRJkiRJagpy+sPU++C6Qhh/DaS3D1677T2YeX39PV6v/wL2bklcn5KkJsmgqxV68skn2bdv3/7nsWPHJuR7VqxYwdq1a/c/H3bYYeTk5ASuHzNmzP5/jkajzJgxI679SZIkSZIkqQlpnwen/QSuXwan/hiycoPX7tsKr/+8PvCaeQNsfS9xfUqSmhSDrlbon//85wHPffv2Tcj3LF68+IDn/v37x1Q/cODAA54LCgoa25IkSZIkSZKauoxsmHAtXFsI59wHXWOYKdVUwII/wN0j4ZHPwfq3E9enJKlJMOhqhf4zMEpPTyc3t/5vx+zcuZMHH3yQSZMmccQRR9C2bVvatWtH7969OfPMM7ntttvYsGFD4O9Zvnz5Ac89evSIqc/8/Pz/up4kSZIkSZJasJQ0GP45uGIufO4J6H1cDMVRWDUTHjoNfn8qrJgOdbUJa1WSFJ6UsBvQobVv3z7efffd/c/t2rUD4KGHHuLGG29k8+bNH6nZu3cvH3zwAS+88AL/93//x7XXXsuPf/xjUlL++38+q1atOuD54ODq0xz8+YPXkyRJkiRJUisQiUCfU+t/lBbA3Htg2VMQDRhcFb8Dj30BOh0B466EoZdAWmZCW5YkHToGXa3M2rVrqaur2/+cmZnJt771LW699VYAxo8fz3XXXcexxx5Lp06d2LJlC6+//jq//vWvKSgoYN++ffz85z/n7bffZtq0abRv/8mXg27btu2A5//22Y9z8Od37NhBNBolEonEtM7BNm3a9LGB3n/zn3eNSZIkSZIkKSR5w+D838PJP4J598OiP0PVnmC129bBs9+EV2+BMV+D0V+Ddl0T2q4kKfEMulqZHTt2HPBcVFS0P+S65ppruOOOOw4IkvLy8rjkkku46KKL+NKXvsTf//53AF599VW+/OUv89RTT33id+3evfuA5/T09Jh6zcjIOOC5rq6Offv20bZt25jWOdh9993HzTff3Kg1JEmSJEmSFKIOPeGMn8Hx34GFf4K3H4DdZcFqy7fBrF/C7Dtg2Gdh3FXQpU8iu5UkJZB3dLUyu3bt+tifnzBhwkdCrv+UkpLCn/70J/r3//+Xf06bNo2HH374E7/r4KDr4ODq03zc5w9eU5IkSZIkSa1Ymw4w8Tq4thCmPgA5A4PX1lbWh2T3jIZ/XAIfzoVoNEGNSpISxaDrELvqqquIRCIJ/3HTTTd97Pd/UlD04x//+FOPBExNTeXHP/7xAT/385///ICjEBMt6m82JEmSJEmSdLCUtPq3sy6fA59/Eo44IYbiKKx+Fv54Bvz+FFj+NNQFvP9LkhQ6jy4UOTk5nHDCCYE+O3nyZLKysvYHZqtWrWLhwoWMHj36I5/Nyso64LmioiKmvj7u8wev2RBXXHEFF154YUw1a9euZerUqY3+bkmSJEmSJCVQJAJHnVL/o6wQ5t4Dy56Euppg9SUL4PEvQcfDYeyVMPxzkNa4azQkSYll0NXKfFxQNHLkSJKSgr3cl56ezvDhw3njjTf2/9ysWbM+Nuhq167dAc+VlZUx9Xpw0BWJRBp9PxfUB3s5OTmNXkeSJEmSJElNWO4QOO+3cPIPYd79sPDPUBXwWoztH8Dz34bXfwajvwpjLoN2zpMkqSky6DrELr/8cs4444yEf8/RRx/9sT/fvn37j/zcEUccEdPa/fr1OyDoWrly5cd+rlOnTgc8f9L9YJ/k4M936NDhU49XlCRJkiRJkg6Q3QNOvwWO/0592DXvfthdGqy2fDu88WuYcxcMvRjGXQVd+ya2X0lSTAy6DrGBAwcycGAMl2LGWbdu3T7ycx8Xfv032dnZBzxv3br1Yz/Xr1+/A55LSkpi+p6DP3/wepIkSZIkSVJgGdkw4Ro45huwfBq8dTdsXBqstrYSFj1c/+PoM2D81XDYhPqjEiVJoQp2Xp1ajKOOOoqMjIwDfi7Wt6TS0tIOeC4vL//Yzw0aNOiA5+Li4pi+5+Cg6+D1JEmSJEmSpJilpNW/nfWNN+EL0+DIk2Krf/cF+NPZ8LuTYNlTUBvw/i9JUkIYdLUyycnJDBgw4ICf27074NnEn/D5Ll26fOznhg8ffsDzihUrYvqeZcuWHfA8dOjQmOolSZIkSZKkTxSJ1IdcX5gG35gDQz8LSTEcgFW6CJ74H7h7OMx7ACr3JK5XSdInMuhqhY477rgDnj/88MOY6svKyg54zs/P/9jPDRgwgCOPPHL/8/r169m0aVPg75k/f/4Bz5MnT46hS0mSJEmSJCmg7oPg3Afg2kIYfw2kx3DVx4718MJ34fYB8PLNsHtD4vqUJH2EQVcrdPHFFx/wvGTJkpjqCwsLD3g+4YQTPvGz559//gHPr7/+eqDvKCkpYc2aNfufx4wZQ69evQL3KEmSJEmSJMUsOx9O+wlcvxxOuwXa9wheW7ETZt8GdwyGZ66ETasS16ckaT+DrlZo7Nix9OnTZ//zhx9++JFjAj/J2rVrWb169f7n7Oxsjj/++E/8/KWXXkpKyv9/5ftvf/tboO/5+9//TjQa3f982WWXBaqTJEmSJEmSGi2jPYy/Cq4tgPN+D90HB6+trYLFf4X7joG/XQjvvwH/MeeSJMWXQVcr9fOf//yA57vuuitQ3b333nvA8/XXX0/btm0/8fNHH300l1566f7n559/nlWr/vvfZqmoqOD+++/f/9yvXz++/OUvB+pPkiRJkiRJipvkVBhyIXz9TfjiM3DUKbHVr3kR/jwZfns8FD4GtdWJ6VOSWjGDrlbq/PPP55RT/v//MT/00EO89tpr/7Vm7ty5BwRd/fv354YbbvjU77rpppvo3LkzANXV1VxxxRXU1NR84udvvvlm3n//fQAikQi33347ycnJn/o9kiRJkiRJUkJEInDECfD5J+Hyt2DY5yApNXh92RJ46mtw51CYc2f9MYeSpLgw6GrFHn30UQYNGgRAbW0tU6dO5ZFHHvnYzz711FOcffbZVFfX/62TnJwcpk+fTlZW1qd+T/fu3Xn00UdJS0sD4LXXXuOCCy5g69atB3yuqqqKm266iV/84hf7f+6HP/whZ5xxRoP+/SRJkiRJkqS46zYQpt4H1xXChOsgPTt47a4SeOmHcNsAeOF/YfuHCWtTklqLSDTqAbGt2YYNG7jkkksOeJurT58+nHjiiXTu3JmtW7cya9asA+7lGj16NE899RQ9esRwGSfw0ksvcfHFF7N9+3YA2rVrx1lnncXhhx/Opk2beOWVVygqKgIgKSmJn/zkJ3zve9+Lw79l4y1fvnx/KAiwbNkyBg4cGGJHkiRJkiRJahIqd8Oiv8C8+2BnUWy1kSQYcA6Muxp6jExMf5KUYGHPzw26BMAf//hH7rnnHhYtWvSJnxk+fDjf/OY3+cxnPtPgowQ3bNjAj370Ix5++GEqKio+8r9HIhFOPfVUfvrTnzJ69OgGfUcihL1RJUmSJEmS1MTV1sCKp+Gtu+qPKoxVr3Ew7kroexYkeY2HpOYj7Pm5QZcOsG7dOhYvXkxZWRm7du2iY8eOdO/enfHjx9OtW7e4fc/evXuZM2cOq1atYteuXWRkZNC7d28mTJhA9+7d4/Y98RL2RpUkSZIkSVIzEY3CB2/CW3fDmhdjr+90BIy9AoZdAmlt49+fJMVZ2PNzgy4pgLA3qiRJkiRJkpqhTatg3r2w5FGorYytNqMDjL4UxlwGWU3vL4ZL0r+FPT9POmTfJEmSJEmSJEmtSU4/mHI3XL8Mjv8uZHYOXluxA968FW4fBNMuhw3LEtamJDVnBl2SJEmSJEmSlEjtcuDE78H1y2HS7dC5T/DaumpY8nd4YAI8PBXWvlx/PKIkCTDokiRJkiRJkqRDI7UNjPoKXPkOfPZROPzY2OrXvQZ/PR/uHw+L/wo1MR6HKEktkEGXJEmSJEmSJB1KSUnQ9wz48ky4bBYMvhAiycHrN62AZ66sP9Zw1q9h37bE9SpJTZxBlyRJkiRJkiSFJW8YnP97uK4Qxl8D6e2D1+7dBK/9FG4bADNvgK3vJaxNSWqqDLokSZIkSZIkKWzZPeC0n8ANK+D0n0N2r+C1NeWw4A9w90j4xyXw4Vve4yWp1TDokiRJkiRJkqSmIj0Lxl0B1yyGC/4I+SNjKI7C6mfhj2fC706CZU9CbU3CWpWkpsCgS5IkSZIkSZKamuQUGHQefPUV+J8XoN8kIBK8vnQRPPEVuGsYvHUPVOxKVKeSFCqDLkmSJEmSJElqqiIROGwcfOZvcPVCGP01SM0MXr+zCF78Ptw+EP75fdhRlLheJSkEBl2SJEmSJEmS1Bx0PhLO/g1cvxxO+j9o1y14beUumHsP3DkUnrgUShYlrk9JOoQMuiRJkiRJkiSpOcnsBMd9C65bClPvh5yBwWujtbDsCfjdifDHs2DVc1BXl7heJSnBDLokSZIkSZIkqTlKSYdhl8Dlc+AL0+DIk2Or/3AOPPJZuHc0zP8DVO1LTJ+SlEAGXZIkSZIkSZLUnEUicORJ8IWn4PK5MOzzkJwWvH7rWnj2hvp7vF69BfZsSlyvkhRnBl2SJEmSJEmS1FJ0GwBT74XrlsFx34Y2HYPXlm+DN34Ftw+CZ66CTSsT16ckxYlBlyRJkiRJkiS1NFnd4KQfwPUr4OxbodORwWtrK2HxX+C+sfCX82DtKxCNJq5XSWoEgy5JkiRJkiRJaqnSMmH0V+GqBfCZv0Ov8bHVv/cK/PU8uG8cLHoYqisS06ckNZBBlyRJkiRJkiS1dElJ0O9s+Mrz8LVXYdD5EEkOXr95JUy/uv4er9d+7j1ekpoMgy5JkiRJkiRJak3yR8IFD8G1BTDuKkjLCl67bwvM+sW/7vG6EjauSFibkhSEQZckSZIkSZIktUYdesHpt8ANy+G0n0L7HsFrayth8V/h/nHw8FRY87L3eEkKhUGXJEmSJEmSJLVmGdkw/ur6N7zO/wPkDY+tft1r8Lfz4d5jYOGfoLo8EV1K0scy6JIkSZIkSZIkQXIqDL4AvvYa/M8L0H8yEAlev2U1zLi2/h6vV2+B3RsT1qok/ZtBlyRJkiRJkiTp/4tE4LBxcPFf4ZrFcMzlkNYueP2+rfDGr+COQfD0FbBhWeJ6ldTqGXRJkiRJkiRJkj5ep95w5i/g+uVw6k9ivMerCgr+Bg9MgD9PgXdfhLq6xPUqqVUy6JIkSZIkSZIk/XdtOsCEa+DaJXDBQ5A/Mrb692fB3y+Ee8fAgoegal9C2pTU+hh0SZIkSZIkSZKCSU6BQefDV1+Br7wIA86BSAxj5q1rYOb19fd4vfIT2L0hcb1KahUMuiRJkiRJkiRJsYlEoNcxcNHD9fd4jb0C0rKC15dvgzd/A7cPgmnfgLLCxPUqqUUz6JIkSZIkSZIkNVzHw+GMn8MNy+G0WyC7V/DaumpY8g948Fj40yRY/YL3eEmKiUGXJEmSJEmSJKnxMrJh/FX1b3hd+CfoMSa2+g/ehH9cDPeOhvm/h6q9CWlTUsti0CVJkiRJkiRJip/kFBh4Lnz1Jbj0JRgwNcZ7vNbCs9+sv8fr5ZthV1nCWpXU/Bl0SZIkSZIkSZISo+cYuOjPcE0BjLsK0tsHry3fDrNvgzsGw1OXQWlBorqU1IwZdEmSJEmSJEmSEqvjYXD6LXD9cjj959Ahxnu8Ch+F3x4PfzwbVj3nPV6S9jPokiRJkiRJkiQdGhntYdwV9W94XfQw9BwbW/2Hs+GRz8I9I+Gd33mPlySDLkmSJEmSJEnSIZaUDAPOgUv/CV99FQadD5Hk4PXb1sFz34Lb+sNLP4KdJYnrVVKTZtAlSZIkSZIkSQpPj5FwwUNw7RIYfzWkZwevrdgJc+6AO4fAk1+FkkUJa1NS02TQJUmSJEmSJEkKX4eecNpP4YblcMYvoePhwWvramDp4/C7E+GhM2HlDKirTVirkpoOgy5JkiRJkiRJUtORngVjvwFXL4KL/wq9xsdWv/4tePTzcNdwmHsfVOxKTJ+SmgSDLkmSJEmSJElS05OUDP0nw1eeh6+9CoMuiO0erx0fwj//F24bAM/fCNveT1yvkkJj0CVJkiRJkiRJatryR8IFf4DrCmHCtZARwz1eVbvh7fvr3/B65HPwwWyIRhPXq6RDyqBLkiRJkiRJktQ8ZPeAU38M16+AM38NHXvHUByFVTPhT2fDg8dBwT+gpjJhrUo6NAy6JEmSJEmSJEnNS3o7OOYyuHohfObvcNjE2Oo3FMLT34DbB8Hrv4Q9mxPTp6SEM+iSJEmSJEmSJDVPScnQ72z4n2fhstdhyGcgKTV4/d5N8PrP4PaB8MyVsHF5wlqVlBgGXZIkSZIkSZKk5i9vOJz3IFy/DI77NmR2Dl5bWwmL/wr3j4c/T4HVL0BdXeJ6lRQ3Bl2SJEmSJEmSpJYjqzuc9AO4fjlMuRu69o+t/v1Z8I+L4Z5R8PZvoXJPYvqUFBcGXZIkSZIkSZKklie1DYz4IlwxF77wNPQ5Pbb6be/B89+G2wbAiz+AHesT0qakxjHokiRJkiRJkiS1XJEIHHkifO4xuGoBjP4qpGYGr6/cCW/dDXcOg8e+BOvfhmg0Ye1Kio1BlyRJkiRJkiSpdejSB86+FW5YAaf+GNr3CF4brYUVT8NDp8HvToKlT0BtdcJalRSMQZckSZIkSZIkqXVp0xEmXAvXLoEL/gg9xsRWX7oInrwU7hgCb94K+7Ylpk9Jn8qgS5IkSZIkSZLUOiWnwKDz4KsvwVdfgUHnQyQ5eP3uUnjlx/X3eM24DjavTlirkj6eQZckSZIkSZIkST1GwQUPwXVLYeL1kNEheG1NOSz8I9w7Bv5yHqx92Xu8pEPEoEuSJEmSJEmSpH/LzodTbqq/x+vs26Bzn9jq33sF/no+3HsMLHgIqvYlpE1J9Qy6JEmSJEmSJEk6WFpbGH0pXPkOfO5JOPKk2Oq3rIaZ18PtA+Dlm2FXaWL6lFo5gy5JkiRJkiRJkj5JUhL0OQW+MA2umAcjvwwpGcHry7fD7NvgjsHwxKVQsjBhrUqtkUGXJEmSJEmSJElB5PSHyXfC9Svg5B9CVm7w2roaWPYE/O4k+MNpsHwa1NYkrleplTDokiRJkiRJkiQpFm07w7HfhGsL4bzfQ97w2OqL3obHvwx3DYM5d0H5jgQ0KbUOBl2SJEmSJEmSJDVEShoMuRC+9hp85Z8w4ByIxDB231kEL/0f3DYAnv0WbH0vcb1KLZRBlyRJkiRJkiRJjRGJQK+xcNHDcO0SGH81pGcHr6/eC/N/B3ePgL9dCGtfgWg0cf1KLYhBlyRJkiRJkiRJ8dKhF5z2U7hhOZz5a+h0RGz1a16Ev54H9x4D8/8AVXsT06fUQhh0SZIkSZIkSZIUb+lZcMxlcNVC+Owj0Pu42Oq3rIZnb6g/1vDF/4Md6xPTp9TMGXRJkiRJkiRJkpQoSUnQ90z40gz4xhwY/nlITg9eX7ED3roL7hwKj34BPnzLYw2l/2DQJUmSJEmSJEnS/2vvzqOsqs68Ab9FMYnIJE6tCCoyiEBEI4MiJE6JRrFNjCSagCLGOQHBTmwTNN2azyESokYMTjHaojFKjAMGFYiCqEQBx1ZUygGcmqEQZKzz/UG44dZ4L0VVcaqeZ627FvvU3ufscq27fc/91dm3Nux+YMSQmyJGvRYx+NKIHXfNfWxSEvHGwxF3fDPiliMi5v1PxIa1NTdXSAlBFwAAAAAA1KaWu0QM/o+IUa9GnDQxYvee+Y3/eEHElHMjxveImH5VxMpPamaekAKCLgAAAAAAqAuNm0V85XsRP3om4ozHI7qfGFGQx8f2qz6LmHn1psDrwbMjPnqp5uYK26nGdT0BAAAAAABo0AoKIjoO2PRa/n7EC5MiXvpDxJoVuY0vWR+x4L5Nrw59I/qeE9H9hIjCJjU7b9gOeKILAAAAAAC2F232jjjmvyJGvxFx/PUR7bvmN/6D5yMeOCNiQu+IZ66PWL20ZuYJ2wlBFwAAAAAAbG+a7hjx1RER5z8fcfqDEfsfk9/44o8inroi4vruEQ9fGPHJ6zUzT6hjgi4AAAAAANheFRREdD4y4rQ/RVzwj4hDz45osmPu4zesiXjproib+0f84YSINx+LKNlYc/OFWiboAgAAAACANGjfOeK4ayMufiPi2Ksi2nTMb/x7f4+Y/L2IG/pEPPe7iDXFNTNPqEWCLgAAAAAASJPmrSP6nx9x0csRQ/8notPA/MYvWxTxxM82bWv42CUR//dOjUwTaoOgCwAAAAAA0qhRYUS34yOGPxJxzqyIg34Q0bh57uPXfRHxwi0RNxwccc93I955OiJJam6+UAMEXQAAAAAAkHa7Hxgx5MaIUa9HfP3nETv9Wx6Dk4i3n4j4479H/K5fxNzbI9atrrGpwrYk6AIAAAAAgPpix50jjhgT8ZMFEd++LWKvr+Y3/rM3Ix4ZtWlbw2m/iFj+Qc3ME7YRQRcAAAAAANQ3hU0ien4n4qwnI856OqLnKRGNGuc+fs3yiFkTIib0jrj/hxFFz9nWkO2SoAsAAAAAAOqzvQ6O+PatET95NeKIsREt2uc+NtkY8fpfIu74RsTvB0XMuzdiw9qamyvkSdAFAAAAAAANQas9Ir5+WcSo1yKG3BSxW8/8xi+ZHzHlnIjxB0ZM/1XEyk9qZp6QB0EXAAAAAAA0JE2aRxx0esQ5z0QMfyyi+wkRBXnEBas+jZj5/yLG94h48EcRi1+uublCFfLYkBMAAAAAAKg3CgoiOh226bWsKOLFSREv3RWxZkVu40vWRyyYvOnVoV9Ev3Miup0QUSh6oPZ4ogsAAAAAABq6th0jjvnviFGvRxz/64j2XfIb/8GciD8Nj5jQO+KZX0es+r8amSaUJugCAAAAAAA2adYy4qtnRZz3fMTpf47ofHR+44s/jHjqlxHXd4/4y/kRSxbUzDzhnwRdAAAAAABAtkaNIjofFXH6AxEXzI346siIJjvmPn7j2oiX7464ZWDE7d+MeG1KxMYNNTZdGi5BFwAAAAAAULH2+0ccf13E6Ncjjrkyos3e+Y1/f3bEn4ZFTOhlW0O2OUEXAAAAAABQtR3aRAy4IOKieRGn3hPRaWB+44s/+te2hlNsa8i2IegCAAAAAABy16gwovu3IoY/EnHOsxEHnR5R2Cz38RvXRszbclvDh2xryFYTdAEAAAAAAFtn954RQ26KGP1GxJG/iGi1Z37j358d8afhtjVkqwm6AAAAAACA6tlx54iBF0f8eEHEKX+I2HtAfuPLbGs4v2bmSb0j6AIAAAAAALaNwsYRPU6KOPPxiB89U41tDY+IuP0b/9zWcH2NTZf0E3QBAAAAAADb3h69ttjWcNxWbGv43D+3Newd8ffrIlZ9XiPTJN0EXQAAAAAAQM3ZceeIgaP/ta1hx8PyG1/8UcTT/xVx/QERU86zrSFZBF0AAAAAAEDN27yt4RmPRZzzbMRBP4ho3Dz38RvXRsy751/bGr76oG0NEXQBAAAAAAC1bPeeEUNujBj1+j+3Ndwrv/HvPxfxwBkRv+llW8MGTtAFAAAAAADUjcy2hvMjvntX/tsarlycva3h4nk1Mk22X4IuAAAAAACgbhU2jjhgSPW3Nfz9oIjbjrWtYQMi6AIAAAAAALYfm7c1HP1GxFGX57+t4QdzttjW8FrbGtZzgi4AAAAAAGD706JdxOGj/rmt4R8jOh6e3/iViyOe/u9N2xo+dK5tDespQRcAAAAAALD9KmwcccCJEWc8GnHOrIg+P8x/W8P5/7PFtoZ/tq1hPSLoAgAAAAAA0mH3AyNOvOFf2xq27pDf+A/mRDxwZsRvekbMvDbii89qZJrUHkEXAAAAAACQLpu3Nbxo3qZtDTsNzG/8yiUR0/87YvzmbQ1frpFpUvMEXQAAAAAAQDpt3tZw+CNbua3hun9uazg44rZjbGuYQoIuAAAAAAAg/bK2NbxiK7Y1fH6LbQ2vifji05qZJ9uUoAsAAAAAAKg/WrSLOPwnm7Y1PPXurdzW8MqI8T0iHjw74sO5NTFLthFBFwAAAAAAUP8UNo7ofsIW2xoOi2i8Q+7jN66LWHBfxK1HRvz+axHzJ0dsWFtz82WrCLoAAAAAAID6bfcDI078bcTo1yOO/mX+2xoufinioR9tesrr6f+OKF5cM/Mkb4IuAAAAAACgYWjRLuKwH2/9toarPov4+7UR4w+MuH9YRNHsiCSpkamSm8Z1PQEAAAAAAIBatXlbw+4nRHzyWsTzt0QsuD9iw5e5jU82Rrw+ZdNrt54Rfc+O6HlKRJM8tkZkm/BEFwAAAAAA0HDt1mOLbQ3/K6LN3vmN/+SViIcvjJj125qZH5USdAEAAAAAALRoF3HYRZu2NRx6b8S+g3Mf26hxRJ8f1tTMqIStCwEAAAAAADZrVBjR7bhNr8/+N+KFSRHz741Y90XFY7qfGNFqj9qbIxme6AIAAAAAACjPLl0jjr9u07aG37g6ot1+5ffr+6PanRcZgi4AAAAAAIDKNG8d0e+ciAvmRpz254j9j42Igk0/271XRIe+dTq9hszWhQAAAAAAALlo1Chi/6M2vf7vnYgXb4vYs09EQUFdz6zBEnQBAAAAAADka+f9Ir5xVV3PosGzdSEAAAAAAACpJOgCAAAAAAAglQRdAAAAAAAApJKgCwAAAAAAgFQSdAEAAAAAAJBKgi4AAAAAAABSSdAFAAAAAABAKgm6AAAAAAAASCVBFwAAAAAAAKkk6AIAAAAAACCVBF0AAAAAAACkkqALAAAAAACAVBJ0AQAAAAAAkEqCLgAAAAAAAFJJ0AUAAAAAAEAqCboAAAAAAABIJUEXAAAAAAAAqSToAgAAAAAAIJUEXQAAAAAAAKSSoAsAAAAAAIBUEnQBAAAAAACQSoIuAAAAAAAAUknQBQAAAAAAQCoJugAAAAAAAEglQRcAAAAAAACpJOgCAAAAAAAglQRdAAAAAAAApJKgCwAAAAAAgFQSdAEAAAAAAJBKgi4AAAAAAABSSdAFAAAAAABAKgm6AAAAAAAASCVBFwAAAAAAAKkk6AIAAAAAACCVBF0AAAAAAACkkqALAAAAAACAVBJ0AQAAAAAAkEqCLgAAAAAAAFJJ0AUAAAAAAEAqCboAAAAAAABIJUEXAAAAAAAAqSToAgAAAAAAIJUEXQAAAAAAAKRS47qeAKTB2rVrs9oLFy6so5kAAAAAAMD2o/Tn5aU/T69pgi7IwQcffJDVPumkk+pmIgAAAAAAsB374IMPok+fPrV2PVsXAgAAAAAAkEqCLgAAAAAAAFKpIEmSpK4nAdu75cuXx8yZMzPtDh06RLNmzepwRnVr4cKFWds3TpkyJTp37lx3EwJSxRoCVIc1BKgu6whQHdYQoDrq6xqydu3arK//GTRoULRp06bWru87uiAHbdq0iSFDhtT1NLZbnTt3jh49etT1NICUsoYA1WENAarLOgJUhzUEqI76tIbU5ndylWbrQgAAAAAAAFJJ0AUAAAAAAEAqCboAAAAAAABIJUEXAAAAAAAAqSToAgAAAAAAIJUEXQAAAAAAAKSSoAsAAAAAAIBUEnQBAAAAAACQSoIuAAAAAAAAUknQBQAAAAAAQCoJugAAAAAAAEilxnU9ASB9dtlllxg3blxWGyBX1hCgOqwhQHVZR4DqsIYA1WENqRkFSZIkdT0JAAAAAAAAyJetCwEAAAAAAEglQRcAAAAAAACpJOgCAAAAAAAglQRdAAAAAAAApJKgCwAAAAAAgFQSdAEAAAAAAJBKgi4AAAAAAABSSdAFAAAAAABAKgm6AAAAAAAASCVBFwAAAAAAAKkk6AIAAAAAACCVBF0AAAAAAACkkqALAAAAAACAVGpc1xMA0uX999+POXPmRFFRUaxbty7atWsXPXr0iH79+kXTpk3renoAQC376KOP4h//+EcsXrw4li1bFk2aNIm2bdvGfvvtF4cccki0bNlym11r/fr18dxzz8Vrr70WS5cujaZNm8bee+8d/fr1i44dO26z60SoeaA2rF27Nt58881444034rPPPovi4uJo3rx5tGnTJrp27Rpf+cpXttkaYv0AAOqSWqRmCbqAnDz99NMxbty4ePbZZ8v9eevWrePss8+Oyy67LFq1alXLswOq69Zbb40xY8bEihUrIiJi+vTpMXjw4G12fgUd1C+zZ8+O+++/Px566KF4//33K+zXqFGjOPLII+OCCy6IE088cauvt3LlyrjyyivjlltuieXLl5fbZ8CAAXHFFVfEUUcdtdXXiVDzQE2bN29ePPTQQ/H000/HCy+8EOvWrauwb5MmTeKb3/xmjBo1aqvrEusHNCxJksTAgQNj1qxZmWPDhg2LO++8s1rndT8D9cOiRYtin3322erxrVu3rrCeqIhapHYUJEmS1PUkgO1XSUlJjBkzJsaPH5851rVr1zj88MOjbdu28dZbb8Xjjz8e69evj4iIDh06xF/+8pc46KCD6mrKQB6Kiopi5MiRMW3atKzj2yroUtBB/fLQQw/FVVddFXPnzs0cKygoiEMOOST69OkTO++8c6xatSreeOON+Pvf/x5r1qzJ9Dv++OPjtttui9122y2va86fPz+GDBkSRUVFEfGvD767dOkSy5Yti2eeeSbeeuutTP+LLrooxo8fH40a5bdLu5oHal6XLl3i7bffzjrWqlWrGDRoUOy///7RvHnzWLp0abzwwgvx0ksvZfU788wzY+LEidGkSZOcr2f9gIZn4sSJce6552Ydq07Q5X4G6pfaDrrUIrUoAajE2WefnUREEhFJYWFhMnHixGTjxo1ZfYqKipK+fftm+rVp0yZZsGBBHc0YyEVJSUly0003JS1btsy8d7d8TZ8+vdrXmDdvXtKxY8fMOZs0aZKceOKJyZgxY5IRI0YkXbp0ybrmRRddVGZ9ycXGjRuTUaNGZZ2ra9euyYgRI5IxY8YkJ554YtKkSZPMzzp06JC89NJL1f79oCHabbfdst5rgwYNSt58881y+y5evDg55ZRTsvp369Yt+eSTT3K+3quvvpq0a9cuM75fv35JUVFRVp+NGzcmN998c1JYWJjpN2LEiLx/NzUP1Lwt14OCgoLksssuS7744oty+z7//PNlaoVvf/vbOV/L+gENz+LFi5PWrVuXubcZNmzYVp3P/QzUP++99165n4Hk+mrdunXO11KL1C5BF1Ch22+/PWsxnzRpUoV9V6xYkVXkde7cOVm9enUtzhbI1dtvv50MGjQo837da6+9kp122mmbBl0KOqiftgy6vv71ryfr1q2rtH9JSUly2mmnZa0vxx57bE7X+vLLL5OuXbtmhWTFxcUV9p84cWLOdUtpah6oHVu+z66++uoq+3/00UfJrrvumjVu8uTJVY6zfkDDdPLJJ5f7wfTWBF3uZ6B+2jLoqklqkdon6ALKtXLlyqybysMPP7zKMVOnTs1aWH/1q1/VwkyBfPzmN79JWrRokXmfnnXWWcmKFSuy/lKxukGXgg7qr81BV+PGjZOFCxfmNGb58uVJq1atst6rU6dOrXLc1VdfnTXmySefrLR/SUlJ0r9//0z/XXbZpdK1ZzM1D9Seze+ZLl26JBs2bMhpzDXXXJP1fhs0aFCVY6wf0PBMmTIl874q/VRXvkGX+xmov2or6FKL1D5BF1CucePGZS16Dz74YE7jDjjggKy/MFq6dGkNzxTIx+abvk6dOiXTpk3LHN+WQZeCDuqvzUHXUUcdlde4kSNHZr33hg8fXmn/pUuXJm3atMn079WrV07Xuf/++7Ou84tf/KLKMWoeqD2b3zOXXXZZzmNee+21rPdoYWFhpSGZ9QManuLi4mSvvfZKIiLZZ599krFjx1Yr6HI/A/VXbQRdapG6kd+3mgENQpIkMWnSpEy7TZs2cfzxx+c09vTTT8/8e/ny5XHfffdt8/kBW69Ro0Zx3nnnxSuvvFLtL0suz7Jly+JXv/pVpt2rV6848sgjKx1TUFAQo0aNyrQ/++yzuO6666q81nXXXReffvpppj169Ogqxxx77LFxwAEHZNpXX311LFu2rMpxQLbDDz88r/79+/fPalf0Jeub3XfffVlf8nzaaafldJ0TTjgh68vZJ02aFEmSVNhfzQO16/jjj4/jjz8+jjnmmJzHdOrUKau9cePG+Pzzzyvsb/2AhudnP/tZfPjhhxERcfPNN0eLFi22+lzuZ4DqUovUDUEXUMasWbNi8eLFmfaAAQOiadOmOY0dPHhwVvuBBx7YllMDqmnq1Klx0003RcuWLWvk/Ao6qN8efPDBmD59epx99tl5jdtjjz2y2h9//HGl/UvXD1/72tdyuk7z5s2jX79+mfaSJUti1qxZFfZX80DteuSRR+KRRx6JgQMH5jymoKCgzLFmzZpV2N/6AQ3LnDlz4uabb46IiO9///tx7LHHVut87meA6lKL1A1BF1DGww8/nNX+6le/mvPYgw46KJo0aZJpz5w5M4qLi7fZ3IDqOfTQQ2v0/Ao6qN8GDBgQgwcPLhNc5aukpKTCnxUXF8fMmTMz7aZNm0avXr1yPnfpda50XVPZz9Q8sP354IMPstq77757tGnTpty+1g9oWNavXx8jR46MkpKSaNu2bYwfP77a53Q/A1SHWqTuCLqAMl5++eWsdvfu3XMe27x589h3330z7Q0bNsSrr766zeYGbL8UdEBFPvvss6z2/vvvX2HfV155JTZs2JBp77vvvpU+vVFajx49strz5s2rsK+aB7Z/06ZNy2qffPLJFfa1fkDDcvXVV2feO9dee23suuuu1Tqf+xmgutQidUfQBZTx2muvZbX32muvvMbvueeelZ4PqJ8UdEBFFixYkNWubFuh2qxD1Dywffviiy/i2muvzbRbt24dP/3pTyvsb/2AhuOtt96KK6+8MiIiBg0aFGeeeWa1z+l+BhqWkpKSeOyxx2LEiBHRu3fvaNu2bTRp0iTatm0bnTt3jhNPPDGuv/76Mk+XV0YtUncEXUCW4uLiWLJkSdax0gtfVUr3f/PNN6s9L2D7p6ADKjJ16tTMvwsKCir9MKp03VDdOmTx4sWxcuXKMv3UPLB9+/TTT+OEE06IoqKiiIjYYYcd4r777osOHTpUOMb6AQ3Hj370o1izZk00a9YsbrnllnK/zy9f7megYenTp08cf/zxcfvtt8eCBQti+fLlsWHDhli+fHm888478de//jUuvvji2G+//WLEiBGxdOnSKs+pFqk7gi4gS3mL9pZfqJqL0v2XLVtWrTkB6aCgA8rzj3/8I+uvjIcOHRpdu3atsH/pWqS6dUhE+bWImge2L2vWrIklS5bE3/72txg1alR069YtZsyYERGbPoiaNWtWpU+DRlg/oKG47bbbMuvDz372s0rriny4n4GGZf78+dG2bdu49NJL4/nnn4/PPvss1q5dGx9++GHcf//9mbpj/fr1cfvtt0efPn0qfVIzQi1SlxrX9QSA7Ut5RVg+j+pHbHqMvqpzAvVPTRV0O+20U6XX2RbXSntBB9uzq666KvPvVq1axTXXXFNp/9J1Q3XrkPLOWdExNQ/UvoULF5b7vX2tWrWKM888M4YOHRpHHXVUTk9rWD+g/vvkk09i7NixERHRrVu3+NnPfrbNzu1+BhqWo446Ku6+++7Ybbfdso7vueeeccopp8Qpp5wSt912W5x99tlRUlISRUVF8Y1vfCNeeOGF2Hvvvcs9p1qk7gi6gCzlLWrlLbKVqW8LJZAbBR1Q2pNPPhkPPvhgpj1hwoQqt+Yp/X6sbh1S3jkrOqbmge1HcXFxPPzww7F8+fL44osvYsiQIdGoUeWb0lg/oP778Y9/HMuWLYuCgoL4/e9/H02bNt1m53Y/A/VfixYtYsiQIbHrrrvGhAkTYocddqi0/4gRI+Ljjz+Oyy67LCI2he3f//7349lnny23v1qk7ti6EKhxSZLU9RSAWqCgA7a0dOnSOOOMMzLtM844I4YPH17j1y3vqY/aqkXUPJC/zp07R5IkkSRJrFy5Mt55552YPHlynHTSSbF06dJ48MEH4+STT44+ffrE3Llza3Qu1g/Yvj322GNx3333RcSmD58HDhy4Tc/vfgbqv1133TWmTJkSv//976sMuTa75JJLsr4jdNasWfH444/XyPzUIltP0AVkKf1IfcSm/fLzUbp/eecEKE1BB/XHhg0bYujQofHhhx9GRMQRRxwREydOzGls6boh3zrkyy+/rPKcFR1T80DdatmyZey7775x6qmnxkMPPRTPPPNM/Nu//VtEbPoejSOOOCKmTp1a4XjrB9Rfq1ativPOOy8iInbbbbcqt0KuC+5noH5q0qRJ/PCHP8w6dtttt5XbVy1SdwRdQJaWLVuWObZ27dq8zlHfFkogNwo6YLPzzjsvpk2bFhERvXr1iilTpuS8tVDpWqS6dUhE+e9xNQ9s/wYMGBCPPfZY5smFL7/8Mk499dR49913y+1v/YD667LLLouioqKIiPjNb34Tbdu23ebXcD8DVKT0E6TTp0+PkpKSMv3UInVH0AVkadeuXZljxcXFeZ2jdP+aKECB7Y+CDoiIGDNmTEyaNCkiIrp37x7Tpk3LqxYoXYtUtw6JKL8WUfNAOvTu3TvOPvvsTLu4uDjGjRtXbl/rB9RPc+fOjRtuuCEiIr75zW/G0KFDa+Q67meAivTo0SOrvXTp0li8eHGZfmqRuiPoArK0bt06dt9996xjH330UV7nKN2/W7du1Z4XsP1T0AH/8R//Eb/+9a8jIqJnz54xc+bM2HXXXfM6R+m6obp1yB577BGtWrUq00/NA+lx2mmnZbX/9Kc/lfvkhPUD6p8NGzbEyJEjY+PGjdGiRYv43e9+V2PXcj8DVKS899jnn39e5phapO4IuoAyDjzwwKz25u/XyFXphbL0+YD6SUEHDdvYsWMz35fRs2fPeOqpp2KXXXbJ+zy1WYeoeSAdDj744GjcuHGmvXbt2pg7d26ZftYPqH+uv/76mDdvXkREXHHFFdGpU6cau5b7GaAi5W3DXt4f3ahF6o6gCyjjoIMOymq//vrrOY9ds2ZN1p75hYWFqV8ogdwo6KDhGj16dFx33XURUb2Qa/P4wsLCTPudd97JazufV199Navdu3fvCvuqeSAdCgsLyzwB8fHHH5fpZ/2A+uexxx7L/Hvs2LFRUFBQ5euKK67IOscf/vCHcvvdeeedWf3czwAVKe+py5133rnMMbVI3RF0AWWccMIJWe0XX3wx57Evv/xyrF+/PtMeNGhQuX/BBNQ/CjpomH7yk5/E+PHjI6L6IVdERKtWrWLQoEGZ9vr162P+/Pk5jy9dt5x44okV9lXzQO2ZO3duPPvss7FkyZKtGl/6C98bNSr7cYb1A6gO9zNQv82ZMycuv/zyuPHGG/MeWzqMLigoKPNkZoRapC4JuoAyDjvssNhjjz0y7eeeey7WrVuX09gZM2Zktb/zne9sy6kB2zEFHTQ8F154YUyYMCEicg+5hg4dGoMHDy7zV9RbKl0/lK4vKrJmzZqYM2dOpr377rvHYYcdVmF/NQ/Unu985zsxcODArfp+nS+//DKWLVuWday8D5c2X2dL1g9ItxkzZkSSJHm9xo0bl3WOYcOGldtv+PDhWf3cz0D9NmfOnLjiiivi0ksvzXts6S2Te/fuXeH7Ti1SNwRdQBmNGjWKs846K9Nevnx5PProozmNveeeezL/bt26dZx66qnbfH7A9ktBBw1DkiRx/vnnZ/4aMp8nuebMmRMzZ86MRYsWVdjn1FNPjdatW2faW9YXlfnrX/+ata3IWWedVe5TH5upeaD2zZo1K+8xM2fOjI0bN2bazZs3r/BJCesHUB3uZ6D+W7lyZea7/3L1wAMPZLWPO+64CvuqReqGoAso19ixY7M+rNq8JVFlnnjiiXjttdcy7UsuuaTMXvpA/aagg/ovSZI499xzM09lbIvtCktr165d/PSnP820FyxYEE899VSV89qyXtl5551j7NixVV5LzQO1a+bMmVnvn1xs/g7AzY477rho2bJluX2tH0B1uJ+BhuHmm2/Oue/LL78cf/vb3zLtFi1axEUXXVRhf7VIHUkAKjBp0qQkIjKvW2+9tcK+xcXFSZcuXTJ999tvv2TVqlW1OFugOjp27Jj1fp8+ffpWn+tXv/pV1rmefPLJSvuXlJQk/fv3z/TfeeedkxUrVlR5neLi4mSXXXbJjBs4cGCVY6ZOnZo1tyuvvDLn3wvY9H4dOXJk5j104IEHJp9++mle59i83owbN67SfqtXr07233//zLW6d++erFy5ssL+EydOzHp/T5w4Mec5qXmg5m1Zaxx88ME5/b8+SZLkyiuvzHp/Nm3aNHnzzTcrHWP9gIZt3LhxWe/LYcOG5TXe/QzUT+PHj8+8dwoLC5OpU6dWOWbp0qVJz549s9531157bZXj1CK1T9AFVGrEiBFZ/xO45ZZbko0bN2b1KSoqSvr27Zvp17p162TevHl1NGNga2zLoEtBB/VTSUlJVl1Q3VdVQVeSJMmCBQuSNm3aZMb0798/KSoqyuqzcePGZOLEiUlhYWGm3/Dhw/P+/dQ8ULNK1xrdunVLnnjiiaSkpKTc/h9++GEyfPjwrDGFhYXJH//4x5yuZ/2Ahqu6QZf7Gaiftgy6IiJp1qxZ8utf/zr58ssvy+3/7LPPJgcccEDWmDPPPDPn66lFapegC6jUxo0bk4suuihrUe/atWsycuTIZMyYMcmQIUOSpk2bZn625557JnPnzq3raQN52pZBV5Io6KA+eu+997ZZyJVr0JUkSfLSSy8lHTp0yIxr2rRpMmTIkGTs2LHJWWedlXTt2jXrvOeff36yYcOGvH8/NQ/UrNGjRyc77rhjmbWgQ4cOyXe/+93k4osvTv7zP/8zOf/885PDDz88adKkSVa/vffeO3n00Ufzuqb1Axqm6gZdSeJ+BuqjZ555JunRo0eZWqRt27bJkCFDktGjRyeXXnppctZZZ5UJuBo3bpxcc801Ff6BTkXUIrVH0AXkZNq0acmAAQMq/LCqVatWycUXX5wsX768rqcKVKI6H1Tn+qH0Zgo6qF/qKuhKkiRZvnx5cskllyStW7eu8Hz9+vVLnnjiiWr/nmoeqDkrVqxIJk2alJx00klJq1atqlwnCgoKkr59+yY33HDDVj+1YP2A+u2OO+6osTrE/QzUT7NmzUpGjRpV5j1c3qt9+/bJhRdemLz77rtbfT21SO0oSJIkCYAcFRUVxXPPPRfvv/9+rFu3Ltq2bRs9evSI/v37R7Nmzep6ekAVFi1aFPvss89WjR03blxcfvnleY1ZsWJFXHXVVXHLLbfEihUryu3Tr1+/uOKKK+KYY47Zqnlt9uSTT8a4ceNi9uzZ5f68VatWMXLkyPj5z3+e9QXTQHqsW7cuZs+eHa+99losW7YsmjZtGh06dIj+/ftHp06dtum11DxQszZu3BjvvvtuvPHGG7F48eIoLi6OdevWRcuWLaNNmzbRuXPn6NWrV7Rq1WqbXM/6AfXTnXfeGWeccUbe43K9t3E/A/Xb559/Hq+88kq8++67sWzZsli7dm20bt062rdvH7169Yru3btHQUHBNrmWWqRmCboAgBqnoAMAANLK/QzA9k3QBQAAAAAAQCo1qusJAAAAAAAAwNYQdAEAAAAAAJBKgi4AAAAAAABSSdAFAAAAAABAKgm6AAAAAAAASCVBFwAAAAAAAKkk6AIAAAAAACCVBF0AAAAAAACkkqALAAAAAACAVBJ0AQAAAAAAkEqCLgAAAAAAAFJJ0AUAAAAAAEAqCboAAAAAAABIJUEXAAAAAAAAqSToAgAAAAAAIJUEXQAAAAAAAKSSoAsAAAAAAIBUEnQBAAAAAACQSoIuAAAAAAAAUknQBQAAAAAAQCoJugAAAAAAAEglQRcAAAAAAACp1LiuJwAAAED9t379+rj33ntj9erVcfrpp0fLli3rekoAAEA94IkuAACABmL48OFRUFBQK68777wz69onnXRSDBs2LM4999wYNGhQrF+/vm7+IwAAAPWKoAsAAIAa9eabb8Zjjz2Wab/00kvx9NNP1+GMAACA+kLQBQAA0MB07NgxkiSp9DV9+vS8x7z33nvlXi9JkjLHSkpKauR3AwAAGhZBFwAAADWqe/fuceyxx2baPXv2jCOPPLIOZwQAANQXjet6AgAAANR/Dz/8cNx7772xevXqOO2006Jp06Z1PSUAAKAeEHQBAABQ45o2bRrDhg2r62kAAAD1jKALAACggdhvv/2ib9++sccee9TI+Zs1axZ9+/aNiIhddtmlRq4BAACwpYKkvG8FBgAAoEGbMWNGfO1rX8u0O3bsGIsWLaq7CQEAAJTDE10AAACkUpIkMWvWrPjHP/4Rq1ativbt28ehhx4aX/nKVyodM3v27HjppZdi5cqV0a5du+jVq1f07ds3CgsLqzWfkpKSePHFF+N///d/49NPP42IiPbt28c+++wT/fv3971kAABQAwRdAAAA1IjBgwfHzJkzy/3ZsGHD4s477yxzfMqUKfHv//7vFZ5z86YkM2fOjHPOOSfefPPNMn2+8pWvxE033RQDBgzIOj516tS48MILY+HChWXG7L333jFhwoQ46aSTKvmNyrd06dK48sor46677orPP/+83D4tWrSIIUOGxBVXXBH7779/3tcAAADK16iuJwAAAAD5uP/+++Ooo44qN+SKiJg3b1587Wtfi0ceeSRz7He/+10cd9xx5YZcERHvv/9+nHzyyXHXXXflNZfHH3889ttvv7j++uvj888/jyZNmsQxxxwTo0ePjjFjxsSQIUNixx13jNWrV8e9994bBxxwQEyYMCGvawAAABXzHV0AAACUsa2/o2vRokWxzz77ZNoVPdH10UcfxTPPPJNp//KXv4w33ngj037llVfikEMOicaNG8epp54ahxxySOywww6xcOHCuPvuu6OoqCjTt3Xr1vHOO+/E/Pnz4+ijj47GjRvHKaecEgMGDIgdd9wxFi5cGH/84x+zxuy0007x1ltvxe67717l73TPPffE8OHDY8OGDRERceihh8Y999wTnTt3zuq3dOnSOP/882Py5MlZv9fPf/7zKq8BAABUTtAFAABAGXUVdJVWevvDI444Ij7++ON44oknolOnTll9V69eHccee2w8++yzmWOXX3553H333bFq1ar429/+FgceeGCZMUcffXTMnj07c+zKK6+MSy+9tNJ5zZs3L/r37x9r1qyJiIguXbrEiy++GK1atSq3f0lJSZx88snxl7/8JSIiGjVqFDNmzIiBAwdW+d8AAAComK0LAQAASI3nnnsuHn744TIhV8Sm78G68cYbs45dddVVsXDhwpg8eXKZkGvzmN/+9rdZx7bc8rAiw4cPz4RcERE33HBDhSFXxKZg68Ybb4zGjTd9VXZJSUlccMEFVV4HAAConKALAACA1Bg6dGh07dq1wp/37t07OnbsmGmvW7cuBg0aFEcccUSFYw4++ODYa6+9Mu0FCxZEZZufPProozF//vxMu2vXrnHMMcdUOfe99torjj766KzrbPn0GQAAkD9BFwAAAKlx0kknVdmnW7duWe0hQ4ZUOaZ79+6Zf69atSpWrlxZYd+77rorq/2tb32ryvNvdthhh2W1//znP+c8FgAAKEvQBQAAQGr07t27yj5t27bNe0y7du2y2sXFxRX2nTFjRla7X79+VZ5/sy5dumS1n3/++ZzHAgAAZQm6AAAASI3ddtutyj7NmjXLe0zz5s2z2hs2bCi335IlS+LTTz/NOrbffvtVef7NSn+P15ZbIAIAAPlrXNcTAAAAgFztuOOOeY9p0aLFNrv+559/XuZYnz59tvp8q1evjjVr1pQJ2gAAgNx4ogsAAIDUKCgoqJUxFalsS8OttXz58m1+TgAAaCg80QUAAAA5Kr31YETE22+/HZ07d66D2QAAAJ7oAgAAgBy1b9++zLGVK1fWwUwAAIAIQRcAAADkbI899ohdd90169hHH31UR7MBAAAEXQAAAJCHwYMHZ7XnzZuX1/ilS5fG5MmTY/LkyfHUU09tu4kBAEADJOgCAACAPPzgBz/Iaj/88MN5jf/DH/4Q3/ve9+J73/tePPHEE9tyagAA0OAIugAAACAP3/rWt6J3796Z9osvvhizZ8/OaezatWvjt7/9bURENGrUKM4444wamSMAADQUgi4AAADI0x133BHNmzfPtEeOHBnLli2rctyPf/zjWLRoUUREDB8+PLp3715TUwQAgAZB0AUAAAB5Ouigg+LWW2+Nxo0bR0TE66+/HoMHD44XX3yx3P4ff/xxDB06NG655ZaIiOjRo0dMmDCh1uYLAAD1VUGSJEldTwIAAIC6tWjRothnn31y7j9o0KCYMWNGpX0GDx4cM2fOzOl87733XnTq1CmveUyfPj0GDx4cERGdOnWKoqKiKsfccccdMXz48LzGjBs3Li6//PJyfzZt2rQYOnRoLF26NHOsd+/e0a9fv9h5551j9erV8eqrr8bMmTNj/fr1ERExcODAePDBB6N9+/ZVXhsAAKhc47qeAAAAAKTV0UcfHe+++25cd911cdttt8WSJUti/vz5MX/+/DJ9+/TpExdeeGEMGzYsCgoK6mC2AABQ/3iiCwAAALaR+fPnxyuvvBKfffZZrF69OnbaaafYe++94+CDD44OHTrU9fQAAKDeEXQBAAAAAACQSo3qegIAAAAAAACwNQRdAAAAAAAApJKgCwAAAAAAgFQSdAEAAAAAAJBKgi4AAAAAAABSSdAFAAAAAABAKgm6AAAAAAAASCVBFwAAAAAAAKkk6AIAAAAAACCVBF0AAAAAAACkkqALAAAAAACAVBJ0AQAAAAAAkEqCLgAAAAAAAFJJ0AUAAAAAAEAqCboAAAAAAABIJUEXAAAAAAAAqSToAgAAAAAAIJUEXQAAAAAAAKSSoAsAAAAAAIBUEnQBAAAAAACQSoIuAAAAAAAAUknQBQAAAAAAQCoJugAAAAAAAEglQRcAAAAAAACpJOgCAAAAAAAglQRdAAAAAAAApJKgCwAAAAAAgFQSdAEAAAAAAJBKgi4AAAAAAABSSdAFAAAAAABAKgm6AAAAAAAASCVBFwAAAAAAAKkk6AIAAAAAACCVBF0AAAAAAACkkqALAAAAAACAVBJ0AQAAAAAAkEqCLgAAAAAAAFLp/wO7IM87FFlekgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAUeCAYAAAA4hQ9LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXiddZk//vtkb5MmbWnL0kJLyyZlsULZhVJk3BUQigMICIWqqIMo4MKIOIoiDAi/KSCI4LgMKDiA8kVUaNlBUAakyFKWLkD3pmnT7Of8/kh7aJqUnLRJzkmf1+u6euV8nuXz3OkwM23eve8nlclkMgEAAAAAAAAJVJTvAgAAAAAAACBfhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFgl+S6AiPnz58cTTzwR8+bNi+bm5hg+fHhMnDgxDjrooCgrK8t3ebFs2bJ46qmn4rXXXotVq1ZFUVFRVFdXx9ixY2OPPfaICRMm5LtEAAAAAACAzSIsy6MHHnggLr744njkkUe6PF9TUxNnn312XHTRRVFdXd2vtWUymbjtttti5syZ8eijj0Ymk9nktcOHD4/DDz88PvGJT8RnP/vZfqwSAAAAAABgy6Qy75aC0CfS6XR87Wtfi6uuuip7bPfdd4/DDjsshg0bFi+//HLce++90dLSEhERO+64Y9x1110xadKkfqnvlVdeiVNOOSX++te/RkREaWlpHH744bHLLrvEsGHD4q233ooXXnghnn766Q73bbPNNrFs2bJ+qREAAAAAAKA3CMvyYMaMGXHDDTdERERxcXHMnDkzzjrrrCgqeucVcvPnz49p06bFk08+GRERQ4cOjYceeij23nvvPq3tiSeeiI985COxcuXKKC4ujvPOOy++8Y1vxLBhwzpd++ijj8bZZ58dL7zwQkQIywAAAAAAgIFHWNbPbr755jjjjDOy6xtvvDGmT5/e5bV1dXUxefLkePnllyMiYpdddonnnnsuBg0a1Ce1vfLKK3HQQQfFihUrori4OP73f/83Pv7xj7/rPW+//XbsueeeUVtbKywDAAAAAAAGnKLuL6G3rFmzJr7+9a9n14cddtgmg7KIiOrq6rjmmmuy67lz58bVV1/dZ/WdeeaZsWLFioiI+I//+I9ug7KIiO233z5OO+20PqsJAAAAAACgL+ks60ff+c534pJLLsmuf/e738Wxxx7b7X0TJ07MjjocOnRovPbaa12ORdwS//3f/50NvUaPHh1z586NioqKnO598cUXY/bs2TFo0CDBGQAAAAAAMKDoLOsnmUwmbrzxxux66NCh8dGPfjSne0855ZTs59ra2rjtttt6tbZ0Oh0XXXRRdn3qqafmHJRFROyxxx7xuc99TlAGAAAAAAAMOMKyfvLoo4/GW2+9lV0fcsghUVZWltO9U6ZM6bC+/fbbe7O0mDVrVixYsCC7/sQnPtGr+wMAAAAAABQqYVk/ufvuuzusJ0+enPO9kyZNitLS0uz6wQcfjLq6ul6r7Re/+EX2c0lJSey33369tjcAAAAAAEAhE5b1k2eeeabD+j3veU/O91ZUVMT48eOz69bW1nj++ed7rbb77rsv+3n8+PEdgjkAAAAAAICtmbCsn8yZM6fDesyYMT26f/To0e+63+ZavHhxLFq0KLseN25c9vPrr78el156abz//e+PMWPGRHl5eQwbNix22223OPnkk+PnP/95NDY29kodAAAAAAAA+VCS7wKSoK6uLt5+++0OxzYOv7qz8fUvvvjiFtcV0bnjbciQIdHU1BQXXXRRXHPNNdHc3NzhfHNzc9TW1sYrr7wSv/71r+Ob3/xmXHbZZXHKKaf0Sj0AAAAAAAD9SWdZP1ixYkWnY9XV1T3aY+PrV65cuUU1rffyyy93WLe2tsaHPvShuOKKK6K5uTlOPvnkmDVrVixbtiwaGhri5ZdfjquuuipGjRoVERFvvfVWfOYzn4nzzz+/V+oBAAAAAADoTzrL+sHq1as7HSsvL+/RHhUVFd3uuTlqa2s7rO+6666IiCguLo5f//rXMW3atA7nd9111zj33HPj5JNPjilTpsQLL7wQERFXXHFFjBkzJv7t3/6tV+qKiFiyZEksXbq0R/fU1dXF008/HdXV1TF06NDYcccde/x7DQAAAAAAW5umpqZYsGBBdn3EEUfE0KFD81dQARGW9YOugq2Nw6/u9FVYVldX1+XxCy+8sFNQtqGRI0fG3XffHRMnToympqaIiDj//PPjYx/7WEyYMKFXarv22mvjkksu6ZW9AAAAAACAd9x5553xyU9+Mt9lFARjGAeoTCbTK/t0FboNHjw4vv71r3d774QJE2L69OnZdUtLS/zoRz/qlboAAAAAAAD6g7CsHwwZMqTTscbGxh7tsfH1Xe3ZWz7ykY/kvP9JJ53UYf0///M/0dbW1hdlAQAAAAAA9DpjGPtBVVVVp2NNTU1RWVmZ8x59FZZ1tc/kyZNzvn///feP0tLSaGlpiYj2TrVnnnkm9t9//y2u7Qtf+EKccMIJPbrnhRde6DA+8s4774xddtlli2sBAAAAAICBbO7cuXHMMcdk1zvuuGP+iikwwrJ+MHz48E7H6urqujy+KRu/W2zYsGFbXFdERHV1dadj48ePz/n+srKy2HnnnePll1/OHvvnP//ZK2HZqFGjYtSoUVu0xy677BITJ07c4loAAAAAAGBrUl5enu8SCoYxjP2gpqYmtttuuw7H3nzzzR7tsfH1e+yxxxbXFRGx7bbbdjrWVYD2bmpqajqsly9fvkU1AQAAAAAA9BdhWT/Za6+9OqwXLlzYo/s3Dss23m9zdbVPKpXq0R5lZWUd1g0NDVtUEwAAAAAAQH8RlvWTSZMmdVi/8MILOd/b2NgYr732WnZdXFzca2HZ3nvv3SkcW716dY/22Pj6ESNGbHFdAAAAAAAA/UFY1k8+/vGPd1g/9dRTOd/7zDPPREtLS3Z9xBFH9HhU4qZUV1fHvvvu2+HYvHnzerTH22+/3WE9evToLa4LAAAAAACgPwjL+smhhx4a22+/fXb9+OOPR3Nzc073zp49u8P6+OOP783S4sQTT+ywfvbZZ3O+d9GiRbF06dLsuqSkJA477LBeqw0AAAAAAKAvCcv6SVFRUUyfPj27rq2tjXvuuSene3/1q19lP9fU1HQKt7bUv/7rv0ZxcXF2fe+990ZbW1tO9/7hD3/osO7NrjcAAAAAAIC+JizrR+eff36MHDkyu77qqqu6vee+++6LOXPmZNcXXHBBDB8+/F3vWb58edxwww0xc+bMePPNN7t9xtixY+Pzn/98dr1kyZK47bbbur0vnU7Hdddd1+HYRRdd1O19AAAAAAAAhUJY1o+GDBkSl156aXb98MMPx0033bTJ61evXh1f/vKXs+sJEybEueee+67PWLBgQUycODFmzJgRX/ziF2PPPfeM5557rtvavvvd78aoUaOy6wsuuKDTu8g2dtVVV8Xf//737PqUU06JKVOmdPssAAAAAACAQiEs62fTp0+PM888M7ueMWNG3HDDDZFOpztcN3/+/Dj66KPj5Zdfjoj28Yt33HFHDB48+F33v+6662Lx4sXZdV1dXfzoRz/qtq5hw4bF//t//y87QvHNN9+MqVOndgjD1mtpaYnvfe97cf7552ePHXLIIXHjjTd2+xwAAAAAAIBCUpLvApLohhtuiMrKyrjmmmuira0tZsyYEVdeeWUcfvjhUVNTE6+88krce++90dzcHBERo0ePjrvuuiv23XffbvfOZDKdjm0cxG3KfvvtF3/84x/j5JNPjtdffz1efPHF2H///ePggw+O973vfVFVVRULFy6M++67L5YuXZq97/TTT4/rrrsuKioqcvwdAAAAAAAAKAypTFfpCv3iL3/5S1x88cXx2GOPdXm+uro6zjrrrPj3f//3qKmpyWnPefPmxeTJk7NhVlVVVTz88MPx3ve+N+e61q5dGz/4wQ/i5z//eSxYsKDLa0pLS+Poo4+Ob37zm3HooYfmvHdfmzNnTuy1117Z9fPPPx8TJ07MY0UAAAAAAJB/fn6+acKyAjBv3rx4/PHHY/78+dHc3BzDhg2LiRMnxsEHHxzl5eU93m/ZsmVxxx13REtLSxxzzDExZsyYzaork8nE3//+93j55Zfj7bffjpaWlthmm21i7Nixccghh0RlZeVm7duX/C87AAAAAAB05ufnm2YMYwEYO3ZsjB07ttf2GzFiRMyYMWOL90mlUrHffvvFfvvt1wtVAQAAAAAAFJ6ifBcAAAAAAAAA+SIsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEisknwXQMT8+fPjiSeeiHnz5kVzc3MMHz48Jk6cGAcddFCUlZXluzwAAAAAAICtlrAsjx544IG4+OKL45FHHunyfE1NTZx99tlx0UUXRXV1dZ/W8p3vfCcuueSSzb7/3/7t3+LHP/5x7xUEAAAAAADQD4xhzIN0Oh3nnXdeHHXUUdmgbPfdd48zzzwzvva1r8UnPvGJKC0tjVWrVsXll18ee+21VzzzzDN5rhoAAAAAAGDro7MsDz7/+c/HDTfcEBERxcXFMXPmzDjrrLOiqOid7HL+/Pkxbdq0ePLJJ2PBggUxderUeOihh2LvvffOV9kAAAAAAABbHZ1l/ezmm2/OBmUREddff33MmDGjQ1AWEbHTTjvFn/70p9htt90iIqK2tjaOO+64aGho6NP6TjvttMhkMj3+ZQQjAAAAAAAwEAnL+tGaNWvi61//enZ92GGHxfTp0zd5fXV1dVxzzTXZ9dy5c+Pqq6/u0xoBAAAAAACSRFjWj6644opYsmRJdn3eeed1e88HP/jB2HPPPbPryy67LFauXNkn9QEAAAAAACSNsKyfZDKZuPHGG7ProUOHxkc/+tGc7j3llFOyn2tra+O2227r9foAAAAAAACSSFjWTx599NF46623sutDDjkkysrKcrp3ypQpHda33357b5YGAAAAAACQWMKyfnL33Xd3WE+ePDnneydNmhSlpaXZ9YMPPhh1dXW9VhsAAAAAAEBSCcv6yTPPPNNh/Z73vCfneysqKmL8+PHZdWtrazz//PO9VhsAAAAAAEBSCcv6yZw5czqsx4wZ06P7R48e/a779ably5fHzJkz4+Mf/3iMGzcuqqqqoqysLLbbbrvYd9994+yzz47bbrstmpub+6wGAAAAAACA/lCS7wKSoK6uLt5+++0OxzYOv7qz8fUvvvjiFtfVlYceeijGjx/f5ZjHxYsXx+LFi+O5556LG2+8McaMGRP//u//HmeffXaf1NIbFq9dHEPXDM13GQAAAAAA0Ce2HbxtlBSJe7aE371+sGLFik7Hqqure7THxtevXLlyi2ralNdffz0i2t+pNn369Jg6dWrssMMO0dbWFgsWLIg//vGPceWVV8abb74ZCxcujBkzZsQDDzwQt9xyS1RUVPRJTVtixp9nRMULhVcXAAAAAAD0hj9+6o8xuqpnDTp0JCzrB6tXr+50rLy8vEd7bBxEdbVnb0ilUnH55ZfHV77ylSgq6jilc88994w999wzZsyYESeeeGLcc889ERFx2223RVFRUfz617/u1VqWLFkSS5cu7dE9c+fO7dUaAAAAAACArZuwrB90FWz1tAurr8OyPfbYIz75yU/GJz/5yfjsZz/7rtdWVlbG7373u5g0aVK88MILERHxP//zPzF16tSYPn16r9V07bXXxiWXXNJr+wEAAAAAAGysqPtLKESZTKZX9/v0pz8dd955Z7dB2XplZWVx5ZVXdjj23e9+N5qamnq1LgAAAAAAgL4kLOsHQ4YM6XSssbGxR3tsfH1Xe/a3o48+OnbcccfsesGCBfHnP/85jxUBAAAAAAD0jDGM/aCqqqrTsaampqisrMx5j0IMy4qKiuLQQw+NW2+9NXvsL3/5S3zsYx/rlf2/8IUvxAknnNCje+bOnRvHHHNMrzwfAAAAAADY+gnL+sHw4cM7Haurq+vy+KbU1dV1WA8bNmyL6+oNEydO7LB+/vnne23vUaNGxahRo7Zoj58c/ZPY/T2791JFAAAAAABQWLYdvG2+SxjwhGX9oKamJrbbbrtYtGhR9tibb74Z48aNy3mPN998s8N6jz326K3ytsjGod2yZcvyVEnXth28bYyuGp3vMgAAAAAAgALlnWX9ZK+99uqwXrhwYY/u3zgs23i/fCkrK+uwbmhoyFMlAAAAAAAAPScs6yeTJk3qsH7hhRdyvrexsTFee+217Lq4uLhgwrKNx0Nus802eaoEAAAAAACg54Rl/eTjH/94h/VTTz2V873PPPNMtLS0ZNdHHHFEVFdX91pt119/fXznO9+JRx55pMf3btwht/322/dWWQAAAAAAAH3OO8v6yaGHHhrbb799vP322xER8fjjj0dzc3OnMYZdmT17dof18ccf36u1XX/99fHss8/GihUr4rDDDuvRvU8//XSH9eGHH96bpQEAAAAAAPQpnWX9pKioKKZPn55d19bWxj333JPTvb/61a+yn2tqauLEE0/s9foiIh566KEeXf/WW2/F448/nl2nUqn48Ic/3NtlAQAAAAAA9BlhWT86//zzY+TIkdn1VVdd1e099913X8yZMye7vuCCC2L48OHves/y5cvjhhtuiJkzZ8abb76Zc33PPvtsh/CrO1dccUW0tbVl15/61Kdit912y/l+AAAAAACAfBOW9aMhQ4bEpZdeml0//PDDcdNNN23y+tWrV8eXv/zl7HrChAlx7rnnvuszFixYEBMnTowZM2bEF7/4xdhzzz3jueeey7nGs846K1atWtXtdffdd19cc8012fXQoUPjBz/4Qc7PAQAAAAAAKATCsn42ffr0OPPMM7PrGTNmxA033BDpdLrDdfPnz4+jjz46Xn755YhoH794xx13xODBg991/+uuuy4WL16cXdfV1cWPfvSjnOubM2dOHHzwwfHII490eb6lpSWuuuqq+OQnP5ntKisrK4vf/va3scsuu+T8HAAAAAAAgEJQku8CkuiGG26IysrKuOaaa6KtrS1mzJgRV155ZRx++OFRU1MTr7zyStx7773R3NwcERGjR4+Ou+66K/bdd99u985kMp2ObRzEbeyYY46JN954I9tR9s9//jPe//73xx577BEHH3xwbLvtttHS0hLz58+P+++/P1asWJG9d/z48fGb3/wm9ttvv578FgAAAAAAABSEVKardIV+8Ze//CUuvvjieOyxx7o8X11dHWeddVb8+7//e9TU1OS057x582Ly5MmxdOnSiIioqqqKhx9+ON773ve+631r166NO+64I37/+9/Hn//856itrd3ktalUKvbee+8455xz4tRTT42KioqcausPc+bMib322iu7fv7552PixIl5rAgAAAAAAPLPz883TVhWAObNmxePP/54zJ8/P5qbm2PYsGExceLEOPjgg6O8vLzH+y1btizuuOOOaGlpiWOOOSbGjBnTo/vT6XS8+uqrMWfOnHjrrbdi1apVUVRUFMOHD48ddtghDjrooNhmm216XFd/8L/sAAAAAADQmZ+fb5oxjAVg7NixMXbs2F7bb8SIETFjxozNvr+oqCh23XXX2HXXXXutJgAAAAAAgEJUlO8CAAAAAAAAIF+EZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGQAAAAAAAIklLAMAAAAAACCxhGUAAAAAAAAklrAMAAAAAACAxBKWAQAAAAAAkFjCMgAAAAAAABJLWAYAAAAAAEBiCcsAAAAAAABILGEZAAAAAAAAiSUsAwAAAAAAILGEZQAAAAAAACSWsAwAAAAAAIDEEpYBAAAAAACQWMIyAAAAAAAAEktYBgAAAAAAQGIJywAAAAAAAEgsYRkAAAAAAACJJSwDAAAAAAAgsYRlAAAAAAAAJJawDAAAAAAAgMQSlgEAAAAAAJBYwjIAAAAAAAASS1gGAAAAAABAYgnLAAAAAAAASCxhGVu1nzz4ajS2tOW7DAAAAAAAoEAJy9iq3f63hdHUks53GQAAAAAAQIESlrHVS2cy+S4BAAAAAAAoUMIytmqfnXNPtNbW5rsMAAAAAACgQAnL2KoduPif0bp4cb7LAAAAAAAACpSwjK1e2/Ll+S4BAAAAAAAoUMIytnpty5bluwQAAAAAAKBACcvY6qWXC8sAAAAAAICuCcvY6hnDCAAAAAAAbIqwjK1eRlgGAAAAAABsgrCMrV56hbAMAAAAAADomrCMrV5GWAYAAAAAAGyCsIytnjGMAAAAAADApgjL2PrVrYpMS0u+qwAAAAAAAAqQsIytXyYTrStW5rsKAAAAAACgAAnLSITWZUvzXQIAAAAAAFCAhGUkQpv3lgEAAAAAAF0QlpEIrUuX5bsEAAAAAACgAAnLSIRWnWUAAAAAAEAXhGUkgneWAQAAAAAAXRGWkQhty4xhBAAAAAAAOhOWkQity4xhBAAAAAAAOhOWkQitOssAAAAAAIAuCMtIBGEZAAAAAADQFWEZiZCuq4t0c3O+ywAAAAAAAAqMsIzEaNNdBgAAAAAAbKQk3wVAX3pw9L4x+l8OifG77RRFVVX5LgcAAAAAACgwwjK2av+z+9FxzL+eEMN2HZnvUgAAAAAAgAJkDCNbvXQm3xUAAAAAAACFSljGVi+dkZYBAAAAAABdE5ax1csIywAAAAAAgE0QlrHVS6fzXQEAAAAAAFCohGVs9YxhBAAAAAAANkVYxlYvLSsDAAAAAAA2QVjGVk9nGQAAAAAAsCnCMrZ6wjIAAAAAAGBTSvJdAPSlAxb9M2puXxNv3boqWhYujO2+c3GUjx+f77IAAAAAAIACISxjq3bGC/fEiFfLY9W6dfMbbwjLAAAAAACALGMYSZSWBQvyXQIAAAAAAFBAhGUkSvPCN/NdAgAAAAAAUECEZSSKzjIAAAAAAGBDwjISpeXNhfkuAQAAAAAAKCAl+S6AiPnz58cTTzwR8+bNi+bm5hg+fHhMnDgxDjrooCgrK8t3eVlz5syJSZMmRUtLS/bYrFmzYsqUKfkrqoeaF74ZmUwmUqlUvksBAAAAAAAKgLAsjx544IG4+OKL45FHHunyfE1NTZx99tlx0UUXRXV1dT9X11Emk4mzzz67Q1A2EGUaGqJt+fIoGTEi36UAAAAAAAAFwBjGPEin03HeeefFUUcdlQ3Kdt999zjzzDPja1/7WnziE5+I0tLSWLVqVVx++eWx1157xTPPPJPXmq+77rp47LHH8lpDb2n23jIAAAAAAGAdnWV58PnPfz5uuOGGiIgoLi6OmTNnxllnnRVFRe9kl/Pnz49p06bFk08+GQsWLIipU6fGQw89FHvvvXe/1/vWW2/FN77xjX5/bl9pWbgwYtKkfJcBAAAAAAAUAJ1l/ezmm2/OBmUREddff33MmDGjQ1AWEbHTTjvFn/70p9htt90iIqK2tjaOO+64aGho6Nd6IyLOOeecqKuri5KSkhg8eHC/P7+3tSxcmO8SAAAAAACAAiEs60dr1qyJr3/969n1YYcdFtOnT9/k9dXV1XHNNddk13Pnzo2rr766T2vc2O9+97u48847IyLiq1/9aowcObJfn98XmhcIywAAAAAAgHbCsn50xRVXxJIlS7Lr8847r9t7PvjBD8aee+6ZXV922WWxcuXKPqlvY3V1dfGlL30pIiLGjx8fF198cb88t6/pLAMAAAAAANYTlvWTTCYTN954Y3Y9dOjQ+OhHP5rTvaecckr2c21tbdx22229Xl9XLrzwwnjrrbciIuK6666LQYMG9ctz+1rzwgX5LgEAAAAAACgQwrJ+8uijj2aDp4iIQw45JMrKynK6d8qUKR3Wt99+e2+W1qXHHnssfvKTn0RExMknnxz/8i//0ufP7C+tixZHprk532UAAAAAAAAFQFjWT+6+++4O68mTJ+d876RJk6K0tDS7fvDBB6Ourq7XattYc3NznHXWWZHJZGL48OFx1VVX9dmz8iKdjpa33853FQAAAAAAQAEQlvWTZ555psP6Pe95T873VlRUxPjx47Pr1tbWeP7553utto398Ic/jBdeeCEi2t+zNnLkyD57Vr40e28ZAAAAAAAQwrJ+M2fOnA7rMWPG9Oj+0aNHv+t+veWll16KSy+9NCLaxz9+9rOf7ZPn9JdVZZVdHm9ZICwDAAAAAACEZf2irq4u3t5o7N/G4Vd3Nr7+xRdf3OK6NpbJZOLss8+OpqamKC8vz76zbCBbNqimy+MtbwrLAAAAAACAiJJ8F5AEK1as6HSsurq6R3tsfP3KlSu3qKau/PSnP42HHnooIiK+9a1vxW677dbrz+iJJUuWxNKlS3t0z9y5czusl1fURDQu73Rds84yAAAAAAAghGX9YvXq1Z2OlZeX92iPioqKbvfcEosWLYoLLrggItrfp3bhhRf26v6b49prr41LLrlki/ZYNqgmorbz8RbvLAMAAAAAAMIYxn7RVbC1cfjVnb4Oy7785S9HbW1tpFKpuOGGG6KsrKxX98+XTY5hXLCgnysBAAAAAAAKkbBsgMpkMr221x/+8If47W9/GxERZ511Vhx22GG9tne+LRs0tMvjbatWRWsfjLIEAAAAAAAGFmMY+8GQIUM6HWtsbIzKysqc92hsbOx2z82xZs2a+MIXvhAREdtuu21cdtllvbJvb/jCF74QJ5xwQo/umTt3bhxzzDHZ9aLBw6N5UGXUvGf3KN9ll3W/JkTZLrtE8dChvVswAAAAAAAw4AjL+kFVVVWnY01NTQURln3zm9+MBetGEl599dUxtIACpFGjRsWoUaO2aI+6ssFx7/d/EV//yHt6qSoAAAAAAGBrYgxjPxg+fHinY3V1dT3aY+Prhw0btkU1RUT89a9/jZkzZ0ZExEc+8pE48cQTt3jPwpOK3htYCQAAAAAAbG2EZf2gpqYmtttuuw7H3nzzzR7tsfH1e+yxxxbV1NraGmeddVak0+morKyMa6+9dov2K2TpXny/GwAAAAAAsHUxhrGf7LXXXrFo0aLseuHChT26f+OwbK+99tqiehYuXBjPPfdcRETU19fHuHHjNmufI488ssvjmQIKqNKFUwoAAAAAAFBgdJb1k0mTJnVYv/DCCznf29jYGK+99lp2XVxcvMVhWZLoLAMAAAAAADZFWNZPPv7xj3dYP/XUUznf+8wzz0RLS0t2fcQRR0R1dfUW1TNu3LjIZDI9/jV27NgO+8yaNavL6wpJgZUDAAAAAAAUEGFZPzn00ENj++23z64ff/zxaG5uzune2bNnd1gff/zxvVnaVk9nGQAAAAAAsCnCsn5SVFQU06dPz65ra2vjnnvuyeneX/3qV9nPNTU1ceKJJ/Z6fVszYRkAAAAAALApwrJ+dP7558fIkSOz66uuuqrbe+67776YM2dOdn3BBRfE8OHD3/We5cuXxw033BAzZ86MN998c/ML3kqkN5GVZTKZaFu1qn+LAQAAAAAACkpJvgtIkiFDhsSll14aZ511VkREPPzww3HTTTfFmWee2eX1q1evji9/+cvZ9YQJE+Lcc89912csWLAgJk+eHIsXL46IiG9+85vx8MMPxz777NM738QAlMlkom3Nmmh87rlomvtqNM2d2/7r1VcjVVoauz3ycL5LBAAAAAAA8qSgw7L58+dHRMROO+2U50p6z/Tp0+OJJ56Im266KSIiZsyYEW1tbTF9+vQoKnqn0W/+/Pkxbdq0ePnllyOiffziHXfcEYMHD37X/a+77rpsUBYRUVdXFz/60Y/il7/8ZR98NwNDOh3R+NxzMf+MrkPJ1pUro2TYsH6uCgAAAAAAKAQFHZaNGzcuioqKorW1Nd+l9KobbrghKisr45prrom2traYMWNGXHnllXH44YdHTU1NvPLKK3HvvfdGc3NzRESMHj067rrrrth333273TvTxfu50un0ZtU5ZcqUePDBB9/1miOPPLLTsddffz3GjRu3Wc/sC22ZTJTtsssmzzfPnRslkyf3Y0UAAAAAAEChKPh3lnUV/gx0RUVFcfXVV8ef//znOOSQQyIi4qWXXoobb7wxrrjiirjrrruiubk5qqur46tf/WrMmTMn9ttvv5z2/tznPtfhvWhVVVVxwQUX9Mn3MVCkM5koGTkyimpqujzf9Oqr/VwRAAAAAABQKAq6s2y9r3/96zFt2rR43/vel+9SetUHPvCB+MAHPhDz5s2Lxx9/PObPnx/Nzc0xbNiwmDhxYhx88MFRXl7eoz3Hjh0bL7zwQtxxxx3R0tISxxxzTIwZM2az6ps9e/Zm3VdoMpmIVCoV5RMmRMPf/97pfNMrc/NQFQAAAAAAUAgGRFh2+eWXx+WXXx7jx4+PT3/60zFt2rTYe++9811Wrxk7dmyMHTu21/YbMWJEzJgxo9f2G+jS67oTy3fZpeuwbK6wDAAAAAAAkqrgxzBGRHZU4auvvhqXXnppvPe9740999wzvvvd78aLL76Y5+oodOl1kzzLN/HeMmEZAAAAAAAk14AIyx5++OGYP39+XHHFFbH//vtHJpOJF198MS655JKYOHFivPe9740f/vCH8ap3T9GFdzrLJnR5vm358mhZsqQ/SwIAAAAAAArEgAjLIiJGjx4d5513Xjz55JPx2muvxfe///3YZ599IpPJxHPPPRff+ta3YrfddovJkyfHf/7nf8aCBQvyXTIFIrM+LNtjj01e0zhnTn+VAwAAAAAAFJCCDssOP/zwOPzwwzsdHzduXHzjG9+IZ555Jl588cW4+OKLY4899ohMJhN/+9vf4oILLohx48bFoYceGtdcc028/fbbeaieQpFOt38tGT48SnbYvstrGp8XlgEAAAAAQBIVdFg2e/bsmDVr1rtes9tuu8XFF18cc+bMiWeffTa+8Y1vxM477xyZTCYef/zx+MpXvhI77rhjTJkyJa6//vp+qpxCsn4MY0TEoIkTu7xGZxkAAAAAACRTQYdlPbX33nvH97///Zg7d25cf/31UVVVFZlMJtLpdDz00ENxzjnn5LtE8iD9TlYWFRP36vIaYRkAAAAAACRTSb4L6E3/+Mc/4rbbbovf/OY38eqrr0ZERCqVioh33ltF8mz4P/uKTXSWtS5dGi2Ll0TptqP6qywAAAAAAKAADPiw7J///Gc2IHvppZci4p1wZOOgrLS0ND9FklcbjmGs2KvrsCyivbtMWAYAAAAAAMkyIMOyV155JRuQzVk3Pm/DgCyVSkUmk4lMJhMlJSUxderUOPHEE+PYY4/NZ9nkyYZjGEuGDYuSHbaP1rfe7nRd45w5MWTqkf1YGQAAAAAAkG8DJix7/fXX4ze/+U3cdttt8eyzz0bEpgOy4uLimDJlSkybNi0+9alPxfDhw/NZOnmW3mgE56CJe8XqTYRlAAAAAABAshR0WLZgwYJsQPa3v/0tIjq+f2rDgKyoqCgOP/zwmDZtWhx//PExcuTIfJVNgdn4dXUVEyfG6j//udN1DXOe76eKAAAAAACAQlHQYdnYsWOzgdh6G68PPfTQOPHEE+P444+P7bbbLh9lUuA27iyrmNj1e8vali6LlsVLvLcMAAAAAAASpKDDsvVSqVRERLaL7MADD4wTTzwxTjjhhBg9enSeq6PQdQrL9uo6LItoH8UoLAMAAAAAgOQoyncB72bChAnZgCyiPTQ78MAD46tf/Wp87nOfE5SRk/RGYxhLhg2L0h126PLaxueNYgQAAAAAgCQp6LDslVdeiaeffjq++tWvxo477hiZTCaefPLJOPHEE2PkyJFx0kknxZ133hnNzc35LpUCltn4pWWx6VGMjXPm9HU5AAAAAABAASnosCwi4n3ve19cfvnl8cYbb8Sjjz4aX/rSl2K77baL+vr6uPXWW+NTn/pUjBo1Kk477bS45557orW1Nd8lU2A27iyLiKjYa68ur22YM6fLcA0AAAAAANg6FXxYtqGDDz44rr766li4cGHMmjUrzj777Nhmm22irq4ufvGLX8QnPvGJGDVqVJx55plx3333RVtbW75LpgBs/M6yiM6dZalBg2LwQQfFsGknRLS09FdpAAAAAABAnpXku4DNkUql4ogjjogjjjgiZs6cGQ888ED8z//8T9x5551RW1sbN998c9xyyy0xfPjwOO644+LEE0+MI488MlKpVL5LJw+66iwbtM/eMeToo2PQfu+LwfvtFxV77BGp0tL+Lw4AAAAAAMirAdVZ1pXi4uI4+uij42c/+1ksXrw47rrrrjjppJOiqqoqli9fHj/96U/j6KOPju233z6++MUv5rtc8qCrsYrF1dUx5v+7JrY5/fQYtPfegjIAAAAAAEioAR+Wbai0tDQ+/vGPx5VXXhnf/va3o6qqKjKZTGQymViyZElcd911+S6RPOhqDCMAAAAAAEBEgY9h/O///u+IiDj11FO7vXbp0qVxxx13xG9+85t4+OGHI51OR0RkRy921V1EMqz7TwEAAAAAAKCTgg7LTj/99CgqKtpkWLZ8+fJsQPbggw9mA7L1wVgqlcp+LioqiiOOOKJ/Cqeg6CwDAAAAAAA2paDDsojOHWErVqyI3/3ud/Gb3/wmZs+eHW1tbR2uW99Jtv7zYYcdFtOmTYvjjz8+tt122/4rnIIhKwMAAAAAADal4MOyiIja2tpsQDZr1qxobW2NiK4DsoiIQw89NKZNmxYnnHBCbLfddv1eL4VFZxkAAAAAALApAyIs23bbbbsMyDYcs3jwwQdnA7Iddtghb7VSeIRlAAAAAADApgyIsKylpSUiOgZkmUwmDjjggJg2bVpMmzYtxowZk+cqKVSyMgAAAAAAYFMGRFi2YUC2//77ZwOynXbaKd+lMQDk2lmWbm6OxufnRMPf/xZr//5MVB52aAw/6aQ+rg4AAAAAAMinARGWTZo0KRuQjRs3Lt/lMMCku8nKan/3v1H7uzui8bl/RKa5eYMb08IyAAAAAADYyg2IsOzpp5/OdwkMYN11lrW8/VY0PP23TsfX/v3vkWlri1RxcV+VBgAAAAAA5FlRvguAvtbdFMbB++3X5fF0XV00vvDPPqgIAAAAAAAoFAXdWXbzzTfnuwS2At11lg1673sjVVbWcQTjOvWPPx6D9t6rr0oDAAAAAADyrKA7y0477bQ47bTT8l0GA1x3YVlRRUUM2u99XZ6rf/yxvigJAAAAAAAoEAUdlkFvSHczhjEiovLgQ7o83vC3v0e6sbGXKwIAAAAAAApFQY9h7Epra2s88MADMXv27Pi///u/WLZsWaxatSpqampixIgRse+++8aRRx4ZU6dOjZKSAfft0Qcy3b20LCIqDz44lnZ1b3NzNPz971F5SNdhGgAAAAAAMLANmDQpnU7HzJkz44orroiFCxdmj28YhKRSqbjvvvviRz/6UYwePTrOP//8OOecc6KoSANdkrXl0FpWsed7oqimJtKrVnU6V//4E8IyAAAAAADYSg2IFGnJkiVx1FFHxbnnnhsLFiyITCaTDclSqVT2V0Rkzy1cuDDOPffcmDp1aixatCif5ZNnuYxhTBUXR+WBB3Z5rv7xx3u5IgAAAAAAoFAUfFi2cuXKOPzww+Ohhx6KTCbTZTC24a+IdwK0TCYTDz30UBxxxBGxYsWKfH4b5FE6hzGMERGVBx/U5fHGOXOirba2FysCAAAAAAAKRcGPYZw2bVq8/PLLHQKykSNHxt577x0TJkyI6urqGDRoUKxduzZWr14dc+fOjX/84x+xbNmyiGgPzl555ZU44YQT4v7778/nt0Ke5JiVReXBB29yg/on/xrVH/yX3isKAAAAAAAoCAUdlt15551x//33Z4Oyk046Kb70pS/FgZsYl7deJpOJJ554Iq6++ur47W9/GxERs2fPjv/93/+NY489ts/rprDk2llWOnZslOywfbS+9Xanc/WPPyYsAwAAAACArVBBj2H84Q9/GBERVVVVce+998Yvf/nLboOyiPZusoMPPjhuvfXW+MMf/hBVVVUd9iNZcg3LUqnUJrvL6h99LDvmEwAAAAAA2HoUbFi2dOnSeOqppyKVSsV1110X//Ivm9fV8+EPfzhmzpwZmUwm/va3v8XSpUt7uVIKXboHGVflwYd0ebxlwYJofv31XqoIAAAAAAAoFAUblj32WHsnz8477xwnnXTSFu31mc98JnbeeefIZDLx2GOP9VKFDBQ96QirPOTgiHVjPze2ZtbsXqoIAAAAAAAoFAUbli1atCgiIqZOndor+x111FEd9iU5etJZVjJ8eAzad98uz62ZPbt3CgIAAAAAAApGwYZlK1asiIiIUaNG9cp+I0eOjIiIlStX9sp+DBy5vrNsvaopU7o8vvbvf4+2Vat6oSIAAAAAAKBQFGxYVlNTExHvhGZban1IVl1d3Sv7MXBkMj0bxVh15JSuT7S1xZpHHumVmgAAAAAAgMJQsGHZtttuGxERj/RSOPHwww932Jdk6UlzWfluu0XJ9tt3eW7N7Ad7qSIAAAAAAKAQFGxYduCBB0ZExJw5c+LPf/7zFu31xz/+MebMmdNhX5KlJ6MYU6lUVE05ostz9Q89FJnW1t4qCwAAAAAAyLOCDcvGjBkTe+65Z2QymTj99NPj+eef36x9nn322Tj99NMjlUrFnnvuGWPGjOnlShkI0j17bVkM2cR7y9pWrYqGZ5/d8oIAAAAAAICCULBhWUTEV77ylYiIWLRoURx88MFx8cUXx+LFi3O6d9GiRXHRRRfFoYceGkuWLImIiPPOO6/PaqWw9aSzLCJi8IEHRqqiosOxij33jBFf+EKUbLtdb5YGAAAAAADkUUm+C3g3n/3sZ+Oaa66J559/Purr6+N73/tefP/734/99tsv9t1335gwYUJUV1fHoEGDoqGhIerq6mLu3Lnx7LPPxt///vfIZDKRyWQilUrFPvvsE6effnq+vyXypIdZWRRVVMSQqVMj3dQUVVOOiKrDj4jSbUf1TXEAAAAAAEDeFHRYVlRUFHfddVccdNBBsXTp0mz49dRTT8XTTz+9yfsyGyUjI0eOjDvvvDNSqVRfl0yB6mlnWUTE6Cv/sw8qAQAAAAAACklBj2GMiBg3blz8+c9/jgkTJkRERCqVilQqlQ3Ouvq1/pqIiF133TXuv//+GDt2bD6/DfJsc8IyAAAAAABg61fwYVlExN577x1/+9vf4otf/GJUVFRkO8fWh2Ib/opo7yyrqKiIL3/5y/H000/HxIkT81k+BSAtKwMAAAAAALpQ0GMYNzRkyJC45ppr4tvf/nbcfvvtMWvWrHj22Wdj2bJlUVdXF9XV1TFixIjYd99948gjj4zjjz8+RowYke+yKRAbj+YEAAAAAACIGEBh2XojRoyIz33uc/G5z30u36UwgOgsAwAAAAAAujIgxjDClvLOMgAAAAAAoCvCMhJBWAYAAAAAAHQlMWHZGWecEWeeeWa+yyBP+iIra1uzJppee633NwYAAAAAAPrNgHtn2ea65ZZbIpVKxU033ZTvUsiD3uosa6uri9UPPBCr7/tT1D/ySJTvsUfs/Nvf9MreAAAAAABA/0tMWEaypbcwK2t88cVYcuWVUf/4ExEtLe8c/8c/oun116N85523sEIAAAAAACAf8hKWzZ8/Px+PJcHSW5iWFQ0aFPUPPdzlubrf/yFGfvlLW7Q/AAAAAACQH3kJy8aNGxepVCofjyahtnQKY9nYsVGx7z7R+Oxznc6t+sMfYsSXvui/aQAAAAAAGICK8vXgTCbTr79Itt54Z1nNxz/R5fGW+fOj8dlnt3h/AAAAAACg/+UtLNOFQ3/qjbCs+iMfjigu7vLcqrt/v8X7AwAAAAAA/S8vYxjXO+200/rtWT//+c/77VkUni18ZVlERJQMHx5Vhx0Wax58sNO5unvvjW2/8fVIlZZu+YMAAAAAAIB+k9ew7Oabb+63ZwnLkq23RnFWf+LjXYZlbStXxppHH40hU6b0ynMAAAAAAID+kbcxjNCfeqOzLCJiyNSpUTR4cJfn6u6+u3ceAgAAAAAA9BthGYnQG+8si4goGjQohhx9dJfnVv/5L9G6cmWvPAcAAAAAAOgfeRnDOGvWrEQ8k8LRW2FZRPsoxlV33dXpeKalJep+/4cYfupneu1ZAAAAAABA38pLWHbEEUck4pkUjl7MyqLyoIOiZIfto/Wttzudq/3tb2PYZ06JVCrVew8EAAAAAAD6jDGMJEJvdpaliotj6LHHdXmu6ZVXovEf/+i1ZwEAAAAAAH0rL51lERFTp07t8vj48ePjpz/9aT9Xw9auLd2LrWURMfS4Y2PZtdd22bJWe/sdMWiffXr1eQAAAAAAQN/IW1g2e/bsSKVSkdkobFi2bFmeKmJr1stZWZSOHh2Vhx4a9Y880ulc3R/+ENteeEEUVVb27kMBAAAAAIBel7ewbL2dd945dtpppw5r6G0bh7K9Yejxn+oyLEuvXRt1f7wvhn6q61GNAAAAAABA4ch7WDZjxoy44IIL8l0GW7ne7iyLiKiaOjWKhw2LtpUrO51b+ZvbhGUAAAAAADAA5D0sezebeq/ZhlKpVNx///39UA0DWboPOsuKysqi5hOfiBU//3mnc43PPhcNz8+JQXtN7PXnAgAAAAAAvaegw7KN32uWSqUion2k3vrj64/Bu+mLsCwiYugJx3cZlkVErPz1r2PQpd/vk+cCAAAAAAC9o6DDssMPP7xDGPbggw9GKpWKI444Io9VMRD1UVYW5bvsEoMPPDDWPvlkp3N199wTo87/WpQMG9Y3DwcAAAAAALZYQYdls2fP7rAuKiqKiIhZs2bloRoGsr7qLIuIGHbSSV2GZZmmplj1u9/FNmee2WfPBgAAAAAAtkxRvguA/pDuu6wshhw1NUq2267DseKRI2LEF74Q1R/7WN89GAAAAAAA2GIF3VkGvaUvO8tSJSUx7MRpsfTqa2LQfvvF8JNPiiEf+ECkysr67JkAAAAAAEDvEJaRCJk+DMsiIoZ++tNRdeSRUbHHHn36HAAAAAAAoHcJy0iEdLpv9y8ZNixKhg3r24cAAAAAAAC9LjHvLJs6dWocddRR+S6DPOnLMYwAAAAAAMDAlZjOstmzZ0cqlcp3GeRJWlYGAAAAAAB0ITGdZSRbX7+zDAAAAAAAGJiEZSSCzjIAAAAAAKArwjISwTvLAAAAAACAruT9nWWXXXZZXH/99T26Z/z48X1UDVurfIdl6bVro/a3v426P94XY39+S6TKyvJaDwAAAAAA0C7vYdnKlStj5cqVOV+fyWTijTfe6LuC2CrlKytrW706Vv7q17Hi5z+PtnX/na/6/R9i6KeOy09BAAAAAABAB3kPy1KpVL88J2MMX6Llo7Ns6bXXxoqf3RzpNWs6HF9+ww1Rc8wnI1Vc3O81AQAAAAAAHeX9nWWZTKZffpFs6Tz8J9C6eEmnoCwionnevFh93339XxAAAAAAANBJ3jvLfv7zn8dOO+3Up8/IZDIxderUPn0GhS0fnWXbnDU9am+/PaKtrdO5ZT+5IYZ8+MP91lkJAAAAAAB0Le9h2YEHHhi77bZbvstgK5eP7sKyMWOi5mMfjVV33d3pXNNLL8WaWbNjyNQj+70uAAAAAADgHXkfwwj9IR9jGCMitjnrrE2eW/Zf/2VEKAAAAAAA5JmwjETIxxjGiIjyXXaJIUcf3eW5xhdeiDX339/PFQEAAAAAABvKW1j2+uuvx2uvvRbjx4/v1+eRTPnqLIuI2OZzMzZ5buk1/19k0ul+rAYAAAAAANhQ3sKysWPHxtixY6OkpH9em7b+eSRTPscdDpo4MaqOOqrLc00vvxyr77uvnysCAAAAAADWM4aRREjns7UsIkZ++UubPLf0v2ZGpq2tH6sBAAAAAADWE5aRCHnOyqJi991jyIc+1OW55ldfjbp77unnigAAAAAAgAhhGQmRzuMYxvVGnvOFiFSqy3NLr74m0s3N/VwRAAAAAADQPy8MgzwrgKwsynfdNao/+tGo+8MfOp1refPNqL311hh+6ql5qAwAAAAAgL6WyWSitTkdzY2t0dLYFs2NrdHc0BrN6z6/c2yjdWNrTHz/6Nh1/23z/S1stYRlJEIhdJZFRIw45wtRd++9EV28o2zZtddFzbHHRvGQIXmoDAAAAACALfHPx96Kt19dFc0NbdGyLuRqbmyL5obWaGlq/7q5P6oes8fw3i2WDoRlJEK+31m2XvnOO8fQ44+P2ttu63SurbY2lt90U4w699z+LwwAAAAAYCuzYSdXc8M7HVvt3Vwbr9s2cV1bHHHSbrHb5O26fd6bL9XGS08u6pPvpaWxtU/2pZ2wjEQolM6yiPbuslV33x2ZhoZO51bc8vMYdtJJUTpqVB4qAwAAAADIv0wmE60t6WhuaI3yQSVRUlbc7T2P/+/ceHvuqk4hWG/8aLh5bW5BVVlF93Vudg0NnaeV0XuEZSRCpoDCstJRo2L46afF8uuu73Qu09gYS6++Onb4/vfzUBkAAAAAwObLZDLR1ppuD6uy3Vsbdm1tcLyxi2vWrVsa2iK9blzYR8/ZJ8btPaLbZ694qz7efnVVn3xfzY25BVVlg/oucmnWWdanhGUkQqGMYVxvmzPPjNpbb4u2lSs7nVv1u/+N4SefHBV77pmHygAAAACAJMpkMtHWko6mhvbwqqmhNYZvXxllFd3HCL////4vlryxOpobWyPd1rs/jG0phKCqIcfOsj4Ny3SW9SVhGYlQSGMYIyKKq6pixOc/H4svvbTzyUwmFv/gh7HTf/88UqlU/xcHAAAAAAw4rS1t0bR2g3durQu81ndurQ/BmtdueLztneMNnYOuT124X2y3c023z25uaIvG+pY++b5y7ajKJdTb7BpyDcs2cwxjaXlxlFUUR9mgkiitKGn/vO5r6aCSKCsvjuGjKzdrb3IjLCMRCq2zLCJi2KdPjBW/+mW0zJvf+WRJcaTr66O4qqr/CwMAAAAA+tXGHV3NDa2x/YSanN7Vdev3/horF9VHurX3fwia87u6+rSrK9fOsj58X1iOXV3DtquMXfcflQ29ygcVbxR+lUTpoOIoKy+JskHtx0rLiyNVpGki34RlJEK6ANOyVFlZbHvBBbHwnC9mj5WNHRujLrwwqo6coqsMAAAAAAaA9nd0tXYKu9Z3eG247vpzW7S1pjvte9J3Doxh23XfTZRuy/RJUBYR0ZRjR1V5nwZVudVQmmtnWaq9C219WNX+ecN1e4dX9ppBJVE9YlBOW4/efViM3n1YbnVQUIRlJEKhjWFcr2rq1Bh80EHROGdOjPjCF2L4ySdFqqws32UBAAAAQGK0taaz4wub1rZGU0NLjNl9WBQVF3V770+/+lA01ecW5vRUrh1VfRpUFcK7unKsYfSuQ2Pyx3aO8kElUbquk6t80LpOrop3wq/S8mKNCnQiLCMRCrCxLCIiUqlUbP+9/4iiwYOjZPjwfJcDAAAAAANOhxGG68KujuHXO+/paj/e0uF4a0vnrq4zrjgsBlV1/4/ai3MI1DZXYQRVuY5AfPcaNnwnV3vX1gbdWxt0cGW7vDY4P7g6t+aC7XcZGtvvMjSna2FjwjISIVOgnWUREWVjxuS7BAAAAADImw6dXQ2tse246pzu+e9vPbbJsGtLNa1tzSksKx9cEmvrmnv9+RG5j0Ds07AsxxGIu+6/bYzccUjHoGvd59KKkijyTi4K3FYZlr366qtRV1cXkyZNyncpFIhCHcMIAAAAAANdW1s6mup7r7Pr8zOndDsCsbikKJrqW7t811dvKIiurhyDqk3WkIooH9TxnVzl60Osdb/KN/q68XWl5bmNeBy505AYudOQXL81KDgFH5ZdcMEF8fTTT3c4dsABB8QPf/jDTd7zxBNPxKmnnhoTJ06MSy65JI499ti+LpMCV6hjGAEAAACgELS2tEVzQ1tOI+8a1jTHnVc+0x54rW2J1ubeDayaG9qioqr78YZlg0uioa+6utbmFlSVD+6jH7GnIlqbcxuBuNfho2PnfUZ0CLzK1wVdKR1dkJOCDsvefvvt+PGPfxxtbe/8H4VMJhMVFRXd3pvJZGLOnDlx/PHHx2c+85m46aabori47150SGHTWQYAAADA1iyTyURrS3uHV9PalmyQ1f61NRo3Ota8tjUaN1i3taSjrKI4zvrxEd0+q6SsOFa8Vd9n30tTQ0tUVJV2e135oAIIyzbR1VVaUbyJrq2SKN/g/Vzlgzt3eZUNKomyHgRdI3ccEiN31NUFW6Kgw7Jf/OIX0draGqlUKjKZTJSVlcXRRx8dn/70p9/1vl133TX222+/+Nvf/pbdJyLilltu6euSKVBbQ1aWyWQiXV8fxVVV+S4FAAAAgDypX9UUj90xt0PwtT70Srdu2Q/BmhvbIp3OdPt+qZLSoigqSW3x8zYl311dqR50db3vQ+NiryNGR9mg0uz4Qu/ogoGnoMOy3//+99nPJ598clx55ZUxcuTIbu874IAD4qmnnopnnnkmPv/5z8df//rX+MUvfhHHHXdcfOITn+jLkilQA72zrHnBglj0nUsi09oaO91yc6RS/p8tAAAAQCHKZDLR0tTWHmLVb9Th1UXX1/qgq6yiJKZ9c3IOD4h4+a+L+6z+5rWt3XZ1pVKpKB9c2nddXTm+L2xTXV2pVPuIxvJBJVE+uLS9a2vd+p3j69el2fX660rLi3P++duIMf5hO2wNCjYsq6+vjyeeeCJSqVScccYZceONN/Z4j0mTJsVDDz0UH/rQh2L27Nlx6aWXCssSaqCGZZmWllh+yy2xbOa1kWlsjIiIVf97Zww9znv4AAAAAPrb2rrmmPu3Je1BV/260Yb1LdG4LgRrrG8/nk73/GdRZRW5vUKmrK/ekbVO49rcRiBW9OX7wupzC8v2+/DY2GvKmC0KuwAiCjgse/7556OtrS0GDx4cV1xxxWbvU1ZWFjfffHPssssu8dRTT8X8+fNjp5126sVKGQg2488nedfw3HPx9r9/O5peeqnD8SWXXRZVRxweJdtsk6fKAAAAAAaOtpb0ulBrE+HW2tYoqyiJg4+d0O1eDaub4+HbXu6TOremEYipolR2JOHmdnblYoddh+V0HUB3CjYse/HFFyMiYsqUKVFTU7NFe40dOzaOOOKImDVrVvz1r38VliVQZgB2li258qpOQVlERNuqVbHoku/G6Kt/7F/IAAAAAInR1pqOtXXN60Ku1nWhV8s74w7rW9pHGm4Yhq1tjdam7t89NWSbipzCsvLB3XdcbYmCGIG4tiWn6yb9y9hoWtsa5YNLoqKyYyimswsYaAo2LFu5cmVEROyxxx69st8+++wTs2bNijfffLNX9mNgSafzXUHPbfftb8frn/xkZFo6/wFl9Z/+FHX3/L+o+dhH81AZAAAAwObJZDLR3NgWjWtasp1dRcVFMWb37juEFr++Kv73P5/pk7qa6nMLiMorB9YIxJLSovZOrsGlUTF4XTfX4NJ1X9d9Xhd0re/uqh4xKKdax793ZE7XAQwEBRuWNTQ0RERERUVFr+w3ePDgiIhYu3Ztr+zHwDIQ31lWPn7n2GbGjFj2X//V5flF//EfMfiAyVE6alQ/VwYAAACwbrzhuu6uxjUt0bh23dd1nV3rj6/vANvU+7xG7FgVJ37rgG6f15ddXc2NbZFuS0dRcdG7XldSWhTFJUXR1to3/zI71xGIux2wbTSuaV0XdG0YgG0YhJVESWlu4wwBkq5gw7Lhw4dHRMTixYt7Zb9FixZ12JdkGYjvLIuI2Obss2L1n/4UTS93noWdXrUqFl38nRhz7Uxt7QAAAECfWvx6XTxx16vvhGP1uY03zEVTfa7vyOrbEYhNDa0xqKrsXa9JpVJRXlkSa1f1bARiaUVxNsyq2CDUKhtc0mFdPSK3xoH9P7Jzj54PwLsr2LBsu+22i4iI+++/v1f2e+CBBzrsS7IMxHeWRUQUlZXF9j+4NN448dMRrZ3/4Lhm1qxYdeddMfTYY/q/OAAAAKDgtDa3dersatyws2ujzq8RY6rig2ftldO+C19c2Sc1N+b4jqyKPh6B2FTffVgWETFqpyHRWN8S5ZXtAVfF4NIoryzNvrerorJ9tGHF+hGHg0q67VgDIL8KNiw75JBDIpVKxbx58+KXv/xlnHLKKZu91y9/+ct44403oqioKA499NBerJKBYiCOYVxv0MSJMWLGjFg2c2aX5xdfemlUHnxQlAqCAQAAYKu0tq45lrxR1yH0aqxv7RCENa0LxlpbejYesLQ8tzF9ubxHa3O1NLZFW1s6irsbgVhWHMWlRdHWw+9xY8UlRe3BVuW6YGtw++eiktwm93z0nH236PkAFJ6CDctGjhwZkydPjr/+9a9xzjnnxLbbbhtHH310j/e5//7745xzzolUKhWTJ0+OESNG9EG1FLqBOoZxvRGfmxGrZz0QTS/8s9O59OrV8fa3Loodf3qjcYwAAABQgDKZTLQ0tUXjmpZoWPPOO74qKktj7F7bdHv/23Nr4483PN8ntTWuybWrq29HIDavbY1BQ7rv6qoYXBL160YgllUUdwi8Ngy+1nd1VWzQ8dXe9VUSJWXe4wVARwUblkVEXHjhhfGpT30qVq9eHR/+8Ifj5JNPji9+8YsxefLkbu99+umn47/+67/iV7/6VbS1tUUqlYoLL7ywH6qmEA3kzrKIiFRpaezwgx/G68cfH9HS+Q+x9Y8+GrW/+W0MO3FaHqoDAACAZGltbmsPvdb9aqhvficIW38s+7k5GupbIt3a+WcTO+45PKewrC+7uhrr8xuWpVLt7yJrbmyLQUO6v/648/eL0vLiKBtc0m0nGgDkqqDDsmOPPTamTJkSs2fPjnQ6Hb/85S/jl7/8ZYwaNSr22WefmDBhQlRXV0dFRUU0NDREXV1dvPrqq/GPf/wjlixZEhHt/3InlUrFlClT4phjjsnvN0TeDPCsLCIiKnbfLUZ+8Yux9Kqrujy/5LLLovLgg6Jsp536uTIAAADYei18aWX8/b556wKw9lCstXnLxgCul3NXV1+OQGxqi7bWdBSXvHvwVFxaFCXlxdHa1LbJa0rLi9s7uaraO7gq1nd9VZVmP1dUtXd9VVS1ny+rKIlUUe6TcqpHDMr5WgDIVUGHZRERt99+exxwwAHx2muvRUR7+LV48eL4y1/+En/5y1+6vCezLhlZP5JuwoQJcfvtt/dPwRSkgd5Ztt42Z54Rq++/Pxqfe67TufTatfHmV78W4371y0iVdT+2AAAAALY2mXQmmta2RsOa5mhY/U64le3yqn+n62u78dXx/mm7dbtn89rWWPDCij6pt2FNc07XDarq27/nN9a3RGVNebfX7ffBsVFUnNog+HrnvV8VlaXdBm4AUKgKPiwbPnx4PPTQQ3HCCSfE448/3uGdTJkuApBUKpW9JpPJxKGHHhq/+c1vYtiwYf1WM4VnawnLUiUlscMPLo3Xjz0uMs2d/0Dd+I9/xJIfXx3bXnB+HqoDAACA3pVuS0djfWs0rG6OhjUt0bB6XfiVXa8bc7j+XH1rZHJ8cXlZRW7vrerTEYg5dpaVV27+j/DKKorXdXqVdgi2KipLssdLy3P7vdj/I+M2uw4AKGQFH5ZFROywww7x4IMPxtVXXx1XXnllvP322x3Op1KpbHC2/uvo0aPjq1/9anzpS1+K4mIv7Uy6HP+cPCCUT5gQI889N5b86Eddnl/xs59F5UEHRtXhh/dzZQAAAPDu2lrT2YCocmj3nUz/fOztmP2rl/qkloYCGIHY2pyOlua2KC17959dFRcXxaDqskilYoOw653Aq2MI9s64w/JK7/UCgFwMiLAsIqKkpCQbft1///0xa9asePbZZ2P58uVRV1cX1dXVMWLEiNh3333jyCOPjKOOOipKS/vuDzMMLF11IQ5kw087NdY89FCsfeKJLs+/deHXY+c774zSbUf1c2UAAAAkSWtL27rurpYO3V8Na1qicYPur/XHmhtaIyJi1/1Hxb9M36vb/fty/GCuXV2D+iAsSxWloqKqNAZVlUZLY/dhWUTEZy87tMPEJQCg9wyYsGy9srKy+PCHPxwf/vCH810KA8jW1FkWEZEqLo4dLrssXj/22Ghb0XluetvKlfHWhRfGTjf9NFI6KwEAANgMtUvWxqLXVkVDXfu7vzoGYO1fWxrbNmvvnLu6hvTtCMRMJtNtAFU+uCQiFRGb+tlCKqJicGk2/Kqo2uBzZVmXx8sqSiJV1LPgS1AGAH1nwIVlsDm2lneWbah021Gxww9/EAvOntHl+bVPPBHLb7wxRnzuc/1cGQAAAIUik8lE09p17/xa3RJr65pjcE1Z7LDL0G7vffOllX03AnF1/rq61mtrTUdrc7rb93UVFRfFfh8aG6XlxTGoqqxjGFZVGuWDS6Ooh8EXAFBYhGUkwtbWWbZe1eGHx/AzzogVP/tZl+eXXXtd1Bx3XJSOMo4RAABga9HWkm7v9FoXfjWsbo6168Kwho3Xq5sj3dbxL8W77j8qp7Bs0JC+G4HYsLo5p+u2tIaS8uIYtFFnV0Xl+nVZe8dYDg765IQtqgMAKGyJCcuKioqiqKgoWltb810KebC1vbNsQ6PO/bdY+/TT0fjccx2Ol+ywfYy+4j8FZQAAAAPQ0vmr4/Vnl7YHYqubs51hDaubo2ntlv1sY22uXV19GJb1ZARiUVEq0uv+FWxZRXFUDClrD8A2/DpkXQC20bmSHN4FBgCQmLAsYusOTHh3W+MYxvVSZWUx+j+viNePPS7Sa9ZERMSQoz8Q2//Hf0Tx0KH5LQ4AACCh0m3pbOfX+rBrbV1zDB05OMZPGtnt/UsXrI6n7nmjT2rLtatrcHXfjUBMp9vHQ1ZUvvszUqlUTPvW5Cgf3B6GFZcW9VlNAEByJSosI7nS6XxX0LfKdtwxtv/uJfHW178Ro75+YQz713/14l8AAIBelk5n1nV4tQdfG/5q2GjdWN8S0cW/25zwvlE5hWUDcgRiKrLjDdu7u0rb3/G17uv67q9BQ9rf+1U+KLcfS20zuqpndQAA9FBew7JXXnkl0ul07L777l2e/+53v9vPFbG12po7y9ar/shHYtD73hel222X71IAAAAGtEWvr4pX/750XQDWFGvrWmJtXdO60YFbtnfuQVXfdXU1rGmJdDoTRUXv/o8sS8uLY8jwiiitKN5g1OEGIw+rOh4rryztdk8AgEKUl7CstbU1jj/++Pj9738fEREf+tCH4q677oqSko7lfOc739EdQ69IQFYWESEoAwAAiPbXMDStbe3U9VU9oiJ23rf7rq4Vb9XH//15fp/UlvMIxD7qLCstL45B1WXR3JDbCMRTLz2kT+oAACgkeQnLfv3rX8fdd9+dXf/xj3+MX/3qV3HaaafloxwSIAmdZQAAAFuzTCYTLY1t6wKwpqhftW4c4qr2d4J1GIW4ujnSrZ3/HjjhfaNyCsv6KqiKiGhY3ZLTdbmOQEylIiqGlMXg9Z1fQ8picPUGn4eUxaAN1qVlxVtSPgDAVikvYVljY2NERIeusebmTf/Lqoyggy0kLAMAABgYli1cHfOeXx71q5pj7aqmWLuqOerr2j+3Nm/ZC6nX1jXldN3gmr4LyxrrWyLdlo6i4qJ3va60vDhG7z40yipKOgVg74RgpVExuDRSRh8CAGyRvIRlJ598clx33XXx7LPPRkTEPvvsEyeddNImr581a9YWPS+TycTUqVO3aA8GtrSsrIO2NWtizewHo+ZjH813KQAAwFaqrTXd3uW1qjnqVzXFoKrS2H6Xod3et2Te6njiztf6pKZcu7oGV/duWJYqSsWgqtLse79amtNRPujdw7KIiGO+8r5erQMAgK7lJSyrrKyMp556Ku6///7IZDJx1FFHRWnppudkH3HEEf1YHVsj3YnvaHrt9Vj4xS9G82uvRWTSUfPxj+e7JAAAYABpbmxtH324bhRix8/vHGus7xhMTXjfqJzCst4Oqja0dlVunWU5jUBMRQyqKo3B1eu6vqrLYnB1eQweUhaDa8qyxwdXl0VFpe4vAIBClpewLCKipKQkPvjBD+br8SSMzrJ2q++/P9664MJI19dHRMTb3/xWlG6/fQzef/88VwYAABSCtXXNsXzhmqiva8p2hGW/rusSa2lq28y9cwuqKmvKN2v/XDQ3tkVrc1uUdPPeruKSohi3z4goLS/uEHoN2vBzVWm3oxQBABgY8haW5WKnnXbq8F6zLd2rqMgfYpMq6e8sy6TTsey//iuWXXtdx+MtLbHwi1+KcbfdGmVjx+apOgAAoK9kMploaWyLttZ0Tt1S855fHg/89z/7pJb6VZt+V/mG+uJ9YeWDS9a986ssWnIIyyIiPvqFfXq9DgAAClNBh2VvvPFGQe7FwNOW8NayhmefjWXXXd/lubba2lgw43Mx7tb/ieKhQ/u3MAAAYLO1NrdF/bqur/radb9WNUd9bVN2HOKa2qZobWqLCe8bFR86e69u96zsg6BqvbWrmiKTyXT7j2IHDSmLVCqiu3/zWFrRsetr/fjDQUPKYnBN+TsdYENKo6S0+3AMAIDkKtiwrL6+Pr70pS91Ov6Zz3wmjjzyyDxUxECW8MayGDxpUoz62tdiyeWXd3m++Y03YuGXvhw73fTTSJX13V+OAQCA7rW1paOhrjnqazcOwt4Jw+prm6JpbWvOe+b6rq6+6Opar7U5HS1NbVFW8e4/iigqSsXo3YdFUXFRVK5/91dNefvn9SFYTVmU5tAdBgAAuSjYsOyf//xn3HLLLZ3+xdn+++8vLKPHkj6GMSJi+BmfjeZ586L2N7/p8vzap56Kt799cWz/g0t7bfwpAACQu9f+b2nM/vVL0bC6OaKX/wpTn2tYVt037wsrKknF4OqyaFrb2m1YFhHxyXMn9UkdAADQlYINy1566aXs50wmE8XFxXHwwQfHbrvtlseqGKiEZRGpVCq2+/eLomXhwqh/7LEur1l1551RNnanGPH5z/dzdQAAMLCl29LZrq81K9s7v9bUNkX9ysYYul1lHPCxnbvdo6S0KBrqcnuvV0/V1zbnNgKxqjSKilKRznGUfWlFcVSu6/basPMr+7mmLCpryqN8cIl/lAcAQMEq2LBs2bJlEdEelFVVVcXs2bPjfe97X56r6hvz58+PJ554IubNmxfNzc0xfPjwmDhxYhx00EFRlqeReMuWLYs5c+bE3Llzo7a2NhobG6O6ujpGjhwZ++67b+y+++5RVFSUl9o2h6ysXaq0NEZf/eN441//NZrnvtrlNUuvviaKR4yIYSec0M/VAQBAYWppbov6DQOwDQOxlY2xprYpGuqaN/n3ju0n1OQUllUO7ZuuroiIttZ0NK1tjYrK0ne9LlWUisE1ZdHWmo7B1etHH24Ygq0PwMpicHV5lJYbhQgAwMBXsGFZfX19RLR3w5x99tlbZVD2wAMPxMUXXxyPPPJIl+dramri7LPPjosuuiiqq6v7tJbGxsb44x//GPfcc0/Mnj075s6d+67Xb7vttnHKKafEBRdcEKNGjerT2nqDzrJ3FA8ZEjte/5N448QTo2358i6vWXTxd6Jk2LAY8oEP9HN1AACQH6tXNMaCF1Zku8HW1DZHfW17ENZUn/u7wbqypja3EYiVNX0XlkVE1Nc2dRuWRUR85vuHRFGRLjAAAJKjYMOyDcOhiRMn5rGS3pdOp+NrX/taXHXVVdlju+++exx22GExbNiwePnll+Pee++NVatWxeWXXx633npr3HXXXTFpUt/MbP/jH/8Y06ZNi9WrV3c4vuuuu8YhhxwS22+/fbS1tcWCBQti1qxZsXjx4li8eHH853/+Z9x0001x0003xXHHHdcntfWWHCeIJEbZmNGx47UzY96pp0WmqYu/uKfT8eZ5X40df3pjVB5wQP8XCAAAWyiTzsTa1c3R1pKO6hGDur1+xdv1MeuXL/ZJLfW1TZFJZyLVTQBVXlkSxSVF0daa7vEz1o9DrBza3v3V/nndr5qyqBxaHlXDcgvjBGUAACRNwYZle+65Z/Zzc3PfzGzPl89//vNxww03REREcXFxzJw5M84666wOYw3nz58f06ZNiyeffDIWLFgQU6dOjYceeij23nvvXq9n0aJFHYKy0aNHx09/+tP40Ic+1OnalpaWmDlzZlx44YXR3NwctbW1MW3atLjjjjvik5/8ZK/X1lt0lnU2aN99Y4fLfhhvnvuVLs9nmptj4RfOibG/+O+oeM97+rk6AADYtEwmE431LbFmxboxiCvbv67eYF1f2xTptkxsN746PnXB/t3uWdWHIxDTbZloWNMSg6vffcx+KpWKyqFlUbesMXusuKQoG4ANXh+GDd0gDFsXhJVVFOxf7wEAoOAV7J+m3//+98ewYcOitrY2nn322S3eb+edd46ioqJ49dWu39PUX26++eZsUBYRcf3118f06dM7XbfTTjvFn/70p5g8eXK8/PLLUVtbG8cdd1w899xzMWhQ9/8qcnNVV1fH7NmzY5dddunyfGlpaZx77rkxZMiQbN1tbW0xY8aMOPLII/t8XOTmkpV1rfpDH4rWby6NxZde2uX59Jo1Mf+ss2Pcr38VZTvt1M/VAQCQVM0NrbF6fQi24p0wrP1r+7HWlty6r3IegdiHYVlEe3dZd2FZRMT7p+0WRcWpbCBWXlkSqZROLwAA6EsFG5aVlpbG1772tfjWt74Vd9xxR1x22WUxZMiQzd5v3rx5ef8Lxpo1a+LrX/96dn3YYYd1GZStV11dHddcc022w2vu3Llx9dVXd9ijt51//vmbDMo2dMYZZ8RVV10Vc+bMiYiIxYsXx+9+97s4/fTT+6y2LaGzbNOGn/qZaF2xPJZf/5Muz7ctWxbzz5weY3/1yygdAO+nAwBg4Fn+5pp47HevtgdiKxqjubGt1/ZeW9uc2wjEwSVRUlYUrc09H4G4sZKyouzYw6qhFVE5tDzKB+f21+9x+4zY4ucDAAA9U7BhWUTEhRdeGA8++GD86U9/iunTp8ett96a98BrS1xxxRWxZMmS7Pq8887r9p4PfvCDseeee8YLL7wQERGXXXZZzJgxI4YNG9YnNf7rv/5rTtelUqn4yEc+kg3LIiIefPBBYdkANfLf/i3alq+I2t/+tsvzLQsWxILpZ8VOP78lSvrovz0AAAa+dFs66lc1Z7vBMplM7HbAdt3el8lEzJ+zvG9qWvfussqad+8cax+BWB6rljS863Xlg0uialh5VA6tiKqhZVE5rCKqhpZH5bDy9q/rgrGB/HdXAABImoIOy4qKiuKuu+6Kc845J372s5/FW2+9FVdccUUceOCB+S6txzKZTNx4443Z9dChQ+OjH/1oTveecsop8c1vfjMiImpra+O2226Lz33uc71W24477hgf/ehHo7y8PCZMmJDzfePGjeuwXrRoUa/V1NvSsrJ3lUqlYrvvXBxttbWx+s9/7vKappdfjvlnnhljb745imtq+rlCAAAKQXNja6xe0Rirl7d3gK1e0fTOemVj1Nc2dRiBPmR4RU5hWdWwvh+B2F1YFhExYsyQKB9Usq4rrCIqh5at+1qeDcRKy4r7tFYAAKD/FXRY9t3vfjci2t/fNWXKlJg9e3YccsghMW7cuDjggANizJgxUVVVNSD+xd6jjz4ab731VnZ9yCGHRFlZ9/PqIyKmTJnSYX377bf3alh21FFHxVFHHdXj+zb+fS8v79u/4G6JjM6ybqWKi2OHKy6PBWfPiLVPPtnlNU0v/DPmTz8rdvrZTVG8BWNRAQAoPJlMJhpWt2TDr9Ur1gdijdljTWtbe7RnfW1TpNOZKMplBGJ5cbQ29d74xQ2tWdkUo8Z2f92Hzt6rT54PAAAUtoIOy77zne90CmQymUy8/vrr8cYbb+SnqM109913d1hPnjw553snTZoUpaWl0dLSEhHt4w7r6uqiurq6V2vsqQULFnRY77HHHnmqpHs6y3JTVF4eY2b+V8w79dRoeuGfXV7T+I9/xOo//SmGfupT/VwdAAB9oXbJ2rhn5nOxekVjtLVs+fu6NpROZ6Khrjkqh3Y/AnHIsPJYuWhtj59RVNQ+PrFqeHs3WNWw8hgyvP3r+q6wQVWlm/stAAAACVDQYdl6mUwmUqnUgOgg25Rnnnmmw/o973lPzvdWVFTE+PHj46WXXoqIiNbW1nj++efjkEMO6dUae+rPG43rO+644/JUSfe8syx3xVVVsdONN8a8k0+J5i5C6ZFf+YqgDACgAHUYkbiyKZobWuN9H+y+napicGnULu55SJWr1Ssbuw3LItpHMXYKy1IRg6vbRyEOWRd+ZUOx4eUxZFhFDKou67ZzDQAA4N0MiLAsYuCP0ZszZ06H9ZgxY3p0/+jRo7Nh2fr98hmW/f73v4+nn346uz7uuOPigAMOyFs93UlrLeuRkm22iZ1+fkvM+8yp0TJ/fvb4qAsvjG0+e3r+CgMASLCmhtZYvbwh6pa1B2J1yxuy4xK7GpFYVJKKSUfvFKnuRiBW9vEIxBVNETt3f93uB20fo3cf1h6MDX+nK6y4pKhP6gIAAFhvQIRl3/72t+PII4/c7PszmUxMnTq1Fyvqmbq6unj77bc7HBs9enSP9tj4+hdffHGL69pcf/nLX+KUU07Jrvfbb7+46aab8lZPLgZ41poXpdtuG2Nvubk9MHvzzdj2ooti+Ckn57ssAICtVktTW3sAtqwx6jYIw+qWNWzW+8LSrZlYu7o5Kmv6bgTiuyktL46q4RWRyjHr2v3A7Xr1+QAAALkaEGHZnnvuGUcccUS+y9hsK1as6HSsp+8b2/j6lStXblFNucpkMrFmzZp466234qmnnopbb7017rnnnoiIKCoqihkzZsSPfvSjqKqq6pd6NpcxjJundIcdYqef3xJrn346hh5zTL7LAQDY6jQ3tMZdP34mVq9ojIbVLb2+/+rljd2GZRERQ7ap6FFYlkpF+3vChlXEkG0qYsjwdd1gwyuy7wsrG1QyoEfpAwAAyTEgwrKBbvXq1Z2OlZd3/xfWDVVUVHS7Z2+76KKL4vvf/36n4xMnTozjjz8+Tj/99Bg3blyfPX/JkiWxdOnSHt0zd+7cLo+bwrj5ysaMibIejg0FAEiitpZ0diTi6hWN8Z5Dt+82LCqtKI7lb9VHW0u6T2pavaIxthtf0+11Q4Z3/PtGcWlRpwDsnVCsIiqHlUdxsfGIAADA1qGgw7J99tknUqlUDBs2bIv3OvXUU/P2rxq7CrY2Dr+6k4+wbFNeeOGFuPXWW2PNmjVxxhlnxJ577tknz7n22mvjkksu6ZW9dJYBALClMulM1K9qirplDbFqaft4xHdGJTZG/aqmiA3+2LnzviNi0JCyd90zlUpFdQ+7unpi9YrGnK57zyE7xJg9hmcDsUFDSnWFAQAAiVHQYdn//d//9dpet9xyS6/tVQgy/RD+fO9734vvfe97kU6no7a2Nl5//fV46KGH4ic/+Um89NJL8dJLL8VVV10VZ5xxRvz4xz+OysrKPq9pc8nK+s/KW2+LIR84KkpGjMh3KQAAPdbS1LYuDGtoD8OWrQvF1n1ua829A6xueWO3YVlEz0cgdisVUVlT3h56VZXmdMv/z959h7dV3u0Dv8/RHpZseY/YsePsvSAJJCEhlFFGQtmjEJIUWrpeWijtDwqFvrSM0reUUqCEMAJl700SAoGEFbJDtle8lywv7fP7Q45jx7J0ZGva9+e6fMU65znP+UqWHOvcep4ns9CEzMLQpoonIiIiIiIaKuI6LBsMSZKwZ88eFBcXhzyKK9ySkpL6bLPb7SGFS3Z770+E+uszUkRRhMVigcViwcyZM/GrX/0Kf/7zn3HHHXfA6/XiiSeewNatW7FhwwYkJydHra5QcGRZdDSuXo26+x9A09NPI/+pNVBlZsa6JCIiIqKAvnm3BNbaDl9A1mBHp80Ztr5bG+3IHBk8gDKl6kLqVxQFGC0aJKXqYErtPT1iUqoWhmQNFEpOkUhERERERCRXXIdl5eXlAID8/PyQj+3o6MCUKVOg0Whwxhln4K677sK0adPCXKE8RqOxzzaHw5EwYdmJRFHEH//4R3R2duKvf/0rAGDbtm24+uqr8fbbb4ftPD/72c9w8cUXh3TMoUOHsHTp0j7bGZZFXtOza1F3/wMAAGdJCcouvwIjVj8BTWFhjCsjIiKi4cbl9EChFCGKwacR3LelGrYGeVMVhsrW0CmrXVJq7w/3CQJgSNHA1CMMM6Xpuv81mNUQuV4YERERERFR2MR1WDZy5EiIogi32z3gPhwOB959912sW7cOH3zwARYsWBDGCuWxWCx9ttlsNr/b+2Oz2XrdDsc6boP1xz/+EWvWrEFtbS0A4J133sH69etx+umnh6X/jIwMZGRkhKUvL7OyiGp+6SXU/u//9trmqqpC2ZVXYcTjj0M3aWKMKiMiIqKhSJIkdNicsNV3oqWhE7Z63xSJx6ZO7LA5celts5GWF/wDZqY0XcTCstZGef0WTEqF1qjqCsZ0MFo0UDAMIyIiIiIiipq4DsuAga/NpVKpcOmll+LAgQPYtm0b7HY7Vq1ahf3794e5wuDMZjOysrJQU1PTva2yshIjR46U3UdlZWWv2+PGjQtXeQOm0+lw4YUX4t///nf3tqeffjpsYVm4SZLERcojwPbRR6i5406/+zxNTSj/8Y+R9/A/YZg3L7qFERERUUKTvBLaWxyw1nWipa4DLfW+dcRa6jrRUt8BtzPw2mG2eru8sCxdB+xrDlfZ3XQmteypEFNzjUjN7TsbBREREREREUVH3IdlA6VWq/Hf//4XALBu3Tqcc845OHToEL766iucfPLJUa9n0qRJvcKyo0ePhnT8iWHZpEmTwlLXYJ188sm9wrIvvvgihtUE5pUABbOysNPPmAFNcTEcBw/63e/t6ED59Tcg9757YTr77ChXR0RERPHM65XQ1mTvEYT1CMXqO+FxBQ7EAmmROQWiOS209cKO0eiVMKXpfF+pWpjSfKPCkrqmTVSpFQPql4iIiIiIiKJvyIZlPS1ZsgRLly7Fq6++iu3bt8ckLJs+fTrWrVvXfXvv3r2yj7Xb7Thy5Ej3bYVCETdh2YnTJPYMBOONV5KgANOycFOmpSH/madRseonsO/e7b+Ry4XKm34Dd1MTLFdeGd0CiYiIKG69+fdtqDpojUjfctcLM/UTlgmigCSLxheGpetg7grGzOm+QExrUIWzXCIiIiIiIoqhYRGWAUBRUREAoKmpKSbnP++883D//fd33/7mm29kH7tt2za4XK7u2wsXLoTJZApLXS0tLdi1axcAYN68eRDF0NZG8Hp7f9o31OOjyTvAKT0pOGVKCvKfegqVv/wF2jdv8d9IklB795/hrqtH+q9/xSkxiYiIhhCP24vWRjusXSPDRoy3wJJtCHpcUqoW8D84fdDkhmWWHANGzUjvDsKOjRbjumFERERERETDx7AJyw52TRGnUsXmE6CnnHIKsrOzUV1dDQDYsmULnE4n1Gp10GM3btzY6/ZFF10Utrq2bduGRYsWAQAOHTqEUaNGhXT8idNDZmVlha22cGNWFlkKowF5jz6K6ltvhe299/tt1/jYY3AdPYrsv9wDUcbzn4iIiOKD5JXQ2mxHS20nrHUdsNZ2dP/b2mjv9bfWgsvGyArLzOkDmwJRjpZ6mWFZtgFn/WRyxOogIiIiIiKi+DekwzKHw4HKykq89dZbeOONNwDELswRRRErV67E3XffDQCwWq149913sWzZsqDHPvfcc93fm81mXHrppRGp8Ysvvgg5LNuwYUOv23PmzAlnSWHFkWWRJ6rVyHngAShSLGju8bw9ke3dd+GqqUHew/+EMiUlihUSERFRMJ1tTlhrO7vDsJZjoVid/DXE5AZV5ozBh2VqraLXNImmdB1MaVqY0/WD7puIiIiIiIiGh5iHZQpF4IWvJUkK2kYOSZIgCEJMw5ybb74Zjz76KOrr6wEAf//734OGZR9++CH27NnTffuWW26BxWIJeExjYyNeffVVuFwuLF26FLm5ubLq+/e//42rr75a9vR4R44cwWuvvdZr2yWXXCLr2FjwMiuLCkEUkXnb/4Mi1YKGh/7Zb7vOrVtRdtnlGPH4Y1AXFESxQiIiIgJ8gVZ9eWuvEWLWug442t1h6VsOuYGW1qiCOV0Hc4YO5nQ9zOk6JGfoYUr3rR3G6Z2JiIiIiIhoMGIelkkyRvvIaROMIAhYvHgxiouLB93XQCUlJeGee+7BqlWrAACbNm3C6tWrsWLFCr/tW1tb8ctf/rL79qhRo/DrX/864DkqKiowe/Zs1NbWAgD+8Ic/YNOmTZgyZUrQ+r788kvcc889+H//7/8Fbdva2opLLrmk11pqp512Gs4777ygx8YKR5ZFjyAISP/Zz6C0pKLmrrsAr/9PoTvLylB66WXIe+QR6GdMj3KVREREw9ueTZXY9lF5RPpuqeuQ1a7nNIw6kxrJ6bquUEzfFYz5vjT62EylTkRERERERMNDzMMywHdhPRyBWCCTJ0/G008/HdFzyLFy5Up8+eWXWL16NQDg+uuvh8fjwcqVKyGKxxcQLy8vxyWXXIIDBw4A8E2/+Oqrr0KvD/zp23//+9/dQRkA2Gw23HfffVi7dq2s+m677TYcPHgQf/rTn1DQz2ifDRs24Gc/+xn279/fva24uBjPPPOMrHPEiiRv1iAKo5TLLoUyIx2Vv/ktpE7/nzD3WK0ov/ZaZP/v/8J83rlRrpCIiCixSZIEe5sLzTUdaK5ph7W2A+kFSRgzO/jU48mZkZumsKWhE16vBFEMPOJLa1Dh0ttmw5Smg1obF29NiIiIiIiIaBiK+TvSBQsW9DttyqeffgpBELBgwYKQ+1UoFEhKSkJhYSEWL16Ms88+OyzTOYbD448/DoPBgIceeggejwfXX389HnzwQSxYsABmsxkHDx7E+++/D6fTCQDIzc3Fm2++ialTpwbt21/o6O1nVA8AjBw5EvPnz8emTZu6tz399NN49tlnMXPmTEydOhVpaWmQJAk1NTX4/PPPcfjw4V59nHvuuXj88ceRnZ0t9yGICY4si42kxYtR8OyzqPjpDfDUN/htIzmdqLr5ZjgOHED6r38FIU5eq0RERPHC65Vga+iEtabDF4zVtqO52vfvidMmjp6VIS8sy4hMWGZM0cCcoYOz0w2tIfiIsLS8pIjUQURERERERCSXIEV6SNcgiKIIQRDg8XhiXUpErFu3DnfccQc2b97sd7/JZMKqVatw++23w2w2y+qzrKwMs2fP7l4XzWg0YtOmTZg2bVrA4/bu3YsXXngBH3zwAbZu3RowYAMAg8GA888/HytWrMDpp58uq7Zo2LNnDyZNmtR9O/u6f0Gd7hsht/W2JUg1amJV2rDnqqxExQ03wHHwUMB2xtNOQ84D90NhNEapMiIiovjhcnhgrfWNEjs2Wqy5xreWmNct78/29PwkXPKH2UHbddicWHPL5wOqU29SIzlT7/vqmjIxOUMPU5oWSjU/9EJERERERBSPTrx+vnv3bkycODGGFcUPhmVxoKysDFu2bEF5eTmcTidSUlIwceJEzJ07FxpN6OFOQ0MDXn31VbhcLixduhR5eXkhHd/W1oZ9+/Zh//79aGpqQmtrK0RRhMlkQmpqKiZNmoRx48bFzUi9ngKFZd/8vyVIT2JYFkue1lZU/upXaN+8JWA787JlyPnLPVGqioiIKPqcnW7UlbfCeiwUq+1Ac3U72podg+5bpVFg1f/1P3vDMZIk4Yn/+QxOu/+/tVVaBVIy9TBndIVimb5ALDlDD7Uu5hNUEBERERERUYgYlvWP73LjQEFBQb/rgw1EWloarr/++gEfbzQaMWvWLMyaNStsNcWDOM6Fhw1FUhJGPPYYqv/0J7S88qrfNsqsLGT85qYoV0ZERBRdlQeteO+RnRHp2+XwoKPFCUNy4A8JCYKA1Fwj7O2u7hFix0Ixc4YeepM6aOBGRERERERENBTEdVgWbCpAolB4GJbFBUGlQvbdd0NTWIi6B/4G9Pi5CFot8v71MJRpaTGskIiIKDQejxe2+k40VbXD4/ZizEnB1wtLyYzMemHHWGs7goZlALDstzMYiBEREREREdGwF9dhGVE4eZmVxQ1BEJC6YgU0xcWo/M1v4W1rAwDk/OUe6Djsl4iI4pTH40VLbSeaqtvRVN2O5q5/rbUd8Hp8f2gkWbSywjJTmhaiQug+Lhw0eiWSM/VIyZQ/TSKDMiIiIiIiIiKGZTSMeJmWxR3jwoUY+eILqPjZz2A65xyYzj471iURERHB4/bCWteBpqrjgVhTdQdaajuC/j3R2mSH0+6GWhv4z2xRIcKcoUdzdXvI9SVZtEjJ0iMly4DkLH3397okFcMvIiIiIiIiogFIyLCspaUF33zzDXbs2IHGxkZYrVY88sgj3fvr6+uh0WhgMpliWCXFG87CGJ80o0ah8JVXIBoMsS6FiIiGGY+rKxSrbu8VjLXUdQ7qQzbW2g5kFAT/O9SS1X9YplCKvlFiWXokZ+lh6QrGkjP1UKkVA66NiIiIiIiIiPpKqLDszTffxL/+9S9s2LAB0gnJR8+wbMOGDbj22mtx0UUX4c4778SoUaOiXSrFIS/TsrilSEoKqb39wAFoioogKBPqVxgREcUJZ6cbL//1W7TUd0KKwMjzpqp2WWFZcpYeuiRVVyhm8AVjmXpYsg0wWrQQRY4SIyIiIiIiIoqGhLjSXFNTg2uvvRYff/wxAPQJyvxNN+NwOPD888/jtddew7///W/8+Mc/jkqtFL8Ylg0NzrIylF15FTRjxyD3gQegygq+LgwREQ0Px/5GDDYVoUqrgL3NFZGgDACaZE6teNK5hZhzAT/URURERERERBRrcR+WVVVVYd68eaioqIAkSRAEodcFkBODMwDIycmBxWJBU1MTOjs7sXz5coiiiKuuuiqapVOc4ZJlic/b0YGjv/glvK2t6Px2K0qWLkPOvX+FceHCWJdGRERR5uh0o6myDY1V7d3/Nla24bLbT4YxRRPwWEEQkJprQOUBa1hrEgTAlK4Lul7ZMaJCDOv5iYiIiIiIiGhg4jos83q9OPfcc1FeXt4dkEmSBK1Wi6KiIphMJnz55Zd9jps/fz5qamqwevVq3HrrrWhpacH111+PhQsXYsSIEdG+GxQn/AWrlDgkSUL1H++A48CB7m0eqxUV198Ay4rrkPHrX0NQqWJYIRERRYLH5UVzbTsaK9vRVNWGxkpfKNbW7PDbvrGqLWhYBgCWXOOAwzJBFGBO18GSY4Al24CUbD0s2UYkZ+qgVHE9MSIiIiIiIqJEE9dh2ZNPPont27dDEASIoohVq1Zh+fLlmDlzJkTR90ncY/+eSKlUdgdkCxYsQGNjI/785z/jsccei+ZdoDjCkWWJrXntc7C9847ffU2rn0Tn1u+Q++DfoMrJiXJlREQUDpIkod3qQMPRNjQcbUNjpS8Ya6ntgDeE/8SbKttRMDE1aLvUHEPQNqIowJyh8wViXcGYJduA5Aw9FCqOCiMiIiIiIiIaKuI6LHvwwQcBABaLBe+99x5mz54dch/jxo3DI488gksuuQQvvfQSHn74Yag4+mRY4pplicvb3o6GIEF35/btOLLsQmTfdRdMZ/4gSpUREdFAeFxeNFW3+0Kxo21oqGxFw9E2ONrdg+67sapNVrvUXGP396JCQHKmHilZhl6jxZIz9FAoGYoRERERERERDXVxG5ZVVFRg3759EAQBzzzzzICCsmMuuugijBw5EmVlZdi2bRtOOumkMFZKiYJhWeISDQYUvvQiKm/6DTq3b++3nbelBZW/+hXaLvoRsn7/e4iG4KMGiIgo+j74z26U7myISN+NlfLDsjNXTYIlxwBzhg4Krh9GRERERERENGzF7VWBr7/+GgAwceJEnH322YPub+HChQCAPXv2DLovSkzMyhKbKicHBc8+g9SVK4K2bXnlVZRc+CN07todhcqIiAgAPB4vnHZ5I8NScyP3YYbmannTNqo0ChTPzIAl28CgjIiIiIiIiGiYi9uRZXV1dQCAU089NSz95XStY9TU1BSW/ijxcGRZ4hNUKmT89rfQz56Nqt/dCo/V2m9bZ1kZSi+/HOm//CVSV1wHQaGIXqFEREOco8OF+oquKRSP+qZQbKpux4wzC3DyeUVBj0/LSwpbLWqtAqm5RlhyjUjNMUQ0iCMiIiIiIiKioSluwzJr10Vwi8USlv4cDgcAwOVyhaU/SjwyPmROCcK4cCEK33gdlb/5LTq3bu2/oduN+gcfRPvnnyP7nnugzsuNXpFERENEh82J+vJW1Fe0oqHrX1uD3W/bxqPypkBMyzMGb3QCUSkgJcsXhqXmGGHJMSA11whjigaCIITcHxERERERERHRMXEblqWkpAA4PsJssEpLSwEAaWlpYemPEg9Hlg0tqqwsFDz9FBoe+TcaHn0U8Hr7bdvx9dcoOf98ZNz6OyRffDEvqhIR+SFJElqb7Ggob0N9hS8Uqy9vRUeLU3YfDTLDMlO6Dkq1CLfT/+9uo0WDtLwkpOUdD8W4rhgRERERERERRUrchmXZ2dkAgHXr1g26L4fD0d1Pbi5HlgxXEsOyIUdQKpH+y1/AcMo8VN18C1xVVf229XZ0oOaPd6D143XIvvsuqLKyolgpEVF8kbwSrHUdaKho6x41Vl/RCke7vDXH+tPaaIej0w2NLvCfmKIoIDXXiIaKNlhyDEjLMyI1z+j7N9cIrUE1qDqIiIiIiIiIiEIRt2HZKaecAlEUUVZWhocffhg///nPB9zXX//6V9hsNqhUqrCtgUaJh9MwDl36mTNR+OYbqPnTXbC9807Atu2bNuHIeecj8//9AeYLLuAoMyIadqoOWfHOP3fA5fBEpP/Go23IGZ0ctN3ZN0yGzqiCyNFiRERERERERBRjcRuWpaWlYc6cOdi8eTNuuukmaLVarFy5MuR+/vOf/+Duu++GIAhYsGABkpLCt6A8JRZvsLSsvQEo2wx0NHRt6BGidAcqQoi3B3rMYPsIRx097384+hho7YH6OF6XAkDuTVfAOCUfNf+3Bt6OTvTH29qK6lt/j9a3X0POrT+DwpQkow45tQa7r3L6iMRjKKc2OecZzLYA/ffcxvCSKOJMqdqIBWWAbypGOWGZwayJWA1ERERERERERKGI27AMAG677Tacc8458Hg8uP766/H000/jF7/4Bc4+++yAoZfH48HHH3+M//u//8PHH38MSZIgCAJuv/32KFZP8SZgVnbgQ+CV6wCnvLVWKH6ZAegWK1D1ZTI6GwJfiHXu2gzh6Tfj/DchhTWMC0soeMLtqJxTbv+h9BWuc8q5T/CzLRY/u0B9wc+2eHkc/dUqwCsJaO5IRn1rKupa09BmN+CcKZ8E7d8gATrVj9Dp0vY9R4g0KgfSklqQZmpBWpIVqSYbLM1vAG96E+ZxjOw5Q+2/zzcx+l2S6I+jjNd1xM4Zzt+PkTpnhJ+jkX4cg57zxDZhOGfEfn/5qzdeHkc/2/ihJiIiIiIawuL6EvFZZ52FZcuW4fXXXwcAbN68GZs3b4Yoihg/fjxGjRrV3fbHP/4xWltbUVlZiT179sButwNAd1B26aWXYsGCBTG5HxQf+l2zrGY38OLVgMcR3YIoYtRGDwoWN6LpgAH1O02QvP4uSEjIOdkKMa5/C5JP12vX32uY06vSMCFJAlo82ahzjUKdqxh1rlGodxfBLel6tevcvQE60RawLwFAmjABFZgeUg0GsQHpqhKkKY8gXeX7MooNvmun9q6v+pC6JCKihBYvoWOAQDcWH9Totz/03RZKPdFu2+tbOW1lPg5RaYt+tsXysZQZnMtqG+3HMth9Rghto/FYxuvj3mN7PDzuvbYn2uPeY3tM2w6g3l7bY9kWfbcnzOPu737Ew+PeY3us/p8yZABKdd9zkGxxf5l47dq1WLhwIb799lsAvsDD4/Fg9+7d2LNnT/e25557rvv7Y46tRTR79mysWbMmypVTvPE7sszZ7htRxqBsyBFEIHVcO4zZDlR9lQx7U+//LFLHt0GX6opRdURE/ZMkoNWTjjr36O5wrN41Ck7JEPTYOtcoFGi2BW2XrjqCCuf0fvebFNVIV5YgXXUYaaoSpCuPQK9oCel+EBHRUNfjDRY/1EREREQUW6s+AXJnxLqKhBb3YZlOp8OGDRuwcuVKvPTSS90B2DHHbh8bQdbztiRJuOSSS7B69WpoNFwXY7jznvgGzusF3r8FaNgfm4IoKjRmN0YuaUDj90bU70kCvAI0ZhfSJrbGujQiIgBAh8eMWteYrhFjvi+7ZBpQX/Uyw7I05REAgAAPUpSVx0eLKY8gTVUCjdgxoPMTERERERERESWiuA/LAMBoNOKFF17ApZdeir/+9a/45ptv/LbrOaps1qxZ+MMf/oClS5dGqUqKbxL0jbuAb8uAml2+r9o9gKs91oVRFAgikDaxDcZcO6q/Tkb2bCtERayrIqLhqtY5GtWu8ah1jUatcwxavRnh69s1Wla7EZqd+JHld0hVlUIlOMN2fiIiIiIiIiKiRJQQYdkxy5Ytw7Jly7Bv3z588skn2LFjBxoaGmCz2WAymZCWloapU6di0aJFGDduXKzLpThRJFThMdXfMfrDSvkHGTIATRL6rpXkb+0kqdc/wY/xN12JzGP8nvfENnLrGMh5Q6g9DmmT3Rh5RkNIa5M3HdBDl+rilI1EFDZb2q5CpXNKRPqud40K3giAVmxDlvpARGogIiIiIiIiIko0CRWWHTNu3DiGYSSLCe14Vv1v5AqN8g8yjwBu2AToUiJX2HAihTGkC0MfQp9++j/Gvm8/aq+5AfB6kXLJMqT/dCUUBl0Uau+nrqicN1BA2uebEGscyDkH2j/8bIv0OUPtH362xfBxDHpOf/VH+3EMds4+30T1cZSkrnV1gzyOmXtMqAxjTiUKXqSabEg3tyDDbIWUfx0EJO7jKO+cJ7YJwznD8nz0V1s0XwNyztmryPD37/eccu/TCbfD3v9g7mek+x/g/SQiIiIiIgIQ0ugA8ishwzIiuX6reim0oExQAD96gkFZOB37RZ1gv7AltxvV9/wd8HgAAM0vvobWjV8g8/e3IunMM/usn0hEw4vb5UFDRRtqS2yoLbWhtqQFE+fnYsYPCoIem5lZDxzYNaDzCgKQkm1ARkESMgpMyCgwITXPAKWKc8sSDXt9PqAUj6HjCSFfTALjCIfgYTlnpEPwcJxzMP33+SZOHsdAP/PB1NHfeUOpMdS28LM9lH57bI96W4TQNhqP5WAf9x7tE+1x79U+Hh73HtsT7XHvr+a4ew4Hu88IoW00Hks5bSPVb6R+tyKEttF+LP20JRpiGJbRkDZX/B5ACBcQl9wB5M+JWD2UOJqeeRb2vXt7bXPX1qLy1/8D/dw5yLr9dmiKimJUHRFFW7vVgerDLag54vuqL2+F19P7TULNkRZZfWUWmmSfNzlT3x2MpRckIX1EElQaBmNE5EeCfkCJiIiIiIYAKd6Cx4G2HUANvbbHsG1SDmhwhk1YJooiRFGE2+2OdSkUdwQgcxJw8vXAjKtjXQzFAefRo6j/5z/73d+x5UscuWApUq+9Bmk33ADRYIhidUQUaV6PF42V7ag50uILyA63oLXJHvS42lIbJEkKOvLUYNbAaNGgrcnRa3uSRYuMkSZkjOwKx/KToNENmz/ViIiIiIiIKFH1fB/MD29RghpWV2Ck/oZp0/BiygPGnAlkTQKypgAZ4wE1ww46rvWDDyB1dgZu5HKh8T9PoOXtd5B56+84NSNRArO3u1BbYusOx2pLbXA7PCH309HiRFuzA0kWbdC2I8ZbYGuwI6vQhMxCEzJGmmAwawZSPhERERERERERDdKwCsuIoDIAV78OpI+JdSUUx1JXroS6aBRq7roL7pqagG3dNTWo/PX/wDBvLjJvu41TMxLFOUmS0FLX2T2lYvXhFjRXt4et/9oSm6ywbPHV48N2TiIiIiIiIiIiGpyECcscDgc2bdqE7du3o6amBjabjVMqUuh++DcGZSRL0uJF0J90Ehr++RCa1j4HeAKPMmnfvAVHLlgKy4+vRtoNN0CRlBSlSokoFC31nXjuji8j1n9tSQuKZ2ZErH8iIiIiIiIiIgq/uA/LOjs7ceedd+Lxxx+HzWaLdTmU6CacH+sKKIEojAZk/v73MF/4I9TcfRc6v90a+ACXC02rn0TL628g/Ze/RPLFF0FQKKJTLBHJYk7XQZekQmerKyz9KTUKZOQnIavIhMyRZmQWmcLSLxERERERERERRU9ch2VWqxWLFy/Gjh07eq03xnWBaMAEMdYVUALSjh2Dgmefhe2dd1B7333w1DcEbO9pakLNnXei+fnnkXnr72CYNy9KlRINP+0tDlQfakHVISvmLh0FlSZwQC0IArKKzCjZEfh13B9zug5Zo8zIKvJ9WXIMEEX+XUJERERERERElMjiOiz71a9+he3btwPwXdw6Fpj1DM6IQsKwjAZIEASYzzsPxkWL0PDPh9G0dm3QqRkdBw6g/LoVMC5ahIxbboamsDBK1RINTZIkwdbQiaqDLag+ZEXVQSta6ju79xdOTcOIcZag/cgNyxRKERkFSb5grCsg05vUg7oPREREREREREQUf+I2LKurq8PatWu7R5FJkoRzzz0XS5cuxfjx42GxWKDVamX1JUkSioqKIlkuJQqGZTRICqMRmb+/FeYLL5Q3NSOAtk8+QdumTbBceQXSfvYzKMzmKFRKlPgkr4TGqnZfMNYVjnW0OPttX3XQKissyx7l/zWoN6mRPep4MJY+IgkKFf/fICIiIiIiIiIa6uI2LPvkk0+6R5CJoojXXnsNF1xwQYyrooTHsIzCJNSpGeF2o/mFF2G55hqGZUT9kLwSGirbUHXAiqP7m1F9yApHh1v28dWHrLLapRckQakSkZylR3aPUWNJqVpO9UxERERERERENAzFbVhWWVkJwDf12YUXXsigjMKDYRmF0bGpGZMWL0bDf/6DpjVPQXI4+m2fuuI6qHJyolghUXw7NnKscn8zKg80o+pgaOHYiWqO2OBxe6FQBv5dr1QpsOJv86FUB17fjIiIiIiIiIiIhoe4DctcLlf394sWLRp0f2vWrBl0HzQEcMQARYBoMCDj179GysUXo+5vD8L23nt92igzMpC6YkUMqiOKL61NdpTsqEflASuqDlhhb3cFP0gmj8uL+vJWZBUFH73JoIyIiIiIiIiIiI6J27Bs5MiR3d8bjcZB93fNNdcMug9KbF6I4LgyiiRVbi5yH/wbUq66CrV//SvsO3d270v/n/+BaDDEsDqi+FB92IpNLx4Me7+mdB1yRidDpWEIRkREREREREREoYnbsGzRokVQKpXweDwoLS2NdTk0FHAKRooS/YzpGPnCf2F75x3U/e1BKNPSYL7gfFnHSpIEd1UVVLm5Ea6SKDZyx6QMvhMBSM0xImd0MrKLzcgZnQyDWTP4fomIiIiIiIiIaFiK27AsIyMD1157LZ544gm89NJLuO222yAMYgq9wsJCiKKIw4cPh7FKSiQSOAUjRY8gijCffz6SliyBu7ERgigvrG398CNU/va3SL7oR0i74QaosrIiXCnR4LS3OHB0XzOstR04+fyioO0NZg2SM/Ww1nbIPoeoEJBRkNQVjiUje5QZGr1qMGUTERERERERERF1i9uwDAD+9re/YfPmzdi7dy9uvvlmPPDAAwPuq6ysbFBhGyU+iSPLKAZEvR5qvV5WW8nlQv3f/w643bC+8CJaXnsdyZddirRVq6BMT49wpUTyOO1uVB204uj3zajY14SmqvbufVMW50FnVAftI3dMcsCwTFQKyCo0I2dMMnLHpCCz0AQV1xgjIiIiIiIiIqIIieuwLCkpCZ9++ikuvvhiPPjgg9i1axduu+02zJ8/P9alUQLiyDKKd9ZXX4OzrKz7tuR0ovmZZ2F96WVYrroSlhUroEwJwxR2RCHweLyoK7GhYl8zju5rQu0RG7xeyW/bo/uaMXpWZtA+c8emYM+mqu7bokJAZqEJuWNSkDsmGZlFZoZjREREREREREQUNXEdlgFAamoqNmzYgMceewy/+tWvsG7dOiQnJ2Py5MnIzMyEXq/niDGShSPLKJ55OzpQ/6+H/e6T7HY0PrEazf99AZZrfgzLtddCYTJFuUIaLiRJQlNVO452hWOVB6xwOTyyjpUbluWMTkZWkRm5Y30jx7JGMRwjIiIiIiIiIqLYifuwzO1246677sJDDz0El8sFSZLQ3NyMTZs2xbo0SjASGJZR/Gp65hl46hsCtvG2t6PhkX+jae1zSF1+LVKuvhoKozFKFdJQ1mFzomJvI8r3NuHovmZ02JwD6ufoviZZ7QxmDX50y8wBnYOIiIiIiIiIiCjc4josczqdOOuss/Dpp59CkiQIgsBRZDRwfO5QHFONGAFlTjbcVdVB23ptNtT/4yE0PvU0LD++Gparr+ZIMwqJx+1FzZEWlO9pQvneRjRUtIWlX1uDHS31nTCn68LSHxERERERERERUTTEdVh22223YePGjQAAQRAgSf7XSCGSgyPLKJ6Zf/hDJJ1xBqyvvILGRx+Du64u6DHelhY0/PNhNK15CilXXQnLNddwTTMKau/nVfj85YOyp1aUKzlTj7xxKfxcAhERERERERERJZy4DctsNhv+9a9/9RpJtnTpUlxwwQUYN24cUlJSoNFoZPUlSRKKiooiVSolCIlXcCnOiWo1LFdcgeQLL0TzCy+g8fH/wNMUfFo7b1sbGh99DM3PPIuUKy6HZflyKFNTo1AxJSJDsiYsQZnOpEbe2BSMGJ+CvHEWJFm0YaiOiIiIiIiIiIgo+uI2LNu4cSM6OzsBAKIo4rXXXsP5558f46ookXFkGSUKUatF6rXXIuXii9H03PNoXL0a3paWoMd5OzrQ+MRqNK19DimXXgrLiuugysiIQsWUSHLGJEOhFOFxe0M6TqlRIHdMMkaMsyBvXAosOQZOjUxERERERERERENC3IZlhw4dAuCbfnHZsmUMymjQJPCiLiUW0WBA2k9WIeXyy9D09DNoeuopeNuCry0l2e1oevppNP/3vzAvW4bUFddBnZ8fhYop2txODyoPWFG2qwHNtR244NfTgx6jUiuQM9qMiu+bA7YTRAFZhSbkjUtB3ngLMkeaoFDyQwdERERERERERDT0xG1Y5nQ6u79ftGjRoPtbs2bNoPugxCYJvMhLiUmRlIT0n98Iy1VXovHpp9H87Fp5oZnTCeuLL0I3ZQrDsiGktcmOst2NKNvVgKP7muF2HR8hZq3tQHKmPmgfIyak+g3LkjP1GDHBghHjLcgdnQy1Lm7/TCAiIiIiIiIiIgqbuL0Klt/jwq7JZBp0f9dcc82g+6DExpFllOgUycnI+NWvkLp8OZqefRZNzzwbdHpGZWYmzOedG6UKKRK8Hi9qSmwo29WIst0NaKxs77dt6a4GTMsMHozmT7Rg86uASqtA3tgU5E9MRf4EC0xpunCWTkRERERERERElBDiNixbsmQJVCoV3G43KioqYl0ODQFerllGQ4TCZEL6jTfCcs01aH7+v2haswaeZv9T6lmWXwtBrY5yhTRY9jYXyvY0omx3I8r3NMLR4ZZ1XNnuRkxbEjwss2QbsOy3M5BZaIJCwd+NREREREREREQ0vMXtFbKMjAxcf/31kCQJr7/++qD7W7x4MU4//fQwVEaJShI4soyGFoXRiLSfrELx+nXI+N3voEhL67VfNJuRcvHFMaqOQmWt68C2j8vx+t++w5M3b8K6NXtx8Jta2UEZAFQdtMJpD95eEATkFCczKCMiIiIiIiIiIkIcjywDgPvuuw/ffvstvvrqK9x///24+eabB9zXxo0bITAsGdak+M2GiQZF1OuRuvxapFx+Gawvv4LG1avhrqmB5corIBoMsvpofHINPK02WK64Asr09AhXTAAgeSXUltlQsqMBJTsa0Fzd//SKcnk9Eiq+b8Ko6RlhqJCIiIiIiIiIiGh4iOuwTKvVYt26dVi1ahVuvfVWfP/997j99ttRWFgY69IoAXHNMhrqRK0WlquvQsqll6DlnXdhPG2hrOO8nZ1ofPxxeKxWND2xGqZzz4Xl2mugHTs2whUPT03V7dixoQKlOxvQ0eIMS58agxL5E1IxcnIqcsekhKVPIiIiIiIiIiKi4SKuw7K77roLADB27FjMnz8fTz31FJ5++mlMnjwZU6dORWZmJgwGA0eMkSwcWUbDhaBWI/nCZbLbt7z5FjxWKwBAcrnQ8vrraHn9dejnzkHqtdfCMH8+BJGvn3BxdLixd1PVoPtJzTWiYHIqRk5KRWaRGaLI/wuJiIiIiIiIiIgGIq7DsjvvvLNPECZJEnbu3Ildu3bFqCpKVF6GqkR9SF4vmp5+2u++ji1fomPLl1AXFsJyzTUwX3A+RJ0uyhUOPZmFJuiSVOhsdYV0nFItIm+cBQWTUlEwKRVJFm2EKiQiIiIiIiIiIhpe4josO0aSJAiCwBFkNCgcWUbUV/umTXCWlARs4ywpQc2dd6L+//4PyZddipTLLoMqKytKFSaOlvoOmNJ0Qf+vEkUBI6ek4fsvqoP2aUrTomByGkZOSkXOmGQoVYpwlUtERERERERERERdEiIsA3yBGdFgcM0yor6aX3hRdluP1YrGRx9D43+eQNLppyPliiugP/mkYftBBkmS0FTdjsPf1ePItjo0Vrbj4t/PQkaBKeixhQHCsoyRJhROSUPh1DRYcjjVMBERERERERERUaQlRFj2xz/+EYsWLRrw8ZIkYfHixWGsiBIRR5YR9ZVz/32wvvIKmp95Fq4qmetoeTxo/egjtH70EdTFo2C58kqYzjsfCqMhssXGAUmS0FDRhsPf1eHwtnpYazt67T/8Xb2ssCxvvAVKlQi3ywtRKSBvrAWFU9NQOCUNhmRNpMonIiIiIiIiIiIiPxIiLJswYQIWLlwY6zIowXk5soyoD4XRiNRrr4XlqqvQum49mp56Cp3bt8s+3nnoMGr+dBfqHvgbzMuWIeWKK6ApKoxcwTEgeSXUltpw+Ls6HNleD1uDvd+2h7fVYc7SoqCjwVRqBeYsHQVDsgb5Ey1QaxPiv2MiIiIiIiIiIqIhiVfnaNiQOJUZUb8EpRKms86E6awz0bl9OxqffhqtH34EeL2yjve2t6N57Vo0r10Lw7x5SLnyChhPOw2CIjHX2JIkCbUlNhz8phaHt9Wj3eqQdVxLXSeaqtqRmmsM2nbq6SMGWyYRERERERERERGFQVyHZVOmTIEgCEhJSRl0Xz/+8Y+57ssw50ViXrQnijbdtGnImzYNzqOVaF67FtZXXoG3rU328e2bN6N982aYzjsPufffF8FKw+vYFIsHv63FoW/r0NrU/wiyQA5/VycrLCMiIiIiIiIiIqL4ENdh2fYQpgIL5qmnngpbX5SYOA0jUWjUebnIvPV3SPv5jWh5/Q00P/88nCUlso83nXVmBKsLn6aqdhz8thYHv61FS13noPtraRh8H0RERERERERERBQ9cR2WEYWTxLCMaEAURiMsV1+FlKuuRMeWLWh67nm0ffJJwCkalTnZMJ52WvSKDJG1rgOHvq3DwW9r0VTVPrjOBCCnOBlF09NRNC0dSRZteIokIiIiIiIiIiKiqBg2YZnNZgMAmEymGFdCseKFGOsSiBKaIAgwzJsHw7x5cFVWovmFF2F9+WV4rNY+bVMuv1z2emWS1wtBjN7rU5IkvPn3bWhrlrcOmT+CKCB3TDJGzchA0bR06E3qMFZIRERERERERERE0TRswrLk5GSIogi32x3rUihGOLKMKHxUubnI+M1NSPv5jbC99z6an3sO9t27AQCCWo3kiy6S1Y/j8GFUrPoJki++COYLfwRVZkYkywbgC/2KZ2Vi+8flIR0nKgWMGG/BqOnpKJySDq1RFaEKiYiIiIiIiIiIKJqGTVgG+EYT0PDFNcuIwk/UaJC8bCmSly1F586daH7uOQgaLZQpKbKOt770MlxVVaj/x0Oof/hfMC5YAPOFy5C0cCEEdeRGa42elSErLBMVAvInpqJ4ZgYKp6RBrRtW/20SERERERERERENC7zqR8OGJHAaRqJI0k2ZAt2UKbI/mOB1ONDyxhvHN3g8aPvkE7R98gkUKSkwn38ezBdeCO3YsUH7krwSqg5a4ehwo2h6etD26flJMKXrYKvv7LNPEAXkjU1G8axMFE1Lh9bAEWRERERERERERERDWVyHZXfddVesS6AhhCPLiKJDEOS91lo/+gielha/+zzNzWh6+hk0Pf0MtBMmwHzhhTCf+0MokpN7tWuqasf+r2pw4OsatDU7YLRoUDg1DYIYuAZBEDB6Vga2vl/WtQHIKU7G6FkZKJqewTXIiIiIiIiIiIiIhpG4DsvuvPNO2RddiYLhmmVE8cX64kuy2tn37oV9717U3XsvjEtOh+bsZagUCrD/61o0VLT1atvW5ED1YStyRgefBnL0rExUfN+M0bMyUDwzA8YU7YDuBxERERERERERESW2uA7LBurEKcAYuBEAeCVOw0gUL9z19ejcuVN2e6+gQKN5AnZUFKDxVQck4XC/bfd/WSMrLEvNNeLiW2fJroGIiIiIiIiIiIiGpoQIy+Suf9PTsYBMkqQBHU9DD6dhJIofyvR0FH+6ES2vvwHrSy/BWVrqt12bIQfVWXNRkzkbLnWSrL4PfVeP+ZeNgVKlCGPFRERERERERERENFQlRFj2ySefyGrX3t6OhoYG7NmzB++//z52796N4uJi3HvvvbBYLBGukuIdwzKi+KJMSUHqdcthWX4tOrduhfW112H74AM4nUBt5mxUZ81Ba1J+yP06O90o+bYao+fmRaBqIiIiIiIiIiIiGmoSIixbuHBhyMfce++9WLduHX7yk5/gxhtvxJtvvonZs2dHoDpKFF5wGkaieCQIArQzZsKlLUTpiItRsrMRXmlg4bbgdSGtcTe839QAc68Ic6VEREREREREREQ0FCVEWDZQS5Ysweeff44ZM2bgvPPOw5dffomRI0fGuiyKEYkjy4jijq2hE3u/qMK+zdVob3F2bQ39tWq2HkJW7VfIqN8GldeBokfkjUgmIiIiIiIiIiIiiuuw7I9//GP32mMDlZOTgzvuuAM33ngjfvKTn+Cjjz4KU3WUaDgNI1H86LA5sf6pvSj/vgkY4LKSuo5aZNd8hcy6b6CzN3VvN8ybB1VmRpgqJSIiIiIiIiIioqEursOyO++8Myz9nHvuubjxxhuxfv16HDp0CMXFxWHplxILwzKi+KE1qtBU0x5yUKZSi8i3tCPj4MfQbv3Q76vafMH5svpyNzej5bXXYDr7bKhyckIrhIiIiIiIiIiIiIaMuA7LwiU7O7v7+02bNjEsG6YYlhHFD1EUMOGUHHz9doms9rljkjFuXjZGTc+ASqMA8EM4y8rQ8vY7aHnrLbjKywEAgk6HpCVLZPXZ+uFHqLv/AdTd/wB006fDdM45MJ11JpTp6QO9W0RERERERERERJSAhkVYZrPZur+vqamJYSUUS15JjHUJRNTD+Hk5+ObdUkhe/8PLjBYNxs3Jxri52TCn6/rsVxcUIP3nNyLtxp/BvmMHWt56CxAVEA0GWee3vf9+9/ed27ahc9s21P7lL9CfdBJM55yNpDPOgDIlZWB3joiIiIiIiIiIiBLGsAjLPvvss+7vtVptDCuhWOLIMqLI8nollO1qgNvpxejZmUHbG1M0GDk5FSU7Grq3KVQiiqalY/y8bOSNTYEgBn/dCoIA3bRp0E2bJrtWV10dOr7+2t+dQMeXX6Ljyy9Rc9fdMMybC9M55yDp9NOhSEqS3T8REREREREREREljiEflrW0tOD222/vvp2bmxvDaiiWJIZlRBFhb3Nh7xdV2P1pJVqb7DAka1A0Ix0KRfDRnBNOzUHJjgak5hoxcX4OxpyUCY1eFfGaWz/4EJCCLJjmdqP9s01o/2wTalQqGE45BUk/+AGSFi+CIjk54jUSERERERERERFRdAy5sMxut6OpqQmHDx/Gxo0b8dhjj6G6urp7/4IFC2JYHcWSF5yGkSic6sps2LXxKA5+UweP29u9vd3qQMn2BhTPzAjaR/7EVFx06yxkFCRBEKIXaNveey+k9pLLhbaNG9G2cSOqlUoYTjrJF5wtOR3KtLQIVUlERERERERERETRENdhmUKhGHQfUtfIAUEQcP755yMrK2vQfVJi8nBkGdGgeVxeHPquDrs2HkVtia3fdrs/PSorLBNFAZkjTeEsMShJkmA8fTG8djsc+/aF3oHbjfbNm9G+eTNq7roL+pkzfcHZD86AKjP49JNEREREREREREQUX+I6LJOCTZEVhCAIEAQBkiQhOzsbDz30UJgqo0TENcuIBq61yY49n1Vi7xdV6Gx1BW1fecCKxso2pOYao1BdaARBQNqqVUhbtQqOI0dge+992N59F86SktA783rR8c036PjmG9T+7/9CN3UqzBdeiJRLLwl/4URERERERERERBQRcT8v3WCm5ToWtp177rnYsmULRowYEa6yKAFJEsMyolDVHGnBB4/vxrP/bzO2flAmKyg7ZvenlRGsLDw0RUVI//mNKHrvXRS+8TpSV62CahBrW3bu2IHOXTvDWCERERERERERERFFWlyPLDtm4cKFstsqlUoYjUZkZWVh6tSpOOusszBy5MjIFUcJg9MwEsnj9XhxZHsDtq8rDzjVYn9EpYDimRkYNzc7AtVFhiAI0I4bB+24cUi/6X9g37ULtnffg+399+GuqwupL9MPfhChKomIiIiIiIiIiCgSEiIs++STT2JdAg0BnIaRKDBnpxt7v6jCzg1H0dpkD/l4Y4oGExfkYsIpOdCb1BGoMDoEQYBuyhTopkxBxu9uQef2HWj96CO0fvQRXFVVAY8Vk5JgmDNH1nnsBw5AnZ8PUasNR9lEREREREREREQ0QAkRlhGFgzf+Zx0liglbQyd2bjyKvZ9XwWX3hHx87tgUTD4tF4VT0iAqhtbrTBBF6GdMh37GdGT87hbYd+/pDs6cZWV92ictXgRBHTwolCQJFT+5Hh6rFYZTTkHS4sUwLjoNSoslAveCiIiIiIiIiIiIAmFYRsOGl2uWEfXx+csHsXNDBbqWeJRNpVFg7JwsTF6YB0uOITLFxRlBEKCbPAm6yZOQftP/wHHgYHdw5jh4EACQJHMKRvuevXDX1AAA2tavR9v69YAgQDd9OpJOXwzj4sXQFBZG7L4QERERERERERHRcXEdlpWUlMS6BBpCOA0jUV/GFE1IQVlyph6TT8vDuDlZUOvi+r+QiBIEAdqxY6AdOwbpv/g5HCUlaP14HQynnCLr+LYN6/tulCR0fvcdOr/7DnX3PwB1YSGMixfBuHAh9NOnQ1CpwnwviIiIiIiIiIiICIjzsKygoCDWJdAQ4mFYRtTHhFNy8PU7JUGnX8wbl4JpS/KRP8ECQeRr6USawkJofrJKdvvW9RuCtnGWlKBpdQmaVj/pWwvt1FNgXLgQxgULOF0jERERERERERFRGMV1WBZOd911FwRBwO233x7rUihGOA0jUV9qnRITTs3BjnUVffaJSgFjZmdi6un5SMszxqC6ocl59Cgc+/eHdIy3tRWt73+A1vc/AAQB2imTfcHZwoXQTpgAQeDvNyIiIiIiIiIiooEaNmHZnXfeybBsmPNCjHUJRFHT2eqERq+EqAj+vJ+yKA871x9ft0xrUGHSwlxMWpgLg1kT4UqHH2dZGRTJyfBYrQPrQJJg37ET9h070fDQP6FMT4dh4QIYFy6EYe48KIzDYw05IiIiIiIiIiKicBk2YRmRN9YFEEWBrbET2z+uwPdfVGHR1eMw5qSsoMeYUnUYNSMDjZVtmHr6CIw9OQtKtSIK1Q5PxlNOwegvPkfntm1oXb8BrRvWw1VWPuD+3PX1aHnlVbS88ioElQq5f38QSUuWhLFiIiIiIiIiIiKioY1hGQ0bHk7DSENYS30Htn5Qhv1bauD1+oaIffdhOUbPzpQ1Rd9pV46FWqvkemRRIigU0M+aBf2sWci45WY4jxxB6/oNaFu/Hp07d6J7mF+IJJcLmnHjw1wtERERERERERHR0BaTsEyh4IgFij6vxGkYaehprmnH1g/KcODrWkje3gFLY2Ubyvc0oWBSatB+NHpVpEqkIARBgGbUKGhGjULaT1bBXV+P1o0b0bbxU7Rv2QKpo0N2X+riUVDn5cpqK0kS1zojIiIiIiIiIiJCjMIyaYCfmCcaDC94UZiGjsaqNmx9vwyHvq0NOAjpuw/LZIVlFD+U6elIufhipFx8MbxOJzq+/gZtn36Ktk8/has88HSNxoULZZ3D3diII0uXwjB3Lozz58Mwbx6UqXyeEBERERERERHR8BSzaRgFQYhaaBbNc1H84jSMNBQ0HG3Ft++V4vC2ekDGr7Wqg1ZUH25B9ihz5IujsBPVahhPPQXGU0+B9Iffw1lS2h2cdXz7LeB292ovNyxr37wZnvoG2N56G7a33gYAaCdOhOHUU2Gcfyp0U6dCUHG0IRERERERERERDQ8xXbNsocyLeuHw6aefRu1cFJ884DSMlLgaK9vw9TslOLKtPqTj9GY1OludEaqKokkQBGiKCqEpKkTq8mvhaWtD+xebfeHZZ59Bcjignz5dVl9tmzb12Wbfswf2PXvQ+NhjEPV66E86CYZ5c2GYOxfq4mJO2UhERERERERERENWTMOyTz75JGrnEkUGJcOdh9MwUgKy1nbg63dKcPDbWlkjyY5JStVi5lkFGDcnGwoVf/8NRQqjEaYzfwDTmT+A5PXCVVkpazSY5PWi/YvNAdt4OzrQtnEj2jZu9J0rPQ2GuXNhmDsPhrlzoMrKCsddICIiIiIiIiIiigsxDcuIosnLaRgpgdgaOvHNuyXY/2VNwDXJTmTO0GHmWSMx5uRMKBQMyYYLQRShHjFCVlvHvn3wNDaG1P+JUzaqi4pgmDMHhnlzoT/pJChMppBrJiIiIiIiIiIiihcMy2jY8HJkGSWA1iY7tr5fiu+/qIbXKz8lS8nSY9Y5I1E8MwMiQzIKoG3T54Puw3nkCJxHjqD5+ecBUYR28qTukWe66dMgqtVhqJSIiIiIiIiIiCg6YhKWrVmzZlick+KLhyPLKI512JzY+n4pdm+qhNctPyRLzTVi1jkjMWp6OgSRz3EKznLVldCMGY32TZ+j7YvP4SorH1yHXi/sO3bCvmMnGh99DCNf+C9006aFpVYiIiIiIiIiIqJoiElYds011wyLc1J84ZplFM++ePUgDnxVK7t92ggjZv+wEIVT0hiSUUhEgwFJixYhadEiAICzvBxtn3+O9k2fo/2rryB1dAy8b6MR2kmTwlUqERERERERERFRVHAaRho2uGYZxbPZ5xTi4Dd1kIJMvWjJMeCkcwtRNI0jySg81Pn5sFxxBSxXXAHJ6UTnzp1o3/Il2rdsQeeOHYDHI7sv/UknQVAG/9PCa7fD+uKL0J90EjRjx0IQOXUoERERERERERHFTkKHZXV1dWhoaEBLSwvMZjPS0tKQkZER67IoTnEaRopnyZl6TDw1B7s/q/S735yhw0nnFqJ4ViZEhmQUIYJaDf2sWdDPmoX0X/wcnrY2dHzzDdq3bEHHli1wHDwU8HjD3LmyztO5fTtq//JXAIBoNkM/exYMJ50M/cknQTN6NMMzIiIiIiIiIiKKqoQLyz744AM888wz2LhxI2pr+05ZlpmZidNOOw1XX301zj777BhUSPFK/tgIotiY9cOR2PdlNdxOb/e2pFQtZv+wEGNPzoSoYIBA0aUwGntN2eiqq0PHl1+iffMWtG/ZAvcJ/w8b5skLyzq+/rr7e29LC9rWrUfbuvW+cyYnQz97NvQnnwz9SbOhKS5meEZERERERERERBGVMGHZrl27sHz5cmzbtg0AIEn+pyqrqanBiy++iBdffBHTp0/HmjVrMHny5GiWSnHKK/FiK8WGJEkQhOCjwQxmDaYtyce375XCkKzBrHNGYvy8bCiUfO5SfFBlZMB8/vkwn38+JEmCs6QE7Vt8wZmztBTqoiJZ/bT3CMtO5LFa0frxx2j9+GMAgCIlBfpZM6GbORP6mbOgHT9O1lSPREREREREREREciXE1aaXXnoJ1113HTo7O7svOge78CxJEr777jvMmTMHq1evxmWXXRalaileecCp6yi6OmxOfPX2EQDAoivHyTpm+hn50BpVmDg/B0qVIpLlEQ2KIAjQFBVBU1QEy5VXyg6FvZ2d6NyxU/Z5PM3NaP14HVo/XgcAEPV66KZP7w7QdFOmQNRqB3w/iIiIiIiIiIiI4j4s27BhA66++mq4XK7ukKy/UWU9Hbtg19nZiWuuuQbp6ek4/fTTI10uxTGuWUbR4nF5seOTCmx9rxROuwcQgEnzc5GenxT0WLVOiamLR0ShSqLwkhOUAb71yuByDfg83o4OtH/xBdq/+MJ3XpUK2kmTutZamwndzFlQGA0D7p+IiIiIiIiIiIafuA7LbDYbLr30Urjd7u6QbOzYsTj33HMxdepUjBo1CiaTCTqdDh0dHWhtbcWhQ4ewY8cOvP322zh48CAEQYDL5cJll12Gw4cPw2QyxfpuUYwwLKNIkyQJR7bVY/Nrh2BrsPfYAXz+8kEsvWm67ECBaCjTzZrpG102iNDsGMnlQue2bejctg2N//kP8h55BEmLF4WhSiIiIiIiIiIiGi7iOiy7//770djYCEEQMG7cOPzjH//AkiVLAh4zd+5cXH311XjggQfwwQcf4KabbsK+ffvQ1NSE+++/H3fffXeUqqd444Uge5owolDVl7fi85cPouqg1e/+qoNWlGxvQNH09OgWRhRnDHPnwjB3rm86xu3b0f711+j46mt07toVlvBMP2N6GKokIiIiIiIiIqLhJK7DsieffBKCIGD27Nn46KOPQh4VdtZZZ2HevHk4/fTTsXXrVqxevZph2TDmhQCvBCiYlVEYddic2PLGYezbUg0EmSH2i1cPomBSKhQqMTrFEcUxUafrDs4A3/SKndu3o/2rr9HxdVd45naH1Kdm9GgokpODtpO8XlTe9Btox42Dbvp06CZPgqjXD+RuEBERERERERHREBC3YdnOnTtRXV0NhUKBtWvXDnj6RJPJhOeeew4TJkxAbW0tdu7ciSlTpoS5WkoEEgR4JQkKMC2jwfN6vNj9WSW+evOIb10ymWyNnUjJ4npKRCcS9XoY5s2DYd48AIC3vR0d27ajY+u36Px2Kzp37oTkcATsQz97lqxzOUtL0frBB2j94APfBoXieHA2fRr0M2ZAlZ09qPtDRERERERERESJI27Dst27dwMAFixYgOLi4kH1NWbMGCxcuBAbN27E7t27GZYNU15JhFcKMvSHSIaqQ1Z89t8DaKxsk9VerVVg5jkjMXXRCI4qI5JJNBhgPPUUGE89BQDgdTph370HHVu/Rce336Lzu23wtrb2OkY3c6asvju3beu9weOBfc8e2PfsQfPatQAAZVaWLzibPh266dOhHTcOgko1+DtGRERERERERERxJ27Dsvr6egDA5MmTw9Lf5MmTsXHjxu5+afjxrVkW6yookXXYnNjy2iHs+7JGVntBACacmoOTziuC3qSOcHVEQ5uoVkM/Y7pvTbJVqyB5PHAcPIiOb7d2B2j6WfJGlnWcGJb54a6pQev7H6D1fd/oM0GrhW7SJOhmzIBu+jTopk2DMiVlUPeJiIiIiIiIiIjiQ9yGZXa7HQCg0+nC0t+xfhxBpnCiocvbNQ0jUai6p1x8qwTOTnlrKOWNS8GpF49Gaq4xwtURDU9C19SJ2nHjYLnqSkiSBEGQN81u57btIZ9PstvR8a0vlDtGPXIkdFOnQDtlCnRTpkI7dgwENYNxIiIiIiIiIqJEE7dhWXp6OgCgvLw8LP0d6yctLS0s/VHikSCirLED47MHtv4dDU/Vh6z49IUDaDwqb8rF5Ew9TvlRMQomp8q+cE9Egyf39eaxWuE8fDgs53SWlsJZWoqWN9/y1aBWI+1nP0XaDTeEpX8iIiIiIiIiIoqOuA3L8vPzAQAffvghXC4XVINYJ8ThcOCDDz7o1S8NP14I+PUL2/HGjadAp1bEuhyKc/Z2F7a8fhh7P6+S1V6pUWD2OSMx9fQRUCi5LhlRvJIkCem//jU6t21Dx/bt8La0hK9vpxOKZE7NSERERERERESUaOI2LDvllFOg0WjQ3NyMO+64A/fcc8+A+7rjjjvQ3NwMrVaLU089NYxVUiLxQsD+2lbc9NJ2XD2nAOOzTUgxcLos6qt0VwM2PLsPnTanrPbFMzNwykXFMKZoI1wZEQ2WMiUFaTdcDwCQvF44S0vR+d136Ni2DZ3btsN55Mig+tdNnSKrXcubb8Lb2QndlCnQjBkDQRm3f5IREREREREREQ15cXtlRqfT4Qc/+AHefvtt3HvvvVCpVLj99tuhDOFiktvtxh133IH77rsPgiDgzDPPhFbLi9nDlRe+0T7v767B+7trAADZZi0mZJswPT8ZF87IQ05yeNbIowQnQVZQlpypx4LLxmDEeEsUiiKicBNEEZqiImiKipB80UUAAHdzMzp37EDntu3o3LYNnTt3QupaRzVofzodNKNHy2rb+PTTcOz93necVgvtxInQTZkC3ZTJ0E6eDFVuLqdyJSIiIiIiIiKKEkGSJCnWRfRn27ZtmDVrVvftwsJC/PSnP8U555yDcePG+b2IJEkSvv/+e7zzzjt49NFHUVZWBkmSIIoitm7diqlTp0bzLlCU7dmzB5MmTeq+vfunBkzM8E25eL3zf/Chd3a/xyZplXjmupMwPZ9TaBHw4X9249DWOr/7lGoRs39YyCkXiYYByeWCfd9+X3C2fRs6tm2Hu7rab1v9rFkoWPts0D69nZ3YP2s24PH020ZhNkM7aRK0kydBN2kStJMmQZmZyQCNiIiIiIiIiAasz/Xz3bsxceLEGFYUP+J2ZBkATJ8+Hb/4xS/w0EMPQRAEHDlyBLfccgtuueUWaDQaFBQUwGQyQafTobOzEzabDaWlpXA6fSNCjuWAgiDgl7/8JYOyYc6LwBcYW+1u/HTtd3jvV/Nh4fSMw96pl4xGxfdNcHS4e20fNcM35WKShaNUiYYDQaWCbvIk6CZPAn58NQDAVV3tG322Yyc6d+6Efc8eSHY7tDKnYLTv3RswKAMAT0sL2r/4Au1ffNG9TZGeBt1EX3Cmm9wVoKWmDvzOERERUfd1g54fI5ZO3Ner/bE2Up9tCNAuUP+9t52wYRB9SOh7gNz70rudvPvaX1/99eevlhNb+69Hxvlk/pzktO33sZBZe39t/fXV97i+D0CwtqHU3vNGsMey53Fyah/sz7G/2nudIdj9D+E56O81118fIT3n5fycgzyvgj0Wob8GA7ft3Xew51Xgc/d+jAM/FqHU3qu9nOf8AH+X+O0rSB9yavf7+gjDc9Dft/Jq77k99NfHQJ+DwX5n9ldP2F8fITwH5f7/fGI9wV7bA3599Pj+H5dNw+jMJNDAxSwsW7x4MQRBwPr16wO2e/DBB3H48GG8++67EASh+0lmt9uxf/9+AOi1vadj288991z87W9/C/+doIQSLCwDgBqbHTe/vANPXDOLn94f5gxmDeb9qBifPLsPAGBK02LhFWORP4EXpkmeQH+YB/+Dqe8fXH37kveG0u8flGHoI9Abk0D3xW//Ae6n7D78HhvoZ9B//73b+/uDVA9Mngtp0lzgSgBuN6SSQ6g1GFFTYe3Rr/8alZ9+CRVC56lvQNvGjWjbuLF7mzc9A+7R4+EZPRbu0ePgGTUWUpIp4M9M9gWPQD8DmX34e0MY6I1qoOek3Dc+/n+O/dco982O3NceAjwnA7+mem7r/77KqbG/dif2H2ofsu9niK+9oG/qQ3z9Hj9uYDX27i+03w+h/74M/Lrp7/dIzxtyL1jIuZ/+2oVaY68SB1hjr4pkP94yXl8h/v8b6v3020eQGv08Pfq0k/u7rndNIfbht6/Q7kug33Vy7mfvcwV/TgS/L/33T0RERDTU2F3eWJeQ8GIWlm3cuFFWGCGKIt58803ceuut3YGXv+NO3HbsD+NbbrkF99xzD4MP6l6zLJj1++rwPy9uR06yLuAFshPf8J144SnQsSe+Sevvzay8i02B3tTLrCmEN+mhXLQ5saZQLtbIOV+wC6kB32wHq0nybZxsFNGmF1CaJeHNT/cDn/Zfk5yLif2eN8DPQHbNfmrq93l6Qp+BaupdQ/CLGv3X1ruoYBeg/NbYz/0LqY8Aj5+cC3LBAwEavhoAlAZt9fuvP8OCMJ1RrK+Dur4O2PwpAKBDqcFFP7wbksApYomIiIiIiIiI5IrraRiPEUUR9913Hy699FL85S9/wVtvvQW3291ve6VSiQsuuAB/+MMfMH369ChWSvHs7Mk5cHekYW+VDY3tzoBt39heFaWqKJpECZjpUGKHxg2nzPz8GwUgOQGUR7Q0IhpGjphzkWZvQbG1Empv/3/PDMRhc468oEySAH6QiIiIiIiIiGhIkMBPcg9WzMOyVatW4brrrsPcuXODtp05cyZeeeUVtLW1YdOmTdixYwcaGhpgs9lgMpmQlpaGqVOnYv78+TAajVGonhLJJbPzcUnxyZAkCXWtDuyttuGv7+3D/trWWJdGUZDmEXBOhxqZHhGpXgEf6F2yjpN4LZmIwuzFsafjxbGnQ+l1o6ilCmObyzG2qRxjrBUY0VY/qL4PJo+Q1W56/UH8z7YXcdici0PmXBxKzsNhcy4adGaGaEREREREREQ07MQ8LHvyySfx5JNPYuzYsVi5ciWuvvpqpKenBzzGaDTi7LPPxtlnnx2lKmlI6PqkvSAIyDRpkWnSYkSKDuf+83PO6TqECRJwkkOJU+xKKLrWrZvsVOKAyoMjKv7ciSh23KISB1LycSAlH28X+bbpXXaMsh7FGGsFRluPYkzzUWR3NMru80CKvLCs2HoU6Z0tSO9swZyavd3bW9QGHErO9YVoXf9WG1I5rSMRERERERERDWkxD8uysrJQXV2Nffv24eabb8bvf/97nHfeebjuuutw9tlnc60xCh8/F/qKM5Lwp/Mn4nev7opBQRRpKV2jyXI8fX/2Z3aosSbJDjuv/xJRHOlQabErvRi70ou7tyU52zHaehSjm49itLUCY6wVSO9s8Xv8weQ8WecZ1eJ/umGzsx0z6w5gZt2B4zUpNThsPh6gHUrORYUxA15REcI9IyIiIqLB6Hl5TOi1XeizvXdb/wf27qNv22Dn63W1Tk5tQpD9fuqBrHp6bhdk1d6rdKGf74Ocu7/a/T0Wwe9n/+fzV7vfn10Itffc0X89fc8tp3b/919GbUGeg71LD/acl982lOdYsNp7tQmhnt7nCN4Wwerx02/P9v3V7u+xCPX56u853+sMIb1ee34f7PdOsHrkt0WQn1F/fQSrHf3tD8Nz8Jgss7bvRgpJzMOyiooKvPfee1i9ejXeffdduFwuvP7663j99deRnZ2Na6+9FsuXL8eoUaNiXSolun4+FX/JrBHYVdmCtV9yUaohQwJmOhSYb1dBBf//QRslAad3qvCuQd50jEREsdKqNuC7jLH4LmNs97YUu60rQOsagWatgMrjRrUhNeAbrWPbiluOyj6/3u3A5MYjmNx4pHubQ6FCuTkbJcm5KE3ORVlKLsrNOXCoND1OGqAOGTX2bIcAb6TkvuEK9CYl1D78v1mVd1/89X/icb3PKa+PQG/uQn28/V3wkP14y3gjJ/cCR+B28t6gyq1Rzs9R9oWyAI+R3De9/i5chNyHn/tyYht/NfY89ng9od1Pv30EqTHQRTs5/Z9Y54D7kPEa9V+jn3YDvJ/+jpV7IS7Q6ybU++m3D9kXhwI93qH9rgv1fvY81v/PQO59Cf7aC/67KNDvkUA/gwA1hvjaC7XGYOfvt9YwXFz093slWN2yzufn+dVff6HUjhDbBnr+9mnb3wNOREREESNIkhSTld9EUYQgCPB4PN3b6urq8PTTT2PNmjXYt2+fr8CuPxAWLFiAlStX4kc/+hG0Wqak5N+ePXswadKk7tu7f2rAxIyuT75f+y4w8lS/x0mShDe2V+KTffVoancCkPcGue+b2EBv2vy/2ZLzRujEP/JPPF+gN+x92oTwZrzPm0wZb7j6PfaEenoKfkzPtoHvj2j3QPNdM5T1zj7nOZGkFuA8PRPQKwPeh0A19XfxaSCPb+9+5D3X5FyECenx7ee5Fqgmf+cI9X75q6+/dv29lvz136vdAO9n73P1/3P19+Y+0JvjUO+n3z5k1ogA7eT+HP2dS06NvbeFWOMgLtbJ+13Xf/+9jvX7GIXWR8gXwnq1C/Ta892QJAme5mYoLZa+JzqBp60NB2bNDtpuIFT5+ci46SaYzjozIv0TERERERER0cD1uX6+ezcmTpwYw4riR8xHlvWUkZGBm2++GTfffDO2bNmCJ554Ai+//DLa2trw6aef4rPPPsPPf/5zXHHFFVi+fDlmzZoV65IpkQRYb0UQBCybnodl0+VNX0Xx6ci2emxY+z0c7e6gbUdOScNpV46FwawJ2paIKN4JgiArKAMAR9cHkiLBVV4OQa2OWP9ERERERERERJEQs7CspKQk4P65c+di7ty5eOihh/DCCy/gySefxJYtW9DS0oJHH30Ujz76KCZNmoSVK1fiyiuvhEXmBSIaxgKEZZTYXA4PPn/5IPZ+7n8Nnp7UOiXmXzIaY+dkcWoLIhqWNOPGYcTjj8G+dy/se7+Hfe9euI7Kn5YxGO24scEbAai+8054ba3QjBsH7bix0IwdB2VGOn83ExEREREREVHUxWwaxoHYv38/nnjiCTz77LOoq6sD4PsktVqtxtKlS3HdddfhjDPOiHGVFEsBp2Fc8TEw4qQYVUaRUl/eio9W74G1tiNo2xETLFh89TgYUziVKxFRT56WFti/39cVoO2F/fvv4TxyBAjxz0TRZMKYr76UFXgdmD8fnvqGXtsUKSnQjBsL7dhxvn/HjYO6qAgiR6sRERERERERDRqnYexfQoVlx7jdbrzzzjtYvXo1PvjgA3g8nu6LMiNGjMDy5ctx7bXXoqCgIMaVUrQFDMtWrgfyOHXnUCFJEnasr8CW1w/D6wn8a0ypUeCUHxVj4vwcjlggIpLJ29EB+/79vQI0x8FDgMvV7zH62bNR8OwzQft2Nzbi4Cn+1xHtQ6GAunAkNKNHQztmDDRjxkAzejRUeXkQRI4aJyIiIiIiIpKLYVn/4mrNMrmUSiWWLl2KpUuXorq6Gk899RTWrFmDQ4cOoby8HHfddRfuvvtuLF68GCtXrsTSpUuh5ieSiSHJkGFvd2H909+jdGdD0LaZhSaccd0EmNP1UaiMiGjoEPV66KdPh3769O5tXqcTjoMH4fjeN32jfd9+OPbvh7e9HYBvikc57KGsm+bxwHnoMJyHDqP1/Q+6Nwt6PTTFxdCMLu4VoinT0uT3TURERERERESEBA3LesrOzsbvf/97/P73v8dnn32GJ554Aq+99ho6Ojqwfv16rF+/HikpKbjqqquwfPlyTJ06NdYlU6wIilhXQGFQc6QFHz6xG21NjoDtBAGYefZIzPrhSCgUHHlARBQOoloN3cSJ0PX41Jnk9cJVWQn7vn1Q5eTI6sexb/+ga5E6OmDfuRP2nTvR0mO7Ii0Nozesh8APShERERERERGRTEPqCvKCBQvwzDPPoLq6Gn/84x8hCAIkSUJTUxP++c9/YubMmbEukWJJGFJP92FH8kr47qMyvP7Ad0GDMqNFg6U3zcDJ5xcxKCMiijBBFKEeMQKmM87oFaIFYt8fwsiyEIl6vaygTPJ6IQWYUpKIiIiIiIiIho+EH1nWk9frxbvvvosnnngC77//PiRJ6l6fKAGXZqNwY1iWsFwODz78z26U7W4M2nb0rAwsvGIsNHpVFCojIqKBMF9wAVTZOXDs2wf7/v1w19SErW/N6NGy2jmPHMGRpcugHlkAzahi35SOxaOgKS6GuqCAI9OIiIiIiIiIhpEhEZYdOnQIq1evxtNPP43a2loAx8MxgetU0TEMyxKWUi1CoQz881OqRSy4bCzGzc3i656IKM4ZTzkFxlNO6b7tbm6GY/9+2Pftg2Pfftj374fz0KEBjfzSjJEXljkOHADc7uProX344fGdSiXUBQXQjBp1PEAbVQx14UiIDNGIiIiIiIiIhpyEDcvsdjtefvllrF69Gps2bQLQe/RYz4vlkiRBqVTinHPOiXqdFEcYliUsQRCw+JrxaKpuh7W2o89+S44BZ66cBEuOIQbVERHRYClTUqCcMweGOXO6t0kuF5xlZXAcOAD7wYNwHDgIx4EDcFVUBOxLO2aMrHPaDxzof6fbDefhw3AePozWj3psVyigzs+HpngU1MXFvhFpo4uhHjkSokYj67xEREREREREFH8SLizbunUrVq9ejf/+97+w2WwA/I8iO7Zt9OjRuO6663DNNdcgKysr+gVT/GBYltA0OiXOun4SXvnrt3A7vd3bx5+SjfmXjoFKrYhhdUREFG6CStU1NWIxTD22e9vb4Th8GI4DB+A4eBD2AwfgOHAQnkbfVL1yp2F0HDwUelEeD5wlJXCWlAAfrzu+XRShzs+HungUNKOKYTj5JBjmzQu9fyIiIiIiIiKKiYQIy6xWK9auXYvVq1dj586dAPyPIju2Ta/X46KLLsKKFSswf/786BdM8YlhWcJLzTFi8Y/H46Mn9kCpUeC0K8Zi7MkMwYmIhhPRYIBuyhTopkzptd3d2AjHwYNQjxwpqx9HoJFlofJ64SwthbO0FG3r1sPTYmVYRkRERERERJRAYhaWLV68GIIgYP369f222bBhA1avXo3XX38dDocj4DSLADB79mysWLECl19+OZKSkiJXPCUmrmM1JIyelYl2qwMFk1KRksVpF4mIyEeZmgplaqqstt729qDTOQ6GZlSxrHa2995D+zffQFNYBHVRETRFhVBmZUEQ+QEfIiIiIiIiomiKWVi2cePGXoHXMZWVlXjqqafw5JNPorS0FEDgaRZTU1Nx1VVXYcWKFZg0aVLkC6fExZFlQ8a0JfmxLoGIiBKYoNWi8M034Tx8CI5Dh+A4dBiOw4fhLC0FPJ5B968pHiWrXdumz9Hy+uu9a9PpoCkshLqoCOqiQmiKiqAuLIJ6ZAHXRSMiIiIiIiKKkLiYhtHj8eCtt97CE088gY8++gherzfgKDJRFHHGGWdgxYoVWLp0KVQqVSzKpkTDsCwueTxefPHSQRRNT0feOEusyyEiomFAUCigHTsG2rFjem2XnE44y8p6BWiOQwfhLC0D3G7Z/WuK5Y0scx450meb1NkJ+969sO/d23uHKEKVl9c7SBs1CurCQihTUmTXRkRERERERER9xTwsu/nmm/Hss8+ivr4eQOBRZAUFBVi+fDmWL1+OESNGRL9YSmwMy+JOZ5sTHzy2G1UHrTjwbS0uvnUWzOn6WJdFRETDlKBWQzN6NDSjR/faLrlccJaXw3HwEByHD8F5+LDv+9JSwOXq1VY0m6FISwt6LkmS4CgpkV+c1wtXeTlc5eXAp5/22qVISemexlFdWAR14Ujopk1jiEZEREREREQkU8zDsgcffDDgKDKNRoOlS5dixYoVWLJkSSxKpKGCYVlcaaxsw7uP7ERrox0A4Gh3491HduGiW2ZCrYv5ryYiIqJugkoFzahR0IwaBeDM7u2S2+0L0Q4dD9AEjcbvVOMn8jQ2wmuzhaU+T3MzOrduRefWrd3b8v79CJIWLQpL/0RERERERERDXcyvSEuS5HcU2ZQpU7BixQpcddVVSOGnYikcGJbFjdJdDfjoiT1wOXqvC9Nc3Y6P1+zFOTdMhiAGv9BIREQUS4JSCU1RETRFRSEf6zjcdwrGcFKPHCmrXf0jjwBuN9QjR3Z/KUymiNZGREREREREFG9iHpYJgtAdkJnNZlx++eVYsWIFZs6cGePKaMhhWBYXdm08ik0vHkCPAaW9lO5swFdvH8GcC0ZFtzAiIqIoUiQnI/nyy+A8UgLnkSNwd01JHp7OFVDn5clqan3xJbhra3sfbrH4grPC4wGaZuRIqPLzIWo04auTiIiIiIiIKE7EPCwDgIULF2LFihW46KKLoNVqY11O1JWXl+PLL79EWVkZnE4nLBYLJk6ciDlz5kCtVke9Ho/Hg927d2P37t1oaGhAW1sbTCYTUlNTMXXqVIwfPx6imIDBE8OymPJ6JWx+7RB2rKsI2E5rVCF/giVKVREREcWGduwYZN9xR/dtT2srnCUlcBw+AueRI3CUHPEFaeXlgNsdUt/qvDwIKlXQdt729j5BGQB4mprQ2dSEzu++671DEKDKyTk+Cq2wsPt7VXYWBIUipDqJiIiIiIiI4kXMw7IDBw5g1KjhOYJkw4YNuOOOO/D555/73W82m/GTn/wEt912G0wRng6nvb0db7zxBl5++WV8/PHH6Ojo6LdtcnIyrr76avzyl79EcXFxROsKK4ZlMeNyerDuyb04sj3wp+ZTc40456eTYUrTRakyIiKi+KBISoJuyhTopkzptV1yueCsqPAFaF2j0BwlR+A8fATetja/fcmdgtFZXh5akZIEV2UlXJWVaP/ii167BLUaqhEjoM7Phzo/H6qCfCQvXQpRrw/tHEREREREREQxEPOwbDgGZV6vF7/97W/x97//vXvb2LFjceqppyIlJQUHDhzA+++/j5aWFtx///144YUX8Oabb2L69Olhr8Vms+HBBx/Eww8/jMbGxu7tJpMJ8+fPx+jRo6HX61FfX4/Nmzdjz549sFqt+Oc//4n//Oc/+POf/4zf/OY3Ya8rIgSugRULHTYn3n1kJ+pKbQHbFU1Lx+nXjodaG/NfS0RERHFDUKm610VL6rFdkiS46+t9o89KuoK0w4fhLC2FWuYaas7S0rDVKTmdvvMfPty9LfnCC8PWPxEREREREVEk8ap0DPz0pz/F448/DgBQKBT417/+hVWrVvWa2rC8vByXXHIJvvrqK1RUVGDx4sX47LPPMHny5LDWsnnzZvzpT3/qvq1QKHDbbbfht7/9LYxGY5/2n3zyCa699lqUl5fDbrfjt7/9LaqqqvC3v/0trHVFBEeWRV1zTTve/ucOtDbaA7abcWYB5lxQBEFkoElERCSHIAhQZWRAlZEBw5yTe+2T+lsY9ASOkpJIlAYAUGZlQZQxvbrX4cCR88+HeoRvRJq6IB+q/HyoC0ZClZcLMQZTkhMREREREdHwE7OwbM2aNbE6dUytWbOmOygDgEcffRQrV67s0y4/Px8fffQRZs+ejQMHDsBqteLCCy/Ezp07odNFboq6xx9/HNddd12/+xctWoTNmzdj+vTpqO9aiP7BBx/ErFmzcPnll0esrrBgWBZVtaU2vPPwDtjbXP22EUQBCy8fg4nzc6NYGRER0dAmyBxNrykahaSzzoKztBTO0lJI9sAfbgmFOj9fVjvX0aNwlZXDVVaO9hN3iiJU2dnHA7T8AqgLuqZ5zM+HqNGErV4iIiIiIiIa3mIWll1zzTWxOnXMtLW14dZbb+2+feqpp/oNyo4xmUx46KGHcNZZZwEADh06hH/84x+9+gin0047LWBQdkxubi7uu+8+LF++vHvbzTffjEsuuQSKeF7YnWFZ1FTsbcJ7j+2C2+Hpt41Kq8BZqyYhf2JqFCsjIiKiY0xnnQnTWWcCACSvF+66uu7gzFni+9dRWgLX0UrA0///6f6oCwpktXOWBVg3zevtXiMNm7f03icIUGZlQT1iBFQj8qAekd/17wioRoyAIjlZdmhIRERERERExGkYo+iBBx5AXV1d9+2bbrop6DFnnnkmJkyYgL179wIA7r33Xlx//fVISUkJe32BgrsTXXHFFfj5z3+O9nbfZ4ArKyvx+eefY+HChWGvK2wYlkXFwW9qse6pvfB6+p8CypiiwQ9vnIq0vL5TfRIREVH0CaIIVVYWVFlZMMyZ02uf5HTCebTyeJDW48vd42/bntQF8kaWOcvLBlawJMFdXQ13dTXw9dd9dotGI3TTpiH/if8MrH8iIiIiIiIaVhiWRYkkSfjPf46/WU9OTsYPf/hDWcdeddVV+MMf/gAAsFqtePHFF3HDDTeEvcZTTz1Vdlu1Wo2ZM2fis88+697GsIx2fnIUm146AARYKiVthBHn3jgVhmROnURERJQIBLUamqJCaIoK++zztLXDWVYKV3k5nGXlcJaXw1lWBs2YMbL6dpUHGFk2CN62Nng7O2W1dTc1oeOrr6DKGwH1iDwokpMjUhMRERERERHFL4ZlUfLFF1+gqqqq+/a8efOglrlg+Wmnndbr9iuvvBK2sOykk07CJ598AsC3TloosrOze92uqakJS00Rw7AsYiRJwtdvl+Db90oDthsxPgVnXT8Zai1/9RAREQ0FCqMBuokToZs4cUDHB5yGcZDUeXmy2tl370bl/xyf8UE0maDOy4NqhC88U+WNgDrfN72jKisLgkoVqZKJiIiIiIgoRnjFOkreeuutXrdnz54t+9jp06dDpVLB5XIBAD799FPYbDaYTKZB12WxWPqEcQPl9XrD0k/EMCyLCEmS8PlLB7Hzk6MB242elYHTr50AhZI/ByIiIvJJXXEdDPPm+UaklZfBVVYOV3U1IAUYpi6TKn+ErHbOiopet702G+x798LeNQ16LwoFVNnZvvXR8kZAlT/CF6zl5kKVlwdFSgrXSiMiIiIiIkpADMuiZNu2bb1ujx8/XvaxWq0WRUVF2L9/PwDA7XZj9+7dmDdvXlhrDFV9fX2v26NHj45RJTIxLIuI7zdXBw3KJi/Kw/yLR0MQefGIiIiIjjPMmwfDCX/Tep1OuI4ehbOsrGt6x7LuKR5dlZWAzA9oqUfIC8tc5RXBGx3j8cB19ChcR4+iA1/22S3o9VDn5kCV4wvP9LNmwnT22fL7JyIiIiIiophgWBYle/bs6XU7T+a0MMfk5uZ2h2XH+ot1WLZr165et3/wgx/EqBKZ+CnfiBg7JwslOxpQurPB7/6Tzy/CzLML+ClrIiIikkVUq6EpKoKmqKjPPsnphKuqyjcSrbQMrsqjcJZXwHW0As6Ko5Ds9u62qjyZI8uOBv7QTyikjg44Dh6C4+AhAL610+SEZZ62dkDyQpGUFLZaiIiIiIiISD6GZVFgs9lQXV3da1tubm5IfZzYft++fYOuazC2bt3aa2TZvHnzMGHChBhWFIzAsCxCFAoRZ62ahPce3YnyPU3d2wUBWHjFWEycH9pznYiIiKg/gloN9ciRUI8cCSzovU+SJLjr630jvyoqoBldLKtPV0UII8tCpJL5N3/Lm2+g9u4/QzSbocrNgTr3+NSOqtwcqHJzoc7NhWgwRKxWIiIiIiKi4YxhWRQ0NTX12RbqemMntm9ubh5UTYP11FNP9bp9xx13xKYQuTgFY0QpVCLOvn4y3vnXDlTut0JUCPjByokYNT0j1qURERHRMCEIAlQZGVBlZAAzZsg/TquFoNFAcjjCXpNK5mwSrsoqAIC3pQWOlhY49n7vt50iJaUrQMuFOi/3eKCWnQ1VTg5EvT5stRMREREREQ0nDMuioLW1tc82jUYTUh9arTZon9FSXV2NNWvWdN9etmxZRKZgrKur67MuWjCHDh3yv4NhWcQp1Qqc89MpeP/RXZh6+giMnJwW65KIiIiIgip86UVIXi/c9Q2+6RzLK+CqqIDzaAVcFUfhrKiAp8H/dNPByB1Z5pI5FaSnuRme5mbYT5gO/RhFcjJUOTm+0Wg5OVBmZ0M/azZ0kybKrpmIiIiIiGg4YlgWBf6CrRPDr2DiKSy7+eab0d7eDgDIzMzEI488EpHzPPLII/jTn/4Uns4YlkWFWqvE+b+axvXJiIiIKKEIoghVZgZUmRnQz5zZZ7+3owPOo0fhOnoUzvJyX4jWFaa5Kiv7HZWmzpMZllVWDqr+YzxWKzxWK+x793ZvS/v5z2WFZd6ODghqNQQl3yISEREREdHww3dCCUqSpJic9+WXX8Zzzz0HAFAoFHj++eeRlZUVk1pCwrAsahiUERER0VAj6vXQjhkD7ZgxffZJkgRPQwNclZVwHq2Eq/L4lzIzU1b/ckeWDYQqO1tWu/p/PISmtWuhzMzwjU7LyYEqO+f497k5UGVnQ9TpIlYrERERERFRrDAsi4KkpKQ+2+x2OwwhLNBtt9uD9hlpu3fvxooVK7pvP/zww1i8eHHU6xgQhmUD5vV40WZ1wJTKCyNEREREJxIEAcr0dCjT06GbNi3k4z1tbfC0tIS/sC6q3BxZ7VxVVYDHA3dVNdxV1ejEVr/tFCkpxwO0HN9aacqc46GaIjmZH54iIiIiIqKEw7AsCoxGY59tDocjocKyqqoqnHfeed3TP95+++244YYbInrOn/3sZ7j44otDOubQoUNYunRp3x0MywbE65Wwbs1eHN3fjAt+PR2puX2fy0REREQ0cKJej+L16+CsrISr58i0o0fhrKqEu6YW8HoH3L8qR2ZYVl0tq133uml79vjdL+h0UGVlQZWdBWVWNlRZWUg6Ywm048fLrpmIiIiIiCjaGJZFgcVi6bPNZrP53d4fm83W63ZKSsqg65Krvr4eS5YsQWlpKQDgN7/5De66666InzcjIwMZGRnh6YxhWcgkr4QNz3yPg9/WAQDeeHAbzv/1NKSPiP6oRiIiIqKhShBFqHJzocrNBU7qu19yOuGqrT0eoPUM1Y4ehbu+HggwRbtS5pTprqqqgd6F3vV2dsJZUgJnSUn3NlX+CFlhmbO0FBAEKLOyIGo0YamHiIiIiIhIDoZlUWA2m5GVlYWamprubZWVlRg5cqTsPipPWPR73Lhx4SovoPr6eixevBjff/89AOB3v/sd/vrXv0bl3GHFqWBCInklbHxuH/Z/efw5a2934c2/b8P5v5qGjAJTDKsjIiIiGj4EtRrqESOgHjHC736v0wl3TQ1cVdVwVVUd/6qugmR3QFSrg57D29kJT1NTuEvvpsqSt25a7f0PoG39egCAwmKBKjsbyuwsqLKyu0aqZUGV7RutpszIgKDk21kiIiIiIgoPvruIkkmTJvUKy46GuIj3iWHZpEmTwlJXILW1tTj99NOxp2uKlVtvvRV/+ctfIn7eiODIMtkkScIXrx3C3i/6TsXj6HDjzb9vw3m/nIasInMMqiMiIiKinkS1Gur8fKjz8wfch9wpGAdKlS1vdJu7Rx2epiZfgNfPdI8QRSgzMnzBWZ9ALQeq7CwoLBYIIt8HEBERERFRcAzLomT69OlYt25d9+29e/fKPtZut+PIkSPdtxUKRcTDspqaml4jyhI6KAMYloVg20fl2LGuot/9khRwph8iIiIiSjDqvDwUvvkGXJXHR6X1HKXmqW8YVP+yp4Ls8eHCoLxeuGtq4K6pAbb7byKoVFBmZUGZmYGMm34D/Yzp8vsnIiIiIqJhhWFZlJx33nm4//77u29/8803so/dtm0bXC5X9+2FCxfCZIrcNHjV1dVYtGgR9u/fD2AIBGUAICpiXUFC2PtFFba8frjf/Uq1iHN/PgXZoziqjIiIiGioENRqaMeOhXbsWL/7vU4n3NXHpnk8cbrHat/ItB7vV3pSpKbKWn/M63CEfSpIyeWCq6ICrooKwOuRdUzzCy/A09rqG7GWmQlVZiaUmZkQtdqw1kZERERERPGFYVmUnHLKKcjOzkZ119QiW7ZsgdPphFrGGgIbN27sdfuiiy6KRIkAgKqqKixatAgHDhwAIC8o2759O379618DAF544QVkyfzkaFRxZFlQR7bXY+Paff3uV6hE/PBnU5AzOiWKVRERERFRrIlqNdQFBVAXFPjdL3m9cNc3wFVV6Vs/rboGrppquKtrIOr1ss7hDmVU2QDIHd3W/N8X4Oj60GBPCrPZN0otKxOqjEzfv1lZUGZkQpXVFaglJUHgWslERERERAmJYVmUiKKIlStX4u677wYAWK1WvPvuu1i2bFnQY5977rnu781mMy699NKI1FhZWYlFixbh4MGDAOSPKLNarfj0008B+KaMjEsMywKqPNCMj57Y0+/0iqIo4OzrJyNvnCW6hRERERFR3BNEEarMDKgyMwbch7uuLowV9aXMkFebu7bW73ZPSws8LS1+g7RjBL2+eyTasX97hmqaUUUQdboB1U9ERERERJHFsCyKbr75Zjz66KOor68HAPz9738PGpZ9+OGH2NNjUetbbrkFFkvgwKKxsRGvvvoqXC4Xli5ditzc3KC1VVRUYNGiRTh82DcF35CYerEnhmX9qi9vxXuP7ITH7e23zeJrxqNgUmoUqyIiIiKi4UQ/ezbGfrcVrppauKqr+oxQc9XUwF1dDW9HR8h9KywWiDJm9PDa7fBYrQOo3kfq6ICzpATOkhK/+wuefw76GTOC1+FwyJq6koiIiIiIwodhWRQlJSXhnnvuwapVqwAAmzZtwurVq7FixQq/7VtbW/HLX/6y+/aoUaO6pzvsT0VFBWbPno3ark9E/uEPf8CmTZswZcqUfo8pLy/HokWLcOTIEQDA7373u6EVlAEAp0Pxy9bQibcf3gGnvf81HE69eDTGnhyHU2sSERER0ZAi6vXQFBVCU1Tod78kSfC2tvpCtB6BmrumuitY8wVq0gnrpykzM2WdP9Kj21Qy6yi58EdwV1dDmZHR60uV2fu2Mj2da6kREREREYUJw7IoW7lyJb788kusXr0aAHD99dfD4/Fg5cqVEMXjo5/Ky8txySWXdK8dZjab8eqrr0IfZM7/f//7391BGQDYbDbcd999WLt2rd/2ZWVlWLRoEUp6fPrx3nvvxb333jvg+xiXOLKsD0eHC+88vAOdNme/bWaeVYCpp4+IYlVERERERP4JggCFyQSFyQTt2DF+20iSBE9TE1xV1b5RabV1stdNc0V63bT0dFnt3HV18HZ0wFlaCmdpacC2CrO5T6imzEj3TQN57HZqKgSVKgz3gIiIiIho6GJYFgOPP/44DAYDHnroIXg8Hlx//fV48MEHsWDBApjNZhw8eBDvv/8+nE5fiJGbm4s333wTU6dODdq35GfRKa+3/+n11qxZ0ysoG7IYlvXi8XjxweO70VzT/zQ2E07NwckXFEWxKiIiIiKiwREEAcrUVChTU6GbPCmkY0WNBoZTT4W7thau2lp4bbaw1aVIS4MgZyrIjg54W1tl99u9llrXutN+CQIUqalQZqQj78EHoR45Unb/RERERETDBcOyGBBFEf/4xz9w3nnn4Y477sDmzZuxf/9+7D9hsWiTyYRVq1bh9ttvh9lsltX3DTfcgNWrV3evi2Y0GnHLLbeE/T4kHIZl3SRJwmfP78fRfc39timano6FV4yFwOkriYiIiGiY0E2divwn/tN929vRAVdtLdxdX66aWrhra+CqrfNNAVlXC09DI+DnA4snUmVkyKrB3fU+LqwkCZ6GBngaGiDodLIOqbnrbgCAMiMdyvSur7Q0KNPTobBYICgU4a+TiIiIiCiGGJbF0JIlS7BkyRKUlZVhy5YtKC8vh9PpREpKCiZOnIi5c+dCE+LCzgUFBdi7dy9effVVuFwuLF26FHl5ef22v/POO3HnnXcO8p4kAIZl3bZ9XI69X1T3uz9ndDLOuG4CRJFBGRERERENX6JeD01hITSF/tdQAwDJ6YS7vt4XoNXWdAVqtXDV1sDdHarVQZklbw3giK6bJopQpqbKatry5pvwtrf736lQQGmxQJGedjxIOyFQU6ZnQJmeBjHE97NERERERLHCsCwOFBQUoKCgIGz9paWl4frrrw9bf0MCwzIAwOFtddjy+uF+9ydn6nH2DZOhVPGTokREREREwQhqNVS5uVDl5vbbRvJ6IXV2yurPFcGwTJmaCkEZ/BKAp629/6AMADweuOvr4a6vhwPfB+xLNJn6hGmpP1kFZUpKqOUTEREREUUUwzIaHhiWobbUhnVP7gX6mSVGa1Dh3J9PgdbAxb+JiIiIiMJFEEUIBoOstsZTT0XB88/BXVfnG6FWVwd3Xb3vdtdXwCArAKXsqSDDF9h5bTY4bTY4Dx//wF7qyhWyjm16di1EndY39eOxEWupqZwCkoiIiIgigmEZDQ/DPCxra7bj3Ud2wu3y+t0vKgWc/dPJMKfro1wZEREREREdozCboZ8xI2AbT1s73PV1vmke64+HaL2CtdpaSE5nr+Nkh2V1EVg3rbsIJRQyRpVJkoS6++/vcx8gilBYLF0j1dKgTOs5/WMalKmpvmAtLQ2i0cg1mImIiIhINoZlNDwM8zdJkgQYzGp02px+95/+4/HIKU6OblFERERERBQyhdEAhTHIWmqSBG9LS68ATZkmb72ySK6bpkxNhSAG/yCj12brG5QBgNcLT0MDPA0NcASeARKCRtMrPFOmpkKZngZFaiqSly6FKHO0HxERERENDwzLaHgY5iPLkixa/Ojmmdj43H7s/6qm176TzivEmJPkLThORERERETxTxAEKJKToUhOBsaMCelYVW4uki++2DdCrWttMndjI+D1P0tFKJTp6bLauesHP7pNcjjgqqqCq6qqzz7zeefJ6sP6+hsQjQYoU4+PXBP1nI2DiIiIaChiWEbDwzAPywBAqVbg9GvHI2NkEj5/+RAkr4SxJ2dh1jkjY10aERERERHFCf2M6dDPmN5rm+TxwNPcfDw8q6+Hu76h9+0G323Jbu+3b2Vamqwa3A0Ng7oPgQhqNcSkpKDtJK8X1bfdBng8vbaLer1vtFpqKpRpaVCkpXaNXDthKsjUVIg6XaTuBhERERGFGcMyGh4YlgHwfcJ0yqIRSMszYseGo1h01TjO409ERERERAEJCoUvEEpLA8aP77edJEnwtrX1DdMafP9qJ0yQdb5wjCzrjyItVdZ7IE9LS5+gDAC8HR3wlpfDVV4etA/RYOgK1E4I11LTYL7gfIha7YDuAxERERGFH8MyGh4YlvWSMzoFOaODL6xNREREREQklyAIUCQlQZGUBE1R0cD70WqhnTjx+BSQfkKrgVKmRW8qSG97O5zt7UBZWZ995vPOldVH0/PP+x5Ti8UXuKWmQpGSAkHJyzlERERE4cS/rmh4YFhGRERERESUEExnnAHTGWcA8E2H2HsKyBOmf6yvh7uxAZ6GRnjb24P2rUxNlVWDp7FxUPchEEGvl7X2meR2o/auu/3uUyQnQ5GaCqXF4vs3NRWKVAuUlq5/u7elQjQYOKMIERERURAMy2h4YFhGRERERESUcARR7A5+MG5cwLbezk64Gxvhrq+Hp7HRt45aQyPcDV236xugGTtG1nkjuW6a0mKRV0NTU7/7PFYrPFYrnIcPB+1HUKt7BGsW3/pqqRak/fSnEA0G2XUTERERDWUMy2h4YFhGREREREQ0pIk6HdR5eVDn5YWhNwGqvDy4Gxog2e1h6O842aPbAoRloZCcTrirq+Guru61Pe0Xv5B1fO1f74VoNEKZajkeulksUKSkQGE2QxD5fpuIiIgSH8MyGh6GQVhmre3Axuf24bSrxiE5I/iUHkREREREROSf+bxzYT7vXEiSBG97BzwN9V2j1hrgbmyAu8E39aO7awSbp8G3TXI6g/atkBmWuSM4FaRoNELUaIK2k5xOND31VP8NFAookpOhtKRAkeIL0Y5/n+IL1np+n5zM9daIiIgoLvEvFBoehvj87B6XFx8+sRsNFW146X+/wWlXjsWYk7JiXRYREVHMSJIEr9cLSZJiXQoRESU6rQZi14g1dYBmvmCtHZ6GRniam3xBWmNT9/eexia4mxqhGjsGbrc76GmdTU2QZKxtFhKPB3A4oEgd/FSQx/rzNDbKX+NNEKAwmXwj0ywWjHj031AkJck7loiIiCiCGJbR8DDER5Ztfv0QGiraAAAuhwcfP7kXR/c1Y/6lY6DSKGJcHRERUeRJkgS73Y7W1la0trbCKeOT/URERBFjNPq+Cgr67HICaD54MGgXnvR0uO+8A5LHA8gI12STJLi9Eurq6pCUlAStVguhnw+Yhn10myTB09ICT0sLUFICUauVddiR886HqNd3hWx+RqyldI1os1gg6nThrZmIiIiGBYZlNDwM4bCsZEc9dm442mf795urUXOkBRf8z3QYzMGn1yAiIkpUHR0dqKqqgsvlinUpREREYaMwm6Ewm303JAmSxwPJ7Qbcbkhud9/bbg/g8X0Pr7f/jgUBUooZjY2NaGxshEqlQk5ODvR+RrGFa900f0SzGYJKFbSdt6MDDhnh4jGCTgdlSsrxYK1resjjwVoKFMkpUKQkQ5mS4qtjiM9GQ0RERMExLKPhYYiGZW3Ndqx/5vt+9xstWuiTAk0UQkRElNg6OjpQXl7O6RaJiGhoEwQISqX89b4kCVLXv8e/AEheSF6v73YXl8uF8vJy5Ofn9wnMIrlumjIlRVY7d1NzSP1KnZ1wdXbCVVUlq/2YL7dAkZwctF3n7j1QmJKgSEmBaDQyYCMiIhpiGJbR8DAEwzKvx4uPVu+Bo93/dBw6kxpLrp0AQeQf8ERENDQxKCMiIuqHIEDo+rfPLj/NJUnyG5gpU9NgXLwYnsZGuJt8a69JHR1hKVGRmiqrnac5cqPbIIoQTaagzSRJQunllwPHRrErlVAkJ0OZktw1Su3Yl2+0WvftY/uSkyEa9AzYiIiI4hjDMhoehmBY9s17pag+1OJ/pwCcsXwC9CaOKiMioqFJkiRUVVX1CcpUKhVMJhOMRiNUKhUvShEREfUgSRJcLhfa2tpgs9l6TWF87P/WUaNGdf//aZx/KozzT+3Vh9duh6epCe6mZniam45/39QEd3MTPCd8721t9VuL0iJvZFkkp4JUJCdDEINfL/C2tx8PygDA7YanoQGehgbZ5xJUqh6hWo9gLTkFluuWQ2E0DuQuEBERUZgwLKPhYYiFZVWHrPj2vdJ+9884swAjxluiVxAREVGU2e32PmuUJSUlITc3lwEZERFRACqVCnq9Hunp6aisrERrjzDL5XLB4XBAq9X2e7yo1ULMyYEqJ0fW+SSnE+5ma59gTZUr73h3c2jTMIZCzvSLAOAJQw2SywV3XR3cdXV99lmuvUZWH9V/vAOCWg1FSjIUyb2/lMnJEM0cwUZERDRQDMtoeBhCYZnL4cH6p7/3zTfvR1aRGSedVxjdooiIiKKs9YRPqatUKgZlREREIRAEAbm5uTh8+HCvD6DYbLaAYVnI51GrocrMgCozY0DH66ZMReYfb+8zYs33fbMvyPJ4BtS3Qua6aeEIy/ovQgExKSloM8nrhfXVV4PeV0GlgphshjI5GQpzMsRkc3eY1itgM5t7fS+oOTMNERENbwzLaHgYQhfOtrx+GLb6Tr/7NHolzlgxAQrF0AkHiYiI/DkxLDOZTAzKiIiIQiQIAkwmExobG7u3tba2IiNjYMFWJGiKCqEp6v8DoZLXC6/N1j0tpLupK0zr+f2xYK2pCZ7mZkhOJwBAkZIsq4ZIhmWKlBRZf8N4W1tlhYKSywVPfQM89fKniASA4g3rZY0WtO/fD1Gn863DlpTEv7+IiGjIYFhGw8MQGVl2dF8Tdm082u/+RVePgylVF8WKiIiIok+SJDi7LnIdY+Q6H0RERANiNBp7hWVOpxOSJCVMCCKIYvcIKSD4LCuSJEHq7AwpAIvkVJDKOAjsAEBhNstqV/bja+Bt6Vo/XaHwjVDrOUqtvxFsPaaOFDWaCN4TIiKigWFYRsPDEAjLnJ1ubHhmX7/7x83Nwqjp8fPpPyIiokjxer19tqlUqhhUQkRElPiUyr6XhrxeLxQKRQyqiTxBECDo9RD1etnHmC+4AElLlsBjtcLTNfWjp7m5axrIE7ZZu7ZZrbJGgimS5U0FGcnATlCpIMh4PCSPB16b7fgGj8c3Wq+pKbTzdY1M6x2ymZF+441QpqeHWj4REVFYMCyj4WEIhGVfvHYIrU12v/uMKRqcesmYKFdEREQUG5LUd+HORPn0OxERUbwRxb7vl/39XzucCYIAhdEIhdEI5OXJOkbyeuFta/MfrFmP39aMLpbVn6fZOoh7EJgiOVnW31Iemw0Iw3ND6uyEu7MT7urqXtvTrr9e1vHlP/kJpE47FMlmiMdGtpmToTCZoEg2Hx/tZjZDNCdDNOj5tyIREQXFsIyGhwQPy8r3NGLvpqp+9y+6ehw0Or6ciYiIiIiIiOKBIIq+8MZkAgoKBt2fMj0N5mXLjo9is/pGr4UjwPJNYRmcx2od1HmC1iFzKsjO77bB29Ymv2Ol0vez6BWimXwBW/c0kr5/dTNm+EJRIiIadnh1nYaHBA7LHB0ubHi2/+kXJ8zPQf6E1ChWRERERERERETRpJs8Gbq/TO6zXfJ44LHZ4LFa4W1pgftYiNbzq6Wl6/uW7m1SZ2d3H/EQlglqNQRd8DXYJZcrtKAMANxu2dNFFr71JhRjgs/c07T2OUhOZ1fYZuoK4LpGuCWbuS4bEVECYlhGw0MCh2Wfv3wQ7VaH331JqVqc8iN5UzYQERERERER0dAiKBRQpqRAmSJv7bNjvA5Hd4AGmTMUelpaBlChPLKngmxtjVgNAKAwJ8tq1/Tkk3BV9T8DkKDVHh+1ZjJBTO49XaRoSoLC1BW0mUwQj418S0qCwLV4iYhigmEZDQ8JGpaV7W7Evi01/e5f/OPxUGv5MiYiIiIiIiIi+USNBmJmJlSZmbKPMS5ciDHffN135Fpzz9FrfUe1yRkJJnt0WwQDOwBQmE1hqUOy2+G22+GurQ25hoL/Pg/99OlB23Vu3w7JKx0P3MxmiGp1yOcjIiIfXmWn4SEBF3J1OTz49Pn9/e6fvCgPeWND++QYEREREREREdFACIIARVISFElJwIgRso+TXK7eYZqfYE2RliarL28EwzJBq4Wo1QZtJ7lc8La3R6wOhUleYFd9x51w7O993UjQarvWZzNBTDId/95k7vG9qXs9ve4RbSYTBK1W1ug+IqKhimEZDQ+CItYVhOzrt4+gtcnud585XYe5S0dFuSIiIiIiIiIiotAIKhWUaWlQygzEAlFmZSHjllvgsbX4Rq21tPjWYms5/uUd4FSNCrNZVruITwUpMyzz2Gx9tnWPaKurC/m8gkrlW3ctKQnZ//tn6GfMCHqMu7nZd5zBwKCNiBIewzIaHhJwGkaFSoQgCpC8Uu8dArD4mvFQaRIvACQiIiIiIiIiGihVVhZSr1sesI3kdsPT2uoL0np+WVsChmyKVIusGjzWyE4FKcoMy8I9yk5yueBpaICnoQFyF7Kr/MUv0fHtt4BCAUVSEkSzybcWW89RbElda7QlmaAwJflGvCUZu/YlQTSZIGo0Yb0vREQDwbCMhocEDMvmXDAKxTMz8Mna/agrPf5poUnzc5FTnBy7woiIiIiIiIiI4pSgVEKZkgKkhLZ0hSRJwRt10c+eDY/N1h20SZ2doZbpl6DRyAqOJJcL3o6OsJzTH9lrtx0b3ebxdE+p6RrA+QS1ukd45gvW0n72U1mj2yS3G4KSl7iJaPD4m4SGhwQMywAgLS8JP7plJnZ/Wokv3zwMlUaBOcs4/SIRERHRcFBbW4vHHnsM69atw759+2C1WpGUlPT/2bvv+Kiq/P/j70knlYSEUIRQFQjSVmlSQhNBRUSK7uqCCPZlsSy7VoKra11dcFFX3R9YViEUxfIFVEgiXToI0pQECBAIAVJISJvfH5hrbjKTTMIkk2Rez8cjD+bce869nyFDSOadc44iIyPVsmVLRUZG6sMPP7Q7Pj4+XjExMTVXMFzu/fff1+OPP67zv8424DUAAI5zdBlB3zatFfWR+f/foosXL81YKxGgGTPXMkrNZMvI+PVYxqUlHQsLjes4vARjNS8F6REU5FgdNpaCrAprXl6JWW2XhP3xLofGHvvTNGWvW1cmbDNmsZX8MzDo13bQpT3bfv3T4uvLMpIACMvgJupoWCZJHh4WdRl0hdp0C1fmmVz5NuCfLQAAQEViYmKUmJjocP/Dhw+rVatW1VdQJX3yySe69957lZ2dbTqenp6u9PR0/fTTTy6qDOXZunWrrrnmGqO9atUqDR482NQnNzdXISEhysvLkyT94x//0BNPPHFZ901OTtbUqVP17bffXtZ1AABV4+HrK4/GjaXGjSs1zmq1qij7gooyLoVo1l//b6hIUVaWLN7esuZXZR5XxRzev81JYZktDgd2mRk2w7bKsHh7m5aFLA7dQu+4QwE9e1bpmgDqHt51h3uow2FZscBQPwWG+rm6DAAAAFSz5cuX66677lJRUZEk6bbbbtPTTz+tDh066Pz584qPj9ejjz6qEydOSPot6IuNjdWsWbNcWbrbW7t2rfHY09NTvXr1KtPnhx9+MIIySerXr1+V72e1WvX222/rr3/9q7Kysqp8HQCAa1gsFnkGBsgzMEDezZo5PM6nZUtdtWunrLm5xnKQRRkZv85ay/h1hlvx4/O/Pc787bg1N9d2TZVYCtJanUtBOrp3W8blz7Kz5uer8MwZFZ45YzoeNGSoQ+OPP/WUsuITzGFbUJA8ggLlGfjrn0GXZrZdehz827GgIHkGBsri7X3ZzwPA5SEsg3uoB2EZAAAAHJeQkGBqt2rVSsnJyUa7ti5PV1RUpGnTphlBWa9evbRo0SJjaSA/Pz/dfvvtCg8P17Bhw1xZKmwoGZZ169ZNAQEBZfqsW7fOeOzr66ueVfyN9UOHDmnKlCnGDMorrrhC58+fV2Y1L80FAKgdLBaLLA0ayKNBA3lHRlZ6fFFe3qXlIX8N1ooyfw3RLl50aHx1ziqTKjOzrPr+3/MMdrCG9LMqTE9XYXp6le9l8fMrEa5dCtA8goLU8LYxChwwoMLxVquVpSSBy0RYBvfAfxYAAACoA9auXatDhw4Z7YkTJ9p842PIkCFq0KCBcnJyarI8VKBkENa3b1+bfUoGatdcc418Hfjt/dJmz56tJ598Uhd+/Y3+KVOm6J///Ke6dOlCWAYAcIiHj488IiLkFRFRpfGeISFqs/z/fpvRdt48c60w47yKMrN+DeEyVZiZoaKMzEshW4l92uxe3+GZZbVjKcjLZc3NVWFurgpPm5eSDOjT26HxqX9/XueWLrUZuBXv12Y6FxT427HgYHkEXprpZvEiLoD74tUP98DMMgAAANQBJcMWSeratavNfhaLRcnJySosLFREFd/kgnP9/PPPxtKYknTdddeV6WO1WrVhwwaj3b9//yrda+bMmbpw4YJatWql9957T0OHOrZMFAAAzmLx8pJv69aVHme1WmXNyVFhZualoC0z89clIkv8mZkpiyNLQRYUqKjU/q7OVJNLQdrjEehgYJeVaTdwqwxLgwZGyFYcroWMvkUhN99c4diivDxZPDwI3FBn8cqFe6jFYVlRkVUeHsx8AwAAgExhiySFh4fb7UtIVruUnDEm2Z5ZtmfPHp09e9ZoV3W/Mg8PDz344IN6+eWXFRgYWKVrAADgChaLRRZ/f3n4+0tVWD6y1MUU9cknZWevGX/+FsiVDOZUUODQ5R0OqqpzKcggx/6fL8p0zt6l1pwcFeTkSKdPG8f8HVwyOu2tt3Tmnf/I4u//W+AWGCDPgBKPAwPlUbodWPLxr+f8/WXxqL3v56J+IiyDe6jFYdn6pYeUcTpHfce0U8NIf1eXAwAAABcqvYSej4+PiypBZZUMy1q0aKEWLVqU6VNy5qDFYrE5+8wRK1asqPJeZwAA1BcWT0/59+heqTFWq/XSDKyMTCNksxe2eYbUnaUgi6oxsPOoZGBnvXBBBRcuSKdOXd59AwJ+Dc8C1fDWW9XonnsqHFOQlqbCs2d/DeMCCd1QKYRlcA+1NCw7l3pBu+OPqajQquQfz6jL4Ba6ZmQr+TbgnyYAAIA7slqtri4BVVQyLLMXgpXs07lzZzVs2LBK9yIoAwCgaiwWiywNGsijQQMpsrFTrtn8jdfNoVvxfm1ZmSrMzLq0tGRW5q97uGWq6Nc9Rx3h4eAM8sIs58wss8XT0cAuy7mBXVF29qVlNlNTVXjunENjzi9bplOvvvbbAYvlt9DNNMvt13ZgicdBQZdmvQUGyjMw4Ld+AYHyCPC3uY8w6hfekYd7qKVh2fqlh1RUeOkNkaJCq3Z8e0T7N55Qz5vbqNN1TeXhWTvrBgAAwG+SkpKUmJiolJQU+fn5qVmzZurfv7+aN2/u6tKq5NSpU1q/fr1Onjyp9PR0hYSEKDIyUr169bI5WwrSmTNntH//fqNtawlGyTyzrKpLMAIAgNolcMCASvW3FhaqKCvrUpCWlfnrPm1Zl8I2I2S7FK55ObjsdrXOLHM0sHPSUpC2a3B077ZSNVitKsrKUtHlhokWi0JuvVXN/vFChV3zjh1T7o97ft3z7delJQMvPbb4E7rVZoRlcA+1MCxL2X9Wh3eW3XAzJzNfW74+rCt7RsqHsAwAAKDGnTt3TqGhoXbPx8fHKyYmRseOHdPDDz+sL774wuaMsNGjR2vOnDnlBkwJCQkaNGiQ3fOtW7e2efzw4cNq1aqV/SdRBUuXLtVLL72kLVu22J3hFh0drUcffVQTJ06Up6enzT4VPadiM2fOVGxsrM1zQ4cO1apVqyRJiYmJGmDnTahJkybpgw8+sHuP4s+VM8yfP1933323Q32nTZumadOmldvn7bff1ttvv13m+MCBA5WQkFCVEgEAQB1g8fSUZ0iIPENCnHbNZq++qsJzZ38L3rIyf53tZp7VVpj1259WB2e4eQY7uBxltQZ2AY7VkJVdPQVYrbJ4ezvUNXvDBp185lnbJ23NdDPal455BJTY283od6mPZ1iYvC93rz/YRVgG91DLwjKr1ar1Sw/ZPd/71rby8eOfJwAAQG21b98+xcTEKDU11W6fzz//XFu2bNH69etr9YysM2fOaOzYsaaApnXr1ho8eLAaN26s9PR0rV27Vnv27NGePXt0zz33aM6cOVq2bJmioqKcXs+pU6dMtSxcuNBuWAYAAABVeu82SbIWFFya4VYcoGVmlvjzt2UkvR1cLaFal4J0cHZbrQ/sLnOmW8CA/mr57rtVGouK8W483EMtC8t+3nZap5Jtf/FuHBWkq3o2qeGKAABwDwWFRTpxPtfVZbiFpiF+8qqjs+QDAgL06aefGu3FixdryZIlRjs7O1ujRo1SamqqYmJiNGLECDVp0kQZGRlKTEzU0qVLVVRUJEnG7LNly5bZvFdMTIxpFlfpmVLVMYOspJSUFMXExOjQoUu/yBUUFKS33npLd955Z5m+K1as0KRJk5SamqqdO3eqV69eWr16tTp16mTqV/I53XbbbVq6dKlxbufOnerSpUu5NS1atEiFhYVGe/HixZozZ47NmWzz58/X/PnzJUl33nmn/ve//2ns2LFatGiRY38BAAAAbsri5SXPhg3lWcU9VEtr/srLKkg/+9syklnZvwZDv85o+7VdmFXiXGamCrOzpYKCcq/t4ei+adn1O7BztAZUDWEZ3EMtWgu2sLBIGz//2e7568a2l8Wj9tQLAEB9cuJ8rvq/Eu/qMtzCmhmD1CLM39VlVIm3t7duv/12o71v3z5TWPbKK68oOTlZS5Ys0ZgxY0xjH374YX377bcaOXKkCn79of/LL79UUlJStYZeVVFQUKAJEyYYQZmHh4cWLVqk4cOH2+x/ww03aMWKFbruuut04cIFpaamasyYMdq8ebOC7LyBMX78eFNYFhcXV2FYtnDhQlO7eKbZkCFD7I7Jzc3VF198IUmaMGFCudevqkmTJmnSpElljp86dUqRJZbDee+99zRlypQy/Vq2bKmjR49Kkh599FH985//rJY6AQAAXMG3fXv5VmGc1WqV9eLFX/dx+zVIy84qsa9blnyvvMqha1Xn7DZH902rzsDOI8Cx2W2oGsIyuIdaNLNs75rjOn86x+a5Vl3C1ax9w5otCAAAAJXy/fff69///neZoKzYsGHDdMcdd+ijjz6SdOkNgOXLl+uBBx6oyTIrNGfOHK1bt85o33HHHXaDsmLdunXT9OnT9Y9//EOStH//fj377LN64403bPa/6aab5O/vrwu/7okRFxen559/3u71U1JStHbt2jLH4+Liyg3Lvv76a2VmZiogIEA33nhjuc/B2dasWWNq21oy8siRI0ZQJkn9+/ev9roAAADqAovFIoufnzz8/OQVHn5Z12rx1ls2ArcSM9myfwvgirKyVJid9euSk8Xt7Eszw35dJaIkDwdndVVrYBfAzLLqRFgG91BLwrK83AJt/vqwzXMWi9R7dJsarggAAACV1axZM91///3l9rnllluMsEy6tPxgbZKXl1dmZtO0adMcGvvwww/rxRdfNJZafPfdd/XUU08p3MabGwEBARo5cqQWL14sSTp48KB27Nihbt262bx2XFycrFaroqOjlZSUpOzsS3s+LFmyRHPnzpWXl+0fYYtno40aNUoNGjRw6Hk4S8mwrEmTJrryyivLpPIneAAAlVJJREFU7SNJ/fr1q/a6AAAA3I1HgwbyaNBAalz1a1itVllzckosHZmpoqws+bRt69B4i5e3PIKCLu1LVmK5dWdwNLBD1RCWwT3UkrBsV/wx5WTm2zzXoU9TNWrGFzwAAIDa7pZbbrG5f1ZJ0dHRpnZqamp1llRpq1at0vHjx41248aNde211zo0tmnTpurRo4e2bt0qSbpw4YIWL15sN0AcP368EZZJlwIxe2HZggULJEl//OMftW3bNiMEO3PmjFatWmVz5lt2dra+/vprSdW3BGN5Ss6EszWrrHSfDh062AwWAQAA4HoWi0UWf395+PtXKXRrOitWTWfFXgrdLlxQYfEst8xMFWVn/xbCZZeY/ZaVpaLsC+YZb9nZxow468WLkiSPQJZhrE6EZXAPtSAsu5hToB3fHrF5ztPbQz1vbl3DFQEAAKAqunfvXmGfZs2amdqZ1bjRd1XEx5v37rv66qtlqcQ+v127djXCMklKSEiwG5bdeOONCggIMGaJxcXFGcs4lpSUlKQffvhB0qWArX379qb9yxYuXGgzLPviiy904cIFBQcH64YbbnD4OThDVlaWduzYYbQdCcuYVQYAAFD/WSwWWQICft1n7DKmukmy5uerKDtbFm9v5xQHm1yfIAA1oRaEZTtXHdXFCwU2z3UZdIUCQ/1quCIAAABURdOmTSvs4+/vb2oXFNj+PtBVSi8L2dbBZWXs9S8ZGJXm7+9v2kfs559/1rZt28r0K55V1rNnT7Vq1UojRoxQUNBvG6l//vnnys8vu0pDcaA2evRo+fpWZVv5qtuwYYMKCwuNtq2w7Ny5c9q7d6/RZr8yAAAAVIbF21ueDRv+GryhujCzDO7BxWFZbna+dn5ne1aZt5+nelwfVcMVAQDgnpqG+GnNjEGuLsMtNA2pv78IFODAD6n29taqLdLS0kzt4ODgSo0v3b/09UobP3684uLijHZcXJx69Ohh6lMcehUvpejn56dRo0bpf//7nyTp7Nmz+uabb0zBW0ZGhlasWCFJuv322yv1HJyh5F5kYWFh6ty5c5k+69evV1GJTeKZWQYAAADUPrX7JzjAWVwclu347ojycgttnus6pIX8AplCCwBATfDy9FCLMP+KOwLlqMxyhbVVRkaGqd2gQYNKjS/d//z58+X2HzlypAIDA5WVlSVJWrRokV566SXj/IEDB7Rjxw5ZLBaNGzfOOD5hwgQjLJMuBWolw7LPPvtMFy9eVFhYmIYOHVqp5+ComJgYJSYmVtgvPT1dHh4V/9xhbxbfvHnzNGnSpMqWBwAAAMAJXL82HVATXPiGRk5WnnatPmbznK+/l7oNaVHDFQEAAMDdlZ4ZlpOTU6nxFy5cMLVDQkLK7d+gQQPdfPPNRvuXX37Rli1bjHbxEox9+/ZVixa/fX88fPhw07WXLVumi79ucC79NhttzJgx8mYPBwAAAABVRFgG9+DCmWU7Vx1V/kXbs8q6DW0hX39+qAcAAEDNCg8PN7VLzzSrSGZmZrnXs2X8+PGmdsllGUsvwVjMx8dHo0ePNtVZvOxienq6vvvuO5vjAAAAAKAyCMvgHlwUll3MKdDuhBSb5/wCvNVlMLPKAAAAUPO6du1qah86dKhS40v3L309W0aMGKGgoCCjvWjRIknS7t27tXfvXnl4eGjs2LFlxpUO2YqDtSVLlig/P18REREaNKj69iJMSEiQ1Wot8/HII48YfRo1aqSioqIyfYpnzBVLTk62eS2r1coSjAAAAIALEZbBPbgoLNudcEx5OQU2z3W/vqV8/Ng2EAAAADWvdLi0a9cuWa1Wh8fv3Lmz3OvZ4uvrq1GjRhntpKQk/fDDD0b41b9/fzVt2rTMuGHDhiksLMxof/nll8rJyTHGjR07Vp6eng7X7iyrV682Hg8ePNjmXnbFM98kqX379mrZsmWN1AYAAACgcgjL4B5cEJbl5xVq56qjNs/5+nup88DmNVwRAAAAcMmQIUPUvPlv34+mpaVp06ZNDo09fvy4tm/fbrT9/f112223OTTW1lKM9pZgLObt7a1bb73VaGdlZWnevHlKSEiQJN1+++0O3duZzpw5o127dhntoUOH2uy3atUq4/GQIUOqvS4AAAAAVUNYBvfggrBs75rjys3Kt3muy6ArmFUGAAAAl/Hx8dFjjz1mOjZnzhyHxs6ZM8c0C23q1KmKiIhwaOzw4cMVEhJitP/zn//o0KFD8vT0LDdwKx2y/fWvf1VhYaGaNWumfv36OXRvZ4qPjzf9HdgKwn755RcdPny43D4AAAAAagfCMrgHF4RlSbvTbB739vVkrzIAAAC43J/+9Cddd911RnvBggVavnx5uWO2b99uCtXat2+v5557zuF7ll6KMSsrS9KlZRwbN25sd9zgwYMVHh5eZty4cePk4VHz3+uXXIIxKipKbdu2LdPn22+/NR5bLJZq3VcNAAAAwOUhLIN7cEFYdvO0bho+tbPCWwSajnce0Fx+Ad41Xg8AAABQkpeXl+Li4oygx2q1avz48frwww9t9l+xYoVGjBihnJwcSVJERISWLl2q4ODgSt239Cwxyf4SjCVrHTNmTKXHVZeSYZm9JRhL7lfWrVs3NWrUqNrrAgAAAFA1hGVwDy4Iyzw8LGr3u8Ya/+S1uvGhLmrSJkSeXh7qOpRZZQAAANUtJiZGFovF+EhOTjadHzRokOl8UlKS6XyrVq2Mc7NmzbI7NjY21jiekJBgumZJiYmJNu9XeswHH3xgGte6dWvT+VatWhnnkpKSTOfKqzMmJsbm31OzZs20adMm43xWVpYmTpyoNm3aaOrUqXryySf1wAMP6Oqrr9aIESOUmpoqSbr66qu1adMmde7c2eZ1y3P99derYcOGRtvLy8u0J5k9pYOxli1bqnfv3pW+/+U6ceKE9u/fb7RthWVWq1Xx8fFG29lLMJb+3Dv6Oi/9mgUAAABwCZsmwT2UerOiZm9tUaurwxXVuZHOn85RQIivy2oBAAAASmvUqJHi4+O1dOlSvfTSS9qyZYsOHz6s999/v0zfjh076pFHHtHkyZPl6elZpfv5+Pho9OjRmj9/vqRLYZMjs64GDhyoyMhII7AbP358mVCyJpScVWaxWDR48OAyfbZv364zZ84YbVt9AAAAANQeFmvJXYmBOm7Pnj2m32798YEARTf2lMbOkzqXXbYFAADUPQUFBTp48KDpWPv27eXlxe+BAc5w6tQprVu3TidPntTZs2cVHBysxo0bq1evXoqKinJ1eQCcjP9XAQBwH2XeP//xR0VHR7uwotqD73zgHlywDCMAAABQFzVu3NihZREBAAAAoL4gQYB7ICwDAAAAAAAAAAA2kCDAPXhUbT8FAAAAAAAAAABQvxGWwT0wswwAAAAAAAAAANhAggD3UM1hWVGRVdYia7XeAwAAAAAAAAAAOB9hGdxDNYdlP289pU9mbdLO1Ud1MaegWu8FAAAAAAAAAACcx8vVBQA1wmKp1svvTjimc6kXtDbuoDYu+0VX9Wqiqwc2V6PmgdV6XwAAAAAAAAAAcHmYWQb3UI0zy04fzdSJn88b7YKLhdrzfYoW/P0HbfsmudruCwAAAAAAAAAALh9hGdxDNYZlPyYcs3uuZadG1XZfAAAAAAAAAABw+QjL4B6qKSzLzc7XgR9SbZ5r2i5E4VewDCMAAAAAAAAAALUZYRncQzWFZQd+OKmC/CKb566OuaJa7gkAAAAAAAAAAJyHsAzuoRrCMqvVqr1rT9g85x/iozbdIpx+TwAAAAAAAAAA4FyEZXAP1RCWnT6SqTMpWTbPdbqumTy9+OcFAAAAAAAAAEBtx7v5cA/VEJbtXWd7VpksUse+TZ1+PwAAAAAAAAAA4HyEZXAPTg7L8vMKdfCHkzbPXXFVqILDGzj1fgAAAAAAAAAAoHoQlsE9WCxOvdzP204pL7fQ5rlO/Zo59V4AAAAAAAAAAKD6EJbBPTh5ZtnetcdtHvcN8FKbrhFOvRcAAAAAAAAAAKg+hGVwD04My86lXtCJQ+dtnuvQq6k8vflnBQAAAAAAAABAXcG7+nAPTgzL9m+yvVeZJHW8rqnT7gMAAAAAAAAAAKofYRncg5PCMqvVqgM/2A7LGrcKVqPmgU65DwAAAAAAAAAAqBmEZXAPTgrLTv6SoYy0XJvnOvRu4pR7AAAAAAAAAACAmkNYBvfgpLDM3qwyDw+L2l3T2Cn3AAAAAAAAAAAANYewDO7BCWFZYUGRDm05ZfNcy86N1CDQ57LvAQAAAAAAAAAAahZhGdyDE8KyI3vTlZudb/PclT0jL/v6AAAAAAAAAACg5hGWwT1YLJd9iQObbC/B6O3nqVZdwi/7+gAAAAAAAAAAoOYRlsE9XObMsrycAh3elWbzXNvuEfL28bys6wMAAAAAAAAAANcgLIN7uMywLDUpQ9ZCq81zV/ZqclnXBgAAAAAAAAAAruPl6gKAGnGZYVmLjmG6+9V+Stqdpp+3ndaRvWdUVGCVf4iPml8Z6qQiAQAAAAAAAABATSMsg3u4zLBMkvwCvNWhd1N16N1UeTkFStqdpsKCInl4XP5+aAAAAAAAAAAAwDVYhhHuwQlhWUk+Dbx0Zc8m6ti3mVOvCwAAABRLTU3Vc889pwEDBqhx48by8fFRo0aN1KlTJ91www2aOHGiLBaL3Y+EhARXPwXUsPfff18NGzbkNQAAAABUEmEZ3IOTwzIAAADUbjExMeUGSaU/kpKSXF2yySeffKK2bdtq5syZWrNmjU6fPq38/Hylp6frp59+0sqVK/Xhhx+6ukyUsnXrVtPravXq1WX65ObmytfX1+jz4osvXvZ9k5OTdf3112vq1Kk6f/78ZV8PAAAAcDckCHAPhGUAAACoI5YvX6677rpL2dnZkqTbbrtN27dvV05Ojk6ePKlPP/1UTZs2NfofPnxYVqtVM2fOdFXJ+NXatWuNx56enurVq1eZPj/88IPy8vKMdr9+/ap8P6vVqrfeekudO3fWt99+W+XrAAAAAO6OPcvgHgjLAAAA3Erp5edatWql5ORkox0fH6+YmJiaLcoBRUVFmjZtmoqKiiRJvXr10qJFi2SxXNon18/PT7fffrvCw8M1bNgwV5YKG0qGZd26dVNAQECZPuvWrTMe+/r6qmfPnlW616FDhzRlyhQlJiZKkq644gqdP39emZmZVboeAAAA4M5IEOAefn1zAQAAAKjN1q5dq0OHDhnt4n3JShsyZIgaNGhQk6XBASWDsL59+9rsUzJQu+aaa+Tr61vp+8yePVtdu3Y1grIpU6Zoz549CgsLq/S1AAAAADCzDO6CmWUAAACoA0qGLZLUtWtXm/0sFouSk5NVWFioiIiImigNFfj555914sQJo33dddeV6WO1WrVhwwaj3b9//yrda+bMmbpw4YJatWql9957T0OHDq3SdQAAAABcQlgG90BYBgAAgDqgZNgiSeHh4Xb7EpLVLiVnjEm2Z5bt2bNHZ8+eNdpV3a/Mw8NDDz74oF5++WUFBgZW6RoAAAAAfkNYBvdQhbBs77rj8vTyUMvoMDUI9KmGogAAAACz0vtN+fjwfWhdUTIsa9GihVq0aFGmT8mZgxaLxebsM0esWLGiynudAQAAACiLsAzuoZJhmdVq1Q9fHlb2uYuyWKQmbUIUdXUjtbo6XGHNAmzuGwEAAABcLqvV6uoSUEUlwzJ7IVjJPp07d1bDhg2rdC+CMgAAAMC5CMvgHioZlqUdy1L2uYuSJKtVOvHzeZ34+bw2fv6LRtx/tdp0Y8kbAAAAXJKUlKTExESlpKTIz89PzZo1U//+/dW8eXNXl1Ylp06d0vr163Xy5Emlp6crJCREkZGR6tWrl83ZUpDOnDmj/fv3G21bSzBK5pllVV2CEQAAAIDzsZET3EMlw7Lk3Wk2j3t4WNT8qlBnVAQAAIBa6ty5c7JYLHY/EhISJEnHjh3T6NGj1aZNG02aNElPPfWUHnvsMd1xxx264oordOutt+ro0aPl3ishIcF07Q8++MB0vnXr1jZrSEpKcvrzXrp0qXr27KkmTZro1ltv1QMPPKCnnnpKDz/8sMaNG6eWLVuqc+fO+n//7/+psLDQ4edk7yM2NtbuNYYOHWr0+/777+32mzRpkkOfK2eYP3++3fuEh4ebZgVOmzbNZr/Dhw8bfd5++22bfWJiYpxWMwAAAADHMLMM7sHiWanuSbvP2DzetH1D+Tbgnw0AAIC727dvn2JiYpSammq3z+eff64tW7Zo/fr1tXpG1pkzZzR27FhTsNS6dWsNHjxYjRs3Vnp6utauXas9e/Zoz549uueeezRnzhwtW7ZMUVFRTq/n1KlTploWLlyoAQMGOP0+AAAAAFCMd/3hHiqxx9iFjDylJmXYPNfq6kbOqggAALhCYYGUkeLqKtxDcHPJs27+uBEQEKBPP/3UaC9evFhLliwx2tnZ2Ro1apRSU1MVExOjESNGqEmTJsrIyFBiYqKWLl2qoqIiSZdmnz388MNatmyZzXvFxMSYZiRNmjTJNLvs8OHDatWqlZOf4W9SUlIUExOjQ4cOSZKCgoL01ltv6c477yzTd8WKFZo0aZJSU1O1c+dO9erVS6tXr1anTp1M/Uo+p9tuu01Lly41zu3cuVNdunQpt6ZFixaZZq4tXrxYc+bMkadn2V+Amz9/vubPny9JuvPOO/W///1PY8eO1aJFixz7CwAAAAAAEZbBLVgqFZYl/3hGsrOvequrw51UEwAAcImMFGl2+W/Uw0n+vEsKdf6so5rg7e2t22+/3Wjv27fPFJa98sorSk5O1pIlSzRmzBjT2IcffljffvutRo4cqYKCAknSl19+qaSkpGoNvaqioKBAEyZMMIIyDw8PLVq0SMOHD7fZ/4YbbtCKFSt03XXX6cKFC0pNTdWYMWO0efNmBQUF2Rwzfvx4U1gWFxdXYVi2cOFCU7t4ptmQIUPsjsnNzdUXX3whSZowYUK516+qSZMmadKkSWWOnzp1SpGRkUb7vffe05QpU8r0a9mypbEs56OPPqp//vOf1VInAAAAgMpjzzLUf07ar6xhpL8aRvo7oyIAAADUYd9//71ef/31MkFZsWHDhumOO+4w2larVcuXL6+p8hw2Z84crVu3zmjfcccddoOyYt26ddP06dON9v79+/Xss8/a7X/TTTfJ3/+376Hj4uLKvX5KSorWrl1b5nhF477++mtlZmYqICBAN954Y7l9nW3NmjWmtq0lI48cOWLav65///7VXhcAAAAAxxGWof6rRFhWWFCkI3vTbZ6LYglGAAAASGrWrJnuv//+cvvccsstpvbOnTurs6RKy8vLKzOzadq0aQ6Nffjhh2UpsXLDu+++q7Q0279wFhAQoJEjRxrtgwcPaseOHXavHRcXJ6vVqujoaAUEBBjHlyxZYszUs6V4NtqoUaPUoEEDh56Hs5QMy5o0aaIrr7yy3D6S1K9fv2qvCwAAAIDjCMtQ/1UiLDtx6JzyLxbaPMcSjAAAAJAuBWG29s8qKTo62tROTU2tzpIqbdWqVTp+/LjRbty4sa699lqHxjZt2lQ9evQw2hcuXNDixYvt9h8/frypXd4ssQULFkiS/vjHP+qmm24yjp85c0arVq2yOSY7O1tff/21pOpbgrE8JWfC2ZpVVrpPhw4dFB7OzxYAAABAbUJYhvqvEmHZ0X1nbR738fNU03YhzqoIAAAAdVj37t0r7NOsWTNTOzMzs7rKqZL4+HhT++qrrzbNFqtI165dTe2EhAS7fW+88UbTLDF7YVlSUpJ++OEHSZcCttLBV+m9zIp98cUXunDhgoKDg3XDDTc4Ur7TZGVlmWbKORKWMasMAAAAqH0Iy1D/VSIsO/aT7SUYr+gQJk9P/rkAAADg0syqipTcp0tSuUsIukLpZSHbtm1bqfGl+5e3tKK/v79pH7Gff/5Z27ZtK9OveFZZz5491apVK40YMUJBQUHG+c8//1z5+fllxhWHaKNHj5avr2+lnsfl2rBhgwoLf1uZwlZYdu7cOe3du9dos18ZAAAAUPt4uboAoNo5GJblZufr1BHbv/F7RYdQZ1YEAABcJbi59Oddrq7CPQQ3d3UF1abkLCl7vLxq949apfcYCw4OrtT40v3t7VlWbPz48aYZZXFxcaalHKXfQq/iGWV+fn4aNWqU/ve//0mSzp49q2+++cYUvGVkZGjFihWSpNtvv71Sz8EZSu5FFhYWps6dO5fps379ehUVFRltZpYBAAAAtU/t/gkOcAYHw7KUA2clq+1zLTqGObEgAADgMp5eUmiUq6tAHVeZ5Qprq4yMDFO7QYMGlRpfuv/58+fL7T9y5EgFBgYqKytLkrRo0SK99NJLxvkDBw5ox44dslgsGjdunHF8woQJRlgmXQrUSoZln332mS5evKiwsDANHTq0Us/BUTExMUpMTKywX3p6ujw8Kv7Zw94svnnz5mnSpEmVLQ8AAACAE7CuHOo/B9/MOPaT7f3KAkN9FdK4cm8eAAAAALVZ6ZlhOTk5lRp/4cIFUzskpPz9fRs0aKCbb77ZaP/yyy/asmWL0S5egrFv375q0aKFcXz48OGmay9btkwXL1402sWz0caMGSNvb+9KPQcAAAAAKEZYhvrPwZllR/fZ2a+sY1i9+O1hAAAAoFh4eLipXXqmWUUyM83Ll5e+ni3jx483tUsuy1h6CcZiPj4+Gj16tKnO4mUX09PT9d1339kcBwAAAACVQViG+s+BsCwzPVfnT9n+bdoW7FcGAACAeqZr166m9qFDhyo1vnT/0tezZcSIEQoKCjLaixYtkiTt3r1be/fulYeHh8aOHVtmXOmQrThYW7JkifLz8xUREaFBgwZVqv7KSEhIkNVqLfPxyCOPGH0aNWqkoqKiMn2KZ8wVS05Otnktq9XKEowAAACACxGWof5zICw7ZmdWmSRd0YH9ygAAAFC/lA6Xdu3aJavVzga+NuzcubPc69ni6+urUaNGGe2kpCT98MMPRvjVv39/NW3atMy4YcOGKSzst+/Jv/zyS+Xk5Bjjxo4dK09PT4drd5bVq1cbjwcPHmxzNYrimW+S1L59e7Vs2bJGagMAAABQOYRlqP8cCMuO2tmvrFHzAPkH+zi7IgAAAMClhgwZoubNmxvttLQ0bdq0yaGxx48f1/bt2422v7+/brvtNofG2lqK0d4SjMW8vb116623Gu2srCzNmzdPCQkJkqTbb7/doXs705kzZ7Rr1y6jPXToUJv9Vq1aZTweMmRItdcFAAAAoGoIy1D/VRCWWa1WuzPLmFUGAACA+sjHx0ePPfaY6dicOXMcGjtnzhzTLLSpU6cqIiLCobHDhw9XSEiI0f7Pf/6jQ4cOydPTs9zArXTI9te//lWFhYVq1qyZ+vXr59C9nSk+Pt70d2ArCPvll190+PDhcvsAAAAAqB0Iy1D/VRCWpR/PVk5mvs1zV7BfGQAAAOqpP/3pT7ruuuuM9oIFC7R8+fJyx2zfvt0UqrVv317PPfecw/csvRRjVlaWpEvLODZu3NjuuMGDBys8PLzMuHHjxsnDo+Z/rC25BGNUVJTatm1bps+3335rPLZYLNW6rxoAAACAy0NYhvqvgrDsxKFzNo97eFjUrH1D59cDAAAA1AJeXl6Ki4szgh6r1arx48frww8/tNl/xYoVGjFihHJyciRJERERWrp0qYKDgyt139KzxCT7SzCWrHXMmDGVHlddSoZl9pZgLLlfWbdu3dSoUaNqrwsAAABA1RCWof6zsdF2SWdTL9g8HhEVJB8/r+qoCAAAANUsJiZGFovF+EhOTjadHzRokOl8UlKS6XyrVq2Mc7NmzbI7NjY21jiekJBgumZJiYmJNu9XeswHH3xgGte6dWvT+VatWhnnkpKSTOfKqzMmJsbm31OzZs20adMm43xWVpYmTpyoNm3aaOrUqXryySf1wAMP6Oqrr9aIESOUmpoqSbr66qu1adMmde7c2eZ1y3P99derYcOGRtvLy8u0J5k9pYOxli1bqnfv3pW+/+U6ceKE9u/fb7RthWVWq1Xx8fFG29lLMJb+3Dv6Oi/9mgUAAABwCUkA6r8KZpb1H3+legyP0smfz+vEz+d14tA5nT6apabtGtZMfQAAAIALNWrUSPHx8Vq6dKleeuklbdmyRYcPH9b7779fpm/Hjh31yCOPaPLkyfL09KzS/Xx8fDR69GjNnz9f0qWwyZFZVwMHDlRkZKQR2I0fP75MKFkTSs4qs1gsGjx4cJk+27dv15kzZ4y2rT4AAAAAag+LteSuxEAdt2fPHtNvt/74QICiO1wpTdtWqevkXyxUYX6R/AK9nV0iAAC4TAUFBTp48KDpWPv27eXlxe+BAc5w6tQprVu3TidPntTZs2cVHBysxo0bq1evXoqKinJ1eQCcjP9XAQBwH2XeP//xR0VHR7uwotqD73xQ/1Uws8wWb19PeftW7TdlAQAAgLqscePGDi2LCAAAAAD1BXuWof6rQlgGAAAAAAAAAADcAykC6j/CMgAAAAAAAAAAYAcpAuo/wjIAAAAAAAAAAGAHKQLqP8IyAAAAAAAAAABgBykC6j+LxdUVAAAAAAAAAACAWoqwDPUfM8sAAAAAAAAAAIAdpAio/2yEZYWFRTq4OVVZZ3NdUBAAAAAAAAAAAKgtvFxdAFDtbIRlZ45l6Zv/7pEkBYX5qUnbEDVrF6ImbRuqUbMAWTxYuhEAAAAAAAAAAHdAWIb6z0ZYdio503icmZ6rzPRcHdycKi9vD0351wB5irAMAAAAAAAAAAB3wDKMqP9shGWnkzNsdg1vESRPT/5ZAAAAAAAAAADgLkgFUP/Zmll2JNNGRykiKqi6qwEAAAAAAAAAALUIYRnqv1JhWUF+odJTsm12bUxYBgAAAAAAAACAWyEsQ/1nMe8/diYlW0VFVptdI1oSlgEAAAAAAAAA4E4Iy1D/lZpZZm+/Mi8fD4U2CaiJigAAAAAAAAAAQC1BWIb6r1RYZne/shZB8vCw2DwHAAAAAAAAAADqJ8Iy1H+lZ5bZC8tYghEAAAAAAAAAALdDWIb6z8PTeFiQX6j0lGyb3SKiCMsAAAAAAAAAAHA3hGWo/0rMLDtzLFtFRVab3Rq3DK6pigAAAAAAAAAAQC1BWIb6r0RYdvpIhs0uXr6eatjEv6YqAgAAAAAAAAAAtQRhGeq/EmHZqWQ7+5VdESgPD0tNVQQAAAAAAAAAAGoJwjLUf5bfQrBTR+yEZS3ZrwwAAAAAAAAAAHdEWIb679eZZQV5hTp7PNtml8ZRhGUAAAAAAAAAALgjwjLUf7+GZWeOZ6uoyGqzS0TL4JqsCAAAAAAAAAAA1BKEZaj/fg3L0u3MKvPy9lDDJv41WREAAAAAAAAAAKglCMtQ/xWHZSdsh2WhTQPk4WGxeQ4AAAAAAAAAANRvhGWo/34Ny87aCcvCmgXUZDUAAAAAAAAAAKAWISxD/VfBMoxhTQnLAAAAAAAAAABwV16uLgCodhYP5eUWKDM91+ZpwjIAAAC4o2XLlumBBx7QiRMnJEnz5s3TpEmTXFsU6rS0tDRt3rxZR48eVXp6ujw8PBQaGqqWLVuqZ8+eCg0NdXWJAAAAgE2EZbXAkSNHtHHjRiUnJysvL09hYWGKjo5W79695ePj49La0tPT9ec//1kff/yxJCkqKkpJSUkuranSLBadPXnB7mmWYQQAAKh/YmJilJiY6HD/w4cPq1WrVtVXUC2SlpamadOm6dNPP3V1KXUWr6/f7Nq1SwsWLNCSJUt04MABu/0sFot69+6tBx98UHfccYc8PT1rsEoAAACgfIRlLrR69WrNnDlTa9eutXk+JCRE9957r55++mkFBwfXcHXS0qVL9eCDDyo1NbXG7+1UFg95+3qqU/9mOnsiW+nHs3XxQoEkycvHQ0Fhfi4uEAAAAKgZixYt0kMPPaTTp0+7uhTUcQkJCXr++ee1atUq0/Grr75aPXv2VOPGjXXx4kUdOnRI8fHxyszM1IYNG7RhwwbNnTtXH330kdq1a+ei6gEAAAAzwjIXKCoq0uOPP6433njDOHbVVVepX79+Cg0N1YEDB7R8+XKdP39er776qhYsWKBly5ape/fuNVLfqVOn9PDDD2vRokU1cr9qZ/FQWNMADfpDB0mS1WrVhYw8pZ/IVk5GniweFhcXCAAAAGdLSEgwtVu1aqXk5GSjHR8fr5iYmJotyoVSU1P14IMPaunSpZKk0NBQ+fr66uTJky6urG7i9SX97W9/06ZNm4x2ly5d9N5776lnz55l+p4/f15PP/20/v3vf0uSNm7cqP79++v7779X+/bta6xmAAAAwB4PVxfgjh544AEjKPP09NQ777yjvXv36v3339err76qZcuW6dChQ+rVq5ck6ejRoxo8eLB2795d7bV9+umnio6ONoKyTp06Vfs9q53F/DK3WCwKCPFViw5hurJnExcVBQAAANSMhQsXqlOnTkZQNnr0aO3du1dXXXWViytDfREdHa01a9bYDMqkS6umvPnmm3ryySeNYydPntStt96qgoKCmioTAAAAsIuwrIbNmzdP7777rtF+5513dN9998nDw/ypaNmypb755htdeeWVkqRz585pzJgxysnJqZa60tLSNHr0aP3+979XWlqaGjVqpI8//lhz586tlvvVKAsvcwAAALivF198Uenp6QoPD9cnn3yizz77TE2a1L1fGps/f74sFossFku93f+rrpo7d65DWwc899xzatu2rdHes2eP/vvf/1ZnaQAAAIBDSBFqUFZWlv72t78Z7X79+mnKlCl2+wcHB2vOnDlG+9ChQ5o9e3a11LZ27VotW7ZMkjRmzBjt2bNHf/jDH6rlXjWOsAwAAABuzGKxaNy4cdq7d6/uuOMOV5eDeqZdu3YaOHCgQ309PT01efJk07EFCxZUR1kAAABApZAi1KDXXntNp06dMtqPPvpohWOGDx9uWgrx5Zdf1tmzZ6ulvoiICC1cuFBLlixRZGRktdzDJQjLAAAA4Mb+85//KC4uThEREa4uBfVQv379KtW/T58+pva6detktVqdWRIAAABQaaQINcRqteq9994z2g0bNtSNN97o0Ng777zTeHzu3DktXLjQ6fV16dJFe/fu1fjx451+bZcjLAMAAIAbs7ePFHA53nrrLcXHx+vZZ5+t1LimTZua2vn5+UpPT3dmaQAAAEClebm6AHexbt06HT9+3Gj37dtXPj4+Do2NiYkxtRcvXqz777/fmeWpTZs2Tr1erUJYBgAAgGqUlJSkxMREpaSkyM/PT82aNVP//v3VvHlzV5eGeqC2vr569OjhtGsVFRU57VoAAABAVRCW1ZAvvvjC1L722msdHtu9e3d5e3srPz9fkpSYmKiMjAyHNlCGJIvF1RUAAACgDjl37pxCQ0Ptno+Pj1dMTIyOHTumhx9+WF988YXNZeRGjx6tOXPmqEWLFtVZLuoYd399nT592tQODQ1VeHi4i6oBAAAALmHKTQ3Zvn27qd2xY0eHx/r5+ZlmfhUUFOjHH390Wm31HjPLAAAA4GT79u3TNddco2XLltndb+nzzz9X3759dfTo0RquDnVdfX597dq1y9QeNmyYLPyCIwAAAFyMmWU1ZM+ePab2FVdcUanxzZs31/79+03X69u3r1Nqq8/yi3wVv+0qhXkcVVjTAIU1C5B/iA8/jAEA4KYKigqUeiHV1WW4hUj/SHl51M0fNwICAvTpp58a7cWLF2vJkiVGOzs7W6NGjVJqaqpiYmI0YsQINWnSRBkZGUpMTNTSpUuNZeWKZwctW7asxp8Haid3f32tWLHC1J4yZYqLKgEAAAB+Uzd/eq1jMjIydOLECdOxyq4vX7r/vn37Lruu2u7UqVNlluioyKFDh0ztjKII7T3cVDp80Djm6++l0CYBuvGhLvIL8HZKrQAAoG5IvZCqG5bc4Ooy3MKK21aoeWDd3LPL29tbt99+u9Het2+fKcx45ZVXlJycrCVLlmjMmDGmsQ8//LC+/fZbjRw5UgUFBZKkL7/8UklJSWrVqlWN1I/azZ1fXydOnNA333xjtPv06aNhw4a5sCIAAADgEsKyGpCenl7mWGX3Gyvd/+zZs5dVU13w1ltvadasWZd1jezC8DKLjV68UKDTRzPl24CXPwAAACrv+++/17///e8yQUaxYcOG6Y477tBHH30kSbJarVq+fLkeeOCBmiwTdVR9fn299tprysvLkyR5eXnp3//+t4srAgAAAC5hM6cakJmZWeaYr69vpa7h5+dX4TVRVlZhI5vHgxv5yeLBUowAAACovGbNmun+++8vt88tt9xiau/cubM6S0I9Ul9fXz/99JPefPNNo/3UU0+pR48eLqwIAAAA+A1hWQ2wFWyVDr8qQlhWNVlF4TaPB4c3qOFKAAAAUF/ccsst8vT0LLdPdHS0qZ2ayl55cEx9fH3l5eXp97//vfLz8yVJQ4cO1bPPPuviqgAAAIDfsA5dHWW1Wl1dQrV78MEHNW7cuEqNOXTokEaPHm20swsbydb8McIyAAAAVFX37t0r7NOsWTNTm192sy0mJkaJiYmVHpecnCyLxfGVIubNm6dJkyZV+j6uUB9fXw888IB27NghSerQoYMWLVokDw9+dxcAAAC1B2FZDQgKCipzLDc3VwEBAQ5fIzc3t8Jr1jeNGzdW48aNL+samUWNZGt3uODwys3sAwAAAIo1bdq0wj7+/v6mdkFBQXWVg3qmvr2+/vGPf+j//b//J0lq0aKFli9froYNG7q2KAAAAKAUwrIaEBgYWObYxYsXCctqwIXCUDthGTPLAABwR5H+kVpx2wpXl+EWIv0jXV1CtXHk+3gvL37UQtXUp9fXv//9bz311FOSLoWA3333nVq1auXaogAAAAAb6sZ32HVcWFhYmWMZGRk2j9uTkZFhaoeGhl52Xe7AauclzswyAADck5eHl5oHNnd1GajjKrP8H8qXkJDgcN/58+fr7rvvliRFRUUpKSmpeopysfry+nrrrbc0bdo0SdIVV1yh+Ph4tWvXzsVVAQAAALaxSHgNCAkJUZMmTUzHUlJSKnWN0v07dOhw2XW5s+BGzCwDAAAAgOrw5ptv6qGHHpLVaiUoAwAAQJ1AWFZDOnfubGofO3asUuNLh2WlrwfH+QV4y6cBkyoBAAAAwNlmz57NjDIAAADUOYRlNaR79+6m9t69ex0em5ubq19++cVoe3p6EpZdBpZgBAAAAADne+ONNzR9+nRJBGUAAACoWwjLasjNN99sam/evNnhsdu3b1d+fr7RHjhwoIKDg51Wm7sJDmcJRgAAAABwptdee02PPvqoJMeDsunTpysmJkYvvfRSTZQIAAAA2EVYVkOuu+46NW3a1Ghv2LBBeXl5Do0tven12LFjnVma2yEsAwAAAADnefnll/WXv/xFUuVmlO3YsUOJiYnat29fdZcIAAAAlIuwrIZ4eHhoypQpRvvcuXP6+uuvHRr7v//9z3gcEhKiCRMmOL0+d8IyjAAAAADgHC+++KL+9re/SWLpRQAAANRdhGU16C9/+YsiIiKM9htvvFHhmJUrV2rPnj1Ge8aMGQoLCyt3zJkzZ/Tuu+9q7ty5SklJqXrB9RQzywAAAADg8j3//PN68sknJUnNmzcnKAMAAECdRVhWg4KCgvSPf/zDaK9Zs0b//e9/7fbPzMzUtGnTjHbbtm2NzZLtOXr0qKKjo3Xffffp4YcfVqdOnbRr167Lrr0+YWYZAAAAAFye5557Ts8884zRTklJUfv27WWxWBz+SExMdOEzAAAAAH5DWFbDpkyZonvuucdo33fffXr33XdVVFRk6nfkyBENGzZMBw4ckHRp+cUlS5bI39+/3Ou//fbbSk1NNdoZGRl65ZVXnPgM6jaLRQoMIywDAACo72JiYkxvyicnJ5vODxo0yHQ+KSnJdL5Vq1bGuVmzZtkdGxsbaxxPSEgwXbOkxMTEcu9X3RwJKu6+++4yfSZNmlSjddYVvL6kmTNnVvs9AAAAgJri5eoC3NG7776rgIAAzZkzR4WFhbrvvvv0+uuva8CAAQoJCdHBgwe1fPly5eXlSbq0nMWyZcvUtWvXCq9ttVrLHCsdxNkTGxtb5ge10pKTk8v8YCZJhw8fVqtWrRy6jysFhvrJ05OMGAAAAAAAAAAAXEJY5gIeHh6aPXu2br75Zs2cOVPr16/X/v37tX//flO/4OBgTZ06Vc8884xCQkIcuvb999+v//73vzp9+rQkKTAwUDNmzHD6c6irgiOYVQYAAOAOEhISLmt8VWbmxMTE2PzltdqgttZVGZMmTao1M914fdWP1xQAAABQjLDMhYYOHaqhQ4cqOTlZGzZs0JEjR5SXl6fQ0FBFR0erT58+8vX1rdQ1o6KitHfvXi1ZskT5+fkaPXq0rrjiCofGxsbGmpb5qI+Cwxu4ugQAAAAAAAAAAFCLEJbVAlFRUYqKinLa9cLDw3Xfffc57Xr1SXAjwjIAAAAAAAAAAPAbNm+CW2EZRgAAAAAAAAAAUBJhGeq15j471ahRgbz9PCUxswwAAAAAAAAAAJixDCPqtQHB/1X0HQNljR6m3Ox8+fjxkgcAAAAAAAAAAL8hOUD9Z/GQxWJRg0AfV1cCAAAAAAAAAABqGZZhRP1n4WUOAAAAAAAAAABsI0VA/UdYBgAAgFooJiZGFovFqR9JSUmuflqoJXh9AQAAAI4jRUD9R1gGAAAAAAAAAADsYM8y1H+EZQAAAKiFEhISXF0C6jFeXwAAAIDjSBFQ/xGWAQAAAAAAAAAAO0gRUP8RlgEAAAAAAAAAADtIEVD/WSyurgAAAAAAAAAAANRShGWo107mtVf6GYtys/NltVpdXQ4AAAAAAAAAAKhlCMtQr8Vn/EmfzpP++9ganT+V4+pyAAAAAAAAAABALUNYBrfhH+zj6hIAAAAAAAAAAEAtQ1gGt+Dp7SFvP09XlwEAAAAAAAAAAGoZwjK4Bf9gH1ksFleXAQAAAAAAAAAAahnCMrgFlmAEAAAAAAAAAAC2EJbBLRCWAQAAAAAAAAAAWwjL4BYIywAAAAAAAAAAgC2EZXALhGUAAAAAAAAAAMAWwjK4BcIyAAAAAAAAAABgC2EZ3IJ/sK+rSwAAAAAAAAAAALUQYRncQgNmlgEAAAAAAAAAABsIy+AWWIYRAAAAAAAAAADYQlgGt0BYBgAAAAAAAAAAbCEsQ73n7WORt6+nq8sAAAAAAAAAAAC1EGEZ6j3/IIIyAAAAAAAAAABgG2EZ6j3/QMIyAAAAAAAAAABgG2EZ6j3CMgAAAACukJubq/fee08333yzWrRooQYNGigoKEjt27fXgAEDNH36dDVu3FgWi8XmR2xsrKufAmrY2rVrddVVV/EaAAAAqGGEZaj3/IO8XF0CAAAAalhMTIzdAMLWh5eXlyIiInTllVeqV69e+v3vf68333xTW7duVUFBgaufjluKjY2t1Odw/vz5ri7ZZPv27erUqZPuvfdeffXVVzp27Jhyc3OVlZWlQ4cOac2aNZo9e7ZOnz7t6lJRQlFRkRo2bGi8rp599lmb/QYMGGD0GT58+GXfNzs7W3/+8581YMAAHThw4LKvBwAAgMohLEO91yDI29UlAAAAoJYrLCxUWlqaDh48qB9++EGffvqppk2bpmuuuUbNmzfXzJkzlZqa6uoyUUccO3ZMw4cP1+HDhyVJXbp00cqVK5WRkaHz588rMTFRPXv2NPrPmzdPVqtV8fHxrioZv9q9e7fOnz9vtK+77royffLy8rR582aj3a9fv8u65+rVq3X11Vdrzpw5slqtl3UtAAAAVA1hGeo9/2DCMgAAAHeTkJAgq9VqfERFRZnOx8fHm87n5OTo6NGj2rFjh+bPn6+JEyeqSZMmkqRTp07pueeeU8uWLTVjxgzl5eW54imVKyEhod4t3xcbG2v6HE2cONF0fubMmabzkyZNck2hNjzzzDPGjLHAwEB98803uv766xUUFKTg4GANGDBAX331lRo2bOjaQlHG2rVrjcceHh7q3bt3mT5bt25Vbm6u0e7fv3+V7pWZman7779fQ4cO1eHDh9WgQQO1atWqStcCAADA5SEsQ71HWAYAAICK+Pn56YorrlDXrl01ceJEzZ8/X0lJSZo7d66aN28u6dJskldffVV9+vTR/v37XVwxaquLFy9qwYIFRnvkyJGKjIws0y8iIkK9evWqydLggJJhWXR0tEJCQsrt4+3tXaXP46pVqxQdHa3//Oc/slqt6tevn3bu3KmBAwdWrXAAAABcFsIy1Hv+LMMIAACAKvD19dWDDz6oXbt2adCgQcbxbdu2qU+fPtq2bZsLq0NttW3bNtOso65du9rtu3DhQp04cUITJkyoidLggHXr1hmPbS3BWLrP7373OzVo0KDS93nzzTd19OhRBQQEaPbs2fr+++/Vvn37yhcMAAAApyAsQ73moXz5B/u4ugwAAADUYWFhYfrmm290yy23GMfOnj2rESNGKCUlxYWVoTY6ceKEqR0eHm63b0hIiJo0aVKlsAXOd+TIER09etRo2wvL1q9fbzy+nP3KBg0apN27d2vatGmyWCxVvg4AAAAuH2EZ6rXxjR5TYKivq8sAAABAHefl5aX58+erdevWxrFTp07prrvucmFVqI0yMzNNbR8ffnmvrlizZo2p3bdv3zJ99u/fb+xHJ1V9v7KnnnpKq1atMn1NAQAAgOsQlqFes1gkiwcvcwAAAFy+hg0b6u233zYdi4+P1+LFi11UEWojq9Xq6hJQRSX3ImvSpInatGlTbh+LxWJ39llFrr32WmaTAQAA1CJeri4AqFZBTSWLp6urAAAAQD0xfPhwde7cWT/++KNx7MUXX9TYsWMdGl9YWKiffvpJe/bs0cmTJ5WVlaXAwEA1atRIXbt2VXR0tDxqwS97XbhwQbt379ZPP/2kM2fOKDc3Vw0bNlRkZKSuvfZaRUVFubpEpzp37pxWrVqln3/+WZIUERGhnj17Kjo62sWVVc2FCxe0bt06HTlyRKdPn5afn58iIiLUuXPncvdQc3cl9yKzNausdJ8OHTqoUaNG1V4XAAAAqh9hGeq3P34u+QW7ugoAAADUIw888IAeeugho71t2zbt2bPHbrCSm5urzz77TIsWLdLq1at1/vx5u9cODw/XlClT9Pjjj1f4JnxsbKxmzZpl89ysWbPsnps4caLmz59f5vipU6f0ySefaNmyZVq/fr3y8vLs3rtDhw7605/+pHvvvVdeXrXzx8pu3bpp586dNs/NnDlTsbGxys3N1dNPP625c+cqNzfX5jXmzJlT4VJ75c0Quvvuu3X33XeXOT5v3jxNmjSp/CdRSdu3b1dsbKxWrlypixcv2uzTtGlTTZ48WX/5y18UEhJi91qOzHoaOHCgEhISbJ57/vnn9cwzz0i69Hp89tlnbfabP3++zb+fYsWfK2dISkpyeNnDpUuXVvh38NNPP9ntwwxDAACAuqV2/lQDAAAAALXUgAEDyhz7+uuv7YZlffr00Y4dO4y2p6enYmJi1LZtW4WHh+vMmTPasmWLtm7dqrS0NL300kv68MMPtWjRIruzW5wtLS1NzZs3V0FBgXEsJCREMTExioqKUoMGDXT8+HGtWbNGSUlJ2rdvnx566CF9/PHHWrJkiZo2bVojdTpTdna2rr/+eq1fv95unx07dmjo0KFatmyZbrjhhhqsrnIKCwv12GOPac6cOUZIExoaquHDh6tly5bKycnR7t279f333+vEiRN64YUX9M4772jhwoUaMmRItdS0cOFC02N7YRkAAABQGxCWAQAAwG3lHUuptmt7N4mUxYEZN/knT8paUFgtNXhFhMvD17fCfgWnT6voov1ZRI7yuaL5ZV+jLoiOjlbDhg117tw549jGjRvt9s/JyTEeDxs2TG+//bbatm1bpt/27dt19913a+fOnTp+/LhuvPFGbdiwQR06dLB53djYWGPGTUJCggYNGmScq+xsnIKCAlNQ9sgjj2jmzJllZh5ZrVYtWbJE999/v86cOaMNGzbopptu0po1a+Tv7+/w/WrCyy+/rLNnz0qS9u7dq7///e+m81OnTtX69evVoUMHjR07Vm3atFFBQYF27Nihjz/+WBkZGZKkvLw8TZ48WQcPHlRAQIDNe5WcRVR6plR1zCArqbCwUKNHj9ZXX31lHJsxY4aee+45+Zb693/gwAHdeeed2rx5s86cOaMRI0boww8/1O23317musXP6c0339S0adOM47Nnzza1bdm7d69pqdLidufOncv0nTRpkvH38/7772vq1KmKjIxUSkqKPD1ZUh8AAAA1g7AMAAAAbuvnoUOr7dptv/vOofAo+fd/UP7x49VSQ8sPPlBAr54V9kt59DFd2Lz5su/Xcd9Pl32NusBisah9+/baXOLv7MCBAxWO69q1qz777DO7gUv37t0VHx+va6+9Vj///LPOnTunhx56SKtWrXJa7Y6455579Prrr9s8Z7FYNHbsWLVu3Vp9+vRRfn6+tm3bpn/+85/Gknu1xfDhw43HCQkJprAsPj5e33//vf7617/qhRdeKBPK/O1vf9N1112no0ePSpJOnDihxYsXa+LEiTVTfCU88cQTpqDsqaee0vPPP2+z75VXXqlvv/1Wffr00U8//aT8/HxNnjxZHTt2tLuX2dixYzV9+nQVFRVJkuLi4ioMyxYsWFDm2MKFC22GZaX7FN+zOoKyVq1a2V0esWPHjtq3b58k6Q9/+IM+/vjjMn3uuusu43iPHj20detWp9cIAAAA13D9ztEAAAAAUMeEhoaa2ikpFc9SnD59ut2grOR1S4ZOq1evNi3hWBOeeuqpCvv87ne/0x/+8Aej/a9//UuFhdUzQ7I6fP/99xo7dqxeeuklm6FMixYtyszM+7//+78aqs5xW7du1WuvvWa0W7duXeFyhyEhIZo9e7bRzsnJKXfPsKZNm6pfv35Ge/369Tp27Fi59yi5BGOxuLi4csecOnVK8fHxkqQJEyaU29fZ0tLStH//fqNta6lVSVq7dq3xuKJ97AAAAFC3EJYBAAAAQCWVDsuys7Pt9n3yySf1xhtv6NZbb3Xo2sOGDTO1v/nmm8oXWEnBwcF644039P7776t169YOjSlZZ3p6ep2bZfPcc8+Ve37UqFGm9s6dO6uznCp58cUXTTOl7r//fvn4+FQ4btiwYbrqqquM9vbt28sNA8ePH288tlqtWrx4sd2+27dv14EDB+Tt7a0ePXoYxw8cOFBu8Lt48WIVFhaqefPmpnCuJqxdu9b092grLDt+/LiSkpKMdk3XCAAAgOpFWAYAAAAAlWRvKTdb/vjHP2r69Oll9v+yJzIy0tTevXt3pWqrCn9/f02fPl333HOPw2NcUaezdOzYUR07diy3T3h4uOk5pqamVndZlZKZmally5aZjt14440Oj7/ppptM7Q8//NBu37Fjx8rD47e3D8qbJVa8BOPQoUM1depU0zlbM85Knxs3bpwsFov9wqtByRljjRs3trlP4Jo1a0xtwjIAAID6hbAMAAAAACrp7NmzpnZgYKDTrl16WcAzZ8447drOVFfqtKV79+4O9WvWrJnxODMzs7rKqZI1a9aooKDAaPv6+toMeewpvUdZQkKC3b6RkZGm2VYbN2409nMrrThIGz9+vG677TbT68ReyHb8+HEjsKrpJRglcxDmyBKM7dq1U5MmTaq9LgAAANQcwjIAAAAAqKTSYVnz5s0rHHPy5EnNmTNHY8eOVYcOHRQWFiZvb29ZLJYyHyVduHDBqbVXZM+ePZo5c6ZuuOEGRUVFKTg4WB4eHmVqHDRokEvrvBxNmzZ1qJ+/v7/xuLbtyVZ6WcioqCib+6/Z07ZtW1M7NTVVJ0+etNu/9FKMixYtKtNn48aNSkpKko+Pj0aPHq2IiAjT6+SXX37Rli1byoyLi4tTUVGRoqKi1Lt3b4efgzNcuHBB27dvN9rsVwYAAOCevFxdAAAAAOAqbb/7rtqu7d0ksuJOkqI++Z+sBdXzJrxXRLhD/Zq//k8VXcyrlhrqo6KiIu3fv990rOT+T6VlZ2frmWee0b///W/l5+dXd3lVdvjwYU2bNk1fffWVq0updgEBAQ718/KqvT8yp6WlmdrBwcGVGm+rf1pamt0ZU7fddpv+9Kc/GaFhXFycHn30UVOf4qUUhw8froYNG0q6NFPsuxJfaxcuXKhrrrnG5jhXzCrbuHGj6d+lrbAsMzPTtMwoSzACAADUP7X3O38AAACgmvlcUfFsoOrmXQuW8vKKiHB1CXXKrl27yizJZ282zLlz5zR8+HD98MMPxrEuXbroz3/+swYMGKBmzZqZZi8Vq+k9m3bu3Klhw4bp9OnTxrGbbrpJU6dO1TXXXKPw8HD5+PiYxiQkJJSZXVZX1PTfb3XIyMgwtRs0aFCp8bb6nz9/3m7/xo0ba+DAgVq9erUkadOmTUpOTlZUVJQk82yzkqHXmDFj9OCDDxqBVFxcnF555RXjc5CcnKyNGzeWGedMsbGxmjVrlkN9u3XrVmGfe+65x+b+fhMnTtT8+fMrWR0AAABqA5ZhBAAAAIBKiI+PL3Pspptustn3z3/+sykou/XWW7VlyxZNnjxZ7dq1sxmU1bSLFy9qwoQJpqDstdde05dffqlRo0apWbNmZYIyuF7pmWE5OTmVGm9r2cyQkJByx5QOs0ouxbhmzRqlpKTIz89Po0aNMo6HhYVpyJAhRvvIkSPatGmT0S6eVdauXTv16NGjUs8BAAAAcBbCMgAAAABwkNVq1TvvvGM61qtXL3Xo0KFM35SUFH300UdG29fXV//5z3/k7e1d7XVWxpIlS0zLSvbo0UOPPfaYCyuCI8LDzcuslp5pVpHSsyNtXbO0MWPGmJamjIuLMx4Xh14jR45UUFCQaVzpkK24ryQtWLDAZh8AAACgJhGWAQAAAICDli1bpgMHDpiOPfHEEzb7fvfdd7JarUa7d+/eiqiFS15+++23pvbNN9/sokpQGV27djW1k5KSjP3EHHHo0CFTOzIy0u5+ZcXCw8NNS29u3rzZuO/ixYsl2Q69Ro8ebZqduGjRIlmtVh08eFDbt2+3O85ZYmNjZbVay3wsW7bM1G/Xrl1l+pw8edLU58MPP7R5LavVyhKMAAAAdRhhGQAAAAA4IC0tTQ8//LDp2PDhw3XLLbfY7H/ixAlTu3lzx/bIq0zg4Qx1pU6Y9e/f3zTLKy8vTz/99JPD43fu3Glqx8TEODRu/PjxpnZcXJzi4+N16tQp+fv721yStGHDhrr++uuNdkpKitauXWvMMOvYsaOuvvpqh2t3luL916RLe7J17ty5TJ/vvvvO1B48eHC11wUAAICaR1gGAAAAABW4ePGi7rzzTqWkpBjHmjZtWu5MEj8/P1M7OzvboXuVDq8c4enpaWqXnNFW8lhWVpaysrKUm5vrkjrhPEFBQWWC2q+++srh8V9++aWpfddddzk0ztZSjMVLKd5000129+ErPXOs5Ljbb7/d4bqdqWRYNmTIEFksljJ9SoZlHTp0cDhMBgAAQN1CWAYAAAAA5Th9+rQGDx6slStXGscaNWqkFStWlLtsXel9zDZu3OjQbKzly5dXusbSe0SVDMOKHThwQEFBQQoKCtLvf/97u3WuXbvWoXtWpU4415NPPmkKeN555x3l5eVVOG7FihU6ePCg0e7WrZtuvPFGh+4ZFhamIUOGGO2tW7c6tO/YLbfcYgpm58+frz179kgqO1utJqSlpenHH3802iWfU0mrVq2qsA8AAADqPsIyAAAAALAhNzdXs2fPVpcuXbR+/XrjeM+ePbVp0yZ16dKl3PGDBg1SWFiY0U5NTdXcuXPLHZOenq4XXnih0rW2bt3aFJqUnAFXbP/+/cbjTp06GY9vu+02U7/PP/9c27ZtK/d+P/zwg7GEHlynR48e+stf/mK0k5OTNXPmzHLHnD9/Xo888ojR9vPz07x58yp139LhVnZ2toKCgjRy5Ei7Y4KCgnTDDTcY7aysLEmX9l4rHdjWhNWrV5tmYA4dOrRMn/379+vo0aNGm7AMAACg/iIsAwAAAOD2cnNzlZKSop07d+qDDz7QxIkTFRUVpenTp+vkyZOSJF9fXz3xxBNau3at2rZtW+E1fX199fzzz5uOPfbYY3rzzTdtzjDbt2+fhgwZYjPoqkhISIi6d+9utOPj45WZmWm0L168qDlz5hjtksv3XXvttabwo7CwUCNHjiyzV1Oxr7/+WiNHjrS5ZB1q3j/+8Q/TPmEvvfSSZsyYYXd24dChQ7Vv3z5JkpeXl95//31169atUve89dZb5e3tbTo2atSoMkt6lmZrBll5s9GqU8klGNu2bauoqKgyfUr+G/Dw8HB4XzcAAADUPRarrcXsgTpqz549pk2Zf/zxR0VHR7uwIgAA4GwFBQWm5cMkqX379qY9dICYmBglJiY65VqRkZG6//779eCDD6px48aVHj9jxgy9+uqrpmMtWrTQkCFD1KxZM+Xk5GjHjh1KTEyUn5+fFi1aVO6SeIcPH1arVq3KHF+0aJEpjGjdurURan333XdGQDJu3DjFxcWZxmZnZ+umm25SQkKC6Xi3bt3Ut29fhYaGKj09XWvXrtXu3bvVtm1bPfHEE5oyZYrNGqOiopSUlFTO30rFYmNjNWvWLIf7z5s3T5MmTTLakyZN0gcffFDhuIEDB5qet6MhYMn7VTY4LPk5bNWqlZKTkx0aZ+/H98LCQj322GOaM2eO0Sc0NFQ33HCDWrZsqZycHO3evVuJiYkqKiqSdGk5xU8//VTXX399pWovNnLkSNNSnF988YVuvvnmcsdkZWWpcePGysnJMY4dOnTIofDZ2a688krj/5L77rtP77zzTpk+t956qz7//HNJ0jXXXKPNmzc7tYbKfO5LKv2avVz8vwoAgPvg/XP7+M4HAAAAgNvz9PRUSEiIQkNDFRoaqnbt2qlv37667rrr1LVrV3l6elb52q+88ooGDhyo2NhYbdmyRZJ09OhRzZ8/3+jj7e2t8ePH64UXXlCbNm2qdJ9x48Zp7ty5euqpp3Tu3DkdPnzYtOyjl5eXJk+erDfeeKPM2ICAAH333Xd688039frrrxtLz+3YsUM7duww+gUHB+vJJ5/UX//61wqXakTN8fT01L/+9S9NnDhRsbGxWrlypc6ePatPP/20TN/IyEhNnjxZM2bMUMOGDat8zwkTJhhhWUhIiIYPH17hmMDAQN14441avHixpEsBlCuCspSUFFM4ZGt5xaKiIlMgNXjw4JooDQAAAC7CzDLUKyTjAADUf/wGPOqyX375RZs2bdKJEyeUm5ur0NBQRUVFqX///goKCnLKPS5cuKB169Zp3759ysjIkK+vr6KiojRgwABFRkZWOL6wsFC7du3S9u3blZaWJqvVqkaNGqlDhw7q3bs3/9bqgAsXLmjt2rU6cuSI0tLS5Ovrq4iICHXu3Fldu3ZlCU2Y8P8qAADug/fP7eM7HwAAAACoIW3atKnyzDFH+fv7a9iwYRo2bFiVxnt6eqp79+6mPdBQt/j7+1d5eUUAAADAHXm4ugAAAAAAAAAAAADAVQjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtgjLAAAAAAAAAAAA4LYIywAAAAAAAAAAAOC2CMsAAAAAAAAAAADgtrxcXQAAAAAAAPVRbm6uPvroI33xxRfasWOH0tLS5OXlpSZNmqhp06bq0aOHPvnkE50+fdrm+JkzZyo2NrZmi0aNO3/+vLZu3arDhw8rPT1dhYWFCg0NVbNmzdSzZ09FRka6ukQAAIB6j7AMAAAAQL0TExOjxMREh/t7enoqNDTU+Gjbtq369Omjvn37qmvXrvLy4kenmhYbG6tZs2Y53H/evHmaNGlS9RVUSdu3b9dtt92mw4cPlzl36NAhHTp0SGvWrHFBZShPUVGRwsLCdP78eUnSM888o+eee65MvwEDBhifv+uvv14rV66s1H1+/vlnLViwQIsXL9bOnTtltVrt9r366qt1//33a/LkyfLz86vUfQAAAOAYlmEEAAAA4PYKCwuVlpamgwcP6ocfftCnn36qadOm6ZprrlHz5s01c+ZMpaamurpM1BHHjh3T8OHDjaCsS5cuWrlypTIyMnT+/HklJiaqZ8+eRv958+bJarUqPj7eVSXjV7t37zaCMkm67rrryvTJy8vT5s2bjXa/fv0cvn5xiHrllVfq6aef1o4dO2S1WtWuXTv98Y9/1IwZM/T4449r3LhxatSokVHTQw89pO7du2vLli2X8ewAAABgD2EZAAAAgHonISFBVqvV+IiKijKdj4+PN53PycnR0aNHtWPHDs2fP18TJ05UkyZNJEmnTp3Sc889p5YtW2rGjBnKy8tzxVMqV0JCgiwWi/FRH5bui42NNX2OJk6caDo/c+ZM0/naNKvsmWeeMZZWDAwM1DfffKPrr79eQUFBCg4O1oABA/TVV1+pYcOGri0UZaxdu9Z47OHhod69e5fps3XrVuXm5hrt/v37O3z9l19+WUuXLlVRUZEkKSoqSitWrNDBgwf1wQcf6OWXX9arr76quLg4HTt2TM8995w8PC69dbNv3z4NGjRIGzZsqOrTAwAAgB2EZQAAAADcnp+fn6644gp17dpVEydO1Pz585WUlKS5c+eqefPmki7NJnn11VfVp08f7d+/38UVo7a6ePGiFixYYLRHjhxpc8+piIgI9erVqyZLgwNKhmXR0dEKCQkpt4+3t3eVP49NmzbV2rVrNXz4cJvn/fz89Mwzz+idd94xjmVlZWn06NGm2W8AAAC4fIRlAAAAAGCDr6+vHnzwQe3atUuDBg0yjm/btk19+vTRtm3bXFgdaqtt27aZZh117drVbt+FCxfqxIkTmjBhQk2UBgesW7fOeGxrCcbSfX73u9+pQYMGVbrXiy++qCuuuKLCflOnTtXAgQON9qlTp/TSSy9V6Z4AAACwjbAMAAAAAMoRFhamb775Rrfccotx7OzZsxoxYoRSUlJcWBlqoxMnTpja4eHhdvuGhISoSZMmVQ5b4FxHjhzR0aNHjba9sGz9+vXG48rsV1ZSYGBgpULSe++919QuOXsRAAAAl4+wDAAAAAAq4OXlpfnz56t169bGsVOnTumuu+5yYVWojTIzM01tHx8fF1WCylqzZo2p3bdv3zJ99u/fb+xHJ1Vuv7KSrrnmGvn5+Tncv0+fPqZ2UlISYT0AAIATEZYBAAAAgAMaNmyot99+23QsPj5eixcvdlFFqI2sVqurS0AVldyLrEmTJmrTpk25fSwWi93ZZ/Y8++yzio+P11tvvVWpcU2bNi1z7OTJk5W6BgAAAOzzcnUBAAAAAFBXDB8+XJ07d9aPP/5oHHvxxRc1duxYh8YXFhbqp59+0p49e3Ty5EllZWUpMDBQjRo1UteuXRUdHS0PD9f/TuOFCxe0e/du/fTTTzpz5oxyc3PVsGFDRUZG6tprr1VUVJSrS3Sqc+fOadWqVfr5558lSREREerZs6eio6NdXFnVXLhwQevWrdORI0d0+vRp+fn5KSIiQp07dy53DzV3V3IvMluzykr36dChgxo1alSpe3Tq1EmdOnWqWoGlFBUVOeU6AAAAICwDAAAAgEp54IEH9NBDDxntbdu2ac+ePXaDldzcXH322WdatGiRVq9erfPnz9u9dnh4uKZMmaLHH3+8wjfhY2NjNWvWLJvnZs2aZffcxIkTNX/+/DLHT506pU8++UTLli3T+vXrlZeXZ/feHTp00J/+9Cfde++98vKqnT9WduvWTTt37rR5bubMmYqNjVVubq6efvppzZ07V7m5uTavMWfOnAqX2rNYLHbP3X333br77rvLHJ83b54mTZpU/pOopO3btys2NlYrV67UxYsXbfZp2rSpJk+erL/85S8KCQmxe63ynlOxgQMHKiEhwea5559/Xs8884ykS6/HZ5991ma/+fPn2/z7KVb8uXKGpKQk01Kq5Vm6dGmFfwc//fST3T7OnmFYculH6dLnp23btk69BwAAgDurnT/VAAAAAEAtNWDAgDLHvv76a7thWZ8+fbRjxw6j7enpqZiYGLVt21bh4eE6c+aMtmzZoq1btyotLU0vvfSSPvzwQy1atMju7BZnS0tLU/PmzVVQUGAcCwkJUUxMjKKiotSgQQMdP35ca9asUVJSkvbt26eHHnpIH3/8sZYsWWJzibjaLjs7W9dff73Wr19vt8+OHTs0dOhQLVu2TDfccEMNVlc5hYWFeuyxxzRnzhwjpAkNDdXw4cPVsmVL5eTkaPfu3fr+++914sQJvfDCC3rnnXe0cOFCDRkypFpqWrhwoemxvbAMjtm1a5epfe211yosLMxF1QAAANQ/hGUAAABwWxlpOdV27cBQX3l4VrycXtbZXBUVVs8eR/4hPvLy9qywX/b5iyrMv/zlvILDG1z2NeqC6OhoNWzYUOfOnTOObdy40W7/nJzfXmfDhg3T22+/bXNGyPbt23X33Xdr586dOn78uG688UZt2LBBHTp0sHnd2NhYY8ZNQkKCBg0aZJyr7GycgoICU1D2yCOPaObMmWVmHlmtVi1ZskT333+/zpw5ow0bNuimm27SmjVr5O/v7/D9asLLL7+ss2fPSpL27t2rv//976bzU6dO1fr169WhQweNHTtWbdq0UUFBgXbs2KGPP/5YGRkZkqS8vDxNnjxZBw8eVEBAgM17lZxFVHqmVHXMICupsLBQo0eP1ldffWUcmzFjhp577jn5+vqa+h44cEB33nmnNm/erDNnzmjEiBH68MMPdfvtt5e5bvFzevPNNzVt2jTj+OzZs01tW/bu3WtaqrS43blz5zJ9J02aZPz9vP/++5o6daoiIyOVkpIiT8+Kv365ixUrVpjaU6ZMcVElAAAA9RNhGQAAANzWR09vqLZr3/V8H4fCo6WvblNmetnl35xh9CPd1fyq0Ar7ffP+Hh0/eO6y7/fQO4Mv+xp1gcViUfv27bV582bj2IEDByoc17VrV3322Wd2A5fu3bsrPj5e1157rX7++WedO3dODz30kFatWuW02h1xzz336PXXX7d5zmKxaOzYsWrdurX69Omj/Px8bdu2Tf/85z+NJfdqi+HDhxuPExISTGFZfHy8vv/+e/31r3/VCy+8UCaU+dvf/qbrrrtOR48elSSdOHFCixcv1sSJE2um+Ep44oknTEHZU089peeff95m3yuvvFLffvut+vTpo59++kn5+fmaPHmyOnbsaHcvs7Fjx2r69OnG/lhxcXEVhmULFiwoc2zhwoU2w7LSfYrvWR1BWatWrewuj9ixY0ft27dPkvSHP/xBH3/8cZk+d911l3G8R48e2rp1q9NrtCU3N9c0Uy8qKqpWvhYBAADqMtfvHA0AAAAAdUxoqDmETElJqXDM9OnT7QZlJa9bMnRavXq1aQnHmvDUU09V2Od3v/ud/vCHPxjtf/3rXyosLKzOspzq+++/19ixY/XSSy/ZDGVatGhRZmbe//3f/9VQdY7bunWrXnvtNaPdunXrCpc7DAkJ0ezZs412Tk5OuXuGNW3aVP369TPa69ev17Fjx8q9R8lgp1hcXFy5Y06dOqX4+HhJ0oQJE8rt62xpaWnav3+/0ba11KokrV271nhc0T52zvTee++Z9iybM2eOfHx8auz+AAAA7oCwDAAAAAAqqXRYlp2dbbfvk08+qTfeeEO33nqrQ9ceNmyYqf3NN99UvsBKCg4O1htvvKH3339frVu3dmhMyTrT09NrbJaNszz33HPlnh81apSpvXPnzuosp0pefPFF00yp+++/36EQZdiwYbrqqquM9vbt28sNA8ePH288tlqtWrx4sd2+27dv14EDB+Tt7a0ePXoYxw8cOFBu8Lt48WIVFhaqefPmpnCuJqxdu9b092grLDt+/LiSkpKMdk3VeOrUKc2cOdNoT5w4scxrEwAAAJePsAwAAAAAKsneUm62/PGPf9T06dPL7P9lT2RkpKm9e/fuStVWFf7+/po+fbruueceh8e4ok5n6dixozp27Fhun/DwcNNzTE1Nre6yKiUzM1PLli0zHbvxxhsdHn/TTTeZ2h9++KHdvmPHjpWHx29vH5Q3S6x4CcahQ4dq6tSppnO2ZpyVPjdu3DhZLBb7hVeDkjPGGjdubHOfwDVr1pjaNRWWTZ482dh7r3Pnzpo7d26N3BcAAMDdEJYBAAAAQCUVv3ldLDAw0GnXLr0s4JkzZ5x2bWeqK3Xa0r17d4f6NWvWzHicmZlZXeVUyZo1a1RQUGC0fX19bYY89pTeoywhIcFu38jISNNsq40bNxr7uZVWHKSNHz9et912m+l1Yi9kO378uBFY1fQSjJI5CHNkCcZ27dqpSZMm1V7Xc889p6+//lrSpc/BV199VeFSrgAAAKgawjIAAAAAqKTSYVnz5s0rHHPy5EnNmTNHY8eOVYcOHRQWFiZvb29ZLJYyHyVduHDBqbVXZM+ePZo5c6ZuuOEGRUVFKTg4WB4eHmVqHDRokEvrvBxNmzZ1qJ+/v7/xuLbtyVZ6WcioqCib+6/Z07ZtW1M7NTVVJ0+etNu/9FKMixYtKtNn48aNSkpKko+Pj0aPHq2IiAjT6+SXX37Rli1byoyLi4tTUVGRoqKi1Lt3b4efgzNcuHBB27dvN9q1Zb+yjz/+2Ng3LyQkRP/3f/+nqKioar8vAACAu/JydQEAAACAq9z1fJ9qu3ZgqK9D/cb8pYeKCh1f0q8y/EMq3rtIkq6fEq3C/KJqqaE+Kioq0v79+03HSu7/VFp2draeeeYZ/fvf/1Z+fn51l1dlhw8f1rRp0/TVV1+5upRq5+jsHC+v2vsjc1pamqkdHBxcqfG2+qelpdmdMXXbbbfpT3/6kxEaxsXF6dFHHzX1KV5Kcfjw4WrYsKGkSzPFvvvuO1Ofa665xuY4V8wq27hxo+nfpa2wLDMz07TMaHUvwfj555/r7rvvltVqVVBQkJYvX27a/w0AAADOV3u/8wcAAACqWXB4A1eXoMBQP1eXoIAQx4I9XLJr164yS/LZmw1z7tw5DR8+XD/88INxrEuXLvrzn/+sAQMGqFmzZqbZS8Vqes+mnTt3atiwYTp9+rRx7KabbtLUqVN1zTXXKDw8XD4+5vA1ISGhzOyyuqKm/36rQ0ZGhqndoEHlvp7Z6n/+/Hm7/Rs3bqyBAwdq9erVkqRNmzYpOTnZmO1UcrZZydBrzJgxevDBB41AKi4uTq+88orxOUhOTtbGjRvLjHOm2NhYzZo1y6G+3bp1q7DPPffcY3N/v4kTJ2r+/PmVrM5s2bJlmjBhggoKChQSEqKVK1eqV69el3VNAAAAVIxlGAEAAACgEuLj48scu+mmm2z2/fOf/2wKym699VZt2bJFkydPVrt27WwGZTXt4sWLmjBhgikoe+211/Tll19q1KhRatasWZmgDK5XemZYTk5OpcbbWjYzJCSk3DGlw6ySSzGuWbNGKSkp8vPz06hRo4zjYWFhGjJkiNE+cuSINm3aZLSLZ5W1a9fO7WdPffbZZxo3bpzy8vIIygAAAGoYYRkAAAAAOMhqteqdd94xHevVq5c6dOhQpm9KSoo++ugjo+3r66v//Oc/8vb2rvY6K2PJkiWmZSV79Oihxx57zIUVwRHh4eGmdumZZhUpPTvS1jVLGzNmjGlpyri4OONxceg1cuRIBQUFmcaVDtmK+0rSggULbPZxN4sXL9b48eOVn59PUAYAAOAChGUAAAAA4KBly5bpwIEDpmNPPPGEzb7fffedrNbf9qPr3bu3IiIiqrW+qvj2229N7ZtvvtlFlaAyunbtamonJSUZ+4k54tChQ6Z2ZGSk3f3KioWHh5uW3ty8ebNx38WLF0uyHXqNHj3aNDtx0aJFslqtOnjwoLZv3253nLPExsbKarWW+Vi2bJmp365du8r0OXnypKnPhx9+aPNaVqu1ykswLlq0SHfccQdLLwIAALgQYRkAAAAAOCAtLU0PP/yw6djw4cN1yy232Ox/4sQJU7t58+YO3acygYcz1JU6Yda/f3/TLK+8vDz99NNPDo/fuXOnqR0TE+PQuPHjx5vacXFxio+P16lTp+Tv729zSdKGDRvq+uuvN9opKSlau3atMcOsY8eOuvrqqx2u3VmK91+TLu3J1rlz5zJ9vvvuO1N78ODBTq1hwYIFlQ7KXnrpJcXExGj69OlOrQUAAMCdEZYBAAAAQAUuXryoO++8UykpKcaxpk2bljuTxM/Pz9TOzs526F6lwytHeHp6mtolZ7SVPJaVlaWsrCzl5ua6pE44T1BQUJmg9quvvnJ4/Jdffmlq33XXXQ6Ns7UUY/FSijfddJPdffhKzxwrOe722293uG5nKhmWDRkyRBaLpUyfkmFZhw4dHA6THfHJJ5/ozjvvVGFhYaVmlO3bt0+JiYnasWOH02oBAABwd4RlAAAAAFCO06dPa/DgwVq5cqVxrFGjRlqxYkW5y9aV3sds48aNDs3GWr58eaVrLL1HVMkwrNiBAwcUFBSkoKAg/f73v7db59q1ax26Z1XqhHM9+eSTpoDnnXfeUV5eXoXjVqxYoYMHDxrtbt266cYbb3TonmFhYRoyZIjR3rp1q0P7jt1yyy2mYHb+/Pnas2ePpLKz1WpCWlqafvzxR6Nd8jmVtGrVqgr7VMXHH3+sP/7xj5UOygAAAFA9CMsAAAAAwIbc3FzNnj1bXbp00fr1643jPXv21KZNm9SlS5dyxw8aNEhhYWFGOzU1VXPnzi13THp6ul544YVK19q6dWtTaFJyBlyx/fv3G487depkPL7ttttM/T7//HNt27at3Pv98MMPxhJ6cJ0ePXroL3/5i9FOTk7WzJkzyx1z/vx5PfLII0bbz89P8+bNq9R9S4db2dnZCgoK0siRI+2OCQoK0g033GC0s7KyJF3ae610YFsTVq9ebZqBOXTo0DJ99u/fr6NHjxptZ4VlH374oSZOnKjCwkIFBwcTlAEAANQChGUAAAAA3F5ubq5SUlK0c+dOffDBB5o4caKioqI0ffp0nTx5UpLk6+urJ554QmvXrlXbtm0rvKavr6+ef/5507HHHntMb775ps0ZZvv27dOQIUNsBl0VCQkJUffu3Y12fHy8MjMzjfbFixc1Z84co11y+b5rr73WFH4UFhZq5MiRZfZqKvb1119r5MiRNpesQ837xz/+Ydon7KWXXtKMGTPszi4cOnSo9u3bJ0ny8vLS+++/r27dulXqnrfeequ8vb1Nx0aNGlVmSc/SbM0gK282WnUquQRj27ZtFRUVVaZPyX8DHh4eDu/rVp758+fr7rvvVlFRkSQpIyNDvXv3lsVicfjjgw8+uOw6AAAAYGax2lrMHqij9uzZY9qU+ccff1R0dLQLKwIAAM5WUFBgWj5Mktq3b2/aQweIiYlRYmKiU64VGRmp+++/Xw8++KAaN25c6fEzZszQq6++ajrWokULDRkyRM2aNVNOTo527NihxMRE+fn5adGiReUuiXf48GG1atWqzPFFixaZwojWrVsbodZ3331nBCTjxo1TXFycaWx2drZuuukmJSQkmI5369ZNffv2VWhoqNLT07V27Vrt3r1bbdu21RNPPKEpU6bYrDEqKkpJSUnl/K1ULDY2VrNmzXK4/7x58zRp0iSjPWnSJIdChYEDB5qet6MhYMn7VTY4LPk5bNWqlZKTkx0aZ+/H98LCQj322GOaM2eO0Sc0NFQ33HCDWrZsqZycHO3evVuJiYlGSBMWFqZPP/1U119/faVqLzZy5EjTUpxffPGFbr755nLHZGVlqXHjxsrJyTGOHTp0yKHw2dmuvPJK4/+S++67T++8806ZPrfeeqs+//xzSdI111yjzZs3X/Z9K/P5rkjp125V8f8qAADug/fP7eM7HwAAAABuz9PTUyEhIQoNDVVoaKjatWunvn376rrrrlPXrl3l6elZ5Wu/8sorGjhwoGJjY7VlyxZJ0tGjRzV//nyjj7e3t8aPH68XXnhBbdq0qdJ9xo0bp7lz5+qpp57SuXPndPjwYdOyj15eXpo8ebLeeOONMmMDAgL03Xff6c0339Trr79uLD23Y8cO7dixw+gXHBysJ598Un/9618rXKoRNcfT01P/+te/NHHiRMXGxmrlypU6e/asPv300zJ9IyMjNXnyZM2YMUMNGzas8j0nTJhghGUhISEaPnx4hWMCAwN14403avHixZIuBVCuCMpSUlJM4ZCt5RWLiopMQdTgwYNrojQAAAC4CDPLUK+QjAMAUP/xG/Coy3755Rdt2rRJJ06cUG5urkJDQxUVFaX+/fsrKCjIKfe4cOGC1q1bp3379ikjI0O+vr6KiorSgAEDFBkZWeH4wsJC7dq1S9u3b1daWpqsVqsaNWqkDh06qHfv3vxbqwMuXLigtWvX6siRI0pLS5Ovr68iIiLUuXNnde3alSU0YcL/qwAAuA/eP7eP73wAAAAAoIa0adOmyjPHHOXv769hw4Zp2LBhVRrv6emp7t27m/ZAQ93i7+9f5eUVAQAAAHfk4eoCAAAAAAAAAAAAAFchLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAQJ1isVjKHLNarS6oBACAuq+oqKjMMVv/1wIAANRnhGUAAACoUzw8yn4Lm5+f74JKAACo+woKCsocs/V/LQAAQH3Gdz8AAACoUywWi3x8fEzHsrKyXFQNAAB1W+n/Q318fJhZBgAA3A5hGQAAAOqcoKAgUzsjI4OlGAEAqCSr1aqMjAzTsdL/xwIAALgDwjIAAADUOaXfyMvPz1dKSgqBGQAADrJarUpJSSmzlHFwcLCLKgIAAHAdL1cXAAAAAFSWn5+fvL29TW/wZWZm6ueff1ZwcLACAwPl5eXFnisAAJRQVFSkgoICZWVlKSMjo0xQ5u3tLV9fXxdVBwAA4DqEZQAAAKhzLBaLmjVrpiNHjphmk+Xn5+vMmTM6c+aMC6sDAKDuKf6/lf3KAACAO+JXbQEAAFAn+fv7q2XLlrypBwDAZbJYLGrZsqX8/f1dXQoAAIBLEJYBAACgzioOzLy9vV1dCgAAdZK3tzdBGQAAcHsswwgAAIA6zd/fX23bttXFixeVkZGhzMxM5eXlubosAABqLR8fHwUFBSk4OFi+vr7M0gYAAG6PsAwAAAB1nsVikZ+fn/z8/NS4cWNZrVYVFRWZ9jMDAMDdWSwWeXh4EI4BAACUQlgGAACAesdiscjT09PVZQAAAAAAgDqAPcsAAAAAAAAAAADgtphZVgscOXJEGzduVHJysvLy8hQWFqbo6Gj17t1bPj4+LqurqKhImzdv1q5du3T69Gl5enqqefPmuvbaa3XVVVe5rC4AAAAAAAAAAABnISxzodWrV2vmzJlau3atzfMhISG699579fTTTys4OLjG6srLy9Mbb7yh2bNn68SJEzb7XH311Xr66ac1fvz4GqsLAAAAAAAAAADA2QjLXKCoqEiPP/643njjDePYVVddpX79+ik0NFQHDhzQ8uXLdf78eb366qtasGCBli1bpu7du1d7bcnJybrlllu0c+dOSZKHh4eGDh2q6Oho5eTkaNOmTdq+fbt2796tCRMmaPHixfrggw/UoEGDaq8NAAAAAAAAAADA2QjLXOCBBx7Qu+++K0ny9PTU3LlzNXXqVHl4/LaF3JEjRzR+/Hht2rRJR48e1eDBg/X999/r6quvrra6Tpw4oZiYGCUlJUmS2rdvr88++0zR0dGmfp999pnuvPNOXbhwQYsWLVJGRoa++uoreXnxcgIAAAAAAAAAAHWLR8Vd4Ezz5s0zgjJJeuedd3TfffeZgjJJatmypb755htdeeWVkqRz585pzJgxysnJqbba7rjjDiMoi4iIUGJiYpmgTJJuvfVWLVmyxGivXLlSsbGx1VYXAAAAAAAAAABAdSEsq0FZWVn629/+ZrT79eunKVOm2O0fHBysOXPmGO1Dhw5p9uzZ1VJbXFycEhMTjfaLL76opk2b2u1/ww036Pbbbzfar732mpKTk6ulNgAAAAAAAAAAgOpCWFaDXnvtNZ06dcpoP/rooxWOGT58uDp16mS0X375ZZ09e9apdRUUFOipp54y2uHh4frjH/9Y4biS9V+8eFHPPvusU+sCAAAAAAAAAACoboRlNcRqteq9994z2g0bNtSNN97o0Ng777zTeHzu3DktXLjQqbV99913OnTokNEeN26cvL29Kxx37bXXGstEStKCBQuUkZHh1NoAAAAAAAAAAACqE2FZDVm3bp2OHz9utPv27SsfHx+HxsbExJjaixcvdmZpZa43aNAgh8eWrC0vL09ffPGFs8oCAAAAAAAAAACodoRlNaR0iHTttdc6PLZ79+6mmV6JiYlOncH15ZdfVrm2nj17mtqEZQAAAAAAAAAAoC4hLKsh27dvN7U7duzo8Fg/Pz+1adPGaBcUFOjHH390Sl0pKSmmfdQaNGigVq1aOTw+Ojra1N6xY4dT6gIAAAAAAAAAAKgJhGU1ZM+ePab2FVdcUanxzZs3L/d6VVX6OqXvU5HS/X/++Wfl5uZedl0AAAAAAAAAAAA1gbCsBmRkZOjEiROmY5cbSu3bt++y67J1ncrW1bRpU3l4/PYyKioq0sGDB51SGwAAAAAAAAAAQHUjLKsB6enpZY4FBwdX6hql+589e/ayaipWurbK1uXl5aUGDRqYjjmrNgAAAAAAAAAAgOrm5eoC3EFmZmaZY76+vpW6hp+fX4XXrIrS16lsXdKl2rKzs+1es6pOnTql06dPV2rM3r17Te1Dhw45pRYAAAAAAAAAAOqy0u+XX7x40UWV1D6EZTXAVnhUOvyqSE2FZZWty9YYZ9X21ltvadasWZd1jdGjRzulFgAAAAAAAAAA6pOjR4+qR48eri6jVmAZxjrKarW6ugS7anNtAAAAAAAAAABAOnfunKtLqDUIy2pAUFBQmWO5ubmVukbp/rauWRWlr1PZumyNcVZtAAAAAAAAAACgemRkZLi6hFqDZRhrQGBgYJljFy9eVEBAgMPXqK5AqnRtVVmjtLpqe/DBBzVu3LhKjdmxY4fuvPNOox0XF6dOnTo5pR4AcIZDhw6Zloj9/PPP1a5dO9cVBAAl8DUKQG3H1ykAtRlfowDUdnv37tX48eON9jXXXOPCamoXwrIaEBYWVuZYRkaGzeP2lE54Q0NDL7suqWxtlU2SCwoKlJOTYzrmrNoaN26sxo0bX9Y1OnXqpOjoaKfUAwDVoV27dnydAlBr8TUKQG3H1ykAtRlfowDUdsHBwa4uodZgGcYaEBISoiZNmpiOpaSkVOoapft36NDhsuuydZ3K1nXixAkVFRUZbQ8PD7Vv394ptQEAAAAAAAAAAFQ3wrIa0rlzZ1P72LFjlRpfOsQqfb2qKn2dyw3x2rZtqwYNGlx2XQAAAAAAAAAAADWBsKyGdO/e3dTeu3evw2Nzc3P1yy+/GG1PT0+nhWXNmzdXRESE0c7JydHhw4cdHv/jjz+a2l27dnVKXQAAAAAAAAAAADWBsKyG3Hzzzab25s2bHR67fft25efnG+2BAwc6dS3Ry6mtdN9Ro0Y5pSYAAAAAAAAAAICaQFhWQ6677jo1bdrUaG/YsEF5eXkOjU1ISDC1x44d68zSylyv9P3KU7Kvj48PYRkAAAAAAAAAAKhTCMtqiIeHh6ZMmWK0z507p6+//tqhsf/73/+MxyEhIZowYYJTaxs6dKjatGljtBctWmSayWbP5s2bdeDAAaM9fvx4hYSEOLU2AAAAAAAAAACA6kRYVoP+8pe/mPYHe+ONNyocs3LlSu3Zs8doz5gxQ2FhYeWOOXPmjN59913NnTtXKSkpFd7D29tbL7zwgtFOS0vThx9+WOG4119/3Xjs4+Oj5557rsIxAAAAAAAAAAAAtQlhWQ0KCgrSP/7xD6O9Zs0a/fe//7XbPzMzU9OmTTPabdu21fTp08u9x9GjRxUdHa377rtPDz/8sDp16qRdu3ZVWNuECRPUv39/o/3EE0/oxIkTdvuvXLlSCxYsMNqPPvqoWrduXeF9AAAAAAAAAAAAahPCsho2ZcoU3XPPPUb7vvvu07vvvquioiJTvyNHjmjYsGHGMochISFasmSJ/P39y73+22+/rdTUVKOdkZGhV155pcK6LBaLPv30U7Vs2VKSdPr0aQ0cONA0q63Y559/rjFjxhjtoUOH6u9//3uF9wAAAAAAAAAAAKhtvFxdgDt69913FRAQoDlz5qiwsFD33XefXn/9dQ0YMEAhISE6ePCgli9frry8PElS8+bNtWzZMnXt2rXCa1ut1jLHSgdx9jRv3lwJCQkaNWqUfvzxRx08eFBdunTRsGHDFB0drZycHG3cuFHbt283xowZM0YfffSRvLx4KQEAAAAAAAAAgLqHhMMFPDw8NHv2bN18882aOXOm1q9fr/3792v//v2mfsHBwZo6daqeeeYZhYSEOHTt+++/X//97391+vRpSVJgYKBmzJjhcG2tW7fWli1b9Prrr2v27NlKTU3VypUrtXLlSlO/6OhoPf3007r99tsdvjYAAAAAAAAAAEBtQ1jmQkOHDtXQoUOVnJysDRs26MiRI8rLy1NoaKiio6PVp08f+fr6VuqaUVFR2rt3r5YsWaL8/HyNHj1aV1xxRaWu4evrqyeeeEIzZszQ5s2btXPnTqWlpcnT01PNmjXTtddeq44dO1bqmjUlIiJCM2fONLUBoDbh6xSA2oyvUQBqO75OAajN+BoFoLbj65R9FqutdfsAAAAAAAAAAAAAN+Dh6gIAAAAAAAAAAAAAVyEsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDbIiwDAAAAAAAAAACA2yIsAwAAAAAAAAAAgNsiLAMAAAAAAAAAAIDb8nJ1AYCzHDlyRBs3blRycrLy8vIUFham6Oho9e7dWz4+Pq4uDwAAoFJSUlK0detWHT9+XGfPnpW3t7dCQ0PVtm1bXXPNNQoMDHTavfLz87Vhwwbt2bNH6enp8vHxUcuWLdW7d29FRUU57T4S37MB9cXFixe1b98+/fTTTzp9+rQyMjLk5+enhg0b6qqrrlK3bt2c9nWKr1EAAACXh++nKkZYhjpv9erVmjlzptauXWvzfEhIiO699149/fTTCg4OruHqANQF77//vh5//HGdP39ekhQfH6+YmBinXZ9vSAA4av369YqLi9Nnn32mI0eO2O3n4eGhIUOG6OGHH9aoUaOqfL/MzEy98MIL+s9//qNz587Z7NO3b1/NmjVLQ4cOrfJ9JL5nA+qDHTt26LPPPtPq1av1ww8/KC8vz25fb29vjRgxQo888kiVv6/iaxQAZ7Narerfv7/WrVtnHJs4caLmz59/WdflZz4AjkhKSlLr1q2rPD4kJMTu90T28P2U4yxWq9Xq6iKAqigqKtLjjz+uN954wzh21VVXqV+/fgoNDdWBAwe0fPly5efnS5JatGihZcuWqXv37q4qGUAtk5ycrKlTp+rbb7/9/+3deXBV9f3/8VfIArIkhJ3KEmQJASEKVggKiZWlFSWUSoliSyCEVilYEKxS+g10BhwURdwIIorbCNYiRcUgWEhZREEkLEqVLZZNYJKQSNiS+/n94eT8OMlNcm/uTW5u7vMxkxk+J+/Pcpk5n3mf+845x3bcW8UyEhIArnr//fc1f/587dq1yzoWFBSkW265RX369FHz5s114cIFffPNN/rPf/6jS5cuWXHDhw/X8uXL1bp1a7fmzMrKUmJiorKzsyX9/y+2u3XrptzcXG3ZskXffvutFT916lQtWrRI9eq59yR3cjagbujWrZu+++4727Hw8HDFx8era9euatCggXJycvTFF19o9+7dtrgJEyYoPT1doaGhLs/HHgWgOqSnp+vBBx+0HfOkWMY1HwB31HSxjHzKTQbwU5MmTTKSjCQTHBxs0tPTTXFxsS0mOzvb9OvXz4pr2rSp2bt3r49WDKC2cDgc5sUXXzSNGze29odrfzZt2uTxHHv27DEdO3a0xgwNDTUjRowwM2bMMCkpKaZbt262OadOnVpmD3NFcXGxmTZtmm2s6Ohok5KSYmbMmGFGjBhhQkNDrd+1b9/e7N692+PPB8C7WrdubTuP4+PjzcGDB53Gnjx50owePdoW3717d/PDDz+4PN/+/ftNs2bNrP79+/c32dnZtpji4mKzZMkSExwcbMWlpKS4/dnI2YC64do9JygoyMyePdv8+OOPTmM///zzMrnOb37zG5fnYo8CUB1OnjxpIiIiylz/jRs3rkrjcc0HwF1Hjx51+j2Uqz8REREuz0U+5T6KZfBLr776qm2jWLZsWbmx58+ftyUoXbp0MYWFhTW4WgC1yXfffWfi4+OtPaFdu3amSZMmXi2WkZAAcNe1xbJf/OIX5sqVKxXGOxwOM3bsWNveNWzYMJfmunjxoomOjrYV2vLz88uNT09PdznvKo2cDag7rj2XFyxYUGn8iRMnTKtWrWz9Vq5cWWk/9igA1WXUqFFOv3yuSrGMaz4AVXFtsaw6kU9VDcUy+J2CggLbRdftt99eaZ+MjAzbSfvEE0/UwEoB1DbPPvusadiwobUXTJw40Zw/f97214CeFstISABURUmxLCQkxBw6dMilPnl5eSY8PNy2D2RkZFTab8GCBbY+GzdurDDe4XCYuLg4K75ly5YV7mslyNmAuqXkvOzWrZspKipyqc+TTz5pO6fj4+Mr7cMeBaA6rFmzxjp3S99d5m6xjGs+AFVVU8Uy8qmqoVgGv5OWlmY7oVavXu1Svx49etj+wiYnJ6eaVwqgtim5KIqKijIbNmywjnuzWEZCAqAqSoplgwcPdqtfamqq7bxOTk6uMD4nJ8c0bdrUiu/du7dL87z77ru2ef7v//6v0j7kbEDdUnJezp492+U+Bw4csO0DwcHBFRba2KMAVIf8/HzTrl07I8l06tTJzJw506NiGdd8AKqqJopl5FNV596b2gAfM8Zo2bJlVrtp06YaPny4S30feOAB6995eXlatWqV19cHoHarV6+eHnroIe3bt8/jlys7k5ubqyeeeMJq9+7dW3feeWeFfYKCgjRt2jSrffbsWS1cuLDSuRYuXKgzZ85Y7enTp1faZ9iwYerRo4fVXrBggXJzcyvtB6Dm3H777W7Fx8XF2drlvfC9xKpVq2wvhB47dqxL89xzzz22F8UvW7ZMxphy48nZgLpn+PDhGj58uIYOHepyn6ioKFu7uLhY586dKzeePQpAdXj88cd1/PhxSdKSJUvUsGHDKo/FNR+A2o58quoolsGvbNu2TSdPnrTaAwYMUFhYmEt9ExISbO333nvPm0sD4AcyMjL04osvqnHjxtUyPgkJgKpavXq1Nm3apEmTJrnVr23btrb26dOnK4wvnf/ccccdLs3ToEED9e/f32qfOnVK27ZtKzeenA2oez788EN9+OGHGjhwoMt9goKCyhyrX79+ufHsUQC8bceOHVqyZIkk6f7779ewYcM8Go9rPgC1HflU1VEsg19Zu3atrf3zn//c5b4333yzQkNDrXZmZqby8/O9tjYAtd+tt95areOTkACoqgEDBighIaFM8ctdDoej3N/l5+crMzPTaoeFhal3794uj116Dy2dl1X0O3I2IDD973//s7XbtGmjpk2bOo1ljwLgbVevXlVqaqocDociIyO1aNEij8fkmg9AbUY+5RmKZfArX331la0dExPjct8GDRrohhtusNpFRUXav3+/19YGILCRkADwhbNnz9raXbt2LTd23759Kioqsto33HBDhXd4lNazZ09be8+ePeXGkrMBkKQNGzbY2qNGjSo3lj0KgLctWLDAOj+feuoptWrVyqPxuOYDUNuRT3mGYhn8yoEDB2ztdu3audX/+uuvr3A8AKgqEhIAvrB3715bu6JHC9VkHkXOBuDHH3/UU089ZbUjIiL02GOPlRvPHgXAm7799lvNmzdPkhQfH68JEyZ4PCbXfAC8yeFwaN26dUpJSVFsbKwiIyMVGhqqyMhIdenSRSNGjNAzzzxT5k79ipBPeYZiGfxGfn6+Tp06ZTtW+qSqTOn4gwcPerwuAJBISAD4RkZGhvXvoKCgCr8IKp33eJpHnTx5UgUFBWXiyNkAnDlzRvfcc4+ys7MlSdddd51WrVql9u3bl9uHPQqAN/3hD3/QpUuXVL9+fS1dutTpOxTdxTUfAG/q06ePhg8frldffVV79+5VXl6eioqKlJeXp8OHD+uDDz7QI488os6dOyslJUU5OTmVjkk+5RmKZfAbzjaEa1+O6orS8bm5uR6tCQBKkJAAqGlffvml7a+Ek5KSFB0dXW586VzK0zxKcp5LkbMBgefSpUs6deqUPvnkE02bNk3du3fX5s2bJf30RdC2bdsqvPNVYo8C4D3Lly+39qDHH3+8wvzIHVzzAfCmrKwsRUZGatasWfr888919uxZXb58WcePH9e7775r5U5Xr17Vq6++qj59+lR4R6pEPuWpEF8vAHCVswTCndvdpZ9uRa9sTACoiupKSJo0aVLhPN6YqzYkJADcN3/+fOvf4eHhevLJJyuML533eJpHORuzvGPkbEDddOjQIafvSgwPD9eECROUlJSkwYMHu3RHB3sUAG/44YcfNHPmTElS9+7d9fjjj3ttbK75AHjT4MGD9dZbb6l169a249dff71Gjx6t0aNHa/ny5Zo0aZIcDoeys7P1y1/+Ul988YU6dOjgdEzyKc9QLIPfcHbCODuBK1IbT0IAdQMJCYCatHHjRq1evdpqL168uNLH85Q+1z3No5yNWd4xcjYgsOTn52vt2rXKy8vTjz/+qMTERNWrV/GDbdijAHjDww8/rNzcXAUFBenll19WWFiY18bmmg+Apxo2bKjExES1atVKixcv1nXXXVdhfEpKik6fPq3Zs2dL+ukPAu6//35t3brVaTz5lGd4DCMCmjHG10sAUEeQkACoKTk5ORo/frzVHj9+vJKTk6t9Xmd3htRULkXOBtROXbp0kTFGxhgVFBTo8OHDWrlypUaOHKmcnBytXr1ao0aNUp8+fbRr165qXQt7FIB169Zp1apVkn76gnngwIFeHZ9rPgCeatWqldasWaOXX3650kJZiUcffdT23tdt27bp448/rpb1BXo+RbEMfqP0benST8/Gd0fpeGdjAoAvBHpCAsA1RUVFSkpK0vHjxyVJgwYNUnp6ukt9S+c97uZRFy9erHTM8o6RswF1X+PGjXXDDTdozJgxev/997Vlyxb97Gc/k/TTOzkGDRqkjIyMcvuzRwHwxIULF/TQQw9Jklq3bl3p46l9gWs+AFURGhqq3//+97Zjy5cvdxpLPuUZimXwG40bNy5z7PLly26NURtPQgB1AwkJgJrw0EMPacOGDZKk3r17a82aNS4/Xqh0LuVpHiU53z/I2QBI0oABA7Ru3Trr7oaLFy9qzJgxOnLkiNN49igAnpg9e7ays7MlSc8++6wiIyO9PgfXfAB8pfSdsps2bZLD4SgTRz7lGYpl8BvNmjUrcyw/P9+tMUrHV0fyBCAwkZAAqG4zZszQsmXLJEkxMTHasGGDW7lM6VzK0zxKcp5LkbMBKBEbG6tJkyZZ7fz8fKWlpTmNZY8CUFW7du3S888/L0n61a9+paSkpGqZh2s+AL7Ss2dPWzsnJ0cnT54sE0c+5RmKZfAbERERatOmje3YiRMn3BqjdHz37t09XhcASCQkAKrXX/7yFz399NOSpF69eikzM1OtWrVya4zSeY+neVTbtm0VHh5eJo6cDcC1xo4da2v/4x//cHp3BXsUgKooKipSamqqiouL1bBhQ7300kvVNhfXfAB8xdk5fO7cuTLHyKc8Q7EMfuXGG2+0tUve1+Gq0idh6fEAoKpISABUl5kzZ1rv3ejVq5c+/fRTtWzZ0u1xajKPImcDUKJv374KCQmx2pcvX9auXbvKxLFHAaiKZ555Rnv27JEkzZ07V1FRUdU2F9d8AHzF2aP3nf3xEfmUZyiWwa/cfPPNtvbXX3/tct9Lly7Zno8fHBxcK05CAHUDCQmA6jB9+nQtXLhQkmeFspL+wcHBVvvw4cNuPdJn//79tnZsbGy5seRsAEoEBweXuUvi9OnTZeLYowBUxbp166x/z5w5U0FBQZX+zJ071zbG66+/7jRuxYoVtjiu+QD4irO7S5s3b17mGPmUZyiWwa/cc889tvbOnTtd7vvVV1/p6tWrVjs+Pt7pX/AAQFWQkADwtj//+c9atGiRJM8LZZIUHh6u+Ph4q3316lVlZWW53L903jVixIhyY8nZgLpl165d2rp1q06dOlWl/qVfQF+vXtmvItijANR2XPMB8MSOHTs0Z84cvfDCC273LV0wDwoKKnMHqkQ+5SmKZfArt912m9q2bWu1P/vsM125csWlvps3b7a17733Xm8uDUCAIyEB4E1TpkzR4sWLJbleKEtKSlJCQkKZv4K+Vun8p3R+VJ5Lly5px44dVrtNmza67bbbyo0nZwPqlnvvvVcDBw6s0ruALl68qNzcXNsxZ1/ulMxzLfYoAJXZvHmzjDFu/aSlpdnGGDdunNO45ORkWxzXfAA8sWPHDs2dO1ezZs1yu2/pR1jHxsaWe16TT1UdxTL4lXr16mnixIlWOy8vTx999JFLfd9++23r3xERERozZozX1wcgsJGQAPCUMUaTJ0+2/trQnTvKduzYoczMTB07dqzcmDFjxigiIsJqX5sfVeSDDz6wPfpj4sSJTu8MKUHOBtRN27Ztc7tPZmamiouLrXaDBg3KvZuCPQpAbcc1HwBPFRQUWO9adNV7771na991113lxpJPVR3FMvidmTNn2r4wKnk8UUXWr1+vAwcOWO1HH320zHPzAcBTJCQAPGGM0YMPPmjdueGNRy+W1qxZMz322GNWe+/evfr0008rXde1+Vbz5s01c+bMSuciZwPqnszMTNs56oqS9y6WuOuuu9S4cWOnsexRAGo7rvkAeMOSJUtcjv3qq6/0ySefWO2GDRtq6tSp5caTT3nAAH5o2bJlRpL188orr5Qbm5+fb7p162bFdu7c2Vy4cKEGVwugtuvYsaNtT9m0aVOVx3riiSdsY23cuLHCeIfDYeLi4qz45s2bm/Pnz1c6T35+vmnZsqXVb+DAgZX2ycjIsK1t3rx5Ln8uANXL4XCY1NRU6/y88cYbzZkzZ9wao2QvS0tLqzCusLDQdO3a1ZorJibGFBQUlBufnp5u2zvS09NdXhM5G1A3XJsr9e3b16VcxRhj5s2bZ9sDwsLCzMGDByvswx4FoLqlpaXZzv1x48a51Z9rPgBVsWjRIuvcDA4ONhkZGZX2ycnJMb169bKd10899VSl/cinqoZiGfxWSkqKbYNZunSpKS4utsVkZ2ebfv36WXERERFmz549PloxgNrKm8UyEhIA7nI4HLa8xtOfyoplxhizd+9e07RpU6tPXFycyc7OtsUUFxeb9PR0ExwcbMUlJye7/fnI2QD/VzpX6t69u1m/fr1xOBxO448fP26Sk5NtfYKDg82bb77p0nzsUQCqk6fFMq75AFTFtcUySaZ+/frm6aefNhcvXnQav3XrVtOjRw9bnwkTJrg8H/mU+yiWwW8VFxebqVOn2jaM6Ohok5qaambMmGESExNNWFiY9bvrr7/e7Nq1y9fLBlALebNYZgwJCQD3HD161GuFMleLZcYYs3v3btO+fXurX1hYmElMTDQzZ840EydONNHR0bZxJ0+ebIqKitz+fORsgP+bPn26adSoUZn9pn379ua3v/2teeSRR8xf//pXM3nyZHP77beb0NBQW1yHDh3MRx995Nac7FEAqounxTJjuOYD4L4tW7aYnj17lsmnIiMjTWJiopk+fbqZNWuWmThxYpkiWUhIiHnyySfL/UOl8pBPuYdiGfzehg0bzIABA8r9wig8PNw88sgjJi8vz9dLBeBjnnwh7eqXzyVISAC4ylfFMmOMycvLM48++qiJiIgod7z+/fub9evXe/w5ydkA/3b+/HmzbNkyM3LkSBMeHl7pXhQUFGT69etnnn/++Srf2cAeBcBTr732WrXlU1zzAaiKbdu2mWnTppXZI5z9tGjRwkyZMsUcOXKkyvORT7kuyBhjBNQB2dnZ+uyzz/T999/rypUrioyMVM+ePRUXF6f69ev7enkAaoFjx46pU6dOVeqblpamOXPmuNXn/Pnzmj9/vpYuXarz5887jenfv7/mzp2roUOHVmldJTZu3Ki0tDRt377d6e/Dw8OVmpqqv/3tb7YXUgOAJF25ckXbt2/XgQMHlJubq7CwMLVv315xcXGKiory6lzkbID/Ky4u1pEjR/TNN9/o5MmTys/P15UrV9S4cWM1bdpUXbp0Ue/evRUeHu6V+dijAFTVihUrNH78eLf7uXr9xzUfAE+cO3dO+/bt05EjR5Sbm6vLly8rIiJCLVq0UO/evRUTE6OgoCCvzEU+VTmKZQAAVDMSEgAAAACou7jmAwD/R7EMAAAAAAAAAAAAAauerxcAAAAAAAAAAAAA+ArFMgAAAAAAAAAAAAQsimUAAAAAAAAAAAAIWBTLAAAAAAAAAAAAELAolgEAAAAAAAAAACBgUSwDAAAAAAAAAABAwKJYBgAAAAAAAAAAgIBFsQwAAAAAAAAAAAABi2IZAAAAAAAAAAAAAhbFMgAAAAAAAAAAAAQsimUAAAAAAAAAAAAIWBTLAAAAAAAAAAAAELAolgEAAAAAAAAAACBgUSwDAAAAAAAAAABAwKJYBgAAAAAAAAAAgIBFsQwAAAAAAAAAAAABi2IZAAAAAAAAAAAAAhbFMgAAAAAAAAAAAAQsimUAAAAAAAAAAAAIWBTLAAAAAAAAAAAAELAolgEAAAAAAAAAACBgUSwDAAAAAAAAAABAwKJYBgAAAAAAAAAAgIAV4usFAAAAAABqj6tXr+qdd95RYWGhHnjgATVu3NjXSwIAAACAasWdZQAAAABQyyQnJysoKKhGflasWGGbe+TIkRo3bpwefPBBxcfH6+rVq775TwAAAACAGkKxDAAAAAAgSTp48KDWrVtntXfv3q1///vfPlwRAAAAAFQ/imUAAAAAUEt17NhRxpgKfzZt2uR2n6NHjzqdzxhT5pjD4aiWzwYAAAAAtQXFMgAAAACAJCkmJkbDhg2z2r169dKdd97pwxUBAAAAQPUL8fUCAAAAAAC1x9q1a/XOO++osLBQY8eOVVhYmK+XBAAAAADVimIZAAAAAMASFhamcePG+XoZAAAAAFBjKJYBAAAAQC3TuXNn9evXT23btq2W8evXr69+/fpJklq2bFktcwAAAACAvwgyzt7gDAAAAADwC5s3b9Ydd9xhtTt27Khjx475bkEAAAAA4Ge4swwAAAAAUK2MMdq2bZu+/PJLXbhwQS1atNCtt96qm266qcI+27dv1+7du1VQUKBmzZqpd+/e6tevn4KDgz1aj8Ph0M6dO/Xf//5XZ86ckSS1aNFCnTp1UlxcHO9pAwAAAAIMxTIAAAAACHAJCQnKzMx0+rtx48ZpxYoVZY6vWbNGv/71r8sds+QhJpmZmfrjH/+ogwcPlom56aab9OKLL2rAgAG24xkZGZoyZYoOHTpUpk+HDh20ePFijRw5soJP5FxOTo7mzZunN954Q+fOnXMa07BhQyUmJmru3Lnq2rWr23MAAAAA8D/1fL0AAAAAAEDd9O6772rw4MFOC2WStGfPHt1xxx368MMPrWMvvfSS7rrrLqeFMkn6/vvvNWrUKL3xxhtureXjjz9W586d9cwzz+jcuXMKDQ3V0KFDNX36dM2YMUOJiYlq1KiRCgsL9c4776hHjx5avHixW3MAAAAA8E+8swwAAAAA/Ji331l27NgxderUyWqXd2fZiRMntGXLFqv997//Xd98843V3rdvn2655RaFhIRozJgxuuWWW3Tdddfp0KFDeuutt5SdnW3FRkRE6PDhw8rKytKQIUMUEhKi0aNHa8CAAWrUqJEOHTqkN99809anSZMm+vbbb9WmTZtKP9Pbb7+t5ORkFRUVSZJuvfVWvf322+rSpYstLicnR5MnT9bKlSttn+tvf/tbpXMAAAAA8F8UywAAAADAj/mqWFZa6Uc5Dho0SKdPn9b69esVFRVliy0sLNSwYcO0detW69icOXP01ltv6cKFC/rkk0904403lukzZMgQbd++3To2b948zZo1q8J17dmzR3Fxcbp06ZIkqVu3btq5c6fCw8OdxjscDo0aNUr/+te/JEn16tXT5s2bNXDgwEr/DwAAAAD4Jx7DCAAAAADwus8++0xr164tUyiTfnov2AsvvGA7Nn/+fB06dEgrV64sUygr6fPcc8/Zjl37+MbyJCcnW4UySXr++efLLZRJPxXHXnjhBYWE/PSKb4fDoT/96U+VzgMAAADAf1EsAwAAAAB4XVJSkqKjo8v9fWxsrDp27Gi1r1y5ovj4eA0aNKjcPn379lW7du2s9t69e1XRw1I++ugjZWVlWe3o6GgNHTq00rW3a9dOQ4YMsc1z7V1wAAAAAOoWimUAAAAAAK8bOXJkpTHdu3e3tRMTEyvtExMTY/37woULKigoKDf2jTfesLXvvvvuSscvcdttt9na//znP13uCwAAAMC/UCwDAAAAAHhdbGxspTGRkZFu92nWrJmtnZ+fX27s5s2bbe3+/ftXOn6Jbt262dqff/65y30BAAAA+BeKZQAAAAAAr2vdunWlMfXr13e7T4MGDWztoqIip3GnTp3SmTNnbMc6d+5c6fglSr/X7NrHOQIAAACoW0J8vQAAAAAAQN3TqFEjt/s0bNjQa/OfO3euzLE+ffpUebzCwkJdunSpTLEOAAAAgP/jzjIAAAAAgNcFBQXVSJ/yVPR4xqrKy8vz+pgAAAAAfI87ywAAAAAAdU7pxyhK0nfffacuXbr4YDUAAAAAajPuLAMAAAAA1DktWrQoc6ygoMAHKwEAAABQ21EsAwAAAADUOW3btlWrVq1sx06cOOGj1QAAAACozSiWAQAAAADqpISEBFt7z549bvXPycnRypUrtXLlSn366afeWxgAAACAWoViGQAAAACgTvrd735na69du9at/q+//rruu+8+3XfffVq/fr03lwYAAACgFqFYBgAAAACok+6++27FxsZa7Z07d2r79u0u9b18+bKee+45SVK9evU0fvz4alkjAAAAAN+jWAYAAAAAqLNee+01NWjQwGqnpqYqNze30n4PP/ywjh07JklKTk5WTExMdS0RAAAAgI9RLAMAAAAA1Fk333yzXnnlFYWEhEiSvv76ayUkJGjnzp1O40+fPq2kpCQtXbpUktSzZ08tXry4xtYLAAAAoOYFGWOMrxcBAAAAAHDNsWPH1KlTJ5fj4+PjtXnz5gpjEhISlJmZ6dJ4R48eVVRUlFvr2LRpkxISEiRJUVFRys7OrrTPa6+9puTkZLf6pKWlac6cOU5/t2HDBiUlJSknJ8c6Fhsbq/79+6t58+YqLCzU/v37lZmZqatXr0qSBg4cqNWrV6tFixaVzg0AAADAf4X4egEAAAAAAFS3IUOG6MiRI1q4cKGWL1+uU6dOKSsrS1lZWWVi+/TpoylTpmjcuHEKCgrywWoBAAAA1CTuLAMAAAAABJysrCzt27dPZ8+eVWFhoZo0aaIOHTqob9++at++va+XBwAAAKAGUSwDAAAAAAAAAABAwKrn6wUAAAAAAAAAAAAAvkKxDAAAAAAAAAAAAAGLYhkAAAAAAAAAAAACFsUyAAAAAAAAAAAABCyKZQAAAAAAAAAAAAhYFMsAAAAAAAAAAAAQsCiWAQAAAAAAAAAAIGBRLAMAAAAAAAAAAEDAolgGAAAAAAAAAACAgEWxDAAAAAAAAAAAAAGLYhkAAAAAAAAAAAACFsUyAAAAAAAAAAAABCyKZQAAAAAAAAAAAAhYFMsAAAAAAAAAAAAQsCiWAQAAAAAAAAAAIGBRLAMAAAAAAAAAAEDAolgGAAAAAAAAAACAgEWxDAAAAAAAAAAAAAGLYhkAAAAAAAAAAAACFsUyAAAAAAAAAAAABCyKZQAAAAAAAAAAAAhYFMsAAAAAAAAAAAAQsCiWAQAAAAAAAAAAIGBRLAMAAAAAAAAAAEDAolgGAAAAAAAAAACAgEWxDAAAAAAAAAAAAAGLYhkAAAAAAAAAAAACFsUyAAAAAAAAAAAABCyKZQAAAAAAAAAAAAhYFMsAAAAAAAAAAAAQsCiWAQAAAAAAAAAAIGBRLAMAAAAAAAAAAEDAolgGAAAAAAAAAACAgEWxDAAAAAAAAAAAAAGLYhkAAAAAAAAAAAACFsUyAAAAAAAAAAAABCyKZQAAAAAAAAAAAAhY/w+IQsX7g2UGVwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "process_and_plot(fx_int)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's still not looking the best, but at least the two flows combine to equal the correct inlet volumetric flow. For this problem, since we know that the dynamics obey a certain form, a gray-box (or parameter tuning) approach may be best. Let's try that next.\n", + "\n", + "First, we need to instantiate a couple of Neural Networks: one to to approximate the missing tank area-height profile and another to act as a surrogate for an algebra solver:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Tank area - height profiles: These should map height to area. R^1 -> R^1.\n", + "tank_profile = blocks.MLP(insize=1, outsize=1, hsizes=[3],\n", + " linear_map=slim.maps['linear'],\n", + " nonlin=nn.Sigmoid)\n", + "\n", + "# Surrogate for algebra solver: This should map 'algebraic state indices' to len(state names). \n", + "algebra_solver = blocks.MLP(insize=4, outsize=1, hsizes=[3],\n", + " linear_map=slim.maps['linear'],\n", + " nonlin=nn.Sigmoid)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need a few objects to describe the layout of the system. Becase we're now doing a gray-box model, we need to create objects of sufficient granularity/detail to evolve the height and mass flow state variables. We'll construct two `MIMOTank` objects, a pump object, a manifold object, and a set of 'pipes' that connect these objects together. Beginning with the tanks and pump, we expect these to evolve according to some pre-defined physics. For example, we know that the tanks have some area-height profile, and therefore the height scales with flow rate. This physics is built into the `MIMOTank` class. Likewise, the we need an object to anchor the exogenous input of the pump. We handle this with a `SourceSink` object - this class does not evolve states, but serves to correctly account for the integration of the exogenous input into this networked system. Note that these objects take as arguments *in_keys* and *state_keys* as arguments. Each object modifies its *state_keys* based on a forward pass that takes as input *in_keys*." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Individual components:\n", + "tank_1 = physics.MIMOTank(state_keys=[\"h_1\"], in_keys=[\"h_1\"], profile= lambda x: 3.0) # assume known area-height profile\n", + "tank_2 = physics.MIMOTank(state_keys=[\"h_2\"], in_keys=[\"h_2\"], profile=tank_profile)\n", + "pump = physics.SourceSink(state_keys=[\"m\"], in_keys=[\"m\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The manifold acts to split the flow of water from the pump into the two streams. This is an algebraic relationship - we need to handle this accordingly in the gray-box model. The `SIMOConservationNode` class splits a single input into multiple outputs according to the surrogate algebra solver (a neural network in this case):" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Define algebraic agent:\n", + "manifold = physics.SIMOConservationNode(in_keys = [\"m\",\"h_1\",\"h_2\",\"m_1\",\"m_2\"], state_keys=[\"m_1\",\"m_2\"], solver=algebra_solver)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As with other networked systems, we combine these agents into a list for later:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Accumulate agents in list:\n", + "# index: 0 1 2 3 \n", + "agents = [pump, tank_1, tank_2, manifold]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The different agents are connected via `Pipe` couplings. Just like real pipes in a fluid system, these transport flows from one node in the network to another. Here, we have three fluid streams that need to be defined: (i) from the pump to the manifold, (ii) from the manifld to tank #1, and (iii) from the manifold to tank #2:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "couplings = []\n", + "# Couple w/ pipes:\n", + "couplings.append(physics.Pipe(in_keys = [\"m\"], pins = [[0,3]])) # Pump -> Manifold\n", + "couplings.append(physics.Pipe(in_keys = [\"m_1\"], pins = [[3,1]])) # Manifold -> tank_1\n", + "couplings.append(physics.Pipe(in_keys = [\"m_2\"], pins = [[3,2]])) # Manifold -> tank_2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The agents and couplings are aggregated via the `GeneralNetworkedODE` and `GeneralNetworkedAE` classes:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "model_ode = ode.GeneralNetworkedODE(\n", + " states=states,\n", + " agents=agents,\n", + " couplings=couplings,\n", + " insize=nx+nu,\n", + " outsize=nx,\n", + ")\n", + "\n", + "model_algebra = ode.GeneralNetworkedAE(\n", + " states=states,\n", + " agents=agents,\n", + " insize=nx+nu,\n", + " outsize=nx,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can put all of the pieces together to form a complete model:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# Construct the new timestepper:\n", + "fx_dae = integrators.EulerDAE(model_ode,algebra=model_algebra,h=1.0)\n", + "dynamics_model = System([Node(fx_dae,['xn','U'],['xn'])])\n", + "\n", + "# construct constrained optimization problem\n", + "problem = Problem([dynamics_model], loss)\n", + "optimizer = torch.optim.Adam(problem.parameters(), lr=0.005)\n", + "\n", + "trainer = Trainer(\n", + " problem,\n", + " train_loader,\n", + " dev_loader,\n", + " test_loader,\n", + " optimizer,\n", + " epochs=10000,\n", + " patience=50,\n", + " warmup=50,\n", + " eval_metric=\"dev_loss\",\n", + " train_metric=\"train_loss\",\n", + " dev_metric=\"dev_loss\",\n", + " test_metric=\"dev_loss\",\n", + " logger=None,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 0 train_loss: 310.34918212890625\n", + "epoch: 1 train_loss: 278.7632141113281\n", + "epoch: 2 train_loss: 251.16856384277344\n", + "epoch: 3 train_loss: 226.94677734375\n", + "epoch: 4 train_loss: 205.60923767089844\n", + "epoch: 5 train_loss: 186.73086547851562\n", + "epoch: 6 train_loss: 169.94625854492188\n", + "epoch: 7 train_loss: 154.9827117919922\n", + "epoch: 8 train_loss: 141.59767150878906\n", + "epoch: 9 train_loss: 129.58682250976562\n", + "epoch: 10 train_loss: 118.76676177978516\n", + "epoch: 11 train_loss: 108.98588562011719\n", + "epoch: 12 train_loss: 100.13383483886719\n", + "epoch: 13 train_loss: 92.10533142089844\n", + "epoch: 14 train_loss: 84.80810546875\n", + "epoch: 15 train_loss: 78.16185760498047\n", + "epoch: 16 train_loss: 72.09599304199219\n", + "epoch: 17 train_loss: 66.53936767578125\n", + "epoch: 18 train_loss: 61.44959259033203\n", + "epoch: 19 train_loss: 56.77900695800781\n", + "epoch: 20 train_loss: 52.48501968383789\n", + "epoch: 21 train_loss: 48.52889633178711\n", + "epoch: 22 train_loss: 44.870033264160156\n", + "epoch: 23 train_loss: 41.475059509277344\n", + "epoch: 24 train_loss: 38.32192611694336\n", + "epoch: 25 train_loss: 35.38561248779297\n", + "epoch: 26 train_loss: 32.645206451416016\n", + "epoch: 27 train_loss: 30.08372688293457\n", + "epoch: 28 train_loss: 27.679405212402344\n", + "epoch: 29 train_loss: 25.428281784057617\n", + "epoch: 30 train_loss: 23.321760177612305\n", + "epoch: 31 train_loss: 21.350820541381836\n", + "epoch: 32 train_loss: 19.506925582885742\n", + "epoch: 33 train_loss: 17.78190803527832\n", + "epoch: 34 train_loss: 16.167821884155273\n", + "epoch: 35 train_loss: 14.656911849975586\n", + "epoch: 36 train_loss: 13.241521835327148\n", + "epoch: 37 train_loss: 11.914067268371582\n", + "epoch: 38 train_loss: 10.666985511779785\n", + "epoch: 39 train_loss: 9.494424819946289\n", + "epoch: 40 train_loss: 8.391968727111816\n", + "epoch: 41 train_loss: 7.352851390838623\n", + "epoch: 42 train_loss: 6.368514060974121\n", + "epoch: 43 train_loss: 5.42940092086792\n", + "epoch: 44 train_loss: 4.5264692306518555\n", + "epoch: 45 train_loss: 3.6541149616241455\n", + "epoch: 46 train_loss: 2.815234422683716\n", + "epoch: 47 train_loss: 2.0280163288116455\n", + "epoch: 48 train_loss: 1.330116629600525\n", + "epoch: 49 train_loss: 0.7708384394645691\n", + "epoch: 50 train_loss: 0.3861827254295349\n", + "epoch: 51 train_loss: 0.17397838830947876\n", + "epoch: 52 train_loss: 0.09699569642543793\n", + "epoch: 53 train_loss: 0.1081891655921936\n", + "epoch: 54 train_loss: 0.16892164945602417\n", + "epoch: 55 train_loss: 0.2523648738861084\n", + "epoch: 56 train_loss: 0.3408310115337372\n", + "epoch: 57 train_loss: 0.422980397939682\n", + "epoch: 58 train_loss: 0.4919993579387665\n", + "epoch: 59 train_loss: 0.5444023609161377\n", + "epoch: 60 train_loss: 0.5790879130363464\n", + "epoch: 61 train_loss: 0.5965725183486938\n", + "epoch: 62 train_loss: 0.5984019041061401\n", + "epoch: 63 train_loss: 0.5867007374763489\n", + "epoch: 64 train_loss: 0.5638631582260132\n", + "epoch: 65 train_loss: 0.5323379039764404\n", + "epoch: 66 train_loss: 0.49448856711387634\n", + "epoch: 67 train_loss: 0.45250988006591797\n", + "epoch: 68 train_loss: 0.40837129950523376\n", + "epoch: 69 train_loss: 0.3637804090976715\n", + "epoch: 70 train_loss: 0.3201821744441986\n", + "epoch: 71 train_loss: 0.2787443995475769\n", + "epoch: 72 train_loss: 0.24037311971187592\n", + "epoch: 73 train_loss: 0.20572249591350555\n", + "epoch: 74 train_loss: 0.17521321773529053\n", + "epoch: 75 train_loss: 0.14905521273612976\n", + "epoch: 76 train_loss: 0.12727424502372742\n", + "epoch: 77 train_loss: 0.1097370907664299\n", + "epoch: 78 train_loss: 0.09618070721626282\n", + "epoch: 79 train_loss: 0.0862429141998291\n", + "epoch: 80 train_loss: 0.07948935031890869\n", + "epoch: 81 train_loss: 0.07544191181659698\n", + "epoch: 82 train_loss: 0.07360325753688812\n", + "epoch: 83 train_loss: 0.07348096370697021\n", + "epoch: 84 train_loss: 0.07460533827543259\n", + "epoch: 85 train_loss: 0.07654593884944916\n", + "epoch: 86 train_loss: 0.07892265170812607\n", + "epoch: 87 train_loss: 0.0814141184091568\n", + "epoch: 88 train_loss: 0.08376049250364304\n", + "epoch: 89 train_loss: 0.08576492965221405\n", + "epoch: 90 train_loss: 0.0872909277677536\n", + "epoch: 91 train_loss: 0.08825743943452835\n", + "epoch: 92 train_loss: 0.08863212168216705\n", + "epoch: 93 train_loss: 0.08842442184686661\n", + "epoch: 94 train_loss: 0.08767688274383545\n", + "epoch: 95 train_loss: 0.0864558219909668\n", + "epoch: 96 train_loss: 0.08484511077404022\n", + "epoch: 97 train_loss: 0.0829378217458725\n", + "epoch: 98 train_loss: 0.08082867413759232\n", + "epoch: 99 train_loss: 0.07861055433750153\n", + "epoch: 100 train_loss: 0.0763680636882782\n", + "epoch: 101 train_loss: 0.07417610287666321\n", + "epoch: 102 train_loss: 0.0720960721373558\n", + "epoch: 103 train_loss: 0.07017581164836884\n", + "epoch: 104 train_loss: 0.06844905018806458\n", + "epoch: 105 train_loss: 0.06693567335605621\n", + "epoch: 106 train_loss: 0.06564339995384216\n", + "epoch: 107 train_loss: 0.06456857919692993\n", + "epoch: 108 train_loss: 0.063698910176754\n", + "epoch: 109 train_loss: 0.06301514804363251\n", + "epoch: 110 train_loss: 0.06249268352985382\n", + "epoch: 111 train_loss: 0.06210440397262573\n", + "epoch: 112 train_loss: 0.06182198226451874\n", + "epoch: 113 train_loss: 0.06161782145500183\n", + "epoch: 114 train_loss: 0.06146524101495743\n", + "epoch: 115 train_loss: 0.06134171411395073\n", + "epoch: 116 train_loss: 0.061226725578308105\n", + "epoch: 117 train_loss: 0.06110464781522751\n", + "epoch: 118 train_loss: 0.06096342206001282\n", + "epoch: 119 train_loss: 0.0607948899269104\n", + "epoch: 120 train_loss: 0.06059473752975464\n", + "epoch: 121 train_loss: 0.06036147475242615\n", + "epoch: 122 train_loss: 0.06009626388549805\n", + "epoch: 123 train_loss: 0.05980285629630089\n", + "epoch: 124 train_loss: 0.059485919773578644\n", + "epoch: 125 train_loss: 0.05915103852748871\n", + "epoch: 126 train_loss: 0.058804430067539215\n", + "epoch: 127 train_loss: 0.05845241993665695\n", + "epoch: 128 train_loss: 0.05810078978538513\n", + "epoch: 129 train_loss: 0.05775422602891922\n", + "epoch: 130 train_loss: 0.05741707235574722\n", + "epoch: 131 train_loss: 0.05709235370159149\n", + "epoch: 132 train_loss: 0.056782566010951996\n", + "epoch: 133 train_loss: 0.0564885251224041\n", + "epoch: 134 train_loss: 0.056210801005363464\n", + "epoch: 135 train_loss: 0.055948901921510696\n", + "epoch: 136 train_loss: 0.05570171773433685\n", + "epoch: 137 train_loss: 0.055467747151851654\n", + "epoch: 138 train_loss: 0.05524507910013199\n", + "epoch: 139 train_loss: 0.055031850934028625\n", + "epoch: 140 train_loss: 0.05482623726129532\n", + "epoch: 141 train_loss: 0.05462607741355896\n", + "epoch: 142 train_loss: 0.05442988872528076\n", + "epoch: 143 train_loss: 0.05423607677221298\n", + "epoch: 144 train_loss: 0.05404377728700638\n", + "epoch: 145 train_loss: 0.05385160446166992\n", + "epoch: 146 train_loss: 0.053659431636333466\n", + "epoch: 147 train_loss: 0.05346684157848358\n", + "epoch: 148 train_loss: 0.05327369272708893\n", + "epoch: 149 train_loss: 0.053080253303050995\n", + "epoch: 150 train_loss: 0.052886560559272766\n", + "epoch: 151 train_loss: 0.05269341170787811\n", + "epoch: 152 train_loss: 0.05250067636370659\n", + "epoch: 153 train_loss: 0.052309148013591766\n", + "epoch: 154 train_loss: 0.05211927741765976\n", + "epoch: 155 train_loss: 0.051931232213974\n", + "epoch: 156 train_loss: 0.05174538865685463\n", + "epoch: 157 train_loss: 0.0515621118247509\n", + "epoch: 158 train_loss: 0.05138155445456505\n", + "epoch: 159 train_loss: 0.051203686743974686\n", + "epoch: 160 train_loss: 0.051028426736593246\n", + "epoch: 161 train_loss: 0.05085586756467819\n", + "epoch: 162 train_loss: 0.05068597570061684\n", + "epoch: 163 train_loss: 0.0505184642970562\n", + "epoch: 164 train_loss: 0.05035320296883583\n", + "epoch: 165 train_loss: 0.05019010603427887\n", + "epoch: 166 train_loss: 0.050028931349515915\n", + "epoch: 167 train_loss: 0.04986942559480667\n", + "epoch: 168 train_loss: 0.04971170425415039\n", + "epoch: 169 train_loss: 0.04955543577671051\n", + "epoch: 170 train_loss: 0.04940061271190643\n", + "epoch: 171 train_loss: 0.04924696683883667\n", + "epoch: 172 train_loss: 0.04909476637840271\n", + "epoch: 173 train_loss: 0.04894375801086426\n", + "epoch: 174 train_loss: 0.04879404231905937\n", + "epoch: 175 train_loss: 0.0486455112695694\n", + "epoch: 176 train_loss: 0.048498231917619705\n", + "epoch: 177 train_loss: 0.04835224151611328\n", + "epoch: 178 train_loss: 0.04820764809846878\n", + "epoch: 179 train_loss: 0.04806429147720337\n", + "epoch: 180 train_loss: 0.047922275960445404\n", + "epoch: 181 train_loss: 0.04778169095516205\n", + "epoch: 182 train_loss: 0.047642339020967484\n", + "epoch: 183 train_loss: 0.047504425048828125\n", + "epoch: 184 train_loss: 0.04736798256635666\n", + "epoch: 185 train_loss: 0.04723263904452324\n", + "epoch: 186 train_loss: 0.047098856419324875\n", + "epoch: 187 train_loss: 0.04696619138121605\n", + "epoch: 188 train_loss: 0.04683496057987213\n", + "epoch: 189 train_loss: 0.0467047356069088\n", + "epoch: 190 train_loss: 0.04657597467303276\n", + "epoch: 191 train_loss: 0.046448372304439545\n", + "epoch: 192 train_loss: 0.04632185399532318\n", + "epoch: 193 train_loss: 0.04619651660323143\n", + "epoch: 194 train_loss: 0.046072375029325485\n", + "epoch: 195 train_loss: 0.0459493026137352\n", + "epoch: 196 train_loss: 0.045827314257621765\n", + "epoch: 197 train_loss: 0.04570644721388817\n", + "epoch: 198 train_loss: 0.04558660462498665\n", + "epoch: 199 train_loss: 0.045467935502529144\n", + "epoch: 200 train_loss: 0.045350152999162674\n", + "epoch: 201 train_loss: 0.04523352161049843\n", + "epoch: 202 train_loss: 0.04511793330311775\n", + "epoch: 203 train_loss: 0.04500340670347214\n", + "epoch: 204 train_loss: 0.0448899082839489\n", + "epoch: 205 train_loss: 0.044777341187000275\n", + "epoch: 206 train_loss: 0.04466589540243149\n", + "epoch: 207 train_loss: 0.04455535486340523\n", + "epoch: 208 train_loss: 0.04444582015275955\n", + "epoch: 209 train_loss: 0.044337280094623566\n", + "epoch: 210 train_loss: 0.04422975331544876\n", + "epoch: 211 train_loss: 0.04412321746349335\n", + "epoch: 212 train_loss: 0.044017523527145386\n", + "epoch: 213 train_loss: 0.0439128652215004\n", + "epoch: 214 train_loss: 0.04380914568901062\n", + "epoch: 215 train_loss: 0.04370638728141785\n", + "epoch: 216 train_loss: 0.04360441118478775\n", + "epoch: 217 train_loss: 0.04350343346595764\n", + "epoch: 218 train_loss: 0.043403394520282745\n", + "epoch: 219 train_loss: 0.04330418258905411\n", + "epoch: 220 train_loss: 0.04320592060685158\n", + "epoch: 221 train_loss: 0.043108467012643814\n", + "epoch: 222 train_loss: 0.04301192983984947\n", + "epoch: 223 train_loss: 0.04291630536317825\n", + "epoch: 224 train_loss: 0.042821381241083145\n", + "epoch: 225 train_loss: 0.04272741451859474\n", + "epoch: 226 train_loss: 0.0426342599093914\n", + "epoch: 227 train_loss: 0.04254201799631119\n", + "epoch: 228 train_loss: 0.04245052486658096\n", + "epoch: 229 train_loss: 0.042359858751297\n", + "epoch: 230 train_loss: 0.04227002337574959\n", + "epoch: 231 train_loss: 0.042181048542261124\n", + "epoch: 232 train_loss: 0.042092882096767426\n", + "epoch: 233 train_loss: 0.042005378752946854\n", + "epoch: 234 train_loss: 0.04191885516047478\n", + "epoch: 235 train_loss: 0.04183296114206314\n", + "epoch: 236 train_loss: 0.04174800217151642\n", + "epoch: 237 train_loss: 0.041663769632577896\n", + "epoch: 238 train_loss: 0.04158029705286026\n", + "epoch: 239 train_loss: 0.0414976067841053\n", + "epoch: 240 train_loss: 0.04141563922166824\n", + "epoch: 241 train_loss: 0.04133451730012894\n", + "epoch: 242 train_loss: 0.04125409200787544\n", + "epoch: 243 train_loss: 0.04117445647716522\n", + "epoch: 244 train_loss: 0.0410955473780632\n", + "epoch: 245 train_loss: 0.04101740941405296\n", + "epoch: 246 train_loss: 0.040939994156360626\n", + "epoch: 247 train_loss: 0.040863268077373505\n", + "epoch: 248 train_loss: 0.04078729823231697\n", + "epoch: 249 train_loss: 0.04071202129125595\n", + "epoch: 250 train_loss: 0.04063746705651283\n", + "epoch: 251 train_loss: 0.040563710033893585\n", + "epoch: 252 train_loss: 0.040490638464689255\n", + "epoch: 253 train_loss: 0.04041823372244835\n", + "epoch: 254 train_loss: 0.04034659266471863\n", + "epoch: 255 train_loss: 0.04027555510401726\n", + "epoch: 256 train_loss: 0.04020533710718155\n", + "epoch: 257 train_loss: 0.04013580083847046\n", + "epoch: 258 train_loss: 0.040066927671432495\n", + "epoch: 259 train_loss: 0.03999874368309975\n", + "epoch: 260 train_loss: 0.039931200444698334\n", + "epoch: 261 train_loss: 0.03986433893442154\n", + "epoch: 262 train_loss: 0.03979823365807533\n", + "epoch: 263 train_loss: 0.03973270207643509\n", + "epoch: 264 train_loss: 0.03966793045401573\n", + "epoch: 265 train_loss: 0.03960379585623741\n", + "epoch: 266 train_loss: 0.03954032063484192\n", + "epoch: 267 train_loss: 0.03947748243808746\n", + "epoch: 268 train_loss: 0.03941535949707031\n", + "epoch: 269 train_loss: 0.03935389220714569\n", + "epoch: 270 train_loss: 0.039293039590120316\n", + "epoch: 271 train_loss: 0.03923282399773598\n", + "epoch: 272 train_loss: 0.03917330875992775\n", + "epoch: 273 train_loss: 0.039114419370889664\n", + "epoch: 274 train_loss: 0.039056144654750824\n", + "epoch: 275 train_loss: 0.03899852931499481\n", + "epoch: 276 train_loss: 0.038941558450460434\n", + "epoch: 277 train_loss: 0.038885194808244705\n", + "epoch: 278 train_loss: 0.038829438388347626\n", + "epoch: 279 train_loss: 0.038774363696575165\n", + "epoch: 280 train_loss: 0.038719918578863144\n", + "epoch: 281 train_loss: 0.038666024804115295\n", + "epoch: 282 train_loss: 0.03861280903220177\n", + "epoch: 283 train_loss: 0.0385601744055748\n", + "epoch: 284 train_loss: 0.038508232682943344\n", + "epoch: 285 train_loss: 0.03845677152276039\n", + "epoch: 286 train_loss: 0.03840600699186325\n", + "epoch: 287 train_loss: 0.03835582733154297\n", + "epoch: 288 train_loss: 0.03830620273947716\n", + "epoch: 289 train_loss: 0.038257256150245667\n", + "epoch: 290 train_loss: 0.038208846002817154\n", + "epoch: 291 train_loss: 0.03816103935241699\n", + "epoch: 292 train_loss: 0.038113851100206375\n", + "epoch: 293 train_loss: 0.03806721791625023\n", + "epoch: 294 train_loss: 0.03802118077874184\n", + "epoch: 295 train_loss: 0.037975750863552094\n", + "epoch: 296 train_loss: 0.03793082386255264\n", + "epoch: 297 train_loss: 0.03788656368851662\n", + "epoch: 298 train_loss: 0.037842798978090286\n", + "epoch: 299 train_loss: 0.037799593061208725\n", + "epoch: 300 train_loss: 0.03775704279541969\n", + "epoch: 301 train_loss: 0.03771496191620827\n", + "epoch: 302 train_loss: 0.037673499435186386\n", + "epoch: 303 train_loss: 0.037632543593645096\n", + "epoch: 304 train_loss: 0.03759221360087395\n", + "epoch: 305 train_loss: 0.03755234181880951\n", + "epoch: 306 train_loss: 0.037513088434934616\n", + "epoch: 307 train_loss: 0.03747435659170151\n", + "epoch: 308 train_loss: 0.03743612766265869\n", + "epoch: 309 train_loss: 0.037398483604192734\n", + "epoch: 310 train_loss: 0.03736136481165886\n", + "epoch: 311 train_loss: 0.03732474520802498\n", + "epoch: 312 train_loss: 0.03728864714503288\n", + "epoch: 313 train_loss: 0.03725311532616615\n", + "epoch: 314 train_loss: 0.03721803054213524\n", + "epoch: 315 train_loss: 0.03718353062868118\n", + "epoch: 316 train_loss: 0.037149444222450256\n", + "epoch: 317 train_loss: 0.03711593896150589\n", + "epoch: 318 train_loss: 0.03708289936184883\n", + "epoch: 319 train_loss: 0.03705039620399475\n", + "epoch: 320 train_loss: 0.03701838105916977\n", + "epoch: 321 train_loss: 0.03698686510324478\n", + "epoch: 322 train_loss: 0.036955758929252625\n", + "epoch: 323 train_loss: 0.03692521154880524\n", + "epoch: 324 train_loss: 0.036895062774419785\n", + "epoch: 325 train_loss: 0.03686545416712761\n", + "epoch: 326 train_loss: 0.03683628886938095\n", + "epoch: 327 train_loss: 0.036807604134082794\n", + "epoch: 328 train_loss: 0.036779388785362244\n", + "epoch: 329 train_loss: 0.03675156831741333\n", + "epoch: 330 train_loss: 0.03672423213720322\n", + "epoch: 331 train_loss: 0.03669733926653862\n", + "epoch: 332 train_loss: 0.03667091578245163\n", + "epoch: 333 train_loss: 0.036644890904426575\n", + "epoch: 334 train_loss: 0.036619313061237335\n", + "epoch: 335 train_loss: 0.036594144999980927\n", + "epoch: 336 train_loss: 0.036569442600011826\n", + "epoch: 337 train_loss: 0.03654509037733078\n", + "epoch: 338 train_loss: 0.03652122616767883\n", + "epoch: 339 train_loss: 0.036497704684734344\n", + "epoch: 340 train_loss: 0.036474596709012985\n", + "epoch: 341 train_loss: 0.036451924592256546\n", + "epoch: 342 train_loss: 0.03642963618040085\n", + "epoch: 343 train_loss: 0.0364077165722847\n", + "epoch: 344 train_loss: 0.036386165767908096\n", + "epoch: 345 train_loss: 0.03636501729488373\n", + "epoch: 346 train_loss: 0.03634423762559891\n", + "epoch: 347 train_loss: 0.03632383793592453\n", + "epoch: 348 train_loss: 0.03630378842353821\n", + "epoch: 349 train_loss: 0.036284107714891434\n", + "epoch: 350 train_loss: 0.03626474738121033\n", + "epoch: 351 train_loss: 0.03624578192830086\n", + "epoch: 352 train_loss: 0.03622710704803467\n", + "epoch: 353 train_loss: 0.03620878979563713\n", + "epoch: 354 train_loss: 0.036190830171108246\n", + "epoch: 355 train_loss: 0.03617316111922264\n", + "epoch: 356 train_loss: 0.03615580499172211\n", + "epoch: 357 train_loss: 0.03613882511854172\n", + "epoch: 358 train_loss: 0.03612210229039192\n", + "epoch: 359 train_loss: 0.03610572963953018\n", + "epoch: 360 train_loss: 0.03608959913253784\n", + "epoch: 361 train_loss: 0.03607381507754326\n", + "epoch: 362 train_loss: 0.036058276891708374\n", + "epoch: 363 train_loss: 0.03604309633374214\n", + "epoch: 364 train_loss: 0.036028116941452026\n", + "epoch: 365 train_loss: 0.03601350262761116\n", + "epoch: 366 train_loss: 0.035999104380607605\n", + "epoch: 367 train_loss: 0.035984959453344345\n", + "epoch: 368 train_loss: 0.03597109764814377\n", + "epoch: 369 train_loss: 0.035957496613264084\n", + "epoch: 370 train_loss: 0.0359441414475441\n", + "epoch: 371 train_loss: 0.03593098744750023\n", + "epoch: 372 train_loss: 0.03591816499829292\n", + "epoch: 373 train_loss: 0.03590549901127815\n", + "epoch: 374 train_loss: 0.035893090069293976\n", + "epoch: 375 train_loss: 0.0358809232711792\n", + "epoch: 376 train_loss: 0.03586898744106293\n", + "epoch: 377 train_loss: 0.03585723787546158\n", + "epoch: 378 train_loss: 0.03584570810198784\n", + "epoch: 379 train_loss: 0.035834405571222305\n", + "epoch: 380 train_loss: 0.03582330420613289\n", + "epoch: 381 train_loss: 0.035812392830848694\n", + "epoch: 382 train_loss: 0.03580165654420853\n", + "epoch: 383 train_loss: 0.03579116240143776\n", + "epoch: 384 train_loss: 0.03578084334731102\n", + "epoch: 385 train_loss: 0.03577068820595741\n", + "epoch: 386 train_loss: 0.03576071560382843\n", + "epoch: 387 train_loss: 0.035750921815633774\n", + "epoch: 388 train_loss: 0.03574126213788986\n", + "epoch: 389 train_loss: 0.035731811076402664\n", + "epoch: 390 train_loss: 0.035722505301237106\n", + "epoch: 391 train_loss: 0.03571336716413498\n", + "epoch: 392 train_loss: 0.03570438548922539\n", + "epoch: 393 train_loss: 0.035695549100637436\n", + "epoch: 394 train_loss: 0.03568687289953232\n", + "epoch: 395 train_loss: 0.035678330808877945\n", + "epoch: 396 train_loss: 0.035669904202222824\n", + "epoch: 397 train_loss: 0.03566165268421173\n", + "epoch: 398 train_loss: 0.03565351665019989\n", + "epoch: 399 train_loss: 0.03564552217721939\n", + "epoch: 400 train_loss: 0.03563762456178665\n", + "epoch: 401 train_loss: 0.03562987223267555\n", + "epoch: 402 train_loss: 0.03562222793698311\n", + "epoch: 403 train_loss: 0.03561469912528992\n", + "epoch: 404 train_loss: 0.03560730069875717\n", + "epoch: 405 train_loss: 0.03560000658035278\n", + "epoch: 406 train_loss: 0.03559281304478645\n", + "epoch: 407 train_loss: 0.035585738718509674\n", + "epoch: 408 train_loss: 0.03557874634861946\n", + "epoch: 409 train_loss: 0.03557185083627701\n", + "epoch: 410 train_loss: 0.035565078258514404\n", + "epoch: 411 train_loss: 0.03555835783481598\n", + "epoch: 412 train_loss: 0.035551767796278\n", + "epoch: 413 train_loss: 0.035545218735933304\n", + "epoch: 414 train_loss: 0.035538800060749054\n", + "epoch: 415 train_loss: 0.03553241491317749\n", + "epoch: 416 train_loss: 0.035526175051927567\n", + "epoch: 417 train_loss: 0.03551997244358063\n", + "epoch: 418 train_loss: 0.035513848066329956\n", + "epoch: 419 train_loss: 0.03550780937075615\n", + "epoch: 420 train_loss: 0.03550182655453682\n", + "epoch: 421 train_loss: 0.035495907068252563\n", + "epoch: 422 train_loss: 0.03549007698893547\n", + "epoch: 423 train_loss: 0.03548429533839226\n", + "epoch: 424 train_loss: 0.03547857701778412\n", + "epoch: 425 train_loss: 0.03547292575240135\n", + "epoch: 426 train_loss: 0.03546735644340515\n", + "epoch: 427 train_loss: 0.03546181321144104\n", + "epoch: 428 train_loss: 0.035456329584121704\n", + "epoch: 429 train_loss: 0.03545092046260834\n", + "epoch: 430 train_loss: 0.03544556722044945\n", + "epoch: 431 train_loss: 0.035440217703580856\n", + "epoch: 432 train_loss: 0.035434942692518234\n", + "epoch: 433 train_loss: 0.0354297049343586\n", + "epoch: 434 train_loss: 0.035424549132585526\n", + "epoch: 435 train_loss: 0.03541941940784454\n", + "epoch: 436 train_loss: 0.035414326936006546\n", + "epoch: 437 train_loss: 0.035409267991781235\n", + "epoch: 438 train_loss: 0.035404253751039505\n", + "epoch: 439 train_loss: 0.03539928421378136\n", + "epoch: 440 train_loss: 0.035394344478845596\n", + "epoch: 441 train_loss: 0.03538942337036133\n", + "epoch: 442 train_loss: 0.03538457676768303\n", + "epoch: 443 train_loss: 0.03537975996732712\n", + "epoch: 444 train_loss: 0.0353749617934227\n", + "epoch: 445 train_loss: 0.035370197147130966\n", + "epoch: 446 train_loss: 0.03536544367671013\n", + "epoch: 447 train_loss: 0.03536074236035347\n", + "epoch: 448 train_loss: 0.0353560671210289\n", + "epoch: 449 train_loss: 0.03535142540931702\n", + "epoch: 450 train_loss: 0.035346802324056625\n", + "epoch: 451 train_loss: 0.03534224256873131\n", + "epoch: 452 train_loss: 0.0353376567363739\n", + "epoch: 453 train_loss: 0.035333119332790375\n", + "epoch: 454 train_loss: 0.03532858192920685\n", + "epoch: 455 train_loss: 0.035324081778526306\n", + "epoch: 456 train_loss: 0.03531958907842636\n", + "epoch: 457 train_loss: 0.035315096378326416\n", + "epoch: 458 train_loss: 0.035310689359903336\n", + "epoch: 459 train_loss: 0.03530626744031906\n", + "epoch: 460 train_loss: 0.03530187904834747\n", + "epoch: 461 train_loss: 0.035297494381666183\n", + "epoch: 462 train_loss: 0.0352930948138237\n", + "epoch: 463 train_loss: 0.035288769751787186\n", + "epoch: 464 train_loss: 0.03528445586562157\n", + "epoch: 465 train_loss: 0.035280123353004456\n", + "epoch: 466 train_loss: 0.03527579456567764\n", + "epoch: 467 train_loss: 0.035271529108285904\n", + "epoch: 468 train_loss: 0.03526725992560387\n", + "epoch: 469 train_loss: 0.03526298701763153\n", + "epoch: 470 train_loss: 0.03525874391198158\n", + "epoch: 471 train_loss: 0.03525453060865402\n", + "epoch: 472 train_loss: 0.03525026515126228\n", + "epoch: 473 train_loss: 0.035246070474386215\n", + "epoch: 474 train_loss: 0.03524184599518776\n", + "epoch: 475 train_loss: 0.03523766249418259\n", + "epoch: 476 train_loss: 0.0352335125207901\n", + "epoch: 477 train_loss: 0.035229314118623734\n", + "epoch: 478 train_loss: 0.03522516041994095\n", + "epoch: 479 train_loss: 0.03522101044654846\n", + "epoch: 480 train_loss: 0.03521683067083359\n", + "epoch: 481 train_loss: 0.035212721675634384\n", + "epoch: 482 train_loss: 0.035208601504564285\n", + "epoch: 483 train_loss: 0.035204481333494186\n", + "epoch: 484 train_loss: 0.03520037233829498\n", + "epoch: 485 train_loss: 0.03519625589251518\n", + "epoch: 486 train_loss: 0.03519216179847717\n", + "epoch: 487 train_loss: 0.035188063979148865\n", + "epoch: 488 train_loss: 0.03518398106098175\n", + "epoch: 489 train_loss: 0.035179879516363144\n", + "epoch: 490 train_loss: 0.035175830125808716\n", + "epoch: 491 train_loss: 0.0351717509329319\n", + "epoch: 492 train_loss: 0.03516767919063568\n", + "epoch: 493 train_loss: 0.03516361862421036\n", + "epoch: 494 train_loss: 0.03515956178307533\n", + "epoch: 495 train_loss: 0.035155486315488815\n", + "epoch: 496 train_loss: 0.035151463001966476\n", + "epoch: 497 train_loss: 0.03514740988612175\n", + "epoch: 498 train_loss: 0.03514338657259941\n", + "epoch: 499 train_loss: 0.035139329731464386\n", + "epoch: 500 train_loss: 0.03513532876968384\n", + "epoch: 501 train_loss: 0.03513127192854881\n", + "epoch: 502 train_loss: 0.035127248615026474\n", + "epoch: 503 train_loss: 0.03512322157621384\n", + "epoch: 504 train_loss: 0.0351191908121109\n", + "epoch: 505 train_loss: 0.03511517867445946\n", + "epoch: 506 train_loss: 0.035111185163259506\n", + "epoch: 507 train_loss: 0.03510715439915657\n", + "epoch: 508 train_loss: 0.03510315716266632\n", + "epoch: 509 train_loss: 0.035099148750305176\n", + "epoch: 510 train_loss: 0.035095103085041046\n", + "epoch: 511 train_loss: 0.03509111702442169\n", + "epoch: 512 train_loss: 0.03508713096380234\n", + "epoch: 513 train_loss: 0.0350831039249897\n", + "epoch: 514 train_loss: 0.035079099237918854\n", + "epoch: 515 train_loss: 0.0350751169025898\n", + "epoch: 516 train_loss: 0.03507111594080925\n", + "epoch: 517 train_loss: 0.0350671224296093\n", + "epoch: 518 train_loss: 0.03506311774253845\n", + "epoch: 519 train_loss: 0.03505915403366089\n", + "epoch: 520 train_loss: 0.03505512326955795\n", + "epoch: 521 train_loss: 0.03505111485719681\n", + "epoch: 522 train_loss: 0.035047125071287155\n", + "epoch: 523 train_loss: 0.03504312410950661\n", + "epoch: 524 train_loss: 0.03503914549946785\n", + "epoch: 525 train_loss: 0.035035140812397\n", + "epoch: 526 train_loss: 0.035031165927648544\n", + "epoch: 527 train_loss: 0.0350271537899971\n", + "epoch: 528 train_loss: 0.03502315655350685\n", + "epoch: 529 train_loss: 0.0350191630423069\n", + "epoch: 530 train_loss: 0.03501516208052635\n", + "epoch: 531 train_loss: 0.035011176019907\n", + "epoch: 532 train_loss: 0.03500715643167496\n", + "epoch: 533 train_loss: 0.03500319644808769\n", + "epoch: 534 train_loss: 0.03499918058514595\n", + "epoch: 535 train_loss: 0.034995172172784805\n", + "epoch: 536 train_loss: 0.03499119356274605\n", + "epoch: 537 train_loss: 0.03498717397451401\n", + "epoch: 538 train_loss: 0.03498317673802376\n", + "epoch: 539 train_loss: 0.03497918322682381\n", + "epoch: 540 train_loss: 0.03497517108917236\n", + "epoch: 541 train_loss: 0.03497116640210152\n", + "epoch: 542 train_loss: 0.034967172890901566\n", + "epoch: 543 train_loss: 0.03496312350034714\n", + "epoch: 544 train_loss: 0.034959133714437485\n", + "epoch: 545 train_loss: 0.03495510667562485\n", + "epoch: 546 train_loss: 0.03495112434029579\n", + "epoch: 547 train_loss: 0.03494710102677345\n", + "epoch: 548 train_loss: 0.03494308888912201\n", + "epoch: 549 train_loss: 0.034939080476760864\n", + "epoch: 550 train_loss: 0.03493504598736763\n", + "epoch: 551 train_loss: 0.03493103012442589\n", + "epoch: 552 train_loss: 0.034926991909742355\n", + "epoch: 553 train_loss: 0.034922998398542404\n", + "epoch: 554 train_loss: 0.03491898626089096\n", + "epoch: 555 train_loss: 0.034914907068014145\n", + "epoch: 556 train_loss: 0.0349109061062336\n", + "epoch: 557 train_loss: 0.034906838089227676\n", + "epoch: 558 train_loss: 0.03490285947918892\n", + "epoch: 559 train_loss: 0.034898776561021805\n", + "epoch: 560 train_loss: 0.03489476069808006\n", + "epoch: 561 train_loss: 0.03489071875810623\n", + "epoch: 562 train_loss: 0.034886643290519714\n", + "epoch: 563 train_loss: 0.03488260135054588\n", + "epoch: 564 train_loss: 0.03487858176231384\n", + "epoch: 565 train_loss: 0.03487451374530792\n", + "epoch: 566 train_loss: 0.0348704531788826\n", + "epoch: 567 train_loss: 0.034866418689489365\n", + "epoch: 568 train_loss: 0.03486237674951553\n", + "epoch: 569 train_loss: 0.03485828638076782\n", + "epoch: 570 train_loss: 0.0348542258143425\n", + "epoch: 571 train_loss: 0.03485018014907837\n", + "epoch: 572 train_loss: 0.03484608232975006\n", + "epoch: 573 train_loss: 0.03484203666448593\n", + "epoch: 574 train_loss: 0.03483794257044792\n", + "epoch: 575 train_loss: 0.03483385592699051\n", + "epoch: 576 train_loss: 0.03482977673411369\n", + "epoch: 577 train_loss: 0.03482569009065628\n", + "epoch: 578 train_loss: 0.034821607172489166\n", + "epoch: 579 train_loss: 0.03481749817728996\n", + "epoch: 580 train_loss: 0.03481341153383255\n", + "epoch: 581 train_loss: 0.03480933606624603\n", + "epoch: 582 train_loss: 0.03480520471930504\n", + "epoch: 583 train_loss: 0.03480110689997673\n", + "epoch: 584 train_loss: 0.03479700908064842\n", + "epoch: 585 train_loss: 0.034792881458997726\n", + "epoch: 586 train_loss: 0.03478877991437912\n", + "epoch: 587 train_loss: 0.03478465974330902\n", + "epoch: 588 train_loss: 0.03478054329752922\n", + "epoch: 589 train_loss: 0.034776411950588226\n", + "epoch: 590 train_loss: 0.03477228805422783\n", + "epoch: 591 train_loss: 0.03476814180612564\n", + "epoch: 592 train_loss: 0.03476399555802345\n", + "epoch: 593 train_loss: 0.03475987911224365\n", + "epoch: 594 train_loss: 0.03475571796298027\n", + "epoch: 595 train_loss: 0.03475157171487808\n", + "epoch: 596 train_loss: 0.0347474105656147\n", + "epoch: 597 train_loss: 0.03474324196577072\n", + "epoch: 598 train_loss: 0.034739091992378235\n", + "epoch: 599 train_loss: 0.034734927117824554\n", + "epoch: 600 train_loss: 0.03473075479269028\n", + "epoch: 601 train_loss: 0.034726582467556\n", + "epoch: 602 train_loss: 0.03472243994474411\n", + "epoch: 603 train_loss: 0.03471821919083595\n", + "epoch: 604 train_loss: 0.034714046865701675\n", + "epoch: 605 train_loss: 0.03470985218882561\n", + "epoch: 606 train_loss: 0.034705664962530136\n", + "epoch: 607 train_loss: 0.03470148146152496\n", + "epoch: 608 train_loss: 0.0346972718834877\n", + "epoch: 609 train_loss: 0.034693047404289246\n", + "epoch: 610 train_loss: 0.034688834100961685\n", + "epoch: 611 train_loss: 0.03468463942408562\n", + "epoch: 612 train_loss: 0.03468040004372597\n", + "epoch: 613 train_loss: 0.03467615693807602\n", + "epoch: 614 train_loss: 0.034671980887651443\n", + "epoch: 615 train_loss: 0.03466769680380821\n", + "epoch: 616 train_loss: 0.03466348722577095\n", + "epoch: 617 train_loss: 0.034659214317798615\n", + "epoch: 618 train_loss: 0.03465498983860016\n", + "epoch: 619 train_loss: 0.034650713205337524\n", + "epoch: 620 train_loss: 0.03464645519852638\n", + "epoch: 621 train_loss: 0.03464219719171524\n", + "epoch: 622 train_loss: 0.0346379391849041\n", + "epoch: 623 train_loss: 0.03463365510106087\n", + "epoch: 624 train_loss: 0.034629397094249725\n", + "epoch: 625 train_loss: 0.03462507203221321\n", + "epoch: 626 train_loss: 0.034620776772499084\n", + "epoch: 627 train_loss: 0.03461650386452675\n", + "epoch: 628 train_loss: 0.03461221605539322\n", + "epoch: 629 train_loss: 0.03460787236690521\n", + "epoch: 630 train_loss: 0.034603580832481384\n", + "epoch: 631 train_loss: 0.034599266946315765\n", + "epoch: 632 train_loss: 0.03459492698311806\n", + "epoch: 633 train_loss: 0.03459060937166214\n", + "epoch: 634 train_loss: 0.03458627685904503\n", + "epoch: 635 train_loss: 0.03458193317055702\n", + "epoch: 636 train_loss: 0.03457760810852051\n", + "epoch: 637 train_loss: 0.034573253244161606\n", + "epoch: 638 train_loss: 0.03456888720393181\n", + "epoch: 639 train_loss: 0.03456452116370201\n", + "epoch: 640 train_loss: 0.03456014394760132\n", + "epoch: 641 train_loss: 0.034555770456790924\n", + "epoch: 642 train_loss: 0.03455141931772232\n", + "epoch: 643 train_loss: 0.03454701602458954\n", + "epoch: 644 train_loss: 0.03454262763261795\n", + "epoch: 645 train_loss: 0.034538209438323975\n", + "epoch: 646 train_loss: 0.034533824771642685\n", + "epoch: 647 train_loss: 0.03452938795089722\n", + "epoch: 648 train_loss: 0.03452498838305473\n", + "epoch: 649 train_loss: 0.03452061116695404\n", + "epoch: 650 train_loss: 0.034516144543886185\n", + "epoch: 651 train_loss: 0.03451173007488251\n", + "epoch: 652 train_loss: 0.034507252275943756\n", + "epoch: 653 train_loss: 0.03450281172990799\n", + "epoch: 654 train_loss: 0.03449835255742073\n", + "epoch: 655 train_loss: 0.034493908286094666\n", + "epoch: 656 train_loss: 0.03448941186070442\n", + "epoch: 657 train_loss: 0.03448497876524925\n", + "epoch: 658 train_loss: 0.034480467438697815\n", + "epoch: 659 train_loss: 0.03447596728801727\n", + "epoch: 660 train_loss: 0.03447149321436882\n", + "epoch: 661 train_loss: 0.03446698188781738\n", + "epoch: 662 train_loss: 0.03446248173713684\n", + "epoch: 663 train_loss: 0.0344579815864563\n", + "epoch: 664 train_loss: 0.034453440457582474\n", + "epoch: 665 train_loss: 0.03444893658161163\n", + "epoch: 666 train_loss: 0.034444354474544525\n", + "epoch: 667 train_loss: 0.03443986177444458\n", + "epoch: 668 train_loss: 0.034435272216796875\n", + "epoch: 669 train_loss: 0.03443072736263275\n", + "epoch: 670 train_loss: 0.034426137804985046\n", + "epoch: 671 train_loss: 0.034421589225530624\n", + "epoch: 672 train_loss: 0.03441699594259262\n", + "epoch: 673 train_loss: 0.03441242128610611\n", + "epoch: 674 train_loss: 0.03440778702497482\n", + "epoch: 675 train_loss: 0.03440318629145622\n", + "epoch: 676 train_loss: 0.034398600459098816\n", + "epoch: 677 train_loss: 0.034393973648548126\n", + "epoch: 678 train_loss: 0.03438934311270714\n", + "epoch: 679 train_loss: 0.03438471630215645\n", + "epoch: 680 train_loss: 0.034380070865154266\n", + "epoch: 681 train_loss: 0.03437541797757149\n", + "epoch: 682 train_loss: 0.03437076881527901\n", + "epoch: 683 train_loss: 0.03436608985066414\n", + "epoch: 684 train_loss: 0.03436138108372688\n", + "epoch: 685 train_loss: 0.034356739372015\n", + "epoch: 686 train_loss: 0.03435199335217476\n", + "epoch: 687 train_loss: 0.03434731811285019\n", + "epoch: 688 train_loss: 0.03434260934591293\n", + "epoch: 689 train_loss: 0.03433787077665329\n", + "epoch: 690 train_loss: 0.03433317318558693\n", + "epoch: 691 train_loss: 0.03432838246226311\n", + "epoch: 692 train_loss: 0.03432367369532585\n", + "epoch: 693 train_loss: 0.03431892767548561\n", + "epoch: 694 train_loss: 0.034314144402742386\n", + "epoch: 695 train_loss: 0.03430938348174095\n", + "epoch: 696 train_loss: 0.034304630011320114\n", + "epoch: 697 train_loss: 0.034299805760383606\n", + "epoch: 698 train_loss: 0.034295011311769485\n", + "epoch: 699 train_loss: 0.03429020196199417\n", + "epoch: 700 train_loss: 0.03428536653518677\n", + "epoch: 701 train_loss: 0.03428051248192787\n", + "epoch: 702 train_loss: 0.034275706857442856\n", + "epoch: 703 train_loss: 0.03427087143063545\n", + "epoch: 704 train_loss: 0.03426598757505417\n", + "epoch: 705 train_loss: 0.034261152148246765\n", + "epoch: 706 train_loss: 0.03425627201795578\n", + "epoch: 707 train_loss: 0.034251365810632706\n", + "epoch: 708 train_loss: 0.03424648568034172\n", + "epoch: 709 train_loss: 0.03424160182476044\n", + "epoch: 710 train_loss: 0.03423669561743736\n", + "epoch: 711 train_loss: 0.03423170745372772\n", + "epoch: 712 train_loss: 0.03422682359814644\n", + "epoch: 713 train_loss: 0.03422188758850098\n", + "epoch: 714 train_loss: 0.034216899424791336\n", + "epoch: 715 train_loss: 0.03421194106340408\n", + "epoch: 716 train_loss: 0.034206971526145935\n", + "epoch: 717 train_loss: 0.034201961010694504\n", + "epoch: 718 train_loss: 0.03419697657227516\n", + "epoch: 719 train_loss: 0.034191954880952835\n", + "epoch: 720 train_loss: 0.034186940640211105\n", + "epoch: 721 train_loss: 0.034181904047727585\n", + "epoch: 722 train_loss: 0.03417685627937317\n", + "epoch: 723 train_loss: 0.03417178615927696\n", + "epoch: 724 train_loss: 0.03416670113801956\n", + "epoch: 725 train_loss: 0.034161653369665146\n", + "epoch: 726 train_loss: 0.03415655344724655\n", + "epoch: 727 train_loss: 0.03415143862366676\n", + "epoch: 728 train_loss: 0.03414633497595787\n", + "epoch: 729 train_loss: 0.03414122387766838\n", + "epoch: 730 train_loss: 0.0341360867023468\n", + "epoch: 731 train_loss: 0.034130897372961044\n", + "epoch: 732 train_loss: 0.034125760197639465\n", + "epoch: 733 train_loss: 0.034120555967092514\n", + "epoch: 734 train_loss: 0.034115370362997055\n", + "epoch: 735 train_loss: 0.034110188484191895\n", + "epoch: 736 train_loss: 0.03410495072603226\n", + "epoch: 737 train_loss: 0.03409973159432411\n", + "epoch: 738 train_loss: 0.034094493836164474\n", + "epoch: 739 train_loss: 0.034089215099811554\n", + "epoch: 740 train_loss: 0.03408397361636162\n", + "epoch: 741 train_loss: 0.03407867252826691\n", + "epoch: 742 train_loss: 0.03407337889075279\n", + "epoch: 743 train_loss: 0.03406809642910957\n", + "epoch: 744 train_loss: 0.03406274691224098\n", + "epoch: 745 train_loss: 0.03405740484595299\n", + "epoch: 746 train_loss: 0.03405206277966499\n", + "epoch: 747 train_loss: 0.03404669091105461\n", + "epoch: 748 train_loss: 0.03404133394360542\n", + "epoch: 749 train_loss: 0.03403594344854355\n", + "epoch: 750 train_loss: 0.034030523151159286\n", + "epoch: 751 train_loss: 0.03402508422732353\n", + "epoch: 752 train_loss: 0.03401964157819748\n", + "epoch: 753 train_loss: 0.03401418775320053\n", + "epoch: 754 train_loss: 0.03400871902704239\n", + "epoch: 755 train_loss: 0.03400324285030365\n", + "epoch: 756 train_loss: 0.03399774432182312\n", + "epoch: 757 train_loss: 0.0339922197163105\n", + "epoch: 758 train_loss: 0.03398668393492699\n", + "epoch: 759 train_loss: 0.033981140702962875\n", + "epoch: 760 train_loss: 0.03397557884454727\n", + "epoch: 761 train_loss: 0.03396996483206749\n", + "epoch: 762 train_loss: 0.03396439552307129\n", + "epoch: 763 train_loss: 0.033958762884140015\n", + "epoch: 764 train_loss: 0.033953066915273666\n", + "epoch: 765 train_loss: 0.03394753485918045\n", + "epoch: 766 train_loss: 0.03394181653857231\n", + "epoch: 767 train_loss: 0.03393612056970596\n", + "epoch: 768 train_loss: 0.03393042832612991\n", + "epoch: 769 train_loss: 0.03392467647790909\n", + "epoch: 770 train_loss: 0.033918995410203934\n", + "epoch: 771 train_loss: 0.03391319885849953\n", + "epoch: 772 train_loss: 0.033907435834407806\n", + "epoch: 773 train_loss: 0.03390159457921982\n", + "epoch: 774 train_loss: 0.033895812928676605\n", + "epoch: 775 train_loss: 0.033889953047037125\n", + "epoch: 776 train_loss: 0.03388411924242973\n", + "epoch: 777 train_loss: 0.033878251910209656\n", + "epoch: 778 train_loss: 0.03387231379747391\n", + "epoch: 779 train_loss: 0.03386643901467323\n", + "epoch: 780 train_loss: 0.03386048600077629\n", + "epoch: 781 train_loss: 0.03385452181100845\n", + "epoch: 782 train_loss: 0.03384851664304733\n", + "epoch: 783 train_loss: 0.03384258225560188\n", + "epoch: 784 train_loss: 0.03383653983473778\n", + "epoch: 785 train_loss: 0.03383047133684158\n", + "epoch: 786 train_loss: 0.03382440283894539\n", + "epoch: 787 train_loss: 0.03381834179162979\n", + "epoch: 788 train_loss: 0.033812206238508224\n", + "epoch: 789 train_loss: 0.03380611166357994\n", + "epoch: 790 train_loss: 0.033799909055233\n", + "epoch: 791 train_loss: 0.03379373624920845\n", + "epoch: 792 train_loss: 0.03378752991557121\n", + "epoch: 793 train_loss: 0.03378128260374069\n", + "epoch: 794 train_loss: 0.03377501666545868\n", + "epoch: 795 train_loss: 0.033768776804208755\n", + "epoch: 796 train_loss: 0.03376246616244316\n", + "epoch: 797 train_loss: 0.033756088465452194\n", + "epoch: 798 train_loss: 0.03374975919723511\n", + "epoch: 799 train_loss: 0.033743370324373245\n", + "epoch: 800 train_loss: 0.03373697027564049\n", + "epoch: 801 train_loss: 0.033730510622262955\n", + "epoch: 802 train_loss: 0.03372403234243393\n", + "epoch: 803 train_loss: 0.03371754661202431\n", + "epoch: 804 train_loss: 0.03371100500226021\n", + "epoch: 805 train_loss: 0.03370444104075432\n", + "epoch: 806 train_loss: 0.03369787707924843\n", + "epoch: 807 train_loss: 0.033691249787807465\n", + "epoch: 808 train_loss: 0.033684637397527695\n", + "epoch: 809 train_loss: 0.033677950501441956\n", + "epoch: 810 train_loss: 0.033671218901872635\n", + "epoch: 811 train_loss: 0.033664483577013016\n", + "epoch: 812 train_loss: 0.033657725900411606\n", + "epoch: 813 train_loss: 0.03365091606974602\n", + "epoch: 814 train_loss: 0.033644065260887146\n", + "epoch: 815 train_loss: 0.033637166023254395\n", + "epoch: 816 train_loss: 0.033630307763814926\n", + "epoch: 817 train_loss: 0.03362336382269859\n", + "epoch: 818 train_loss: 0.03361637890338898\n", + "epoch: 819 train_loss: 0.03360932692885399\n", + "epoch: 820 train_loss: 0.033602286130189896\n", + "epoch: 821 train_loss: 0.03359519690275192\n", + "epoch: 822 train_loss: 0.03358807787299156\n", + "epoch: 823 train_loss: 0.033580899238586426\n", + "epoch: 824 train_loss: 0.0335736982524395\n", + "epoch: 825 train_loss: 0.0335664339363575\n", + "epoch: 826 train_loss: 0.0335591584444046\n", + "epoch: 827 train_loss: 0.03355184197425842\n", + "epoch: 828 train_loss: 0.03354445472359657\n", + "epoch: 829 train_loss: 0.03353701904416084\n", + "epoch: 830 train_loss: 0.033529527485370636\n", + "epoch: 831 train_loss: 0.033522047102451324\n", + "epoch: 832 train_loss: 0.03351447358727455\n", + "epoch: 833 train_loss: 0.03350689634680748\n", + "epoch: 834 train_loss: 0.03349926322698593\n", + "epoch: 835 train_loss: 0.033491525799036026\n", + "epoch: 836 train_loss: 0.03348378464579582\n", + "epoch: 837 train_loss: 0.03347598388791084\n", + "epoch: 838 train_loss: 0.03346814960241318\n", + "epoch: 839 train_loss: 0.033460237085819244\n", + "epoch: 840 train_loss: 0.03345227614045143\n", + "epoch: 841 train_loss: 0.03344421088695526\n", + "epoch: 842 train_loss: 0.033436160534620285\n", + "epoch: 843 train_loss: 0.033428024500608444\n", + "epoch: 844 train_loss: 0.03341982886195183\n", + "epoch: 845 train_loss: 0.03341159597039223\n", + "epoch: 846 train_loss: 0.033403296023607254\n", + "epoch: 847 train_loss: 0.033394940197467804\n", + "epoch: 848 train_loss: 0.03338644281029701\n", + "epoch: 849 train_loss: 0.03337795287370682\n", + "epoch: 850 train_loss: 0.033369410783052444\n", + "epoch: 851 train_loss: 0.033360738307237625\n", + "epoch: 852 train_loss: 0.033352021127939224\n", + "epoch: 853 train_loss: 0.033343199640512466\n", + "epoch: 854 train_loss: 0.03333437442779541\n", + "epoch: 855 train_loss: 0.033325426280498505\n", + "epoch: 856 train_loss: 0.03331639617681503\n", + "epoch: 857 train_loss: 0.033307310193777084\n", + "epoch: 858 train_loss: 0.03329811245203018\n", + "epoch: 859 train_loss: 0.0332888662815094\n", + "epoch: 860 train_loss: 0.033279500901699066\n", + "epoch: 861 train_loss: 0.033270057290792465\n", + "epoch: 862 train_loss: 0.03326050937175751\n", + "epoch: 863 train_loss: 0.03325086459517479\n", + "epoch: 864 train_loss: 0.03324120119214058\n", + "epoch: 865 train_loss: 0.03323134407401085\n", + "epoch: 866 train_loss: 0.03322145715355873\n", + "epoch: 867 train_loss: 0.03321141377091408\n", + "epoch: 868 train_loss: 0.033201221376657486\n", + "epoch: 869 train_loss: 0.03319099545478821\n", + "epoch: 870 train_loss: 0.03318062424659729\n", + "epoch: 871 train_loss: 0.03317014500498772\n", + "epoch: 872 train_loss: 0.0331595204770565\n", + "epoch: 873 train_loss: 0.03314877301454544\n", + "epoch: 874 train_loss: 0.03313789889216423\n", + "epoch: 875 train_loss: 0.03312693163752556\n", + "epoch: 876 train_loss: 0.03311576321721077\n", + "epoch: 877 train_loss: 0.03310446813702583\n", + "epoch: 878 train_loss: 0.03309307247400284\n", + "epoch: 879 train_loss: 0.03308147192001343\n", + "epoch: 880 train_loss: 0.033069808036088943\n", + "epoch: 881 train_loss: 0.033057842403650284\n", + "epoch: 882 train_loss: 0.03304576873779297\n", + "epoch: 883 train_loss: 0.03303353488445282\n", + "epoch: 884 train_loss: 0.03302107751369476\n", + "epoch: 885 train_loss: 0.033008452504873276\n", + "epoch: 886 train_loss: 0.03299564868211746\n", + "epoch: 887 train_loss: 0.032982658594846725\n", + "epoch: 888 train_loss: 0.032969411462545395\n", + "epoch: 889 train_loss: 0.03295596316456795\n", + "epoch: 890 train_loss: 0.032942332327365875\n", + "epoch: 891 train_loss: 0.0329284742474556\n", + "epoch: 892 train_loss: 0.032914284616708755\n", + "epoch: 893 train_loss: 0.03289991617202759\n", + "epoch: 894 train_loss: 0.03288527950644493\n", + "epoch: 895 train_loss: 0.0328703336417675\n", + "epoch: 896 train_loss: 0.03285510465502739\n", + "epoch: 897 train_loss: 0.0328395739197731\n", + "epoch: 898 train_loss: 0.03282373398542404\n", + "epoch: 899 train_loss: 0.032807692885398865\n", + "epoch: 900 train_loss: 0.03279116377234459\n", + "epoch: 901 train_loss: 0.03277432173490524\n", + "epoch: 902 train_loss: 0.032757118344306946\n", + "epoch: 903 train_loss: 0.03273952007293701\n", + "epoch: 904 train_loss: 0.03272153437137604\n", + "epoch: 905 train_loss: 0.03270312026143074\n", + "epoch: 906 train_loss: 0.03268427029252052\n", + "epoch: 907 train_loss: 0.03266496583819389\n", + "epoch: 908 train_loss: 0.03264516219496727\n", + "epoch: 909 train_loss: 0.03262488543987274\n", + "epoch: 910 train_loss: 0.03260405361652374\n", + "epoch: 911 train_loss: 0.03258265182375908\n", + "epoch: 912 train_loss: 0.032560642808675766\n", + "epoch: 913 train_loss: 0.032538097351789474\n", + "epoch: 914 train_loss: 0.03251495584845543\n", + "epoch: 915 train_loss: 0.03249106928706169\n", + "epoch: 916 train_loss: 0.03246644139289856\n", + "epoch: 917 train_loss: 0.032441068440675735\n", + "epoch: 918 train_loss: 0.03241497650742531\n", + "epoch: 919 train_loss: 0.03238804265856743\n", + "epoch: 920 train_loss: 0.032360222190618515\n", + "epoch: 921 train_loss: 0.03233155235648155\n", + "epoch: 922 train_loss: 0.0323018915951252\n", + "epoch: 923 train_loss: 0.03227120637893677\n", + "epoch: 924 train_loss: 0.03223949670791626\n", + "epoch: 925 train_loss: 0.0322067067027092\n", + "epoch: 926 train_loss: 0.03217273950576782\n", + "epoch: 927 train_loss: 0.03213752806186676\n", + "epoch: 928 train_loss: 0.032101068645715714\n", + "epoch: 929 train_loss: 0.03206327185034752\n", + "epoch: 930 train_loss: 0.03202400729060173\n", + "epoch: 931 train_loss: 0.03198333829641342\n", + "epoch: 932 train_loss: 0.03194108605384827\n", + "epoch: 933 train_loss: 0.0318971611559391\n", + "epoch: 934 train_loss: 0.0318516306579113\n", + "epoch: 935 train_loss: 0.03180426359176636\n", + "epoch: 936 train_loss: 0.03175506740808487\n", + "epoch: 937 train_loss: 0.03170393779873848\n", + "epoch: 938 train_loss: 0.031650882214307785\n", + "epoch: 939 train_loss: 0.03159571439027786\n", + "epoch: 940 train_loss: 0.03153837472200394\n", + "epoch: 941 train_loss: 0.03147879242897034\n", + "epoch: 942 train_loss: 0.03141702711582184\n", + "epoch: 943 train_loss: 0.03135282173752785\n", + "epoch: 944 train_loss: 0.031286243349313736\n", + "epoch: 945 train_loss: 0.03121713362634182\n", + "epoch: 946 train_loss: 0.031145595014095306\n", + "epoch: 947 train_loss: 0.031071506440639496\n", + "epoch: 948 train_loss: 0.03099486231803894\n", + "epoch: 949 train_loss: 0.030915584415197372\n", + "epoch: 950 train_loss: 0.030833814293146133\n", + "epoch: 951 train_loss: 0.03074946440756321\n", + "epoch: 952 train_loss: 0.030662592500448227\n", + "epoch: 953 train_loss: 0.030573250725865364\n", + "epoch: 954 train_loss: 0.030481526628136635\n", + "epoch: 955 train_loss: 0.030387436971068382\n", + "epoch: 956 train_loss: 0.030291184782981873\n", + "epoch: 957 train_loss: 0.030192742124199867\n", + "epoch: 958 train_loss: 0.030092403292655945\n", + "epoch: 959 train_loss: 0.029990319162607193\n", + "epoch: 960 train_loss: 0.029886502772569656\n", + "epoch: 961 train_loss: 0.029781335964798927\n", + "epoch: 962 train_loss: 0.02967497892677784\n", + "epoch: 963 train_loss: 0.029567603021860123\n", + "epoch: 964 train_loss: 0.029459424316883087\n", + "epoch: 965 train_loss: 0.029350735247135162\n", + "epoch: 966 train_loss: 0.029241759330034256\n", + "epoch: 967 train_loss: 0.029132705181837082\n", + "epoch: 968 train_loss: 0.029023872688412666\n", + "epoch: 969 train_loss: 0.02891545183956623\n", + "epoch: 970 train_loss: 0.028807712718844414\n", + "epoch: 971 train_loss: 0.02870083786547184\n", + "epoch: 972 train_loss: 0.028595035895705223\n", + "epoch: 973 train_loss: 0.028490491211414337\n", + "epoch: 974 train_loss: 0.02838747575879097\n", + "epoch: 975 train_loss: 0.028286011889576912\n", + "epoch: 976 train_loss: 0.028186367824673653\n", + "epoch: 977 train_loss: 0.02808855101466179\n", + "epoch: 978 train_loss: 0.02799270674586296\n", + "epoch: 979 train_loss: 0.027898933738470078\n", + "epoch: 980 train_loss: 0.02780725806951523\n", + "epoch: 981 train_loss: 0.027717802673578262\n", + "epoch: 982 train_loss: 0.027630461379885674\n", + "epoch: 983 train_loss: 0.027545319870114326\n", + "epoch: 984 train_loss: 0.027462312951683998\n", + "epoch: 985 train_loss: 0.02738143876194954\n", + "epoch: 986 train_loss: 0.027302656322717667\n", + "epoch: 987 train_loss: 0.027225898578763008\n", + "epoch: 988 train_loss: 0.027151135727763176\n", + "epoch: 989 train_loss: 0.027078211307525635\n", + "epoch: 990 train_loss: 0.027007097378373146\n", + "epoch: 991 train_loss: 0.026937663555145264\n", + "epoch: 992 train_loss: 0.026869889348745346\n", + "epoch: 993 train_loss: 0.02680361457169056\n", + "epoch: 994 train_loss: 0.02673882432281971\n", + "epoch: 995 train_loss: 0.02667534537613392\n", + "epoch: 996 train_loss: 0.026613101363182068\n", + "epoch: 997 train_loss: 0.026552028954029083\n", + "epoch: 998 train_loss: 0.026492048054933548\n", + "epoch: 999 train_loss: 0.026433061808347702\n", + "epoch: 1000 train_loss: 0.02637496218085289\n", + "epoch: 1001 train_loss: 0.02631770819425583\n", + "epoch: 1002 train_loss: 0.026261208578944206\n", + "epoch: 1003 train_loss: 0.02620544098317623\n", + "epoch: 1004 train_loss: 0.026150310412049294\n", + "epoch: 1005 train_loss: 0.026095759123563766\n", + "epoch: 1006 train_loss: 0.02604176662862301\n", + "epoch: 1007 train_loss: 0.02598826214671135\n", + "epoch: 1008 train_loss: 0.02593524567782879\n", + "epoch: 1009 train_loss: 0.025882624089717865\n", + "epoch: 1010 train_loss: 0.025830408558249474\n", + "epoch: 1011 train_loss: 0.025778543204069138\n", + "epoch: 1012 train_loss: 0.025727031752467155\n", + "epoch: 1013 train_loss: 0.02567584626376629\n", + "epoch: 1014 train_loss: 0.025624964386224747\n", + "epoch: 1015 train_loss: 0.025574369356036186\n", + "epoch: 1016 train_loss: 0.025524064898490906\n", + "epoch: 1017 train_loss: 0.025474008172750473\n", + "epoch: 1018 train_loss: 0.025424223393201828\n", + "epoch: 1019 train_loss: 0.025374671444296837\n", + "epoch: 1020 train_loss: 0.02532537281513214\n", + "epoch: 1021 train_loss: 0.025276318192481995\n", + "epoch: 1022 train_loss: 0.025227496400475502\n", + "epoch: 1023 train_loss: 0.02517889440059662\n", + "epoch: 1024 train_loss: 0.025130538269877434\n", + "epoch: 1025 train_loss: 0.025082416832447052\n", + "epoch: 1026 train_loss: 0.025034507736563683\n", + "epoch: 1027 train_loss: 0.02498682402074337\n", + "epoch: 1028 train_loss: 0.024939358234405518\n", + "epoch: 1029 train_loss: 0.024892134591937065\n", + "epoch: 1030 train_loss: 0.02484511397778988\n", + "epoch: 1031 train_loss: 0.024798326194286346\n", + "epoch: 1032 train_loss: 0.024751760065555573\n", + "epoch: 1033 train_loss: 0.024705413728952408\n", + "epoch: 1034 train_loss: 0.024659287184476852\n", + "epoch: 1035 train_loss: 0.024613386020064354\n", + "epoch: 1036 train_loss: 0.024567684158682823\n", + "epoch: 1037 train_loss: 0.024522200226783752\n", + "epoch: 1038 train_loss: 0.024476923048496246\n", + "epoch: 1039 train_loss: 0.024431882426142693\n", + "epoch: 1040 train_loss: 0.024387037381529808\n", + "epoch: 1041 train_loss: 0.02434239163994789\n", + "epoch: 1042 train_loss: 0.024297969415783882\n", + "epoch: 1043 train_loss: 0.024253740906715393\n", + "epoch: 1044 train_loss: 0.024209721013903618\n", + "epoch: 1045 train_loss: 0.02416590228676796\n", + "epoch: 1046 train_loss: 0.024122269824147224\n", + "epoch: 1047 train_loss: 0.024078845977783203\n", + "epoch: 1048 train_loss: 0.024035619571805\n", + "epoch: 1049 train_loss: 0.02399255894124508\n", + "epoch: 1050 train_loss: 0.02394970878958702\n", + "epoch: 1051 train_loss: 0.023907020688056946\n", + "epoch: 1052 train_loss: 0.023864565417170525\n", + "epoch: 1053 train_loss: 0.023822255432605743\n", + "epoch: 1054 train_loss: 0.02378011867403984\n", + "epoch: 1055 train_loss: 0.023738181218504906\n", + "epoch: 1056 train_loss: 0.023696407675743103\n", + "epoch: 1057 train_loss: 0.023654811084270477\n", + "epoch: 1058 train_loss: 0.023613372817635536\n", + "epoch: 1059 train_loss: 0.02357211709022522\n", + "epoch: 1060 train_loss: 0.02353101782500744\n", + "epoch: 1061 train_loss: 0.023490093648433685\n", + "epoch: 1062 train_loss: 0.023449325934052467\n", + "epoch: 1063 train_loss: 0.023408714681863785\n", + "epoch: 1064 train_loss: 0.02336825616657734\n", + "epoch: 1065 train_loss: 0.023327961564064026\n", + "epoch: 1066 train_loss: 0.02328781969845295\n", + "epoch: 1067 train_loss: 0.023247800767421722\n", + "epoch: 1068 train_loss: 0.023207958787679672\n", + "epoch: 1069 train_loss: 0.023168258368968964\n", + "epoch: 1070 train_loss: 0.023128684610128403\n", + "epoch: 1071 train_loss: 0.02308928593993187\n", + "epoch: 1072 train_loss: 0.023050004616379738\n", + "epoch: 1073 train_loss: 0.023010877892374992\n", + "epoch: 1074 train_loss: 0.02297186106443405\n", + "epoch: 1075 train_loss: 0.022933010011911392\n", + "epoch: 1076 train_loss: 0.02289426513016224\n", + "epoch: 1077 train_loss: 0.022855672985315323\n", + "epoch: 1078 train_loss: 0.02281719073653221\n", + "epoch: 1079 train_loss: 0.02277885191142559\n", + "epoch: 1080 train_loss: 0.02274063043296337\n", + "epoch: 1081 train_loss: 0.022702539339661598\n", + "epoch: 1082 train_loss: 0.022664574906229973\n", + "epoch: 1083 train_loss: 0.0226267222315073\n", + "epoch: 1084 train_loss: 0.022588985040783882\n", + "epoch: 1085 train_loss: 0.02255137823522091\n", + "epoch: 1086 train_loss: 0.022513870149850845\n", + "epoch: 1087 train_loss: 0.02247648313641548\n", + "epoch: 1088 train_loss: 0.022439202293753624\n", + "epoch: 1089 train_loss: 0.022402051836252213\n", + "epoch: 1090 train_loss: 0.022364994511008263\n", + "epoch: 1091 train_loss: 0.022328056395053864\n", + "epoch: 1092 train_loss: 0.022291215136647224\n", + "epoch: 1093 train_loss: 0.022254478186368942\n", + "epoch: 1094 train_loss: 0.022217854857444763\n", + "epoch: 1095 train_loss: 0.02218131721019745\n", + "epoch: 1096 train_loss: 0.02214488945901394\n", + "epoch: 1097 train_loss: 0.022108562290668488\n", + "epoch: 1098 train_loss: 0.022072337567806244\n", + "epoch: 1099 train_loss: 0.022036196663975716\n", + "epoch: 1100 train_loss: 0.022000158205628395\n", + "epoch: 1101 train_loss: 0.021964212879538536\n", + "epoch: 1102 train_loss: 0.021928369998931885\n", + "epoch: 1103 train_loss: 0.021892590448260307\n", + "epoch: 1104 train_loss: 0.021856913343071938\n", + "epoch: 1105 train_loss: 0.021821338683366776\n", + "epoch: 1106 train_loss: 0.021785831078886986\n", + "epoch: 1107 train_loss: 0.021750420331954956\n", + "epoch: 1108 train_loss: 0.021715089678764343\n", + "epoch: 1109 train_loss: 0.02167985774576664\n", + "epoch: 1110 train_loss: 0.02164468914270401\n", + "epoch: 1111 train_loss: 0.02160959504544735\n", + "epoch: 1112 train_loss: 0.021574603393673897\n", + "epoch: 1113 train_loss: 0.021539676934480667\n", + "epoch: 1114 train_loss: 0.021504821255803108\n", + "epoch: 1115 train_loss: 0.02147003635764122\n", + "epoch: 1116 train_loss: 0.02143535390496254\n", + "epoch: 1117 train_loss: 0.021400723606348038\n", + "epoch: 1118 train_loss: 0.021366175264120102\n", + "epoch: 1119 train_loss: 0.02133169025182724\n", + "epoch: 1120 train_loss: 0.021297287195920944\n", + "epoch: 1121 train_loss: 0.021262934431433678\n", + "epoch: 1122 train_loss: 0.021228672936558723\n", + "epoch: 1123 train_loss: 0.021194450557231903\n", + "epoch: 1124 train_loss: 0.021160313859581947\n", + "epoch: 1125 train_loss: 0.021126242354512215\n", + "epoch: 1126 train_loss: 0.021092234179377556\n", + "epoch: 1127 train_loss: 0.02105826698243618\n", + "epoch: 1128 train_loss: 0.021024398505687714\n", + "epoch: 1129 train_loss: 0.020990559831261635\n", + "epoch: 1130 train_loss: 0.02095678076148033\n", + "epoch: 1131 train_loss: 0.020923089236021042\n", + "epoch: 1132 train_loss: 0.020889421924948692\n", + "epoch: 1133 train_loss: 0.020855825394392014\n", + "epoch: 1134 train_loss: 0.020822282880544662\n", + "epoch: 1135 train_loss: 0.020788805559277534\n", + "epoch: 1136 train_loss: 0.02075537107884884\n", + "epoch: 1137 train_loss: 0.02072199061512947\n", + "epoch: 1138 train_loss: 0.020688658580183983\n", + "epoch: 1139 train_loss: 0.020655395463109016\n", + "epoch: 1140 train_loss: 0.020622164011001587\n", + "epoch: 1141 train_loss: 0.020588980987668037\n", + "epoch: 1142 train_loss: 0.020555861294269562\n", + "epoch: 1143 train_loss: 0.020522790029644966\n", + "epoch: 1144 train_loss: 0.020489733666181564\n", + "epoch: 1145 train_loss: 0.02045675739645958\n", + "epoch: 1146 train_loss: 0.020423809066414833\n", + "epoch: 1147 train_loss: 0.02039089985191822\n", + "epoch: 1148 train_loss: 0.020358052104711533\n", + "epoch: 1149 train_loss: 0.02032524161040783\n", + "epoch: 1150 train_loss: 0.020292475819587708\n", + "epoch: 1151 train_loss: 0.02025974914431572\n", + "epoch: 1152 train_loss: 0.02022705413401127\n", + "epoch: 1153 train_loss: 0.02019440568983555\n", + "epoch: 1154 train_loss: 0.020161792635917664\n", + "epoch: 1155 train_loss: 0.020129187032580376\n", + "epoch: 1156 train_loss: 0.020096667110919952\n", + "epoch: 1157 train_loss: 0.020064160227775574\n", + "epoch: 1158 train_loss: 0.02003168687224388\n", + "epoch: 1159 train_loss: 0.01999925822019577\n", + "epoch: 1160 train_loss: 0.01996685564517975\n", + "epoch: 1161 train_loss: 0.01993449218571186\n", + "epoch: 1162 train_loss: 0.019902141764760017\n", + "epoch: 1163 train_loss: 0.019869839772582054\n", + "epoch: 1164 train_loss: 0.01983756013214588\n", + "epoch: 1165 train_loss: 0.01980532705783844\n", + "epoch: 1166 train_loss: 0.01977311074733734\n", + "epoch: 1167 train_loss: 0.019740914925932884\n", + "epoch: 1168 train_loss: 0.019708750769495964\n", + "epoch: 1169 train_loss: 0.019676633179187775\n", + "epoch: 1170 train_loss: 0.01964450255036354\n", + "epoch: 1171 train_loss: 0.019612431526184082\n", + "epoch: 1172 train_loss: 0.019580373540520668\n", + "epoch: 1173 train_loss: 0.0195483285933733\n", + "epoch: 1174 train_loss: 0.019516319036483765\n", + "epoch: 1175 train_loss: 0.019484316930174828\n", + "epoch: 1176 train_loss: 0.019452353939414024\n", + "epoch: 1177 train_loss: 0.019420403987169266\n", + "epoch: 1178 train_loss: 0.019388476386666298\n", + "epoch: 1179 train_loss: 0.01935657113790512\n", + "epoch: 1180 train_loss: 0.019324660301208496\n", + "epoch: 1181 train_loss: 0.0192927997559309\n", + "epoch: 1182 train_loss: 0.019260937348008156\n", + "epoch: 1183 train_loss: 0.019229095429182053\n", + "epoch: 1184 train_loss: 0.019197270274162292\n", + "epoch: 1185 train_loss: 0.019165445119142532\n", + "epoch: 1186 train_loss: 0.019133659079670906\n", + "epoch: 1187 train_loss: 0.01910186931490898\n", + "epoch: 1188 train_loss: 0.019070107489824295\n", + "epoch: 1189 train_loss: 0.019038334488868713\n", + "epoch: 1190 train_loss: 0.019006595015525818\n", + "epoch: 1191 train_loss: 0.018974866718053818\n", + "epoch: 1192 train_loss: 0.01894313655793667\n", + "epoch: 1193 train_loss: 0.018911387771368027\n", + "epoch: 1194 train_loss: 0.018879687413573265\n", + "epoch: 1195 train_loss: 0.018847987055778503\n", + "epoch: 1196 train_loss: 0.018816277384757996\n", + "epoch: 1197 train_loss: 0.01878460869193077\n", + "epoch: 1198 train_loss: 0.01875290460884571\n", + "epoch: 1199 train_loss: 0.0187211986631155\n", + "epoch: 1200 train_loss: 0.018689533695578575\n", + "epoch: 1201 train_loss: 0.0186578631401062\n", + "epoch: 1202 train_loss: 0.018626179546117783\n", + "epoch: 1203 train_loss: 0.01859448477625847\n", + "epoch: 1204 train_loss: 0.01856282167136669\n", + "epoch: 1205 train_loss: 0.01853116787970066\n", + "epoch: 1206 train_loss: 0.018499473109841347\n", + "epoch: 1207 train_loss: 0.018467791378498077\n", + "epoch: 1208 train_loss: 0.018436124548316002\n", + "epoch: 1209 train_loss: 0.01840442419052124\n", + "epoch: 1210 train_loss: 0.01837274245917797\n", + "epoch: 1211 train_loss: 0.01834104023873806\n", + "epoch: 1212 train_loss: 0.018309351056814194\n", + "epoch: 1213 train_loss: 0.018277639523148537\n", + "epoch: 1214 train_loss: 0.01824592426419258\n", + "epoch: 1215 train_loss: 0.01821420155465603\n", + "epoch: 1216 train_loss: 0.018182450905442238\n", + "epoch: 1217 train_loss: 0.018150731921195984\n", + "epoch: 1218 train_loss: 0.01811896078288555\n", + "epoch: 1219 train_loss: 0.01808718591928482\n", + "epoch: 1220 train_loss: 0.018055416643619537\n", + "epoch: 1221 train_loss: 0.018023619428277016\n", + "epoch: 1222 train_loss: 0.017991822212934494\n", + "epoch: 1223 train_loss: 0.017960000783205032\n", + "epoch: 1224 train_loss: 0.01792815513908863\n", + "epoch: 1225 train_loss: 0.017896289005875587\n", + "epoch: 1226 train_loss: 0.017864422872662544\n", + "epoch: 1227 train_loss: 0.017832523211836815\n", + "epoch: 1228 train_loss: 0.017800604924559593\n", + "epoch: 1229 train_loss: 0.017768675461411476\n", + "epoch: 1230 train_loss: 0.017736714333295822\n", + "epoch: 1231 train_loss: 0.017704732716083527\n", + "epoch: 1232 train_loss: 0.017672736197710037\n", + "epoch: 1233 train_loss: 0.01764070987701416\n", + "epoch: 1234 train_loss: 0.017608659341931343\n", + "epoch: 1235 train_loss: 0.01757657155394554\n", + "epoch: 1236 train_loss: 0.017544467002153397\n", + "epoch: 1237 train_loss: 0.017512330785393715\n", + "epoch: 1238 train_loss: 0.017480166628956795\n", + "epoch: 1239 train_loss: 0.017447957769036293\n", + "epoch: 1240 train_loss: 0.017415756359696388\n", + "epoch: 1241 train_loss: 0.017383471131324768\n", + "epoch: 1242 train_loss: 0.01735115237534046\n", + "epoch: 1243 train_loss: 0.017318841069936752\n", + "epoch: 1244 train_loss: 0.017286496236920357\n", + "epoch: 1245 train_loss: 0.017254065722227097\n", + "epoch: 1246 train_loss: 0.017221637070178986\n", + "epoch: 1247 train_loss: 0.01718916743993759\n", + "epoch: 1248 train_loss: 0.017156649380922318\n", + "epoch: 1249 train_loss: 0.017124071717262268\n", + "epoch: 1250 train_loss: 0.017091473564505577\n", + "epoch: 1251 train_loss: 0.01705881953239441\n", + "epoch: 1252 train_loss: 0.017026133835315704\n", + "epoch: 1253 train_loss: 0.01699339784681797\n", + "epoch: 1254 train_loss: 0.01696060784161091\n", + "epoch: 1255 train_loss: 0.016927780583500862\n", + "epoch: 1256 train_loss: 0.016894912347197533\n", + "epoch: 1257 train_loss: 0.016861973330378532\n", + "epoch: 1258 train_loss: 0.0168289914727211\n", + "epoch: 1259 train_loss: 0.016795968636870384\n", + "epoch: 1260 train_loss: 0.01676289364695549\n", + "epoch: 1261 train_loss: 0.01672971621155739\n", + "epoch: 1262 train_loss: 0.01669655367732048\n", + "epoch: 1263 train_loss: 0.016663284972310066\n", + "epoch: 1264 train_loss: 0.01662994548678398\n", + "epoch: 1265 train_loss: 0.016596611589193344\n", + "epoch: 1266 train_loss: 0.016563165932893753\n", + "epoch: 1267 train_loss: 0.016529681161046028\n", + "epoch: 1268 train_loss: 0.01649610325694084\n", + "epoch: 1269 train_loss: 0.01646248996257782\n", + "epoch: 1270 train_loss: 0.016428813338279724\n", + "epoch: 1271 train_loss: 0.01639503985643387\n", + "epoch: 1272 train_loss: 0.01636124588549137\n", + "epoch: 1273 train_loss: 0.016327321529388428\n", + "epoch: 1274 train_loss: 0.016293378546833992\n", + "epoch: 1275 train_loss: 0.016259336844086647\n", + "epoch: 1276 train_loss: 0.01622522994875908\n", + "epoch: 1277 train_loss: 0.016191057860851288\n", + "epoch: 1278 train_loss: 0.016156798228621483\n", + "epoch: 1279 train_loss: 0.016122492030262947\n", + "epoch: 1280 train_loss: 0.016088038682937622\n", + "epoch: 1281 train_loss: 0.016053594648838043\n", + "epoch: 1282 train_loss: 0.01601901464164257\n", + "epoch: 1283 train_loss: 0.015984375029802322\n", + "epoch: 1284 train_loss: 0.01594964973628521\n", + "epoch: 1285 train_loss: 0.01591484062373638\n", + "epoch: 1286 train_loss: 0.01587994024157524\n", + "epoch: 1287 train_loss: 0.015844957903027534\n", + "epoch: 1288 train_loss: 0.01580989360809326\n", + "epoch: 1289 train_loss: 0.015774713829159737\n", + "epoch: 1290 train_loss: 0.01573949120938778\n", + "epoch: 1291 train_loss: 0.015704158693552017\n", + "epoch: 1292 train_loss: 0.01566874422132969\n", + "epoch: 1293 train_loss: 0.015633244067430496\n", + "epoch: 1294 train_loss: 0.01559761818498373\n", + "epoch: 1295 train_loss: 0.015561920590698719\n", + "epoch: 1296 train_loss: 0.015526138246059418\n", + "epoch: 1297 train_loss: 0.015490246936678886\n", + "epoch: 1298 train_loss: 0.015454240143299103\n", + "epoch: 1299 train_loss: 0.01541817095130682\n", + "epoch: 1300 train_loss: 0.01538198534399271\n", + "epoch: 1301 train_loss: 0.01534571684896946\n", + "epoch: 1302 train_loss: 0.015309345908463001\n", + "epoch: 1303 train_loss: 0.015272863209247589\n", + "epoch: 1304 train_loss: 0.015236292034387589\n", + "epoch: 1305 train_loss: 0.015199614688754082\n", + "epoch: 1306 train_loss: 0.015162838622927666\n", + "epoch: 1307 train_loss: 0.015125966630876064\n", + "epoch: 1308 train_loss: 0.015088985674083233\n", + "epoch: 1309 train_loss: 0.015051887370646\n", + "epoch: 1310 train_loss: 0.015014715492725372\n", + "epoch: 1311 train_loss: 0.014977414160966873\n", + "epoch: 1312 train_loss: 0.01494001504033804\n", + "epoch: 1313 train_loss: 0.014902527444064617\n", + "epoch: 1314 train_loss: 0.014864929020404816\n", + "epoch: 1315 train_loss: 0.014827212318778038\n", + "epoch: 1316 train_loss: 0.014789437875151634\n", + "epoch: 1317 train_loss: 0.014751517213881016\n", + "epoch: 1318 train_loss: 0.01471350621432066\n", + "epoch: 1319 train_loss: 0.014675399288535118\n", + "epoch: 1320 train_loss: 0.014637194573879242\n", + "epoch: 1321 train_loss: 0.014598890207707882\n", + "epoch: 1322 train_loss: 0.014560451731085777\n", + "epoch: 1323 train_loss: 0.014521938748657703\n", + "epoch: 1324 train_loss: 0.014483321458101273\n", + "epoch: 1325 train_loss: 0.014444617554545403\n", + "epoch: 1326 train_loss: 0.014405794441699982\n", + "epoch: 1327 train_loss: 0.014366907067596912\n", + "epoch: 1328 train_loss: 0.01432788372039795\n", + "epoch: 1329 train_loss: 0.014288794249296188\n", + "epoch: 1330 train_loss: 0.014249603264033794\n", + "epoch: 1331 train_loss: 0.01421032939106226\n", + "epoch: 1332 train_loss: 0.014170968905091286\n", + "epoch: 1333 train_loss: 0.014131507836282253\n", + "epoch: 1334 train_loss: 0.014091961085796356\n", + "epoch: 1335 train_loss: 0.014052341692149639\n", + "epoch: 1336 train_loss: 0.014012644998729229\n", + "epoch: 1337 train_loss: 0.013972851447761059\n", + "epoch: 1338 train_loss: 0.013932989910244942\n", + "epoch: 1339 train_loss: 0.01389304455369711\n", + "epoch: 1340 train_loss: 0.01385304145514965\n", + "epoch: 1341 train_loss: 0.013812950812280178\n", + "epoch: 1342 train_loss: 0.013772808015346527\n", + "epoch: 1343 train_loss: 0.013732570223510265\n", + "epoch: 1344 train_loss: 0.013692324981093407\n", + "epoch: 1345 train_loss: 0.013651999644935131\n", + "epoch: 1346 train_loss: 0.01361156813800335\n", + "epoch: 1347 train_loss: 0.01357115339487791\n", + "epoch: 1348 train_loss: 0.01353064551949501\n", + "epoch: 1349 train_loss: 0.01349011342972517\n", + "epoch: 1350 train_loss: 0.013449521735310555\n", + "epoch: 1351 train_loss: 0.013408919796347618\n", + "epoch: 1352 train_loss: 0.01336826104670763\n", + "epoch: 1353 train_loss: 0.013327586464583874\n", + "epoch: 1354 train_loss: 0.013286879286170006\n", + "epoch: 1355 train_loss: 0.013246145099401474\n", + "epoch: 1356 train_loss: 0.013205413706600666\n", + "epoch: 1357 train_loss: 0.013164656236767769\n", + "epoch: 1358 train_loss: 0.013123872689902782\n", + "epoch: 1359 train_loss: 0.013083097524940968\n", + "epoch: 1360 train_loss: 0.013042310252785683\n", + "epoch: 1361 train_loss: 0.013001544401049614\n", + "epoch: 1362 train_loss: 0.012960795313119888\n", + "epoch: 1363 train_loss: 0.012920042499899864\n", + "epoch: 1364 train_loss: 0.012879306450486183\n", + "epoch: 1365 train_loss: 0.012838611379265785\n", + "epoch: 1366 train_loss: 0.012797919102013111\n", + "epoch: 1367 train_loss: 0.012757275253534317\n", + "epoch: 1368 train_loss: 0.012716677039861679\n", + "epoch: 1369 train_loss: 0.012676111422479153\n", + "epoch: 1370 train_loss: 0.012635600753128529\n", + "epoch: 1371 train_loss: 0.012595132924616337\n", + "epoch: 1372 train_loss: 0.012554718181490898\n", + "epoch: 1373 train_loss: 0.012514407746493816\n", + "epoch: 1374 train_loss: 0.012474116869270802\n", + "epoch: 1375 train_loss: 0.01243393961340189\n", + "epoch: 1376 train_loss: 0.012393815442919731\n", + "epoch: 1377 train_loss: 0.012353776954114437\n", + "epoch: 1378 train_loss: 0.012313850224018097\n", + "epoch: 1379 train_loss: 0.012273983098566532\n", + "epoch: 1380 train_loss: 0.012234230525791645\n", + "epoch: 1381 train_loss: 0.012194602750241756\n", + "epoch: 1382 train_loss: 0.012155064381659031\n", + "epoch: 1383 train_loss: 0.012115654535591602\n", + "epoch: 1384 train_loss: 0.01207633689045906\n", + "epoch: 1385 train_loss: 0.012037171982228756\n", + "epoch: 1386 train_loss: 0.011998116038739681\n", + "epoch: 1387 train_loss: 0.011959224939346313\n", + "epoch: 1388 train_loss: 0.011920448392629623\n", + "epoch: 1389 train_loss: 0.011881822720170021\n", + "epoch: 1390 train_loss: 0.011843344196677208\n", + "epoch: 1391 train_loss: 0.011805027723312378\n", + "epoch: 1392 train_loss: 0.011766865849494934\n", + "epoch: 1393 train_loss: 0.011728864163160324\n", + "epoch: 1394 train_loss: 0.011691033840179443\n", + "epoch: 1395 train_loss: 0.011653375811874866\n", + "epoch: 1396 train_loss: 0.011615892872214317\n", + "epoch: 1397 train_loss: 0.011578580364584923\n", + "epoch: 1398 train_loss: 0.01154145784676075\n", + "epoch: 1399 train_loss: 0.01150452345609665\n", + "epoch: 1400 train_loss: 0.01146777905523777\n", + "epoch: 1401 train_loss: 0.011431233026087284\n", + "epoch: 1402 train_loss: 0.011394888162612915\n", + "epoch: 1403 train_loss: 0.011358756572008133\n", + "epoch: 1404 train_loss: 0.011322815902531147\n", + "epoch: 1405 train_loss: 0.011287087574601173\n", + "epoch: 1406 train_loss: 0.011251569725573063\n", + "epoch: 1407 train_loss: 0.011216285638511181\n", + "epoch: 1408 train_loss: 0.011181220412254333\n", + "epoch: 1409 train_loss: 0.011146368458867073\n", + "epoch: 1410 train_loss: 0.01111175399273634\n", + "epoch: 1411 train_loss: 0.011077361181378365\n", + "epoch: 1412 train_loss: 0.011043205857276917\n", + "epoch: 1413 train_loss: 0.011009288020431995\n", + "epoch: 1414 train_loss: 0.010975602082908154\n", + "epoch: 1415 train_loss: 0.010942170396447182\n", + "epoch: 1416 train_loss: 0.010908973403275013\n", + "epoch: 1417 train_loss: 0.010876021347939968\n", + "epoch: 1418 train_loss: 0.010843315161764622\n", + "epoch: 1419 train_loss: 0.010810863226652145\n", + "epoch: 1420 train_loss: 0.010778670199215412\n", + "epoch: 1421 train_loss: 0.010746721178293228\n", + "epoch: 1422 train_loss: 0.01071504969149828\n", + "epoch: 1423 train_loss: 0.010683625936508179\n", + "epoch: 1424 train_loss: 0.010652458295226097\n", + "epoch: 1425 train_loss: 0.010621558874845505\n", + "epoch: 1426 train_loss: 0.010590922087430954\n", + "epoch: 1427 train_loss: 0.010560552589595318\n", + "epoch: 1428 train_loss: 0.010530449450016022\n", + "epoch: 1429 train_loss: 0.010500610806047916\n", + "epoch: 1430 train_loss: 0.010471050627529621\n", + "epoch: 1431 train_loss: 0.010441754013299942\n", + "epoch: 1432 train_loss: 0.010412730276584625\n", + "epoch: 1433 train_loss: 0.010383980348706245\n", + "epoch: 1434 train_loss: 0.010355503298342228\n", + "epoch: 1435 train_loss: 0.010327300988137722\n", + "epoch: 1436 train_loss: 0.010299370624125004\n", + "epoch: 1437 train_loss: 0.010271717794239521\n", + "epoch: 1438 train_loss: 0.010244334116578102\n", + "epoch: 1439 train_loss: 0.01021723821759224\n", + "epoch: 1440 train_loss: 0.010190406814217567\n", + "epoch: 1441 train_loss: 0.010163852944970131\n", + "epoch: 1442 train_loss: 0.010137583129107952\n", + "epoch: 1443 train_loss: 0.010111578740179539\n", + "epoch: 1444 train_loss: 0.010085861198604107\n", + "epoch: 1445 train_loss: 0.010060399770736694\n", + "epoch: 1446 train_loss: 0.010035225190222263\n", + "epoch: 1447 train_loss: 0.010010323487222195\n", + "epoch: 1448 train_loss: 0.009985690005123615\n", + "epoch: 1449 train_loss: 0.009961322881281376\n", + "epoch: 1450 train_loss: 0.009937230497598648\n", + "epoch: 1451 train_loss: 0.009913412854075432\n", + "epoch: 1452 train_loss: 0.009889857843518257\n", + "epoch: 1453 train_loss: 0.009866568259894848\n", + "epoch: 1454 train_loss: 0.009843545034527779\n", + "epoch: 1455 train_loss: 0.009820780716836452\n", + "epoch: 1456 train_loss: 0.009798269718885422\n", + "epoch: 1457 train_loss: 0.009776042774319649\n", + "epoch: 1458 train_loss: 0.009754050523042679\n", + "epoch: 1459 train_loss: 0.009732318110764027\n", + "epoch: 1460 train_loss: 0.009710853919386864\n", + "epoch: 1461 train_loss: 0.009689629077911377\n", + "epoch: 1462 train_loss: 0.009668643586337566\n", + "epoch: 1463 train_loss: 0.0096479132771492\n", + "epoch: 1464 train_loss: 0.009627427905797958\n", + "epoch: 1465 train_loss: 0.009607180021703243\n", + "epoch: 1466 train_loss: 0.009587171487510204\n", + "epoch: 1467 train_loss: 0.009567406959831715\n", + "epoch: 1468 train_loss: 0.009547851048409939\n", + "epoch: 1469 train_loss: 0.009528552182018757\n", + "epoch: 1470 train_loss: 0.00950947217643261\n", + "epoch: 1471 train_loss: 0.009490609169006348\n", + "epoch: 1472 train_loss: 0.009471970610320568\n", + "epoch: 1473 train_loss: 0.009453543461859226\n", + "epoch: 1474 train_loss: 0.009435344487428665\n", + "epoch: 1475 train_loss: 0.009417340159416199\n", + "epoch: 1476 train_loss: 0.009399551898241043\n", + "epoch: 1477 train_loss: 0.009381979703903198\n", + "epoch: 1478 train_loss: 0.009364590048789978\n", + "epoch: 1479 train_loss: 0.009347407147288322\n", + "epoch: 1480 train_loss: 0.009330431930720806\n", + "epoch: 1481 train_loss: 0.009313627146184444\n", + "epoch: 1482 train_loss: 0.009297020733356476\n", + "epoch: 1483 train_loss: 0.009280589409172535\n", + "epoch: 1484 train_loss: 0.009264355525374413\n", + "epoch: 1485 train_loss: 0.009248296730220318\n", + "epoch: 1486 train_loss: 0.009232401847839355\n", + "epoch: 1487 train_loss: 0.009216690436005592\n", + "epoch: 1488 train_loss: 0.009201149456202984\n", + "epoch: 1489 train_loss: 0.009185782633721828\n", + "epoch: 1490 train_loss: 0.009170545265078545\n", + "epoch: 1491 train_loss: 0.009155483916401863\n", + "epoch: 1492 train_loss: 0.00914056971669197\n", + "epoch: 1493 train_loss: 0.009125832468271255\n", + "epoch: 1494 train_loss: 0.009111231192946434\n", + "epoch: 1495 train_loss: 0.009096760302782059\n", + "epoch: 1496 train_loss: 0.009082457050681114\n", + "epoch: 1497 train_loss: 0.009068283252418041\n", + "epoch: 1498 train_loss: 0.009054262191057205\n", + "epoch: 1499 train_loss: 0.009040351025760174\n", + "epoch: 1500 train_loss: 0.009026579558849335\n", + "epoch: 1501 train_loss: 0.009012935683131218\n", + "epoch: 1502 train_loss: 0.008999427780508995\n", + "epoch: 1503 train_loss: 0.008986029773950577\n", + "epoch: 1504 train_loss: 0.008972776122391224\n", + "epoch: 1505 train_loss: 0.008959634229540825\n", + "epoch: 1506 train_loss: 0.008946578949689865\n", + "epoch: 1507 train_loss: 0.008933652192354202\n", + "epoch: 1508 train_loss: 0.008920829743146896\n", + "epoch: 1509 train_loss: 0.008908119983971119\n", + "epoch: 1510 train_loss: 0.008895528502762318\n", + "epoch: 1511 train_loss: 0.008883023634552956\n", + "epoch: 1512 train_loss: 0.008870631456375122\n", + "epoch: 1513 train_loss: 0.0088583305478096\n", + "epoch: 1514 train_loss: 0.008846137672662735\n", + "epoch: 1515 train_loss: 0.008834007196128368\n", + "epoch: 1516 train_loss: 0.008822007104754448\n", + "epoch: 1517 train_loss: 0.008810075931251049\n", + "epoch: 1518 train_loss: 0.008798208087682724\n", + "epoch: 1519 train_loss: 0.008786463178694248\n", + "epoch: 1520 train_loss: 0.008774789050221443\n", + "epoch: 1521 train_loss: 0.008763198740780354\n", + "epoch: 1522 train_loss: 0.008751683868467808\n", + "epoch: 1523 train_loss: 0.008740222081542015\n", + "epoch: 1524 train_loss: 0.00872888695448637\n", + "epoch: 1525 train_loss: 0.008717603981494904\n", + "epoch: 1526 train_loss: 0.008706352673470974\n", + "epoch: 1527 train_loss: 0.008695235475897789\n", + "epoch: 1528 train_loss: 0.008684161119163036\n", + "epoch: 1529 train_loss: 0.008673143573105335\n", + "epoch: 1530 train_loss: 0.00866219773888588\n", + "epoch: 1531 train_loss: 0.008651301264762878\n", + "epoch: 1532 train_loss: 0.008640536107122898\n", + "epoch: 1533 train_loss: 0.00862979143857956\n", + "epoch: 1534 train_loss: 0.008619124069809914\n", + "epoch: 1535 train_loss: 0.00860846322029829\n", + "epoch: 1536 train_loss: 0.00859786756336689\n", + "epoch: 1537 train_loss: 0.008587357588112354\n", + "epoch: 1538 train_loss: 0.008576901629567146\n", + "epoch: 1539 train_loss: 0.008566460572183132\n", + "epoch: 1540 train_loss: 0.008556119166314602\n", + "epoch: 1541 train_loss: 0.00854579545557499\n", + "epoch: 1542 train_loss: 0.008535543456673622\n", + "epoch: 1543 train_loss: 0.008525364100933075\n", + "epoch: 1544 train_loss: 0.008515202440321445\n", + "epoch: 1545 train_loss: 0.008505123667418957\n", + "epoch: 1546 train_loss: 0.008495069108903408\n", + "epoch: 1547 train_loss: 0.008484979160130024\n", + "epoch: 1548 train_loss: 0.00847503449767828\n", + "epoch: 1549 train_loss: 0.008465086109936237\n", + "epoch: 1550 train_loss: 0.00845525972545147\n", + "epoch: 1551 train_loss: 0.0084453746676445\n", + "epoch: 1552 train_loss: 0.008435545489192009\n", + "epoch: 1553 train_loss: 0.008425813168287277\n", + "epoch: 1554 train_loss: 0.008416068740189075\n", + "epoch: 1555 train_loss: 0.00840639229863882\n", + "epoch: 1556 train_loss: 0.008396751247346401\n", + "epoch: 1557 train_loss: 0.008387098088860512\n", + "epoch: 1558 train_loss: 0.008377578109502792\n", + "epoch: 1559 train_loss: 0.008368002250790596\n", + "epoch: 1560 train_loss: 0.008358510211110115\n", + "epoch: 1561 train_loss: 0.008349045179784298\n", + "epoch: 1562 train_loss: 0.008339595049619675\n", + "epoch: 1563 train_loss: 0.008330177515745163\n", + "epoch: 1564 train_loss: 0.008320807479321957\n", + "epoch: 1565 train_loss: 0.008311454206705093\n", + "epoch: 1566 train_loss: 0.008302195928990841\n", + "epoch: 1567 train_loss: 0.008292857557535172\n", + "epoch: 1568 train_loss: 0.00828366819769144\n", + "epoch: 1569 train_loss: 0.008274414576590061\n", + "epoch: 1570 train_loss: 0.008265209384262562\n", + "epoch: 1571 train_loss: 0.008256087079644203\n", + "epoch: 1572 train_loss: 0.008246944285929203\n", + "epoch: 1573 train_loss: 0.008237822912633419\n", + "epoch: 1574 train_loss: 0.008228780701756477\n", + "epoch: 1575 train_loss: 0.008219722658395767\n", + "epoch: 1576 train_loss: 0.008210650645196438\n", + "epoch: 1577 train_loss: 0.008201668038964272\n", + "epoch: 1578 train_loss: 0.008192699402570724\n", + "epoch: 1579 train_loss: 0.00818377360701561\n", + "epoch: 1580 train_loss: 0.008174845017492771\n", + "epoch: 1581 train_loss: 0.008165919221937656\n", + "epoch: 1582 train_loss: 0.008157048374414444\n", + "epoch: 1583 train_loss: 0.00814820360392332\n", + "epoch: 1584 train_loss: 0.00813939981162548\n", + "epoch: 1585 train_loss: 0.008130609057843685\n", + "epoch: 1586 train_loss: 0.008121782913804054\n", + "epoch: 1587 train_loss: 0.008113006129860878\n", + "epoch: 1588 train_loss: 0.008104290813207626\n", + "epoch: 1589 train_loss: 0.00809559877961874\n", + "epoch: 1590 train_loss: 0.00808689184486866\n", + "epoch: 1591 train_loss: 0.008078224025666714\n", + "epoch: 1592 train_loss: 0.008069565519690514\n", + "epoch: 1593 train_loss: 0.008060932159423828\n", + "epoch: 1594 train_loss: 0.008052334189414978\n", + "epoch: 1595 train_loss: 0.008043738082051277\n", + "epoch: 1596 train_loss: 0.008035154081881046\n", + "epoch: 1597 train_loss: 0.00802660547196865\n", + "epoch: 1598 train_loss: 0.008018067106604576\n", + "epoch: 1599 train_loss: 0.008009561337530613\n", + "epoch: 1600 train_loss: 0.00800107978284359\n", + "epoch: 1601 train_loss: 0.00799259077757597\n", + "epoch: 1602 train_loss: 0.007984137162566185\n", + "epoch: 1603 train_loss: 0.007975693792104721\n", + "epoch: 1604 train_loss: 0.00796728115528822\n", + "epoch: 1605 train_loss: 0.007958880625665188\n", + "epoch: 1606 train_loss: 0.00795050710439682\n", + "epoch: 1607 train_loss: 0.007942131720483303\n", + "epoch: 1608 train_loss: 0.007933796383440495\n", + "epoch: 1609 train_loss: 0.007925460115075111\n", + "epoch: 1610 train_loss: 0.007917160168290138\n", + "epoch: 1611 train_loss: 0.007908839732408524\n", + "epoch: 1612 train_loss: 0.007900599390268326\n", + "epoch: 1613 train_loss: 0.00789231713861227\n", + "epoch: 1614 train_loss: 0.007884060963988304\n", + "epoch: 1615 train_loss: 0.007875842973589897\n", + "epoch: 1616 train_loss: 0.007867603562772274\n", + "epoch: 1617 train_loss: 0.007859420031309128\n", + "epoch: 1618 train_loss: 0.007851246744394302\n", + "epoch: 1619 train_loss: 0.007843085564672947\n", + "epoch: 1620 train_loss: 0.007834948599338531\n", + "epoch: 1621 train_loss: 0.007826795801520348\n", + "epoch: 1622 train_loss: 0.007818681187927723\n", + "epoch: 1623 train_loss: 0.007810585666447878\n", + "epoch: 1624 train_loss: 0.007802496664226055\n", + "epoch: 1625 train_loss: 0.007794443983584642\n", + "epoch: 1626 train_loss: 0.007786370813846588\n", + "epoch: 1627 train_loss: 0.007778317667543888\n", + "epoch: 1628 train_loss: 0.007770308759063482\n", + "epoch: 1629 train_loss: 0.0077622863464057446\n", + "epoch: 1630 train_loss: 0.007754266727715731\n", + "epoch: 1631 train_loss: 0.007746294140815735\n", + "epoch: 1632 train_loss: 0.007738328073173761\n", + "epoch: 1633 train_loss: 0.007730377838015556\n", + "epoch: 1634 train_loss: 0.007722418289631605\n", + "epoch: 1635 train_loss: 0.007714499719440937\n", + "epoch: 1636 train_loss: 0.007706589065492153\n", + "epoch: 1637 train_loss: 0.007698686793446541\n", + "epoch: 1638 train_loss: 0.007690782193094492\n", + "epoch: 1639 train_loss: 0.007682908792048693\n", + "epoch: 1640 train_loss: 0.007675083354115486\n", + "epoch: 1641 train_loss: 0.00766724394634366\n", + "epoch: 1642 train_loss: 0.00765941571444273\n", + "epoch: 1643 train_loss: 0.007651592139154673\n", + "epoch: 1644 train_loss: 0.007643767166882753\n", + "epoch: 1645 train_loss: 0.007635987363755703\n", + "epoch: 1646 train_loss: 0.007628205697983503\n", + "epoch: 1647 train_loss: 0.007620441261678934\n", + "epoch: 1648 train_loss: 0.00761267589405179\n", + "epoch: 1649 train_loss: 0.007604963146150112\n", + "epoch: 1650 train_loss: 0.007597221527248621\n", + "epoch: 1651 train_loss: 0.007589487824589014\n", + "epoch: 1652 train_loss: 0.007581794168800116\n", + "epoch: 1653 train_loss: 0.007574121467769146\n", + "epoch: 1654 train_loss: 0.007566441781818867\n", + "epoch: 1655 train_loss: 0.007558781187981367\n", + "epoch: 1656 train_loss: 0.007551129441708326\n", + "epoch: 1657 train_loss: 0.007543506100773811\n", + "epoch: 1658 train_loss: 0.007535884622484446\n", + "epoch: 1659 train_loss: 0.007528276648372412\n", + "epoch: 1660 train_loss: 0.007520673330873251\n", + "epoch: 1661 train_loss: 0.007513074669986963\n", + "epoch: 1662 train_loss: 0.007505511399358511\n", + "epoch: 1663 train_loss: 0.007497960235923529\n", + "epoch: 1664 train_loss: 0.007490415591746569\n", + "epoch: 1665 train_loss: 0.0074828495271503925\n", + "epoch: 1666 train_loss: 0.007475343998521566\n", + "epoch: 1667 train_loss: 0.0074678221717476845\n", + "epoch: 1668 train_loss: 0.007460302673280239\n", + "epoch: 1669 train_loss: 0.0074527934193611145\n", + "epoch: 1670 train_loss: 0.007445331197232008\n", + "epoch: 1671 train_loss: 0.007437876425683498\n", + "epoch: 1672 train_loss: 0.007430424448102713\n", + "epoch: 1673 train_loss: 0.007422973867505789\n", + "epoch: 1674 train_loss: 0.0074155498296022415\n", + "epoch: 1675 train_loss: 0.007408122532069683\n", + "epoch: 1676 train_loss: 0.007400711998343468\n", + "epoch: 1677 train_loss: 0.007393328007310629\n", + "epoch: 1678 train_loss: 0.007385950069874525\n", + "epoch: 1679 train_loss: 0.0073785483837127686\n", + "epoch: 1680 train_loss: 0.007371199317276478\n", + "epoch: 1681 train_loss: 0.007363834884017706\n", + "epoch: 1682 train_loss: 0.007356494199484587\n", + "epoch: 1683 train_loss: 0.007349194493144751\n", + "epoch: 1684 train_loss: 0.007341861724853516\n", + "epoch: 1685 train_loss: 0.007334562949836254\n", + "epoch: 1686 train_loss: 0.007327267434448004\n", + "epoch: 1687 train_loss: 0.007320002652704716\n", + "epoch: 1688 train_loss: 0.007312697824090719\n", + "epoch: 1689 train_loss: 0.007305426988750696\n", + "epoch: 1690 train_loss: 0.007298202719539404\n", + "epoch: 1691 train_loss: 0.007290968205779791\n", + "epoch: 1692 train_loss: 0.007283701095730066\n", + "epoch: 1693 train_loss: 0.007276519201695919\n", + "epoch: 1694 train_loss: 0.0072693247348070145\n", + "epoch: 1695 train_loss: 0.007262102328240871\n", + "epoch: 1696 train_loss: 0.007254916243255138\n", + "epoch: 1697 train_loss: 0.007247767876833677\n", + "epoch: 1698 train_loss: 0.007240572012960911\n", + "epoch: 1699 train_loss: 0.007233454380184412\n", + "epoch: 1700 train_loss: 0.0072263143956661224\n", + "epoch: 1701 train_loss: 0.007219171151518822\n", + "epoch: 1702 train_loss: 0.0072120423428714275\n", + "epoch: 1703 train_loss: 0.007204942870885134\n", + "epoch: 1704 train_loss: 0.007197813596576452\n", + "epoch: 1705 train_loss: 0.007190764881670475\n", + "epoch: 1706 train_loss: 0.007183675654232502\n", + "epoch: 1707 train_loss: 0.007176605518907309\n", + "epoch: 1708 train_loss: 0.007169547490775585\n", + "epoch: 1709 train_loss: 0.00716253649443388\n", + "epoch: 1710 train_loss: 0.0071554724127054214\n", + "epoch: 1711 train_loss: 0.007148448843508959\n", + "epoch: 1712 train_loss: 0.0071414560079574585\n", + "epoch: 1713 train_loss: 0.007134432438760996\n", + "epoch: 1714 train_loss: 0.0071274652145802975\n", + "epoch: 1715 train_loss: 0.007120463997125626\n", + "epoch: 1716 train_loss: 0.007113487925380468\n", + "epoch: 1717 train_loss: 0.007106542121618986\n", + "epoch: 1718 train_loss: 0.007099566049873829\n", + "epoch: 1719 train_loss: 0.007092655170708895\n", + "epoch: 1720 train_loss: 0.007085725665092468\n", + "epoch: 1721 train_loss: 0.007078779395669699\n", + "epoch: 1722 train_loss: 0.007071894593536854\n", + "epoch: 1723 train_loss: 0.007064979523420334\n", + "epoch: 1724 train_loss: 0.007058090064674616\n", + "epoch: 1725 train_loss: 0.007051211781799793\n", + "epoch: 1726 train_loss: 0.007044341880828142\n", + "epoch: 1727 train_loss: 0.007037506904453039\n", + "epoch: 1728 train_loss: 0.007030618377029896\n", + "epoch: 1729 train_loss: 0.0070238118059933186\n", + "epoch: 1730 train_loss: 0.007016969379037619\n", + "epoch: 1731 train_loss: 0.007010143715888262\n", + "epoch: 1732 train_loss: 0.007003357633948326\n", + "epoch: 1733 train_loss: 0.0069964914582669735\n", + "epoch: 1734 train_loss: 0.006989761255681515\n", + "epoch: 1735 train_loss: 0.006982988677918911\n", + "epoch: 1736 train_loss: 0.006976171396672726\n", + "epoch: 1737 train_loss: 0.00696944585070014\n", + "epoch: 1738 train_loss: 0.00696268305182457\n", + "epoch: 1739 train_loss: 0.0069559309631586075\n", + "epoch: 1740 train_loss: 0.006949200760573149\n", + "epoch: 1741 train_loss: 0.006942516192793846\n", + "epoch: 1742 train_loss: 0.006935778073966503\n", + "epoch: 1743 train_loss: 0.006929089315235615\n", + "epoch: 1744 train_loss: 0.006922412663698196\n", + "epoch: 1745 train_loss: 0.006915668025612831\n", + "epoch: 1746 train_loss: 0.006909038871526718\n", + "epoch: 1747 train_loss: 0.006902369204908609\n", + "epoch: 1748 train_loss: 0.00689572561532259\n", + "epoch: 1749 train_loss: 0.006889061536639929\n", + "epoch: 1750 train_loss: 0.006882453337311745\n", + "epoch: 1751 train_loss: 0.0068757967092096806\n", + "epoch: 1752 train_loss: 0.006869184318929911\n", + "epoch: 1753 train_loss: 0.006862591486424208\n", + "epoch: 1754 train_loss: 0.0068560014478862286\n", + "epoch: 1755 train_loss: 0.00684942165389657\n", + "epoch: 1756 train_loss: 0.006842812988907099\n", + "epoch: 1757 train_loss: 0.006836275104433298\n", + "epoch: 1758 train_loss: 0.0068297116085886955\n", + "epoch: 1759 train_loss: 0.006823153235018253\n", + "epoch: 1760 train_loss: 0.006816601846367121\n", + "epoch: 1761 train_loss: 0.006810109131038189\n", + "epoch: 1762 train_loss: 0.006803566589951515\n", + "epoch: 1763 train_loss: 0.006797050125896931\n", + "epoch: 1764 train_loss: 0.006790526676923037\n", + "epoch: 1765 train_loss: 0.006784058175981045\n", + "epoch: 1766 train_loss: 0.00677757291123271\n", + "epoch: 1767 train_loss: 0.006771109998226166\n", + "epoch: 1768 train_loss: 0.006764610297977924\n", + "epoch: 1769 train_loss: 0.00675816647708416\n", + "epoch: 1770 train_loss: 0.006751718930900097\n", + "epoch: 1771 train_loss: 0.006745294667780399\n", + "epoch: 1772 train_loss: 0.006738859228789806\n", + "epoch: 1773 train_loss: 0.0067324345000088215\n", + "epoch: 1774 train_loss: 0.006725985556840897\n", + "epoch: 1775 train_loss: 0.0067196255549788475\n", + "epoch: 1776 train_loss: 0.0067132082767784595\n", + "epoch: 1777 train_loss: 0.006706849671900272\n", + "epoch: 1778 train_loss: 0.006700464524328709\n", + "epoch: 1779 train_loss: 0.006694107782095671\n", + "epoch: 1780 train_loss: 0.00668772216886282\n", + "epoch: 1781 train_loss: 0.006681379862129688\n", + "epoch: 1782 train_loss: 0.0066750384867191315\n", + "epoch: 1783 train_loss: 0.006668722257018089\n", + "epoch: 1784 train_loss: 0.006662408355623484\n", + "epoch: 1785 train_loss: 0.006656077224761248\n", + "epoch: 1786 train_loss: 0.006649762857705355\n", + "epoch: 1787 train_loss: 0.006643456872552633\n", + "epoch: 1788 train_loss: 0.006637185346335173\n", + "epoch: 1789 train_loss: 0.006630905903875828\n", + "epoch: 1790 train_loss: 0.0066246516071259975\n", + "epoch: 1791 train_loss: 0.00661838985979557\n", + "epoch: 1792 train_loss: 0.006612167228013277\n", + "epoch: 1793 train_loss: 0.006605910137295723\n", + "epoch: 1794 train_loss: 0.006599694024771452\n", + "epoch: 1795 train_loss: 0.006593421101570129\n", + "epoch: 1796 train_loss: 0.006587214767932892\n", + "epoch: 1797 train_loss: 0.006581007968634367\n", + "epoch: 1798 train_loss: 0.006574796512722969\n", + "epoch: 1799 train_loss: 0.006568628363311291\n", + "epoch: 1800 train_loss: 0.006562425289303064\n", + "epoch: 1801 train_loss: 0.006556264124810696\n", + "epoch: 1802 train_loss: 0.006550084799528122\n", + "epoch: 1803 train_loss: 0.006543935276567936\n", + "epoch: 1804 train_loss: 0.006537784822285175\n", + "epoch: 1805 train_loss: 0.006531646475195885\n", + "epoch: 1806 train_loss: 0.006525523029267788\n", + "epoch: 1807 train_loss: 0.006519407965242863\n", + "epoch: 1808 train_loss: 0.006513291038572788\n", + "epoch: 1809 train_loss: 0.006507156882435083\n", + "epoch: 1810 train_loss: 0.006501073949038982\n", + "epoch: 1811 train_loss: 0.006494986359030008\n", + "epoch: 1812 train_loss: 0.006488892249763012\n", + "epoch: 1813 train_loss: 0.006482819560915232\n", + "epoch: 1814 train_loss: 0.006476767361164093\n", + "epoch: 1815 train_loss: 0.006470691412687302\n", + "epoch: 1816 train_loss: 0.006464656442403793\n", + "epoch: 1817 train_loss: 0.006458620075136423\n", + "epoch: 1818 train_loss: 0.006452591624110937\n", + "epoch: 1819 train_loss: 0.006446564570069313\n", + "epoch: 1820 train_loss: 0.0064405398443341255\n", + "epoch: 1821 train_loss: 0.006434543989598751\n", + "epoch: 1822 train_loss: 0.0064285448752343655\n", + "epoch: 1823 train_loss: 0.006422566715627909\n", + "epoch: 1824 train_loss: 0.006416573189198971\n", + "epoch: 1825 train_loss: 0.006410603877156973\n", + "epoch: 1826 train_loss: 0.006404625717550516\n", + "epoch: 1827 train_loss: 0.006398658733814955\n", + "epoch: 1828 train_loss: 0.006392727140337229\n", + "epoch: 1829 train_loss: 0.0063867769204080105\n", + "epoch: 1830 train_loss: 0.006380843464285135\n", + "epoch: 1831 train_loss: 0.006374917924404144\n", + "epoch: 1832 train_loss: 0.0063689895905554295\n", + "epoch: 1833 train_loss: 0.006363100837916136\n", + "epoch: 1834 train_loss: 0.00635718647390604\n", + "epoch: 1835 train_loss: 0.006351294927299023\n", + "epoch: 1836 train_loss: 0.006345413625240326\n", + "epoch: 1837 train_loss: 0.0063395374454557896\n", + "epoch: 1838 train_loss: 0.006333653349429369\n", + "epoch: 1839 train_loss: 0.0063277906738221645\n", + "epoch: 1840 train_loss: 0.006321940571069717\n", + "epoch: 1841 train_loss: 0.006316093727946281\n", + "epoch: 1842 train_loss: 0.0063102347776293755\n", + "epoch: 1843 train_loss: 0.006304419599473476\n", + "epoch: 1844 train_loss: 0.00629859883338213\n", + "epoch: 1845 train_loss: 0.006292771082371473\n", + "epoch: 1846 train_loss: 0.006286998745054007\n", + "epoch: 1847 train_loss: 0.006281178444623947\n", + "epoch: 1848 train_loss: 0.006275394465774298\n", + "epoch: 1849 train_loss: 0.006269602570682764\n", + "epoch: 1850 train_loss: 0.006263821851462126\n", + "epoch: 1851 train_loss: 0.0062580406665802\n", + "epoch: 1852 train_loss: 0.006252295803278685\n", + "epoch: 1853 train_loss: 0.006246522534638643\n", + "epoch: 1854 train_loss: 0.006240787450224161\n", + "epoch: 1855 train_loss: 0.006235030945390463\n", + "epoch: 1856 train_loss: 0.006229299120604992\n", + "epoch: 1857 train_loss: 0.006223582662642002\n", + "epoch: 1858 train_loss: 0.006217879243195057\n", + "epoch: 1859 train_loss: 0.00621216744184494\n", + "epoch: 1860 train_loss: 0.006206471938639879\n", + "epoch: 1861 train_loss: 0.006200775038450956\n", + "epoch: 1862 train_loss: 0.006195081863552332\n", + "epoch: 1863 train_loss: 0.006189403124153614\n", + "epoch: 1864 train_loss: 0.006183737423270941\n", + "epoch: 1865 train_loss: 0.006178085692226887\n", + "epoch: 1866 train_loss: 0.006172423716634512\n", + "epoch: 1867 train_loss: 0.006166782230138779\n", + "epoch: 1868 train_loss: 0.006161110941320658\n", + "epoch: 1869 train_loss: 0.006155487149953842\n", + "epoch: 1870 train_loss: 0.006149848457425833\n", + "epoch: 1871 train_loss: 0.006144246086478233\n", + "epoch: 1872 train_loss: 0.0061386264860630035\n", + "epoch: 1873 train_loss: 0.006133010610938072\n", + "epoch: 1874 train_loss: 0.0061274305917322636\n", + "epoch: 1875 train_loss: 0.0061218393966555595\n", + "epoch: 1876 train_loss: 0.0061162556521594524\n", + "epoch: 1877 train_loss: 0.006110698450356722\n", + "epoch: 1878 train_loss: 0.006105115637183189\n", + "epoch: 1879 train_loss: 0.006099553778767586\n", + "epoch: 1880 train_loss: 0.006093982607126236\n", + "epoch: 1881 train_loss: 0.006088431924581528\n", + "epoch: 1882 train_loss: 0.006082920357584953\n", + "epoch: 1883 train_loss: 0.006077366415411234\n", + "epoch: 1884 train_loss: 0.006071862298995256\n", + "epoch: 1885 train_loss: 0.006066339090466499\n", + "epoch: 1886 train_loss: 0.006060820072889328\n", + "epoch: 1887 train_loss: 0.006055319216102362\n", + "epoch: 1888 train_loss: 0.00604982441291213\n", + "epoch: 1889 train_loss: 0.006044326815754175\n", + "epoch: 1890 train_loss: 0.00603884132578969\n", + "epoch: 1891 train_loss: 0.00603337911888957\n", + "epoch: 1892 train_loss: 0.00602789968252182\n", + "epoch: 1893 train_loss: 0.006022441666573286\n", + "epoch: 1894 train_loss: 0.0060169813223183155\n", + "epoch: 1895 train_loss: 0.006011531222611666\n", + "epoch: 1896 train_loss: 0.00600610114634037\n", + "epoch: 1897 train_loss: 0.006000662222504616\n", + "epoch: 1898 train_loss: 0.005995254497975111\n", + "epoch: 1899 train_loss: 0.005989814177155495\n", + "epoch: 1900 train_loss: 0.005984402261674404\n", + "epoch: 1901 train_loss: 0.005979008506983519\n", + "epoch: 1902 train_loss: 0.005973595194518566\n", + "epoch: 1903 train_loss: 0.005968223791569471\n", + "epoch: 1904 train_loss: 0.0059627965092659\n", + "epoch: 1905 train_loss: 0.0059574623592197895\n", + "epoch: 1906 train_loss: 0.005952063947916031\n", + "epoch: 1907 train_loss: 0.005946713499724865\n", + "epoch: 1908 train_loss: 0.005941360257565975\n", + "epoch: 1909 train_loss: 0.005935996770858765\n", + "epoch: 1910 train_loss: 0.00593066168949008\n", + "epoch: 1911 train_loss: 0.005925326608121395\n", + "epoch: 1912 train_loss: 0.005919967778027058\n", + "epoch: 1913 train_loss: 0.005914667621254921\n", + "epoch: 1914 train_loss: 0.005909332539886236\n", + "epoch: 1915 train_loss: 0.005904039368033409\n", + "epoch: 1916 train_loss: 0.0058987438678741455\n", + "epoch: 1917 train_loss: 0.00589343998581171\n", + "epoch: 1918 train_loss: 0.005888157524168491\n", + "epoch: 1919 train_loss: 0.0058828555047512054\n", + "epoch: 1920 train_loss: 0.005877598654478788\n", + "epoch: 1921 train_loss: 0.005872328765690327\n", + "epoch: 1922 train_loss: 0.005867036059498787\n", + "epoch: 1923 train_loss: 0.0058617969043552876\n", + "epoch: 1924 train_loss: 0.0058565507642924786\n", + "epoch: 1925 train_loss: 0.005851292982697487\n", + "epoch: 1926 train_loss: 0.0058460719883441925\n", + "epoch: 1927 train_loss: 0.005840817932039499\n", + "epoch: 1928 train_loss: 0.005835599731653929\n", + "epoch: 1929 train_loss: 0.005830388981848955\n", + "epoch: 1930 train_loss: 0.005825179163366556\n", + "epoch: 1931 train_loss: 0.005819983780384064\n", + "epoch: 1932 train_loss: 0.005814778618514538\n", + "epoch: 1933 train_loss: 0.005809578578919172\n", + "epoch: 1934 train_loss: 0.005804402753710747\n", + "epoch: 1935 train_loss: 0.005799232050776482\n", + "epoch: 1936 train_loss: 0.005794037599116564\n", + "epoch: 1937 train_loss: 0.00578888226300478\n", + "epoch: 1938 train_loss: 0.005783709231764078\n", + "epoch: 1939 train_loss: 0.005778553895652294\n", + "epoch: 1940 train_loss: 0.0057734157890081406\n", + "epoch: 1941 train_loss: 0.0057682860642671585\n", + "epoch: 1942 train_loss: 0.005763136316090822\n", + "epoch: 1943 train_loss: 0.005758017301559448\n", + "epoch: 1944 train_loss: 0.005752895027399063\n", + "epoch: 1945 train_loss: 0.005747763440012932\n", + "epoch: 1946 train_loss: 0.00574265792965889\n", + "epoch: 1947 train_loss: 0.005737569183111191\n", + "epoch: 1948 train_loss: 0.005732475779950619\n", + "epoch: 1949 train_loss: 0.005727384239435196\n", + "epoch: 1950 train_loss: 0.0057223145850002766\n", + "epoch: 1951 train_loss: 0.005717224441468716\n", + "epoch: 1952 train_loss: 0.005712153855711222\n", + "epoch: 1953 train_loss: 0.0057070935145020485\n", + "epoch: 1954 train_loss: 0.0057020243257284164\n", + "epoch: 1955 train_loss: 0.005696973763406277\n", + "epoch: 1956 train_loss: 0.0056919315829873085\n", + "epoch: 1957 train_loss: 0.005686894524842501\n", + "epoch: 1958 train_loss: 0.005681856069713831\n", + "epoch: 1959 train_loss: 0.005676823668181896\n", + "epoch: 1960 train_loss: 0.0056718019768595695\n", + "epoch: 1961 train_loss: 0.005666789133101702\n", + "epoch: 1962 train_loss: 0.005661783739924431\n", + "epoch: 1963 train_loss: 0.005656774155795574\n", + "epoch: 1964 train_loss: 0.005651772487908602\n", + "epoch: 1965 train_loss: 0.005646774545311928\n", + "epoch: 1966 train_loss: 0.005641800817102194\n", + "epoch: 1967 train_loss: 0.005636818706989288\n", + "epoch: 1968 train_loss: 0.005631842650473118\n", + "epoch: 1969 train_loss: 0.005626868922263384\n", + "epoch: 1970 train_loss: 0.00562192453071475\n", + "epoch: 1971 train_loss: 0.005616966634988785\n", + "epoch: 1972 train_loss: 0.005612026900053024\n", + "epoch: 1973 train_loss: 0.005607063416391611\n", + "epoch: 1974 train_loss: 0.0056021385826170444\n", + "epoch: 1975 train_loss: 0.005597203969955444\n", + "epoch: 1976 train_loss: 0.005592279601842165\n", + "epoch: 1977 train_loss: 0.005587353371083736\n", + "epoch: 1978 train_loss: 0.005582446698099375\n", + "epoch: 1979 train_loss: 0.005577548872679472\n", + "epoch: 1980 train_loss: 0.0055726394057273865\n", + "epoch: 1981 train_loss: 0.00556773878633976\n", + "epoch: 1982 train_loss: 0.005562858190387487\n", + "epoch: 1983 train_loss: 0.005557979457080364\n", + "epoch: 1984 train_loss: 0.005553091410547495\n", + "epoch: 1985 train_loss: 0.005548215005546808\n", + "epoch: 1986 train_loss: 0.005543376784771681\n", + "epoch: 1987 train_loss: 0.005538493860512972\n", + "epoch: 1988 train_loss: 0.0055336360819637775\n", + "epoch: 1989 train_loss: 0.005528786685317755\n", + "epoch: 1990 train_loss: 0.005523933097720146\n", + "epoch: 1991 train_loss: 0.005519125610589981\n", + "epoch: 1992 train_loss: 0.005514274351298809\n", + "epoch: 1993 train_loss: 0.005509453359991312\n", + "epoch: 1994 train_loss: 0.0055046360939741135\n", + "epoch: 1995 train_loss: 0.005499800201505423\n", + "epoch: 1996 train_loss: 0.005495011806488037\n", + "epoch: 1997 train_loss: 0.005490196868777275\n", + "epoch: 1998 train_loss: 0.0054854173213243484\n", + "epoch: 1999 train_loss: 0.005480596795678139\n", + "epoch: 2000 train_loss: 0.005475835409015417\n", + "epoch: 2001 train_loss: 0.005471053067594767\n", + "epoch: 2002 train_loss: 0.005466264672577381\n", + "epoch: 2003 train_loss: 0.005461514927446842\n", + "epoch: 2004 train_loss: 0.005456727929413319\n", + "epoch: 2005 train_loss: 0.005451966542750597\n", + "epoch: 2006 train_loss: 0.005447222385555506\n", + "epoch: 2007 train_loss: 0.005442501977086067\n", + "epoch: 2008 train_loss: 0.005437740124762058\n", + "epoch: 2009 train_loss: 0.005433020181953907\n", + "epoch: 2010 train_loss: 0.0054282802157104015\n", + "epoch: 2011 train_loss: 0.005423558875918388\n", + "epoch: 2012 train_loss: 0.005418842192739248\n", + "epoch: 2013 train_loss: 0.005414128769189119\n", + "epoch: 2014 train_loss: 0.005409432575106621\n", + "epoch: 2015 train_loss: 0.00540471775457263\n", + "epoch: 2016 train_loss: 0.005400035995990038\n", + "epoch: 2017 train_loss: 0.005395335610955954\n", + "epoch: 2018 train_loss: 0.0053906524553895\n", + "epoch: 2019 train_loss: 0.00538597023114562\n", + "epoch: 2020 train_loss: 0.005381315480917692\n", + "epoch: 2021 train_loss: 0.005376623943448067\n", + "epoch: 2022 train_loss: 0.005371985491365194\n", + "epoch: 2023 train_loss: 0.0053673116490244865\n", + "epoch: 2024 train_loss: 0.005362667143344879\n", + "epoch: 2025 train_loss: 0.005358010996133089\n", + "epoch: 2026 train_loss: 0.0053533767350018024\n", + "epoch: 2027 train_loss: 0.005348747596144676\n", + "epoch: 2028 train_loss: 0.00534411845728755\n", + "epoch: 2029 train_loss: 0.005339483264833689\n", + "epoch: 2030 train_loss: 0.0053348722867667675\n", + "epoch: 2031 train_loss: 0.005330266430974007\n", + "epoch: 2032 train_loss: 0.005325646605342627\n", + "epoch: 2033 train_loss: 0.005321066826581955\n", + "epoch: 2034 train_loss: 0.0053164297714829445\n", + "epoch: 2035 train_loss: 0.005311861634254456\n", + "epoch: 2036 train_loss: 0.005307256709784269\n", + "epoch: 2037 train_loss: 0.005302699748426676\n", + "epoch: 2038 train_loss: 0.005298103671520948\n", + "epoch: 2039 train_loss: 0.005293546710163355\n", + "epoch: 2040 train_loss: 0.0052889627404510975\n", + "epoch: 2041 train_loss: 0.005284421145915985\n", + "epoch: 2042 train_loss: 0.0052798897959291935\n", + "epoch: 2043 train_loss: 0.00527530163526535\n", + "epoch: 2044 train_loss: 0.005270789377391338\n", + "epoch: 2045 train_loss: 0.00526622636243701\n", + "epoch: 2046 train_loss: 0.005261710379272699\n", + "epoch: 2047 train_loss: 0.005257176235318184\n", + "epoch: 2048 train_loss: 0.005252648610621691\n", + "epoch: 2049 train_loss: 0.005248142406344414\n", + "epoch: 2050 train_loss: 0.005243607796728611\n", + "epoch: 2051 train_loss: 0.005239121615886688\n", + "epoch: 2052 train_loss: 0.005234589800238609\n", + "epoch: 2053 train_loss: 0.005230114329606295\n", + "epoch: 2054 train_loss: 0.0052255974151194096\n", + "epoch: 2055 train_loss: 0.005221101921051741\n", + "epoch: 2056 train_loss: 0.0052166287787258625\n", + "epoch: 2057 train_loss: 0.005212126299738884\n", + "epoch: 2058 train_loss: 0.005207683891057968\n", + "epoch: 2059 train_loss: 0.005203218199312687\n", + "epoch: 2060 train_loss: 0.005198759492486715\n", + "epoch: 2061 train_loss: 0.005194290075451136\n", + "epoch: 2062 train_loss: 0.005189849529415369\n", + "epoch: 2063 train_loss: 0.005185417365282774\n", + "epoch: 2064 train_loss: 0.005180971696972847\n", + "epoch: 2065 train_loss: 0.005176517181098461\n", + "epoch: 2066 train_loss: 0.005172121804207563\n", + "epoch: 2067 train_loss: 0.005167674273252487\n", + "epoch: 2068 train_loss: 0.005163260735571384\n", + "epoch: 2069 train_loss: 0.005158841609954834\n", + "epoch: 2070 train_loss: 0.00515441969037056\n", + "epoch: 2071 train_loss: 0.005150021985173225\n", + "epoch: 2072 train_loss: 0.005145607981830835\n", + "epoch: 2073 train_loss: 0.005141212604939938\n", + "epoch: 2074 train_loss: 0.005136831197887659\n", + "epoch: 2075 train_loss: 0.005132426507771015\n", + "epoch: 2076 train_loss: 0.005128040909767151\n", + "epoch: 2077 train_loss: 0.005123687908053398\n", + "epoch: 2078 train_loss: 0.00511931162327528\n", + "epoch: 2079 train_loss: 0.005114938598126173\n", + "epoch: 2080 train_loss: 0.0051106116734445095\n", + "epoch: 2081 train_loss: 0.00510625122115016\n", + "epoch: 2082 train_loss: 0.005101884715259075\n", + "epoch: 2083 train_loss: 0.0050975666381418705\n", + "epoch: 2084 train_loss: 0.0050932131707668304\n", + "epoch: 2085 train_loss: 0.005088898818939924\n", + "epoch: 2086 train_loss: 0.005084568168967962\n", + "epoch: 2087 train_loss: 0.005080235656350851\n", + "epoch: 2088 train_loss: 0.005075889639556408\n", + "epoch: 2089 train_loss: 0.00507155479863286\n", + "epoch: 2090 train_loss: 0.005067257676273584\n", + "epoch: 2091 train_loss: 0.005062940530478954\n", + "epoch: 2092 train_loss: 0.005058636888861656\n", + "epoch: 2093 train_loss: 0.005054364912211895\n", + "epoch: 2094 train_loss: 0.0050500500947237015\n", + "epoch: 2095 train_loss: 0.005045768804848194\n", + "epoch: 2096 train_loss: 0.005041488446295261\n", + "epoch: 2097 train_loss: 0.005037236958742142\n", + "epoch: 2098 train_loss: 0.005032960791140795\n", + "epoch: 2099 train_loss: 0.0050286841578781605\n", + "epoch: 2100 train_loss: 0.005024434998631477\n", + "epoch: 2101 train_loss: 0.005020173266530037\n", + "epoch: 2102 train_loss: 0.005015920847654343\n", + "epoch: 2103 train_loss: 0.00501167681068182\n", + "epoch: 2104 train_loss: 0.005007409490644932\n", + "epoch: 2105 train_loss: 0.005003172904253006\n", + "epoch: 2106 train_loss: 0.00499893631786108\n", + "epoch: 2107 train_loss: 0.004994711838662624\n", + "epoch: 2108 train_loss: 0.004990488290786743\n", + "epoch: 2109 train_loss: 0.004986276384443045\n", + "epoch: 2110 train_loss: 0.0049820346757769585\n", + "epoch: 2111 train_loss: 0.00497783999890089\n", + "epoch: 2112 train_loss: 0.0049736518412828445\n", + "epoch: 2113 train_loss: 0.004969460889697075\n", + "epoch: 2114 train_loss: 0.004965248517692089\n", + "epoch: 2115 train_loss: 0.004961056634783745\n", + "epoch: 2116 train_loss: 0.004956874065101147\n", + "epoch: 2117 train_loss: 0.004952693823724985\n", + "epoch: 2118 train_loss: 0.004948496352881193\n", + "epoch: 2119 train_loss: 0.004944330081343651\n", + "epoch: 2120 train_loss: 0.004940161481499672\n", + "epoch: 2121 train_loss: 0.004936012905091047\n", + "epoch: 2122 train_loss: 0.004931854084134102\n", + "epoch: 2123 train_loss: 0.004927688278257847\n", + "epoch: 2124 train_loss: 0.004923544824123383\n", + "epoch: 2125 train_loss: 0.004919406492263079\n", + "epoch: 2126 train_loss: 0.004915272817015648\n", + "epoch: 2127 train_loss: 0.004911118187010288\n", + "epoch: 2128 train_loss: 0.004906985443085432\n", + "epoch: 2129 train_loss: 0.004902868065983057\n", + "epoch: 2130 train_loss: 0.0048987544141709805\n", + "epoch: 2131 train_loss: 0.004894637037068605\n", + "epoch: 2132 train_loss: 0.004890529438853264\n", + "epoch: 2133 train_loss: 0.004886414390057325\n", + "epoch: 2134 train_loss: 0.0048822988756000996\n", + "epoch: 2135 train_loss: 0.004878208972513676\n", + "epoch: 2136 train_loss: 0.004874099045991898\n", + "epoch: 2137 train_loss: 0.004870017524808645\n", + "epoch: 2138 train_loss: 0.00486593646928668\n", + "epoch: 2139 train_loss: 0.004861858673393726\n", + "epoch: 2140 train_loss: 0.0048578050918877125\n", + "epoch: 2141 train_loss: 0.004853717517107725\n", + "epoch: 2142 train_loss: 0.004849629011005163\n", + "epoch: 2143 train_loss: 0.004845565650612116\n", + "epoch: 2144 train_loss: 0.004841526038944721\n", + "epoch: 2145 train_loss: 0.0048374696634709835\n", + "epoch: 2146 train_loss: 0.00483342120423913\n", + "epoch: 2147 train_loss: 0.00482936529442668\n", + "epoch: 2148 train_loss: 0.004825339652597904\n", + "epoch: 2149 train_loss: 0.004821311682462692\n", + "epoch: 2150 train_loss: 0.004817300476133823\n", + "epoch: 2151 train_loss: 0.004813259933143854\n", + "epoch: 2152 train_loss: 0.004809217061847448\n", + "epoch: 2153 train_loss: 0.004805195145308971\n", + "epoch: 2154 train_loss: 0.004801193717867136\n", + "epoch: 2155 train_loss: 0.0047971815802156925\n", + "epoch: 2156 train_loss: 0.004793192259967327\n", + "epoch: 2157 train_loss: 0.00478918943554163\n", + "epoch: 2158 train_loss: 0.0047852033749222755\n", + "epoch: 2159 train_loss: 0.004781205672770739\n", + "epoch: 2160 train_loss: 0.004777201917022467\n", + "epoch: 2161 train_loss: 0.004773235879838467\n", + "epoch: 2162 train_loss: 0.004769251681864262\n", + "epoch: 2163 train_loss: 0.004765281453728676\n", + "epoch: 2164 train_loss: 0.004761305637657642\n", + "epoch: 2165 train_loss: 0.004757342394441366\n", + "epoch: 2166 train_loss: 0.0047533861361444\n", + "epoch: 2167 train_loss: 0.004749429877847433\n", + "epoch: 2168 train_loss: 0.004745460581034422\n", + "epoch: 2169 train_loss: 0.004741528537124395\n", + "epoch: 2170 train_loss: 0.004737588576972485\n", + "epoch: 2171 train_loss: 0.004733644891530275\n", + "epoch: 2172 train_loss: 0.004729707725346088\n", + "epoch: 2173 train_loss: 0.004725790582597256\n", + "epoch: 2174 train_loss: 0.004721871577203274\n", + "epoch: 2175 train_loss: 0.004717943724244833\n", + "epoch: 2176 train_loss: 0.004714013542979956\n", + "epoch: 2177 train_loss: 0.004710110370069742\n", + "epoch: 2178 train_loss: 0.004706197418272495\n", + "epoch: 2179 train_loss: 0.004702295176684856\n", + "epoch: 2180 train_loss: 0.004698399920016527\n", + "epoch: 2181 train_loss: 0.004694504197686911\n", + "epoch: 2182 train_loss: 0.0046906182542443275\n", + "epoch: 2183 train_loss: 0.004686711821705103\n", + "epoch: 2184 train_loss: 0.004682828672230244\n", + "epoch: 2185 train_loss: 0.004678960423916578\n", + "epoch: 2186 train_loss: 0.004675079602748156\n", + "epoch: 2187 train_loss: 0.004671222995966673\n", + "epoch: 2188 train_loss: 0.004667353350669146\n", + "epoch: 2189 train_loss: 0.004663492552936077\n", + "epoch: 2190 train_loss: 0.004659625701606274\n", + "epoch: 2191 train_loss: 0.004655780270695686\n", + "epoch: 2192 train_loss: 0.004651932045817375\n", + "epoch: 2193 train_loss: 0.004648088943213224\n", + "epoch: 2194 train_loss: 0.004644243977963924\n", + "epoch: 2195 train_loss: 0.004640404600650072\n", + "epoch: 2196 train_loss: 0.004636566154658794\n", + "epoch: 2197 train_loss: 0.004632740281522274\n", + "epoch: 2198 train_loss: 0.0046289339661598206\n", + "epoch: 2199 train_loss: 0.0046250950545072556\n", + "epoch: 2200 train_loss: 0.00462128734216094\n", + "epoch: 2201 train_loss: 0.004617482423782349\n", + "epoch: 2202 train_loss: 0.004613670986145735\n", + "epoch: 2203 train_loss: 0.004609871190041304\n", + "epoch: 2204 train_loss: 0.004606063012033701\n", + "epoch: 2205 train_loss: 0.004602269269526005\n", + "epoch: 2206 train_loss: 0.004598489496856928\n", + "epoch: 2207 train_loss: 0.0045946938917040825\n", + "epoch: 2208 train_loss: 0.004590919241309166\n", + "epoch: 2209 train_loss: 0.0045871250331401825\n", + "epoch: 2210 train_loss: 0.004583362489938736\n", + "epoch: 2211 train_loss: 0.004579599946737289\n", + "epoch: 2212 train_loss: 0.0045758262276649475\n", + "epoch: 2213 train_loss: 0.004572060890495777\n", + "epoch: 2214 train_loss: 0.004568290431052446\n", + "epoch: 2215 train_loss: 0.004564544651657343\n", + "epoch: 2216 train_loss: 0.004560813773423433\n", + "epoch: 2217 train_loss: 0.0045570568181574345\n", + "epoch: 2218 train_loss: 0.0045533073134720325\n", + "epoch: 2219 train_loss: 0.004549585748463869\n", + "epoch: 2220 train_loss: 0.0045458488166332245\n", + "epoch: 2221 train_loss: 0.004542118404060602\n", + "epoch: 2222 train_loss: 0.004538407549262047\n", + "epoch: 2223 train_loss: 0.004534670617431402\n", + "epoch: 2224 train_loss: 0.004530961159616709\n", + "epoch: 2225 train_loss: 0.004527261480689049\n", + "epoch: 2226 train_loss: 0.004523541312664747\n", + "epoch: 2227 train_loss: 0.004519843962043524\n", + "epoch: 2228 train_loss: 0.004516123328357935\n", + "epoch: 2229 train_loss: 0.004512445069849491\n", + "epoch: 2230 train_loss: 0.004508740734308958\n", + "epoch: 2231 train_loss: 0.0045050401240587234\n", + "epoch: 2232 train_loss: 0.004501373507082462\n", + "epoch: 2233 train_loss: 0.004497682210057974\n", + "epoch: 2234 train_loss: 0.00449399696663022\n", + "epoch: 2235 train_loss: 0.0044903382658958435\n", + "epoch: 2236 train_loss: 0.004486662335693836\n", + "epoch: 2237 train_loss: 0.004482999909669161\n", + "epoch: 2238 train_loss: 0.004479332827031612\n", + "epoch: 2239 train_loss: 0.004475687630474567\n", + "epoch: 2240 train_loss: 0.004472047556191683\n", + "epoch: 2241 train_loss: 0.004468376282602549\n", + "epoch: 2242 train_loss: 0.004464736208319664\n", + "epoch: 2243 train_loss: 0.004461092874407768\n", + "epoch: 2244 train_loss: 0.004457465372979641\n", + "epoch: 2245 train_loss: 0.004453841131180525\n", + "epoch: 2246 train_loss: 0.004450204316526651\n", + "epoch: 2247 train_loss: 0.004446569364517927\n", + "epoch: 2248 train_loss: 0.0044429367408156395\n", + "epoch: 2249 train_loss: 0.004439337644726038\n", + "epoch: 2250 train_loss: 0.004435723181813955\n", + "epoch: 2251 train_loss: 0.004432115703821182\n", + "epoch: 2252 train_loss: 0.00442851148545742\n", + "epoch: 2253 train_loss: 0.00442491052672267\n", + "epoch: 2254 train_loss: 0.004421306774020195\n", + "epoch: 2255 train_loss: 0.004417712334543467\n", + "epoch: 2256 train_loss: 0.0044141244143247604\n", + "epoch: 2257 train_loss: 0.0044105397537350655\n", + "epoch: 2258 train_loss: 0.004406943451613188\n", + "epoch: 2259 train_loss: 0.00440338347107172\n", + "epoch: 2260 train_loss: 0.004399807192385197\n", + "epoch: 2261 train_loss: 0.004396234638988972\n", + "epoch: 2262 train_loss: 0.0043926541693508625\n", + "epoch: 2263 train_loss: 0.004389092326164246\n", + "epoch: 2264 train_loss: 0.0043855453841388226\n", + "epoch: 2265 train_loss: 0.004381977487355471\n", + "epoch: 2266 train_loss: 0.004378414247184992\n", + "epoch: 2267 train_loss: 0.004374875221401453\n", + "epoch: 2268 train_loss: 0.004371328745037317\n", + "epoch: 2269 train_loss: 0.004367799032479525\n", + "epoch: 2270 train_loss: 0.0043642534874379635\n", + "epoch: 2271 train_loss: 0.0043607354164123535\n", + "epoch: 2272 train_loss: 0.00435719545930624\n", + "epoch: 2273 train_loss: 0.004353665746748447\n", + "epoch: 2274 train_loss: 0.004350144881755114\n", + "epoch: 2275 train_loss: 0.004346644971519709\n", + "epoch: 2276 train_loss: 0.004343116655945778\n", + "epoch: 2277 train_loss: 0.0043396190740168095\n", + "epoch: 2278 train_loss: 0.0043361070565879345\n", + "epoch: 2279 train_loss: 0.004332603421062231\n", + "epoch: 2280 train_loss: 0.004329117015004158\n", + "epoch: 2281 train_loss: 0.004325616639107466\n", + "epoch: 2282 train_loss: 0.004322124645113945\n", + "epoch: 2283 train_loss: 0.004318625200539827\n", + "epoch: 2284 train_loss: 0.00431514298543334\n", + "epoch: 2285 train_loss: 0.004311665426939726\n", + "epoch: 2286 train_loss: 0.004308186937123537\n", + "epoch: 2287 train_loss: 0.0043047149665653706\n", + "epoch: 2288 train_loss: 0.004301253706216812\n", + "epoch: 2289 train_loss: 0.004297779407352209\n", + "epoch: 2290 train_loss: 0.004294310696423054\n", + "epoch: 2291 train_loss: 0.004290861543267965\n", + "epoch: 2292 train_loss: 0.00428741704672575\n", + "epoch: 2293 train_loss: 0.0042839557863771915\n", + "epoch: 2294 train_loss: 0.004280512221157551\n", + "epoch: 2295 train_loss: 0.004277076572179794\n", + "epoch: 2296 train_loss: 0.004273636732250452\n", + "epoch: 2297 train_loss: 0.004270199220627546\n", + "epoch: 2298 train_loss: 0.004266764502972364\n", + "epoch: 2299 train_loss: 0.004263339564204216\n", + "epoch: 2300 train_loss: 0.004259918350726366\n", + "epoch: 2301 train_loss: 0.004256496671587229\n", + "epoch: 2302 train_loss: 0.004253075923770666\n", + "epoch: 2303 train_loss: 0.004249666351824999\n", + "epoch: 2304 train_loss: 0.004246251657605171\n", + "epoch: 2305 train_loss: 0.004242845810949802\n", + "epoch: 2306 train_loss: 0.004239446949213743\n", + "epoch: 2307 train_loss: 0.004236041102558374\n", + "epoch: 2308 train_loss: 0.004232645966112614\n", + "epoch: 2309 train_loss: 0.004229261539876461\n", + "epoch: 2310 train_loss: 0.0042258743196725845\n", + "epoch: 2311 train_loss: 0.004222475923597813\n", + "epoch: 2312 train_loss: 0.004219104070216417\n", + "epoch: 2313 train_loss: 0.004215733148157597\n", + "epoch: 2314 train_loss: 0.004212353844195604\n", + "epoch: 2315 train_loss: 0.004208988975733519\n", + "epoch: 2316 train_loss: 0.004205618053674698\n", + "epoch: 2317 train_loss: 0.004202257376164198\n", + "epoch: 2318 train_loss: 0.004198888316750526\n", + "epoch: 2319 train_loss: 0.00419554254040122\n", + "epoch: 2320 train_loss: 0.004192185588181019\n", + "epoch: 2321 train_loss: 0.00418884726241231\n", + "epoch: 2322 train_loss: 0.0041855028830468655\n", + "epoch: 2323 train_loss: 0.004182146862149239\n", + "epoch: 2324 train_loss: 0.004178822040557861\n", + "epoch: 2325 train_loss: 0.004175481386482716\n", + "epoch: 2326 train_loss: 0.004172164481133223\n", + "epoch: 2327 train_loss: 0.0041688173078000546\n", + "epoch: 2328 train_loss: 0.004165508318692446\n", + "epoch: 2329 train_loss: 0.004162178840488195\n", + "epoch: 2330 train_loss: 0.004158852621912956\n", + "epoch: 2331 train_loss: 0.004155544564127922\n", + "epoch: 2332 train_loss: 0.004152249079197645\n", + "epoch: 2333 train_loss: 0.004148933105170727\n", + "epoch: 2334 train_loss: 0.004145632032305002\n", + "epoch: 2335 train_loss: 0.0041423579677939415\n", + "epoch: 2336 train_loss: 0.0041390336118638515\n", + "epoch: 2337 train_loss: 0.004135746508836746\n", + "epoch: 2338 train_loss: 0.004132464062422514\n", + "epoch: 2339 train_loss: 0.004129177890717983\n", + "epoch: 2340 train_loss: 0.00412590941414237\n", + "epoch: 2341 train_loss: 0.004122622776776552\n", + "epoch: 2342 train_loss: 0.004119344521313906\n", + "epoch: 2343 train_loss: 0.004116076976060867\n", + "epoch: 2344 train_loss: 0.004112828057259321\n", + "epoch: 2345 train_loss: 0.004109552130103111\n", + "epoch: 2346 train_loss: 0.004106295760720968\n", + "epoch: 2347 train_loss: 0.004103030543774366\n", + "epoch: 2348 train_loss: 0.004099769983440638\n", + "epoch: 2349 train_loss: 0.004096514079719782\n", + "epoch: 2350 train_loss: 0.004093291237950325\n", + "epoch: 2351 train_loss: 0.0040900325402617455\n", + "epoch: 2352 train_loss: 0.004086794797331095\n", + "epoch: 2353 train_loss: 0.004083557054400444\n", + "epoch: 2354 train_loss: 0.004080322105437517\n", + "epoch: 2355 train_loss: 0.004077094607055187\n", + "epoch: 2356 train_loss: 0.004073870833963156\n", + "epoch: 2357 train_loss: 0.004070653114467859\n", + "epoch: 2358 train_loss: 0.004067427944391966\n", + "epoch: 2359 train_loss: 0.0040642134845256805\n", + "epoch: 2360 train_loss: 0.004061021376401186\n", + "epoch: 2361 train_loss: 0.004057798534631729\n", + "epoch: 2362 train_loss: 0.0040546017698943615\n", + "epoch: 2363 train_loss: 0.004051382653415203\n", + "epoch: 2364 train_loss: 0.004048206377774477\n", + "epoch: 2365 train_loss: 0.004045004025101662\n", + "epoch: 2366 train_loss: 0.004041807260364294\n", + "epoch: 2367 train_loss: 0.004038619343191385\n", + "epoch: 2368 train_loss: 0.004035434685647488\n", + "epoch: 2369 train_loss: 0.0040322644636034966\n", + "epoch: 2370 train_loss: 0.004029075615108013\n", + "epoch: 2371 train_loss: 0.00402588676661253\n", + "epoch: 2372 train_loss: 0.004022739827632904\n", + "epoch: 2373 train_loss: 0.004019572399556637\n", + "epoch: 2374 train_loss: 0.004016399849206209\n", + "epoch: 2375 train_loss: 0.004013243597000837\n", + "epoch: 2376 train_loss: 0.004010084085166454\n", + "epoch: 2377 train_loss: 0.004006942268460989\n", + "epoch: 2378 train_loss: 0.0040037790313363075\n", + "epoch: 2379 train_loss: 0.00400063069537282\n", + "epoch: 2380 train_loss: 0.003997488413006067\n", + "epoch: 2381 train_loss: 0.0039943610318005085\n", + "epoch: 2382 train_loss: 0.00399121455848217\n", + "epoch: 2383 train_loss: 0.003988061565905809\n", + "epoch: 2384 train_loss: 0.003984944429248571\n", + "epoch: 2385 train_loss: 0.0039818063378334045\n", + "epoch: 2386 train_loss: 0.003978693392127752\n", + "epoch: 2387 train_loss: 0.0039755795150995255\n", + "epoch: 2388 train_loss: 0.003972459118813276\n", + "epoch: 2389 train_loss: 0.003969330806285143\n", + "epoch: 2390 train_loss: 0.003966246731579304\n", + "epoch: 2391 train_loss: 0.003963120747357607\n", + "epoch: 2392 train_loss: 0.003960016183555126\n", + "epoch: 2393 train_loss: 0.003956926055252552\n", + "epoch: 2394 train_loss: 0.003953821491450071\n", + "epoch: 2395 train_loss: 0.0039507257752120495\n", + "epoch: 2396 train_loss: 0.00394763657823205\n", + "epoch: 2397 train_loss: 0.003944543190300465\n", + "epoch: 2398 train_loss: 0.003941442351788282\n", + "epoch: 2399 train_loss: 0.003938385751098394\n", + "epoch: 2400 train_loss: 0.003935313783586025\n", + "epoch: 2401 train_loss: 0.003932230640202761\n", + "epoch: 2402 train_loss: 0.003929144237190485\n", + "epoch: 2403 train_loss: 0.003926103003323078\n", + "epoch: 2404 train_loss: 0.003923008218407631\n", + "epoch: 2405 train_loss: 0.003919966518878937\n", + "epoch: 2406 train_loss: 0.0039169094525277615\n", + "epoch: 2407 train_loss: 0.00391384307295084\n", + "epoch: 2408 train_loss: 0.003910797648131847\n", + "epoch: 2409 train_loss: 0.003907737787812948\n", + "epoch: 2410 train_loss: 0.003904698183760047\n", + "epoch: 2411 train_loss: 0.003901671152561903\n", + "epoch: 2412 train_loss: 0.003898615948855877\n", + "epoch: 2413 train_loss: 0.0038955926429480314\n", + "epoch: 2414 train_loss: 0.0038925502449274063\n", + "epoch: 2415 train_loss: 0.0038895250763744116\n", + "epoch: 2416 train_loss: 0.0038864980451762676\n", + "epoch: 2417 train_loss: 0.0038834749720990658\n", + "epoch: 2418 train_loss: 0.0038804635405540466\n", + "epoch: 2419 train_loss: 0.003877440467476845\n", + "epoch: 2420 train_loss: 0.0038744229823350906\n", + "epoch: 2421 train_loss: 0.0038714194670319557\n", + "epoch: 2422 train_loss: 0.003868402913212776\n", + "epoch: 2423 train_loss: 0.003865410340949893\n", + "epoch: 2424 train_loss: 0.003862399375066161\n", + "epoch: 2425 train_loss: 0.003859415417537093\n", + "epoch: 2426 train_loss: 0.0038564298301935196\n", + "epoch: 2427 train_loss: 0.0038534251507371664\n", + "epoch: 2428 train_loss: 0.0038504386320710182\n", + "epoch: 2429 train_loss: 0.003847445361316204\n", + "epoch: 2430 train_loss: 0.003844479564577341\n", + "epoch: 2431 train_loss: 0.0038414972368627787\n", + "epoch: 2432 train_loss: 0.003838526550680399\n", + "epoch: 2433 train_loss: 0.003835556097328663\n", + "epoch: 2434 train_loss: 0.003832572838291526\n", + "epoch: 2435 train_loss: 0.0038296235725283623\n", + "epoch: 2436 train_loss: 0.0038266368210315704\n", + "epoch: 2437 train_loss: 0.003823694074526429\n", + "epoch: 2438 train_loss: 0.0038207443431019783\n", + "epoch: 2439 train_loss: 0.003817785531282425\n", + "epoch: 2440 train_loss: 0.00381483999080956\n", + "epoch: 2441 train_loss: 0.003811870701611042\n", + "epoch: 2442 train_loss: 0.003808945184573531\n", + "epoch: 2443 train_loss: 0.0038059891667217016\n", + "epoch: 2444 train_loss: 0.003803067374974489\n", + "epoch: 2445 train_loss: 0.003800125326961279\n", + "epoch: 2446 train_loss: 0.0037972014397382736\n", + "epoch: 2447 train_loss: 0.003794274292886257\n", + "epoch: 2448 train_loss: 0.003791345749050379\n", + "epoch: 2449 train_loss: 0.0037884204648435116\n", + "epoch: 2450 train_loss: 0.0037855051923543215\n", + "epoch: 2451 train_loss: 0.0037825859617441893\n", + "epoch: 2452 train_loss: 0.0037796811666339636\n", + "epoch: 2453 train_loss: 0.0037767658941447735\n", + "epoch: 2454 train_loss: 0.003773860400542617\n", + "epoch: 2455 train_loss: 0.0037709572352468967\n", + "epoch: 2456 train_loss: 0.003768041729927063\n", + "epoch: 2457 train_loss: 0.003765157191082835\n", + "epoch: 2458 train_loss: 0.0037622612435370684\n", + "epoch: 2459 train_loss: 0.0037593788001686335\n", + "epoch: 2460 train_loss: 0.003756498219445348\n", + "epoch: 2461 train_loss: 0.0037536066956818104\n", + "epoch: 2462 train_loss: 0.003750707721337676\n", + "epoch: 2463 train_loss: 0.0037478399462997913\n", + "epoch: 2464 train_loss: 0.0037449628580361605\n", + "epoch: 2465 train_loss: 0.003742104396224022\n", + "epoch: 2466 train_loss: 0.003739215899258852\n", + "epoch: 2467 train_loss: 0.0037363460287451744\n", + "epoch: 2468 train_loss: 0.003733485471457243\n", + "epoch: 2469 train_loss: 0.0037306384183466434\n", + "epoch: 2470 train_loss: 0.003727787407115102\n", + "epoch: 2471 train_loss: 0.003724914975464344\n", + "epoch: 2472 train_loss: 0.003722079563885927\n", + "epoch: 2473 train_loss: 0.00371921481564641\n", + "epoch: 2474 train_loss: 0.0037163777742534876\n", + "epoch: 2475 train_loss: 0.003713534213602543\n", + "epoch: 2476 train_loss: 0.003710698802024126\n", + "epoch: 2477 train_loss: 0.0037078559398651123\n", + "epoch: 2478 train_loss: 0.0037050279788672924\n", + "epoch: 2479 train_loss: 0.0037021981552243233\n", + "epoch: 2480 train_loss: 0.00369936041533947\n", + "epoch: 2481 train_loss: 0.0036965312901884317\n", + "epoch: 2482 train_loss: 0.0036937107797712088\n", + "epoch: 2483 train_loss: 0.0036909072659909725\n", + "epoch: 2484 train_loss: 0.0036880860570818186\n", + "epoch: 2485 train_loss: 0.0036852662451565266\n", + "epoch: 2486 train_loss: 0.003682453418150544\n", + "epoch: 2487 train_loss: 0.003679653163999319\n", + "epoch: 2488 train_loss: 0.0036768438294529915\n", + "epoch: 2489 train_loss: 0.0036740407813340425\n", + "epoch: 2490 train_loss: 0.00367124960757792\n", + "epoch: 2491 train_loss: 0.003668458666652441\n", + "epoch: 2492 train_loss: 0.00366567587479949\n", + "epoch: 2493 train_loss: 0.0036628791131079197\n", + "epoch: 2494 train_loss: 0.0036601037718355656\n", + "epoch: 2495 train_loss: 0.0036573109682649374\n", + "epoch: 2496 train_loss: 0.003654525615274906\n", + "epoch: 2497 train_loss: 0.0036517579574137926\n", + "epoch: 2498 train_loss: 0.0036489793565124273\n", + "epoch: 2499 train_loss: 0.003646208206191659\n", + "epoch: 2500 train_loss: 0.003643436823040247\n", + "epoch: 2501 train_loss: 0.003640676150098443\n", + "epoch: 2502 train_loss: 0.0036379224620759487\n", + "epoch: 2503 train_loss: 0.003635166212916374\n", + "epoch: 2504 train_loss: 0.003632404375821352\n", + "epoch: 2505 train_loss: 0.003629647893831134\n", + "epoch: 2506 train_loss: 0.0036268881522119045\n", + "epoch: 2507 train_loss: 0.0036241565831005573\n", + "epoch: 2508 train_loss: 0.0036214017309248447\n", + "epoch: 2509 train_loss: 0.003618659218773246\n", + "epoch: 2510 train_loss: 0.0036159285809844732\n", + "epoch: 2511 train_loss: 0.003613194916397333\n", + "epoch: 2512 train_loss: 0.00361045403406024\n", + "epoch: 2513 train_loss: 0.003607724327594042\n", + "epoch: 2514 train_loss: 0.003604995319619775\n", + "epoch: 2515 train_loss: 0.003602275624871254\n", + "epoch: 2516 train_loss: 0.003599559422582388\n", + "epoch: 2517 train_loss: 0.003596832510083914\n", + "epoch: 2518 train_loss: 0.0035941204987466335\n", + "epoch: 2519 train_loss: 0.0035914028994739056\n", + "epoch: 2520 train_loss: 0.003588690422475338\n", + "epoch: 2521 train_loss: 0.0035859837662428617\n", + "epoch: 2522 train_loss: 0.0035832873545587063\n", + "epoch: 2523 train_loss: 0.0035805748775601387\n", + "epoch: 2524 train_loss: 0.003577885217964649\n", + "epoch: 2525 train_loss: 0.003575190668925643\n", + "epoch: 2526 train_loss: 0.0035724856425076723\n", + "epoch: 2527 train_loss: 0.0035698064602911472\n", + "epoch: 2528 train_loss: 0.0035671188961714506\n", + "epoch: 2529 train_loss: 0.0035644234158098698\n", + "epoch: 2530 train_loss: 0.003561764257028699\n", + "epoch: 2531 train_loss: 0.0035590720362961292\n", + "epoch: 2532 train_loss: 0.0035563823767006397\n", + "epoch: 2533 train_loss: 0.0035537213552743196\n", + "epoch: 2534 train_loss: 0.0035510503221303225\n", + "epoch: 2535 train_loss: 0.0035483823157846928\n", + "epoch: 2536 train_loss: 0.00354573130607605\n", + "epoch: 2537 train_loss: 0.0035430542193353176\n", + "epoch: 2538 train_loss: 0.0035403966903686523\n", + "epoch: 2539 train_loss: 0.003537730546668172\n", + "epoch: 2540 train_loss: 0.0035350886173546314\n", + "epoch: 2541 train_loss: 0.0035324441269040108\n", + "epoch: 2542 train_loss: 0.0035297879949212074\n", + "epoch: 2543 train_loss: 0.003527143271639943\n", + "epoch: 2544 train_loss: 0.0035245129838585854\n", + "epoch: 2545 train_loss: 0.003521878272294998\n", + "epoch: 2546 train_loss: 0.003519227262586355\n", + "epoch: 2547 train_loss: 0.003516611410304904\n", + "epoch: 2548 train_loss: 0.003513982752338052\n", + "epoch: 2549 train_loss: 0.0035113408230245113\n", + "epoch: 2550 train_loss: 0.003508717054501176\n", + "epoch: 2551 train_loss: 0.0035060932859778404\n", + "epoch: 2552 train_loss: 0.0035034767352044582\n", + "epoch: 2553 train_loss: 0.003500844817608595\n", + "epoch: 2554 train_loss: 0.0034982357174158096\n", + "epoch: 2555 train_loss: 0.0034956284798681736\n", + "epoch: 2556 train_loss: 0.003493016120046377\n", + "epoch: 2557 train_loss: 0.003490398870781064\n", + "epoch: 2558 train_loss: 0.003487808397039771\n", + "epoch: 2559 train_loss: 0.003485217224806547\n", + "epoch: 2560 train_loss: 0.0034826186019927263\n", + "epoch: 2561 train_loss: 0.003480006707832217\n", + "epoch: 2562 train_loss: 0.0034774262458086014\n", + "epoch: 2563 train_loss: 0.003474831348285079\n", + "epoch: 2564 train_loss: 0.00347224622964859\n", + "epoch: 2565 train_loss: 0.003469655988737941\n", + "epoch: 2566 train_loss: 0.0034670827444642782\n", + "epoch: 2567 train_loss: 0.003464507171884179\n", + "epoch: 2568 train_loss: 0.003461938351392746\n", + "epoch: 2569 train_loss: 0.0034593655727803707\n", + "epoch: 2570 train_loss: 0.0034567888360470533\n", + "epoch: 2571 train_loss: 0.003454210003837943\n", + "epoch: 2572 train_loss: 0.0034516621381044388\n", + "epoch: 2573 train_loss: 0.0034490921534597874\n", + "epoch: 2574 train_loss: 0.003446533577516675\n", + "epoch: 2575 train_loss: 0.003443977562710643\n", + "epoch: 2576 train_loss: 0.0034414315596222878\n", + "epoch: 2577 train_loss: 0.003438880667090416\n", + "epoch: 2578 train_loss: 0.0034363234881311655\n", + "epoch: 2579 train_loss: 0.0034337700344622135\n", + "epoch: 2580 train_loss: 0.0034312282223254442\n", + "epoch: 2581 train_loss: 0.0034287022426724434\n", + "epoch: 2582 train_loss: 0.003426162526011467\n", + "epoch: 2583 train_loss: 0.0034236230421811342\n", + "epoch: 2584 train_loss: 0.0034210809972137213\n", + "epoch: 2585 train_loss: 0.003418551292270422\n", + "epoch: 2586 train_loss: 0.00341603416018188\n", + "epoch: 2587 train_loss: 0.0034135188907384872\n", + "epoch: 2588 train_loss: 0.0034110008273273706\n", + "epoch: 2589 train_loss: 0.003408484160900116\n", + "epoch: 2590 train_loss: 0.003405950963497162\n", + "epoch: 2591 train_loss: 0.0034034329000860453\n", + "epoch: 2592 train_loss: 0.0034009187947958708\n", + "epoch: 2593 train_loss: 0.003398418892174959\n", + "epoch: 2594 train_loss: 0.0033959117718040943\n", + "epoch: 2595 train_loss: 0.003393417689949274\n", + "epoch: 2596 train_loss: 0.003390915459021926\n", + "epoch: 2597 train_loss: 0.0033884234726428986\n", + "epoch: 2598 train_loss: 0.0033859231043606997\n", + "epoch: 2599 train_loss: 0.0033834315836429596\n", + "epoch: 2600 train_loss: 0.003380947280675173\n", + "epoch: 2601 train_loss: 0.003378466237336397\n", + "epoch: 2602 train_loss: 0.0033759749494493008\n", + "epoch: 2603 train_loss: 0.0033734794706106186\n", + "epoch: 2604 train_loss: 0.0033710014540702105\n", + "epoch: 2605 train_loss: 0.0033685285598039627\n", + "epoch: 2606 train_loss: 0.003366058925166726\n", + "epoch: 2607 train_loss: 0.00336359697394073\n", + "epoch: 2608 train_loss: 0.003361118258908391\n", + "epoch: 2609 train_loss: 0.0033586553763598204\n", + "epoch: 2610 train_loss: 0.003356190165504813\n", + "epoch: 2611 train_loss: 0.0033537358976900578\n", + "epoch: 2612 train_loss: 0.00335127767175436\n", + "epoch: 2613 train_loss: 0.0033488054759800434\n", + "epoch: 2614 train_loss: 0.003346359357237816\n", + "epoch: 2615 train_loss: 0.0033439139369875193\n", + "epoch: 2616 train_loss: 0.0033414748031646013\n", + "epoch: 2617 train_loss: 0.0033390200696885586\n", + "epoch: 2618 train_loss: 0.0033365732524544\n", + "epoch: 2619 train_loss: 0.003334136214107275\n", + "epoch: 2620 train_loss: 0.0033316980116069317\n", + "epoch: 2621 train_loss: 0.003329263534396887\n", + "epoch: 2622 train_loss: 0.0033268348779529333\n", + "epoch: 2623 train_loss: 0.0033244099467992783\n", + "epoch: 2624 train_loss: 0.0033219694159924984\n", + "epoch: 2625 train_loss: 0.003319554030895233\n", + "epoch: 2626 train_loss: 0.003317132592201233\n", + "epoch: 2627 train_loss: 0.0033147057984024286\n", + "epoch: 2628 train_loss: 0.0033122983295470476\n", + "epoch: 2629 train_loss: 0.003309877822175622\n", + "epoch: 2630 train_loss: 0.00330746965482831\n", + "epoch: 2631 train_loss: 0.0033050519414246082\n", + "epoch: 2632 train_loss: 0.0033026551827788353\n", + "epoch: 2633 train_loss: 0.003300244454294443\n", + "epoch: 2634 train_loss: 0.0032978421077132225\n", + "epoch: 2635 train_loss: 0.003295443719252944\n", + "epoch: 2636 train_loss: 0.003293050918728113\n", + "epoch: 2637 train_loss: 0.003290658351033926\n", + "epoch: 2638 train_loss: 0.0032882702071219683\n", + "epoch: 2639 train_loss: 0.0032858799677342176\n", + "epoch: 2640 train_loss: 0.003283497877418995\n", + "epoch: 2641 train_loss: 0.0032811055425554514\n", + "epoch: 2642 train_loss: 0.003278720658272505\n", + "epoch: 2643 train_loss: 0.003276345320045948\n", + "epoch: 2644 train_loss: 0.0032739615999162197\n", + "epoch: 2645 train_loss: 0.0032716048881411552\n", + "epoch: 2646 train_loss: 0.0032692314125597477\n", + "epoch: 2647 train_loss: 0.003266856772825122\n", + "epoch: 2648 train_loss: 0.003264490282163024\n", + "epoch: 2649 train_loss: 0.0032621347345411777\n", + "epoch: 2650 train_loss: 0.003259760094806552\n", + "epoch: 2651 train_loss: 0.0032574099022895098\n", + "epoch: 2652 train_loss: 0.0032550569158047438\n", + "epoch: 2653 train_loss: 0.0032526992727071047\n", + "epoch: 2654 train_loss: 0.003250351408496499\n", + "epoch: 2655 train_loss: 0.003247995860874653\n", + "epoch: 2656 train_loss: 0.0032456573098897934\n", + "epoch: 2657 train_loss: 0.003243305953219533\n", + "epoch: 2658 train_loss: 0.003240965772420168\n", + "epoch: 2659 train_loss: 0.0032386372331529856\n", + "epoch: 2660 train_loss: 0.0032362996134907007\n", + "epoch: 2661 train_loss: 0.0032339615281671286\n", + "epoch: 2662 train_loss: 0.0032316178549081087\n", + "epoch: 2663 train_loss: 0.0032293065451085567\n", + "epoch: 2664 train_loss: 0.0032269731163978577\n", + "epoch: 2665 train_loss: 0.0032246543560177088\n", + "epoch: 2666 train_loss: 0.00322233559563756\n", + "epoch: 2667 train_loss: 0.003220007987692952\n", + "epoch: 2668 train_loss: 0.003217695513740182\n", + "epoch: 2669 train_loss: 0.0032153832726180553\n", + "epoch: 2670 train_loss: 0.003213075688108802\n", + "epoch: 2671 train_loss: 0.003210749477148056\n", + "epoch: 2672 train_loss: 0.003208460519090295\n", + "epoch: 2673 train_loss: 0.0032061482779681683\n", + "epoch: 2674 train_loss: 0.0032038469798862934\n", + "epoch: 2675 train_loss: 0.003201558953151107\n", + "epoch: 2676 train_loss: 0.0031992655713111162\n", + "epoch: 2677 train_loss: 0.0031969547271728516\n", + "epoch: 2678 train_loss: 0.003194666700437665\n", + "epoch: 2679 train_loss: 0.0031923868227750063\n", + "epoch: 2680 train_loss: 0.0031900834292173386\n", + "epoch: 2681 train_loss: 0.0031878123991191387\n", + "epoch: 2682 train_loss: 0.0031855348497629166\n", + "epoch: 2683 train_loss: 0.0031832358799874783\n", + "epoch: 2684 train_loss: 0.003180979983881116\n", + "epoch: 2685 train_loss: 0.003178696148097515\n", + "epoch: 2686 train_loss: 0.0031764230225235224\n", + "epoch: 2687 train_loss: 0.0031741498969495296\n", + "epoch: 2688 train_loss: 0.003171892836689949\n", + "epoch: 2689 train_loss: 0.003169616451486945\n", + "epoch: 2690 train_loss: 0.0031673614867031574\n", + "epoch: 2691 train_loss: 0.0031650937162339687\n", + "epoch: 2692 train_loss: 0.0031628336291760206\n", + "epoch: 2693 train_loss: 0.0031605821568518877\n", + "epoch: 2694 train_loss: 0.003158329986035824\n", + "epoch: 2695 train_loss: 0.0031560780480504036\n", + "epoch: 2696 train_loss: 0.0031538421753793955\n", + "epoch: 2697 train_loss: 0.003151573007926345\n", + "epoch: 2698 train_loss: 0.0031493341084569693\n", + "epoch: 2699 train_loss: 0.0031470900867134333\n", + "epoch: 2700 train_loss: 0.003144859569147229\n", + "epoch: 2701 train_loss: 0.0031426383648067713\n", + "epoch: 2702 train_loss: 0.0031403875909745693\n", + "epoch: 2703 train_loss: 0.003138153813779354\n", + "epoch: 2704 train_loss: 0.003135925391688943\n", + "epoch: 2705 train_loss: 0.0031337097752839327\n", + "epoch: 2706 train_loss: 0.0031314839143306017\n", + "epoch: 2707 train_loss: 0.0031292675994336605\n", + "epoch: 2708 train_loss: 0.0031270317267626524\n", + "epoch: 2709 train_loss: 0.0031248207669705153\n", + "epoch: 2710 train_loss: 0.003122615860775113\n", + "epoch: 2711 train_loss: 0.0031203909311443567\n", + "epoch: 2712 train_loss: 0.0031181734520941973\n", + "epoch: 2713 train_loss: 0.003115962026640773\n", + "epoch: 2714 train_loss: 0.0031137638725340366\n", + "epoch: 2715 train_loss: 0.0031115736346691847\n", + "epoch: 2716 train_loss: 0.0031093633733689785\n", + "epoch: 2717 train_loss: 0.0031071689445525408\n", + "epoch: 2718 train_loss: 0.0031049633398652077\n", + "epoch: 2719 train_loss: 0.0031027602963149548\n", + "epoch: 2720 train_loss: 0.003100584726780653\n", + "epoch: 2721 train_loss: 0.0030983826145529747\n", + "epoch: 2722 train_loss: 0.003096197498962283\n", + "epoch: 2723 train_loss: 0.003094020765274763\n", + "epoch: 2724 train_loss: 0.0030918375123292208\n", + "epoch: 2725 train_loss: 0.003089664736762643\n", + "epoch: 2726 train_loss: 0.0030874747317284346\n", + "epoch: 2727 train_loss: 0.0030852998606860638\n", + "epoch: 2728 train_loss: 0.003083127085119486\n", + "epoch: 2729 train_loss: 0.003080960363149643\n", + "epoch: 2730 train_loss: 0.003078785026445985\n", + "epoch: 2731 train_loss: 0.0030766308773308992\n", + "epoch: 2732 train_loss: 0.0030744653195142746\n", + "epoch: 2733 train_loss: 0.0030722992960363626\n", + "epoch: 2734 train_loss: 0.003070148639380932\n", + "epoch: 2735 train_loss: 0.0030679733026772738\n", + "epoch: 2736 train_loss: 0.0030658249743282795\n", + "epoch: 2737 train_loss: 0.003063661977648735\n", + "epoch: 2738 train_loss: 0.0030615325085818768\n", + "epoch: 2739 train_loss: 0.0030593855772167444\n", + "epoch: 2740 train_loss: 0.0030572391115128994\n", + "epoch: 2741 train_loss: 0.003055094974115491\n", + "epoch: 2742 train_loss: 0.003052941057831049\n", + "epoch: 2743 train_loss: 0.0030507990159094334\n", + "epoch: 2744 train_loss: 0.0030486711766570807\n", + "epoch: 2745 train_loss: 0.0030465521849691868\n", + "epoch: 2746 train_loss: 0.0030444031581282616\n", + "epoch: 2747 train_loss: 0.0030422802083194256\n", + "epoch: 2748 train_loss: 0.0030401526018977165\n", + "epoch: 2749 train_loss: 0.003038030583411455\n", + "epoch: 2750 train_loss: 0.0030359094962477684\n", + "epoch: 2751 train_loss: 0.0030337816569954157\n", + "epoch: 2752 train_loss: 0.0030316582415252924\n", + "epoch: 2753 train_loss: 0.003029544372111559\n", + "epoch: 2754 train_loss: 0.0030274330638349056\n", + "epoch: 2755 train_loss: 0.0030253261793404818\n", + "epoch: 2756 train_loss: 0.0030232127755880356\n", + "epoch: 2757 train_loss: 0.003021096810698509\n", + "epoch: 2758 train_loss: 0.0030189973767846823\n", + "epoch: 2759 train_loss: 0.0030168965458869934\n", + "epoch: 2760 train_loss: 0.0030147985089570284\n", + "epoch: 2761 train_loss: 0.0030126983765512705\n", + "epoch: 2762 train_loss: 0.0030106049962341785\n", + "epoch: 2763 train_loss: 0.0030085057951509953\n", + "epoch: 2764 train_loss: 0.0030064198654145002\n", + "epoch: 2765 train_loss: 0.0030043385922908783\n", + "epoch: 2766 train_loss: 0.0030022417195141315\n", + "epoch: 2767 train_loss: 0.0030001583509147167\n", + "epoch: 2768 train_loss: 0.0029980677645653486\n", + "epoch: 2769 train_loss: 0.0029960048850625753\n", + "epoch: 2770 train_loss: 0.0029939122032374144\n", + "epoch: 2771 train_loss: 0.002991840010508895\n", + "epoch: 2772 train_loss: 0.0029897703789174557\n", + "epoch: 2773 train_loss: 0.0029876932967454195\n", + "epoch: 2774 train_loss: 0.0029856304172426462\n", + "epoch: 2775 train_loss: 0.0029835517052561045\n", + "epoch: 2776 train_loss: 0.0029815032612532377\n", + "epoch: 2777 train_loss: 0.0029794296715408564\n", + "epoch: 2778 train_loss: 0.002977370750159025\n", + "epoch: 2779 train_loss: 0.0029753076378256083\n", + "epoch: 2780 train_loss: 0.0029732580296695232\n", + "epoch: 2781 train_loss: 0.00297119771130383\n", + "epoch: 2782 train_loss: 0.0029691571835428476\n", + "epoch: 2783 train_loss: 0.0029670989606529474\n", + "epoch: 2784 train_loss: 0.0029650533106178045\n", + "epoch: 2785 train_loss: 0.002962997881695628\n", + "epoch: 2786 train_loss: 0.002960976678878069\n", + "epoch: 2787 train_loss: 0.002958910772576928\n", + "epoch: 2788 train_loss: 0.0029568937607109547\n", + "epoch: 2789 train_loss: 0.002954844618216157\n", + "epoch: 2790 train_loss: 0.0029528208542615175\n", + "epoch: 2791 train_loss: 0.002950771478936076\n", + "epoch: 2792 train_loss: 0.0029487553983926773\n", + "epoch: 2793 train_loss: 0.0029467197600752115\n", + "epoch: 2794 train_loss: 0.0029446969274431467\n", + "epoch: 2795 train_loss: 0.0029426878318190575\n", + "epoch: 2796 train_loss: 0.00294064381159842\n", + "epoch: 2797 train_loss: 0.0029386444948613644\n", + "epoch: 2798 train_loss: 0.002936601173132658\n", + "epoch: 2799 train_loss: 0.0029346130322664976\n", + "epoch: 2800 train_loss: 0.002932582749053836\n", + "epoch: 2801 train_loss: 0.0029305785428732634\n", + "epoch: 2802 train_loss: 0.002928566886112094\n", + "epoch: 2803 train_loss: 0.0029265598859637976\n", + "epoch: 2804 train_loss: 0.002924559870734811\n", + "epoch: 2805 train_loss: 0.00292256404645741\n", + "epoch: 2806 train_loss: 0.002920551225543022\n", + "epoch: 2807 train_loss: 0.002918550278991461\n", + "epoch: 2808 train_loss: 0.00291656656190753\n", + "epoch: 2809 train_loss: 0.0029145709704607725\n", + "epoch: 2810 train_loss: 0.002912577474489808\n", + "epoch: 2811 train_loss: 0.0029105828143656254\n", + "epoch: 2812 train_loss: 0.0029086058493703604\n", + "epoch: 2813 train_loss: 0.0029066335409879684\n", + "epoch: 2814 train_loss: 0.002904621884226799\n", + "epoch: 2815 train_loss: 0.0029026621486991644\n", + "epoch: 2816 train_loss: 0.0029006802942603827\n", + "epoch: 2817 train_loss: 0.002898695645853877\n", + "epoch: 2818 train_loss: 0.0028967310208827257\n", + "epoch: 2819 train_loss: 0.0028947487007826567\n", + "epoch: 2820 train_loss: 0.0028927840758115053\n", + "epoch: 2821 train_loss: 0.002890803851187229\n", + "epoch: 2822 train_loss: 0.002888853894546628\n", + "epoch: 2823 train_loss: 0.0028868771623820066\n", + "epoch: 2824 train_loss: 0.002884926274418831\n", + "epoch: 2825 train_loss: 0.002882966073229909\n", + "epoch: 2826 train_loss: 0.0028809974901378155\n", + "epoch: 2827 train_loss: 0.0028790575452148914\n", + "epoch: 2828 train_loss: 0.002877097111195326\n", + "epoch: 2829 train_loss: 0.0028751431964337826\n", + "epoch: 2830 train_loss: 0.0028731939382851124\n", + "epoch: 2831 train_loss: 0.0028712397906929255\n", + "epoch: 2832 train_loss: 0.002869302174076438\n", + "epoch: 2833 train_loss: 0.002867360832169652\n", + "epoch: 2834 train_loss: 0.0028654185589402914\n", + "epoch: 2835 train_loss: 0.0028634751215577126\n", + "epoch: 2836 train_loss: 0.002861544257029891\n", + "epoch: 2837 train_loss: 0.002859598957002163\n", + "epoch: 2838 train_loss: 0.0028576734475791454\n", + "epoch: 2839 train_loss: 0.0028557446785271168\n", + "epoch: 2840 train_loss: 0.002853809390217066\n", + "epoch: 2841 train_loss: 0.002851886674761772\n", + "epoch: 2842 train_loss: 0.0028499560430645943\n", + "epoch: 2843 train_loss: 0.0028480293694883585\n", + "epoch: 2844 train_loss: 0.002846119925379753\n", + "epoch: 2845 train_loss: 0.0028441923204809427\n", + "epoch: 2846 train_loss: 0.0028422812465578318\n", + "epoch: 2847 train_loss: 0.0028403704054653645\n", + "epoch: 2848 train_loss: 0.0028384504839777946\n", + "epoch: 2849 train_loss: 0.0028365517500787973\n", + "epoch: 2850 train_loss: 0.00283463834784925\n", + "epoch: 2851 train_loss: 0.0028327293694019318\n", + "epoch: 2852 train_loss: 0.002830822253599763\n", + "epoch: 2853 train_loss: 0.0028289156034588814\n", + "epoch: 2854 train_loss: 0.0028270261827856302\n", + "epoch: 2855 train_loss: 0.0028251127805560827\n", + "epoch: 2856 train_loss: 0.0028232287149876356\n", + "epoch: 2857 train_loss: 0.002821335569024086\n", + "epoch: 2858 train_loss: 0.002819427754729986\n", + "epoch: 2859 train_loss: 0.002817545784637332\n", + "epoch: 2860 train_loss: 0.002815673593431711\n", + "epoch: 2861 train_loss: 0.0028137676417827606\n", + "epoch: 2862 train_loss: 0.0028118991758674383\n", + "epoch: 2863 train_loss: 0.002810009755194187\n", + "epoch: 2864 train_loss: 0.0028081354685127735\n", + "epoch: 2865 train_loss: 0.0028062511701136827\n", + "epoch: 2866 train_loss: 0.0028043873608112335\n", + "epoch: 2867 train_loss: 0.0028025079518556595\n", + "epoch: 2868 train_loss: 0.0028006210923194885\n", + "epoch: 2869 train_loss: 0.0027987719513475895\n", + "epoch: 2870 train_loss: 0.0027968951035290956\n", + "epoch: 2871 train_loss: 0.0027950177900493145\n", + "epoch: 2872 train_loss: 0.002793161664158106\n", + "epoch: 2873 train_loss: 0.0027913060039281845\n", + "epoch: 2874 train_loss: 0.0027894387021660805\n", + "epoch: 2875 train_loss: 0.002787583041936159\n", + "epoch: 2876 train_loss: 0.0027857329696416855\n", + "epoch: 2877 train_loss: 0.0027838638052344322\n", + "epoch: 2878 train_loss: 0.0027820123359560966\n", + "epoch: 2879 train_loss: 0.0027801727410405874\n", + "epoch: 2880 train_loss: 0.0027783189434558153\n", + "epoch: 2881 train_loss: 0.0027764562983065844\n", + "epoch: 2882 train_loss: 0.002774640452116728\n", + "epoch: 2883 train_loss: 0.0027727922424674034\n", + "epoch: 2884 train_loss: 0.002770947990939021\n", + "epoch: 2885 train_loss: 0.0027690983843058348\n", + "epoch: 2886 train_loss: 0.002767276717349887\n", + "epoch: 2887 train_loss: 0.0027654345612972975\n", + "epoch: 2888 train_loss: 0.0027636010199785233\n", + "epoch: 2889 train_loss: 0.002761788899078965\n", + "epoch: 2890 train_loss: 0.0027599583845585585\n", + "epoch: 2891 train_loss: 0.0027581220492720604\n", + "epoch: 2892 train_loss: 0.00275627919472754\n", + "epoch: 2893 train_loss: 0.002754464978352189\n", + "epoch: 2894 train_loss: 0.0027526472695171833\n", + "epoch: 2895 train_loss: 0.0027508335188031197\n", + "epoch: 2896 train_loss: 0.002749017905443907\n", + "epoch: 2897 train_loss: 0.0027472106739878654\n", + "epoch: 2898 train_loss: 0.002745380625128746\n", + "epoch: 2899 train_loss: 0.0027435689698904753\n", + "epoch: 2900 train_loss: 0.002741752192378044\n", + "epoch: 2901 train_loss: 0.002739963587373495\n", + "epoch: 2902 train_loss: 0.002738150069490075\n", + "epoch: 2903 train_loss: 0.0027363428380340338\n", + "epoch: 2904 train_loss: 0.0027345549315214157\n", + "epoch: 2905 train_loss: 0.0027327558491379023\n", + "epoch: 2906 train_loss: 0.002730939071625471\n", + "epoch: 2907 train_loss: 0.002729154424741864\n", + "epoch: 2908 train_loss: 0.0027273569721728563\n", + "epoch: 2909 train_loss: 0.0027255595196038485\n", + "epoch: 2910 train_loss: 0.00272376905195415\n", + "epoch: 2911 train_loss: 0.0027219881303608418\n", + "epoch: 2912 train_loss: 0.002720202784985304\n", + "epoch: 2913 train_loss: 0.0027184253558516502\n", + "epoch: 2914 train_loss: 0.002716632094234228\n", + "epoch: 2915 train_loss: 0.002714862348511815\n", + "epoch: 2916 train_loss: 0.0027130846865475178\n", + "epoch: 2917 train_loss: 0.002711296547204256\n", + "epoch: 2918 train_loss: 0.002709530061110854\n", + "epoch: 2919 train_loss: 0.0027077572885900736\n", + "epoch: 2920 train_loss: 0.0027059840504080057\n", + "epoch: 2921 train_loss: 0.0027042075525969267\n", + "epoch: 2922 train_loss: 0.0027024573646485806\n", + "epoch: 2923 train_loss: 0.002700681099668145\n", + "epoch: 2924 train_loss: 0.002698923461139202\n", + "epoch: 2925 train_loss: 0.0026971434708684683\n", + "epoch: 2926 train_loss: 0.002695400035008788\n", + "epoch: 2927 train_loss: 0.002693634945899248\n", + "epoch: 2928 train_loss: 0.002691881963983178\n", + "epoch: 2929 train_loss: 0.0026901199016720057\n", + "epoch: 2930 train_loss: 0.0026883736718446016\n", + "epoch: 2931 train_loss: 0.002686628606170416\n", + "epoch: 2932 train_loss: 0.00268488097935915\n", + "epoch: 2933 train_loss: 0.002683124504983425\n", + "epoch: 2934 train_loss: 0.0026813794393092394\n", + "epoch: 2935 train_loss: 0.002679642057046294\n", + "epoch: 2936 train_loss: 0.0026779056061059237\n", + "epoch: 2937 train_loss: 0.0026761575136333704\n", + "epoch: 2938 train_loss: 0.0026744247879832983\n", + "epoch: 2939 train_loss: 0.0026726864743977785\n", + "epoch: 2940 train_loss: 0.0026709551457315683\n", + "epoch: 2941 train_loss: 0.002669217763468623\n", + "epoch: 2942 train_loss: 0.0026674927212297916\n", + "epoch: 2943 train_loss: 0.0026657595299184322\n", + "epoch: 2944 train_loss: 0.00266403891146183\n", + "epoch: 2945 train_loss: 0.002662318293005228\n", + "epoch: 2946 train_loss: 0.002660584170371294\n", + "epoch: 2947 train_loss: 0.0026588640175759792\n", + "epoch: 2948 train_loss: 0.0026571499183773994\n", + "epoch: 2949 train_loss: 0.0026554313953965902\n", + "epoch: 2950 train_loss: 0.0026537140365689993\n", + "epoch: 2951 train_loss: 0.0026519985403865576\n", + "epoch: 2952 train_loss: 0.0026502972468733788\n", + "epoch: 2953 train_loss: 0.0026485780254006386\n", + "epoch: 2954 train_loss: 0.0026468706782907248\n", + "epoch: 2955 train_loss: 0.002645152388140559\n", + "epoch: 2956 train_loss: 0.0026434599421918392\n", + "epoch: 2957 train_loss: 0.002641761675477028\n", + "epoch: 2958 train_loss: 0.0026400554925203323\n", + "epoch: 2959 train_loss: 0.0026383602526038885\n", + "epoch: 2960 train_loss: 0.002636654768139124\n", + "epoch: 2961 train_loss: 0.0026349618565291166\n", + "epoch: 2962 train_loss: 0.0026332810521125793\n", + "epoch: 2963 train_loss: 0.002631579525768757\n", + "epoch: 2964 train_loss: 0.0026298915036022663\n", + "epoch: 2965 train_loss: 0.0026282011531293392\n", + "epoch: 2966 train_loss: 0.002626502187922597\n", + "epoch: 2967 train_loss: 0.0026248290669173002\n", + "epoch: 2968 train_loss: 0.00262314360588789\n", + "epoch: 2969 train_loss: 0.0026214560493826866\n", + "epoch: 2970 train_loss: 0.0026197938714176416\n", + "epoch: 2971 train_loss: 0.002618103753775358\n", + "epoch: 2972 train_loss: 0.002616435755044222\n", + "epoch: 2973 train_loss: 0.0026147637981921434\n", + "epoch: 2974 train_loss: 0.0026130706537514925\n", + "epoch: 2975 train_loss: 0.002611418953165412\n", + "epoch: 2976 train_loss: 0.002609747927635908\n", + "epoch: 2977 train_loss: 0.00260808109305799\n", + "epoch: 2978 train_loss: 0.002606417518109083\n", + "epoch: 2979 train_loss: 0.0026047423016279936\n", + "epoch: 2980 train_loss: 0.0026030903682112694\n", + "epoch: 2981 train_loss: 0.0026014342438429594\n", + "epoch: 2982 train_loss: 0.0025997748598456383\n", + "epoch: 2983 train_loss: 0.002598120830953121\n", + "epoch: 2984 train_loss: 0.0025964558590203524\n", + "epoch: 2985 train_loss: 0.002594801364466548\n", + "epoch: 2986 train_loss: 0.0025931554846465588\n", + "epoch: 2987 train_loss: 0.0025915144942700863\n", + "epoch: 2988 train_loss: 0.0025898581370711327\n", + "epoch: 2989 train_loss: 0.0025882120244205\n", + "epoch: 2990 train_loss: 0.002586573362350464\n", + "epoch: 2991 train_loss: 0.0025849156081676483\n", + "epoch: 2992 train_loss: 0.002583292778581381\n", + "epoch: 2993 train_loss: 0.0025816517882049084\n", + "epoch: 2994 train_loss: 0.0025800098665058613\n", + "epoch: 2995 train_loss: 0.0025783677119761705\n", + "epoch: 2996 train_loss: 0.002576738828793168\n", + "epoch: 2997 train_loss: 0.0025751085486263037\n", + "epoch: 2998 train_loss: 0.0025734775699675083\n", + "epoch: 2999 train_loss: 0.0025718621909618378\n", + "epoch: 3000 train_loss: 0.00257023680023849\n", + "epoch: 3001 train_loss: 0.0025685951113700867\n", + "epoch: 3002 train_loss: 0.0025669829919934273\n", + "epoch: 3003 train_loss: 0.0025653683114796877\n", + "epoch: 3004 train_loss: 0.0025637424550950527\n", + "epoch: 3005 train_loss: 0.0025621240492910147\n", + "epoch: 3006 train_loss: 0.0025605056434869766\n", + "epoch: 3007 train_loss: 0.002558876760303974\n", + "epoch: 3008 train_loss: 0.0025572667364031076\n", + "epoch: 3009 train_loss: 0.0025556753389537334\n", + "epoch: 3010 train_loss: 0.0025540587957948446\n", + "epoch: 3011 train_loss: 0.002552441554144025\n", + "epoch: 3012 train_loss: 0.0025508515536785126\n", + "epoch: 3013 train_loss: 0.002549247583374381\n", + "epoch: 3014 train_loss: 0.002547635929659009\n", + "epoch: 3015 train_loss: 0.00254604103974998\n", + "epoch: 3016 train_loss: 0.0025444403290748596\n", + "epoch: 3017 train_loss: 0.0025428421795368195\n", + "epoch: 3018 train_loss: 0.0025412444956600666\n", + "epoch: 3019 train_loss: 0.0025396475102752447\n", + "epoch: 3020 train_loss: 0.0025380579754710197\n", + "epoch: 3021 train_loss: 0.002536473097279668\n", + "epoch: 3022 train_loss: 0.0025348898489028215\n", + "epoch: 3023 train_loss: 0.002533301478251815\n", + "epoch: 3024 train_loss: 0.0025317147374153137\n", + "epoch: 3025 train_loss: 0.002530120313167572\n", + "epoch: 3026 train_loss: 0.0025285433512181044\n", + "epoch: 3027 train_loss: 0.0025269605685025454\n", + "epoch: 3028 train_loss: 0.002525376621633768\n", + "epoch: 3029 train_loss: 0.002523795934394002\n", + "epoch: 3030 train_loss: 0.0025222301483154297\n", + "epoch: 3031 train_loss: 0.0025206480640918016\n", + "epoch: 3032 train_loss: 0.0025190787855535746\n", + "epoch: 3033 train_loss: 0.00251750648021698\n", + "epoch: 3034 train_loss: 0.002515940461307764\n", + "epoch: 3035 train_loss: 0.0025143795646727085\n", + "epoch: 3036 train_loss: 0.002512808423489332\n", + "epoch: 3037 train_loss: 0.0025112414732575417\n", + "epoch: 3038 train_loss: 0.0025096768513321877\n", + "epoch: 3039 train_loss: 0.0025081199128180742\n", + "epoch: 3040 train_loss: 0.0025065643712878227\n", + "epoch: 3041 train_loss: 0.002504998119547963\n", + "epoch: 3042 train_loss: 0.0025034502614289522\n", + "epoch: 3043 train_loss: 0.0025018956512212753\n", + "epoch: 3044 train_loss: 0.002500342670828104\n", + "epoch: 3045 train_loss: 0.0024987945798784494\n", + "epoch: 3046 train_loss: 0.0024972432292997837\n", + "epoch: 3047 train_loss: 0.002495701191946864\n", + "epoch: 3048 train_loss: 0.0024941510055214167\n", + "epoch: 3049 train_loss: 0.0024926119949668646\n", + "epoch: 3050 train_loss: 0.002491065301001072\n", + "epoch: 3051 train_loss: 0.0024895276874303818\n", + "epoch: 3052 train_loss: 0.0024879833217710257\n", + "epoch: 3053 train_loss: 0.0024864543229341507\n", + "epoch: 3054 train_loss: 0.0024849127512425184\n", + "epoch: 3055 train_loss: 0.0024833790957927704\n", + "epoch: 3056 train_loss: 0.0024818438105285168\n", + "epoch: 3057 train_loss: 0.0024803122505545616\n", + "epoch: 3058 train_loss: 0.0024787834845483303\n", + "epoch: 3059 train_loss: 0.0024772498290985823\n", + "epoch: 3060 train_loss: 0.0024757215287536383\n", + "epoch: 3061 train_loss: 0.0024742060340940952\n", + "epoch: 3062 train_loss: 0.0024726849514991045\n", + "epoch: 3063 train_loss: 0.0024711687583476305\n", + "epoch: 3064 train_loss: 0.0024696465115994215\n", + "epoch: 3065 train_loss: 0.0024681249633431435\n", + "epoch: 3066 train_loss: 0.0024666087701916695\n", + "epoch: 3067 train_loss: 0.0024650997947901487\n", + "epoch: 3068 train_loss: 0.002463585464283824\n", + "epoch: 3069 train_loss: 0.0024620697367936373\n", + "epoch: 3070 train_loss: 0.00246055843308568\n", + "epoch: 3071 train_loss: 0.002459051785990596\n", + "epoch: 3072 train_loss: 0.002457545604556799\n", + "epoch: 3073 train_loss: 0.0024560398887842894\n", + "epoch: 3074 train_loss: 0.002454542089253664\n", + "epoch: 3075 train_loss: 0.0024530328810214996\n", + "epoch: 3076 train_loss: 0.002451530424878001\n", + "epoch: 3077 train_loss: 0.0024500282015651464\n", + "epoch: 3078 train_loss: 0.002448537852615118\n", + "epoch: 3079 train_loss: 0.0024470407515764236\n", + "epoch: 3080 train_loss: 0.002445557853206992\n", + "epoch: 3081 train_loss: 0.0024440595880150795\n", + "epoch: 3082 train_loss: 0.0024425687734037638\n", + "epoch: 3083 train_loss: 0.0024410774931311607\n", + "epoch: 3084 train_loss: 0.0024395883083343506\n", + "epoch: 3085 train_loss: 0.002438114956021309\n", + "epoch: 3086 train_loss: 0.0024366287980228662\n", + "epoch: 3087 train_loss: 0.00243514496833086\n", + "epoch: 3088 train_loss: 0.002433649729937315\n", + "epoch: 3089 train_loss: 0.0024321679957211018\n", + "epoch: 3090 train_loss: 0.002430692780762911\n", + "epoch: 3091 train_loss: 0.002429218264296651\n", + "epoch: 3092 train_loss: 0.002427737694233656\n", + "epoch: 3093 train_loss: 0.00242626597173512\n", + "epoch: 3094 train_loss: 0.0024247895926237106\n", + "epoch: 3095 train_loss: 0.0024233218282461166\n", + "epoch: 3096 train_loss: 0.002421859186142683\n", + "epoch: 3097 train_loss: 0.0024203963112086058\n", + "epoch: 3098 train_loss: 0.0024189315736293793\n", + "epoch: 3099 train_loss: 0.00241746474057436\n", + "epoch: 3100 train_loss: 0.0024159904569387436\n", + "epoch: 3101 train_loss: 0.0024145334027707577\n", + "epoch: 3102 train_loss: 0.0024130805395543575\n", + "epoch: 3103 train_loss: 0.0024116116110235453\n", + "epoch: 3104 train_loss: 0.0024101671297103167\n", + "epoch: 3105 train_loss: 0.002408710541203618\n", + "epoch: 3106 train_loss: 0.0024072567466646433\n", + "epoch: 3107 train_loss: 0.0024057989940047264\n", + "epoch: 3108 train_loss: 0.002404359169304371\n", + "epoch: 3109 train_loss: 0.002402891404926777\n", + "epoch: 3110 train_loss: 0.002401447156444192\n", + "epoch: 3111 train_loss: 0.002400012454017997\n", + "epoch: 3112 train_loss: 0.002398568904027343\n", + "epoch: 3113 train_loss: 0.002397124655544758\n", + "epoch: 3114 train_loss: 0.002395687159150839\n", + "epoch: 3115 train_loss: 0.0023942405823618174\n", + "epoch: 3116 train_loss: 0.0023927967995405197\n", + "epoch: 3117 train_loss: 0.0023913595359772444\n", + "epoch: 3118 train_loss: 0.0023899313528090715\n", + "epoch: 3119 train_loss: 0.002388490131124854\n", + "epoch: 3120 train_loss: 0.002387073589488864\n", + "epoch: 3121 train_loss: 0.002385644009336829\n", + "epoch: 3122 train_loss: 0.002384207909926772\n", + "epoch: 3123 train_loss: 0.0023827836848795414\n", + "epoch: 3124 train_loss: 0.0023813475854694843\n", + "epoch: 3125 train_loss: 0.0023799166083335876\n", + "epoch: 3126 train_loss: 0.002378503093495965\n", + "epoch: 3127 train_loss: 0.0023770846892148256\n", + "epoch: 3128 train_loss: 0.0023756581358611584\n", + "epoch: 3129 train_loss: 0.002374249044805765\n", + "epoch: 3130 train_loss: 0.0023728252854198217\n", + "epoch: 3131 train_loss: 0.0023714047856628895\n", + "epoch: 3132 train_loss: 0.002369997091591358\n", + "epoch: 3133 train_loss: 0.0023685854393988848\n", + "epoch: 3134 train_loss: 0.0023671789094805717\n", + "epoch: 3135 train_loss: 0.0023657665587961674\n", + "epoch: 3136 train_loss: 0.0023643614258617163\n", + "epoch: 3137 train_loss: 0.0023629453498870134\n", + "epoch: 3138 train_loss: 0.002361545106396079\n", + "epoch: 3139 train_loss: 0.002360149286687374\n", + "epoch: 3140 train_loss: 0.0023587392643094063\n", + "epoch: 3141 train_loss: 0.0023573446087539196\n", + "epoch: 3142 train_loss: 0.0023559376131743193\n", + "epoch: 3143 train_loss: 0.002354536671191454\n", + "epoch: 3144 train_loss: 0.002353137591853738\n", + "epoch: 3145 train_loss: 0.0023517459630966187\n", + "epoch: 3146 train_loss: 0.002350357361137867\n", + "epoch: 3147 train_loss: 0.0023489692248404026\n", + "epoch: 3148 train_loss: 0.0023475729394704103\n", + "epoch: 3149 train_loss: 0.0023461796808987856\n", + "epoch: 3150 train_loss: 0.0023447962012141943\n", + "epoch: 3151 train_loss: 0.002343418775126338\n", + "epoch: 3152 train_loss: 0.002342029707506299\n", + "epoch: 3153 train_loss: 0.002340647391974926\n", + "epoch: 3154 train_loss: 0.0023392578586935997\n", + "epoch: 3155 train_loss: 0.0023378829937428236\n", + "epoch: 3156 train_loss: 0.0023364992812275887\n", + "epoch: 3157 train_loss: 0.0023351283743977547\n", + "epoch: 3158 train_loss: 0.002333757933229208\n", + "epoch: 3159 train_loss: 0.0023323765490204096\n", + "epoch: 3160 train_loss: 0.002331009367480874\n", + "epoch: 3161 train_loss: 0.002329633105546236\n", + "epoch: 3162 train_loss: 0.002328263595700264\n", + "epoch: 3163 train_loss: 0.0023268850054591894\n", + "epoch: 3164 train_loss: 0.002325519220903516\n", + "epoch: 3165 train_loss: 0.0023241653107106686\n", + "epoch: 3166 train_loss: 0.002322800224646926\n", + "epoch: 3167 train_loss: 0.002321432577446103\n", + "epoch: 3168 train_loss: 0.0023200686555355787\n", + "epoch: 3169 train_loss: 0.0023187098558992147\n", + "epoch: 3170 train_loss: 0.0023173538502305746\n", + "epoch: 3171 train_loss: 0.0023159903939813375\n", + "epoch: 3172 train_loss: 0.002314632758498192\n", + "epoch: 3173 train_loss: 0.0023132876958698034\n", + "epoch: 3174 train_loss: 0.0023119335528463125\n", + "epoch: 3175 train_loss: 0.002310587093234062\n", + "epoch: 3176 train_loss: 0.0023092248011380434\n", + "epoch: 3177 train_loss: 0.0023078809026628733\n", + "epoch: 3178 train_loss: 0.0023065342102199793\n", + "epoch: 3179 train_loss: 0.0023052028845995665\n", + "epoch: 3180 train_loss: 0.002303847810253501\n", + "epoch: 3181 train_loss: 0.0023025046102702618\n", + "epoch: 3182 train_loss: 0.002301165135577321\n", + "epoch: 3183 train_loss: 0.0022998317144811153\n", + "epoch: 3184 train_loss: 0.002298488048836589\n", + "epoch: 3185 train_loss: 0.0022971404250711203\n", + "epoch: 3186 train_loss: 0.002295799320563674\n", + "epoch: 3187 train_loss: 0.0022944631054997444\n", + "epoch: 3188 train_loss: 0.002293137600645423\n", + "epoch: 3189 train_loss: 0.0022918025497347116\n", + "epoch: 3190 train_loss: 0.0022904756478965282\n", + "epoch: 3191 train_loss: 0.0022891508415341377\n", + "epoch: 3192 train_loss: 0.0022878162562847137\n", + "epoch: 3193 train_loss: 0.0022864830680191517\n", + "epoch: 3194 train_loss: 0.002285162452608347\n", + "epoch: 3195 train_loss: 0.002283838577568531\n", + "epoch: 3196 train_loss: 0.0022825226187705994\n", + "epoch: 3197 train_loss: 0.002281203866004944\n", + "epoch: 3198 train_loss: 0.002279885346069932\n", + "epoch: 3199 train_loss: 0.002278566127642989\n", + "epoch: 3200 train_loss: 0.0022772473748773336\n", + "epoch: 3201 train_loss: 0.002275931416079402\n", + "epoch: 3202 train_loss: 0.0022746201138943434\n", + "epoch: 3203 train_loss: 0.0022733088117092848\n", + "epoch: 3204 train_loss: 0.0022719944827258587\n", + "epoch: 3205 train_loss: 0.002270693192258477\n", + "epoch: 3206 train_loss: 0.0022693793289363384\n", + "epoch: 3207 train_loss: 0.002268067328259349\n", + "epoch: 3208 train_loss: 0.00226676557213068\n", + "epoch: 3209 train_loss: 0.002265464048832655\n", + "epoch: 3210 train_loss: 0.0022641627583652735\n", + "epoch: 3211 train_loss: 0.0022628677543252707\n", + "epoch: 3212 train_loss: 0.002261571353301406\n", + "epoch: 3213 train_loss: 0.0022602593526244164\n", + "epoch: 3214 train_loss: 0.0022589582949876785\n", + "epoch: 3215 train_loss: 0.0022576702758669853\n", + "epoch: 3216 train_loss: 0.0022563801612704992\n", + "epoch: 3217 train_loss: 0.002255069324746728\n", + "epoch: 3218 train_loss: 0.0022537894546985626\n", + "epoch: 3219 train_loss: 0.0022525021340698004\n", + "epoch: 3220 train_loss: 0.002251201309263706\n", + "epoch: 3221 train_loss: 0.00224992074072361\n", + "epoch: 3222 train_loss: 0.002248635981231928\n", + "epoch: 3223 train_loss: 0.0022473407443612814\n", + "epoch: 3224 train_loss: 0.0022460652980953455\n", + "epoch: 3225 train_loss: 0.0022447824012488127\n", + "epoch: 3226 train_loss: 0.002243502764031291\n", + "epoch: 3227 train_loss: 0.0022422210313379765\n", + "epoch: 3228 train_loss: 0.002240950707346201\n", + "epoch: 3229 train_loss: 0.002239667810499668\n", + "epoch: 3230 train_loss: 0.0022383916657418013\n", + "epoch: 3231 train_loss: 0.002237118547782302\n", + "epoch: 3232 train_loss: 0.0022358354181051254\n", + "epoch: 3233 train_loss: 0.0022345613688230515\n", + "epoch: 3234 train_loss: 0.0022333036176860332\n", + "epoch: 3235 train_loss: 0.0022320386487990618\n", + "epoch: 3236 train_loss: 0.0022307601757347584\n", + "epoch: 3237 train_loss: 0.002229492412880063\n", + "epoch: 3238 train_loss: 0.0022282327990978956\n", + "epoch: 3239 train_loss: 0.0022269634064286947\n", + "epoch: 3240 train_loss: 0.002225699834525585\n", + "epoch: 3241 train_loss: 0.002224437892436981\n", + "epoch: 3242 train_loss: 0.0022231820039451122\n", + "epoch: 3243 train_loss: 0.00222191889770329\n", + "epoch: 3244 train_loss: 0.0022206560242921114\n", + "epoch: 3245 train_loss: 0.002219412475824356\n", + "epoch: 3246 train_loss: 0.0022181477397680283\n", + "epoch: 3247 train_loss: 0.002216896042227745\n", + "epoch: 3248 train_loss: 0.002215646905824542\n", + "epoch: 3249 train_loss: 0.002214395673945546\n", + "epoch: 3250 train_loss: 0.0022131544537842274\n", + "epoch: 3251 train_loss: 0.0022119046188890934\n", + "epoch: 3252 train_loss: 0.0022106419783085585\n", + "epoch: 3253 train_loss: 0.002209399128332734\n", + "epoch: 3254 train_loss: 0.002208178164437413\n", + "epoch: 3255 train_loss: 0.0022069220431149006\n", + "epoch: 3256 train_loss: 0.002205677330493927\n", + "epoch: 3257 train_loss: 0.0022044384386390448\n", + "epoch: 3258 train_loss: 0.002203205833211541\n", + "epoch: 3259 train_loss: 0.0022019646130502224\n", + "epoch: 3260 train_loss: 0.0022007212974131107\n", + "epoch: 3261 train_loss: 0.002199501497671008\n", + "epoch: 3262 train_loss: 0.0021982581820338964\n", + "epoch: 3263 train_loss: 0.002197018126025796\n", + "epoch: 3264 train_loss: 0.0021957922726869583\n", + "epoch: 3265 train_loss: 0.0021945659536868334\n", + "epoch: 3266 train_loss: 0.0021933356765657663\n", + "epoch: 3267 train_loss: 0.002192102139815688\n", + "epoch: 3268 train_loss: 0.0021908709313720465\n", + "epoch: 3269 train_loss: 0.002189651597291231\n", + "epoch: 3270 train_loss: 0.0021884336601942778\n", + "epoch: 3271 train_loss: 0.002187208505347371\n", + "epoch: 3272 train_loss: 0.0021859845146536827\n", + "epoch: 3273 train_loss: 0.002184765413403511\n", + "epoch: 3274 train_loss: 0.0021835374645888805\n", + "epoch: 3275 train_loss: 0.002182338386774063\n", + "epoch: 3276 train_loss: 0.002181124873459339\n", + "epoch: 3277 train_loss: 0.002179899252951145\n", + "epoch: 3278 train_loss: 0.0021786850411444902\n", + "epoch: 3279 train_loss: 0.002177469665184617\n", + "epoch: 3280 train_loss: 0.0021762631367892027\n", + "epoch: 3281 train_loss: 0.0021750552114099264\n", + "epoch: 3282 train_loss: 0.002173837972804904\n", + "epoch: 3283 train_loss: 0.002172637265175581\n", + "epoch: 3284 train_loss: 0.002171431202441454\n", + "epoch: 3285 train_loss: 0.002170225605368614\n", + "epoch: 3286 train_loss: 0.0021690274588763714\n", + "epoch: 3287 train_loss: 0.0021678090561181307\n", + "epoch: 3288 train_loss: 0.002166619524359703\n", + "epoch: 3289 train_loss: 0.0021654199808835983\n", + "epoch: 3290 train_loss: 0.0021642171777784824\n", + "epoch: 3291 train_loss: 0.0021630232222378254\n", + "epoch: 3292 train_loss: 0.0021618276368826628\n", + "epoch: 3293 train_loss: 0.002160639502108097\n", + "epoch: 3294 train_loss: 0.0021594383288174868\n", + "epoch: 3295 train_loss: 0.0021582457702606916\n", + "epoch: 3296 train_loss: 0.002157051581889391\n", + "epoch: 3297 train_loss: 0.0021558564621955156\n", + "epoch: 3298 train_loss: 0.0021546809002757072\n", + "epoch: 3299 train_loss: 0.0021534760016947985\n", + "epoch: 3300 train_loss: 0.002152298344299197\n", + "epoch: 3301 train_loss: 0.002151114633306861\n", + "epoch: 3302 train_loss: 0.002149940235540271\n", + "epoch: 3303 train_loss: 0.0021487411577254534\n", + "epoch: 3304 train_loss: 0.0021475788671523333\n", + "epoch: 3305 train_loss: 0.002146379556506872\n", + "epoch: 3306 train_loss: 0.002145208418369293\n", + "epoch: 3307 train_loss: 0.0021440330892801285\n", + "epoch: 3308 train_loss: 0.0021428533364087343\n", + "epoch: 3309 train_loss: 0.0021416775416582823\n", + "epoch: 3310 train_loss: 0.002140494529157877\n", + "epoch: 3311 train_loss: 0.0021393357310444117\n", + "epoch: 3312 train_loss: 0.002138159004971385\n", + "epoch: 3313 train_loss: 0.0021369855385273695\n", + "epoch: 3314 train_loss: 0.0021358111407607794\n", + "epoch: 3315 train_loss: 0.0021346546709537506\n", + "epoch: 3316 train_loss: 0.0021334888879209757\n", + "epoch: 3317 train_loss: 0.0021323186811059713\n", + "epoch: 3318 train_loss: 0.0021311494056135416\n", + "epoch: 3319 train_loss: 0.0021299973595887423\n", + "epoch: 3320 train_loss: 0.002128817606717348\n", + "epoch: 3321 train_loss: 0.0021276671905070543\n", + "epoch: 3322 train_loss: 0.0021265042014420033\n", + "epoch: 3323 train_loss: 0.0021253509912639856\n", + "epoch: 3324 train_loss: 0.002124188467860222\n", + "epoch: 3325 train_loss: 0.002123031998053193\n", + "epoch: 3326 train_loss: 0.002121871104463935\n", + "epoch: 3327 train_loss: 0.0021207325626164675\n", + "epoch: 3328 train_loss: 0.0021195714361965656\n", + "epoch: 3329 train_loss: 0.002118418924510479\n", + "epoch: 3330 train_loss: 0.0021172675769776106\n", + "epoch: 3331 train_loss: 0.002116130432114005\n", + "epoch: 3332 train_loss: 0.0021149665117263794\n", + "epoch: 3333 train_loss: 0.0021138282027095556\n", + "epoch: 3334 train_loss: 0.002112679649144411\n", + "epoch: 3335 train_loss: 0.0021115371491760015\n", + "epoch: 3336 train_loss: 0.0021103948820382357\n", + "epoch: 3337 train_loss: 0.0021092507522553205\n", + "epoch: 3338 train_loss: 0.002108110813423991\n", + "epoch: 3339 train_loss: 0.002106970641762018\n", + "epoch: 3340 train_loss: 0.002105834661051631\n", + "epoch: 3341 train_loss: 0.002104699146002531\n", + "epoch: 3342 train_loss: 0.002103568520396948\n", + "epoch: 3343 train_loss: 0.0021024306770414114\n", + "epoch: 3344 train_loss: 0.002101283520460129\n", + "epoch: 3345 train_loss: 0.002100157318636775\n", + "epoch: 3346 train_loss: 0.0020990350749343634\n", + "epoch: 3347 train_loss: 0.002097893739119172\n", + "epoch: 3348 train_loss: 0.002096765674650669\n", + "epoch: 3349 train_loss: 0.002095637610182166\n", + "epoch: 3350 train_loss: 0.002094514202326536\n", + "epoch: 3351 train_loss: 0.0020933940540999174\n", + "epoch: 3352 train_loss: 0.002092264825478196\n", + "epoch: 3353 train_loss: 0.0020911358296871185\n", + "epoch: 3354 train_loss: 0.0020900212693959475\n", + "epoch: 3355 train_loss: 0.002088885521516204\n", + "epoch: 3356 train_loss: 0.0020877753850072622\n", + "epoch: 3357 train_loss: 0.0020866498816758394\n", + "epoch: 3358 train_loss: 0.002085533458739519\n", + "epoch: 3359 train_loss: 0.002084417035803199\n", + "epoch: 3360 train_loss: 0.0020833159796893597\n", + "epoch: 3361 train_loss: 0.0020821914076805115\n", + "epoch: 3362 train_loss: 0.002081079874187708\n", + "epoch: 3363 train_loss: 0.002079957164824009\n", + "epoch: 3364 train_loss: 0.00207886123098433\n", + "epoch: 3365 train_loss: 0.002077742712572217\n", + "epoch: 3366 train_loss: 0.002076639560982585\n", + "epoch: 3367 train_loss: 0.0020755287259817123\n", + "epoch: 3368 train_loss: 0.0020744248759001493\n", + "epoch: 3369 train_loss: 0.002073321957141161\n", + "epoch: 3370 train_loss: 0.0020722132176160812\n", + "epoch: 3371 train_loss: 0.002071113558486104\n", + "epoch: 3372 train_loss: 0.002070012968033552\n", + "epoch: 3373 train_loss: 0.0020689107477664948\n", + "epoch: 3374 train_loss: 0.0020678043365478516\n", + "epoch: 3375 train_loss: 0.00206672097556293\n", + "epoch: 3376 train_loss: 0.0020656101405620575\n", + "epoch: 3377 train_loss: 0.0020645156037062407\n", + "epoch: 3378 train_loss: 0.0020634212996810675\n", + "epoch: 3379 train_loss: 0.0020623221062123775\n", + "epoch: 3380 train_loss: 0.0020612345542758703\n", + "epoch: 3381 train_loss: 0.0020601407159119844\n", + "epoch: 3382 train_loss: 0.0020590589847415686\n", + "epoch: 3383 train_loss: 0.0020579600241035223\n", + "epoch: 3384 train_loss: 0.0020568708423525095\n", + "epoch: 3385 train_loss: 0.002055791672319174\n", + "epoch: 3386 train_loss: 0.0020546908490359783\n", + "epoch: 3387 train_loss: 0.0020536109805107117\n", + "epoch: 3388 train_loss: 0.002052527153864503\n", + "epoch: 3389 train_loss: 0.0020514458883553743\n", + "epoch: 3390 train_loss: 0.0020503702107816935\n", + "epoch: 3391 train_loss: 0.0020492863841354847\n", + "epoch: 3392 train_loss: 0.0020482148975133896\n", + "epoch: 3393 train_loss: 0.0020471259485930204\n", + "epoch: 3394 train_loss: 0.002046051202341914\n", + "epoch: 3395 train_loss: 0.002044984605163336\n", + "epoch: 3396 train_loss: 0.002043898915871978\n", + "epoch: 3397 train_loss: 0.0020428309217095375\n", + "epoch: 3398 train_loss: 0.002041746862232685\n", + "epoch: 3399 train_loss: 0.002040682826191187\n", + "epoch: 3400 train_loss: 0.002039604354649782\n", + "epoch: 3401 train_loss: 0.002038531005382538\n", + "epoch: 3402 train_loss: 0.002037463244050741\n", + "epoch: 3403 train_loss: 0.0020364010706543922\n", + "epoch: 3404 train_loss: 0.002035335637629032\n", + "epoch: 3405 train_loss: 0.0020342678762972355\n", + "epoch: 3406 train_loss: 0.0020332038402557373\n", + "epoch: 3407 train_loss: 0.0020321456249803305\n", + "epoch: 3408 train_loss: 0.0020310762338340282\n", + "epoch: 3409 train_loss: 0.002030008938163519\n", + "epoch: 3410 train_loss: 0.002028961665928364\n", + "epoch: 3411 train_loss: 0.0020278950687497854\n", + "epoch: 3412 train_loss: 0.0020268417429178953\n", + "epoch: 3413 train_loss: 0.002025781897827983\n", + "epoch: 3414 train_loss: 0.0020247267093509436\n", + "epoch: 3415 train_loss: 0.0020236780401319265\n", + "epoch: 3416 train_loss: 0.0020226212218403816\n", + "epoch: 3417 train_loss: 0.002021563472226262\n", + "epoch: 3418 train_loss: 0.002020524814724922\n", + "epoch: 3419 train_loss: 0.0020194579847157\n", + "epoch: 3420 train_loss: 0.002018412109464407\n", + "epoch: 3421 train_loss: 0.002017368096858263\n", + "epoch: 3422 train_loss: 0.0020163164008408785\n", + "epoch: 3423 train_loss: 0.0020152763463556767\n", + "epoch: 3424 train_loss: 0.002014232100918889\n", + "epoch: 3425 train_loss: 0.0020131785422563553\n", + "epoch: 3426 train_loss: 0.002012142911553383\n", + "epoch: 3427 train_loss: 0.002011096104979515\n", + "epoch: 3428 train_loss: 0.0020100523252040148\n", + "epoch: 3429 train_loss: 0.0020090178586542606\n", + "epoch: 3430 train_loss: 0.002007973613217473\n", + "epoch: 3431 train_loss: 0.0020069407764822245\n", + "epoch: 3432 train_loss: 0.002005903050303459\n", + "epoch: 3433 train_loss: 0.002004866721108556\n", + "epoch: 3434 train_loss: 0.0020038301590830088\n", + "epoch: 3435 train_loss: 0.0020027966238558292\n", + "epoch: 3436 train_loss: 0.0020017672795802355\n", + "epoch: 3437 train_loss: 0.0020007274579256773\n", + "epoch: 3438 train_loss: 0.001999701838940382\n", + "epoch: 3439 train_loss: 0.001998667139559984\n", + "epoch: 3440 train_loss: 0.001997644081711769\n", + "epoch: 3441 train_loss: 0.0019966112449765205\n", + "epoch: 3442 train_loss: 0.0019955886527895927\n", + "epoch: 3443 train_loss: 0.0019945637322962284\n", + "epoch: 3444 train_loss: 0.001993537647649646\n", + "epoch: 3445 train_loss: 0.001992512959986925\n", + "epoch: 3446 train_loss: 0.00199148990213871\n", + "epoch: 3447 train_loss: 0.001990476856008172\n", + "epoch: 3448 train_loss: 0.0019894465804100037\n", + "epoch: 3449 train_loss: 0.001988428644835949\n", + "epoch: 3450 train_loss: 0.001987409545108676\n", + "epoch: 3451 train_loss: 0.0019864030182361603\n", + "epoch: 3452 train_loss: 0.0019853804260492325\n", + "epoch: 3453 train_loss: 0.0019843606278300285\n", + "epoch: 3454 train_loss: 0.001983355265110731\n", + "epoch: 3455 train_loss: 0.001982332207262516\n", + "epoch: 3456 train_loss: 0.0019813282415270805\n", + "epoch: 3457 train_loss: 0.001980315428227186\n", + "epoch: 3458 train_loss: 0.001979301916435361\n", + "epoch: 3459 train_loss: 0.001978290732949972\n", + "epoch: 3460 train_loss: 0.001977281179279089\n", + "epoch: 3461 train_loss: 0.0019762783776968718\n", + "epoch: 3462 train_loss: 0.0019752716179937124\n", + "epoch: 3463 train_loss: 0.0019742611330002546\n", + "epoch: 3464 train_loss: 0.0019732601940631866\n", + "epoch: 3465 train_loss: 0.0019722632132470608\n", + "epoch: 3466 train_loss: 0.001971249934285879\n", + "epoch: 3467 train_loss: 0.0019702562130987644\n", + "epoch: 3468 train_loss: 0.0019692566711455584\n", + "epoch: 3469 train_loss: 0.0019682536367326975\n", + "epoch: 3470 train_loss: 0.0019672559574246407\n", + "epoch: 3471 train_loss: 0.001966257346794009\n", + "epoch: 3472 train_loss: 0.001965264091268182\n", + "epoch: 3473 train_loss: 0.0019642675761133432\n", + "epoch: 3474 train_loss: 0.0019632724579423666\n", + "epoch: 3475 train_loss: 0.001962282694876194\n", + "epoch: 3476 train_loss: 0.0019612889736890793\n", + "epoch: 3477 train_loss: 0.0019602894317358732\n", + "epoch: 3478 train_loss: 0.001959301298484206\n", + "epoch: 3479 train_loss: 0.001958315260708332\n", + "epoch: 3480 train_loss: 0.001957329222932458\n", + "epoch: 3481 train_loss: 0.001956339692696929\n", + "epoch: 3482 train_loss: 0.0019553517922759056\n", + "epoch: 3483 train_loss: 0.0019543718080967665\n", + "epoch: 3484 train_loss: 0.001953385304659605\n", + "epoch: 3485 train_loss: 0.0019523935625329614\n", + "epoch: 3486 train_loss: 0.0019514246378093958\n", + "epoch: 3487 train_loss: 0.0019504314986988902\n", + "epoch: 3488 train_loss: 0.0019494564039632678\n", + "epoch: 3489 train_loss: 0.0019484710646793246\n", + "epoch: 3490 train_loss: 0.001947498065419495\n", + "epoch: 3491 train_loss: 0.00194652215577662\n", + "epoch: 3492 train_loss: 0.0019455429865047336\n", + "epoch: 3493 train_loss: 0.0019445676589384675\n", + "epoch: 3494 train_loss: 0.001943595940247178\n", + "epoch: 3495 train_loss: 0.0019426178187131882\n", + "epoch: 3496 train_loss: 0.0019416525028645992\n", + "epoch: 3497 train_loss: 0.0019406717037782073\n", + "epoch: 3498 train_loss: 0.0019397055730223656\n", + "epoch: 3499 train_loss: 0.0019387392094358802\n", + "epoch: 3500 train_loss: 0.0019377649296075106\n", + "epoch: 3501 train_loss: 0.0019367987988516688\n", + "epoch: 3502 train_loss: 0.0019358262652531266\n", + "epoch: 3503 train_loss: 0.0019348727073520422\n", + "epoch: 3504 train_loss: 0.0019339009886607528\n", + "epoch: 3505 train_loss: 0.0019329374190419912\n", + "epoch: 3506 train_loss: 0.001931968959979713\n", + "epoch: 3507 train_loss: 0.0019310122588649392\n", + "epoch: 3508 train_loss: 0.0019300506683066487\n", + "epoch: 3509 train_loss: 0.0019290923373773694\n", + "epoch: 3510 train_loss: 0.0019281256245449185\n", + "epoch: 3511 train_loss: 0.0019271702039986849\n", + "epoch: 3512 train_loss: 0.0019262159476056695\n", + "epoch: 3513 train_loss: 0.001925262389704585\n", + "epoch: 3514 train_loss: 0.0019243021961301565\n", + "epoch: 3515 train_loss: 0.0019233451457694173\n", + "epoch: 3516 train_loss: 0.001922395545989275\n", + "epoch: 3517 train_loss: 0.0019214474596083164\n", + "epoch: 3518 train_loss: 0.0019204921554774046\n", + "epoch: 3519 train_loss: 0.0019195429049432278\n", + "epoch: 3520 train_loss: 0.0019185858545824885\n", + "epoch: 3521 train_loss: 0.0019176441710442305\n", + "epoch: 3522 train_loss: 0.0019166896818205714\n", + "epoch: 3523 train_loss: 0.0019157440401613712\n", + "epoch: 3524 train_loss: 0.0019148039864376187\n", + "epoch: 3525 train_loss: 0.001913852640427649\n", + "epoch: 3526 train_loss: 0.0019129063002765179\n", + "epoch: 3527 train_loss: 0.0019119603093713522\n", + "epoch: 3528 train_loss: 0.001911026774905622\n", + "epoch: 3529 train_loss: 0.0019100828794762492\n", + "epoch: 3530 train_loss: 0.0019091380527243018\n", + "epoch: 3531 train_loss: 0.001908195554278791\n", + "epoch: 3532 train_loss: 0.001907256431877613\n", + "epoch: 3533 train_loss: 0.0019063258077949286\n", + "epoch: 3534 train_loss: 0.001905387151055038\n", + "epoch: 3535 train_loss: 0.0019044550135731697\n", + "epoch: 3536 train_loss: 0.001903517171740532\n", + "epoch: 3537 train_loss: 0.0019025804940611124\n", + "epoch: 3538 train_loss: 0.0019016426522284746\n", + "epoch: 3539 train_loss: 0.0019007140072062612\n", + "epoch: 3540 train_loss: 0.0018997839652001858\n", + "epoch: 3541 train_loss: 0.0018988547381013632\n", + "epoch: 3542 train_loss: 0.0018979263259097934\n", + "epoch: 3543 train_loss: 0.001897001056931913\n", + "epoch: 3544 train_loss: 0.0018960664747282863\n", + "epoch: 3545 train_loss: 0.0018951401580125093\n", + "epoch: 3546 train_loss: 0.0018942168680951\n", + "epoch: 3547 train_loss: 0.0018932881066575646\n", + "epoch: 3548 train_loss: 0.0018923667958006263\n", + "epoch: 3549 train_loss: 0.0018914443207904696\n", + "epoch: 3550 train_loss: 0.0018905180040746927\n", + "epoch: 3551 train_loss: 0.001889592851512134\n", + "epoch: 3552 train_loss: 0.0018886736361309886\n", + "epoch: 3553 train_loss: 0.0018877653637900949\n", + "epoch: 3554 train_loss: 0.001886848360300064\n", + "epoch: 3555 train_loss: 0.0018859199481084943\n", + "epoch: 3556 train_loss: 0.0018850050400942564\n", + "epoch: 3557 train_loss: 0.0018840900156646967\n", + "epoch: 3558 train_loss: 0.0018831726629287004\n", + "epoch: 3559 train_loss: 0.0018822599668055773\n", + "epoch: 3560 train_loss: 0.0018813422648236156\n", + "epoch: 3561 train_loss: 0.0018804288702085614\n", + "epoch: 3562 train_loss: 0.0018795266514644027\n", + "epoch: 3563 train_loss: 0.0018786087166517973\n", + "epoch: 3564 train_loss: 0.0018777020741254091\n", + "epoch: 3565 train_loss: 0.0018767896108329296\n", + "epoch: 3566 train_loss: 0.001875884598121047\n", + "epoch: 3567 train_loss: 0.0018749780720099807\n", + "epoch: 3568 train_loss: 0.0018740675877779722\n", + "epoch: 3569 train_loss: 0.0018731639720499516\n", + "epoch: 3570 train_loss: 0.0018722628010436893\n", + "epoch: 3571 train_loss: 0.0018713542958721519\n", + "epoch: 3572 train_loss: 0.001870449515990913\n", + "epoch: 3573 train_loss: 0.0018695509061217308\n", + "epoch: 3574 train_loss: 0.001868647988885641\n", + "epoch: 3575 train_loss: 0.0018677458865568042\n", + "epoch: 3576 train_loss: 0.0018668496049940586\n", + "epoch: 3577 train_loss: 0.0018659555353224277\n", + "epoch: 3578 train_loss: 0.0018650562269613147\n", + "epoch: 3579 train_loss: 0.0018641543574631214\n", + "epoch: 3580 train_loss: 0.001863262732513249\n", + "epoch: 3581 train_loss: 0.0018623650539666414\n", + "epoch: 3582 train_loss: 0.0018614681903272867\n", + "epoch: 3583 train_loss: 0.0018605784280225635\n", + "epoch: 3584 train_loss: 0.0018596857553347945\n", + "epoch: 3585 train_loss: 0.0018587990198284388\n", + "epoch: 3586 train_loss: 0.0018579052994027734\n", + "epoch: 3587 train_loss: 0.0018570136744529009\n", + "epoch: 3588 train_loss: 0.0018561272881925106\n", + "epoch: 3589 train_loss: 0.001855238457210362\n", + "epoch: 3590 train_loss: 0.0018543526530265808\n", + "epoch: 3591 train_loss: 0.0018534641712903976\n", + "epoch: 3592 train_loss: 0.0018525816267356277\n", + "epoch: 3593 train_loss: 0.00185169477481395\n", + "epoch: 3594 train_loss: 0.0018508124630898237\n", + "epoch: 3595 train_loss: 0.0018499325960874557\n", + "epoch: 3596 train_loss: 0.0018490453949198127\n", + "epoch: 3597 train_loss: 0.001848155865445733\n", + "epoch: 3598 train_loss: 0.0018472833326086402\n", + "epoch: 3599 train_loss: 0.0018464024178683758\n", + "epoch: 3600 train_loss: 0.0018455222016200423\n", + "epoch: 3601 train_loss: 0.001844647224061191\n", + "epoch: 3602 train_loss: 0.00184377352707088\n", + "epoch: 3603 train_loss: 0.0018428962212055922\n", + "epoch: 3604 train_loss: 0.0018420261330902576\n", + "epoch: 3605 train_loss: 0.00184115138836205\n", + "epoch: 3606 train_loss: 0.0018402771092951298\n", + "epoch: 3607 train_loss: 0.0018393979407846928\n", + "epoch: 3608 train_loss: 0.0018385287839919329\n", + "epoch: 3609 train_loss: 0.0018376583466306329\n", + "epoch: 3610 train_loss: 0.0018367910524830222\n", + "epoch: 3611 train_loss: 0.0018359223613515496\n", + "epoch: 3612 train_loss: 0.0018350493628531694\n", + "epoch: 3613 train_loss: 0.0018341821851208806\n", + "epoch: 3614 train_loss: 0.0018333193147554994\n", + "epoch: 3615 train_loss: 0.0018324513221159577\n", + "epoch: 3616 train_loss: 0.0018315839115530252\n", + "epoch: 3617 train_loss: 0.0018307227874174714\n", + "epoch: 3618 train_loss: 0.0018298545619472861\n", + "epoch: 3619 train_loss: 0.0018289893632754683\n", + "epoch: 3620 train_loss: 0.0018281284719705582\n", + "epoch: 3621 train_loss: 0.0018272703746333718\n", + "epoch: 3622 train_loss: 0.0018264084355905652\n", + "epoch: 3623 train_loss: 0.0018255471950396895\n", + "epoch: 3624 train_loss: 0.001824694685637951\n", + "epoch: 3625 train_loss: 0.0018238280899822712\n", + "epoch: 3626 train_loss: 0.0018229711567983031\n", + "epoch: 3627 train_loss: 0.0018221210921183228\n", + "epoch: 3628 train_loss: 0.0018212612485513091\n", + "epoch: 3629 train_loss: 0.0018204074585810304\n", + "epoch: 3630 train_loss: 0.001819557510316372\n", + "epoch: 3631 train_loss: 0.0018187002278864384\n", + "epoch: 3632 train_loss: 0.0018178450409322977\n", + "epoch: 3633 train_loss: 0.0018170004477724433\n", + "epoch: 3634 train_loss: 0.0018161488696932793\n", + "epoch: 3635 train_loss: 0.0018152989214286208\n", + "epoch: 3636 train_loss: 0.0018144508358091116\n", + "epoch: 3637 train_loss: 0.0018136027501896024\n", + "epoch: 3638 train_loss: 0.001812756760045886\n", + "epoch: 3639 train_loss: 0.0018119113519787788\n", + "epoch: 3640 train_loss: 0.0018110597738996148\n", + "epoch: 3641 train_loss: 0.0018102130852639675\n", + "epoch: 3642 train_loss: 0.0018093811813741922\n", + "epoch: 3643 train_loss: 0.0018085315823554993\n", + "epoch: 3644 train_loss: 0.001807689550332725\n", + "epoch: 3645 train_loss: 0.0018068569479510188\n", + "epoch: 3646 train_loss: 0.0018060094444081187\n", + "epoch: 3647 train_loss: 0.0018051721854135394\n", + "epoch: 3648 train_loss: 0.0018043352756649256\n", + "epoch: 3649 train_loss: 0.0018034938257187605\n", + "epoch: 3650 train_loss: 0.0018026558682322502\n", + "epoch: 3651 train_loss: 0.0018018215196207166\n", + "epoch: 3652 train_loss: 0.0018009881023317575\n", + "epoch: 3653 train_loss: 0.0018001464195549488\n", + "epoch: 3654 train_loss: 0.0017993070650845766\n", + "epoch: 3655 train_loss: 0.0017984752776101232\n", + "epoch: 3656 train_loss: 0.0017976457020267844\n", + "epoch: 3657 train_loss: 0.0017968160100281239\n", + "epoch: 3658 train_loss: 0.0017959888791665435\n", + "epoch: 3659 train_loss: 0.0017951555782929063\n", + "epoch: 3660 train_loss: 0.0017943215789273381\n", + "epoch: 3661 train_loss: 0.001793492934666574\n", + "epoch: 3662 train_loss: 0.0017926719738170505\n", + "epoch: 3663 train_loss: 0.001791841466911137\n", + "epoch: 3664 train_loss: 0.0017910196911543608\n", + "epoch: 3665 train_loss: 0.0017901925602927804\n", + "epoch: 3666 train_loss: 0.001789366826415062\n", + "epoch: 3667 train_loss: 0.0017885449342429638\n", + "epoch: 3668 train_loss: 0.0017877238569781184\n", + "epoch: 3669 train_loss: 0.0017868982395157218\n", + "epoch: 3670 train_loss: 0.0017860764637589455\n", + "epoch: 3671 train_loss: 0.00178525410592556\n", + "epoch: 3672 train_loss: 0.001784435473382473\n", + "epoch: 3673 train_loss: 0.0017836143961176276\n", + "epoch: 3674 train_loss: 0.0017827883129939437\n", + "epoch: 3675 train_loss: 0.0017819753848016262\n", + "epoch: 3676 train_loss: 0.0017811631551012397\n", + "epoch: 3677 train_loss: 0.0017803445225581527\n", + "epoch: 3678 train_loss: 0.0017795248422771692\n", + "epoch: 3679 train_loss: 0.0017787207616493106\n", + "epoch: 3680 train_loss: 0.0017778987530618906\n", + "epoch: 3681 train_loss: 0.0017770883860066533\n", + "epoch: 3682 train_loss: 0.001776275341399014\n", + "epoch: 3683 train_loss: 0.0017754717264324427\n", + "epoch: 3684 train_loss: 0.0017746529774740338\n", + "epoch: 3685 train_loss: 0.0017738406313583255\n", + "epoch: 3686 train_loss: 0.0017730295658111572\n", + "epoch: 3687 train_loss: 0.0017722174525260925\n", + "epoch: 3688 train_loss: 0.001771411276422441\n", + "epoch: 3689 train_loss: 0.0017706062644720078\n", + "epoch: 3690 train_loss: 0.0017698004376143217\n", + "epoch: 3691 train_loss: 0.0017689982196316123\n", + "epoch: 3692 train_loss: 0.0017682000761851668\n", + "epoch: 3693 train_loss: 0.0017673897091299295\n", + "epoch: 3694 train_loss: 0.0017665952909737825\n", + "epoch: 3695 train_loss: 0.0017657860880717635\n", + "epoch: 3696 train_loss: 0.0017649828223511577\n", + "epoch: 3697 train_loss: 0.0017641810700297356\n", + "epoch: 3698 train_loss: 0.0017633771058171988\n", + "epoch: 3699 train_loss: 0.0017625795444473624\n", + "epoch: 3700 train_loss: 0.0017617848934605718\n", + "epoch: 3701 train_loss: 0.001760990940965712\n", + "epoch: 3702 train_loss: 0.0017601937288418412\n", + "epoch: 3703 train_loss: 0.0017593908123672009\n", + "epoch: 3704 train_loss: 0.0017586015164852142\n", + "epoch: 3705 train_loss: 0.0017578089609742165\n", + "epoch: 3706 train_loss: 0.0017570079071447253\n", + "epoch: 3707 train_loss: 0.0017562124412506819\n", + "epoch: 3708 train_loss: 0.0017554197693243623\n", + "epoch: 3709 train_loss: 0.0017546324525028467\n", + "epoch: 3710 train_loss: 0.0017538449028506875\n", + "epoch: 3711 train_loss: 0.0017530441982671618\n", + "epoch: 3712 train_loss: 0.001752260490320623\n", + "epoch: 3713 train_loss: 0.0017514710780233145\n", + "epoch: 3714 train_loss: 0.00175068574026227\n", + "epoch: 3715 train_loss: 0.0017498970264568925\n", + "epoch: 3716 train_loss: 0.00174910353962332\n", + "epoch: 3717 train_loss: 0.0017483177362009883\n", + "epoch: 3718 train_loss: 0.0017475361237302423\n", + "epoch: 3719 train_loss: 0.0017467538127675653\n", + "epoch: 3720 train_loss: 0.0017459766240790486\n", + "epoch: 3721 train_loss: 0.00174519803840667\n", + "epoch: 3722 train_loss: 0.0017444089753553271\n", + "epoch: 3723 train_loss: 0.0017436230555176735\n", + "epoch: 3724 train_loss: 0.001742837019264698\n", + "epoch: 3725 train_loss: 0.0017420635558664799\n", + "epoch: 3726 train_loss: 0.0017412849701941013\n", + "epoch: 3727 train_loss: 0.0017405092949047685\n", + "epoch: 3728 train_loss: 0.0017397342016920447\n", + "epoch: 3729 train_loss: 0.001738947001285851\n", + "epoch: 3730 train_loss: 0.0017381699290126562\n", + "epoch: 3731 train_loss: 0.0017373905284330249\n", + "epoch: 3732 train_loss: 0.001736622303724289\n", + "epoch: 3733 train_loss: 0.0017358469776809216\n", + "epoch: 3734 train_loss: 0.0017350752605125308\n", + "epoch: 3735 train_loss: 0.0017343021463602781\n", + "epoch: 3736 train_loss: 0.001733523909933865\n", + "epoch: 3737 train_loss: 0.0017327553359791636\n", + "epoch: 3738 train_loss: 0.001731992233544588\n", + "epoch: 3739 train_loss: 0.0017312188865616918\n", + "epoch: 3740 train_loss: 0.001730442512780428\n", + "epoch: 3741 train_loss: 0.0017296832520514727\n", + "epoch: 3742 train_loss: 0.001728916191495955\n", + "epoch: 3743 train_loss: 0.0017281502950936556\n", + "epoch: 3744 train_loss: 0.0017273753182962537\n", + "epoch: 3745 train_loss: 0.0017266167560592294\n", + "epoch: 3746 train_loss: 0.00172585085965693\n", + "epoch: 3747 train_loss: 0.001725087407976389\n", + "epoch: 3748 train_loss: 0.0017243197653442621\n", + "epoch: 3749 train_loss: 0.0017235626000910997\n", + "epoch: 3750 train_loss: 0.0017227909993380308\n", + "epoch: 3751 train_loss: 0.001722036162391305\n", + "epoch: 3752 train_loss: 0.0017212689854204655\n", + "epoch: 3753 train_loss: 0.0017205160111188889\n", + "epoch: 3754 train_loss: 0.0017197612905874848\n", + "epoch: 3755 train_loss: 0.0017189928330481052\n", + "epoch: 3756 train_loss: 0.0017182433512061834\n", + "epoch: 3757 train_loss: 0.0017174852546304464\n", + "epoch: 3758 train_loss: 0.0017167284386232495\n", + "epoch: 3759 train_loss: 0.0017159751150757074\n", + "epoch: 3760 train_loss: 0.0017152203945443034\n", + "epoch: 3761 train_loss: 0.0017144635785371065\n", + "epoch: 3762 train_loss: 0.0017137089744210243\n", + "epoch: 3763 train_loss: 0.0017129594925791025\n", + "epoch: 3764 train_loss: 0.001712203724309802\n", + "epoch: 3765 train_loss: 0.0017114549409598112\n", + "epoch: 3766 train_loss: 0.001710701733827591\n", + "epoch: 3767 train_loss: 0.0017099548131227493\n", + "epoch: 3768 train_loss: 0.001709204982034862\n", + "epoch: 3769 train_loss: 0.0017084513092413545\n", + "epoch: 3770 train_loss: 0.0017077082302421331\n", + "epoch: 3771 train_loss: 0.0017069547902792692\n", + "epoch: 3772 train_loss: 0.0017062150873243809\n", + "epoch: 3773 train_loss: 0.0017054679337888956\n", + "epoch: 3774 train_loss: 0.001704722293652594\n", + "epoch: 3775 train_loss: 0.0017039853846654296\n", + "epoch: 3776 train_loss: 0.0017032306641340256\n", + "epoch: 3777 train_loss: 0.0017024974804371595\n", + "epoch: 3778 train_loss: 0.0017017462523654103\n", + "epoch: 3779 train_loss: 0.0017010096926242113\n", + "epoch: 3780 train_loss: 0.0017002663807943463\n", + "epoch: 3781 train_loss: 0.0016995222540572286\n", + "epoch: 3782 train_loss: 0.001698784064501524\n", + "epoch: 3783 train_loss: 0.001698036678135395\n", + "epoch: 3784 train_loss: 0.0016973140882328153\n", + "epoch: 3785 train_loss: 0.0016965680988505483\n", + "epoch: 3786 train_loss: 0.0016958335181698203\n", + "epoch: 3787 train_loss: 0.0016951033612713218\n", + "epoch: 3788 train_loss: 0.0016943694790825248\n", + "epoch: 3789 train_loss: 0.0016936339670792222\n", + "epoch: 3790 train_loss: 0.001692895544692874\n", + "epoch: 3791 train_loss: 0.0016921630594879389\n", + "epoch: 3792 train_loss: 0.0016914280131459236\n", + "epoch: 3793 train_loss: 0.0016907007666304708\n", + "epoch: 3794 train_loss: 0.0016899659531190991\n", + "epoch: 3795 train_loss: 0.0016892255516722798\n", + "epoch: 3796 train_loss: 0.0016885055229067802\n", + "epoch: 3797 train_loss: 0.0016877760645002127\n", + "epoch: 3798 train_loss: 0.0016870490508154035\n", + "epoch: 3799 train_loss: 0.0016863135388121009\n", + "epoch: 3800 train_loss: 0.0016855974681675434\n", + "epoch: 3801 train_loss: 0.0016848662635311484\n", + "epoch: 3802 train_loss: 0.0016841338947415352\n", + "epoch: 3803 train_loss: 0.0016834078123793006\n", + "epoch: 3804 train_loss: 0.0016826813807711005\n", + "epoch: 3805 train_loss: 0.0016819662414491177\n", + "epoch: 3806 train_loss: 0.0016812297981232405\n", + "epoch: 3807 train_loss: 0.0016805115155875683\n", + "epoch: 3808 train_loss: 0.0016797962598502636\n", + "epoch: 3809 train_loss: 0.0016790804220363498\n", + "epoch: 3810 train_loss: 0.001678346423432231\n", + "epoch: 3811 train_loss: 0.001677629305049777\n", + "epoch: 3812 train_loss: 0.0016769120702520013\n", + "epoch: 3813 train_loss: 0.0016761975130066276\n", + "epoch: 3814 train_loss: 0.001675482140854001\n", + "epoch: 3815 train_loss: 0.0016747622285038233\n", + "epoch: 3816 train_loss: 0.001674048020504415\n", + "epoch: 3817 train_loss: 0.0016733314841985703\n", + "epoch: 3818 train_loss: 0.0016726149478927255\n", + "epoch: 3819 train_loss: 0.0016719060949981213\n", + "epoch: 3820 train_loss: 0.0016711869975551963\n", + "epoch: 3821 train_loss: 0.0016704689478501678\n", + "epoch: 3822 train_loss: 0.0016697532264515758\n", + "epoch: 3823 train_loss: 0.001669043325819075\n", + "epoch: 3824 train_loss: 0.0016683312132954597\n", + "epoch: 3825 train_loss: 0.0016676224768161774\n", + "epoch: 3826 train_loss: 0.0016669082688167691\n", + "epoch: 3827 train_loss: 0.0016662044217810035\n", + "epoch: 3828 train_loss: 0.0016654904466122389\n", + "epoch: 3829 train_loss: 0.001664777286350727\n", + "epoch: 3830 train_loss: 0.001664083800278604\n", + "epoch: 3831 train_loss: 0.0016633664490655065\n", + "epoch: 3832 train_loss: 0.0016626659780740738\n", + "epoch: 3833 train_loss: 0.0016619516536593437\n", + "epoch: 3834 train_loss: 0.0016612611943855882\n", + "epoch: 3835 train_loss: 0.0016605376731604338\n", + "epoch: 3836 train_loss: 0.0016598518704995513\n", + "epoch: 3837 train_loss: 0.00165913300588727\n", + "epoch: 3838 train_loss: 0.0016584483673796058\n", + "epoch: 3839 train_loss: 0.0016577363712713122\n", + "epoch: 3840 train_loss: 0.0016570481238886714\n", + "epoch: 3841 train_loss: 0.0016563463723286986\n", + "epoch: 3842 train_loss: 0.0016556431073695421\n", + "epoch: 3843 train_loss: 0.0016549479914829135\n", + "epoch: 3844 train_loss: 0.0016542472876608372\n", + "epoch: 3845 train_loss: 0.0016535508912056684\n", + "epoch: 3846 train_loss: 0.0016528404084965587\n", + "epoch: 3847 train_loss: 0.0016521662473678589\n", + "epoch: 3848 train_loss: 0.001651449827477336\n", + "epoch: 3849 train_loss: 0.0016507694963365793\n", + "epoch: 3850 train_loss: 0.0016500542405992746\n", + "epoch: 3851 train_loss: 0.0016493862494826317\n", + "epoch: 3852 train_loss: 0.0016486598178744316\n", + "epoch: 3853 train_loss: 0.0016480007907375693\n", + "epoch: 3854 train_loss: 0.001647279248572886\n", + "epoch: 3855 train_loss: 0.001646614633500576\n", + "epoch: 3856 train_loss: 0.001645896933041513\n", + "epoch: 3857 train_loss: 0.0016452358104288578\n", + "epoch: 3858 train_loss: 0.0016445138026028872\n", + "epoch: 3859 train_loss: 0.0016438590828329325\n", + "epoch: 3860 train_loss: 0.0016431445255875587\n", + "epoch: 3861 train_loss: 0.0016424794448539615\n", + "epoch: 3862 train_loss: 0.0016417664010077715\n", + "epoch: 3863 train_loss: 0.0016411104006692767\n", + "epoch: 3864 train_loss: 0.0016403950285166502\n", + "epoch: 3865 train_loss: 0.001639737980440259\n", + "epoch: 3866 train_loss: 0.0016390294767916203\n", + "epoch: 3867 train_loss: 0.0016383676556870341\n", + "epoch: 3868 train_loss: 0.0016376613639295101\n", + "epoch: 3869 train_loss: 0.0016370080411434174\n", + "epoch: 3870 train_loss: 0.0016362919704988599\n", + "epoch: 3871 train_loss: 0.0016356431879103184\n", + "epoch: 3872 train_loss: 0.0016349379438906908\n", + "epoch: 3873 train_loss: 0.0016342824092134833\n", + "epoch: 3874 train_loss: 0.0016335769323632121\n", + "epoch: 3875 train_loss: 0.0016329254722222686\n", + "epoch: 3876 train_loss: 0.001632217550650239\n", + "epoch: 3877 train_loss: 0.0016315683024004102\n", + "epoch: 3878 train_loss: 0.0016308659687638283\n", + "epoch: 3879 train_loss: 0.0016302118310704827\n", + "epoch: 3880 train_loss: 0.001629510778002441\n", + "epoch: 3881 train_loss: 0.0016288600163534284\n", + "epoch: 3882 train_loss: 0.001628160709515214\n", + "epoch: 3883 train_loss: 0.0016275134403258562\n", + "epoch: 3884 train_loss: 0.0016268122708424926\n", + "epoch: 3885 train_loss: 0.0016261670971289277\n", + "epoch: 3886 train_loss: 0.0016254717484116554\n", + "epoch: 3887 train_loss: 0.0016248163301497698\n", + "epoch: 3888 train_loss: 0.001624127384275198\n", + "epoch: 3889 train_loss: 0.0016234749928116798\n", + "epoch: 3890 train_loss: 0.0016227863961830735\n", + "epoch: 3891 train_loss: 0.0016221355181187391\n", + "epoch: 3892 train_loss: 0.0016214470379054546\n", + "epoch: 3893 train_loss: 0.0016208048909902573\n", + "epoch: 3894 train_loss: 0.0016201097751036286\n", + "epoch: 3895 train_loss: 0.0016194699564948678\n", + "epoch: 3896 train_loss: 0.0016187737928703427\n", + "epoch: 3897 train_loss: 0.0016181383980438113\n", + "epoch: 3898 train_loss: 0.001617445726878941\n", + "epoch: 3899 train_loss: 0.0016168041620403528\n", + "epoch: 3900 train_loss: 0.0016161180101335049\n", + "epoch: 3901 train_loss: 0.0016154731856659055\n", + "epoch: 3902 train_loss: 0.0016147885471582413\n", + "epoch: 3903 train_loss: 0.0016141468659043312\n", + "epoch: 3904 train_loss: 0.0016134580364450812\n", + "epoch: 3905 train_loss: 0.0016128335846588016\n", + "epoch: 3906 train_loss: 0.0016121419612318277\n", + "epoch: 3907 train_loss: 0.0016115066828206182\n", + "epoch: 3908 train_loss: 0.001610819948837161\n", + "epoch: 3909 train_loss: 0.0016101902583613992\n", + "epoch: 3910 train_loss: 0.0016095117898657918\n", + "epoch: 3911 train_loss: 0.001608867198228836\n", + "epoch: 3912 train_loss: 0.0016082047950476408\n", + "epoch: 3913 train_loss: 0.0016075489111244678\n", + "epoch: 3914 train_loss: 0.0016068863915279508\n", + "epoch: 3915 train_loss: 0.0016062448266893625\n", + "epoch: 3916 train_loss: 0.001605581259354949\n", + "epoch: 3917 train_loss: 0.0016049310797825456\n", + "epoch: 3918 train_loss: 0.001604269491508603\n", + "epoch: 3919 train_loss: 0.001603619079105556\n", + "epoch: 3920 train_loss: 0.0016029700636863708\n", + "epoch: 3921 train_loss: 0.0016023175558075309\n", + "epoch: 3922 train_loss: 0.0016016729641705751\n", + "epoch: 3923 train_loss: 0.0016010169638320804\n", + "epoch: 3924 train_loss: 0.001600373536348343\n", + "epoch: 3925 train_loss: 0.0015997252194210887\n", + "epoch: 3926 train_loss: 0.0015990774845704436\n", + "epoch: 3927 train_loss: 0.0015984210185706615\n", + "epoch: 3928 train_loss: 0.0015977824805304408\n", + "epoch: 3929 train_loss: 0.0015971246175467968\n", + "epoch: 3930 train_loss: 0.0015964932972565293\n", + "epoch: 3931 train_loss: 0.0015958350850269198\n", + "epoch: 3932 train_loss: 0.0015951992245391011\n", + "epoch: 3933 train_loss: 0.0015945462509989738\n", + "epoch: 3934 train_loss: 0.001593914465047419\n", + "epoch: 3935 train_loss: 0.001593259279616177\n", + "epoch: 3936 train_loss: 0.0015926233027130365\n", + "epoch: 3937 train_loss: 0.0015919780125841498\n", + "epoch: 3938 train_loss: 0.0015913343522697687\n", + "epoch: 3939 train_loss: 0.0015907001215964556\n", + "epoch: 3940 train_loss: 0.0015900509897619486\n", + "epoch: 3941 train_loss: 0.0015894186217337847\n", + "epoch: 3942 train_loss: 0.0015887689078226686\n", + "epoch: 3943 train_loss: 0.0015881395665928721\n", + "epoch: 3944 train_loss: 0.0015874996315687895\n", + "epoch: 3945 train_loss: 0.0015868685441091657\n", + "epoch: 3946 train_loss: 0.001586227212101221\n", + "epoch: 3947 train_loss: 0.0015855906531214714\n", + "epoch: 3948 train_loss: 0.001584954559803009\n", + "epoch: 3949 train_loss: 0.0015843185828998685\n", + "epoch: 3950 train_loss: 0.0015836844686418772\n", + "epoch: 3951 train_loss: 0.0015830472111701965\n", + "epoch: 3952 train_loss: 0.0015824141446501017\n", + "epoch: 3953 train_loss: 0.0015817862004041672\n", + "epoch: 3954 train_loss: 0.0015811569755896926\n", + "epoch: 3955 train_loss: 0.0015805180883035064\n", + "epoch: 3956 train_loss: 0.0015798952663317323\n", + "epoch: 3957 train_loss: 0.0015792523045092821\n", + "epoch: 3958 train_loss: 0.0015786306466907263\n", + "epoch: 3959 train_loss: 0.0015779975801706314\n", + "epoch: 3960 train_loss: 0.0015773725463077426\n", + "epoch: 3961 train_loss: 0.0015767381992191076\n", + "epoch: 3962 train_loss: 0.0015761114191263914\n", + "epoch: 3963 train_loss: 0.0015754911582916975\n", + "epoch: 3964 train_loss: 0.001574859139509499\n", + "epoch: 3965 train_loss: 0.0015742386458441615\n", + "epoch: 3966 train_loss: 0.0015736010391265154\n", + "epoch: 3967 train_loss: 0.0015729848528280854\n", + "epoch: 3968 train_loss: 0.001572355511598289\n", + "epoch: 3969 train_loss: 0.0015717362985014915\n", + "epoch: 3970 train_loss: 0.001571108354255557\n", + "epoch: 3971 train_loss: 0.0015704918187111616\n", + "epoch: 3972 train_loss: 0.001569862593896687\n", + "epoch: 3973 train_loss: 0.0015692415181547403\n", + "epoch: 3974 train_loss: 0.0015686211409047246\n", + "epoch: 3975 train_loss: 0.001567996689118445\n", + "epoch: 3976 train_loss: 0.001567382481880486\n", + "epoch: 3977 train_loss: 0.0015667614061385393\n", + "epoch: 3978 train_loss: 0.0015661446377635002\n", + "epoch: 3979 train_loss: 0.0015655213501304388\n", + "epoch: 3980 train_loss: 0.0015649090055376291\n", + "epoch: 3981 train_loss: 0.0015642879297956824\n", + "epoch: 3982 train_loss: 0.0015636710450053215\n", + "epoch: 3983 train_loss: 0.0015630590496584773\n", + "epoch: 3984 train_loss: 0.0015624379739165306\n", + "epoch: 3985 train_loss: 0.001561828306876123\n", + "epoch: 3986 train_loss: 0.0015612104907631874\n", + "epoch: 3987 train_loss: 0.0015605950029566884\n", + "epoch: 3988 train_loss: 0.0015599800972267985\n", + "epoch: 3989 train_loss: 0.0015593686839565635\n", + "epoch: 3990 train_loss: 0.0015587630914524198\n", + "epoch: 3991 train_loss: 0.0015581394545733929\n", + "epoch: 3992 train_loss: 0.0015575326979160309\n", + "epoch: 3993 train_loss: 0.0015569200040772557\n", + "epoch: 3994 train_loss: 0.0015563121996819973\n", + "epoch: 3995 train_loss: 0.001555703696794808\n", + "epoch: 3996 train_loss: 0.001555092167109251\n", + "epoch: 3997 train_loss: 0.0015544852940365672\n", + "epoch: 3998 train_loss: 0.001553876674734056\n", + "epoch: 3999 train_loss: 0.0015532722463831306\n", + "epoch: 4000 train_loss: 0.0015526612987741828\n", + "epoch: 4001 train_loss: 0.001552057801745832\n", + "epoch: 4002 train_loss: 0.001551448367536068\n", + "epoch: 4003 train_loss: 0.001550842309370637\n", + "epoch: 4004 train_loss: 0.001550235552713275\n", + "epoch: 4005 train_loss: 0.0015496338019147515\n", + "epoch: 4006 train_loss: 0.0015490284422412515\n", + "epoch: 4007 train_loss: 0.0015484209870919585\n", + "epoch: 4008 train_loss: 0.0015478216810151935\n", + "epoch: 4009 train_loss: 0.0015472238883376122\n", + "epoch: 4010 train_loss: 0.0015466195764020085\n", + "epoch: 4011 train_loss: 0.001546018524095416\n", + "epoch: 4012 train_loss: 0.0015454149106517434\n", + "epoch: 4013 train_loss: 0.001544814556837082\n", + "epoch: 4014 train_loss: 0.001544213737361133\n", + "epoch: 4015 train_loss: 0.001543615129776299\n", + "epoch: 4016 train_loss: 0.0015430233906954527\n", + "epoch: 4017 train_loss: 0.0015424169832840562\n", + "epoch: 4018 train_loss: 0.0015418293187394738\n", + "epoch: 4019 train_loss: 0.0015412243083119392\n", + "epoch: 4020 train_loss: 0.001540635246783495\n", + "epoch: 4021 train_loss: 0.001540033146739006\n", + "epoch: 4022 train_loss: 0.001539435237646103\n", + "epoch: 4023 train_loss: 0.0015388454776257277\n", + "epoch: 4024 train_loss: 0.0015382455894723535\n", + "epoch: 4025 train_loss: 0.0015376618830487132\n", + "epoch: 4026 train_loss: 0.0015370565233752131\n", + "epoch: 4027 train_loss: 0.0015364724677056074\n", + "epoch: 4028 train_loss: 0.0015358662931248546\n", + "epoch: 4029 train_loss: 0.0015352809568867087\n", + "epoch: 4030 train_loss: 0.0015346892178058624\n", + "epoch: 4031 train_loss: 0.0015341031830757856\n", + "epoch: 4032 train_loss: 0.0015335094649344683\n", + "epoch: 4033 train_loss: 0.0015329238958656788\n", + "epoch: 4034 train_loss: 0.0015323265688493848\n", + "epoch: 4035 train_loss: 0.0015317450743168592\n", + "epoch: 4036 train_loss: 0.001531155314296484\n", + "epoch: 4037 train_loss: 0.0015305668348446488\n", + "epoch: 4038 train_loss: 0.0015299776569008827\n", + "epoch: 4039 train_loss: 0.0015293903416022658\n", + "epoch: 4040 train_loss: 0.001528809079900384\n", + "epoch: 4041 train_loss: 0.0015282148960977793\n", + "epoch: 4042 train_loss: 0.0015276343328878284\n", + "epoch: 4043 train_loss: 0.0015270462026819587\n", + "epoch: 4044 train_loss: 0.0015264651738107204\n", + "epoch: 4045 train_loss: 0.0015258823987096548\n", + "epoch: 4046 train_loss: 0.0015252934535965323\n", + "epoch: 4047 train_loss: 0.0015247189439833164\n", + "epoch: 4048 train_loss: 0.001524126622825861\n", + "epoch: 4049 train_loss: 0.0015235490864142776\n", + "epoch: 4050 train_loss: 0.0015229658456519246\n", + "epoch: 4051 train_loss: 0.0015223878435790539\n", + "epoch: 4052 train_loss: 0.0015218066982924938\n", + "epoch: 4053 train_loss: 0.0015212269499897957\n", + "epoch: 4054 train_loss: 0.0015206476673483849\n", + "epoch: 4055 train_loss: 0.0015200719935819507\n", + "epoch: 4056 train_loss: 0.001519491313956678\n", + "epoch: 4057 train_loss: 0.0015189136611297727\n", + "epoch: 4058 train_loss: 0.001518335659056902\n", + "epoch: 4059 train_loss: 0.0015177590539678931\n", + "epoch: 4060 train_loss: 0.0015171850100159645\n", + "epoch: 4061 train_loss: 0.0015166020020842552\n", + "epoch: 4062 train_loss: 0.0015160238835960627\n", + "epoch: 4063 train_loss: 0.0015154596185311675\n", + "epoch: 4064 train_loss: 0.0015148762613534927\n", + "epoch: 4065 train_loss: 0.0015143108321353793\n", + "epoch: 4066 train_loss: 0.0015137339942157269\n", + "epoch: 4067 train_loss: 0.0015131590189412236\n", + "epoch: 4068 train_loss: 0.001512591727077961\n", + "epoch: 4069 train_loss: 0.0015120173338800669\n", + "epoch: 4070 train_loss: 0.0015114431735128164\n", + "epoch: 4071 train_loss: 0.0015108742518350482\n", + "epoch: 4072 train_loss: 0.0015102984616532922\n", + "epoch: 4073 train_loss: 0.0015097397845238447\n", + "epoch: 4074 train_loss: 0.0015091650420799851\n", + "epoch: 4075 train_loss: 0.0015085914637893438\n", + "epoch: 4076 train_loss: 0.0015080288285389543\n", + "epoch: 4077 train_loss: 0.0015074597904458642\n", + "epoch: 4078 train_loss: 0.0015068904031068087\n", + "epoch: 4079 train_loss: 0.0015063220635056496\n", + "epoch: 4080 train_loss: 0.0015057555865496397\n", + "epoch: 4081 train_loss: 0.0015051905065774918\n", + "epoch: 4082 train_loss: 0.0015046281041577458\n", + "epoch: 4083 train_loss: 0.0015040539437904954\n", + "epoch: 4084 train_loss: 0.0015034964308142662\n", + "epoch: 4085 train_loss: 0.001502933562733233\n", + "epoch: 4086 train_loss: 0.001502364408224821\n", + "epoch: 4087 train_loss: 0.0015018049161881208\n", + "epoch: 4088 train_loss: 0.0015012442599982023\n", + "epoch: 4089 train_loss: 0.0015006763860583305\n", + "epoch: 4090 train_loss: 0.0015001199208199978\n", + "epoch: 4091 train_loss: 0.0014995508827269077\n", + "epoch: 4092 train_loss: 0.0014989912742748857\n", + "epoch: 4093 train_loss: 0.0014984427252784371\n", + "epoch: 4094 train_loss: 0.001497864373959601\n", + "epoch: 4095 train_loss: 0.0014973172219470143\n", + "epoch: 4096 train_loss: 0.0014967581955716014\n", + "epoch: 4097 train_loss: 0.001496187993325293\n", + "epoch: 4098 train_loss: 0.0014956403756514192\n", + "epoch: 4099 train_loss: 0.0014950843760743737\n", + "epoch: 4100 train_loss: 0.0014945159200578928\n", + "epoch: 4101 train_loss: 0.0014939692337065935\n", + "epoch: 4102 train_loss: 0.0014934138162061572\n", + "epoch: 4103 train_loss: 0.0014928547898307443\n", + "epoch: 4104 train_loss: 0.0014923108974471688\n", + "epoch: 4105 train_loss: 0.0014917443040758371\n", + "epoch: 4106 train_loss: 0.00149119074922055\n", + "epoch: 4107 train_loss: 0.0014906312571838498\n", + "epoch: 4108 train_loss: 0.0014900806127116084\n", + "epoch: 4109 train_loss: 0.0014895276399329305\n", + "epoch: 4110 train_loss: 0.0014889751328155398\n", + "epoch: 4111 train_loss: 0.0014884197153151035\n", + "epoch: 4112 train_loss: 0.0014878712827339768\n", + "epoch: 4113 train_loss: 0.0014873233158141375\n", + "epoch: 4114 train_loss: 0.0014867717400193214\n", + "epoch: 4115 train_loss: 0.0014862192329019308\n", + "epoch: 4116 train_loss: 0.0014856724301353097\n", + "epoch: 4117 train_loss: 0.0014851207379251719\n", + "epoch: 4118 train_loss: 0.0014845742844045162\n", + "epoch: 4119 train_loss: 0.0014840258518233895\n", + "epoch: 4120 train_loss: 0.0014834749745205045\n", + "epoch: 4121 train_loss: 0.0014829328283667564\n", + "epoch: 4122 train_loss: 0.0014823819510638714\n", + "epoch: 4123 train_loss: 0.0014818357303738594\n", + "epoch: 4124 train_loss: 0.0014812855515629053\n", + "epoch: 4125 train_loss: 0.0014807438710704446\n", + "epoch: 4126 train_loss: 0.0014801991637796164\n", + "epoch: 4127 train_loss: 0.001479650498367846\n", + "epoch: 4128 train_loss: 0.0014791081193834543\n", + "epoch: 4129 train_loss: 0.0014785673702135682\n", + "epoch: 4130 train_loss: 0.001478017307817936\n", + "epoch: 4131 train_loss: 0.0014774720184504986\n", + "epoch: 4132 train_loss: 0.0014769332483410835\n", + "epoch: 4133 train_loss: 0.0014763881918042898\n", + "epoch: 4134 train_loss: 0.0014758496545255184\n", + "epoch: 4135 train_loss: 0.0014753099530935287\n", + "epoch: 4136 train_loss: 0.0014747687382623553\n", + "epoch: 4137 train_loss: 0.0014742282219231129\n", + "epoch: 4138 train_loss: 0.001473690033890307\n", + "epoch: 4139 train_loss: 0.0014731473056599498\n", + "epoch: 4140 train_loss: 0.0014726095832884312\n", + "epoch: 4141 train_loss: 0.0014720689505338669\n", + "epoch: 4142 train_loss: 0.0014715278521180153\n", + "epoch: 4143 train_loss: 0.0014709996758028865\n", + "epoch: 4144 train_loss: 0.001470463816076517\n", + "epoch: 4145 train_loss: 0.001469917711801827\n", + "epoch: 4146 train_loss: 0.001469382899813354\n", + "epoch: 4147 train_loss: 0.001468844129703939\n", + "epoch: 4148 train_loss: 0.001468308619223535\n", + "epoch: 4149 train_loss: 0.0014677760191261768\n", + "epoch: 4150 train_loss: 0.001467241789214313\n", + "epoch: 4151 train_loss: 0.001466707675717771\n", + "epoch: 4152 train_loss: 0.0014661714667454362\n", + "epoch: 4153 train_loss: 0.0014656434068456292\n", + "epoch: 4154 train_loss: 0.0014651041710749269\n", + "epoch: 4155 train_loss: 0.0014645792543888092\n", + "epoch: 4156 train_loss: 0.0014640401350334287\n", + "epoch: 4157 train_loss: 0.0014635102124884725\n", + "epoch: 4158 train_loss: 0.0014629769138991833\n", + "epoch: 4159 train_loss: 0.001462446409277618\n", + "epoch: 4160 train_loss: 0.0014619213761761785\n", + "epoch: 4161 train_loss: 0.0014613863313570619\n", + "epoch: 4162 train_loss: 0.0014608594356104732\n", + "epoch: 4163 train_loss: 0.0014603284653276205\n", + "epoch: 4164 train_loss: 0.001459795399568975\n", + "epoch: 4165 train_loss: 0.0014592695515602827\n", + "epoch: 4166 train_loss: 0.001458740676753223\n", + "epoch: 4167 train_loss: 0.0014582205330953002\n", + "epoch: 4168 train_loss: 0.0014576850226148963\n", + "epoch: 4169 train_loss: 0.0014571609208360314\n", + "epoch: 4170 train_loss: 0.0014566340250894427\n", + "epoch: 4171 train_loss: 0.0014561059651896358\n", + "epoch: 4172 train_loss: 0.0014555830275639892\n", + "epoch: 4173 train_loss: 0.0014550592750310898\n", + "epoch: 4174 train_loss: 0.001454535173252225\n", + "epoch: 4175 train_loss: 0.0014540107222273946\n", + "epoch: 4176 train_loss: 0.0014534867368638515\n", + "epoch: 4177 train_loss: 0.0014529607724398375\n", + "epoch: 4178 train_loss: 0.0014524401631206274\n", + "epoch: 4179 train_loss: 0.0014519166434183717\n", + "epoch: 4180 train_loss: 0.0014513930073007941\n", + "epoch: 4181 train_loss: 0.0014508687891066074\n", + "epoch: 4182 train_loss: 0.0014503562124446034\n", + "epoch: 4183 train_loss: 0.0014498305972665548\n", + "epoch: 4184 train_loss: 0.0014493076596409082\n", + "epoch: 4185 train_loss: 0.0014487875159829855\n", + "epoch: 4186 train_loss: 0.0014482748229056597\n", + "epoch: 4187 train_loss: 0.0014477535150945187\n", + "epoch: 4188 train_loss: 0.0014472248731181026\n", + "epoch: 4189 train_loss: 0.0014467211440205574\n", + "epoch: 4190 train_loss: 0.0014461976243183017\n", + "epoch: 4191 train_loss: 0.0014456750359386206\n", + "epoch: 4192 train_loss: 0.0014451551251113415\n", + "epoch: 4193 train_loss: 0.001444646855816245\n", + "epoch: 4194 train_loss: 0.0014441357925534248\n", + "epoch: 4195 train_loss: 0.001443608314730227\n", + "epoch: 4196 train_loss: 0.001443099114112556\n", + "epoch: 4197 train_loss: 0.0014425800181925297\n", + "epoch: 4198 train_loss: 0.0014420640654861927\n", + "epoch: 4199 train_loss: 0.0014415486948564649\n", + "epoch: 4200 train_loss: 0.0014410372823476791\n", + "epoch: 4201 train_loss: 0.0014405286638066173\n", + "epoch: 4202 train_loss: 0.0014400045620277524\n", + "epoch: 4203 train_loss: 0.0014394946629181504\n", + "epoch: 4204 train_loss: 0.0014389894204214215\n", + "epoch: 4205 train_loss: 0.0014384720707312226\n", + "epoch: 4206 train_loss: 0.0014379586791619658\n", + "epoch: 4207 train_loss: 0.0014374498277902603\n", + "epoch: 4208 train_loss: 0.0014369344571605325\n", + "epoch: 4209 train_loss: 0.0014364304952323437\n", + "epoch: 4210 train_loss: 0.001435916288755834\n", + "epoch: 4211 train_loss: 0.0014354097656905651\n", + "epoch: 4212 train_loss: 0.0014348942786455154\n", + "epoch: 4213 train_loss: 0.0014343846123665571\n", + "epoch: 4214 train_loss: 0.0014338819310069084\n", + "epoch: 4215 train_loss: 0.001433369587175548\n", + "epoch: 4216 train_loss: 0.0014328674878925085\n", + "epoch: 4217 train_loss: 0.001432355958968401\n", + "epoch: 4218 train_loss: 0.0014318493194878101\n", + "epoch: 4219 train_loss: 0.001431343611329794\n", + "epoch: 4220 train_loss: 0.0014308387180790305\n", + "epoch: 4221 train_loss: 0.0014303285861387849\n", + "epoch: 4222 train_loss: 0.0014298304449766874\n", + "epoch: 4223 train_loss: 0.0014293189160525799\n", + "epoch: 4224 train_loss: 0.0014288180973380804\n", + "epoch: 4225 train_loss: 0.001428308431059122\n", + "epoch: 4226 train_loss: 0.0014278070302680135\n", + "epoch: 4227 train_loss: 0.0014273058623075485\n", + "epoch: 4228 train_loss: 0.0014268000377342105\n", + "epoch: 4229 train_loss: 0.001426295144483447\n", + "epoch: 4230 train_loss: 0.0014257954899221659\n", + "epoch: 4231 train_loss: 0.0014252930413931608\n", + "epoch: 4232 train_loss: 0.0014247968792915344\n", + "epoch: 4233 train_loss: 0.0014242943143472075\n", + "epoch: 4234 train_loss: 0.001423790236003697\n", + "epoch: 4235 train_loss: 0.0014232834801077843\n", + "epoch: 4236 train_loss: 0.0014227816136553884\n", + "epoch: 4237 train_loss: 0.0014222902245819569\n", + "epoch: 4238 train_loss: 0.0014217898715287447\n", + "epoch: 4239 train_loss: 0.0014212828828021884\n", + "epoch: 4240 train_loss: 0.001420786022208631\n", + "epoch: 4241 train_loss: 0.001420294283889234\n", + "epoch: 4242 train_loss: 0.0014197931159287691\n", + "epoch: 4243 train_loss: 0.0014192959060892463\n", + "epoch: 4244 train_loss: 0.0014187913620844483\n", + "epoch: 4245 train_loss: 0.0014183002058416605\n", + "epoch: 4246 train_loss: 0.0014178043929859996\n", + "epoch: 4247 train_loss: 0.0014173077652230859\n", + "epoch: 4248 train_loss: 0.001416813931427896\n", + "epoch: 4249 train_loss: 0.0014163233572617173\n", + "epoch: 4250 train_loss: 0.001415821141563356\n", + "epoch: 4251 train_loss: 0.0014153290539979935\n", + "epoch: 4252 train_loss: 0.0014148338232189417\n", + "epoch: 4253 train_loss: 0.001414333120919764\n", + "epoch: 4254 train_loss: 0.0014138412661850452\n", + "epoch: 4255 train_loss: 0.0014133498771116138\n", + "epoch: 4256 train_loss: 0.0014128596521914005\n", + "epoch: 4257 train_loss: 0.0014123679138720036\n", + "epoch: 4258 train_loss: 0.0014118674444034696\n", + "epoch: 4259 train_loss: 0.0014113766374066472\n", + "epoch: 4260 train_loss: 0.0014108908362686634\n", + "epoch: 4261 train_loss: 0.0014103996800258756\n", + "epoch: 4262 train_loss: 0.0014099054969847202\n", + "epoch: 4263 train_loss: 0.0014094178332015872\n", + "epoch: 4264 train_loss: 0.0014089281903579831\n", + "epoch: 4265 train_loss: 0.0014084359863772988\n", + "epoch: 4266 train_loss: 0.0014079477405175567\n", + "epoch: 4267 train_loss: 0.001407455187290907\n", + "epoch: 4268 train_loss: 0.001406969386152923\n", + "epoch: 4269 train_loss: 0.001406490569934249\n", + "epoch: 4270 train_loss: 0.0014059935929253697\n", + "epoch: 4271 train_loss: 0.0014055013889446855\n", + "epoch: 4272 train_loss: 0.0014050171012058854\n", + "epoch: 4273 train_loss: 0.0014045302523300052\n", + "epoch: 4274 train_loss: 0.001404043985530734\n", + "epoch: 4275 train_loss: 0.0014035605126991868\n", + "epoch: 4276 train_loss: 0.0014030722668394446\n", + "epoch: 4277 train_loss: 0.0014025885611772537\n", + "epoch: 4278 train_loss: 0.0014020947273820639\n", + "epoch: 4279 train_loss: 0.0014016106724739075\n", + "epoch: 4280 train_loss: 0.0014011339517310262\n", + "epoch: 4281 train_loss: 0.0014006511773914099\n", + "epoch: 4282 train_loss: 0.0014001632807776332\n", + "epoch: 4283 train_loss: 0.001399677712470293\n", + "epoch: 4284 train_loss: 0.0013991933083161712\n", + "epoch: 4285 train_loss: 0.0013987133279442787\n", + "epoch: 4286 train_loss: 0.0013982352102175355\n", + "epoch: 4287 train_loss: 0.0013977444032207131\n", + "epoch: 4288 train_loss: 0.0013972606975585222\n", + "epoch: 4289 train_loss: 0.0013967909617349505\n", + "epoch: 4290 train_loss: 0.0013963064411655068\n", + "epoch: 4291 train_loss: 0.0013958162162452936\n", + "epoch: 4292 train_loss: 0.0013953393790870905\n", + "epoch: 4293 train_loss: 0.0013948541600257158\n", + "epoch: 4294 train_loss: 0.0013943759258836508\n", + "epoch: 4295 train_loss: 0.0013939052587375045\n", + "epoch: 4296 train_loss: 0.0013934276066720486\n", + "epoch: 4297 train_loss: 0.0013929426204413176\n", + "epoch: 4298 train_loss: 0.0013924713712185621\n", + "epoch: 4299 train_loss: 0.0013919853372499347\n", + "epoch: 4300 train_loss: 0.0013915093149989843\n", + "epoch: 4301 train_loss: 0.0013910327106714249\n", + "epoch: 4302 train_loss: 0.0013905540108680725\n", + "epoch: 4303 train_loss: 0.0013900783378630877\n", + "epoch: 4304 train_loss: 0.001389593817293644\n", + "epoch: 4305 train_loss: 0.0013891221024096012\n", + "epoch: 4306 train_loss: 0.0013886492233723402\n", + "epoch: 4307 train_loss: 0.001388173084706068\n", + "epoch: 4308 train_loss: 0.0013877050951123238\n", + "epoch: 4309 train_loss: 0.0013872277922928333\n", + "epoch: 4310 train_loss: 0.0013867465313524008\n", + "epoch: 4311 train_loss: 0.0013862709747627378\n", + "epoch: 4312 train_loss: 0.0013857961166650057\n", + "epoch: 4313 train_loss: 0.0013853209093213081\n", + "epoch: 4314 train_loss: 0.0013848482631146908\n", + "epoch: 4315 train_loss: 0.0013843782944604754\n", + "epoch: 4316 train_loss: 0.0013839058810845017\n", + "epoch: 4317 train_loss: 0.0013834332348778844\n", + "epoch: 4318 train_loss: 0.0013829583767801523\n", + "epoch: 4319 train_loss: 0.0013824849156662822\n", + "epoch: 4320 train_loss: 0.0013820172753185034\n", + "epoch: 4321 train_loss: 0.0013815485872328281\n", + "epoch: 4322 train_loss: 0.0013810750097036362\n", + "epoch: 4323 train_loss: 0.001380602247081697\n", + "epoch: 4324 train_loss: 0.0013801365857943892\n", + "epoch: 4325 train_loss: 0.0013796653365716338\n", + "epoch: 4326 train_loss: 0.0013791880337521434\n", + "epoch: 4327 train_loss: 0.0013787217903882265\n", + "epoch: 4328 train_loss: 0.0013782574096694589\n", + "epoch: 4329 train_loss: 0.001377781736664474\n", + "epoch: 4330 train_loss: 0.0013773210812360048\n", + "epoch: 4331 train_loss: 0.0013768513454124331\n", + "epoch: 4332 train_loss: 0.001376379164867103\n", + "epoch: 4333 train_loss: 0.0013759093126282096\n", + "epoch: 4334 train_loss: 0.0013754501705989242\n", + "epoch: 4335 train_loss: 0.0013749815989285707\n", + "epoch: 4336 train_loss: 0.001374504528939724\n", + "epoch: 4337 train_loss: 0.0013740481808781624\n", + "epoch: 4338 train_loss: 0.0013735819375142455\n", + "epoch: 4339 train_loss: 0.0013731182552874088\n", + "epoch: 4340 train_loss: 0.0013726475881412625\n", + "epoch: 4341 train_loss: 0.0013721840223297477\n", + "epoch: 4342 train_loss: 0.001371721038594842\n", + "epoch: 4343 train_loss: 0.0013712518848478794\n", + "epoch: 4344 train_loss: 0.001370789366774261\n", + "epoch: 4345 train_loss: 0.001370325218886137\n", + "epoch: 4346 train_loss: 0.0013698572292923927\n", + "epoch: 4347 train_loss: 0.0013693944783881307\n", + "epoch: 4348 train_loss: 0.0013689405750483274\n", + "epoch: 4349 train_loss: 0.0013684728182852268\n", + "epoch: 4350 train_loss: 0.0013680056435987353\n", + "epoch: 4351 train_loss: 0.0013675496447831392\n", + "epoch: 4352 train_loss: 0.0013670913176611066\n", + "epoch: 4353 train_loss: 0.0013666265876963735\n", + "epoch: 4354 train_loss: 0.0013661615084856749\n", + "epoch: 4355 train_loss: 0.0013657019007951021\n", + "epoch: 4356 train_loss: 0.0013652378693223\n", + "epoch: 4357 train_loss: 0.0013647781452164054\n", + "epoch: 4358 train_loss: 0.0013643191196024418\n", + "epoch: 4359 train_loss: 0.0013638564851135015\n", + "epoch: 4360 train_loss: 0.0013633952476084232\n", + "epoch: 4361 train_loss: 0.001362938666716218\n", + "epoch: 4362 train_loss: 0.0013624794082716107\n", + "epoch: 4363 train_loss: 0.0013620232930406928\n", + "epoch: 4364 train_loss: 0.0013615582138299942\n", + "epoch: 4365 train_loss: 0.0013610983733087778\n", + "epoch: 4366 train_loss: 0.0013606424909085035\n", + "epoch: 4367 train_loss: 0.00136018346529454\n", + "epoch: 4368 train_loss: 0.001359732123091817\n", + "epoch: 4369 train_loss: 0.0013592778705060482\n", + "epoch: 4370 train_loss: 0.0013588139554485679\n", + "epoch: 4371 train_loss: 0.0013583595864474773\n", + "epoch: 4372 train_loss: 0.001357903704047203\n", + "epoch: 4373 train_loss: 0.001357447006739676\n", + "epoch: 4374 train_loss: 0.001356991590000689\n", + "epoch: 4375 train_loss: 0.0013565333792939782\n", + "epoch: 4376 train_loss: 0.0013560765655711293\n", + "epoch: 4377 train_loss: 0.0013556298799812794\n", + "epoch: 4378 train_loss: 0.0013551745796576142\n", + "epoch: 4379 train_loss: 0.0013547197449952364\n", + "epoch: 4380 train_loss: 0.0013542675878852606\n", + "epoch: 4381 train_loss: 0.0013538136845454574\n", + "epoch: 4382 train_loss: 0.001353355124592781\n", + "epoch: 4383 train_loss: 0.001352903083898127\n", + "epoch: 4384 train_loss: 0.0013524496462196112\n", + "epoch: 4385 train_loss: 0.0013519983040168881\n", + "epoch: 4386 train_loss: 0.0013515392784029245\n", + "epoch: 4387 train_loss: 0.0013510853750631213\n", + "epoch: 4388 train_loss: 0.0013506374089047313\n", + "epoch: 4389 train_loss: 0.0013501833891496062\n", + "epoch: 4390 train_loss: 0.0013497332111001015\n", + "epoch: 4391 train_loss: 0.001349284895695746\n", + "epoch: 4392 train_loss: 0.0013488347176462412\n", + "epoch: 4393 train_loss: 0.00134838477242738\n", + "epoch: 4394 train_loss: 0.0013479291228577495\n", + "epoch: 4395 train_loss: 0.001347479410469532\n", + "epoch: 4396 train_loss: 0.0013470308622345328\n", + "epoch: 4397 train_loss: 0.001346581382676959\n", + "epoch: 4398 train_loss: 0.0013461230555549264\n", + "epoch: 4399 train_loss: 0.0013456788146868348\n", + "epoch: 4400 train_loss: 0.0013452291022986174\n", + "epoch: 4401 train_loss: 0.0013447878882288933\n", + "epoch: 4402 train_loss: 0.0013443420175462961\n", + "epoch: 4403 train_loss: 0.001343887997791171\n", + "epoch: 4404 train_loss: 0.001343437354080379\n", + "epoch: 4405 train_loss: 0.0013429929967969656\n", + "epoch: 4406 train_loss: 0.0013425442157313228\n", + "epoch: 4407 train_loss: 0.0013420942705124617\n", + "epoch: 4408 train_loss: 0.0013416502624750137\n", + "epoch: 4409 train_loss: 0.0013412053231149912\n", + "epoch: 4410 train_loss: 0.0013407575897872448\n", + "epoch: 4411 train_loss: 0.0013403079938143492\n", + "epoch: 4412 train_loss: 0.0013398634037002921\n", + "epoch: 4413 train_loss: 0.0013394191628322005\n", + "epoch: 4414 train_loss: 0.0013389792293310165\n", + "epoch: 4415 train_loss: 0.0013385290512815118\n", + "epoch: 4416 train_loss: 0.001338080852292478\n", + "epoch: 4417 train_loss: 0.001337638357654214\n", + "epoch: 4418 train_loss: 0.0013371946988627315\n", + "epoch: 4419 train_loss: 0.0013367518549785018\n", + "epoch: 4420 train_loss: 0.001336307148449123\n", + "epoch: 4421 train_loss: 0.0013358648866415024\n", + "epoch: 4422 train_loss: 0.0013354262337088585\n", + "epoch: 4423 train_loss: 0.0013349787332117558\n", + "epoch: 4424 train_loss: 0.0013345303013920784\n", + "epoch: 4425 train_loss: 0.0013340889709070325\n", + "epoch: 4426 train_loss: 0.001333647407591343\n", + "epoch: 4427 train_loss: 0.0013332035159692168\n", + "epoch: 4428 train_loss: 0.0013327612541615963\n", + "epoch: 4429 train_loss: 0.0013323226012289524\n", + "epoch: 4430 train_loss: 0.0013318746350705624\n", + "epoch: 4431 train_loss: 0.0013314341194927692\n", + "epoch: 4432 train_loss: 0.0013309919741004705\n", + "epoch: 4433 train_loss: 0.0013305515749379992\n", + "epoch: 4434 train_loss: 0.0013301119906827807\n", + "epoch: 4435 train_loss: 0.0013296742690727115\n", + "epoch: 4436 train_loss: 0.0013292342191562057\n", + "epoch: 4437 train_loss: 0.0013287912588566542\n", + "epoch: 4438 train_loss: 0.0013283552834764123\n", + "epoch: 4439 train_loss: 0.00132791418582201\n", + "epoch: 4440 train_loss: 0.001327477628365159\n", + "epoch: 4441 train_loss: 0.0013270362978801131\n", + "epoch: 4442 train_loss: 0.0013265963643789291\n", + "epoch: 4443 train_loss: 0.0013261596905067563\n", + "epoch: 4444 train_loss: 0.0013257204554975033\n", + "epoch: 4445 train_loss: 0.0013252836652100086\n", + "epoch: 4446 train_loss: 0.001324844197370112\n", + "epoch: 4447 train_loss: 0.0013244067085906863\n", + "epoch: 4448 train_loss: 0.0013239673571661115\n", + "epoch: 4449 train_loss: 0.001323534408584237\n", + "epoch: 4450 train_loss: 0.0013230927288532257\n", + "epoch: 4451 train_loss: 0.0013226555893197656\n", + "epoch: 4452 train_loss: 0.0013222172856330872\n", + "epoch: 4453 train_loss: 0.0013217816594988108\n", + "epoch: 4454 train_loss: 0.0013213437050580978\n", + "epoch: 4455 train_loss: 0.0013209071476012468\n", + "epoch: 4456 train_loss: 0.0013204750139266253\n", + "epoch: 4457 train_loss: 0.0013200395042076707\n", + "epoch: 4458 train_loss: 0.0013196032959967852\n", + "epoch: 4459 train_loss: 0.0013191689504310489\n", + "epoch: 4460 train_loss: 0.0013187357690185308\n", + "epoch: 4461 train_loss: 0.0013182985130697489\n", + "epoch: 4462 train_loss: 0.0013178630033507943\n", + "epoch: 4463 train_loss: 0.0013174278428778052\n", + "epoch: 4464 train_loss: 0.0013169910525903106\n", + "epoch: 4465 train_loss: 0.0013165613636374474\n", + "epoch: 4466 train_loss: 0.001316127716563642\n", + "epoch: 4467 train_loss: 0.0013156989589333534\n", + "epoch: 4468 train_loss: 0.0013152648461982608\n", + "epoch: 4469 train_loss: 0.00131483213044703\n", + "epoch: 4470 train_loss: 0.0013143965043127537\n", + "epoch: 4471 train_loss: 0.0013139649527147412\n", + "epoch: 4472 train_loss: 0.0013135322369635105\n", + "epoch: 4473 train_loss: 0.0013130957959219813\n", + "epoch: 4474 train_loss: 0.0013126645935699344\n", + "epoch: 4475 train_loss: 0.0013122360687702894\n", + "epoch: 4476 train_loss: 0.0013118044007569551\n", + "epoch: 4477 train_loss: 0.0013113748282194138\n", + "epoch: 4478 train_loss: 0.001310938037931919\n", + "epoch: 4479 train_loss: 0.001310507650487125\n", + "epoch: 4480 train_loss: 0.0013100772630423307\n", + "epoch: 4481 train_loss: 0.0013096450129523873\n", + "epoch: 4482 train_loss: 0.001309219398535788\n", + "epoch: 4483 train_loss: 0.0013087863335385919\n", + "epoch: 4484 train_loss: 0.0013083574594929814\n", + "epoch: 4485 train_loss: 0.0013079281197860837\n", + "epoch: 4486 train_loss: 0.001307499478571117\n", + "epoch: 4487 train_loss: 0.001307072234340012\n", + "epoch: 4488 train_loss: 0.0013066441752016544\n", + "epoch: 4489 train_loss: 0.0013062093639746308\n", + "epoch: 4490 train_loss: 0.0013057802570983768\n", + "epoch: 4491 train_loss: 0.0013053513830527663\n", + "epoch: 4492 train_loss: 0.0013049275148659945\n", + "epoch: 4493 train_loss: 0.0013044975930824876\n", + "epoch: 4494 train_loss: 0.0013040723279118538\n", + "epoch: 4495 train_loss: 0.001303638331592083\n", + "epoch: 4496 train_loss: 0.0013032089918851852\n", + "epoch: 4497 train_loss: 0.0013027816312387586\n", + "epoch: 4498 train_loss: 0.0013023593928664923\n", + "epoch: 4499 train_loss: 0.0013019299367442727\n", + "epoch: 4500 train_loss: 0.0013015054864808917\n", + "epoch: 4501 train_loss: 0.0013010753318667412\n", + "epoch: 4502 train_loss: 0.0013006475055590272\n", + "epoch: 4503 train_loss: 0.0013002215418964624\n", + "epoch: 4504 train_loss: 0.0012997982557862997\n", + "epoch: 4505 train_loss: 0.0012993665877729654\n", + "epoch: 4506 train_loss: 0.0012989459792152047\n", + "epoch: 4507 train_loss: 0.0012985188513994217\n", + "epoch: 4508 train_loss: 0.001298089511692524\n", + "epoch: 4509 train_loss: 0.001297662267461419\n", + "epoch: 4510 train_loss: 0.001297241309657693\n", + "epoch: 4511 train_loss: 0.001296820119023323\n", + "epoch: 4512 train_loss: 0.0012963959015905857\n", + "epoch: 4513 train_loss: 0.0012959637679159641\n", + "epoch: 4514 train_loss: 0.0012955369893461466\n", + "epoch: 4515 train_loss: 0.0012951133539900184\n", + "epoch: 4516 train_loss: 0.001294691115617752\n", + "epoch: 4517 train_loss: 0.0012942709727212787\n", + "epoch: 4518 train_loss: 0.0012938437284901738\n", + "epoch: 4519 train_loss: 0.0012934195110574365\n", + "epoch: 4520 train_loss: 0.001292996690608561\n", + "epoch: 4521 train_loss: 0.0012925807386636734\n", + "epoch: 4522 train_loss: 0.0012921547750011086\n", + "epoch: 4523 train_loss: 0.001291728112846613\n", + "epoch: 4524 train_loss: 0.001291309716179967\n", + "epoch: 4525 train_loss: 0.0012908806093037128\n", + "epoch: 4526 train_loss: 0.0012904637260362506\n", + "epoch: 4527 train_loss: 0.0012900404399260879\n", + "epoch: 4528 train_loss: 0.0012896164553239942\n", + "epoch: 4529 train_loss: 0.001289196196012199\n", + "epoch: 4530 train_loss: 0.001288770348764956\n", + "epoch: 4531 train_loss: 0.0012883535819128156\n", + "epoch: 4532 train_loss: 0.0012879307614639401\n", + "epoch: 4533 train_loss: 0.0012875106185674667\n", + "epoch: 4534 train_loss: 0.0012870935024693608\n", + "epoch: 4535 train_loss: 0.001286669634282589\n", + "epoch: 4536 train_loss: 0.0012862465810030699\n", + "epoch: 4537 train_loss: 0.0012858236441388726\n", + "epoch: 4538 train_loss: 0.0012854001251980662\n", + "epoch: 4539 train_loss: 0.0012849827762693167\n", + "epoch: 4540 train_loss: 0.001284562167711556\n", + "epoch: 4541 train_loss: 0.0012841434217989445\n", + "epoch: 4542 train_loss: 0.0012837251415476203\n", + "epoch: 4543 train_loss: 0.0012833061628043652\n", + "epoch: 4544 train_loss: 0.0012828815961256623\n", + "epoch: 4545 train_loss: 0.0012824616860598326\n", + "epoch: 4546 train_loss: 0.001282047713175416\n", + "epoch: 4547 train_loss: 0.001281627337448299\n", + "epoch: 4548 train_loss: 0.0012812070781365037\n", + "epoch: 4549 train_loss: 0.0012807929888367653\n", + "epoch: 4550 train_loss: 0.0012803756399080157\n", + "epoch: 4551 train_loss: 0.0012799578253179789\n", + "epoch: 4552 train_loss: 0.001279528602026403\n", + "epoch: 4553 train_loss: 0.0012791136978194118\n", + "epoch: 4554 train_loss: 0.001278699841350317\n", + "epoch: 4555 train_loss: 0.0012782784178853035\n", + "epoch: 4556 train_loss: 0.001277858973480761\n", + "epoch: 4557 train_loss: 0.0012774445349350572\n", + "epoch: 4558 train_loss: 0.0012770263710990548\n", + "epoch: 4559 train_loss: 0.001276615308597684\n", + "epoch: 4560 train_loss: 0.001276190741918981\n", + "epoch: 4561 train_loss: 0.001275775139220059\n", + "epoch: 4562 train_loss: 0.0012753577902913094\n", + "epoch: 4563 train_loss: 0.0012749425368383527\n", + "epoch: 4564 train_loss: 0.0012745282147079706\n", + "epoch: 4565 train_loss: 0.0012741124955937266\n", + "epoch: 4566 train_loss: 0.0012737005017697811\n", + "epoch: 4567 train_loss: 0.0012732824543491006\n", + "epoch: 4568 train_loss: 0.0012728612637147307\n", + "epoch: 4569 train_loss: 0.001272446010261774\n", + "epoch: 4570 train_loss: 0.0012720280792564154\n", + "epoch: 4571 train_loss: 0.0012716155033558607\n", + "epoch: 4572 train_loss: 0.0012712001334875822\n", + "epoch: 4573 train_loss: 0.0012707835994660854\n", + "epoch: 4574 train_loss: 0.0012703671818599105\n", + "epoch: 4575 train_loss: 0.0012699579820036888\n", + "epoch: 4576 train_loss: 0.001269543543457985\n", + "epoch: 4577 train_loss: 0.0012691209558397532\n", + "epoch: 4578 train_loss: 0.0012687089620158076\n", + "epoch: 4579 train_loss: 0.0012682966189458966\n", + "epoch: 4580 train_loss: 0.0012678804341703653\n", + "epoch: 4581 train_loss: 0.0012674644822254777\n", + "epoch: 4582 train_loss: 0.0012670515570789576\n", + "epoch: 4583 train_loss: 0.0012666353723034263\n", + "epoch: 4584 train_loss: 0.0012662241933867335\n", + "epoch: 4585 train_loss: 0.001265815575607121\n", + "epoch: 4586 train_loss: 0.0012654007878154516\n", + "epoch: 4587 train_loss: 0.0012649792479351163\n", + "epoch: 4588 train_loss: 0.0012645712122321129\n", + "epoch: 4589 train_loss: 0.0012641549110412598\n", + "epoch: 4590 train_loss: 0.0012637402396649122\n", + "epoch: 4591 train_loss: 0.0012633271981030703\n", + "epoch: 4592 train_loss: 0.001262914389371872\n", + "epoch: 4593 train_loss: 0.001262506004422903\n", + "epoch: 4594 train_loss: 0.0012620962224900723\n", + "epoch: 4595 train_loss: 0.0012616843450814486\n", + "epoch: 4596 train_loss: 0.0012612714199349284\n", + "epoch: 4597 train_loss: 0.0012608554679900408\n", + "epoch: 4598 train_loss: 0.0012604465009644628\n", + "epoch: 4599 train_loss: 0.0012600308982655406\n", + "epoch: 4600 train_loss: 0.0012596253072842956\n", + "epoch: 4601 train_loss: 0.0012592128477990627\n", + "epoch: 4602 train_loss: 0.001258798292838037\n", + "epoch: 4603 train_loss: 0.0012583851348608732\n", + "epoch: 4604 train_loss: 0.0012579759350046515\n", + "epoch: 4605 train_loss: 0.001257561962120235\n", + "epoch: 4606 train_loss: 0.0012571488041430712\n", + "epoch: 4607 train_loss: 0.0012567398371174932\n", + "epoch: 4608 train_loss: 0.0012563271448016167\n", + "epoch: 4609 train_loss: 0.0012559207389131188\n", + "epoch: 4610 train_loss: 0.001255515031516552\n", + "epoch: 4611 train_loss: 0.00125510327052325\n", + "epoch: 4612 train_loss: 0.0012546859215945005\n", + "epoch: 4613 train_loss: 0.00125427870079875\n", + "epoch: 4614 train_loss: 0.0012538675218820572\n", + "epoch: 4615 train_loss: 0.0012534592533484101\n", + "epoch: 4616 train_loss: 0.0012530472595244646\n", + "epoch: 4617 train_loss: 0.001252636662684381\n", + "epoch: 4618 train_loss: 0.0012522304896265268\n", + "epoch: 4619 train_loss: 0.0012518222210928798\n", + "epoch: 4620 train_loss: 0.0012514122063294053\n", + "epoch: 4621 train_loss: 0.0012509989319369197\n", + "epoch: 4622 train_loss: 0.0012505899649113417\n", + "epoch: 4623 train_loss: 0.0012501802993938327\n", + "epoch: 4624 train_loss: 0.0012497700517997146\n", + "epoch: 4625 train_loss: 0.0012493596877902746\n", + "epoch: 4626 train_loss: 0.0012489522341638803\n", + "epoch: 4627 train_loss: 0.0012485423358157277\n", + "epoch: 4628 train_loss: 0.0012481355806812644\n", + "epoch: 4629 train_loss: 0.0012477337149903178\n", + "epoch: 4630 train_loss: 0.0012473189271986485\n", + "epoch: 4631 train_loss: 0.001246912986971438\n", + "epoch: 4632 train_loss: 0.001246499945409596\n", + "epoch: 4633 train_loss: 0.0012460917932912707\n", + "epoch: 4634 train_loss: 0.0012456842232495546\n", + "epoch: 4635 train_loss: 0.0012452786322683096\n", + "epoch: 4636 train_loss: 0.0012448737397789955\n", + "epoch: 4637 train_loss: 0.0012444640742614865\n", + "epoch: 4638 train_loss: 0.001244054059498012\n", + "epoch: 4639 train_loss: 0.001243645790964365\n", + "epoch: 4640 train_loss: 0.0012432398507371545\n", + "epoch: 4641 train_loss: 0.0012428335612639785\n", + "epoch: 4642 train_loss: 0.001242426922544837\n", + "epoch: 4643 train_loss: 0.0012420188868418336\n", + "epoch: 4644 train_loss: 0.0012416158569976687\n", + "epoch: 4645 train_loss: 0.0012412099167704582\n", + "epoch: 4646 train_loss: 0.0012407938484102488\n", + "epoch: 4647 train_loss: 0.0012403919827193022\n", + "epoch: 4648 train_loss: 0.0012399795232340693\n", + "epoch: 4649 train_loss: 0.0012395698577165604\n", + "epoch: 4650 train_loss: 0.0012391662457957864\n", + "epoch: 4651 train_loss: 0.001238761586137116\n", + "epoch: 4652 train_loss: 0.0012383598368614912\n", + "epoch: 4653 train_loss: 0.0012379533145576715\n", + "epoch: 4654 train_loss: 0.0012375423684716225\n", + "epoch: 4655 train_loss: 0.00123713375069201\n", + "epoch: 4656 train_loss: 0.0012367276940494776\n", + "epoch: 4657 train_loss: 0.0012363253626972437\n", + "epoch: 4658 train_loss: 0.0012359214015305042\n", + "epoch: 4659 train_loss: 0.0012355190701782703\n", + "epoch: 4660 train_loss: 0.0012351138284429908\n", + "epoch: 4661 train_loss: 0.001234700670465827\n", + "epoch: 4662 train_loss: 0.0012342954287305474\n", + "epoch: 4663 train_loss: 0.0012338891392573714\n", + "epoch: 4664 train_loss: 0.001233489136211574\n", + "epoch: 4665 train_loss: 0.001233082264661789\n", + "epoch: 4666 train_loss: 0.0012326808646321297\n", + "epoch: 4667 train_loss: 0.0012322713155299425\n", + "epoch: 4668 train_loss: 0.0012318675871938467\n", + "epoch: 4669 train_loss: 0.0012314607156440616\n", + "epoch: 4670 train_loss: 0.0012310573365539312\n", + "epoch: 4671 train_loss: 0.0012306489516049623\n", + "epoch: 4672 train_loss: 0.0012302465038374066\n", + "epoch: 4673 train_loss: 0.0012298420770093799\n", + "epoch: 4674 train_loss: 0.001229434390552342\n", + "epoch: 4675 train_loss: 0.0012290304293856025\n", + "epoch: 4676 train_loss: 0.0012286243727430701\n", + "epoch: 4677 train_loss: 0.0012282200623303652\n", + "epoch: 4678 train_loss: 0.0012278208741918206\n", + "epoch: 4679 train_loss: 0.0012274158652871847\n", + "epoch: 4680 train_loss: 0.0012270091101527214\n", + "epoch: 4681 train_loss: 0.0012266043340787292\n", + "epoch: 4682 train_loss: 0.0012261983938515186\n", + "epoch: 4683 train_loss: 0.00122579385060817\n", + "epoch: 4684 train_loss: 0.001225390238687396\n", + "epoch: 4685 train_loss: 0.0012249897699803114\n", + "epoch: 4686 train_loss: 0.0012245849939063191\n", + "epoch: 4687 train_loss: 0.0012241783551871777\n", + "epoch: 4688 train_loss: 0.0012237777700647712\n", + "epoch: 4689 train_loss: 0.0012233764864504337\n", + "epoch: 4690 train_loss: 0.0012229722924530506\n", + "epoch: 4691 train_loss: 0.0012225644895806909\n", + "epoch: 4692 train_loss: 0.0012221665820106864\n", + "epoch: 4693 train_loss: 0.0012217648327350616\n", + "epoch: 4694 train_loss: 0.001221350859850645\n", + "epoch: 4695 train_loss: 0.0012209496926516294\n", + "epoch: 4696 train_loss: 0.0012205502716824412\n", + "epoch: 4697 train_loss: 0.0012201456120237708\n", + "epoch: 4698 train_loss: 0.0012197467731311917\n", + "epoch: 4699 train_loss: 0.001219340250827372\n", + "epoch: 4700 train_loss: 0.0012189383851364255\n", + "epoch: 4701 train_loss: 0.0012185320956632495\n", + "epoch: 4702 train_loss: 0.0012181316269561648\n", + "epoch: 4703 train_loss: 0.0012177340686321259\n", + "epoch: 4704 train_loss: 0.0012173287104815245\n", + "epoch: 4705 train_loss: 0.0012169266119599342\n", + "epoch: 4706 train_loss: 0.0012165210209786892\n", + "epoch: 4707 train_loss: 0.0012161200866103172\n", + "epoch: 4708 train_loss: 0.0012157169403508306\n", + "epoch: 4709 train_loss: 0.0012153139105066657\n", + "epoch: 4710 train_loss: 0.0012149116955697536\n", + "epoch: 4711 train_loss: 0.0012145043583586812\n", + "epoch: 4712 train_loss: 0.0012141072656959295\n", + "epoch: 4713 train_loss: 0.0012137051671743393\n", + "epoch: 4714 train_loss: 0.0012132995761930943\n", + "epoch: 4715 train_loss: 0.0012129005044698715\n", + "epoch: 4716 train_loss: 0.0012125050416216254\n", + "epoch: 4717 train_loss: 0.00121209432836622\n", + "epoch: 4718 train_loss: 0.0012116936268284917\n", + "epoch: 4719 train_loss: 0.0012112914118915796\n", + "epoch: 4720 train_loss: 0.0012108887312933803\n", + "epoch: 4721 train_loss: 0.0012104901252314448\n", + "epoch: 4722 train_loss: 0.0012100867461413145\n", + "epoch: 4723 train_loss: 0.0012096806894987822\n", + "epoch: 4724 train_loss: 0.001209283247590065\n", + "epoch: 4725 train_loss: 0.0012088834773749113\n", + "epoch: 4726 train_loss: 0.0012084817280992866\n", + "epoch: 4727 train_loss: 0.0012080783490091562\n", + "epoch: 4728 train_loss: 0.0012076765997335315\n", + "epoch: 4729 train_loss: 0.0012072755489498377\n", + "epoch: 4730 train_loss: 0.0012068751966580749\n", + "epoch: 4731 train_loss: 0.0012064729817211628\n", + "epoch: 4732 train_loss: 0.0012060734443366528\n", + "epoch: 4733 train_loss: 0.0012056739069521427\n", + "epoch: 4734 train_loss: 0.0012052699457854033\n", + "epoch: 4735 train_loss: 0.0012048695934936404\n", + "epoch: 4736 train_loss: 0.0012044665636494756\n", + "epoch: 4737 train_loss: 0.001204075408168137\n", + "epoch: 4738 train_loss: 0.0012036722619086504\n", + "epoch: 4739 train_loss: 0.0012032700469717383\n", + "epoch: 4740 train_loss: 0.0012028634082525969\n", + "epoch: 4741 train_loss: 0.001202467828989029\n", + "epoch: 4742 train_loss: 0.0012020634021610022\n", + "epoch: 4743 train_loss: 0.001201661303639412\n", + "epoch: 4744 train_loss: 0.0012012608349323273\n", + "epoch: 4745 train_loss: 0.0012008666526526213\n", + "epoch: 4746 train_loss: 0.0012004617601633072\n", + "epoch: 4747 train_loss: 0.0012000639690086246\n", + "epoch: 4748 train_loss: 0.0011996565153822303\n", + "epoch: 4749 train_loss: 0.001199259189888835\n", + "epoch: 4750 train_loss: 0.0011988612823188305\n", + "epoch: 4751 train_loss: 0.0011984577868133783\n", + "epoch: 4752 train_loss: 0.0011980534764006734\n", + "epoch: 4753 train_loss: 0.0011976542882621288\n", + "epoch: 4754 train_loss: 0.0011972545180469751\n", + "epoch: 4755 train_loss: 0.001196851721033454\n", + "epoch: 4756 train_loss: 0.0011964531149715185\n", + "epoch: 4757 train_loss: 0.0011960514821112156\n", + "epoch: 4758 train_loss: 0.0011956533417105675\n", + "epoch: 4759 train_loss: 0.0011952536879107356\n", + "epoch: 4760 train_loss: 0.0011948486790060997\n", + "epoch: 4761 train_loss: 0.0011944543803110719\n", + "epoch: 4762 train_loss: 0.0011940497206524014\n", + "epoch: 4763 train_loss: 0.0011936459923163056\n", + "epoch: 4764 train_loss: 0.0011932505294680595\n", + "epoch: 4765 train_loss: 0.0011928564636036754\n", + "epoch: 4766 train_loss: 0.0011924501741304994\n", + "epoch: 4767 train_loss: 0.0011920492397621274\n", + "epoch: 4768 train_loss: 0.0011916470248252153\n", + "epoch: 4769 train_loss: 0.0011912507470697165\n", + "epoch: 4770 train_loss: 0.0011908503947779536\n", + "epoch: 4771 train_loss: 0.0011904467828571796\n", + "epoch: 4772 train_loss: 0.0011900485260412097\n", + "epoch: 4773 train_loss: 0.0011896493379026651\n", + "epoch: 4774 train_loss: 0.0011892513139173388\n", + "epoch: 4775 train_loss: 0.0011888478184118867\n", + "epoch: 4776 train_loss: 0.0011884485138580203\n", + "epoch: 4777 train_loss: 0.0011880461825057864\n", + "epoch: 4778 train_loss: 0.0011876446660608053\n", + "epoch: 4779 train_loss: 0.0011872479226440191\n", + "epoch: 4780 train_loss: 0.0011868481524288654\n", + "epoch: 4781 train_loss: 0.00118644826579839\n", + "epoch: 4782 train_loss: 0.0011860431404784322\n", + "epoch: 4783 train_loss: 0.0011856533819809556\n", + "epoch: 4784 train_loss: 0.0011852503521367908\n", + "epoch: 4785 train_loss: 0.0011848465073853731\n", + "epoch: 4786 train_loss: 0.0011844488326460123\n", + "epoch: 4787 train_loss: 0.001184046734124422\n", + "epoch: 4788 train_loss: 0.0011836463818326592\n", + "epoch: 4789 train_loss: 0.0011832495220005512\n", + "epoch: 4790 train_loss: 0.0011828492861241102\n", + "epoch: 4791 train_loss: 0.0011824497487396002\n", + "epoch: 4792 train_loss: 0.00118204765021801\n", + "epoch: 4793 train_loss: 0.0011816478800028563\n", + "epoch: 4794 train_loss: 0.0011812517186626792\n", + "epoch: 4795 train_loss: 0.0011808474082499743\n", + "epoch: 4796 train_loss: 0.0011804484529420733\n", + "epoch: 4797 train_loss: 0.001180051825940609\n", + "epoch: 4798 train_loss: 0.001179646234959364\n", + "epoch: 4799 train_loss: 0.00117925473023206\n", + "epoch: 4800 train_loss: 0.001178851118311286\n", + "epoch: 4801 train_loss: 0.0011784509988501668\n", + "epoch: 4802 train_loss: 0.0011780518107116222\n", + "epoch: 4803 train_loss: 0.0011776520404964685\n", + "epoch: 4804 train_loss: 0.001177248079329729\n", + "epoch: 4805 train_loss: 0.0011768515687435865\n", + "epoch: 4806 train_loss: 0.0011764526134356856\n", + "epoch: 4807 train_loss: 0.00117605016566813\n", + "epoch: 4808 train_loss: 0.0011756548192352057\n", + "epoch: 4809 train_loss: 0.001175250974483788\n", + "epoch: 4810 train_loss: 0.001174850738607347\n", + "epoch: 4811 train_loss: 0.001174452481791377\n", + "epoch: 4812 train_loss: 0.0011740541085600853\n", + "epoch: 4813 train_loss: 0.0011736550368368626\n", + "epoch: 4814 train_loss: 0.0011732486309483647\n", + "epoch: 4815 train_loss: 0.00117284816224128\n", + "epoch: 4816 train_loss: 0.0011724518844857812\n", + "epoch: 4817 train_loss: 0.0011720552574843168\n", + "epoch: 4818 train_loss: 0.0011716566514223814\n", + "epoch: 4819 train_loss: 0.0011712528066709638\n", + "epoch: 4820 train_loss: 0.0011708546662703156\n", + "epoch: 4821 train_loss: 0.0011704518692567945\n", + "epoch: 4822 train_loss: 0.0011700578033924103\n", + "epoch: 4823 train_loss: 0.0011696524452418089\n", + "epoch: 4824 train_loss: 0.0011692519765347242\n", + "epoch: 4825 train_loss: 0.0011688547674566507\n", + "epoch: 4826 train_loss: 0.001168451621197164\n", + "epoch: 4827 train_loss: 0.0011680492898449302\n", + "epoch: 4828 train_loss: 0.0011676601134240627\n", + "epoch: 4829 train_loss: 0.0011672561522573233\n", + "epoch: 4830 train_loss: 0.0011668590595945716\n", + "epoch: 4831 train_loss: 0.0011664553312584758\n", + "epoch: 4832 train_loss: 0.0011660540476441383\n", + "epoch: 4833 train_loss: 0.0011656545102596283\n", + "epoch: 4834 train_loss: 0.0011652496177703142\n", + "epoch: 4835 train_loss: 0.0011648522922769189\n", + "epoch: 4836 train_loss: 0.001164451241493225\n", + "epoch: 4837 train_loss: 0.0011640551965683699\n", + "epoch: 4838 train_loss: 0.001163656823337078\n", + "epoch: 4839 train_loss: 0.0011632509995251894\n", + "epoch: 4840 train_loss: 0.001162855769507587\n", + "epoch: 4841 train_loss: 0.0011624526232481003\n", + "epoch: 4842 train_loss: 0.0011620544828474522\n", + "epoch: 4843 train_loss: 0.0011616579722613096\n", + "epoch: 4844 train_loss: 0.0011612528469413519\n", + "epoch: 4845 train_loss: 0.0011608513304963708\n", + "epoch: 4846 train_loss: 0.0011604506289586425\n", + "epoch: 4847 train_loss: 0.0011600570287555456\n", + "epoch: 4848 train_loss: 0.001159656560048461\n", + "epoch: 4849 train_loss: 0.0011592512018978596\n", + "epoch: 4850 train_loss: 0.0011588523630052805\n", + "epoch: 4851 train_loss: 0.001158452476374805\n", + "epoch: 4852 train_loss: 0.0011580541031435132\n", + "epoch: 4853 train_loss: 0.0011576522374525666\n", + "epoch: 4854 train_loss: 0.0011572511866688728\n", + "epoch: 4855 train_loss: 0.0011568513000383973\n", + "epoch: 4856 train_loss: 0.001156449900008738\n", + "epoch: 4857 train_loss: 0.001156049664132297\n", + "epoch: 4858 train_loss: 0.001155648846179247\n", + "epoch: 4859 train_loss: 0.001155250589363277\n", + "epoch: 4860 train_loss: 0.00115484360139817\n", + "epoch: 4861 train_loss: 0.001154450699687004\n", + "epoch: 4862 train_loss: 0.0011540497653186321\n", + "epoch: 4863 train_loss: 0.0011536439415067434\n", + "epoch: 4864 train_loss: 0.0011532437056303024\n", + "epoch: 4865 train_loss: 0.0011528441682457924\n", + "epoch: 4866 train_loss: 0.001152448239736259\n", + "epoch: 4867 train_loss: 0.0011520463740453124\n", + "epoch: 4868 train_loss: 0.0011516434606164694\n", + "epoch: 4869 train_loss: 0.0011512483470141888\n", + "epoch: 4870 train_loss: 0.0011508445022627711\n", + "epoch: 4871 train_loss: 0.0011504428694024682\n", + "epoch: 4872 train_loss: 0.001150040770880878\n", + "epoch: 4873 train_loss: 0.0011496399529278278\n", + "epoch: 4874 train_loss: 0.0011492384364828467\n", + "epoch: 4875 train_loss: 0.0011488377349451184\n", + "epoch: 4876 train_loss: 0.0011484392452985048\n", + "epoch: 4877 train_loss: 0.0011480359826236963\n", + "epoch: 4878 train_loss: 0.0011476351646706462\n", + "epoch: 4879 train_loss: 0.0011472352780401707\n", + "epoch: 4880 train_loss: 0.001146832131780684\n", + "epoch: 4881 train_loss: 0.00114642851985991\n", + "epoch: 4882 train_loss: 0.001146031660027802\n", + "epoch: 4883 train_loss: 0.0011456370120868087\n", + "epoch: 4884 train_loss: 0.0011452272301539779\n", + "epoch: 4885 train_loss: 0.0011448274599388242\n", + "epoch: 4886 train_loss: 0.0011444269912317395\n", + "epoch: 4887 train_loss: 0.0011440273374319077\n", + "epoch: 4888 train_loss: 0.0011436173226684332\n", + "epoch: 4889 train_loss: 0.0011432206956669688\n", + "epoch: 4890 train_loss: 0.001142822322435677\n", + "epoch: 4891 train_loss: 0.001142419409006834\n", + "epoch: 4892 train_loss: 0.0011420196387916803\n", + "epoch: 4893 train_loss: 0.0011416132329031825\n", + "epoch: 4894 train_loss: 0.001141211250796914\n", + "epoch: 4895 train_loss: 0.0011408091522753239\n", + "epoch: 4896 train_loss: 0.0011404096148908138\n", + "epoch: 4897 train_loss: 0.0011400090297684073\n", + "epoch: 4898 train_loss: 0.0011396071640774608\n", + "epoch: 4899 train_loss: 0.0011392044834792614\n", + "epoch: 4900 train_loss: 0.0011388063430786133\n", + "epoch: 4901 train_loss: 0.0011384005192667246\n", + "epoch: 4902 train_loss: 0.0011379950447008014\n", + "epoch: 4903 train_loss: 0.0011375979520380497\n", + "epoch: 4904 train_loss: 0.0011371946893632412\n", + "epoch: 4905 train_loss: 0.0011367985280230641\n", + "epoch: 4906 train_loss: 0.0011363954981788993\n", + "epoch: 4907 train_loss: 0.0011359886266291142\n", + "epoch: 4908 train_loss: 0.0011355861788615584\n", + "epoch: 4909 train_loss: 0.0011351826833561063\n", + "epoch: 4910 train_loss: 0.0011347810504958034\n", + "epoch: 4911 train_loss: 0.0011343754595145583\n", + "epoch: 4912 train_loss: 0.0011339810444042087\n", + "epoch: 4913 train_loss: 0.0011335777817294002\n", + "epoch: 4914 train_loss: 0.0011331714922562242\n", + "epoch: 4915 train_loss: 0.001132763340137899\n", + "epoch: 4916 train_loss: 0.00113236578181386\n", + "epoch: 4917 train_loss: 0.0011319649638608098\n", + "epoch: 4918 train_loss: 0.0011315642623230815\n", + "epoch: 4919 train_loss: 0.0011311601847410202\n", + "epoch: 4920 train_loss: 0.0011307519162073731\n", + "epoch: 4921 train_loss: 0.0011303549399599433\n", + "epoch: 4922 train_loss: 0.0011299483012408018\n", + "epoch: 4923 train_loss: 0.0011295485310256481\n", + "epoch: 4924 train_loss: 0.0011291414266452193\n", + "epoch: 4925 train_loss: 0.0011287417728453875\n", + "epoch: 4926 train_loss: 0.0011283386265859008\n", + "epoch: 4927 train_loss: 0.001127928146161139\n", + "epoch: 4928 train_loss: 0.001127530005760491\n", + "epoch: 4929 train_loss: 0.0011271224357187748\n", + "epoch: 4930 train_loss: 0.0011267208028584719\n", + "epoch: 4931 train_loss: 0.0011263207998126745\n", + "epoch: 4932 train_loss: 0.0011259190505370498\n", + "epoch: 4933 train_loss: 0.0011255134595558047\n", + "epoch: 4934 train_loss: 0.0011251079849898815\n", + "epoch: 4935 train_loss: 0.001124709378927946\n", + "epoch: 4936 train_loss: 0.0011242988985031843\n", + "epoch: 4937 train_loss: 0.0011238958686590195\n", + "epoch: 4938 train_loss: 0.0011234956327825785\n", + "epoch: 4939 train_loss: 0.0011230874806642532\n", + "epoch: 4940 train_loss: 0.0011226851493120193\n", + "epoch: 4941 train_loss: 0.001122281770221889\n", + "epoch: 4942 train_loss: 0.001121872803196311\n", + "epoch: 4943 train_loss: 0.0011214733822271228\n", + "epoch: 4944 train_loss: 0.0011210695374757051\n", + "epoch: 4945 train_loss: 0.0011206665076315403\n", + "epoch: 4946 train_loss: 0.0011202608002349734\n", + "epoch: 4947 train_loss: 0.0011198557913303375\n", + "epoch: 4948 train_loss: 0.001119452528655529\n", + "epoch: 4949 train_loss: 0.0011190454242751002\n", + "epoch: 4950 train_loss: 0.001118640648201108\n", + "epoch: 4951 train_loss: 0.0011182354064658284\n", + "epoch: 4952 train_loss: 0.0011178303975611925\n", + "epoch: 4953 train_loss: 0.001117425854317844\n", + "epoch: 4954 train_loss: 0.0011170251527801156\n", + "epoch: 4955 train_loss: 0.0011166151380166411\n", + "epoch: 4956 train_loss: 0.0011162118753418326\n", + "epoch: 4957 train_loss: 0.0011158089619129896\n", + "epoch: 4958 train_loss: 0.001115406514145434\n", + "epoch: 4959 train_loss: 0.0011149971978738904\n", + "epoch: 4960 train_loss: 0.001114593935199082\n", + "epoch: 4961 train_loss: 0.0011141874128952622\n", + "epoch: 4962 train_loss: 0.0011137784458696842\n", + "epoch: 4963 train_loss: 0.0011133784428238869\n", + "epoch: 4964 train_loss: 0.0011129663325846195\n", + "epoch: 4965 train_loss: 0.001112564466893673\n", + "epoch: 4966 train_loss: 0.0011121558491140604\n", + "epoch: 4967 train_loss: 0.0011117540998384356\n", + "epoch: 4968 train_loss: 0.001111343502998352\n", + "epoch: 4969 train_loss: 0.0011109374463558197\n", + "epoch: 4970 train_loss: 0.001110530341975391\n", + "epoch: 4971 train_loss: 0.0011101268464699388\n", + "epoch: 4972 train_loss: 0.001109726377762854\n", + "epoch: 4973 train_loss: 0.001109318109229207\n", + "epoch: 4974 train_loss: 0.001108907745219767\n", + "epoch: 4975 train_loss: 0.0011084999423474073\n", + "epoch: 4976 train_loss: 0.0011080974945798516\n", + "epoch: 4977 train_loss: 0.0011076908558607101\n", + "epoch: 4978 train_loss: 0.0011072831694036722\n", + "epoch: 4979 train_loss: 0.0011068760650232434\n", + "epoch: 4980 train_loss: 0.00110646802932024\n", + "epoch: 4981 train_loss: 0.001106061739847064\n", + "epoch: 4982 train_loss: 0.001105655450373888\n", + "epoch: 4983 train_loss: 0.001105247181840241\n", + "epoch: 4984 train_loss: 0.0011048403102904558\n", + "epoch: 4985 train_loss: 0.0011044300626963377\n", + "epoch: 4986 train_loss: 0.0011040287790820003\n", + "epoch: 4987 train_loss: 0.0011036164360120893\n", + "epoch: 4988 train_loss: 0.001103209680877626\n", + "epoch: 4989 train_loss: 0.0011028047883883119\n", + "epoch: 4990 train_loss: 0.0011023968691006303\n", + "epoch: 4991 train_loss: 0.0011019869707524776\n", + "epoch: 4992 train_loss: 0.0011015835916623473\n", + "epoch: 4993 train_loss: 0.0011011708993464708\n", + "epoch: 4994 train_loss: 0.001100764493457973\n", + "epoch: 4995 train_loss: 0.0011003536637872458\n", + "epoch: 4996 train_loss: 0.0010999529622495174\n", + "epoch: 4997 train_loss: 0.00109953829087317\n", + "epoch: 4998 train_loss: 0.0010991368908435106\n", + "epoch: 4999 train_loss: 0.0010987207060679793\n", + "epoch: 5000 train_loss: 0.0010983162792399526\n", + "epoch: 5001 train_loss: 0.0010979053331539035\n", + "epoch: 5002 train_loss: 0.0010974964825436473\n", + "epoch: 5003 train_loss: 0.001097089727409184\n", + "epoch: 5004 train_loss: 0.0010966801783069968\n", + "epoch: 5005 train_loss: 0.0010962685337290168\n", + "epoch: 5006 train_loss: 0.0010958645725622773\n", + "epoch: 5007 train_loss: 0.0010954526951536536\n", + "epoch: 5008 train_loss: 0.0010950460564345121\n", + "epoch: 5009 train_loss: 0.001094634411856532\n", + "epoch: 5010 train_loss: 0.0010942243970930576\n", + "epoch: 5011 train_loss: 0.0010938179912045598\n", + "epoch: 5012 train_loss: 0.0010934090241789818\n", + "epoch: 5013 train_loss: 0.0010929957497864962\n", + "epoch: 5014 train_loss: 0.001092585502192378\n", + "epoch: 5015 train_loss: 0.0010921759530901909\n", + "epoch: 5016 train_loss: 0.001091770245693624\n", + "epoch: 5017 train_loss: 0.0010913549922406673\n", + "epoch: 5018 train_loss: 0.0010909474221989512\n", + "epoch: 5019 train_loss: 0.0010905367089435458\n", + "epoch: 5020 train_loss: 0.001090128906071186\n", + "epoch: 5021 train_loss: 0.0010897156316787004\n", + "epoch: 5022 train_loss: 0.0010893053840845823\n", + "epoch: 5023 train_loss: 0.001088891876861453\n", + "epoch: 5024 train_loss: 0.001088484888896346\n", + "epoch: 5025 train_loss: 0.0010880742920562625\n", + "epoch: 5026 train_loss: 0.0010876640444621444\n", + "epoch: 5027 train_loss: 0.0010872490238398314\n", + "epoch: 5028 train_loss: 0.001086842967197299\n", + "epoch: 5029 train_loss: 0.0010864296928048134\n", + "epoch: 5030 train_loss: 0.0010860174661502242\n", + "epoch: 5031 train_loss: 0.0010856109438464046\n", + "epoch: 5032 train_loss: 0.001085194991901517\n", + "epoch: 5033 train_loss: 0.0010847849771380424\n", + "epoch: 5034 train_loss: 0.0010843692580237985\n", + "epoch: 5035 train_loss: 0.0010839648311957717\n", + "epoch: 5036 train_loss: 0.001083548180758953\n", + "epoch: 5037 train_loss: 0.0010831370018422604\n", + "epoch: 5038 train_loss: 0.0010827259393408895\n", + "epoch: 5039 train_loss: 0.0010823168558999896\n", + "epoch: 5040 train_loss: 0.0010818971786648035\n", + "epoch: 5041 train_loss: 0.0010814890265464783\n", + "epoch: 5042 train_loss: 0.001081074238754809\n", + "epoch: 5043 train_loss: 0.001080665155313909\n", + "epoch: 5044 train_loss: 0.0010802485048770905\n", + "epoch: 5045 train_loss: 0.0010798408184200525\n", + "epoch: 5046 train_loss: 0.0010794248664751649\n", + "epoch: 5047 train_loss: 0.001079015200957656\n", + "epoch: 5048 train_loss: 0.0010786057682707906\n", + "epoch: 5049 train_loss: 0.0010781836463138461\n", + "epoch: 5050 train_loss: 0.001077774679288268\n", + "epoch: 5051 train_loss: 0.0010773595422506332\n", + "epoch: 5052 train_loss: 0.0010769483633339405\n", + "epoch: 5053 train_loss: 0.0010765334591269493\n", + "epoch: 5054 train_loss: 0.0010761180892586708\n", + "epoch: 5055 train_loss: 0.0010757052805274725\n", + "epoch: 5056 train_loss: 0.0010752948001027107\n", + "epoch: 5057 train_loss: 0.0010748739587143064\n", + "epoch: 5058 train_loss: 0.00107446382753551\n", + "epoch: 5059 train_loss: 0.0010740496218204498\n", + "epoch: 5060 train_loss: 0.0010736355325207114\n", + "epoch: 5061 train_loss: 0.001073222141712904\n", + "epoch: 5062 train_loss: 0.0010728032793849707\n", + "epoch: 5063 train_loss: 0.001072395360097289\n", + "epoch: 5064 train_loss: 0.0010719767305999994\n", + "epoch: 5065 train_loss: 0.0010715634562075138\n", + "epoch: 5066 train_loss: 0.0010711479699239135\n", + "epoch: 5067 train_loss: 0.0010707346955314279\n", + "epoch: 5068 train_loss: 0.00107031490188092\n", + "epoch: 5069 train_loss: 0.001069903140887618\n", + "epoch: 5070 train_loss: 0.0010694855591282248\n", + "epoch: 5071 train_loss: 0.0010690747294574976\n", + "epoch: 5072 train_loss: 0.0010686541208997369\n", + "epoch: 5073 train_loss: 0.0010682391002774239\n", + "epoch: 5074 train_loss: 0.0010678236139938235\n", + "epoch: 5075 train_loss: 0.0010674091754481196\n", + "epoch: 5076 train_loss: 0.0010669899638742208\n", + "epoch: 5077 train_loss: 0.0010665807640179992\n", + "epoch: 5078 train_loss: 0.001066161203198135\n", + "epoch: 5079 train_loss: 0.0010657430393621325\n", + "epoch: 5080 train_loss: 0.0010653280187398195\n", + "epoch: 5081 train_loss: 0.0010649120667949319\n", + "epoch: 5082 train_loss: 0.0010644948342815042\n", + "epoch: 5083 train_loss: 0.001064074574969709\n", + "epoch: 5084 train_loss: 0.0010636575752869248\n", + "epoch: 5085 train_loss: 0.0010632448829710484\n", + "epoch: 5086 train_loss: 0.0010628284653648734\n", + "epoch: 5087 train_loss: 0.0010624111164361238\n", + "epoch: 5088 train_loss: 0.001061986549757421\n", + "epoch: 5089 train_loss: 0.001061572227627039\n", + "epoch: 5090 train_loss: 0.0010611581383273005\n", + "epoch: 5091 train_loss: 0.0010607389267534018\n", + "epoch: 5092 train_loss: 0.0010603193659335375\n", + "epoch: 5093 train_loss: 0.0010599076049402356\n", + "epoch: 5094 train_loss: 0.0010594818741083145\n", + "epoch: 5095 train_loss: 0.0010590709280222654\n", + "epoch: 5096 train_loss: 0.0010586471762508154\n", + "epoch: 5097 train_loss: 0.0010582322720438242\n", + "epoch: 5098 train_loss: 0.0010578141082078218\n", + "epoch: 5099 train_loss: 0.0010573938488960266\n", + "epoch: 5100 train_loss: 0.0010569699807092547\n", + "epoch: 5101 train_loss: 0.0010565551929175854\n", + "epoch: 5102 train_loss: 0.0010561355156823993\n", + "epoch: 5103 train_loss: 0.001055715256370604\n", + "epoch: 5104 train_loss: 0.0010553015163168311\n", + "epoch: 5105 train_loss: 0.0010548812570050359\n", + "epoch: 5106 train_loss: 0.0010544577380642295\n", + "epoch: 5107 train_loss: 0.0010540401563048363\n", + "epoch: 5108 train_loss: 0.0010536202462390065\n", + "epoch: 5109 train_loss: 0.001053200801834464\n", + "epoch: 5110 train_loss: 0.0010527808917686343\n", + "epoch: 5111 train_loss: 0.0010523551609367132\n", + "epoch: 5112 train_loss: 0.0010519439820200205\n", + "epoch: 5113 train_loss: 0.0010515180183574557\n", + "epoch: 5114 train_loss: 0.0010511006694287062\n", + "epoch: 5115 train_loss: 0.0010506806429475546\n", + "epoch: 5116 train_loss: 0.001050258637405932\n", + "epoch: 5117 train_loss: 0.0010498345363885164\n", + "epoch: 5118 train_loss: 0.0010494139278307557\n", + "epoch: 5119 train_loss: 0.0010489955311641097\n", + "epoch: 5120 train_loss: 0.0010485758539289236\n", + "epoch: 5121 train_loss: 0.0010481529170647264\n", + "epoch: 5122 train_loss: 0.0010477283503860235\n", + "epoch: 5123 train_loss: 0.0010473112342879176\n", + "epoch: 5124 train_loss: 0.0010468849213793874\n", + "epoch: 5125 train_loss: 0.0010464662918820977\n", + "epoch: 5126 train_loss: 0.0010460435878485441\n", + "epoch: 5127 train_loss: 0.0010456251911818981\n", + "epoch: 5128 train_loss: 0.0010451986454427242\n", + "epoch: 5129 train_loss: 0.0010447788517922163\n", + "epoch: 5130 train_loss: 0.001044351840391755\n", + "epoch: 5131 train_loss: 0.0010439316974952817\n", + "epoch: 5132 train_loss: 0.0010435107396915555\n", + "epoch: 5133 train_loss: 0.0010430864058434963\n", + "epoch: 5134 train_loss: 0.0010426645167171955\n", + "epoch: 5135 train_loss: 0.0010422392515465617\n", + "epoch: 5136 train_loss: 0.0010418192250654101\n", + "epoch: 5137 train_loss: 0.0010413951240479946\n", + "epoch: 5138 train_loss: 0.0010409706737846136\n", + "epoch: 5139 train_loss: 0.0010405489010736346\n", + "epoch: 5140 train_loss: 0.0010401232866570354\n", + "epoch: 5141 train_loss: 0.001039697090163827\n", + "epoch: 5142 train_loss: 0.00103927799500525\n", + "epoch: 5143 train_loss: 0.001038848189637065\n", + "epoch: 5144 train_loss: 0.0010384211782366037\n", + "epoch: 5145 train_loss: 0.001038002665154636\n", + "epoch: 5146 train_loss: 0.0010375773999840021\n", + "epoch: 5147 train_loss: 0.0010371527168899775\n", + "epoch: 5148 train_loss: 0.0010367338545620441\n", + "epoch: 5149 train_loss: 0.0010363031178712845\n", + "epoch: 5150 train_loss: 0.0010358778527006507\n", + "epoch: 5151 train_loss: 0.001035453868098557\n", + "epoch: 5152 train_loss: 0.0010350288357585669\n", + "epoch: 5153 train_loss: 0.0010346065973863006\n", + "epoch: 5154 train_loss: 0.001034175860695541\n", + "epoch: 5155 train_loss: 0.0010337518760934472\n", + "epoch: 5156 train_loss: 0.0010333277750760317\n", + "epoch: 5157 train_loss: 0.0010328945936635137\n", + "epoch: 5158 train_loss: 0.0010324704926460981\n", + "epoch: 5159 train_loss: 0.0010320473229512572\n", + "epoch: 5160 train_loss: 0.001031621010042727\n", + "epoch: 5161 train_loss: 0.0010311939986422658\n", + "epoch: 5162 train_loss: 0.0010307672200724483\n", + "epoch: 5163 train_loss: 0.0010303411399945617\n", + "epoch: 5164 train_loss: 0.0010299105197191238\n", + "epoch: 5165 train_loss: 0.0010294838575646281\n", + "epoch: 5166 train_loss: 0.0010290635982528329\n", + "epoch: 5167 train_loss: 0.0010286298347637057\n", + "epoch: 5168 train_loss: 0.0010282073635607958\n", + "epoch: 5169 train_loss: 0.0010277756955474615\n", + "epoch: 5170 train_loss: 0.0010273504303768277\n", + "epoch: 5171 train_loss: 0.0010269231861457229\n", + "epoch: 5172 train_loss: 0.0010264964075759053\n", + "epoch: 5173 train_loss: 0.0010260683484375477\n", + "epoch: 5174 train_loss: 0.0010256378445774317\n", + "epoch: 5175 train_loss: 0.001025205827318132\n", + "epoch: 5176 train_loss: 0.001024778001010418\n", + "epoch: 5177 train_loss: 0.0010243566939607263\n", + "epoch: 5178 train_loss: 0.0010239221155643463\n", + "epoch: 5179 train_loss: 0.001023490447551012\n", + "epoch: 5180 train_loss: 0.0010230678599327803\n", + "epoch: 5181 train_loss: 0.0010226333979517221\n", + "epoch: 5182 train_loss: 0.0010222078999504447\n", + "epoch: 5183 train_loss: 0.0010217757662758231\n", + "epoch: 5184 train_loss: 0.0010213478235527873\n", + "epoch: 5185 train_loss: 0.001020916155539453\n", + "epoch: 5186 train_loss: 0.0010204865830019116\n", + "epoch: 5187 train_loss: 0.0010200577089563012\n", + "epoch: 5188 train_loss: 0.0010196308139711618\n", + "epoch: 5189 train_loss: 0.0010191912297159433\n", + "epoch: 5190 train_loss: 0.0010187699226662517\n", + "epoch: 5191 train_loss: 0.0010183334816247225\n", + "epoch: 5192 train_loss: 0.001017906004562974\n", + "epoch: 5193 train_loss: 0.0010174717754125595\n", + "epoch: 5194 train_loss: 0.0010170434834435582\n", + "epoch: 5195 train_loss: 0.0010166133288294077\n", + "epoch: 5196 train_loss: 0.0010161797981709242\n", + "epoch: 5197 train_loss: 0.0010157497599720955\n", + "epoch: 5198 train_loss: 0.0010153177427127957\n", + "epoch: 5199 train_loss: 0.0010148856090381742\n", + "epoch: 5200 train_loss: 0.00101445522159338\n", + "epoch: 5201 train_loss: 0.0010140208760276437\n", + "epoch: 5202 train_loss: 0.0010135882766917348\n", + "epoch: 5203 train_loss: 0.0010131570743396878\n", + "epoch: 5204 train_loss: 0.0010127245914191008\n", + "epoch: 5205 train_loss: 0.0010122900130227208\n", + "epoch: 5206 train_loss: 0.0010118595091626048\n", + "epoch: 5207 train_loss: 0.0010114287724718451\n", + "epoch: 5208 train_loss: 0.001010993611998856\n", + "epoch: 5209 train_loss: 0.001010560430586338\n", + "epoch: 5210 train_loss: 0.0010101266670972109\n", + "epoch: 5211 train_loss: 0.0010096949990838766\n", + "epoch: 5212 train_loss: 0.0010092610027641058\n", + "epoch: 5213 train_loss: 0.0010088254930451512\n", + "epoch: 5214 train_loss: 0.0010083894012495875\n", + "epoch: 5215 train_loss: 0.001007957966066897\n", + "epoch: 5216 train_loss: 0.0010075231548398733\n", + "epoch: 5217 train_loss: 0.0010070899734273553\n", + "epoch: 5218 train_loss: 0.001006655627861619\n", + "epoch: 5219 train_loss: 0.0010062226792797446\n", + "epoch: 5220 train_loss: 0.0010057840263471007\n", + "epoch: 5221 train_loss: 0.0010053510777652264\n", + "epoch: 5222 train_loss: 0.00100491545163095\n", + "epoch: 5223 train_loss: 0.0010044799419119954\n", + "epoch: 5224 train_loss: 0.0010040458291769028\n", + "epoch: 5225 train_loss: 0.0010036103194579482\n", + "epoch: 5226 train_loss: 0.0010031722486019135\n", + "epoch: 5227 train_loss: 0.0010027395328506827\n", + "epoch: 5228 train_loss: 0.00100230285897851\n", + "epoch: 5229 train_loss: 0.0010018630418926477\n", + "epoch: 5230 train_loss: 0.0010014311410486698\n", + "epoch: 5231 train_loss: 0.0010009976103901863\n", + "epoch: 5232 train_loss: 0.0010005541844293475\n", + "epoch: 5233 train_loss: 0.0010001204209402204\n", + "epoch: 5234 train_loss: 0.0009996816515922546\n", + "epoch: 5235 train_loss: 0.0009992481209337711\n", + "epoch: 5236 train_loss: 0.00099881028290838\n", + "epoch: 5237 train_loss: 0.000998376403003931\n", + "epoch: 5238 train_loss: 0.0009979323949664831\n", + "epoch: 5239 train_loss: 0.000997497234493494\n", + "epoch: 5240 train_loss: 0.0009970568353310227\n", + "epoch: 5241 train_loss: 0.0009966205107048154\n", + "epoch: 5242 train_loss: 0.000996182905510068\n", + "epoch: 5243 train_loss: 0.0009957458823919296\n", + "epoch: 5244 train_loss: 0.0009953081607818604\n", + "epoch: 5245 train_loss: 0.0009948646184056997\n", + "epoch: 5246 train_loss: 0.00099443388171494\n", + "epoch: 5247 train_loss: 0.0009939931333065033\n", + "epoch: 5248 train_loss: 0.0009935531998053193\n", + "epoch: 5249 train_loss: 0.000993114779703319\n", + "epoch: 5250 train_loss: 0.000992670888081193\n", + "epoch: 5251 train_loss: 0.0009922379394993186\n", + "epoch: 5252 train_loss: 0.000991792418062687\n", + "epoch: 5253 train_loss: 0.0009913559770211577\n", + "epoch: 5254 train_loss: 0.0009909142972901464\n", + "epoch: 5255 train_loss: 0.0009904769249260426\n", + "epoch: 5256 train_loss: 0.0009900347795337439\n", + "epoch: 5257 train_loss: 0.0009895928669720888\n", + "epoch: 5258 train_loss: 0.0009891546797007322\n", + "epoch: 5259 train_loss: 0.0009887133492156863\n", + "epoch: 5260 train_loss: 0.0009882712038233876\n", + "epoch: 5261 train_loss: 0.0009878339478746057\n", + "epoch: 5262 train_loss: 0.0009873893577605486\n", + "epoch: 5263 train_loss: 0.0009869486093521118\n", + "epoch: 5264 train_loss: 0.0009865062311291695\n", + "epoch: 5265 train_loss: 0.0009860685095191002\n", + "epoch: 5266 train_loss: 0.0009856261312961578\n", + "epoch: 5267 train_loss: 0.00098518212325871\n", + "epoch: 5268 train_loss: 0.0009847457986325026\n", + "epoch: 5269 train_loss: 0.0009843026055023074\n", + "epoch: 5270 train_loss: 0.0009838598780333996\n", + "epoch: 5271 train_loss: 0.0009834161028265953\n", + "epoch: 5272 train_loss: 0.0009829697664827108\n", + "epoch: 5273 train_loss: 0.0009825268061831594\n", + "epoch: 5274 train_loss: 0.00098208780400455\n", + "epoch: 5275 train_loss: 0.0009816406527534127\n", + "epoch: 5276 train_loss: 0.0009812030475586653\n", + "epoch: 5277 train_loss: 0.0009807561291381717\n", + "epoch: 5278 train_loss: 0.0009803135180845857\n", + "epoch: 5279 train_loss: 0.0009798714891076088\n", + "epoch: 5280 train_loss: 0.0009794250363484025\n", + "epoch: 5281 train_loss: 0.000978986732661724\n", + "epoch: 5282 train_loss: 0.0009785370202735066\n", + "epoch: 5283 train_loss: 0.0009780931286513805\n", + "epoch: 5284 train_loss: 0.0009776499355211854\n", + "epoch: 5285 train_loss: 0.0009772059274837375\n", + "epoch: 5286 train_loss: 0.000976760289631784\n", + "epoch: 5287 train_loss: 0.0009763105772435665\n", + "epoch: 5288 train_loss: 0.0009758699452504516\n", + "epoch: 5289 train_loss: 0.0009754207567311823\n", + "epoch: 5290 train_loss: 0.000974979077000171\n", + "epoch: 5291 train_loss: 0.0009745357092469931\n", + "epoch: 5292 train_loss: 0.0009740865789353848\n", + "epoch: 5293 train_loss: 0.0009736449574120343\n", + "epoch: 5294 train_loss: 0.0009731919271871448\n", + "epoch: 5295 train_loss: 0.0009727507713250816\n", + "epoch: 5296 train_loss: 0.0009723029215820134\n", + "epoch: 5297 train_loss: 0.0009718604851514101\n", + "epoch: 5298 train_loss: 0.0009714086190797389\n", + "epoch: 5299 train_loss: 0.0009709628066048026\n", + "epoch: 5300 train_loss: 0.0009705156553536654\n", + "epoch: 5301 train_loss: 0.0009700717055238783\n", + "epoch: 5302 train_loss: 0.0009696300840005279\n", + "epoch: 5303 train_loss: 0.0009691723971627653\n", + "epoch: 5304 train_loss: 0.0009687310666777194\n", + "epoch: 5305 train_loss: 0.0009682775707915425\n", + "epoch: 5306 train_loss: 0.0009678276837803423\n", + "epoch: 5307 train_loss: 0.0009673846652731299\n", + "epoch: 5308 train_loss: 0.0009669344290159643\n", + "epoch: 5309 train_loss: 0.0009664882090874016\n", + "epoch: 5310 train_loss: 0.0009660390205681324\n", + "epoch: 5311 train_loss: 0.0009655905305407941\n", + "epoch: 5312 train_loss: 0.0009651427972130477\n", + "epoch: 5313 train_loss: 0.0009646955877542496\n", + "epoch: 5314 train_loss: 0.0009642422664910555\n", + "epoch: 5315 train_loss: 0.0009637947659939528\n", + "epoch: 5316 train_loss: 0.0009633470326662064\n", + "epoch: 5317 train_loss: 0.000962892547249794\n", + "epoch: 5318 train_loss: 0.0009624462691135705\n", + "epoch: 5319 train_loss: 0.0009619958000257611\n", + "epoch: 5320 train_loss: 0.0009615442249923944\n", + "epoch: 5321 train_loss: 0.0009610963752493262\n", + "epoch: 5322 train_loss: 0.0009606461389921606\n", + "epoch: 5323 train_loss: 0.0009601946221664548\n", + "epoch: 5324 train_loss: 0.0009597436874173582\n", + "epoch: 5325 train_loss: 0.000959294440690428\n", + "epoch: 5326 train_loss: 0.0009588449029251933\n", + "epoch: 5327 train_loss: 0.0009583922801539302\n", + "epoch: 5328 train_loss: 0.0009579386096447706\n", + "epoch: 5329 train_loss: 0.000957486336119473\n", + "epoch: 5330 train_loss: 0.0009570347610861063\n", + "epoch: 5331 train_loss: 0.0009565869113430381\n", + "epoch: 5332 train_loss: 0.0009561307379044592\n", + "epoch: 5333 train_loss: 0.0009556849836371839\n", + "epoch: 5334 train_loss: 0.0009552256087772548\n", + "epoch: 5335 train_loss: 0.0009547764202579856\n", + "epoch: 5336 train_loss: 0.0009543230989947915\n", + "epoch: 5337 train_loss: 0.0009538647718727589\n", + "epoch: 5338 train_loss: 0.0009534172131679952\n", + "epoch: 5339 train_loss: 0.0009529615635983646\n", + "epoch: 5340 train_loss: 0.0009525138302706182\n", + "epoch: 5341 train_loss: 0.0009520588209852576\n", + "epoch: 5342 train_loss: 0.0009516035206615925\n", + "epoch: 5343 train_loss: 0.0009511485695838928\n", + "epoch: 5344 train_loss: 0.0009506973437964916\n", + "epoch: 5345 train_loss: 0.0009502386092208326\n", + "epoch: 5346 train_loss: 0.0009497842402197421\n", + "epoch: 5347 train_loss: 0.00094933295622468\n", + "epoch: 5348 train_loss: 0.0009488772484473884\n", + "epoch: 5349 train_loss: 0.0009484213660471141\n", + "epoch: 5350 train_loss: 0.0009479700238443911\n", + "epoch: 5351 train_loss: 0.0009475124534219503\n", + "epoch: 5352 train_loss: 0.0009470609948039055\n", + "epoch: 5353 train_loss: 0.0009466029005125165\n", + "epoch: 5354 train_loss: 0.0009461507434025407\n", + "epoch: 5355 train_loss: 0.0009456893312744796\n", + "epoch: 5356 train_loss: 0.0009452368249185383\n", + "epoch: 5357 train_loss: 0.0009447772172279656\n", + "epoch: 5358 train_loss: 0.0009443280287086964\n", + "epoch: 5359 train_loss: 0.0009438698762096465\n", + "epoch: 5360 train_loss: 0.0009434113744646311\n", + "epoch: 5361 train_loss: 0.0009429552592337132\n", + "epoch: 5362 train_loss: 0.0009424996678717434\n", + "epoch: 5363 train_loss: 0.0009420395945198834\n", + "epoch: 5364 train_loss: 0.0009415847016498446\n", + "epoch: 5365 train_loss: 0.0009411285864189267\n", + "epoch: 5366 train_loss: 0.0009406726458109915\n", + "epoch: 5367 train_loss: 0.0009402114665135741\n", + "epoch: 5368 train_loss: 0.0009397578542120755\n", + "epoch: 5369 train_loss: 0.0009392979554831982\n", + "epoch: 5370 train_loss: 0.0009388429461978376\n", + "epoch: 5371 train_loss: 0.000938378507271409\n", + "epoch: 5372 train_loss: 0.0009379226248711348\n", + "epoch: 5373 train_loss: 0.0009374627261422575\n", + "epoch: 5374 train_loss: 0.0009370062034577131\n", + "epoch: 5375 train_loss: 0.0009365444420836866\n", + "epoch: 5376 train_loss: 0.0009360865806229413\n", + "epoch: 5377 train_loss: 0.0009356259251944721\n", + "epoch: 5378 train_loss: 0.0009351691114716232\n", + "epoch: 5379 train_loss: 0.0009347115410491824\n", + "epoch: 5380 train_loss: 0.0009342494304291904\n", + "epoch: 5381 train_loss: 0.0009337905794382095\n", + "epoch: 5382 train_loss: 0.000933329458348453\n", + "epoch: 5383 train_loss: 0.0009328694432042539\n", + "epoch: 5384 train_loss: 0.0009324090788140893\n", + "epoch: 5385 train_loss: 0.000931945163756609\n", + "epoch: 5386 train_loss: 0.0009314882918260992\n", + "epoch: 5387 train_loss: 0.0009310318855568767\n", + "epoch: 5388 train_loss: 0.0009305643616244197\n", + "epoch: 5389 train_loss: 0.0009301055106334388\n", + "epoch: 5390 train_loss: 0.0009296404896304011\n", + "epoch: 5391 train_loss: 0.0009291826281696558\n", + "epoch: 5392 train_loss: 0.0009287193533964455\n", + "epoch: 5393 train_loss: 0.0009282624814659357\n", + "epoch: 5394 train_loss: 0.0009277953067794442\n", + "epoch: 5395 train_loss: 0.0009273332543671131\n", + "epoch: 5396 train_loss: 0.0009268735302612185\n", + "epoch: 5397 train_loss: 0.0009264120017178357\n", + "epoch: 5398 train_loss: 0.0009259494836442173\n", + "epoch: 5399 train_loss: 0.0009254825999960303\n", + "epoch: 5400 train_loss: 0.0009250261355191469\n", + "epoch: 5401 train_loss: 0.0009245590772479773\n", + "epoch: 5402 train_loss: 0.0009240943472832441\n", + "epoch: 5403 train_loss: 0.0009236290352419019\n", + "epoch: 5404 train_loss: 0.0009231663425453007\n", + "epoch: 5405 train_loss: 0.0009227084228768945\n", + "epoch: 5406 train_loss: 0.0009222414228133857\n", + "epoch: 5407 train_loss: 0.0009217758197337389\n", + "epoch: 5408 train_loss: 0.0009213152225129306\n", + "epoch: 5409 train_loss: 0.000920846126973629\n", + "epoch: 5410 train_loss: 0.0009203842491842806\n", + "epoch: 5411 train_loss: 0.0009199178894050419\n", + "epoch: 5412 train_loss: 0.0009194549638777971\n", + "epoch: 5413 train_loss: 0.0009189904085360467\n", + "epoch: 5414 train_loss: 0.0009185259696096182\n", + "epoch: 5415 train_loss: 0.0009180594934150577\n", + "epoch: 5416 train_loss: 0.0009175927843898535\n", + "epoch: 5417 train_loss: 0.0009171231067739427\n", + "epoch: 5418 train_loss: 0.0009166583186015487\n", + "epoch: 5419 train_loss: 0.0009161950438283384\n", + "epoch: 5420 train_loss: 0.0009157315362244844\n", + "epoch: 5421 train_loss: 0.0009152658167295158\n", + "epoch: 5422 train_loss: 0.0009147942764684558\n", + "epoch: 5423 train_loss: 0.0009143303614109755\n", + "epoch: 5424 train_loss: 0.0009138650493696332\n", + "epoch: 5425 train_loss: 0.0009133967105299234\n", + "epoch: 5426 train_loss: 0.0009129301179200411\n", + "epoch: 5427 train_loss: 0.0009124637581408024\n", + "epoch: 5428 train_loss: 0.0009119972237385809\n", + "epoch: 5429 train_loss: 0.0009115287684835494\n", + "epoch: 5430 train_loss: 0.0009110649116337299\n", + "epoch: 5431 train_loss: 0.000910593313165009\n", + "epoch: 5432 train_loss: 0.0009101196192204952\n", + "epoch: 5433 train_loss: 0.0009096575668081641\n", + "epoch: 5434 train_loss: 0.0009091880638152361\n", + "epoch: 5435 train_loss: 0.0009087175130844116\n", + "epoch: 5436 train_loss: 0.0009082467295229435\n", + "epoch: 5437 train_loss: 0.000907779554836452\n", + "epoch: 5438 train_loss: 0.0009073135443031788\n", + "epoch: 5439 train_loss: 0.0009068424697034061\n", + "epoch: 5440 train_loss: 0.0009063758188858628\n", + "epoch: 5441 train_loss: 0.0009059052681550384\n", + "epoch: 5442 train_loss: 0.0009054325637407601\n", + "epoch: 5443 train_loss: 0.000904967135284096\n", + "epoch: 5444 train_loss: 0.0009044959442690015\n", + "epoch: 5445 train_loss: 0.0009040235308930278\n", + "epoch: 5446 train_loss: 0.0009035526891238987\n", + "epoch: 5447 train_loss: 0.0009030851651914418\n", + "epoch: 5448 train_loss: 0.0009026171173900366\n", + "epoch: 5449 train_loss: 0.0009021401638165116\n", + "epoch: 5450 train_loss: 0.00090167106827721\n", + "epoch: 5451 train_loss: 0.0009012012160383165\n", + "epoch: 5452 train_loss: 0.0009007275803014636\n", + "epoch: 5453 train_loss: 0.0009002600563690066\n", + "epoch: 5454 train_loss: 0.0008997841505333781\n", + "epoch: 5455 train_loss: 0.0008993147639557719\n", + "epoch: 5456 train_loss: 0.0008988426998257637\n", + "epoch: 5457 train_loss: 0.0008983687730506063\n", + "epoch: 5458 train_loss: 0.0008978999685496092\n", + "epoch: 5459 train_loss: 0.000897429243195802\n", + "epoch: 5460 train_loss: 0.0008969530463218689\n", + "epoch: 5461 train_loss: 0.0008964811568148434\n", + "epoch: 5462 train_loss: 0.0008960068807937205\n", + "epoch: 5463 train_loss: 0.0008955360972322524\n", + "epoch: 5464 train_loss: 0.000895062752533704\n", + "epoch: 5465 train_loss: 0.0008945882436819375\n", + "epoch: 5466 train_loss: 0.0008941123960539699\n", + "epoch: 5467 train_loss: 0.0008936402737163007\n", + "epoch: 5468 train_loss: 0.00089317059610039\n", + "epoch: 5469 train_loss: 0.0008926934679038823\n", + "epoch: 5470 train_loss: 0.0008922190172597766\n", + "epoch: 5471 train_loss: 0.0008917440427467227\n", + "epoch: 5472 train_loss: 0.0008912725606933236\n", + "epoch: 5473 train_loss: 0.000890799390617758\n", + "epoch: 5474 train_loss: 0.0008903220295906067\n", + "epoch: 5475 train_loss: 0.0008898464730009437\n", + "epoch: 5476 train_loss: 0.0008893701597116888\n", + "epoch: 5477 train_loss: 0.0008888947777450085\n", + "epoch: 5478 train_loss: 0.0008884242852218449\n", + "epoch: 5479 train_loss: 0.0008879408705979586\n", + "epoch: 5480 train_loss: 0.0008874720078893006\n", + "epoch: 5481 train_loss: 0.0008869900484569371\n", + "epoch: 5482 train_loss: 0.0008865161798894405\n", + "epoch: 5483 train_loss: 0.0008860394591465592\n", + "epoch: 5484 train_loss: 0.0008855646010488272\n", + "epoch: 5485 train_loss: 0.0008850886952131987\n", + "epoch: 5486 train_loss: 0.0008846074342727661\n", + "epoch: 5487 train_loss: 0.0008841342641972005\n", + "epoch: 5488 train_loss: 0.0008836569031700492\n", + "epoch: 5489 train_loss: 0.0008831830928102136\n", + "epoch: 5490 train_loss: 0.0008827063138596714\n", + "epoch: 5491 train_loss: 0.0008822251693345606\n", + "epoch: 5492 train_loss: 0.0008817469934001565\n", + "epoch: 5493 train_loss: 0.0008812702726572752\n", + "epoch: 5494 train_loss: 0.0008807926205918193\n", + "epoch: 5495 train_loss: 0.0008803128148429096\n", + "epoch: 5496 train_loss: 0.0008798368507996202\n", + "epoch: 5497 train_loss: 0.0008793572778813541\n", + "epoch: 5498 train_loss: 0.0008788771228864789\n", + "epoch: 5499 train_loss: 0.0008784018573351204\n", + "epoch: 5500 train_loss: 0.0008779217023402452\n", + "epoch: 5501 train_loss: 0.0008774430025368929\n", + "epoch: 5502 train_loss: 0.0008769645355641842\n", + "epoch: 5503 train_loss: 0.0008764843223616481\n", + "epoch: 5504 train_loss: 0.0008760057971812785\n", + "epoch: 5505 train_loss: 0.0008755236631259322\n", + "epoch: 5506 train_loss: 0.0008750465349294245\n", + "epoch: 5507 train_loss: 0.0008745642262510955\n", + "epoch: 5508 train_loss: 0.0008740847697481513\n", + "epoch: 5509 train_loss: 0.000873605371452868\n", + "epoch: 5510 train_loss: 0.0008731256239116192\n", + "epoch: 5511 train_loss: 0.0008726471569389105\n", + "epoch: 5512 train_loss: 0.0008721610647626221\n", + "epoch: 5513 train_loss: 0.0008716845768503845\n", + "epoch: 5514 train_loss: 0.0008712029666639864\n", + "epoch: 5515 train_loss: 0.000870721647515893\n", + "epoch: 5516 train_loss: 0.0008702377672307193\n", + "epoch: 5517 train_loss: 0.0008697594748809934\n", + "epoch: 5518 train_loss: 0.0008692744304426014\n", + "epoch: 5519 train_loss: 0.0008687928784638643\n", + "epoch: 5520 train_loss: 0.0008683138876222074\n", + "epoch: 5521 train_loss: 0.0008678335580043495\n", + "epoch: 5522 train_loss: 0.0008673504926264286\n", + "epoch: 5523 train_loss: 0.0008668641676194966\n", + "epoch: 5524 train_loss: 0.0008663805201649666\n", + "epoch: 5525 train_loss: 0.0008658997830934823\n", + "epoch: 5526 train_loss: 0.000865413632709533\n", + "epoch: 5527 train_loss: 0.000864933361299336\n", + "epoch: 5528 train_loss: 0.0008644473273307085\n", + "epoch: 5529 train_loss: 0.0008639689767733216\n", + "epoch: 5530 train_loss: 0.0008634852711111307\n", + "epoch: 5531 train_loss: 0.0008629970834590495\n", + "epoch: 5532 train_loss: 0.0008625165210105479\n", + "epoch: 5533 train_loss: 0.0008620315347798169\n", + "epoch: 5534 train_loss: 0.000861550506670028\n", + "epoch: 5535 train_loss: 0.0008610623190179467\n", + "epoch: 5536 train_loss: 0.0008605775074101985\n", + "epoch: 5537 train_loss: 0.0008600938599556684\n", + "epoch: 5538 train_loss: 0.0008596081170253456\n", + "epoch: 5539 train_loss: 0.0008591235964559019\n", + "epoch: 5540 train_loss: 0.0008586380281485617\n", + "epoch: 5541 train_loss: 0.0008581547881476581\n", + "epoch: 5542 train_loss: 0.0008576657855883241\n", + "epoch: 5543 train_loss: 0.0008571823127567768\n", + "epoch: 5544 train_loss: 0.0008566973265260458\n", + "epoch: 5545 train_loss: 0.0008562158909626305\n", + "epoch: 5546 train_loss: 0.0008557272958569229\n", + "epoch: 5547 train_loss: 0.0008552356739528477\n", + "epoch: 5548 train_loss: 0.0008547548204660416\n", + "epoch: 5549 train_loss: 0.0008542636642232537\n", + "epoch: 5550 train_loss: 0.0008537793764844537\n", + "epoch: 5551 train_loss: 0.0008532926440238953\n", + "epoch: 5552 train_loss: 0.0008528047474101186\n", + "epoch: 5553 train_loss: 0.0008523191791027784\n", + "epoch: 5554 train_loss: 0.0008518313406966627\n", + "epoch: 5555 train_loss: 0.0008513455395586789\n", + "epoch: 5556 train_loss: 0.0008508558967150748\n", + "epoch: 5557 train_loss: 0.0008503712597303092\n", + "epoch: 5558 train_loss: 0.0008498829556629062\n", + "epoch: 5559 train_loss: 0.0008493934874422848\n", + "epoch: 5560 train_loss: 0.0008489062311127782\n", + "epoch: 5561 train_loss: 0.000848416006192565\n", + "epoch: 5562 train_loss: 0.0008479325333610177\n", + "epoch: 5563 train_loss: 0.0008474403875879943\n", + "epoch: 5564 train_loss: 0.0008469539461657405\n", + "epoch: 5565 train_loss: 0.0008464654092676938\n", + "epoch: 5566 train_loss: 0.0008459743694402277\n", + "epoch: 5567 train_loss: 0.0008454832131974399\n", + "epoch: 5568 train_loss: 0.0008449959568679333\n", + "epoch: 5569 train_loss: 0.0008445077110081911\n", + "epoch: 5570 train_loss: 0.0008440152159892023\n", + "epoch: 5571 train_loss: 0.0008435279014520347\n", + "epoch: 5572 train_loss: 0.0008430383168160915\n", + "epoch: 5573 train_loss: 0.0008425484411418438\n", + "epoch: 5574 train_loss: 0.0008420586818829179\n", + "epoch: 5575 train_loss: 0.0008415695047006011\n", + "epoch: 5576 train_loss: 0.0008410768932662904\n", + "epoch: 5577 train_loss: 0.0008405831758864224\n", + "epoch: 5578 train_loss: 0.0008400946971960366\n", + "epoch: 5579 train_loss: 0.0008396033081226051\n", + "epoch: 5580 train_loss: 0.0008391152368858457\n", + "epoch: 5581 train_loss: 0.0008386212284676731\n", + "epoch: 5582 train_loss: 0.0008381282677873969\n", + "epoch: 5583 train_loss: 0.000837640487588942\n", + "epoch: 5584 train_loss: 0.0008371468284167349\n", + "epoch: 5585 train_loss: 0.0008366601541638374\n", + "epoch: 5586 train_loss: 0.0008361648651771247\n", + "epoch: 5587 train_loss: 0.000835664919577539\n", + "epoch: 5588 train_loss: 0.0008351806900463998\n", + "epoch: 5589 train_loss: 0.00083468685625121\n", + "epoch: 5590 train_loss: 0.0008341918000951409\n", + "epoch: 5591 train_loss: 0.0008337005274370313\n", + "epoch: 5592 train_loss: 0.0008332060533575714\n", + "epoch: 5593 train_loss: 0.0008327164687216282\n", + "epoch: 5594 train_loss: 0.0008322220528498292\n", + "epoch: 5595 train_loss: 0.0008317278698086739\n", + "epoch: 5596 train_loss: 0.0008312319405376911\n", + "epoch: 5597 train_loss: 0.0008307434618473053\n", + "epoch: 5598 train_loss: 0.0008302468340843916\n", + "epoch: 5599 train_loss: 0.0008297560852952302\n", + "epoch: 5600 train_loss: 0.0008292542188428342\n", + "epoch: 5601 train_loss: 0.0008287671953439713\n", + "epoch: 5602 train_loss: 0.0008282691705971956\n", + "epoch: 5603 train_loss: 0.0008277763263322413\n", + "epoch: 5604 train_loss: 0.000827278767246753\n", + "epoch: 5605 train_loss: 0.0008267891244031489\n", + "epoch: 5606 train_loss: 0.0008262927294708788\n", + "epoch: 5607 train_loss: 0.0008257945883087814\n", + "epoch: 5608 train_loss: 0.0008253039559349418\n", + "epoch: 5609 train_loss: 0.0008248045342043042\n", + "epoch: 5610 train_loss: 0.0008243127958849072\n", + "epoch: 5611 train_loss: 0.0008238195441663265\n", + "epoch: 5612 train_loss: 0.0008233191911131144\n", + "epoch: 5613 train_loss: 0.0008228238439187407\n", + "epoch: 5614 train_loss: 0.0008223297772929072\n", + "epoch: 5615 train_loss: 0.000821832800284028\n", + "epoch: 5616 train_loss: 0.0008213360561057925\n", + "epoch: 5617 train_loss: 0.0008208394283428788\n", + "epoch: 5618 train_loss: 0.0008203461766242981\n", + "epoch: 5619 train_loss: 0.0008198434952646494\n", + "epoch: 5620 train_loss: 0.0008193488465622067\n", + "epoch: 5621 train_loss: 0.0008188511710613966\n", + "epoch: 5622 train_loss: 0.0008183550671674311\n", + "epoch: 5623 train_loss: 0.0008178557036444545\n", + "epoch: 5624 train_loss: 0.0008173581445589662\n", + "epoch: 5625 train_loss: 0.0008168634376488626\n", + "epoch: 5626 train_loss: 0.0008163639577105641\n", + "epoch: 5627 train_loss: 0.0008158661075867712\n", + "epoch: 5628 train_loss: 0.0008153705857694149\n", + "epoch: 5629 train_loss: 0.0008148670895025134\n", + "epoch: 5630 train_loss: 0.0008143727900460362\n", + "epoch: 5631 train_loss: 0.0008138720295391977\n", + "epoch: 5632 train_loss: 0.0008133753435686231\n", + "epoch: 5633 train_loss: 0.0008128802292048931\n", + "epoch: 5634 train_loss: 0.0008123732404783368\n", + "epoch: 5635 train_loss: 0.0008118812693282962\n", + "epoch: 5636 train_loss: 0.0008113792864605784\n", + "epoch: 5637 train_loss: 0.0008108793990686536\n", + "epoch: 5638 train_loss: 0.0008103850414045155\n", + "epoch: 5639 train_loss: 0.0008098807884380221\n", + "epoch: 5640 train_loss: 0.0008093828801065683\n", + "epoch: 5641 train_loss: 0.0008088834583759308\n", + "epoch: 5642 train_loss: 0.000808382872492075\n", + "epoch: 5643 train_loss: 0.0008078820537775755\n", + "epoch: 5644 train_loss: 0.000807381235063076\n", + "epoch: 5645 train_loss: 0.000806882104370743\n", + "epoch: 5646 train_loss: 0.0008063761633820832\n", + "epoch: 5647 train_loss: 0.0008058843086473644\n", + "epoch: 5648 train_loss: 0.0008053780766204\n", + "epoch: 5649 train_loss: 0.000804876908659935\n", + "epoch: 5650 train_loss: 0.000804379116743803\n", + "epoch: 5651 train_loss: 0.000803876668214798\n", + "epoch: 5652 train_loss: 0.0008033727644942701\n", + "epoch: 5653 train_loss: 0.0008028728771023452\n", + "epoch: 5654 train_loss: 0.0008023738046176732\n", + "epoch: 5655 train_loss: 0.0008018717635422945\n", + "epoch: 5656 train_loss: 0.0008013690821826458\n", + "epoch: 5657 train_loss: 0.0008008655277080834\n", + "epoch: 5658 train_loss: 0.0008003647672012448\n", + "epoch: 5659 train_loss: 0.000799862144049257\n", + "epoch: 5660 train_loss: 0.0007993594626896083\n", + "epoch: 5661 train_loss: 0.0007988557335920632\n", + "epoch: 5662 train_loss: 0.0007983556133694947\n", + "epoch: 5663 train_loss: 0.0007978511857800186\n", + "epoch: 5664 train_loss: 0.0007973515894263983\n", + "epoch: 5665 train_loss: 0.0007968490244820714\n", + "epoch: 5666 train_loss: 0.0007963440730236471\n", + "epoch: 5667 train_loss: 0.0007958347559906542\n", + "epoch: 5668 train_loss: 0.0007953362073749304\n", + "epoch: 5669 train_loss: 0.0007948321290314198\n", + "epoch: 5670 train_loss: 0.0007943277596496046\n", + "epoch: 5671 train_loss: 0.0007938254275359213\n", + "epoch: 5672 train_loss: 0.000793317100033164\n", + "epoch: 5673 train_loss: 0.0007928156992420554\n", + "epoch: 5674 train_loss: 0.0007923129596747458\n", + "epoch: 5675 train_loss: 0.0007918055052869022\n", + "epoch: 5676 train_loss: 0.000791303114965558\n", + "epoch: 5677 train_loss: 0.0007907948456704617\n", + "epoch: 5678 train_loss: 0.000790293444879353\n", + "epoch: 5679 train_loss: 0.0007897895993664861\n", + "epoch: 5680 train_loss: 0.0007892830763012171\n", + "epoch: 5681 train_loss: 0.000788779288996011\n", + "epoch: 5682 train_loss: 0.000788276840467006\n", + "epoch: 5683 train_loss: 0.0007877670577727258\n", + "epoch: 5684 train_loss: 0.0007872639107517898\n", + "epoch: 5685 train_loss: 0.0007867570384405553\n", + "epoch: 5686 train_loss: 0.0007862517959438264\n", + "epoch: 5687 train_loss: 0.0007857423624955118\n", + "epoch: 5688 train_loss: 0.0007852406124584377\n", + "epoch: 5689 train_loss: 0.0007847346132621169\n", + "epoch: 5690 train_loss: 0.0007842247723601758\n", + "epoch: 5691 train_loss: 0.0007837224402464926\n", + "epoch: 5692 train_loss: 0.000783212948590517\n", + "epoch: 5693 train_loss: 0.0007827085792087018\n", + "epoch: 5694 train_loss: 0.00078220060095191\n", + "epoch: 5695 train_loss: 0.0007816936122253537\n", + "epoch: 5696 train_loss: 0.0007811880204826593\n", + "epoch: 5697 train_loss: 0.0007806789362803102\n", + "epoch: 5698 train_loss: 0.0007801709580235183\n", + "epoch: 5699 train_loss: 0.0007796647259965539\n", + "epoch: 5700 train_loss: 0.000779158843215555\n", + "epoch: 5701 train_loss: 0.0007786484202370048\n", + "epoch: 5702 train_loss: 0.0007781414315104485\n", + "epoch: 5703 train_loss: 0.0007776314159855247\n", + "epoch: 5704 train_loss: 0.0007771264063194394\n", + "epoch: 5705 train_loss: 0.0007766173803247511\n", + "epoch: 5706 train_loss: 0.0007761091692373157\n", + "epoch: 5707 train_loss: 0.0007756020640954375\n", + "epoch: 5708 train_loss: 0.0007750935037620366\n", + "epoch: 5709 train_loss: 0.000774581334553659\n", + "epoch: 5710 train_loss: 0.000774076790548861\n", + "epoch: 5711 train_loss: 0.0007735634571872652\n", + "epoch: 5712 train_loss: 0.0007730558281764388\n", + "epoch: 5713 train_loss: 0.0007725459290668368\n", + "epoch: 5714 train_loss: 0.0007720381836406887\n", + "epoch: 5715 train_loss: 0.0007715275860391557\n", + "epoch: 5716 train_loss: 0.0007710185600444674\n", + "epoch: 5717 train_loss: 0.0007705108146183193\n", + "epoch: 5718 train_loss: 0.0007699977140873671\n", + "epoch: 5719 train_loss: 0.0007694939849898219\n", + "epoch: 5720 train_loss: 0.0007689778576605022\n", + "epoch: 5721 train_loss: 0.0007684736046940088\n", + "epoch: 5722 train_loss: 0.0007679590489715338\n", + "epoch: 5723 train_loss: 0.0007674527005292475\n", + "epoch: 5724 train_loss: 0.0007669385522603989\n", + "epoch: 5725 train_loss: 0.0007664299919269979\n", + "epoch: 5726 train_loss: 0.000765920733101666\n", + "epoch: 5727 train_loss: 0.0007654058281332254\n", + "epoch: 5728 train_loss: 0.0007648965111002326\n", + "epoch: 5729 train_loss: 0.0007643842254765332\n", + "epoch: 5730 train_loss: 0.0007638730457983911\n", + "epoch: 5731 train_loss: 0.0007633629720658064\n", + "epoch: 5732 train_loss: 0.0007628484163433313\n", + "epoch: 5733 train_loss: 0.0007623399724252522\n", + "epoch: 5734 train_loss: 0.0007618303643539548\n", + "epoch: 5735 train_loss: 0.0007613147608935833\n", + "epoch: 5736 train_loss: 0.0007608000887557864\n", + "epoch: 5737 train_loss: 0.0007602905970998108\n", + "epoch: 5738 train_loss: 0.0007597794756293297\n", + "epoch: 5739 train_loss: 0.0007592648616991937\n", + "epoch: 5740 train_loss: 0.0007587510626763105\n", + "epoch: 5741 train_loss: 0.0007582444231957197\n", + "epoch: 5742 train_loss: 0.0007577287033200264\n", + "epoch: 5743 train_loss: 0.0007572187460027635\n", + "epoch: 5744 train_loss: 0.0007567014545202255\n", + "epoch: 5745 train_loss: 0.0007561921956948936\n", + "epoch: 5746 train_loss: 0.0007556785712949932\n", + "epoch: 5747 train_loss: 0.0007551652379333973\n", + "epoch: 5748 train_loss: 0.0007546544657088816\n", + "epoch: 5749 train_loss: 0.0007541360100731254\n", + "epoch: 5750 train_loss: 0.0007536256453022361\n", + "epoch: 5751 train_loss: 0.0007531129522249103\n", + "epoch: 5752 train_loss: 0.0007525980472564697\n", + "epoch: 5753 train_loss: 0.0007520834915339947\n", + "epoch: 5754 train_loss: 0.0007515678880736232\n", + "epoch: 5755 train_loss: 0.0007510569994337857\n", + "epoch: 5756 train_loss: 0.0007505418034270406\n", + "epoch: 5757 train_loss: 0.0007500311476178467\n", + "epoch: 5758 train_loss: 0.0007495117024518549\n", + "epoch: 5759 train_loss: 0.0007489966810680926\n", + "epoch: 5760 train_loss: 0.0007484842790290713\n", + "epoch: 5761 train_loss: 0.0007479668711312115\n", + "epoch: 5762 train_loss: 0.0007474569720216095\n", + "epoch: 5763 train_loss: 0.0007469374104402959\n", + "epoch: 5764 train_loss: 0.0007464204682037234\n", + "epoch: 5765 train_loss: 0.000745906145311892\n", + "epoch: 5766 train_loss: 0.0007453953148797154\n", + "epoch: 5767 train_loss: 0.0007448785472661257\n", + "epoch: 5768 train_loss: 0.0007443634094670415\n", + "epoch: 5769 train_loss: 0.0007438457105308771\n", + "epoch: 5770 train_loss: 0.0007433306309394538\n", + "epoch: 5771 train_loss: 0.0007428139797411859\n", + "epoch: 5772 train_loss: 0.0007423029164783657\n", + "epoch: 5773 train_loss: 0.0007417853339575231\n", + "epoch: 5774 train_loss: 0.0007412618142552674\n", + "epoch: 5775 train_loss: 0.0007407507509924471\n", + "epoch: 5776 train_loss: 0.0007402330520562828\n", + "epoch: 5777 train_loss: 0.0007397200679406524\n", + "epoch: 5778 train_loss: 0.0007392055122181773\n", + "epoch: 5779 train_loss: 0.0007386849028989673\n", + "epoch: 5780 train_loss: 0.0007381638861261308\n", + "epoch: 5781 train_loss: 0.0007376489811576903\n", + "epoch: 5782 train_loss: 0.0007371362880803645\n", + "epoch: 5783 train_loss: 0.0007366192294284701\n", + "epoch: 5784 train_loss: 0.0007361003663390875\n", + "epoch: 5785 train_loss: 0.0007355781272053719\n", + "epoch: 5786 train_loss: 0.0007350663072429597\n", + "epoch: 5787 train_loss: 0.0007345476187765598\n", + "epoch: 5788 train_loss: 0.0007340346346609294\n", + "epoch: 5789 train_loss: 0.0007335162372328341\n", + "epoch: 5790 train_loss: 0.0007329874206334352\n", + "epoch: 5791 train_loss: 0.0007324762409552932\n", + "epoch: 5792 train_loss: 0.0007319598807953298\n", + "epoch: 5793 train_loss: 0.000731441774405539\n", + "epoch: 5794 train_loss: 0.0007309304201044142\n", + "epoch: 5795 train_loss: 0.0007304036989808083\n", + "epoch: 5796 train_loss: 0.0007298890268430114\n", + "epoch: 5797 train_loss: 0.0007293653907254338\n", + "epoch: 5798 train_loss: 0.0007288524648174644\n", + "epoch: 5799 train_loss: 0.0007283347658813\n", + "epoch: 5800 train_loss: 0.0007278140401467681\n", + "epoch: 5801 train_loss: 0.000727294129319489\n", + "epoch: 5802 train_loss: 0.0007267729379236698\n", + "epoch: 5803 train_loss: 0.0007262552971951663\n", + "epoch: 5804 train_loss: 0.0007257355027832091\n", + "epoch: 5805 train_loss: 0.000725222285836935\n", + "epoch: 5806 train_loss: 0.0007246993482112885\n", + "epoch: 5807 train_loss: 0.0007241800776682794\n", + "epoch: 5808 train_loss: 0.0007236587116494775\n", + "epoch: 5809 train_loss: 0.0007231385097838938\n", + "epoch: 5810 train_loss: 0.0007226202287711203\n", + "epoch: 5811 train_loss: 0.0007221037521958351\n", + "epoch: 5812 train_loss: 0.000721578486263752\n", + "epoch: 5813 train_loss: 0.0007210586918517947\n", + "epoch: 5814 train_loss: 0.0007205370347946882\n", + "epoch: 5815 train_loss: 0.0007200194522738457\n", + "epoch: 5816 train_loss: 0.0007195022772066295\n", + "epoch: 5817 train_loss: 0.0007189777097664773\n", + "epoch: 5818 train_loss: 0.0007184578571468592\n", + "epoch: 5819 train_loss: 0.00071793666575104\n", + "epoch: 5820 train_loss: 0.0007174185011535883\n", + "epoch: 5821 train_loss: 0.000716898706741631\n", + "epoch: 5822 train_loss: 0.000716378097422421\n", + "epoch: 5823 train_loss: 0.0007158530643209815\n", + "epoch: 5824 train_loss: 0.0007153329788707197\n", + "epoch: 5825 train_loss: 0.000714812136720866\n", + "epoch: 5826 train_loss: 0.0007142920512706041\n", + "epoch: 5827 train_loss: 0.0007137719658203423\n", + "epoch: 5828 train_loss: 0.0007132500177249312\n", + "epoch: 5829 train_loss: 0.0007127296994440258\n", + "epoch: 5830 train_loss: 0.000712208217009902\n", + "epoch: 5831 train_loss: 0.0007116837077774107\n", + "epoch: 5832 train_loss: 0.0007111658924259245\n", + "epoch: 5833 train_loss: 0.0007106425473466516\n", + "epoch: 5834 train_loss: 0.000710121588781476\n", + "epoch: 5835 train_loss: 0.0007095947512425482\n", + "epoch: 5836 train_loss: 0.000709076935891062\n", + "epoch: 5837 train_loss: 0.0007085540564730763\n", + "epoch: 5838 train_loss: 0.0007080305949784815\n", + "epoch: 5839 train_loss: 0.000707508996129036\n", + "epoch: 5840 train_loss: 0.0007069844868965447\n", + "epoch: 5841 train_loss: 0.0007064590463414788\n", + "epoch: 5842 train_loss: 0.0007059435010887682\n", + "epoch: 5843 train_loss: 0.0007054181187413633\n", + "epoch: 5844 train_loss: 0.0007048987899906933\n", + "epoch: 5845 train_loss: 0.0007043751538731158\n", + "epoch: 5846 train_loss: 0.0007038487819954753\n", + "epoch: 5847 train_loss: 0.0007033279398456216\n", + "epoch: 5848 train_loss: 0.000702804361935705\n", + "epoch: 5849 train_loss: 0.0007022831123322248\n", + "epoch: 5850 train_loss: 0.0007017618045210838\n", + "epoch: 5851 train_loss: 0.0007012308342382312\n", + "epoch: 5852 train_loss: 0.000700710981618613\n", + "epoch: 5853 train_loss: 0.0007001877529546618\n", + "epoch: 5854 train_loss: 0.0006996617885306478\n", + "epoch: 5855 train_loss: 0.0006991447880864143\n", + "epoch: 5856 train_loss: 0.0006986210937611759\n", + "epoch: 5857 train_loss: 0.0006980887847021222\n", + "epoch: 5858 train_loss: 0.000697572308126837\n", + "epoch: 5859 train_loss: 0.0006970451795496047\n", + "epoch: 5860 train_loss: 0.0006965193897485733\n", + "epoch: 5861 train_loss: 0.0006960004684515297\n", + "epoch: 5862 train_loss: 0.0006954781129024923\n", + "epoch: 5863 train_loss: 0.0006949481903575361\n", + "epoch: 5864 train_loss: 0.0006944226333871484\n", + "epoch: 5865 train_loss: 0.0006939020822755992\n", + "epoch: 5866 train_loss: 0.0006933737895451486\n", + "epoch: 5867 train_loss: 0.0006928524235263467\n", + "epoch: 5868 train_loss: 0.0006923296605236828\n", + "epoch: 5869 train_loss: 0.0006918034050613642\n", + "epoch: 5870 train_loss: 0.0006912779062986374\n", + "epoch: 5871 train_loss: 0.0006907513597980142\n", + "epoch: 5872 train_loss: 0.0006902282475493848\n", + "epoch: 5873 train_loss: 0.0006897039711475372\n", + "epoch: 5874 train_loss: 0.0006891796947456896\n", + "epoch: 5875 train_loss: 0.000688654778059572\n", + "epoch: 5876 train_loss: 0.0006881265435367823\n", + "epoch: 5877 train_loss: 0.0006876005791127682\n", + "epoch: 5878 train_loss: 0.0006870789802633226\n", + "epoch: 5879 train_loss: 0.0006865558098070323\n", + "epoch: 5880 train_loss: 0.0006860292050987482\n", + "epoch: 5881 train_loss: 0.0006855013780295849\n", + "epoch: 5882 train_loss: 0.0006849748315289617\n", + "epoch: 5883 train_loss: 0.0006844473537057638\n", + "epoch: 5884 train_loss: 0.0006839274428784847\n", + "epoch: 5885 train_loss: 0.0006834021769464016\n", + "epoch: 5886 train_loss: 0.0006828719633631408\n", + "epoch: 5887 train_loss: 0.0006823471048846841\n", + "epoch: 5888 train_loss: 0.0006818189285695553\n", + "epoch: 5889 train_loss: 0.0006812945357523859\n", + "epoch: 5890 train_loss: 0.000680772471241653\n", + "epoch: 5891 train_loss: 0.000680245109833777\n", + "epoch: 5892 train_loss: 0.000679718388710171\n", + "epoch: 5893 train_loss: 0.0006791928317397833\n", + "epoch: 5894 train_loss: 0.0006786633748561144\n", + "epoch: 5895 train_loss: 0.0006781355477869511\n", + "epoch: 5896 train_loss: 0.00067761295940727\n", + "epoch: 5897 train_loss: 0.0006770869949832559\n", + "epoch: 5898 train_loss: 0.0006765596917830408\n", + "epoch: 5899 train_loss: 0.0006760305841453373\n", + "epoch: 5900 train_loss: 0.0006755050271749496\n", + "epoch: 5901 train_loss: 0.0006749774911440909\n", + "epoch: 5902 train_loss: 0.0006744519923813641\n", + "epoch: 5903 train_loss: 0.0006739269010722637\n", + "epoch: 5904 train_loss: 0.0006733990157954395\n", + "epoch: 5905 train_loss: 0.0006728693260811269\n", + "epoch: 5906 train_loss: 0.0006723457481712103\n", + "epoch: 5907 train_loss: 0.0006718142540194094\n", + "epoch: 5908 train_loss: 0.0006712871254421771\n", + "epoch: 5909 train_loss: 0.0006707647698931396\n", + "epoch: 5910 train_loss: 0.000670235778670758\n", + "epoch: 5911 train_loss: 0.0006697078351862729\n", + "epoch: 5912 train_loss: 0.0006691794260405004\n", + "epoch: 5913 train_loss: 0.000668652297463268\n", + "epoch: 5914 train_loss: 0.0006681266240775585\n", + "epoch: 5915 train_loss: 0.0006676033372059464\n", + "epoch: 5916 train_loss: 0.0006670743459835649\n", + "epoch: 5917 train_loss: 0.0006665447144769132\n", + "epoch: 5918 train_loss: 0.0006660156068392098\n", + "epoch: 5919 train_loss: 0.0006654839962720871\n", + "epoch: 5920 train_loss: 0.0006649579154327512\n", + "epoch: 5921 train_loss: 0.0006644355016760528\n", + "epoch: 5922 train_loss: 0.0006639061030000448\n", + "epoch: 5923 train_loss: 0.000663377926684916\n", + "epoch: 5924 train_loss: 0.0006628464325331151\n", + "epoch: 5925 train_loss: 0.0006623173248954117\n", + "epoch: 5926 train_loss: 0.0006617911858484149\n", + "epoch: 5927 train_loss: 0.0006612652214244008\n", + "epoch: 5928 train_loss: 0.0006607358809560537\n", + "epoch: 5929 train_loss: 0.0006602125940844417\n", + "epoch: 5930 train_loss: 0.0006596806342713535\n", + "epoch: 5931 train_loss: 0.0006591530982404947\n", + "epoch: 5932 train_loss: 0.0006586170638911426\n", + "epoch: 5933 train_loss: 0.0006580993067473173\n", + "epoch: 5934 train_loss: 0.0006575614679604769\n", + "epoch: 5935 train_loss: 0.0006570389959961176\n", + "epoch: 5936 train_loss: 0.0006565092480741441\n", + "epoch: 5937 train_loss: 0.0006559784524142742\n", + "epoch: 5938 train_loss: 0.0006554489955306053\n", + "epoch: 5939 train_loss: 0.0006549199461005628\n", + "epoch: 5940 train_loss: 0.0006543936324305832\n", + "epoch: 5941 train_loss: 0.0006538653979077935\n", + "epoch: 5942 train_loss: 0.0006533393752761185\n", + "epoch: 5943 train_loss: 0.0006528067169710994\n", + "epoch: 5944 train_loss: 0.0006522766780108213\n", + "epoch: 5945 train_loss: 0.000651748210657388\n", + "epoch: 5946 train_loss: 0.0006512225372716784\n", + "epoch: 5947 train_loss: 0.0006506905774585903\n", + "epoch: 5948 train_loss: 0.0006501642055809498\n", + "epoch: 5949 train_loss: 0.0006496366113424301\n", + "epoch: 5950 train_loss: 0.0006491020321846008\n", + "epoch: 5951 train_loss: 0.0006485763005912304\n", + "epoch: 5952 train_loss: 0.0006480457377620041\n", + "epoch: 5953 train_loss: 0.0006475189584307373\n", + "epoch: 5954 train_loss: 0.0006469875224865973\n", + "epoch: 5955 train_loss: 0.0006464594043791294\n", + "epoch: 5956 train_loss: 0.0006459310534410179\n", + "epoch: 5957 train_loss: 0.0006453990354202688\n", + "epoch: 5958 train_loss: 0.000644869462121278\n", + "epoch: 5959 train_loss: 0.0006443426827900112\n", + "epoch: 5960 train_loss: 0.0006438118871301413\n", + "epoch: 5961 train_loss: 0.0006432822556234896\n", + "epoch: 5962 train_loss: 0.00064275594195351\n", + "epoch: 5963 train_loss: 0.0006422222359105945\n", + "epoch: 5964 train_loss: 0.0006416962132789195\n", + "epoch: 5965 train_loss: 0.0006411689682863653\n", + "epoch: 5966 train_loss: 0.0006406335160136223\n", + "epoch: 5967 train_loss: 0.0006401039427146316\n", + "epoch: 5968 train_loss: 0.0006395759410224855\n", + "epoch: 5969 train_loss: 0.0006390470080077648\n", + "epoch: 5970 train_loss: 0.0006385152228176594\n", + "epoch: 5971 train_loss: 0.0006379873375408351\n", + "epoch: 5972 train_loss: 0.0006374575896188617\n", + "epoch: 5973 train_loss: 0.0006369265611283481\n", + "epoch: 5974 train_loss: 0.0006363993161357939\n", + "epoch: 5975 train_loss: 0.0006358663085848093\n", + "epoch: 5976 train_loss: 0.0006353337084874511\n", + "epoch: 5977 train_loss: 0.0006348115857690573\n", + "epoch: 5978 train_loss: 0.0006342792185023427\n", + "epoch: 5979 train_loss: 0.0006337499362416565\n", + "epoch: 5980 train_loss: 0.0006332178600132465\n", + "epoch: 5981 train_loss: 0.0006326867151074111\n", + "epoch: 5982 train_loss: 0.0006321585387922823\n", + "epoch: 5983 train_loss: 0.0006316267536021769\n", + "epoch: 5984 train_loss: 0.0006311012548394501\n", + "epoch: 5985 train_loss: 0.0006305687129497528\n", + "epoch: 5986 train_loss: 0.000630041235126555\n", + "epoch: 5987 train_loss: 0.0006295085768215358\n", + "epoch: 5988 train_loss: 0.0006289772572927177\n", + "epoch: 5989 train_loss: 0.0006284485571086407\n", + "epoch: 5990 train_loss: 0.000627914909273386\n", + "epoch: 5991 train_loss: 0.0006273910403251648\n", + "epoch: 5992 train_loss: 0.0006268569268286228\n", + "epoch: 5993 train_loss: 0.0006263302057050169\n", + "epoch: 5994 train_loss: 0.0006257991772145033\n", + "epoch: 5995 train_loss: 0.0006252662860788405\n", + "epoch: 5996 train_loss: 0.0006247345008887351\n", + "epoch: 5997 train_loss: 0.0006242052186280489\n", + "epoch: 5998 train_loss: 0.0006236758781597018\n", + "epoch: 5999 train_loss: 0.0006231479928828776\n", + "epoch: 6000 train_loss: 0.0006226177210919559\n", + "epoch: 6001 train_loss: 0.0006220909999683499\n", + "epoch: 6002 train_loss: 0.0006215553730726242\n", + "epoch: 6003 train_loss: 0.0006210253923200071\n", + "epoch: 6004 train_loss: 0.0006204955279827118\n", + "epoch: 6005 train_loss: 0.0006199670024216175\n", + "epoch: 6006 train_loss: 0.0006194370216690004\n", + "epoch: 6007 train_loss: 0.0006189074483700097\n", + "epoch: 6008 train_loss: 0.000618375779595226\n", + "epoch: 6009 train_loss: 0.0006178445764817297\n", + "epoch: 6010 train_loss: 0.0006173141300678253\n", + "epoch: 6011 train_loss: 0.0006167827523313463\n", + "epoch: 6012 train_loss: 0.0006162550416775048\n", + "epoch: 6013 train_loss: 0.0006157227326184511\n", + "epoch: 6014 train_loss: 0.0006151941488496959\n", + "epoch: 6015 train_loss: 0.0006146617815829813\n", + "epoch: 6016 train_loss: 0.0006141324993222952\n", + "epoch: 6017 train_loss: 0.0006136049632914364\n", + "epoch: 6018 train_loss: 0.0006130742840468884\n", + "epoch: 6019 train_loss: 0.0006125393556430936\n", + "epoch: 6020 train_loss: 0.0006120173493400216\n", + "epoch: 6021 train_loss: 0.0006114853895269334\n", + "epoch: 6022 train_loss: 0.0006109477835707366\n", + "epoch: 6023 train_loss: 0.0006104226922616363\n", + "epoch: 6024 train_loss: 0.0006098913145251572\n", + "epoch: 6025 train_loss: 0.0006093615666031837\n", + "epoch: 6026 train_loss: 0.0006088338559493423\n", + "epoch: 6027 train_loss: 0.0006083028274588287\n", + "epoch: 6028 train_loss: 0.0006077726138755679\n", + "epoch: 6029 train_loss: 0.0006072429823689163\n", + "epoch: 6030 train_loss: 0.0006067075300961733\n", + "epoch: 6031 train_loss: 0.0006061809253878891\n", + "epoch: 6032 train_loss: 0.0006056497804820538\n", + "epoch: 6033 train_loss: 0.0006051220698282123\n", + "epoch: 6034 train_loss: 0.0006045917398296297\n", + "epoch: 6035 train_loss: 0.0006040639127604663\n", + "epoch: 6036 train_loss: 0.0006035296828486025\n", + "epoch: 6037 train_loss: 0.0006030036602169275\n", + "epoch: 6038 train_loss: 0.0006024700123816729\n", + "epoch: 6039 train_loss: 0.0006019389256834984\n", + "epoch: 6040 train_loss: 0.0006014100508764386\n", + "epoch: 6041 train_loss: 0.0006008808268234134\n", + "epoch: 6042 train_loss: 0.0006003511953167617\n", + "epoch: 6043 train_loss: 0.0005998214473947883\n", + "epoch: 6044 train_loss: 0.0005992908263579011\n", + "epoch: 6045 train_loss: 0.0005987606709823012\n", + "epoch: 6046 train_loss: 0.0005982319707982242\n", + "epoch: 6047 train_loss: 0.0005976983811706305\n", + "epoch: 6048 train_loss: 0.0005971681675873697\n", + "epoch: 6049 train_loss: 0.0005966421449556947\n", + "epoch: 6050 train_loss: 0.0005961126880720258\n", + "epoch: 6051 train_loss: 0.0005955808446742594\n", + "epoch: 6052 train_loss: 0.000595050398260355\n", + "epoch: 6053 train_loss: 0.0005945245502516627\n", + "epoch: 6054 train_loss: 0.0005939907860010862\n", + "epoch: 6055 train_loss: 0.0005934631335549057\n", + "epoch: 6056 train_loss: 0.0005929344333708286\n", + "epoch: 6057 train_loss: 0.000592402764596045\n", + "epoch: 6058 train_loss: 0.0005918727838434279\n", + "epoch: 6059 train_loss: 0.0005913450149819255\n", + "epoch: 6060 train_loss: 0.000590815965551883\n", + "epoch: 6061 train_loss: 0.0005902867414988577\n", + "epoch: 6062 train_loss: 0.0005897564115002751\n", + "epoch: 6063 train_loss: 0.0005892267799936235\n", + "epoch: 6064 train_loss: 0.000588697730563581\n", + "epoch: 6065 train_loss: 0.0005881675169803202\n", + "epoch: 6066 train_loss: 0.0005876381765119731\n", + "epoch: 6067 train_loss: 0.000587110931519419\n", + "epoch: 6068 train_loss: 0.0005865829880349338\n", + "epoch: 6069 train_loss: 0.0005860491073690355\n", + "epoch: 6070 train_loss: 0.0005855262279510498\n", + "epoch: 6071 train_loss: 0.0005849881563335657\n", + "epoch: 6072 train_loss: 0.0005844664410687983\n", + "epoch: 6073 train_loss: 0.0005839315708726645\n", + "epoch: 6074 train_loss: 0.000583405140787363\n", + "epoch: 6075 train_loss: 0.0005828780122101307\n", + "epoch: 6076 train_loss: 0.0005823459941893816\n", + "epoch: 6077 train_loss: 0.000581818341743201\n", + "epoch: 6078 train_loss: 0.0005812938907183707\n", + "epoch: 6079 train_loss: 0.0005807608249597251\n", + "epoch: 6080 train_loss: 0.0005802314262837172\n", + "epoch: 6081 train_loss: 0.0005797046469524503\n", + "epoch: 6082 train_loss: 0.0005791762378066778\n", + "epoch: 6083 train_loss: 0.0005786443944089115\n", + "epoch: 6084 train_loss: 0.0005781223298981786\n", + "epoch: 6085 train_loss: 0.0005775878089480102\n", + "epoch: 6086 train_loss: 0.0005770618445239961\n", + "epoch: 6087 train_loss: 0.0005765346577391028\n", + "epoch: 6088 train_loss: 0.0005760029307566583\n", + "epoch: 6089 train_loss: 0.0005754736484959722\n", + "epoch: 6090 train_loss: 0.0005749495467171073\n", + "epoch: 6091 train_loss: 0.0005744189256802201\n", + "epoch: 6092 train_loss: 0.000573890982195735\n", + "epoch: 6093 train_loss: 0.0005733632133342326\n", + "epoch: 6094 train_loss: 0.0005728353280574083\n", + "epoch: 6095 train_loss: 0.0005723120411857963\n", + "epoch: 6096 train_loss: 0.0005717776366509497\n", + "epoch: 6097 train_loss: 0.0005712506244890392\n", + "epoch: 6098 train_loss: 0.0005707220989279449\n", + "epoch: 6099 train_loss: 0.0005701968329958618\n", + "epoch: 6100 train_loss: 0.0005696654552593827\n", + "epoch: 6101 train_loss: 0.0005691427504643798\n", + "epoch: 6102 train_loss: 0.0005686124204657972\n", + "epoch: 6103 train_loss: 0.0005680852336809039\n", + "epoch: 6104 train_loss: 0.0005675597349181771\n", + "epoch: 6105 train_loss: 0.0005670320242643356\n", + "epoch: 6106 train_loss: 0.0005665029166266322\n", + "epoch: 6107 train_loss: 0.0005659742746502161\n", + "epoch: 6108 train_loss: 0.0005654505803249776\n", + "epoch: 6109 train_loss: 0.0005649178056046367\n", + "epoch: 6110 train_loss: 0.0005643951008096337\n", + "epoch: 6111 train_loss: 0.0005638704751618207\n", + "epoch: 6112 train_loss: 0.000563339504878968\n", + "epoch: 6113 train_loss: 0.0005628173239529133\n", + "epoch: 6114 train_loss: 0.0005622880416922271\n", + "epoch: 6115 train_loss: 0.0005617615533992648\n", + "epoch: 6116 train_loss: 0.0005612324457615614\n", + "epoch: 6117 train_loss: 0.000560710730496794\n", + "epoch: 6118 train_loss: 0.0005601816810667515\n", + "epoch: 6119 train_loss: 0.0005596557166427374\n", + "epoch: 6120 train_loss: 0.0005591267836280167\n", + "epoch: 6121 train_loss: 0.0005586077459156513\n", + "epoch: 6122 train_loss: 0.0005580795113928616\n", + "epoch: 6123 train_loss: 0.0005575499380938709\n", + "epoch: 6124 train_loss: 0.0005570232169702649\n", + "epoch: 6125 train_loss: 0.0005564991151914\n", + "epoch: 6126 train_loss: 0.0005559750716201961\n", + "epoch: 6127 train_loss: 0.0005554489907808602\n", + "epoch: 6128 train_loss: 0.0005549209890887141\n", + "epoch: 6129 train_loss: 0.0005543996230699122\n", + "epoch: 6130 train_loss: 0.0005538737750612199\n", + "epoch: 6131 train_loss: 0.0005533431540243328\n", + "epoch: 6132 train_loss: 0.0005528205074369907\n", + "epoch: 6133 train_loss: 0.0005522966384887695\n", + "epoch: 6134 train_loss: 0.0005517686950042844\n", + "epoch: 6135 train_loss: 0.0005512394709512591\n", + "epoch: 6136 train_loss: 0.0005507212481461465\n", + "epoch: 6137 train_loss: 0.0005501958075910807\n", + "epoch: 6138 train_loss: 0.0005496694939211011\n", + "epoch: 6139 train_loss: 0.000549148942809552\n", + "epoch: 6140 train_loss: 0.0005486252484843135\n", + "epoch: 6141 train_loss: 0.0005480946274474263\n", + "epoch: 6142 train_loss: 0.0005475712823681533\n", + "epoch: 6143 train_loss: 0.0005470486357808113\n", + "epoch: 6144 train_loss: 0.0005465209833346307\n", + "epoch: 6145 train_loss: 0.0005459982203319669\n", + "epoch: 6146 train_loss: 0.0005454758647829294\n", + "epoch: 6147 train_loss: 0.000544950773473829\n", + "epoch: 6148 train_loss: 0.0005444291746243834\n", + "epoch: 6149 train_loss: 0.0005439099040813744\n", + "epoch: 6150 train_loss: 0.0005433837068267167\n", + "epoch: 6151 train_loss: 0.0005428578006103635\n", + "epoch: 6152 train_loss: 0.0005423373077064753\n", + "epoch: 6153 train_loss: 0.0005418093642219901\n", + "epoch: 6154 train_loss: 0.0005412881728261709\n", + "epoch: 6155 train_loss: 0.0005407646531239152\n", + "epoch: 6156 train_loss: 0.0005402415990829468\n", + "epoch: 6157 train_loss: 0.0005397195927798748\n", + "epoch: 6158 train_loss: 0.0005391970044001937\n", + "epoch: 6159 train_loss: 0.0005386744742281735\n", + "epoch: 6160 train_loss: 0.0005381533410400152\n", + "epoch: 6161 train_loss: 0.0005376299959607422\n", + "epoch: 6162 train_loss: 0.0005371056031435728\n", + "epoch: 6163 train_loss: 0.0005365870893001556\n", + "epoch: 6164 train_loss: 0.0005360622308216989\n", + "epoch: 6165 train_loss: 0.0005355392931960523\n", + "epoch: 6166 train_loss: 0.0005350172286853194\n", + "epoch: 6167 train_loss: 0.0005344972014427185\n", + "epoch: 6168 train_loss: 0.0005339751951396465\n", + "epoch: 6169 train_loss: 0.0005334559245966375\n", + "epoch: 6170 train_loss: 0.0005329328705556691\n", + "epoch: 6171 train_loss: 0.0005324130179360509\n", + "epoch: 6172 train_loss: 0.0005318919429555535\n", + "epoch: 6173 train_loss: 0.0005313715082593262\n", + "epoch: 6174 train_loss: 0.0005308517720550299\n", + "epoch: 6175 train_loss: 0.0005303259240463376\n", + "epoch: 6176 train_loss: 0.0005298072937875986\n", + "epoch: 6177 train_loss: 0.0005292875575833023\n", + "epoch: 6178 train_loss: 0.0005287654348649085\n", + "epoch: 6179 train_loss: 0.0005282415659166873\n", + "epoch: 6180 train_loss: 0.0005277296295389533\n", + "epoch: 6181 train_loss: 0.0005272106500342488\n", + "epoch: 6182 train_loss: 0.0005266866064630449\n", + "epoch: 6183 train_loss: 0.0005261684418655932\n", + "epoch: 6184 train_loss: 0.0005256508011370897\n", + "epoch: 6185 train_loss: 0.0005251297843642533\n", + "epoch: 6186 train_loss: 0.0005246123764663935\n", + "epoch: 6187 train_loss: 0.0005240879254415631\n", + "epoch: 6188 train_loss: 0.0005235692951828241\n", + "epoch: 6189 train_loss: 0.0005230515962466598\n", + "epoch: 6190 train_loss: 0.0005225333734415472\n", + "epoch: 6191 train_loss: 0.0005220151506364346\n", + "epoch: 6192 train_loss: 0.0005214981501922011\n", + "epoch: 6193 train_loss: 0.0005209778901189566\n", + "epoch: 6194 train_loss: 0.0005204619374126196\n", + "epoch: 6195 train_loss: 0.0005199428414925933\n", + "epoch: 6196 train_loss: 0.000519422406796366\n", + "epoch: 6197 train_loss: 0.0005189076764509082\n", + "epoch: 6198 train_loss: 0.0005183893954381347\n", + "epoch: 6199 train_loss: 0.0005178721039555967\n", + "epoch: 6200 train_loss: 0.0005173507379367948\n", + "epoch: 6201 train_loss: 0.0005168380448594689\n", + "epoch: 6202 train_loss: 0.0005163215100765228\n", + "epoch: 6203 train_loss: 0.0005158077692613006\n", + "epoch: 6204 train_loss: 0.000515288207679987\n", + "epoch: 6205 train_loss: 0.0005147707997821271\n", + "epoch: 6206 train_loss: 0.0005142554873600602\n", + "epoch: 6207 train_loss: 0.0005137420375831425\n", + "epoch: 6208 train_loss: 0.0005132220685482025\n", + "epoch: 6209 train_loss: 0.0005127058830112219\n", + "epoch: 6210 train_loss: 0.0005121916765347123\n", + "epoch: 6211 train_loss: 0.0005116744432598352\n", + "epoch: 6212 train_loss: 0.000511156627908349\n", + "epoch: 6213 train_loss: 0.0005106422468088567\n", + "epoch: 6214 train_loss: 0.0005101277492940426\n", + "epoch: 6215 train_loss: 0.000509616918861866\n", + "epoch: 6216 train_loss: 0.0005090999184176326\n", + "epoch: 6217 train_loss: 0.0005085835582576692\n", + "epoch: 6218 train_loss: 0.0005080731934867799\n", + "epoch: 6219 train_loss: 0.0005075602093711495\n", + "epoch: 6220 train_loss: 0.0005070461193099618\n", + "epoch: 6221 train_loss: 0.000506530050188303\n", + "epoch: 6222 train_loss: 0.0005060152034275234\n", + "epoch: 6223 train_loss: 0.0005055019282735884\n", + "epoch: 6224 train_loss: 0.0005049870815128088\n", + "epoch: 6225 train_loss: 0.0005044729332439601\n", + "epoch: 6226 train_loss: 0.0005039607640355825\n", + "epoch: 6227 train_loss: 0.0005034488858655095\n", + "epoch: 6228 train_loss: 0.0005029384628869593\n", + "epoch: 6229 train_loss: 0.0005024232086725533\n", + "epoch: 6230 train_loss: 0.000501912203617394\n", + "epoch: 6231 train_loss: 0.0005014034686610103\n", + "epoch: 6232 train_loss: 0.00050089176511392\n", + "epoch: 6233 train_loss: 0.0005003773258067667\n", + "epoch: 6234 train_loss: 0.0004998677759431303\n", + "epoch: 6235 train_loss: 0.0004993550828658044\n", + "epoch: 6236 train_loss: 0.0004988443688489497\n", + "epoch: 6237 train_loss: 0.0004983308608643711\n", + "epoch: 6238 train_loss: 0.000497818982694298\n", + "epoch: 6239 train_loss: 0.0004973108880221844\n", + "epoch: 6240 train_loss: 0.0004967980203218758\n", + "epoch: 6241 train_loss: 0.0004962878301739693\n", + "epoch: 6242 train_loss: 0.0004957749042659998\n", + "epoch: 6243 train_loss: 0.0004952676245011389\n", + "epoch: 6244 train_loss: 0.0004947598790749907\n", + "epoch: 6245 train_loss: 0.0004942506202496588\n", + "epoch: 6246 train_loss: 0.0004937388002872467\n", + "epoch: 6247 train_loss: 0.0004932351293973625\n", + "epoch: 6248 train_loss: 0.0004927245317958295\n", + "epoch: 6249 train_loss: 0.0004922206862829626\n", + "epoch: 6250 train_loss: 0.0004917075275443494\n", + "epoch: 6251 train_loss: 0.0004911968717351556\n", + "epoch: 6252 train_loss: 0.000490684702526778\n", + "epoch: 6253 train_loss: 0.0004901762586086988\n", + "epoch: 6254 train_loss: 0.000489673693664372\n", + "epoch: 6255 train_loss: 0.0004891670541837811\n", + "epoch: 6256 train_loss: 0.0004886620445176959\n", + "epoch: 6257 train_loss: 0.00048814856563694775\n", + "epoch: 6258 train_loss: 0.00048764405073598027\n", + "epoch: 6259 train_loss: 0.0004871398559771478\n", + "epoch: 6260 train_loss: 0.00048663068446330726\n", + "epoch: 6261 train_loss: 0.0004861252091359347\n", + "epoch: 6262 train_loss: 0.00048561967560090125\n", + "epoch: 6263 train_loss: 0.00048511443310417235\n", + "epoch: 6264 train_loss: 0.0004846088995691389\n", + "epoch: 6265 train_loss: 0.00048410292947664857\n", + "epoch: 6266 train_loss: 0.0004835999570786953\n", + "epoch: 6267 train_loss: 0.00048308935947716236\n", + "epoch: 6268 train_loss: 0.0004825856303796172\n", + "epoch: 6269 train_loss: 0.00048208277439698577\n", + "epoch: 6270 train_loss: 0.0004815772408619523\n", + "epoch: 6271 train_loss: 0.0004810740065295249\n", + "epoch: 6272 train_loss: 0.0004805702774319798\n", + "epoch: 6273 train_loss: 0.0004800643655471504\n", + "epoch: 6274 train_loss: 0.0004795620043296367\n", + "epoch: 6275 train_loss: 0.00047905909013934433\n", + "epoch: 6276 train_loss: 0.0004785593191627413\n", + "epoch: 6277 train_loss: 0.00047805573558434844\n", + "epoch: 6278 train_loss: 0.00047755331615917385\n", + "epoch: 6279 train_loss: 0.000477052089991048\n", + "epoch: 6280 train_loss: 0.0004765487101394683\n", + "epoch: 6281 train_loss: 0.00047604762949049473\n", + "epoch: 6282 train_loss: 0.0004755404079332948\n", + "epoch: 6283 train_loss: 0.00047504124813713133\n", + "epoch: 6284 train_loss: 0.0004745409241877496\n", + "epoch: 6285 train_loss: 0.00047403958160430193\n", + "epoch: 6286 train_loss: 0.0004735382681246847\n", + "epoch: 6287 train_loss: 0.0004730357031803578\n", + "epoch: 6288 train_loss: 0.0004725379403680563\n", + "epoch: 6289 train_loss: 0.00047204113798215985\n", + "epoch: 6290 train_loss: 0.00047154357889667153\n", + "epoch: 6291 train_loss: 0.00047103784163482487\n", + "epoch: 6292 train_loss: 0.00047053792513906956\n", + "epoch: 6293 train_loss: 0.00047004272346384823\n", + "epoch: 6294 train_loss: 0.0004695401294156909\n", + "epoch: 6295 train_loss: 0.00046904486953280866\n", + "epoch: 6296 train_loss: 0.00046854541869834065\n", + "epoch: 6297 train_loss: 0.00046805181773379445\n", + "epoch: 6298 train_loss: 0.0004675517848227173\n", + "epoch: 6299 train_loss: 0.0004670504422392696\n", + "epoch: 6300 train_loss: 0.0004665551823563874\n", + "epoch: 6301 train_loss: 0.0004660583508666605\n", + "epoch: 6302 train_loss: 0.0004655582888517529\n", + "epoch: 6303 train_loss: 0.0004650609043892473\n", + "epoch: 6304 train_loss: 0.000464566022856161\n", + "epoch: 6305 train_loss: 0.00046407151967287064\n", + "epoch: 6306 train_loss: 0.00046357783139683306\n", + "epoch: 6307 train_loss: 0.0004630804469343275\n", + "epoch: 6308 train_loss: 0.00046258760266937315\n", + "epoch: 6309 train_loss: 0.0004620910040102899\n", + "epoch: 6310 train_loss: 0.0004615948419086635\n", + "epoch: 6311 train_loss: 0.00046110141556710005\n", + "epoch: 6312 train_loss: 0.00046060566091910005\n", + "epoch: 6313 train_loss: 0.00046011118683964014\n", + "epoch: 6314 train_loss: 0.00045961476280353963\n", + "epoch: 6315 train_loss: 0.0004591247416101396\n", + "epoch: 6316 train_loss: 0.0004586350405588746\n", + "epoch: 6317 train_loss: 0.0004581412358675152\n", + "epoch: 6318 train_loss: 0.00045765042887069285\n", + "epoch: 6319 train_loss: 0.0004571510653477162\n", + "epoch: 6320 train_loss: 0.00045665958896279335\n", + "epoch: 6321 train_loss: 0.0004561694513540715\n", + "epoch: 6322 train_loss: 0.0004556761705316603\n", + "epoch: 6323 train_loss: 0.00045518504339270294\n", + "epoch: 6324 train_loss: 0.00045469426549971104\n", + "epoch: 6325 train_loss: 0.0004542044480331242\n", + "epoch: 6326 train_loss: 0.0004537142813205719\n", + "epoch: 6327 train_loss: 0.00045322635560296476\n", + "epoch: 6328 train_loss: 0.0004527395067270845\n", + "epoch: 6329 train_loss: 0.00045224884524941444\n", + "epoch: 6330 train_loss: 0.00045175605919212103\n", + "epoch: 6331 train_loss: 0.0004512680461630225\n", + "epoch: 6332 train_loss: 0.0004507752601057291\n", + "epoch: 6333 train_loss: 0.0004502877709455788\n", + "epoch: 6334 train_loss: 0.00044980269740335643\n", + "epoch: 6335 train_loss: 0.00044931142474524677\n", + "epoch: 6336 train_loss: 0.00044882562360726297\n", + "epoch: 6337 train_loss: 0.000448336242698133\n", + "epoch: 6338 train_loss: 0.0004478477640077472\n", + "epoch: 6339 train_loss: 0.00044736344716511667\n", + "epoch: 6340 train_loss: 0.00044687706395052373\n", + "epoch: 6341 train_loss: 0.0004463880031835288\n", + "epoch: 6342 train_loss: 0.00044590409379452467\n", + "epoch: 6343 train_loss: 0.000445416197180748\n", + "epoch: 6344 train_loss: 0.0004449287662282586\n", + "epoch: 6345 train_loss: 0.0004444453807082027\n", + "epoch: 6346 train_loss: 0.00044396426528692245\n", + "epoch: 6347 train_loss: 0.00044347901712171733\n", + "epoch: 6348 train_loss: 0.0004429946420714259\n", + "epoch: 6349 train_loss: 0.000442510936409235\n", + "epoch: 6350 train_loss: 0.0004420282202772796\n", + "epoch: 6351 train_loss: 0.0004415501025505364\n", + "epoch: 6352 train_loss: 0.0004410648252815008\n", + "epoch: 6353 train_loss: 0.00044058318599127233\n", + "epoch: 6354 train_loss: 0.00044009636621922255\n", + "epoch: 6355 train_loss: 0.00043961251503787935\n", + "epoch: 6356 train_loss: 0.00043913169065490365\n", + "epoch: 6357 train_loss: 0.0004386517102830112\n", + "epoch: 6358 train_loss: 0.0004381690814625472\n", + "epoch: 6359 train_loss: 0.00043768653995357454\n", + "epoch: 6360 train_loss: 0.00043720524990931153\n", + "epoch: 6361 train_loss: 0.00043672198080457747\n", + "epoch: 6362 train_loss: 0.000436250091297552\n", + "epoch: 6363 train_loss: 0.0004357649595476687\n", + "epoch: 6364 train_loss: 0.0004352871619630605\n", + "epoch: 6365 train_loss: 0.00043480825843289495\n", + "epoch: 6366 train_loss: 0.00043432749225758016\n", + "epoch: 6367 train_loss: 0.0004338458238635212\n", + "epoch: 6368 train_loss: 0.00043336974340490997\n", + "epoch: 6369 train_loss: 0.0004328929935581982\n", + "epoch: 6370 train_loss: 0.00043241665116511285\n", + "epoch: 6371 train_loss: 0.0004319349827710539\n", + "epoch: 6372 train_loss: 0.0004314627731218934\n", + "epoch: 6373 train_loss: 0.0004309869254939258\n", + "epoch: 6374 train_loss: 0.0004305127076804638\n", + "epoch: 6375 train_loss: 0.00043003656901419163\n", + "epoch: 6376 train_loss: 0.0004295604594517499\n", + "epoch: 6377 train_loss: 0.00042908359318971634\n", + "epoch: 6378 train_loss: 0.00042860681423917413\n", + "epoch: 6379 train_loss: 0.00042813405161723495\n", + "epoch: 6380 train_loss: 0.0004276585241314024\n", + "epoch: 6381 train_loss: 0.00042718611075542867\n", + "epoch: 6382 train_loss: 0.0004267111071385443\n", + "epoch: 6383 train_loss: 0.0004262387228664011\n", + "epoch: 6384 train_loss: 0.0004257616528775543\n", + "epoch: 6385 train_loss: 0.0004252961080055684\n", + "epoch: 6386 train_loss: 0.00042481927084736526\n", + "epoch: 6387 train_loss: 0.0004243471485096961\n", + "epoch: 6388 train_loss: 0.00042387525900267065\n", + "epoch: 6389 train_loss: 0.00042340371874161065\n", + "epoch: 6390 train_loss: 0.0004229301994200796\n", + "epoch: 6391 train_loss: 0.0004224610165692866\n", + "epoch: 6392 train_loss: 0.0004219913680572063\n", + "epoch: 6393 train_loss: 0.0004215197404846549\n", + "epoch: 6394 train_loss: 0.0004210510232951492\n", + "epoch: 6395 train_loss: 0.00042058012331835926\n", + "epoch: 6396 train_loss: 0.000420112774008885\n", + "epoch: 6397 train_loss: 0.00041964868432842195\n", + "epoch: 6398 train_loss: 0.0004191781918052584\n", + "epoch: 6399 train_loss: 0.0004187064478173852\n", + "epoch: 6400 train_loss: 0.0004182402917649597\n", + "epoch: 6401 train_loss: 0.00041777145816013217\n", + "epoch: 6402 train_loss: 0.0004173050110694021\n", + "epoch: 6403 train_loss: 0.00041683996096253395\n", + "epoch: 6404 train_loss: 0.0004163763078395277\n", + "epoch: 6405 train_loss: 0.0004159061354584992\n", + "epoch: 6406 train_loss: 0.0004154420748818666\n", + "epoch: 6407 train_loss: 0.00041497446363791823\n", + "epoch: 6408 train_loss: 0.0004145090060774237\n", + "epoch: 6409 train_loss: 0.00041404672083444893\n", + "epoch: 6410 train_loss: 0.00041358376620337367\n", + "epoch: 6411 train_loss: 0.0004131176392547786\n", + "epoch: 6412 train_loss: 0.0004126537241972983\n", + "epoch: 6413 train_loss: 0.00041218847036361694\n", + "epoch: 6414 train_loss: 0.00041172621422447264\n", + "epoch: 6415 train_loss: 0.00041126544238068163\n", + "epoch: 6416 train_loss: 0.0004108019929844886\n", + "epoch: 6417 train_loss: 0.00041034314199350774\n", + "epoch: 6418 train_loss: 0.00040987657848745584\n", + "epoch: 6419 train_loss: 0.00040941231418401003\n", + "epoch: 6420 train_loss: 0.0004089522990398109\n", + "epoch: 6421 train_loss: 0.0004084898973815143\n", + "epoch: 6422 train_loss: 0.0004080366634298116\n", + "epoch: 6423 train_loss: 0.0004075744072906673\n", + "epoch: 6424 train_loss: 0.0004071161965839565\n", + "epoch: 6425 train_loss: 0.0004066583060193807\n", + "epoch: 6426 train_loss: 0.0004062002117279917\n", + "epoch: 6427 train_loss: 0.0004057421756442636\n", + "epoch: 6428 train_loss: 0.0004052821605000645\n", + "epoch: 6429 train_loss: 0.00040482630720362067\n", + "epoch: 6430 train_loss: 0.00040436824201606214\n", + "epoch: 6431 train_loss: 0.0004039091581944376\n", + "epoch: 6432 train_loss: 0.00040345487650483847\n", + "epoch: 6433 train_loss: 0.00040299558895640075\n", + "epoch: 6434 train_loss: 0.0004025423259008676\n", + "epoch: 6435 train_loss: 0.00040208728751167655\n", + "epoch: 6436 train_loss: 0.00040163262747228146\n", + "epoch: 6437 train_loss: 0.0004011779383290559\n", + "epoch: 6438 train_loss: 0.0004007242969237268\n", + "epoch: 6439 train_loss: 0.0004002705099992454\n", + "epoch: 6440 train_loss: 0.00039981774170883\n", + "epoch: 6441 train_loss: 0.00039936171378940344\n", + "epoch: 6442 train_loss: 0.0003989093820564449\n", + "epoch: 6443 train_loss: 0.0003984567883890122\n", + "epoch: 6444 train_loss: 0.0003980044275522232\n", + "epoch: 6445 train_loss: 0.0003975523286499083\n", + "epoch: 6446 train_loss: 0.00039709769771434367\n", + "epoch: 6447 train_loss: 0.0003966497315559536\n", + "epoch: 6448 train_loss: 0.0003962003975175321\n", + "epoch: 6449 train_loss: 0.0003957503940910101\n", + "epoch: 6450 train_loss: 0.0003953024570364505\n", + "epoch: 6451 train_loss: 0.0003948500088881701\n", + "epoch: 6452 train_loss: 0.0003943998599424958\n", + "epoch: 6453 train_loss: 0.00039395125349983573\n", + "epoch: 6454 train_loss: 0.00039350363658741117\n", + "epoch: 6455 train_loss: 0.00039305497193709016\n", + "epoch: 6456 train_loss: 0.00039260234916582704\n", + "epoch: 6457 train_loss: 0.00039215610013343394\n", + "epoch: 6458 train_loss: 0.00039171025855466723\n", + "epoch: 6459 train_loss: 0.0003912578395102173\n", + "epoch: 6460 train_loss: 0.00039081519935280085\n", + "epoch: 6461 train_loss: 0.0003903732285834849\n", + "epoch: 6462 train_loss: 0.0003899275907315314\n", + "epoch: 6463 train_loss: 0.00038948276778683066\n", + "epoch: 6464 train_loss: 0.000389035907573998\n", + "epoch: 6465 train_loss: 0.00038859411142766476\n", + "epoch: 6466 train_loss: 0.00038815109292045236\n", + "epoch: 6467 train_loss: 0.0003877065028063953\n", + "epoch: 6468 train_loss: 0.00038726223283447325\n", + "epoch: 6469 train_loss: 0.000386820116546005\n", + "epoch: 6470 train_loss: 0.0003863756137434393\n", + "epoch: 6471 train_loss: 0.0003859341377392411\n", + "epoch: 6472 train_loss: 0.00038549097371287644\n", + "epoch: 6473 train_loss: 0.00038505165139213204\n", + "epoch: 6474 train_loss: 0.0003846114268526435\n", + "epoch: 6475 train_loss: 0.0003841700672637671\n", + "epoch: 6476 train_loss: 0.00038373374263755977\n", + "epoch: 6477 train_loss: 0.0003832929360214621\n", + "epoch: 6478 train_loss: 0.000382855097996071\n", + "epoch: 6479 train_loss: 0.00038241519359871745\n", + "epoch: 6480 train_loss: 0.0003819773264694959\n", + "epoch: 6481 train_loss: 0.00038153951754793525\n", + "epoch: 6482 train_loss: 0.0003811023780144751\n", + "epoch: 6483 train_loss: 0.0003806611057370901\n", + "epoch: 6484 train_loss: 0.00038022318040020764\n", + "epoch: 6485 train_loss: 0.0003797865938395262\n", + "epoch: 6486 train_loss: 0.0003793502983171493\n", + "epoch: 6487 train_loss: 0.00037891327519901097\n", + "epoch: 6488 train_loss: 0.0003784804430324584\n", + "epoch: 6489 train_loss: 0.00037804763996973634\n", + "epoch: 6490 train_loss: 0.0003776149533223361\n", + "epoch: 6491 train_loss: 0.00037717950181104243\n", + "epoch: 6492 train_loss: 0.0003767434391193092\n", + "epoch: 6493 train_loss: 0.00037631255690939724\n", + "epoch: 6494 train_loss: 0.00037587794940918684\n", + "epoch: 6495 train_loss: 0.0003754456411115825\n", + "epoch: 6496 train_loss: 0.00037501301267184317\n", + "epoch: 6497 train_loss: 0.0003745790454559028\n", + "epoch: 6498 train_loss: 0.0003741487453226\n", + "epoch: 6499 train_loss: 0.0003737183869816363\n", + "epoch: 6500 train_loss: 0.00037328206235542893\n", + "epoch: 6501 train_loss: 0.0003728537412825972\n", + "epoch: 6502 train_loss: 0.0003724261769093573\n", + "epoch: 6503 train_loss: 0.0003719958185683936\n", + "epoch: 6504 train_loss: 0.0003715671773534268\n", + "epoch: 6505 train_loss: 0.0003711374301929027\n", + "epoch: 6506 train_loss: 0.000370709749404341\n", + "epoch: 6507 train_loss: 0.0003702789545059204\n", + "epoch: 6508 train_loss: 0.0003698510699905455\n", + "epoch: 6509 train_loss: 0.00036942720180377364\n", + "epoch: 6510 train_loss: 0.0003690012963488698\n", + "epoch: 6511 train_loss: 0.0003685714036691934\n", + "epoch: 6512 train_loss: 0.0003681451780721545\n", + "epoch: 6513 train_loss: 0.0003677192726172507\n", + "epoch: 6514 train_loss: 0.00036729336716234684\n", + "epoch: 6515 train_loss: 0.0003668695571832359\n", + "epoch: 6516 train_loss: 0.0003664472606033087\n", + "epoch: 6517 train_loss: 0.0003660255460999906\n", + "epoch: 6518 train_loss: 0.00036560388980433345\n", + "epoch: 6519 train_loss: 0.0003651800798252225\n", + "epoch: 6520 train_loss: 0.00036475525121204555\n", + "epoch: 6521 train_loss: 0.0003643337404355407\n", + "epoch: 6522 train_loss: 0.0003639129863586277\n", + "epoch: 6523 train_loss: 0.0003634913300629705\n", + "epoch: 6524 train_loss: 0.0003630681021604687\n", + "epoch: 6525 train_loss: 0.0003626466786954552\n", + "epoch: 6526 train_loss: 0.0003622258664108813\n", + "epoch: 6527 train_loss: 0.00036180700408294797\n", + "epoch: 6528 train_loss: 0.0003613879671320319\n", + "epoch: 6529 train_loss: 0.0003609711420722306\n", + "epoch: 6530 train_loss: 0.0003605490201152861\n", + "epoch: 6531 train_loss: 0.0003601364733185619\n", + "epoch: 6532 train_loss: 0.0003597186878323555\n", + "epoch: 6533 train_loss: 0.00035929714795202017\n", + "epoch: 6534 train_loss: 0.00035888139973394573\n", + "epoch: 6535 train_loss: 0.0003584689402487129\n", + "epoch: 6536 train_loss: 0.0003580523480195552\n", + "epoch: 6537 train_loss: 0.00035763526102527976\n", + "epoch: 6538 train_loss: 0.0003572185232769698\n", + "epoch: 6539 train_loss: 0.00035680446308106184\n", + "epoch: 6540 train_loss: 0.0003563884529285133\n", + "epoch: 6541 train_loss: 0.00035597506212070584\n", + "epoch: 6542 train_loss: 0.000355557247530669\n", + "epoch: 6543 train_loss: 0.00035514781484380364\n", + "epoch: 6544 train_loss: 0.0003547337546478957\n", + "epoch: 6545 train_loss: 0.00035432245931588113\n", + "epoch: 6546 train_loss: 0.0003539104072842747\n", + "epoch: 6547 train_loss: 0.0003535013529472053\n", + "epoch: 6548 train_loss: 0.0003530931135173887\n", + "epoch: 6549 train_loss: 0.00035267870407551527\n", + "epoch: 6550 train_loss: 0.000352267554262653\n", + "epoch: 6551 train_loss: 0.0003518568992149085\n", + "epoch: 6552 train_loss: 0.00035144653520546854\n", + "epoch: 6553 train_loss: 0.0003510362294036895\n", + "epoch: 6554 train_loss: 0.0003506271168589592\n", + "epoch: 6555 train_loss: 0.00035021701478399336\n", + "epoch: 6556 train_loss: 0.0003498083387967199\n", + "epoch: 6557 train_loss: 0.0003493992844596505\n", + "epoch: 6558 train_loss: 0.0003489907248876989\n", + "epoch: 6559 train_loss: 0.00034858364961110055\n", + "epoch: 6560 train_loss: 0.00034818018320947886\n", + "epoch: 6561 train_loss: 0.0003477712452877313\n", + "epoch: 6562 train_loss: 0.00034737103851512074\n", + "epoch: 6563 train_loss: 0.0003469663788564503\n", + "epoch: 6564 train_loss: 0.00034656020579859614\n", + "epoch: 6565 train_loss: 0.0003461553424131125\n", + "epoch: 6566 train_loss: 0.0003457526327110827\n", + "epoch: 6567 train_loss: 0.00034534785663709044\n", + "epoch: 6568 train_loss: 0.0003449413925409317\n", + "epoch: 6569 train_loss: 0.00034454016713425517\n", + "epoch: 6570 train_loss: 0.00034413981484249234\n", + "epoch: 6571 train_loss: 0.0003437375999055803\n", + "epoch: 6572 train_loss: 0.00034333349321968853\n", + "epoch: 6573 train_loss: 0.0003429358475841582\n", + "epoch: 6574 train_loss: 0.0003425337781663984\n", + "epoch: 6575 train_loss: 0.00034213403705507517\n", + "epoch: 6576 train_loss: 0.0003417386906221509\n", + "epoch: 6577 train_loss: 0.0003413413360249251\n", + "epoch: 6578 train_loss: 0.0003409422643017024\n", + "epoch: 6579 train_loss: 0.00034054243587888777\n", + "epoch: 6580 train_loss: 0.000340144382789731\n", + "epoch: 6581 train_loss: 0.0003397436812520027\n", + "epoch: 6582 train_loss: 0.000339346966939047\n", + "epoch: 6583 train_loss: 0.0003389486810192466\n", + "epoch: 6584 train_loss: 0.00033855484798550606\n", + "epoch: 6585 train_loss: 0.00033815624192357063\n", + "epoch: 6586 train_loss: 0.000337763165589422\n", + "epoch: 6587 train_loss: 0.0003373668878339231\n", + "epoch: 6588 train_loss: 0.00033697165781632066\n", + "epoch: 6589 train_loss: 0.00033657532185316086\n", + "epoch: 6590 train_loss: 0.0003361845447216183\n", + "epoch: 6591 train_loss: 0.0003357927780598402\n", + "epoch: 6592 train_loss: 0.0003353960928507149\n", + "epoch: 6593 train_loss: 0.00033500546123832464\n", + "epoch: 6594 train_loss: 0.0003346139274071902\n", + "epoch: 6595 train_loss: 0.00033422469277866185\n", + "epoch: 6596 train_loss: 0.00033383339177817106\n", + "epoch: 6597 train_loss: 0.0003334420616738498\n", + "epoch: 6598 train_loss: 0.00033305046963505447\n", + "epoch: 6599 train_loss: 0.00033265858655795455\n", + "epoch: 6600 train_loss: 0.00033226984669454396\n", + "epoch: 6601 train_loss: 0.0003318806120660156\n", + "epoch: 6602 train_loss: 0.00033149190130643547\n", + "epoch: 6603 train_loss: 0.00033110249205492437\n", + "epoch: 6604 train_loss: 0.00033071465441025794\n", + "epoch: 6605 train_loss: 0.000330329523421824\n", + "epoch: 6606 train_loss: 0.0003299436648376286\n", + "epoch: 6607 train_loss: 0.00032955597271211445\n", + "epoch: 6608 train_loss: 0.0003291671455372125\n", + "epoch: 6609 train_loss: 0.0003287792205810547\n", + "epoch: 6610 train_loss: 0.00032839036430232227\n", + "epoch: 6611 train_loss: 0.0003280082019045949\n", + "epoch: 6612 train_loss: 0.00032762065529823303\n", + "epoch: 6613 train_loss: 0.00032723817275837064\n", + "epoch: 6614 train_loss: 0.00032685298356227577\n", + "epoch: 6615 train_loss: 0.000326470413710922\n", + "epoch: 6616 train_loss: 0.00032608697074465454\n", + "epoch: 6617 train_loss: 0.0003257051284890622\n", + "epoch: 6618 train_loss: 0.0003253219765610993\n", + "epoch: 6619 train_loss: 0.00032494193874299526\n", + "epoch: 6620 train_loss: 0.0003245604457333684\n", + "epoch: 6621 train_loss: 0.0003241785743739456\n", + "epoch: 6622 train_loss: 0.0003237966157030314\n", + "epoch: 6623 train_loss: 0.0003234150935895741\n", + "epoch: 6624 train_loss: 0.00032303662737831473\n", + "epoch: 6625 train_loss: 0.00032265984918922186\n", + "epoch: 6626 train_loss: 0.0003222827799618244\n", + "epoch: 6627 train_loss: 0.000321902334690094\n", + "epoch: 6628 train_loss: 0.0003215232864022255\n", + "epoch: 6629 train_loss: 0.00032114647910930216\n", + "epoch: 6630 train_loss: 0.0003207708359695971\n", + "epoch: 6631 train_loss: 0.0003203944070264697\n", + "epoch: 6632 train_loss: 0.0003200167266186327\n", + "epoch: 6633 train_loss: 0.0003196375910192728\n", + "epoch: 6634 train_loss: 0.0003192631702404469\n", + "epoch: 6635 train_loss: 0.0003188867121934891\n", + "epoch: 6636 train_loss: 0.00031851191306486726\n", + "epoch: 6637 train_loss: 0.00031814014073461294\n", + "epoch: 6638 train_loss: 0.0003177669132128358\n", + "epoch: 6639 train_loss: 0.0003173944423906505\n", + "epoch: 6640 train_loss: 0.00031702095293439925\n", + "epoch: 6641 train_loss: 0.00031664830748923123\n", + "epoch: 6642 train_loss: 0.00031627705902792513\n", + "epoch: 6643 train_loss: 0.0003159045591019094\n", + "epoch: 6644 train_loss: 0.00031553328153677285\n", + "epoch: 6645 train_loss: 0.0003151609271299094\n", + "epoch: 6646 train_loss: 0.0003147898823954165\n", + "epoch: 6647 train_loss: 0.00031442430918104947\n", + "epoch: 6648 train_loss: 0.0003140538465231657\n", + "epoch: 6649 train_loss: 0.00031368437339551747\n", + "epoch: 6650 train_loss: 0.00031331388163380325\n", + "epoch: 6651 train_loss: 0.0003129435353912413\n", + "epoch: 6652 train_loss: 0.0003125737130176276\n", + "epoch: 6653 train_loss: 0.0003122077032458037\n", + "epoch: 6654 train_loss: 0.0003118384920526296\n", + "epoch: 6655 train_loss: 0.0003114691935479641\n", + "epoch: 6656 train_loss: 0.0003111005644313991\n", + "epoch: 6657 train_loss: 0.00031073539867065847\n", + "epoch: 6658 train_loss: 0.00031037372536957264\n", + "epoch: 6659 train_loss: 0.00031001048046164215\n", + "epoch: 6660 train_loss: 0.00030964569305069745\n", + "epoch: 6661 train_loss: 0.00030927854822948575\n", + "epoch: 6662 train_loss: 0.00030891437199898064\n", + "epoch: 6663 train_loss: 0.00030854647047817707\n", + "epoch: 6664 train_loss: 0.00030818599043413997\n", + "epoch: 6665 train_loss: 0.00030782591784372926\n", + "epoch: 6666 train_loss: 0.0003074614214710891\n", + "epoch: 6667 train_loss: 0.0003070989914704114\n", + "epoch: 6668 train_loss: 0.00030674022855237126\n", + "epoch: 6669 train_loss: 0.00030637913732789457\n", + "epoch: 6670 train_loss: 0.00030601824983023107\n", + "epoch: 6671 train_loss: 0.0003056556452065706\n", + "epoch: 6672 train_loss: 0.00030529522337019444\n", + "epoch: 6673 train_loss: 0.00030493977828882635\n", + "epoch: 6674 train_loss: 0.0003045798803213984\n", + "epoch: 6675 train_loss: 0.0003042250173166394\n", + "epoch: 6676 train_loss: 0.00030386471189558506\n", + "epoch: 6677 train_loss: 0.0003035072877537459\n", + "epoch: 6678 train_loss: 0.00030315027106553316\n", + "epoch: 6679 train_loss: 0.00030279625207185745\n", + "epoch: 6680 train_loss: 0.00030243786750361323\n", + "epoch: 6681 train_loss: 0.0003020801523234695\n", + "epoch: 6682 train_loss: 0.0003017215058207512\n", + "epoch: 6683 train_loss: 0.00030136617715470493\n", + "epoch: 6684 train_loss: 0.00030100985895842314\n", + "epoch: 6685 train_loss: 0.00030065339524298906\n", + "epoch: 6686 train_loss: 0.0003002990852110088\n", + "epoch: 6687 train_loss: 0.00029994890792295337\n", + "epoch: 6688 train_loss: 0.00029959637322463095\n", + "epoch: 6689 train_loss: 0.0002992432564496994\n", + "epoch: 6690 train_loss: 0.0002988901105709374\n", + "epoch: 6691 train_loss: 0.00029853713931515813\n", + "epoch: 6692 train_loss: 0.0002981808502227068\n", + "epoch: 6693 train_loss: 0.00029783142963424325\n", + "epoch: 6694 train_loss: 0.00029748002998530865\n", + "epoch: 6695 train_loss: 0.00029712950345128775\n", + "epoch: 6696 train_loss: 0.00029678159626200795\n", + "epoch: 6697 train_loss: 0.0002964276645798236\n", + "epoch: 6698 train_loss: 0.00029608106706291437\n", + "epoch: 6699 train_loss: 0.000295731209916994\n", + "epoch: 6700 train_loss: 0.0002953857183456421\n", + "epoch: 6701 train_loss: 0.0002950390335172415\n", + "epoch: 6702 train_loss: 0.00029468510183505714\n", + "epoch: 6703 train_loss: 0.00029434505268000066\n", + "epoch: 6704 train_loss: 0.00029399283812381327\n", + "epoch: 6705 train_loss: 0.0002936477249022573\n", + "epoch: 6706 train_loss: 0.0002933051437139511\n", + "epoch: 6707 train_loss: 0.00029295915737748146\n", + "epoch: 6708 train_loss: 0.0002926174784079194\n", + "epoch: 6709 train_loss: 0.00029227175400592387\n", + "epoch: 6710 train_loss: 0.00029192669899202883\n", + "epoch: 6711 train_loss: 0.0002915809163823724\n", + "epoch: 6712 train_loss: 0.0002912342897616327\n", + "epoch: 6713 train_loss: 0.00029089220333844423\n", + "epoch: 6714 train_loss: 0.00029054953483864665\n", + "epoch: 6715 train_loss: 0.00029020599322393537\n", + "epoch: 6716 train_loss: 0.0002898656530305743\n", + "epoch: 6717 train_loss: 0.00028952237335033715\n", + "epoch: 6718 train_loss: 0.00028918375028297305\n", + "epoch: 6719 train_loss: 0.00028884041239507496\n", + "epoch: 6720 train_loss: 0.0002884990826714784\n", + "epoch: 6721 train_loss: 0.00028816191479563713\n", + "epoch: 6722 train_loss: 0.00028781790751963854\n", + "epoch: 6723 train_loss: 0.0002874768397305161\n", + "epoch: 6724 train_loss: 0.0002871387987397611\n", + "epoch: 6725 train_loss: 0.0002868027950171381\n", + "epoch: 6726 train_loss: 0.00028646280406974256\n", + "epoch: 6727 train_loss: 0.00028612613095901906\n", + "epoch: 6728 train_loss: 0.0002857910003513098\n", + "epoch: 6729 train_loss: 0.0002854534541256726\n", + "epoch: 6730 train_loss: 0.00028511456912383437\n", + "epoch: 6731 train_loss: 0.00028477926389314234\n", + "epoch: 6732 train_loss: 0.0002844461123459041\n", + "epoch: 6733 train_loss: 0.0002841107198037207\n", + "epoch: 6734 train_loss: 0.0002837755891960114\n", + "epoch: 6735 train_loss: 0.0002834408369380981\n", + "epoch: 6736 train_loss: 0.00028310855850577354\n", + "epoch: 6737 train_loss: 0.0002827764255926013\n", + "epoch: 6738 train_loss: 0.0002824413531925529\n", + "epoch: 6739 train_loss: 0.0002821050293277949\n", + "epoch: 6740 train_loss: 0.0002817742351908237\n", + "epoch: 6741 train_loss: 0.0002814448089338839\n", + "epoch: 6742 train_loss: 0.00028111046412959695\n", + "epoch: 6743 train_loss: 0.0002807794662658125\n", + "epoch: 6744 train_loss: 0.0002804456162266433\n", + "epoch: 6745 train_loss: 0.0002801167720463127\n", + "epoch: 6746 train_loss: 0.00027978085563518107\n", + "epoch: 6747 train_loss: 0.00027945043984800577\n", + "epoch: 6748 train_loss: 0.0002791249135043472\n", + "epoch: 6749 train_loss: 0.00027879452682100236\n", + "epoch: 6750 train_loss: 0.0002784674579743296\n", + "epoch: 6751 train_loss: 0.00027813995257019997\n", + "epoch: 6752 train_loss: 0.0002778158523142338\n", + "epoch: 6753 train_loss: 0.0002774856984615326\n", + "epoch: 6754 train_loss: 0.0002771580475382507\n", + "epoch: 6755 train_loss: 0.000276830600341782\n", + "epoch: 6756 train_loss: 0.00027650335687212646\n", + "epoch: 6757 train_loss: 0.0002761801879387349\n", + "epoch: 6758 train_loss: 0.0002758548071142286\n", + "epoch: 6759 train_loss: 0.0002755308523774147\n", + "epoch: 6760 train_loss: 0.0002752035215962678\n", + "epoch: 6761 train_loss: 0.0002748803235590458\n", + "epoch: 6762 train_loss: 0.00027455526287667453\n", + "epoch: 6763 train_loss: 0.0002742309879977256\n", + "epoch: 6764 train_loss: 0.00027391372714191675\n", + "epoch: 6765 train_loss: 0.00027358587249182165\n", + "epoch: 6766 train_loss: 0.00027326401323080063\n", + "epoch: 6767 train_loss: 0.0002729428233578801\n", + "epoch: 6768 train_loss: 0.0002726194798015058\n", + "epoch: 6769 train_loss: 0.00027229514671489596\n", + "epoch: 6770 train_loss: 0.0002719741314649582\n", + "epoch: 6771 train_loss: 0.0002716536109801382\n", + "epoch: 6772 train_loss: 0.0002713346038945019\n", + "epoch: 6773 train_loss: 0.00027101451996713877\n", + "epoch: 6774 train_loss: 0.00027069717179983854\n", + "epoch: 6775 train_loss: 0.0002703791542444378\n", + "epoch: 6776 train_loss: 0.00027006014715880156\n", + "epoch: 6777 train_loss: 0.00026974070351570845\n", + "epoch: 6778 train_loss: 0.00026942481053993106\n", + "epoch: 6779 train_loss: 0.0002691069967113435\n", + "epoch: 6780 train_loss: 0.00026879110373556614\n", + "epoch: 6781 train_loss: 0.00026847433764487505\n", + "epoch: 6782 train_loss: 0.00026816027821041644\n", + "epoch: 6783 train_loss: 0.00026784170768223703\n", + "epoch: 6784 train_loss: 0.0002675253199413419\n", + "epoch: 6785 train_loss: 0.0002672098344191909\n", + "epoch: 6786 train_loss: 0.0002668944653123617\n", + "epoch: 6787 train_loss: 0.0002665818319655955\n", + "epoch: 6788 train_loss: 0.0002662658516783267\n", + "epoch: 6789 train_loss: 0.0002659492311067879\n", + "epoch: 6790 train_loss: 0.00026563607389107347\n", + "epoch: 6791 train_loss: 0.0002653216361068189\n", + "epoch: 6792 train_loss: 0.000265011825831607\n", + "epoch: 6793 train_loss: 0.0002647021901793778\n", + "epoch: 6794 train_loss: 0.0002643862389959395\n", + "epoch: 6795 train_loss: 0.0002640772727318108\n", + "epoch: 6796 train_loss: 0.00026377022732049227\n", + "epoch: 6797 train_loss: 0.0002634583506733179\n", + "epoch: 6798 train_loss: 0.000263147841906175\n", + "epoch: 6799 train_loss: 0.0002628364891279489\n", + "epoch: 6800 train_loss: 0.0002625259221531451\n", + "epoch: 6801 train_loss: 0.00026221812004223466\n", + "epoch: 6802 train_loss: 0.0002619089209474623\n", + "epoch: 6803 train_loss: 0.0002615968114696443\n", + "epoch: 6804 train_loss: 0.0002612933749333024\n", + "epoch: 6805 train_loss: 0.00026098868693225086\n", + "epoch: 6806 train_loss: 0.000260677479673177\n", + "epoch: 6807 train_loss: 0.0002603671164251864\n", + "epoch: 6808 train_loss: 0.00026005739346146584\n", + "epoch: 6809 train_loss: 0.0002597533166408539\n", + "epoch: 6810 train_loss: 0.0002594470570329577\n", + "epoch: 6811 train_loss: 0.000259146501775831\n", + "epoch: 6812 train_loss: 0.00025884443311952055\n", + "epoch: 6813 train_loss: 0.00025853505940176547\n", + "epoch: 6814 train_loss: 0.000258232990745455\n", + "epoch: 6815 train_loss: 0.000257927633356303\n", + "epoch: 6816 train_loss: 0.00025762361474335194\n", + "epoch: 6817 train_loss: 0.00025731822825036943\n", + "epoch: 6818 train_loss: 0.0002570193319115788\n", + "epoch: 6819 train_loss: 0.0002567155461292714\n", + "epoch: 6820 train_loss: 0.0002564128371886909\n", + "epoch: 6821 train_loss: 0.0002561089931987226\n", + "epoch: 6822 train_loss: 0.0002558072446845472\n", + "epoch: 6823 train_loss: 0.00025550805730745196\n", + "epoch: 6824 train_loss: 0.00025520348572172225\n", + "epoch: 6825 train_loss: 0.0002549003984313458\n", + "epoch: 6826 train_loss: 0.00025460441247560084\n", + "epoch: 6827 train_loss: 0.0002543077280279249\n", + "epoch: 6828 train_loss: 0.0002540095301810652\n", + "epoch: 6829 train_loss: 0.0002537104592192918\n", + "epoch: 6830 train_loss: 0.0002534087107051164\n", + "epoch: 6831 train_loss: 0.00025311007630079985\n", + "epoch: 6832 train_loss: 0.0002528145269025117\n", + "epoch: 6833 train_loss: 0.0002525202289689332\n", + "epoch: 6834 train_loss: 0.00025222019758075476\n", + "epoch: 6835 train_loss: 0.0002519226400181651\n", + "epoch: 6836 train_loss: 0.0002516285749152303\n", + "epoch: 6837 train_loss: 0.00025133026065304875\n", + "epoch: 6838 train_loss: 0.0002510322956368327\n", + "epoch: 6839 train_loss: 0.00025073756114579737\n", + "epoch: 6840 train_loss: 0.0002504420990590006\n", + "epoch: 6841 train_loss: 0.0002501470735296607\n", + "epoch: 6842 train_loss: 0.00024985376512631774\n", + "epoch: 6843 train_loss: 0.00024955920525826514\n", + "epoch: 6844 train_loss: 0.0002492682251613587\n", + "epoch: 6845 train_loss: 0.00024897968978621066\n", + "epoch: 6846 train_loss: 0.0002486830053385347\n", + "epoch: 6847 train_loss: 0.0002483892603777349\n", + "epoch: 6848 train_loss: 0.00024809641763567924\n", + "epoch: 6849 train_loss: 0.00024780744570307434\n", + "epoch: 6850 train_loss: 0.0002475125656928867\n", + "epoch: 6851 train_loss: 0.0002472239430062473\n", + "epoch: 6852 train_loss: 0.00024693142040632665\n", + "epoch: 6853 train_loss: 0.00024663942167535424\n", + "epoch: 6854 train_loss: 0.0002463489945512265\n", + "epoch: 6855 train_loss: 0.0002460623509250581\n", + "epoch: 6856 train_loss: 0.0002457717782817781\n", + "epoch: 6857 train_loss: 0.0002454839996062219\n", + "epoch: 6858 train_loss: 0.000245195027673617\n", + "epoch: 6859 train_loss: 0.00024490736541338265\n", + "epoch: 6860 train_loss: 0.000244623253820464\n", + "epoch: 6861 train_loss: 0.00024433323414996266\n", + "epoch: 6862 train_loss: 0.0002440444950480014\n", + "epoch: 6863 train_loss: 0.00024375756038352847\n", + "epoch: 6864 train_loss: 0.00024346946156583726\n", + "epoch: 6865 train_loss: 0.00024318377836607397\n", + "epoch: 6866 train_loss: 0.00024289943394251168\n", + "epoch: 6867 train_loss: 0.00024261143698822707\n", + "epoch: 6868 train_loss: 0.00024232399300672114\n", + "epoch: 6869 train_loss: 0.00024204130750149488\n", + "epoch: 6870 train_loss: 0.00024175592989195138\n", + "epoch: 6871 train_loss: 0.00024147644580807537\n", + "epoch: 6872 train_loss: 0.00024118904548231512\n", + "epoch: 6873 train_loss: 0.00024091031809803098\n", + "epoch: 6874 train_loss: 0.00024062767624855042\n", + "epoch: 6875 train_loss: 0.0002403437247266993\n", + "epoch: 6876 train_loss: 0.0002400552184553817\n", + "epoch: 6877 train_loss: 0.000239778048126027\n", + "epoch: 6878 train_loss: 0.00023949645401444286\n", + "epoch: 6879 train_loss: 0.00023921199317555875\n", + "epoch: 6880 train_loss: 0.00023893332399893552\n", + "epoch: 6881 train_loss: 0.00023865011462476104\n", + "epoch: 6882 train_loss: 0.00023836929176468402\n", + "epoch: 6883 train_loss: 0.00023808996775187552\n", + "epoch: 6884 train_loss: 0.0002378123317612335\n", + "epoch: 6885 train_loss: 0.00023753760615363717\n", + "epoch: 6886 train_loss: 0.00023725832579657435\n", + "epoch: 6887 train_loss: 0.00023697370488662273\n", + "epoch: 6888 train_loss: 0.00023669419169891626\n", + "epoch: 6889 train_loss: 0.0002364199754083529\n", + "epoch: 6890 train_loss: 0.00023613926896359771\n", + "epoch: 6891 train_loss: 0.00023586631868965924\n", + "epoch: 6892 train_loss: 0.00023558337124995887\n", + "epoch: 6893 train_loss: 0.00023531039187218994\n", + "epoch: 6894 train_loss: 0.0002350337745156139\n", + "epoch: 6895 train_loss: 0.00023475683701690286\n", + "epoch: 6896 train_loss: 0.000234482460655272\n", + "epoch: 6897 train_loss: 0.00023421048535965383\n", + "epoch: 6898 train_loss: 0.00023393385345116258\n", + "epoch: 6899 train_loss: 0.00023365764354821295\n", + "epoch: 6900 train_loss: 0.00023338105529546738\n", + "epoch: 6901 train_loss: 0.00023311027325689793\n", + "epoch: 6902 train_loss: 0.00023283624614123255\n", + "epoch: 6903 train_loss: 0.00023256198619492352\n", + "epoch: 6904 train_loss: 0.00023229009821079671\n", + "epoch: 6905 train_loss: 0.00023201556177809834\n", + "epoch: 6906 train_loss: 0.0002317424223292619\n", + "epoch: 6907 train_loss: 0.00023146918101701885\n", + "epoch: 6908 train_loss: 0.00023120298283174634\n", + "epoch: 6909 train_loss: 0.00023093464551493526\n", + "epoch: 6910 train_loss: 0.000230659352382645\n", + "epoch: 6911 train_loss: 0.00023038718791212887\n", + "epoch: 6912 train_loss: 0.00023011451412457973\n", + "epoch: 6913 train_loss: 0.00022984844690654427\n", + "epoch: 6914 train_loss: 0.00022957971668802202\n", + "epoch: 6915 train_loss: 0.00022930599516257644\n", + "epoch: 6916 train_loss: 0.0002290375268785283\n", + "epoch: 6917 train_loss: 0.0002287678944412619\n", + "epoch: 6918 train_loss: 0.00022850056120660156\n", + "epoch: 6919 train_loss: 0.00022823426115792245\n", + "epoch: 6920 train_loss: 0.00022796668054070324\n", + "epoch: 6921 train_loss: 0.00022769736824557185\n", + "epoch: 6922 train_loss: 0.0002274293074151501\n", + "epoch: 6923 train_loss: 0.00022716503008268774\n", + "epoch: 6924 train_loss: 0.0002268976968480274\n", + "epoch: 6925 train_loss: 0.00022663116396870464\n", + "epoch: 6926 train_loss: 0.00022636498033534735\n", + "epoch: 6927 train_loss: 0.0002261013723909855\n", + "epoch: 6928 train_loss: 0.00022583437385037541\n", + "epoch: 6929 train_loss: 0.00022557133343070745\n", + "epoch: 6930 train_loss: 0.00022530338901560754\n", + "epoch: 6931 train_loss: 0.0002250456891488284\n", + "epoch: 6932 train_loss: 0.00022477917082142085\n", + "epoch: 6933 train_loss: 0.00022451303084380925\n", + "epoch: 6934 train_loss: 0.00022424945200327784\n", + "epoch: 6935 train_loss: 0.00022398930741474032\n", + "epoch: 6936 train_loss: 0.00022372559760697186\n", + "epoch: 6937 train_loss: 0.00022346180048771203\n", + "epoch: 6938 train_loss: 0.00022320359130389988\n", + "epoch: 6939 train_loss: 0.00022293832444120198\n", + "epoch: 6940 train_loss: 0.00022267643362283707\n", + "epoch: 6941 train_loss: 0.0002224164200015366\n", + "epoch: 6942 train_loss: 0.00022215992794372141\n", + "epoch: 6943 train_loss: 0.00022189615992829204\n", + "epoch: 6944 train_loss: 0.0002216343564214185\n", + "epoch: 6945 train_loss: 0.00022137183987069875\n", + "epoch: 6946 train_loss: 0.00022111380530986935\n", + "epoch: 6947 train_loss: 0.00022085648379288614\n", + "epoch: 6948 train_loss: 0.000220597255975008\n", + "epoch: 6949 train_loss: 0.0002203412150265649\n", + "epoch: 6950 train_loss: 0.0002200789749622345\n", + "epoch: 6951 train_loss: 0.00021982507314532995\n", + "epoch: 6952 train_loss: 0.00021956796990707517\n", + "epoch: 6953 train_loss: 0.00021930660295765847\n", + "epoch: 6954 train_loss: 0.00021905341418460011\n", + "epoch: 6955 train_loss: 0.00021879648556932807\n", + "epoch: 6956 train_loss: 0.00021853653015568852\n", + "epoch: 6957 train_loss: 0.00021827964519616216\n", + "epoch: 6958 train_loss: 0.00021802341507282108\n", + "epoch: 6959 train_loss: 0.00021777315123472363\n", + "epoch: 6960 train_loss: 0.0002175168483518064\n", + "epoch: 6961 train_loss: 0.00021726007980760187\n", + "epoch: 6962 train_loss: 0.00021700630895793438\n", + "epoch: 6963 train_loss: 0.0002167529019061476\n", + "epoch: 6964 train_loss: 0.00021649878181051463\n", + "epoch: 6965 train_loss: 0.00021624125656671822\n", + "epoch: 6966 train_loss: 0.00021599119645543396\n", + "epoch: 6967 train_loss: 0.00021573809499386698\n", + "epoch: 6968 train_loss: 0.00021548430959228426\n", + "epoch: 6969 train_loss: 0.0002152303932234645\n", + "epoch: 6970 train_loss: 0.00021498245769180357\n", + "epoch: 6971 train_loss: 0.00021472759544849396\n", + "epoch: 6972 train_loss: 0.00021447647304739803\n", + "epoch: 6973 train_loss: 0.00021422738791443408\n", + "epoch: 6974 train_loss: 0.00021397294767666608\n", + "epoch: 6975 train_loss: 0.0002137211849913001\n", + "epoch: 6976 train_loss: 0.00021347322035580873\n", + "epoch: 6977 train_loss: 0.00021322150132618845\n", + "epoch: 6978 train_loss: 0.00021297369676176459\n", + "epoch: 6979 train_loss: 0.00021272448066156358\n", + "epoch: 6980 train_loss: 0.00021247680706437677\n", + "epoch: 6981 train_loss: 0.00021222460782155395\n", + "epoch: 6982 train_loss: 0.00021197969908826053\n", + "epoch: 6983 train_loss: 0.00021172844571992755\n", + "epoch: 6984 train_loss: 0.000211481616133824\n", + "epoch: 6985 train_loss: 0.00021123424812685698\n", + "epoch: 6986 train_loss: 0.0002109878696501255\n", + "epoch: 6987 train_loss: 0.00021073890093248338\n", + "epoch: 6988 train_loss: 0.00021049444330856204\n", + "epoch: 6989 train_loss: 0.00021024633315391839\n", + "epoch: 6990 train_loss: 0.00020999752450734377\n", + "epoch: 6991 train_loss: 0.00020974974904675037\n", + "epoch: 6992 train_loss: 0.000209507328690961\n", + "epoch: 6993 train_loss: 0.00020926439901813865\n", + "epoch: 6994 train_loss: 0.0002090165507979691\n", + "epoch: 6995 train_loss: 0.00020877528004348278\n", + "epoch: 6996 train_loss: 0.0002085338783217594\n", + "epoch: 6997 train_loss: 0.0002082810242427513\n", + "epoch: 6998 train_loss: 0.00020803938969038427\n", + "epoch: 6999 train_loss: 0.00020779995247721672\n", + "epoch: 7000 train_loss: 0.00020755092555191368\n", + "epoch: 7001 train_loss: 0.00020730914548039436\n", + "epoch: 7002 train_loss: 0.0002070679038297385\n", + "epoch: 7003 train_loss: 0.00020682999456766993\n", + "epoch: 7004 train_loss: 0.0002065836451947689\n", + "epoch: 7005 train_loss: 0.00020634410611819476\n", + "epoch: 7006 train_loss: 0.00020610241335816681\n", + "epoch: 7007 train_loss: 0.00020585799938999116\n", + "epoch: 7008 train_loss: 0.00020561630662996322\n", + "epoch: 7009 train_loss: 0.0002053757052635774\n", + "epoch: 7010 train_loss: 0.0002051378251053393\n", + "epoch: 7011 train_loss: 0.00020489541930146515\n", + "epoch: 7012 train_loss: 0.00020465682609938085\n", + "epoch: 7013 train_loss: 0.00020441801461856812\n", + "epoch: 7014 train_loss: 0.00020417539053596556\n", + "epoch: 7015 train_loss: 0.0002039306564256549\n", + "epoch: 7016 train_loss: 0.00020369862613733858\n", + "epoch: 7017 train_loss: 0.00020346188102848828\n", + "epoch: 7018 train_loss: 0.00020322258933447301\n", + "epoch: 7019 train_loss: 0.00020298449089750648\n", + "epoch: 7020 train_loss: 0.00020275187853258103\n", + "epoch: 7021 train_loss: 0.00020251350360922515\n", + "epoch: 7022 train_loss: 0.00020227022469043732\n", + "epoch: 7023 train_loss: 0.000202033159439452\n", + "epoch: 7024 train_loss: 0.00020179874263703823\n", + "epoch: 7025 train_loss: 0.00020156487880740315\n", + "epoch: 7026 train_loss: 0.00020132778445258737\n", + "epoch: 7027 train_loss: 0.00020109288743697107\n", + "epoch: 7028 train_loss: 0.00020085670985281467\n", + "epoch: 7029 train_loss: 0.00020062456314917654\n", + "epoch: 7030 train_loss: 0.00020038535876665264\n", + "epoch: 7031 train_loss: 0.0002001510001718998\n", + "epoch: 7032 train_loss: 0.00019991607405245304\n", + "epoch: 7033 train_loss: 0.0001996826467802748\n", + "epoch: 7034 train_loss: 0.0001994493795791641\n", + "epoch: 7035 train_loss: 0.0001992146426346153\n", + "epoch: 7036 train_loss: 0.0001989857410080731\n", + "epoch: 7037 train_loss: 0.00019874736608471721\n", + "epoch: 7038 train_loss: 0.00019851441902574152\n", + "epoch: 7039 train_loss: 0.00019828557560686022\n", + "epoch: 7040 train_loss: 0.0001980530214495957\n", + "epoch: 7041 train_loss: 0.00019781870651058853\n", + "epoch: 7042 train_loss: 0.000197594054043293\n", + "epoch: 7043 train_loss: 0.00019735815294552594\n", + "epoch: 7044 train_loss: 0.00019712350331246853\n", + "epoch: 7045 train_loss: 0.00019689189502969384\n", + "epoch: 7046 train_loss: 0.00019666238222271204\n", + "epoch: 7047 train_loss: 0.0001964355178643018\n", + "epoch: 7048 train_loss: 0.00019620463717728853\n", + "epoch: 7049 train_loss: 0.00019597401842474937\n", + "epoch: 7050 train_loss: 0.00019575197075027972\n", + "epoch: 7051 train_loss: 0.00019551499281078577\n", + "epoch: 7052 train_loss: 0.0001952831808011979\n", + "epoch: 7053 train_loss: 0.00019505847012624145\n", + "epoch: 7054 train_loss: 0.00019483307551126927\n", + "epoch: 7055 train_loss: 0.00019460164185147732\n", + "epoch: 7056 train_loss: 0.000194376683793962\n", + "epoch: 7057 train_loss: 0.0001941504015121609\n", + "epoch: 7058 train_loss: 0.0001939161738846451\n", + "epoch: 7059 train_loss: 0.00019369053188711405\n", + "epoch: 7060 train_loss: 0.00019346717454027385\n", + "epoch: 7061 train_loss: 0.00019323761807754636\n", + "epoch: 7062 train_loss: 0.00019301210704725236\n", + "epoch: 7063 train_loss: 0.00019278695981483907\n", + "epoch: 7064 train_loss: 0.00019256029918324202\n", + "epoch: 7065 train_loss: 0.00019233167404308915\n", + "epoch: 7066 train_loss: 0.00019211144535802305\n", + "epoch: 7067 train_loss: 0.0001918835478136316\n", + "epoch: 7068 train_loss: 0.00019165792036801577\n", + "epoch: 7069 train_loss: 0.00019143465033266693\n", + "epoch: 7070 train_loss: 0.00019121100194752216\n", + "epoch: 7071 train_loss: 0.0001909842249006033\n", + "epoch: 7072 train_loss: 0.00019076165335718542\n", + "epoch: 7073 train_loss: 0.00019053684081882238\n", + "epoch: 7074 train_loss: 0.00019031552074011415\n", + "epoch: 7075 train_loss: 0.00019009031530003995\n", + "epoch: 7076 train_loss: 0.00018987465591635555\n", + "epoch: 7077 train_loss: 0.0001896499888971448\n", + "epoch: 7078 train_loss: 0.000189424172276631\n", + "epoch: 7079 train_loss: 0.00018920357979368418\n", + "epoch: 7080 train_loss: 0.0001889788982225582\n", + "epoch: 7081 train_loss: 0.00018876162357628345\n", + "epoch: 7082 train_loss: 0.0001885391102405265\n", + "epoch: 7083 train_loss: 0.00018831803754437715\n", + "epoch: 7084 train_loss: 0.00018809628090821207\n", + "epoch: 7085 train_loss: 0.0001878780167317018\n", + "epoch: 7086 train_loss: 0.00018765369895845652\n", + "epoch: 7087 train_loss: 0.0001874357694759965\n", + "epoch: 7088 train_loss: 0.0001872201100923121\n", + "epoch: 7089 train_loss: 0.000187000390724279\n", + "epoch: 7090 train_loss: 0.00018677746993489563\n", + "epoch: 7091 train_loss: 0.0001865593221737072\n", + "epoch: 7092 train_loss: 0.00018633862782735378\n", + "epoch: 7093 train_loss: 0.0001861208729678765\n", + "epoch: 7094 train_loss: 0.00018590656691230834\n", + "epoch: 7095 train_loss: 0.00018568774976301938\n", + "epoch: 7096 train_loss: 0.00018546740466263145\n", + "epoch: 7097 train_loss: 0.00018525046471040696\n", + "epoch: 7098 train_loss: 0.00018503490719012916\n", + "epoch: 7099 train_loss: 0.00018481553706806153\n", + "epoch: 7100 train_loss: 0.00018460111459717155\n", + "epoch: 7101 train_loss: 0.00018438574625179172\n", + "epoch: 7102 train_loss: 0.00018416880629956722\n", + "epoch: 7103 train_loss: 0.00018395065853837878\n", + "epoch: 7104 train_loss: 0.00018373328202869743\n", + "epoch: 7105 train_loss: 0.00018352274491917342\n", + "epoch: 7106 train_loss: 0.0001833040441852063\n", + "epoch: 7107 train_loss: 0.00018309010192751884\n", + "epoch: 7108 train_loss: 0.00018287758575752378\n", + "epoch: 7109 train_loss: 0.00018265520338900387\n", + "epoch: 7110 train_loss: 0.00018244452076032758\n", + "epoch: 7111 train_loss: 0.0001822316407924518\n", + "epoch: 7112 train_loss: 0.000182017931365408\n", + "epoch: 7113 train_loss: 0.00018180866027250886\n", + "epoch: 7114 train_loss: 0.00018159284081775695\n", + "epoch: 7115 train_loss: 0.00018137507140636444\n", + "epoch: 7116 train_loss: 0.0001811664114939049\n", + "epoch: 7117 train_loss: 0.00018095274572260678\n", + "epoch: 7118 train_loss: 0.00018073948740493506\n", + "epoch: 7119 train_loss: 0.0001805289793992415\n", + "epoch: 7120 train_loss: 0.00018031641957350075\n", + "epoch: 7121 train_loss: 0.00018010271014645696\n", + "epoch: 7122 train_loss: 0.00017989290063269436\n", + "epoch: 7123 train_loss: 0.00017968052998185158\n", + "epoch: 7124 train_loss: 0.00017947125888895243\n", + "epoch: 7125 train_loss: 0.00017926131840795279\n", + "epoch: 7126 train_loss: 0.0001790461246855557\n", + "epoch: 7127 train_loss: 0.00017883593682199717\n", + "epoch: 7128 train_loss: 0.00017863012908492237\n", + "epoch: 7129 train_loss: 0.00017841739463619888\n", + "epoch: 7130 train_loss: 0.00017820828361436725\n", + "epoch: 7131 train_loss: 0.0001780016318662092\n", + "epoch: 7132 train_loss: 0.00017779090558178723\n", + "epoch: 7133 train_loss: 0.00017758188187144697\n", + "epoch: 7134 train_loss: 0.0001773720287019387\n", + "epoch: 7135 train_loss: 0.00017716881120577455\n", + "epoch: 7136 train_loss: 0.00017695975839160383\n", + "epoch: 7137 train_loss: 0.00017674887203611434\n", + "epoch: 7138 train_loss: 0.0001765377091942355\n", + "epoch: 7139 train_loss: 0.00017632945673540235\n", + "epoch: 7140 train_loss: 0.00017612283409107476\n", + "epoch: 7141 train_loss: 0.00017592095537111163\n", + "epoch: 7142 train_loss: 0.00017571228090673685\n", + "epoch: 7143 train_loss: 0.00017550050688441843\n", + "epoch: 7144 train_loss: 0.00017529749311506748\n", + "epoch: 7145 train_loss: 0.00017508854216430336\n", + "epoch: 7146 train_loss: 0.0001748852082528174\n", + "epoch: 7147 train_loss: 0.0001746811904013157\n", + "epoch: 7148 train_loss: 0.00017447110440116376\n", + "epoch: 7149 train_loss: 0.00017426774138584733\n", + "epoch: 7150 train_loss: 0.00017406619735993445\n", + "epoch: 7151 train_loss: 0.00017385953105986118\n", + "epoch: 7152 train_loss: 0.0001736504927976057\n", + "epoch: 7153 train_loss: 0.00017344893421977758\n", + "epoch: 7154 train_loss: 0.00017324640066362917\n", + "epoch: 7155 train_loss: 0.0001730397780193016\n", + "epoch: 7156 train_loss: 0.00017284096975345165\n", + "epoch: 7157 train_loss: 0.0001726341579342261\n", + "epoch: 7158 train_loss: 0.00017243200272787362\n", + "epoch: 7159 train_loss: 0.00017222634050995111\n", + "epoch: 7160 train_loss: 0.000172022933838889\n", + "epoch: 7161 train_loss: 0.00017182616284117103\n", + "epoch: 7162 train_loss: 0.00017161873984150589\n", + "epoch: 7163 train_loss: 0.0001714206882752478\n", + "epoch: 7164 train_loss: 0.00017121410928666592\n", + "epoch: 7165 train_loss: 0.00017101132834795862\n", + "epoch: 7166 train_loss: 0.00017081100668292493\n", + "epoch: 7167 train_loss: 0.0001706090843072161\n", + "epoch: 7168 train_loss: 0.00017041135288309306\n", + "epoch: 7169 train_loss: 0.00017020603991113603\n", + "epoch: 7170 train_loss: 0.00017000763909891248\n", + "epoch: 7171 train_loss: 0.00016980765212792903\n", + "epoch: 7172 train_loss: 0.00016960571520030499\n", + "epoch: 7173 train_loss: 0.00016940588830038905\n", + "epoch: 7174 train_loss: 0.00016920782218221575\n", + "epoch: 7175 train_loss: 0.00016900761693250388\n", + "epoch: 7176 train_loss: 0.00016881234478205442\n", + "epoch: 7177 train_loss: 0.00016861061158124357\n", + "epoch: 7178 train_loss: 0.00016841012984514236\n", + "epoch: 7179 train_loss: 0.0001682086440268904\n", + "epoch: 7180 train_loss: 0.00016801005403976887\n", + "epoch: 7181 train_loss: 0.00016781597514636815\n", + "epoch: 7182 train_loss: 0.0001676168612902984\n", + "epoch: 7183 train_loss: 0.00016742179286666214\n", + "epoch: 7184 train_loss: 0.0001672215003054589\n", + "epoch: 7185 train_loss: 0.00016701698768883944\n", + "epoch: 7186 train_loss: 0.00016682363639120013\n", + "epoch: 7187 train_loss: 0.00016662570124026388\n", + "epoch: 7188 train_loss: 0.00016643125854898244\n", + "epoch: 7189 train_loss: 0.0001662358408793807\n", + "epoch: 7190 train_loss: 0.00016603599942754954\n", + "epoch: 7191 train_loss: 0.0001658398687141016\n", + "epoch: 7192 train_loss: 0.00016564120596740395\n", + "epoch: 7193 train_loss: 0.0001654470688663423\n", + "epoch: 7194 train_loss: 0.00016524984675925225\n", + "epoch: 7195 train_loss: 0.00016505470557603985\n", + "epoch: 7196 train_loss: 0.00016486372624058276\n", + "epoch: 7197 train_loss: 0.00016466421948280185\n", + "epoch: 7198 train_loss: 0.00016447220696136355\n", + "epoch: 7199 train_loss: 0.0001642741117393598\n", + "epoch: 7200 train_loss: 0.00016408078954555094\n", + "epoch: 7201 train_loss: 0.00016389205120503902\n", + "epoch: 7202 train_loss: 0.0001636977685848251\n", + "epoch: 7203 train_loss: 0.00016350189980585128\n", + "epoch: 7204 train_loss: 0.00016330450307577848\n", + "epoch: 7205 train_loss: 0.00016310829960275441\n", + "epoch: 7206 train_loss: 0.00016292308282572776\n", + "epoch: 7207 train_loss: 0.00016272629727609456\n", + "epoch: 7208 train_loss: 0.00016253633657470345\n", + "epoch: 7209 train_loss: 0.00016234046779572964\n", + "epoch: 7210 train_loss: 0.00016214883362408727\n", + "epoch: 7211 train_loss: 0.0001619506219867617\n", + "epoch: 7212 train_loss: 0.0001617650850676\n", + "epoch: 7213 train_loss: 0.0001615730143385008\n", + "epoch: 7214 train_loss: 0.00016138303908519447\n", + "epoch: 7215 train_loss: 0.00016118957137223333\n", + "epoch: 7216 train_loss: 0.0001609945175005123\n", + "epoch: 7217 train_loss: 0.00016080854402389377\n", + "epoch: 7218 train_loss: 0.00016061215137597173\n", + "epoch: 7219 train_loss: 0.00016042297647800297\n", + "epoch: 7220 train_loss: 0.00016023550415411592\n", + "epoch: 7221 train_loss: 0.0001600455871084705\n", + "epoch: 7222 train_loss: 0.00015985539357643574\n", + "epoch: 7223 train_loss: 0.00015965885540936142\n", + "epoch: 7224 train_loss: 0.0001594740606378764\n", + "epoch: 7225 train_loss: 0.00015928049106150866\n", + "epoch: 7226 train_loss: 0.0001590987085364759\n", + "epoch: 7227 train_loss: 0.00015890489157754928\n", + "epoch: 7228 train_loss: 0.00015871885989326984\n", + "epoch: 7229 train_loss: 0.00015852537762839347\n", + "epoch: 7230 train_loss: 0.0001583370176376775\n", + "epoch: 7231 train_loss: 0.00015815581718925387\n", + "epoch: 7232 train_loss: 0.0001579638192197308\n", + "epoch: 7233 train_loss: 0.0001577764778630808\n", + "epoch: 7234 train_loss: 0.00015758562949486077\n", + "epoch: 7235 train_loss: 0.00015740255184937268\n", + "epoch: 7236 train_loss: 0.00015721046656835824\n", + "epoch: 7237 train_loss: 0.0001570249005453661\n", + "epoch: 7238 train_loss: 0.00015683480887673795\n", + "epoch: 7239 train_loss: 0.00015665132377762347\n", + "epoch: 7240 train_loss: 0.00015646280371583998\n", + "epoch: 7241 train_loss: 0.0001562751567689702\n", + "epoch: 7242 train_loss: 0.00015608748071826994\n", + "epoch: 7243 train_loss: 0.00015590374823659658\n", + "epoch: 7244 train_loss: 0.00015572033589705825\n", + "epoch: 7245 train_loss: 0.00015553273260593414\n", + "epoch: 7246 train_loss: 0.00015534819976892322\n", + "epoch: 7247 train_loss: 0.00015515898121520877\n", + "epoch: 7248 train_loss: 0.00015497670392505825\n", + "epoch: 7249 train_loss: 0.00015479454305022955\n", + "epoch: 7250 train_loss: 0.00015460549911949784\n", + "epoch: 7251 train_loss: 0.00015442122821696103\n", + "epoch: 7252 train_loss: 0.00015423758304677904\n", + "epoch: 7253 train_loss: 0.00015405256999656558\n", + "epoch: 7254 train_loss: 0.00015386758605018258\n", + "epoch: 7255 train_loss: 0.00015368289314210415\n", + "epoch: 7256 train_loss: 0.00015350324974860996\n", + "epoch: 7257 train_loss: 0.0001533172035124153\n", + "epoch: 7258 train_loss: 0.00015313478070311248\n", + "epoch: 7259 train_loss: 0.00015294783224817365\n", + "epoch: 7260 train_loss: 0.0001527658459963277\n", + "epoch: 7261 train_loss: 0.0001525857369415462\n", + "epoch: 7262 train_loss: 0.00015240279026329517\n", + "epoch: 7263 train_loss: 0.0001522185339126736\n", + "epoch: 7264 train_loss: 0.00015203640214167535\n", + "epoch: 7265 train_loss: 0.00015185438678599894\n", + "epoch: 7266 train_loss: 0.00015167448145803064\n", + "epoch: 7267 train_loss: 0.00015149028331506997\n", + "epoch: 7268 train_loss: 0.00015130604151636362\n", + "epoch: 7269 train_loss: 0.00015112738765310496\n", + "epoch: 7270 train_loss: 0.00015094585251063108\n", + "epoch: 7271 train_loss: 0.00015076447743922472\n", + "epoch: 7272 train_loss: 0.00015058416465763003\n", + "epoch: 7273 train_loss: 0.00015040539437904954\n", + "epoch: 7274 train_loss: 0.00015022761363070458\n", + "epoch: 7275 train_loss: 0.00015004101442173123\n", + "epoch: 7276 train_loss: 0.0001498639612691477\n", + "epoch: 7277 train_loss: 0.00014968012692406774\n", + "epoch: 7278 train_loss: 0.0001495040050940588\n", + "epoch: 7279 train_loss: 0.00014932254271116108\n", + "epoch: 7280 train_loss: 0.00014914284111000597\n", + "epoch: 7281 train_loss: 0.00014896190259605646\n", + "epoch: 7282 train_loss: 0.0001487850386183709\n", + "epoch: 7283 train_loss: 0.00014860778173897415\n", + "epoch: 7284 train_loss: 0.00014842483506072313\n", + "epoch: 7285 train_loss: 0.0001482469233451411\n", + "epoch: 7286 train_loss: 0.00014806950639467686\n", + "epoch: 7287 train_loss: 0.00014789303531870246\n", + "epoch: 7288 train_loss: 0.00014771302812732756\n", + "epoch: 7289 train_loss: 0.00014753140567336231\n", + "epoch: 7290 train_loss: 0.00014735970762558281\n", + "epoch: 7291 train_loss: 0.00014717807061970234\n", + "epoch: 7292 train_loss: 0.00014699851453769952\n", + "epoch: 7293 train_loss: 0.0001468210539314896\n", + "epoch: 7294 train_loss: 0.0001466482790419832\n", + "epoch: 7295 train_loss: 0.00014646956697106361\n", + "epoch: 7296 train_loss: 0.000146292062709108\n", + "epoch: 7297 train_loss: 0.00014611566439270973\n", + "epoch: 7298 train_loss: 0.0001459443592466414\n", + "epoch: 7299 train_loss: 0.00014576349349226803\n", + "epoch: 7300 train_loss: 0.00014558401016984135\n", + "epoch: 7301 train_loss: 0.00014540863048750907\n", + "epoch: 7302 train_loss: 0.00014523582649417222\n", + "epoch: 7303 train_loss: 0.0001450611453037709\n", + "epoch: 7304 train_loss: 0.00014488243323285133\n", + "epoch: 7305 train_loss: 0.00014470920723397285\n", + "epoch: 7306 train_loss: 0.00014453324547503144\n", + "epoch: 7307 train_loss: 0.00014436109631787986\n", + "epoch: 7308 train_loss: 0.00014417970669455826\n", + "epoch: 7309 train_loss: 0.00014400831423699856\n", + "epoch: 7310 train_loss: 0.00014383470988832414\n", + "epoch: 7311 train_loss: 0.0001436605816707015\n", + "epoch: 7312 train_loss: 0.0001434809237252921\n", + "epoch: 7313 train_loss: 0.0001433113357052207\n", + "epoch: 7314 train_loss: 0.00014313899737317115\n", + "epoch: 7315 train_loss: 0.00014296689187176526\n", + "epoch: 7316 train_loss: 0.00014278643357101828\n", + "epoch: 7317 train_loss: 0.0001426144444849342\n", + "epoch: 7318 train_loss: 0.00014244354679249227\n", + "epoch: 7319 train_loss: 0.00014227470092009753\n", + "epoch: 7320 train_loss: 0.00014209531946107745\n", + "epoch: 7321 train_loss: 0.0001419231266481802\n", + "epoch: 7322 train_loss: 0.00014175045362208039\n", + "epoch: 7323 train_loss: 0.00014157796977087855\n", + "epoch: 7324 train_loss: 0.00014140667917672545\n", + "epoch: 7325 train_loss: 0.00014123678556643426\n", + "epoch: 7326 train_loss: 0.00014106612070463598\n", + "epoch: 7327 train_loss: 0.00014088988245930523\n", + "epoch: 7328 train_loss: 0.0001407185336574912\n", + "epoch: 7329 train_loss: 0.0001405518560204655\n", + "epoch: 7330 train_loss: 0.0001403744099661708\n", + "epoch: 7331 train_loss: 0.00014020639355294406\n", + "epoch: 7332 train_loss: 0.0001400318433297798\n", + "epoch: 7333 train_loss: 0.0001398624008288607\n", + "epoch: 7334 train_loss: 0.00013969573774375021\n", + "epoch: 7335 train_loss: 0.0001395173603668809\n", + "epoch: 7336 train_loss: 0.00013935282186139375\n", + "epoch: 7337 train_loss: 0.00013918254990130663\n", + "epoch: 7338 train_loss: 0.00013901488273404539\n", + "epoch: 7339 train_loss: 0.0001388405216857791\n", + "epoch: 7340 train_loss: 0.000138672927278094\n", + "epoch: 7341 train_loss: 0.00013850437244400382\n", + "epoch: 7342 train_loss: 0.00013833156845066696\n", + "epoch: 7343 train_loss: 0.00013816196587868035\n", + "epoch: 7344 train_loss: 0.0001379944442305714\n", + "epoch: 7345 train_loss: 0.00013782939640805125\n", + "epoch: 7346 train_loss: 0.0001376537256874144\n", + "epoch: 7347 train_loss: 0.00013748687342740595\n", + "epoch: 7348 train_loss: 0.00013731792569160461\n", + "epoch: 7349 train_loss: 0.0001371517137158662\n", + "epoch: 7350 train_loss: 0.00013697824033442885\n", + "epoch: 7351 train_loss: 0.00013681505515705794\n", + "epoch: 7352 train_loss: 0.0001366461510770023\n", + "epoch: 7353 train_loss: 0.00013647931336890906\n", + "epoch: 7354 train_loss: 0.00013631006004288793\n", + "epoch: 7355 train_loss: 0.00013614448835141957\n", + "epoch: 7356 train_loss: 0.00013597848010249436\n", + "epoch: 7357 train_loss: 0.0001358034205622971\n", + "epoch: 7358 train_loss: 0.000135641879751347\n", + "epoch: 7359 train_loss: 0.000135477923322469\n", + "epoch: 7360 train_loss: 0.00013531118747778237\n", + "epoch: 7361 train_loss: 0.00013513778685592115\n", + "epoch: 7362 train_loss: 0.0001349762751488015\n", + "epoch: 7363 train_loss: 0.00013480987399816513\n", + "epoch: 7364 train_loss: 0.00013464340008795261\n", + "epoch: 7365 train_loss: 0.0001344741613138467\n", + "epoch: 7366 train_loss: 0.00013431112165562809\n", + "epoch: 7367 train_loss: 0.00013414776185527444\n", + "epoch: 7368 train_loss: 0.0001339778391411528\n", + "epoch: 7369 train_loss: 0.00013381507596932352\n", + "epoch: 7370 train_loss: 0.0001336494751740247\n", + "epoch: 7371 train_loss: 0.00013348564971238375\n", + "epoch: 7372 train_loss: 0.0001333176187472418\n", + "epoch: 7373 train_loss: 0.0001331561361439526\n", + "epoch: 7374 train_loss: 0.00013299375132191926\n", + "epoch: 7375 train_loss: 0.00013282091822475195\n", + "epoch: 7376 train_loss: 0.00013265718007460237\n", + "epoch: 7377 train_loss: 0.00013250017946120352\n", + "epoch: 7378 train_loss: 0.0001323347387369722\n", + "epoch: 7379 train_loss: 0.00013216810475569218\n", + "epoch: 7380 train_loss: 0.00013200646208133548\n", + "epoch: 7381 train_loss: 0.000131841137772426\n", + "epoch: 7382 train_loss: 0.00013167508586775512\n", + "epoch: 7383 train_loss: 0.00013151367602404207\n", + "epoch: 7384 train_loss: 0.000131352455355227\n", + "epoch: 7385 train_loss: 0.00013118924107402563\n", + "epoch: 7386 train_loss: 0.00013102278171572834\n", + "epoch: 7387 train_loss: 0.000130865111714229\n", + "epoch: 7388 train_loss: 0.00013069997658021748\n", + "epoch: 7389 train_loss: 0.0001305358309764415\n", + "epoch: 7390 train_loss: 0.00013037462485954165\n", + "epoch: 7391 train_loss: 0.00013021452468819916\n", + "epoch: 7392 train_loss: 0.00013005451182834804\n", + "epoch: 7393 train_loss: 0.00012988524395041168\n", + "epoch: 7394 train_loss: 0.0001297269918723032\n", + "epoch: 7395 train_loss: 0.0001295684778597206\n", + "epoch: 7396 train_loss: 0.00012940399756189436\n", + "epoch: 7397 train_loss: 0.00012924245675094426\n", + "epoch: 7398 train_loss: 0.00012908298231195658\n", + "epoch: 7399 train_loss: 0.00012892040831502527\n", + "epoch: 7400 train_loss: 0.00012876004620920867\n", + "epoch: 7401 train_loss: 0.0001286022161366418\n", + "epoch: 7402 train_loss: 0.0001284394384128973\n", + "epoch: 7403 train_loss: 0.00012827225145883858\n", + "epoch: 7404 train_loss: 0.00012811429041903466\n", + "epoch: 7405 train_loss: 0.0001279633870581165\n", + "epoch: 7406 train_loss: 0.00012779714597854763\n", + "epoch: 7407 train_loss: 0.00012763537233695388\n", + "epoch: 7408 train_loss: 0.00012748109293170273\n", + "epoch: 7409 train_loss: 0.00012731863535009325\n", + "epoch: 7410 train_loss: 0.00012716127093881369\n", + "epoch: 7411 train_loss: 0.00012699648505076766\n", + "epoch: 7412 train_loss: 0.00012684125977102667\n", + "epoch: 7413 train_loss: 0.00012667664850596339\n", + "epoch: 7414 train_loss: 0.00012652559962589294\n", + "epoch: 7415 train_loss: 0.00012636292376555502\n", + "epoch: 7416 train_loss: 0.00012620771303772926\n", + "epoch: 7417 train_loss: 0.0001260432181879878\n", + "epoch: 7418 train_loss: 0.00012588936078827828\n", + "epoch: 7419 train_loss: 0.00012573767162393779\n", + "epoch: 7420 train_loss: 0.00012556658475659788\n", + "epoch: 7421 train_loss: 0.0001254142407560721\n", + "epoch: 7422 train_loss: 0.00012525600322987884\n", + "epoch: 7423 train_loss: 0.0001251019857591018\n", + "epoch: 7424 train_loss: 0.0001249397755600512\n", + "epoch: 7425 train_loss: 0.00012478535063564777\n", + "epoch: 7426 train_loss: 0.0001246296160388738\n", + "epoch: 7427 train_loss: 0.00012446791515685618\n", + "epoch: 7428 train_loss: 0.00012431676441337913\n", + "epoch: 7429 train_loss: 0.00012415717355906963\n", + "epoch: 7430 train_loss: 0.00012399369734339416\n", + "epoch: 7431 train_loss: 0.00012384331785142422\n", + "epoch: 7432 train_loss: 0.00012369253090582788\n", + "epoch: 7433 train_loss: 0.00012352650810498744\n", + "epoch: 7434 train_loss: 0.00012337372754700482\n", + "epoch: 7435 train_loss: 0.00012321549002081156\n", + "epoch: 7436 train_loss: 0.00012306691496632993\n", + "epoch: 7437 train_loss: 0.00012290768790990114\n", + "epoch: 7438 train_loss: 0.00012275112385395914\n", + "epoch: 7439 train_loss: 0.00012259959476068616\n", + "epoch: 7440 train_loss: 0.00012243524543009698\n", + "epoch: 7441 train_loss: 0.0001222865394083783\n", + "epoch: 7442 train_loss: 0.00012213183799758554\n", + "epoch: 7443 train_loss: 0.00012197004252811894\n", + "epoch: 7444 train_loss: 0.00012181795318610966\n", + "epoch: 7445 train_loss: 0.00012166960368631408\n", + "epoch: 7446 train_loss: 0.00012151317787356675\n", + "epoch: 7447 train_loss: 0.00012135590077377856\n", + "epoch: 7448 train_loss: 0.00012120621977373958\n", + "epoch: 7449 train_loss: 0.00012105042696930468\n", + "epoch: 7450 train_loss: 0.00012089547817595303\n", + "epoch: 7451 train_loss: 0.000120740951388143\n", + "epoch: 7452 train_loss: 0.00012058885477017611\n", + "epoch: 7453 train_loss: 0.00012043394963257015\n", + "epoch: 7454 train_loss: 0.00012028231139993295\n", + "epoch: 7455 train_loss: 0.00012013010564260185\n", + "epoch: 7456 train_loss: 0.00011997141700703651\n", + "epoch: 7457 train_loss: 0.00011982183787040412\n", + "epoch: 7458 train_loss: 0.00011967129830736667\n", + "epoch: 7459 train_loss: 0.00011951678607147187\n", + "epoch: 7460 train_loss: 0.000119365518912673\n", + "epoch: 7461 train_loss: 0.00011921404075110331\n", + "epoch: 7462 train_loss: 0.00011906176951015368\n", + "epoch: 7463 train_loss: 0.00011890451423823833\n", + "epoch: 7464 train_loss: 0.00011875672498717904\n", + "epoch: 7465 train_loss: 0.00011860455560963601\n", + "epoch: 7466 train_loss: 0.00011845322296721861\n", + "epoch: 7467 train_loss: 0.00011830502626253292\n", + "epoch: 7468 train_loss: 0.00011815129255410284\n", + "epoch: 7469 train_loss: 0.00011799389903899282\n", + "epoch: 7470 train_loss: 0.00011784912931034341\n", + "epoch: 7471 train_loss: 0.00011769712727982551\n", + "epoch: 7472 train_loss: 0.00011754658044083044\n", + "epoch: 7473 train_loss: 0.00011739462934201583\n", + "epoch: 7474 train_loss: 0.00011724690557457507\n", + "epoch: 7475 train_loss: 0.00011709176760632545\n", + "epoch: 7476 train_loss: 0.00011694645218085498\n", + "epoch: 7477 train_loss: 0.00011679575254675001\n", + "epoch: 7478 train_loss: 0.00011664013436529785\n", + "epoch: 7479 train_loss: 0.00011649767839116976\n", + "epoch: 7480 train_loss: 0.00011634574912022799\n", + "epoch: 7481 train_loss: 0.00011618962889770046\n", + "epoch: 7482 train_loss: 0.00011604269820963964\n", + "epoch: 7483 train_loss: 0.00011590044596232474\n", + "epoch: 7484 train_loss: 0.00011574334348551929\n", + "epoch: 7485 train_loss: 0.00011559672566363588\n", + "epoch: 7486 train_loss: 0.00011545023153303191\n", + "epoch: 7487 train_loss: 0.00011529948824318126\n", + "epoch: 7488 train_loss: 0.00011514867946971208\n", + "epoch: 7489 train_loss: 0.0001150072566815652\n", + "epoch: 7490 train_loss: 0.00011485126742627472\n", + "epoch: 7491 train_loss: 0.00011470611934782937\n", + "epoch: 7492 train_loss: 0.00011456207721494138\n", + "epoch: 7493 train_loss: 0.0001144135749200359\n", + "epoch: 7494 train_loss: 0.0001142609107773751\n", + "epoch: 7495 train_loss: 0.00011411657033022493\n", + "epoch: 7496 train_loss: 0.00011397081107134\n", + "epoch: 7497 train_loss: 0.00011382051889086142\n", + "epoch: 7498 train_loss: 0.00011367320257704705\n", + "epoch: 7499 train_loss: 0.00011352486035320908\n", + "epoch: 7500 train_loss: 0.00011337873002048582\n", + "epoch: 7501 train_loss: 0.00011323498620186001\n", + "epoch: 7502 train_loss: 0.0001130876480601728\n", + "epoch: 7503 train_loss: 0.00011293812713120133\n", + "epoch: 7504 train_loss: 0.00011279476893832907\n", + "epoch: 7505 train_loss: 0.00011264736531302333\n", + "epoch: 7506 train_loss: 0.00011250327224843204\n", + "epoch: 7507 train_loss: 0.00011235882993787527\n", + "epoch: 7508 train_loss: 0.00011221263412153348\n", + "epoch: 7509 train_loss: 0.00011206321505596861\n", + "epoch: 7510 train_loss: 0.00011192116653546691\n", + "epoch: 7511 train_loss: 0.00011177617125213146\n", + "epoch: 7512 train_loss: 0.0001116252678912133\n", + "epoch: 7513 train_loss: 0.0001114857877837494\n", + "epoch: 7514 train_loss: 0.00011133709631394595\n", + "epoch: 7515 train_loss: 0.00011118985275970772\n", + "epoch: 7516 train_loss: 0.00011104770237579942\n", + "epoch: 7517 train_loss: 0.00011090392217738554\n", + "epoch: 7518 train_loss: 0.00011075787915615365\n", + "epoch: 7519 train_loss: 0.00011061701661674306\n", + "epoch: 7520 train_loss: 0.00011047141015296802\n", + "epoch: 7521 train_loss: 0.00011032557085854933\n", + "epoch: 7522 train_loss: 0.00011018232180504128\n", + "epoch: 7523 train_loss: 0.00011004094267264009\n", + "epoch: 7524 train_loss: 0.0001098945431294851\n", + "epoch: 7525 train_loss: 0.0001097543427022174\n", + "epoch: 7526 train_loss: 0.0001096087580663152\n", + "epoch: 7527 train_loss: 0.00010946350812446326\n", + "epoch: 7528 train_loss: 0.00010932318400591612\n", + "epoch: 7529 train_loss: 0.00010918336920440197\n", + "epoch: 7530 train_loss: 0.0001090332298190333\n", + "epoch: 7531 train_loss: 0.0001088969293050468\n", + "epoch: 7532 train_loss: 0.00010875326552195475\n", + "epoch: 7533 train_loss: 0.00010861028567887843\n", + "epoch: 7534 train_loss: 0.00010847114026546478\n", + "epoch: 7535 train_loss: 0.00010832623956957832\n", + "epoch: 7536 train_loss: 0.00010818275768542662\n", + "epoch: 7537 train_loss: 0.00010804424528032541\n", + "epoch: 7538 train_loss: 0.00010790092346724123\n", + "epoch: 7539 train_loss: 0.00010775987902889028\n", + "epoch: 7540 train_loss: 0.00010762205783976242\n", + "epoch: 7541 train_loss: 0.00010747725900728256\n", + "epoch: 7542 train_loss: 0.00010733370436355472\n", + "epoch: 7543 train_loss: 0.00010719996498664841\n", + "epoch: 7544 train_loss: 0.00010705486056394875\n", + "epoch: 7545 train_loss: 0.0001069155041477643\n", + "epoch: 7546 train_loss: 0.00010677562386263162\n", + "epoch: 7547 train_loss: 0.0001066378754330799\n", + "epoch: 7548 train_loss: 0.00010649108298821375\n", + "epoch: 7549 train_loss: 0.00010635788203217089\n", + "epoch: 7550 train_loss: 0.00010621349065331742\n", + "epoch: 7551 train_loss: 0.00010607649164739996\n", + "epoch: 7552 train_loss: 0.0001059395945048891\n", + "epoch: 7553 train_loss: 0.00010579502850305289\n", + "epoch: 7554 train_loss: 0.00010565805132500827\n", + "epoch: 7555 train_loss: 0.00010552339517744258\n", + "epoch: 7556 train_loss: 0.00010537890193518251\n", + "epoch: 7557 train_loss: 0.00010524153185542673\n", + "epoch: 7558 train_loss: 0.00010510616266401485\n", + "epoch: 7559 train_loss: 0.0001049643979058601\n", + "epoch: 7560 train_loss: 0.00010482954530743882\n", + "epoch: 7561 train_loss: 0.00010468982509337366\n", + "epoch: 7562 train_loss: 0.00010454832954565063\n", + "epoch: 7563 train_loss: 0.00010441702033858746\n", + "epoch: 7564 train_loss: 0.00010427589586470276\n", + "epoch: 7565 train_loss: 0.00010413446580059826\n", + "epoch: 7566 train_loss: 0.00010400245810160413\n", + "epoch: 7567 train_loss: 0.0001038644986692816\n", + "epoch: 7568 train_loss: 0.00010372569522587582\n", + "epoch: 7569 train_loss: 0.00010359011503169313\n", + "epoch: 7570 train_loss: 0.00010345043847337365\n", + "epoch: 7571 train_loss: 0.00010331782686989754\n", + "epoch: 7572 train_loss: 0.00010318394924979657\n", + "epoch: 7573 train_loss: 0.00010304236639058217\n", + "epoch: 7574 train_loss: 0.00010290936916135252\n", + "epoch: 7575 train_loss: 0.00010277582623530179\n", + "epoch: 7576 train_loss: 0.0001026337849907577\n", + "epoch: 7577 train_loss: 0.00010250022751279175\n", + "epoch: 7578 train_loss: 0.00010236434172838926\n", + "epoch: 7579 train_loss: 0.00010222916898783296\n", + "epoch: 7580 train_loss: 0.00010209561150986701\n", + "epoch: 7581 train_loss: 0.00010195944196311757\n", + "epoch: 7582 train_loss: 0.00010182261758018285\n", + "epoch: 7583 train_loss: 0.00010169214510824531\n", + "epoch: 7584 train_loss: 0.00010155467316508293\n", + "epoch: 7585 train_loss: 0.00010141706297872588\n", + "epoch: 7586 train_loss: 0.00010128847497981042\n", + "epoch: 7587 train_loss: 0.00010115369514096528\n", + "epoch: 7588 train_loss: 0.00010101840598508716\n", + "epoch: 7589 train_loss: 0.00010088738054037094\n", + "epoch: 7590 train_loss: 0.00010074788588099182\n", + "epoch: 7591 train_loss: 0.0001006189122563228\n", + "epoch: 7592 train_loss: 0.00010048516560345888\n", + "epoch: 7593 train_loss: 0.00010034818842541426\n", + "epoch: 7594 train_loss: 0.00010021677007898688\n", + "epoch: 7595 train_loss: 0.00010008800018113106\n", + "epoch: 7596 train_loss: 9.995404980145395e-05\n", + "epoch: 7597 train_loss: 9.982291521737352e-05\n", + "epoch: 7598 train_loss: 9.968879021471366e-05\n", + "epoch: 7599 train_loss: 9.955716086551547e-05\n", + "epoch: 7600 train_loss: 9.942550241248682e-05\n", + "epoch: 7601 train_loss: 9.928936196956784e-05\n", + "epoch: 7602 train_loss: 9.916197450365871e-05\n", + "epoch: 7603 train_loss: 9.903196769300848e-05\n", + "epoch: 7604 train_loss: 9.889370994642377e-05\n", + "epoch: 7605 train_loss: 9.876441617961973e-05\n", + "epoch: 7606 train_loss: 9.863838204182684e-05\n", + "epoch: 7607 train_loss: 9.850570495473221e-05\n", + "epoch: 7608 train_loss: 9.837260586209595e-05\n", + "epoch: 7609 train_loss: 9.824166045291349e-05\n", + "epoch: 7610 train_loss: 9.811384370550513e-05\n", + "epoch: 7611 train_loss: 9.7983684099745e-05\n", + "epoch: 7612 train_loss: 9.784847497940063e-05\n", + "epoch: 7613 train_loss: 9.772030171006918e-05\n", + "epoch: 7614 train_loss: 9.759457316249609e-05\n", + "epoch: 7615 train_loss: 9.746303840074688e-05\n", + "epoch: 7616 train_loss: 9.733217302709818e-05\n", + "epoch: 7617 train_loss: 9.720316302264109e-05\n", + "epoch: 7618 train_loss: 9.707555000204593e-05\n", + "epoch: 7619 train_loss: 9.694509208202362e-05\n", + "epoch: 7620 train_loss: 9.681723895482719e-05\n", + "epoch: 7621 train_loss: 9.668550046626478e-05\n", + "epoch: 7622 train_loss: 9.656460315454751e-05\n", + "epoch: 7623 train_loss: 9.64288628892973e-05\n", + "epoch: 7624 train_loss: 9.63006605161354e-05\n", + "epoch: 7625 train_loss: 9.617740579415113e-05\n", + "epoch: 7626 train_loss: 9.60499673965387e-05\n", + "epoch: 7627 train_loss: 9.592302376404405e-05\n", + "epoch: 7628 train_loss: 9.579272591508925e-05\n", + "epoch: 7629 train_loss: 9.566597873345017e-05\n", + "epoch: 7630 train_loss: 9.554415009915829e-05\n", + "epoch: 7631 train_loss: 9.540986502543092e-05\n", + "epoch: 7632 train_loss: 9.528226655675098e-05\n", + "epoch: 7633 train_loss: 9.516231511952356e-05\n", + "epoch: 7634 train_loss: 9.503445471636951e-05\n", + "epoch: 7635 train_loss: 9.490616503171623e-05\n", + "epoch: 7636 train_loss: 9.477948333369568e-05\n", + "epoch: 7637 train_loss: 9.465717448620126e-05\n", + "epoch: 7638 train_loss: 9.453165694139898e-05\n", + "epoch: 7639 train_loss: 9.440221765544266e-05\n", + "epoch: 7640 train_loss: 9.4276612799149e-05\n", + "epoch: 7641 train_loss: 9.415614476893097e-05\n", + "epoch: 7642 train_loss: 9.402691648574546e-05\n", + "epoch: 7643 train_loss: 9.389948536409065e-05\n", + "epoch: 7644 train_loss: 9.377858805237338e-05\n", + "epoch: 7645 train_loss: 9.365407458972186e-05\n", + "epoch: 7646 train_loss: 9.352941560791805e-05\n", + "epoch: 7647 train_loss: 9.340653923572972e-05\n", + "epoch: 7648 train_loss: 9.328113810624927e-05\n", + "epoch: 7649 train_loss: 9.316105570178479e-05\n", + "epoch: 7650 train_loss: 9.303283877670765e-05\n", + "epoch: 7651 train_loss: 9.290770685765892e-05\n", + "epoch: 7652 train_loss: 9.279194637201726e-05\n", + "epoch: 7653 train_loss: 9.2660789960064e-05\n", + "epoch: 7654 train_loss: 9.253964526578784e-05\n", + "epoch: 7655 train_loss: 9.241561201633886e-05\n", + "epoch: 7656 train_loss: 9.229741408489645e-05\n", + "epoch: 7657 train_loss: 9.217244951287284e-05\n", + "epoch: 7658 train_loss: 9.205147944157943e-05\n", + "epoch: 7659 train_loss: 9.192848665406927e-05\n", + "epoch: 7660 train_loss: 9.180846973322332e-05\n", + "epoch: 7661 train_loss: 9.168643737211823e-05\n", + "epoch: 7662 train_loss: 9.156339365290478e-05\n", + "epoch: 7663 train_loss: 9.144543582806364e-05\n", + "epoch: 7664 train_loss: 9.132114064414054e-05\n", + "epoch: 7665 train_loss: 9.120086906477809e-05\n", + "epoch: 7666 train_loss: 9.107956429943442e-05\n", + "epoch: 7667 train_loss: 9.096333087654784e-05\n", + "epoch: 7668 train_loss: 9.083984332391992e-05\n", + "epoch: 7669 train_loss: 9.071693057194352e-05\n", + "epoch: 7670 train_loss: 9.059705917024985e-05\n", + "epoch: 7671 train_loss: 9.047875209944323e-05\n", + "epoch: 7672 train_loss: 9.035985567606986e-05\n", + "epoch: 7673 train_loss: 9.023961320053786e-05\n", + "epoch: 7674 train_loss: 9.011727524921298e-05\n", + "epoch: 7675 train_loss: 9.000151476357132e-05\n", + "epoch: 7676 train_loss: 8.988226181827486e-05\n", + "epoch: 7677 train_loss: 8.976247045211494e-05\n", + "epoch: 7678 train_loss: 8.964705193648115e-05\n", + "epoch: 7679 train_loss: 8.952760981628671e-05\n", + "epoch: 7680 train_loss: 8.940666884882376e-05\n", + "epoch: 7681 train_loss: 8.928871829994023e-05\n", + "epoch: 7682 train_loss: 8.917341619962826e-05\n", + "epoch: 7683 train_loss: 8.905567665351555e-05\n", + "epoch: 7684 train_loss: 8.893726044334471e-05\n", + "epoch: 7685 train_loss: 8.881647954694927e-05\n", + "epoch: 7686 train_loss: 8.870314923115075e-05\n", + "epoch: 7687 train_loss: 8.858548244461417e-05\n", + "epoch: 7688 train_loss: 8.846705895848572e-05\n", + "epoch: 7689 train_loss: 8.835440530674532e-05\n", + "epoch: 7690 train_loss: 8.823560347082093e-05\n", + "epoch: 7691 train_loss: 8.81201631273143e-05\n", + "epoch: 7692 train_loss: 8.800139039522037e-05\n", + "epoch: 7693 train_loss: 8.788832928985357e-05\n", + "epoch: 7694 train_loss: 8.777248876867816e-05\n", + "epoch: 7695 train_loss: 8.765501843299717e-05\n", + "epoch: 7696 train_loss: 8.754109148867428e-05\n", + "epoch: 7697 train_loss: 8.742614591028541e-05\n", + "epoch: 7698 train_loss: 8.73111785040237e-05\n", + "epoch: 7699 train_loss: 8.719330799067393e-05\n", + "epoch: 7700 train_loss: 8.708324457984418e-05\n", + "epoch: 7701 train_loss: 8.696809527464211e-05\n", + "epoch: 7702 train_loss: 8.685282955411822e-05\n", + "epoch: 7703 train_loss: 8.673631236888468e-05\n", + "epoch: 7704 train_loss: 8.662748587084934e-05\n", + "epoch: 7705 train_loss: 8.651259850012138e-05\n", + "epoch: 7706 train_loss: 8.639755105832592e-05\n", + "epoch: 7707 train_loss: 8.628366776974872e-05\n", + "epoch: 7708 train_loss: 8.617342245997861e-05\n", + "epoch: 7709 train_loss: 8.605939365224913e-05\n", + "epoch: 7710 train_loss: 8.594445534981787e-05\n", + "epoch: 7711 train_loss: 8.583431190345436e-05\n", + "epoch: 7712 train_loss: 8.571939542889595e-05\n", + "epoch: 7713 train_loss: 8.561053982703015e-05\n", + "epoch: 7714 train_loss: 8.549710037186742e-05\n", + "epoch: 7715 train_loss: 8.538740803487599e-05\n", + "epoch: 7716 train_loss: 8.527511090505868e-05\n", + "epoch: 7717 train_loss: 8.516375964973122e-05\n", + "epoch: 7718 train_loss: 8.505261212121695e-05\n", + "epoch: 7719 train_loss: 8.493855420965701e-05\n", + "epoch: 7720 train_loss: 8.482876000925899e-05\n", + "epoch: 7721 train_loss: 8.472084300592542e-05\n", + "epoch: 7722 train_loss: 8.461091783829033e-05\n", + "epoch: 7723 train_loss: 8.449913730146363e-05\n", + "epoch: 7724 train_loss: 8.438993245363235e-05\n", + "epoch: 7725 train_loss: 8.42780209495686e-05\n", + "epoch: 7726 train_loss: 8.417148637818173e-05\n", + "epoch: 7727 train_loss: 8.405921835219488e-05\n", + "epoch: 7728 train_loss: 8.394980250159279e-05\n", + "epoch: 7729 train_loss: 8.384198736166582e-05\n", + "epoch: 7730 train_loss: 8.373207674594596e-05\n", + "epoch: 7731 train_loss: 8.36232939036563e-05\n", + "epoch: 7732 train_loss: 8.351813448825851e-05\n", + "epoch: 7733 train_loss: 8.34083984955214e-05\n", + "epoch: 7734 train_loss: 8.329838601639494e-05\n", + "epoch: 7735 train_loss: 8.319357584696263e-05\n", + "epoch: 7736 train_loss: 8.30853168736212e-05\n", + "epoch: 7737 train_loss: 8.297710883198306e-05\n", + "epoch: 7738 train_loss: 8.286796946777031e-05\n", + "epoch: 7739 train_loss: 8.276518929051235e-05\n", + "epoch: 7740 train_loss: 8.265480573754758e-05\n", + "epoch: 7741 train_loss: 8.254878775915131e-05\n", + "epoch: 7742 train_loss: 8.244371565524489e-05\n", + "epoch: 7743 train_loss: 8.233563130488619e-05\n", + "epoch: 7744 train_loss: 8.223191252909601e-05\n", + "epoch: 7745 train_loss: 8.212287502828985e-05\n", + "epoch: 7746 train_loss: 8.20198911242187e-05\n", + "epoch: 7747 train_loss: 8.191310189431533e-05\n", + "epoch: 7748 train_loss: 8.180665463441983e-05\n", + "epoch: 7749 train_loss: 8.170333603629842e-05\n", + "epoch: 7750 train_loss: 8.159803837770596e-05\n", + "epoch: 7751 train_loss: 8.149223867803812e-05\n", + "epoch: 7752 train_loss: 8.138636621879414e-05\n", + "epoch: 7753 train_loss: 8.128386252792552e-05\n", + "epoch: 7754 train_loss: 8.118024561554193e-05\n", + "epoch: 7755 train_loss: 8.107534085866064e-05\n", + "epoch: 7756 train_loss: 8.096991950878873e-05\n", + "epoch: 7757 train_loss: 8.08681215858087e-05\n", + "epoch: 7758 train_loss: 8.076611993601546e-05\n", + "epoch: 7759 train_loss: 8.066222653724253e-05\n", + "epoch: 7760 train_loss: 8.055775833781809e-05\n", + "epoch: 7761 train_loss: 8.045577123994008e-05\n", + "epoch: 7762 train_loss: 8.035213249968365e-05\n", + "epoch: 7763 train_loss: 8.025083661777899e-05\n", + "epoch: 7764 train_loss: 8.014950435608625e-05\n", + "epoch: 7765 train_loss: 8.004663686733693e-05\n", + "epoch: 7766 train_loss: 7.994497718755156e-05\n", + "epoch: 7767 train_loss: 7.984360854607075e-05\n", + "epoch: 7768 train_loss: 7.974370964802802e-05\n", + "epoch: 7769 train_loss: 7.964108954183757e-05\n", + "epoch: 7770 train_loss: 7.953892782097682e-05\n", + "epoch: 7771 train_loss: 7.94402658357285e-05\n", + "epoch: 7772 train_loss: 7.933728920761496e-05\n", + "epoch: 7773 train_loss: 7.923959492472932e-05\n", + "epoch: 7774 train_loss: 7.913779700174928e-05\n", + "epoch: 7775 train_loss: 7.903690857347101e-05\n", + "epoch: 7776 train_loss: 7.893663860158995e-05\n", + "epoch: 7777 train_loss: 7.883823855081573e-05\n", + "epoch: 7778 train_loss: 7.873809954617172e-05\n", + "epoch: 7779 train_loss: 7.864070357754827e-05\n", + "epoch: 7780 train_loss: 7.854012801544741e-05\n", + "epoch: 7781 train_loss: 7.84413714427501e-05\n", + "epoch: 7782 train_loss: 7.834393181838095e-05\n", + "epoch: 7783 train_loss: 7.824209023965523e-05\n", + "epoch: 7784 train_loss: 7.814590207999572e-05\n", + "epoch: 7785 train_loss: 7.804673805367202e-05\n", + "epoch: 7786 train_loss: 7.79499823693186e-05\n", + "epoch: 7787 train_loss: 7.785294292261824e-05\n", + "epoch: 7788 train_loss: 7.775492122163996e-05\n", + "epoch: 7789 train_loss: 7.765959162497893e-05\n", + "epoch: 7790 train_loss: 7.756127160973847e-05\n", + "epoch: 7791 train_loss: 7.746364281047136e-05\n", + "epoch: 7792 train_loss: 7.736518455203623e-05\n", + "epoch: 7793 train_loss: 7.72723215050064e-05\n", + "epoch: 7794 train_loss: 7.717455446254462e-05\n", + "epoch: 7795 train_loss: 7.707724580541253e-05\n", + "epoch: 7796 train_loss: 7.698337867623195e-05\n", + "epoch: 7797 train_loss: 7.688741607125849e-05\n", + "epoch: 7798 train_loss: 7.679013651795685e-05\n", + "epoch: 7799 train_loss: 7.669231854379177e-05\n", + "epoch: 7800 train_loss: 7.660103437956423e-05\n", + "epoch: 7801 train_loss: 7.650677434867248e-05\n", + "epoch: 7802 train_loss: 7.640860712854192e-05\n", + "epoch: 7803 train_loss: 7.631758489878848e-05\n", + "epoch: 7804 train_loss: 7.622262637596577e-05\n", + "epoch: 7805 train_loss: 7.612556510139257e-05\n", + "epoch: 7806 train_loss: 7.603289122926071e-05\n", + "epoch: 7807 train_loss: 7.594030466862023e-05\n", + "epoch: 7808 train_loss: 7.58458481868729e-05\n", + "epoch: 7809 train_loss: 7.575232302770019e-05\n", + "epoch: 7810 train_loss: 7.566012209281325e-05\n", + "epoch: 7811 train_loss: 7.556699711130932e-05\n", + "epoch: 7812 train_loss: 7.547252607764676e-05\n", + "epoch: 7813 train_loss: 7.538001955254003e-05\n", + "epoch: 7814 train_loss: 7.528815331170335e-05\n", + "epoch: 7815 train_loss: 7.519724022131413e-05\n", + "epoch: 7816 train_loss: 7.510356954298913e-05\n", + "epoch: 7817 train_loss: 7.501246000174433e-05\n", + "epoch: 7818 train_loss: 7.49211831134744e-05\n", + "epoch: 7819 train_loss: 7.482501678168774e-05\n", + "epoch: 7820 train_loss: 7.473767618648708e-05\n", + "epoch: 7821 train_loss: 7.464749069185928e-05\n", + "epoch: 7822 train_loss: 7.455571903847158e-05\n", + "epoch: 7823 train_loss: 7.44649296393618e-05\n", + "epoch: 7824 train_loss: 7.437622116412967e-05\n", + "epoch: 7825 train_loss: 7.428444223478436e-05\n", + "epoch: 7826 train_loss: 7.419323083013296e-05\n", + "epoch: 7827 train_loss: 7.41028634365648e-05\n", + "epoch: 7828 train_loss: 7.401581387966871e-05\n", + "epoch: 7829 train_loss: 7.392559928121045e-05\n", + "epoch: 7830 train_loss: 7.383660704363137e-05\n", + "epoch: 7831 train_loss: 7.374898996204138e-05\n", + "epoch: 7832 train_loss: 7.365915371337906e-05\n", + "epoch: 7833 train_loss: 7.356704008998349e-05\n", + "epoch: 7834 train_loss: 7.348030339926481e-05\n", + "epoch: 7835 train_loss: 7.339390140259638e-05\n", + "epoch: 7836 train_loss: 7.330293010454625e-05\n", + "epoch: 7837 train_loss: 7.321312295971438e-05\n", + "epoch: 7838 train_loss: 7.312916568480432e-05\n", + "epoch: 7839 train_loss: 7.303767779376358e-05\n", + "epoch: 7840 train_loss: 7.295348041225225e-05\n", + "epoch: 7841 train_loss: 7.286728214239702e-05\n", + "epoch: 7842 train_loss: 7.277880649780855e-05\n", + "epoch: 7843 train_loss: 7.269253546837717e-05\n", + "epoch: 7844 train_loss: 7.260338315973058e-05\n", + "epoch: 7845 train_loss: 7.252061914186925e-05\n", + "epoch: 7846 train_loss: 7.24316923879087e-05\n", + "epoch: 7847 train_loss: 7.234356598928571e-05\n", + "epoch: 7848 train_loss: 7.226262823678553e-05\n", + "epoch: 7849 train_loss: 7.217506936285645e-05\n", + "epoch: 7850 train_loss: 7.208825991256163e-05\n", + "epoch: 7851 train_loss: 7.200260006356984e-05\n", + "epoch: 7852 train_loss: 7.19203962944448e-05\n", + "epoch: 7853 train_loss: 7.183454727055505e-05\n", + "epoch: 7854 train_loss: 7.174813072197139e-05\n", + "epoch: 7855 train_loss: 7.166754949139431e-05\n", + "epoch: 7856 train_loss: 7.157887011999264e-05\n", + "epoch: 7857 train_loss: 7.149529119487852e-05\n", + "epoch: 7858 train_loss: 7.141439709812403e-05\n", + "epoch: 7859 train_loss: 7.132808968890458e-05\n", + "epoch: 7860 train_loss: 7.124251715140417e-05\n", + "epoch: 7861 train_loss: 7.115841435734183e-05\n", + "epoch: 7862 train_loss: 7.107960118446499e-05\n", + "epoch: 7863 train_loss: 7.099448703229427e-05\n", + "epoch: 7864 train_loss: 7.090928556863219e-05\n", + "epoch: 7865 train_loss: 7.083191303536296e-05\n", + "epoch: 7866 train_loss: 7.074599852785468e-05\n", + "epoch: 7867 train_loss: 7.066440593916923e-05\n", + "epoch: 7868 train_loss: 7.058298797346652e-05\n", + "epoch: 7869 train_loss: 7.050058047752827e-05\n", + "epoch: 7870 train_loss: 7.041658682283014e-05\n", + "epoch: 7871 train_loss: 7.033503788989037e-05\n", + "epoch: 7872 train_loss: 7.025506783975288e-05\n", + "epoch: 7873 train_loss: 7.017116149654612e-05\n", + "epoch: 7874 train_loss: 7.009359251242131e-05\n", + "epoch: 7875 train_loss: 7.001328776823357e-05\n", + "epoch: 7876 train_loss: 6.992947601247579e-05\n", + "epoch: 7877 train_loss: 6.984901119722053e-05\n", + "epoch: 7878 train_loss: 6.976931763347238e-05\n", + "epoch: 7879 train_loss: 6.969107926124707e-05\n", + "epoch: 7880 train_loss: 6.960832979530096e-05\n", + "epoch: 7881 train_loss: 6.952856347197667e-05\n", + "epoch: 7882 train_loss: 6.945143104530871e-05\n", + "epoch: 7883 train_loss: 6.936941645108163e-05\n", + "epoch: 7884 train_loss: 6.92902467562817e-05\n", + "epoch: 7885 train_loss: 6.921352178324014e-05\n", + "epoch: 7886 train_loss: 6.913315155543387e-05\n", + "epoch: 7887 train_loss: 6.905382178956643e-05\n", + "epoch: 7888 train_loss: 6.897813727846369e-05\n", + "epoch: 7889 train_loss: 6.889725045766681e-05\n", + "epoch: 7890 train_loss: 6.881722947582603e-05\n", + "epoch: 7891 train_loss: 6.874218524899334e-05\n", + "epoch: 7892 train_loss: 6.866319017717615e-05\n", + "epoch: 7893 train_loss: 6.858541019028053e-05\n", + "epoch: 7894 train_loss: 6.850674981251359e-05\n", + "epoch: 7895 train_loss: 6.843070877948776e-05\n", + "epoch: 7896 train_loss: 6.835343083366752e-05\n", + "epoch: 7897 train_loss: 6.82763202348724e-05\n", + "epoch: 7898 train_loss: 6.820177077315748e-05\n", + "epoch: 7899 train_loss: 6.812314677517861e-05\n", + "epoch: 7900 train_loss: 6.804482109146193e-05\n", + "epoch: 7901 train_loss: 6.797129026381299e-05\n", + "epoch: 7902 train_loss: 6.789257167838514e-05\n", + "epoch: 7903 train_loss: 6.781749107176438e-05\n", + "epoch: 7904 train_loss: 6.774335633963346e-05\n", + "epoch: 7905 train_loss: 6.766820297343656e-05\n", + "epoch: 7906 train_loss: 6.759030657121912e-05\n", + "epoch: 7907 train_loss: 6.751476757926866e-05\n", + "epoch: 7908 train_loss: 6.744155689375475e-05\n", + "epoch: 7909 train_loss: 6.736593059031293e-05\n", + "epoch: 7910 train_loss: 6.729097367497161e-05\n", + "epoch: 7911 train_loss: 6.721790123265237e-05\n", + "epoch: 7912 train_loss: 6.714164192089811e-05\n", + "epoch: 7913 train_loss: 6.706717249471694e-05\n", + "epoch: 7914 train_loss: 6.699363439111039e-05\n", + "epoch: 7915 train_loss: 6.691808812320232e-05\n", + "epoch: 7916 train_loss: 6.684665277134627e-05\n", + "epoch: 7917 train_loss: 6.677272904198617e-05\n", + "epoch: 7918 train_loss: 6.670054426649585e-05\n", + "epoch: 7919 train_loss: 6.662489613518119e-05\n", + "epoch: 7920 train_loss: 6.655261677224189e-05\n", + "epoch: 7921 train_loss: 6.64794715703465e-05\n", + "epoch: 7922 train_loss: 6.640776700805873e-05\n", + "epoch: 7923 train_loss: 6.633430166402832e-05\n", + "epoch: 7924 train_loss: 6.626031245104969e-05\n", + "epoch: 7925 train_loss: 6.618867337238044e-05\n", + "epoch: 7926 train_loss: 6.611634307773784e-05\n", + "epoch: 7927 train_loss: 6.604526424780488e-05\n", + "epoch: 7928 train_loss: 6.59741199342534e-05\n", + "epoch: 7929 train_loss: 6.590152042917907e-05\n", + "epoch: 7930 train_loss: 6.583239883184433e-05\n", + "epoch: 7931 train_loss: 6.575896259164438e-05\n", + "epoch: 7932 train_loss: 6.568876415258273e-05\n", + "epoch: 7933 train_loss: 6.561753252753988e-05\n", + "epoch: 7934 train_loss: 6.5547414124012e-05\n", + "epoch: 7935 train_loss: 6.547540397150442e-05\n", + "epoch: 7936 train_loss: 6.540570029756054e-05\n", + "epoch: 7937 train_loss: 6.533585110446438e-05\n", + "epoch: 7938 train_loss: 6.526326615130529e-05\n", + "epoch: 7939 train_loss: 6.519528687931597e-05\n", + "epoch: 7940 train_loss: 6.512743857456371e-05\n", + "epoch: 7941 train_loss: 6.505604687845334e-05\n", + "epoch: 7942 train_loss: 6.49867215543054e-05\n", + "epoch: 7943 train_loss: 6.491775275208056e-05\n", + "epoch: 7944 train_loss: 6.484791811089963e-05\n", + "epoch: 7945 train_loss: 6.477812712546438e-05\n", + "epoch: 7946 train_loss: 6.47109845886007e-05\n", + "epoch: 7947 train_loss: 6.464204489020631e-05\n", + "epoch: 7948 train_loss: 6.457225390477106e-05\n", + "epoch: 7949 train_loss: 6.450639193644747e-05\n", + "epoch: 7950 train_loss: 6.443415622925386e-05\n", + "epoch: 7951 train_loss: 6.436761032091454e-05\n", + "epoch: 7952 train_loss: 6.429990025935695e-05\n", + "epoch: 7953 train_loss: 6.423032755265012e-05\n", + "epoch: 7954 train_loss: 6.416494579752907e-05\n", + "epoch: 7955 train_loss: 6.409479101421311e-05\n", + "epoch: 7956 train_loss: 6.402969302143902e-05\n", + "epoch: 7957 train_loss: 6.396188109647483e-05\n", + "epoch: 7958 train_loss: 6.389513146132231e-05\n", + "epoch: 7959 train_loss: 6.382884021149948e-05\n", + "epoch: 7960 train_loss: 6.376098463078961e-05\n", + "epoch: 7961 train_loss: 6.369559559971094e-05\n", + "epoch: 7962 train_loss: 6.36252443655394e-05\n", + "epoch: 7963 train_loss: 6.356217636493966e-05\n", + "epoch: 7964 train_loss: 6.349680916173384e-05\n", + "epoch: 7965 train_loss: 6.343086715787649e-05\n", + "epoch: 7966 train_loss: 6.336345541058108e-05\n", + "epoch: 7967 train_loss: 6.329843745334074e-05\n", + "epoch: 7968 train_loss: 6.323386332951486e-05\n", + "epoch: 7969 train_loss: 6.316571671050042e-05\n", + "epoch: 7970 train_loss: 6.310217577265576e-05\n", + "epoch: 7971 train_loss: 6.303531699813902e-05\n", + "epoch: 7972 train_loss: 6.297173968050629e-05\n", + "epoch: 7973 train_loss: 6.290715100476518e-05\n", + "epoch: 7974 train_loss: 6.284069240791723e-05\n", + "epoch: 7975 train_loss: 6.277725333347917e-05\n", + "epoch: 7976 train_loss: 6.271139864111319e-05\n", + "epoch: 7977 train_loss: 6.264875264605507e-05\n", + "epoch: 7978 train_loss: 6.258275971049443e-05\n", + "epoch: 7979 train_loss: 6.2522929511033e-05\n", + "epoch: 7980 train_loss: 6.245836266316473e-05\n", + "epoch: 7981 train_loss: 6.239287176867947e-05\n", + "epoch: 7982 train_loss: 6.233205203898251e-05\n", + "epoch: 7983 train_loss: 6.226680852705613e-05\n", + "epoch: 7984 train_loss: 6.220480281626806e-05\n", + "epoch: 7985 train_loss: 6.214016320882365e-05\n", + "epoch: 7986 train_loss: 6.207933620316908e-05\n", + "epoch: 7987 train_loss: 6.201596261234954e-05\n", + "epoch: 7988 train_loss: 6.195278547238559e-05\n", + "epoch: 7989 train_loss: 6.189111445564777e-05\n", + "epoch: 7990 train_loss: 6.18269041297026e-05\n", + "epoch: 7991 train_loss: 6.176681199576706e-05\n", + "epoch: 7992 train_loss: 6.170201231725514e-05\n", + "epoch: 7993 train_loss: 6.164233491290361e-05\n", + "epoch: 7994 train_loss: 6.158016913104802e-05\n", + "epoch: 7995 train_loss: 6.151686102384701e-05\n", + "epoch: 7996 train_loss: 6.145593943074346e-05\n", + "epoch: 7997 train_loss: 6.13935844739899e-05\n", + "epoch: 7998 train_loss: 6.13336160313338e-05\n", + "epoch: 7999 train_loss: 6.1270002333913e-05\n", + "epoch: 8000 train_loss: 6.121266051195562e-05\n", + "epoch: 8001 train_loss: 6.115180440247059e-05\n", + "epoch: 8002 train_loss: 6.109089008532465e-05\n", + "epoch: 8003 train_loss: 6.102884071879089e-05\n", + "epoch: 8004 train_loss: 6.0968137404415756e-05\n", + "epoch: 8005 train_loss: 6.0907157603651285e-05\n", + "epoch: 8006 train_loss: 6.084753476898186e-05\n", + "epoch: 8007 train_loss: 6.0789374401792884e-05\n", + "epoch: 8008 train_loss: 6.072764881537296e-05\n", + "epoch: 8009 train_loss: 6.066720743547194e-05\n", + "epoch: 8010 train_loss: 6.060868690838106e-05\n", + "epoch: 8011 train_loss: 6.0548838519025594e-05\n", + "epoch: 8012 train_loss: 6.04900524194818e-05\n", + "epoch: 8013 train_loss: 6.0429389122873545e-05\n", + "epoch: 8014 train_loss: 6.036876220605336e-05\n", + "epoch: 8015 train_loss: 6.030949225532822e-05\n", + "epoch: 8016 train_loss: 6.0254311392782256e-05\n", + "epoch: 8017 train_loss: 6.019406282575801e-05\n", + "epoch: 8018 train_loss: 6.0136200772831216e-05\n", + "epoch: 8019 train_loss: 6.00771454628557e-05\n", + "epoch: 8020 train_loss: 6.0016602219548076e-05\n", + "epoch: 8021 train_loss: 5.9960388171020895e-05\n", + "epoch: 8022 train_loss: 5.9899582993239164e-05\n", + "epoch: 8023 train_loss: 5.984266317682341e-05\n", + "epoch: 8024 train_loss: 5.978764602332376e-05\n", + "epoch: 8025 train_loss: 5.97265679971315e-05\n", + "epoch: 8026 train_loss: 5.9669480833690614e-05\n", + "epoch: 8027 train_loss: 5.961117858532816e-05\n", + "epoch: 8028 train_loss: 5.955465167062357e-05\n", + "epoch: 8029 train_loss: 5.9496316680451855e-05\n", + "epoch: 8030 train_loss: 5.944343138253316e-05\n", + "epoch: 8031 train_loss: 5.9383120969869196e-05\n", + "epoch: 8032 train_loss: 5.932641579420306e-05\n", + "epoch: 8033 train_loss: 5.927075108047575e-05\n", + "epoch: 8034 train_loss: 5.921052070334554e-05\n", + "epoch: 8035 train_loss: 5.915759174968116e-05\n", + "epoch: 8036 train_loss: 5.910109757678583e-05\n", + "epoch: 8037 train_loss: 5.9043504734290764e-05\n", + "epoch: 8038 train_loss: 5.898579547647387e-05\n", + "epoch: 8039 train_loss: 5.893322668271139e-05\n", + "epoch: 8040 train_loss: 5.887703082407825e-05\n", + "epoch: 8041 train_loss: 5.8820565755013376e-05\n", + "epoch: 8042 train_loss: 5.8765854191733524e-05\n", + "epoch: 8043 train_loss: 5.8707559219328687e-05\n", + "epoch: 8044 train_loss: 5.865612911293283e-05\n", + "epoch: 8045 train_loss: 5.859703742316924e-05\n", + "epoch: 8046 train_loss: 5.8542180340737104e-05\n", + "epoch: 8047 train_loss: 5.848592991242185e-05\n", + "epoch: 8048 train_loss: 5.8432688092580065e-05\n", + "epoch: 8049 train_loss: 5.837585194967687e-05\n", + "epoch: 8050 train_loss: 5.832212627865374e-05\n", + "epoch: 8051 train_loss: 5.8268571592634544e-05\n", + "epoch: 8052 train_loss: 5.8212481235386804e-05\n", + "epoch: 8053 train_loss: 5.81594358664006e-05\n", + "epoch: 8054 train_loss: 5.810155926155858e-05\n", + "epoch: 8055 train_loss: 5.8049197832588106e-05\n", + "epoch: 8056 train_loss: 5.7994358940050006e-05\n", + "epoch: 8057 train_loss: 5.79411062062718e-05\n", + "epoch: 8058 train_loss: 5.788671478512697e-05\n", + "epoch: 8059 train_loss: 5.783385495305993e-05\n", + "epoch: 8060 train_loss: 5.777988917543553e-05\n", + "epoch: 8061 train_loss: 5.772539952886291e-05\n", + "epoch: 8062 train_loss: 5.767272159573622e-05\n", + "epoch: 8063 train_loss: 5.761683496530168e-05\n", + "epoch: 8064 train_loss: 5.756713289883919e-05\n", + "epoch: 8065 train_loss: 5.751151911681518e-05\n", + "epoch: 8066 train_loss: 5.7459335948806256e-05\n", + "epoch: 8067 train_loss: 5.740955748478882e-05\n", + "epoch: 8068 train_loss: 5.735476952395402e-05\n", + "epoch: 8069 train_loss: 5.730097836931236e-05\n", + "epoch: 8070 train_loss: 5.7250224926974624e-05\n", + "epoch: 8071 train_loss: 5.719709588447586e-05\n", + "epoch: 8072 train_loss: 5.714182771043852e-05\n", + "epoch: 8073 train_loss: 5.709348261007108e-05\n", + "epoch: 8074 train_loss: 5.703644274035469e-05\n", + "epoch: 8075 train_loss: 5.698733002645895e-05\n", + "epoch: 8076 train_loss: 5.693502680514939e-05\n", + "epoch: 8077 train_loss: 5.6882498029153794e-05\n", + "epoch: 8078 train_loss: 5.683490235242061e-05\n", + "epoch: 8079 train_loss: 5.678047091350891e-05\n", + "epoch: 8080 train_loss: 5.6728596973698586e-05\n", + "epoch: 8081 train_loss: 5.667738150805235e-05\n", + "epoch: 8082 train_loss: 5.662767944158986e-05\n", + "epoch: 8083 train_loss: 5.65733207622543e-05\n", + "epoch: 8084 train_loss: 5.652580512105487e-05\n", + "epoch: 8085 train_loss: 5.647006764775142e-05\n", + "epoch: 8086 train_loss: 5.642013275064528e-05\n", + "epoch: 8087 train_loss: 5.637018330162391e-05\n", + "epoch: 8088 train_loss: 5.6319291616091505e-05\n", + "epoch: 8089 train_loss: 5.62698369321879e-05\n", + "epoch: 8090 train_loss: 5.6218967074528337e-05\n", + "epoch: 8091 train_loss: 5.6167420552810654e-05\n", + "epoch: 8092 train_loss: 5.6118082284228876e-05\n", + "epoch: 8093 train_loss: 5.606684135273099e-05\n", + "epoch: 8094 train_loss: 5.6013621360762045e-05\n", + "epoch: 8095 train_loss: 5.596638220595196e-05\n", + "epoch: 8096 train_loss: 5.591534500126727e-05\n", + "epoch: 8097 train_loss: 5.586673796642572e-05\n", + "epoch: 8098 train_loss: 5.5817181419115514e-05\n", + "epoch: 8099 train_loss: 5.5767581216059625e-05\n", + "epoch: 8100 train_loss: 5.571743895416148e-05\n", + "epoch: 8101 train_loss: 5.566903200815432e-05\n", + "epoch: 8102 train_loss: 5.5619901104364544e-05\n", + "epoch: 8103 train_loss: 5.5569762480445206e-05\n", + "epoch: 8104 train_loss: 5.551993672270328e-05\n", + "epoch: 8105 train_loss: 5.546834654523991e-05\n", + "epoch: 8106 train_loss: 5.5422497098334134e-05\n", + "epoch: 8107 train_loss: 5.537217657547444e-05\n", + "epoch: 8108 train_loss: 5.532252907869406e-05\n", + "epoch: 8109 train_loss: 5.5276803323067725e-05\n", + "epoch: 8110 train_loss: 5.522574429051019e-05\n", + "epoch: 8111 train_loss: 5.5180258641485125e-05\n", + "epoch: 8112 train_loss: 5.513121868716553e-05\n", + "epoch: 8113 train_loss: 5.5080359743442386e-05\n", + "epoch: 8114 train_loss: 5.5034390243235976e-05\n", + "epoch: 8115 train_loss: 5.498497193912044e-05\n", + "epoch: 8116 train_loss: 5.493571370607242e-05\n", + "epoch: 8117 train_loss: 5.489010800374672e-05\n", + "epoch: 8118 train_loss: 5.483876884682104e-05\n", + "epoch: 8119 train_loss: 5.4792781156720594e-05\n", + "epoch: 8120 train_loss: 5.4745218221796677e-05\n", + "epoch: 8121 train_loss: 5.469652023748495e-05\n", + "epoch: 8122 train_loss: 5.465120921144262e-05\n", + "epoch: 8123 train_loss: 5.460052125272341e-05\n", + "epoch: 8124 train_loss: 5.45540387975052e-05\n", + "epoch: 8125 train_loss: 5.4506734159076586e-05\n", + "epoch: 8126 train_loss: 5.4460153478430584e-05\n", + "epoch: 8127 train_loss: 5.441423854790628e-05\n", + "epoch: 8128 train_loss: 5.4366148106055334e-05\n", + "epoch: 8129 train_loss: 5.4317850299412385e-05\n", + "epoch: 8130 train_loss: 5.427287396742031e-05\n", + "epoch: 8131 train_loss: 5.42241359653417e-05\n", + "epoch: 8132 train_loss: 5.4176962294150144e-05\n", + "epoch: 8133 train_loss: 5.413274993770756e-05\n", + "epoch: 8134 train_loss: 5.4084157454781234e-05\n", + "epoch: 8135 train_loss: 5.4039384849602357e-05\n", + "epoch: 8136 train_loss: 5.399180736276321e-05\n", + "epoch: 8137 train_loss: 5.394587424234487e-05\n", + "epoch: 8138 train_loss: 5.390022124629468e-05\n", + "epoch: 8139 train_loss: 5.385377517086454e-05\n", + "epoch: 8140 train_loss: 5.3806619689567015e-05\n", + "epoch: 8141 train_loss: 5.376315675675869e-05\n", + "epoch: 8142 train_loss: 5.3713338274974376e-05\n", + "epoch: 8143 train_loss: 5.367051198845729e-05\n", + "epoch: 8144 train_loss: 5.362414594856091e-05\n", + "epoch: 8145 train_loss: 5.357778718462214e-05\n", + "epoch: 8146 train_loss: 5.35323670192156e-05\n", + "epoch: 8147 train_loss: 5.348705599317327e-05\n", + "epoch: 8148 train_loss: 5.344242526916787e-05\n", + "epoch: 8149 train_loss: 5.339668859960511e-05\n", + "epoch: 8150 train_loss: 5.335110836313106e-05\n", + "epoch: 8151 train_loss: 5.330696512828581e-05\n", + "epoch: 8152 train_loss: 5.3260413551470265e-05\n", + "epoch: 8153 train_loss: 5.3217107051750645e-05\n", + "epoch: 8154 train_loss: 5.3172410844126716e-05\n", + "epoch: 8155 train_loss: 5.312648136168718e-05\n", + "epoch: 8156 train_loss: 5.308352046995424e-05\n", + "epoch: 8157 train_loss: 5.30361539858859e-05\n", + "epoch: 8158 train_loss: 5.2992669225204736e-05\n", + "epoch: 8159 train_loss: 5.294683433021419e-05\n", + "epoch: 8160 train_loss: 5.290304761729203e-05\n", + "epoch: 8161 train_loss: 5.2857896662317216e-05\n", + "epoch: 8162 train_loss: 5.2814266382483765e-05\n", + "epoch: 8163 train_loss: 5.27699121448677e-05\n", + "epoch: 8164 train_loss: 5.272655107546598e-05\n", + "epoch: 8165 train_loss: 5.268286986392923e-05\n", + "epoch: 8166 train_loss: 5.2637740736827254e-05\n", + "epoch: 8167 train_loss: 5.259519457467832e-05\n", + "epoch: 8168 train_loss: 5.254983261693269e-05\n", + "epoch: 8169 train_loss: 5.2507133659673855e-05\n", + "epoch: 8170 train_loss: 5.246128057478927e-05\n", + "epoch: 8171 train_loss: 5.2419731218833476e-05\n", + "epoch: 8172 train_loss: 5.237555888015777e-05\n", + "epoch: 8173 train_loss: 5.2332645282149315e-05\n", + "epoch: 8174 train_loss: 5.2289149607531726e-05\n", + "epoch: 8175 train_loss: 5.2245108236093074e-05\n", + "epoch: 8176 train_loss: 5.2200561185600236e-05\n", + "epoch: 8177 train_loss: 5.215825149207376e-05\n", + "epoch: 8178 train_loss: 5.2114661230007187e-05\n", + "epoch: 8179 train_loss: 5.207232970860787e-05\n", + "epoch: 8180 train_loss: 5.202909233048558e-05\n", + "epoch: 8181 train_loss: 5.198650251259096e-05\n", + "epoch: 8182 train_loss: 5.194390541873872e-05\n", + "epoch: 8183 train_loss: 5.189893636270426e-05\n", + "epoch: 8184 train_loss: 5.185793270356953e-05\n", + "epoch: 8185 train_loss: 5.1813633035635576e-05\n", + "epoch: 8186 train_loss: 5.177258208277635e-05\n", + "epoch: 8187 train_loss: 5.172997043700889e-05\n", + "epoch: 8188 train_loss: 5.168743882677518e-05\n", + "epoch: 8189 train_loss: 5.164391768630594e-05\n", + "epoch: 8190 train_loss: 5.16034742759075e-05\n", + "epoch: 8191 train_loss: 5.1558476116042584e-05\n", + "epoch: 8192 train_loss: 5.152010635356419e-05\n", + "epoch: 8193 train_loss: 5.147525735083036e-05\n", + "epoch: 8194 train_loss: 5.1435137720545754e-05\n", + "epoch: 8195 train_loss: 5.1391249144217e-05\n", + "epoch: 8196 train_loss: 5.135022729518823e-05\n", + "epoch: 8197 train_loss: 5.130761201144196e-05\n", + "epoch: 8198 train_loss: 5.1266953960293904e-05\n", + "epoch: 8199 train_loss: 5.12246806465555e-05\n", + "epoch: 8200 train_loss: 5.1184142648708075e-05\n", + "epoch: 8201 train_loss: 5.1140876166755334e-05\n", + "epoch: 8202 train_loss: 5.110101483296603e-05\n", + "epoch: 8203 train_loss: 5.105879972688854e-05\n", + "epoch: 8204 train_loss: 5.101793794892728e-05\n", + "epoch: 8205 train_loss: 5.097577013657428e-05\n", + "epoch: 8206 train_loss: 5.093439176562242e-05\n", + "epoch: 8207 train_loss: 5.089433761895634e-05\n", + "epoch: 8208 train_loss: 5.085207158117555e-05\n", + "epoch: 8209 train_loss: 5.081082053948194e-05\n", + "epoch: 8210 train_loss: 5.076869638287462e-05\n", + "epoch: 8211 train_loss: 5.07302611367777e-05\n", + "epoch: 8212 train_loss: 5.068892642157152e-05\n", + "epoch: 8213 train_loss: 5.0648268370423466e-05\n", + "epoch: 8214 train_loss: 5.06060168845579e-05\n", + "epoch: 8215 train_loss: 5.0567025027703494e-05\n", + "epoch: 8216 train_loss: 5.052376945968717e-05\n", + "epoch: 8217 train_loss: 5.048560706200078e-05\n", + "epoch: 8218 train_loss: 5.0442831707187e-05\n", + "epoch: 8219 train_loss: 5.040422911406495e-05\n", + "epoch: 8220 train_loss: 5.036303628003225e-05\n", + "epoch: 8221 train_loss: 5.0323924369877204e-05\n", + "epoch: 8222 train_loss: 5.028249870520085e-05\n", + "epoch: 8223 train_loss: 5.024409620091319e-05\n", + "epoch: 8224 train_loss: 5.020325625082478e-05\n", + "epoch: 8225 train_loss: 5.016292561776936e-05\n", + "epoch: 8226 train_loss: 5.012147448724136e-05\n", + "epoch: 8227 train_loss: 5.00825080962386e-05\n", + "epoch: 8228 train_loss: 5.004194099456072e-05\n", + "epoch: 8229 train_loss: 5.00040223414544e-05\n", + "epoch: 8230 train_loss: 4.996253119315952e-05\n", + "epoch: 8231 train_loss: 4.99235320603475e-05\n", + "epoch: 8232 train_loss: 4.988219006918371e-05\n", + "epoch: 8233 train_loss: 4.984337283531204e-05\n", + "epoch: 8234 train_loss: 4.980228914064355e-05\n", + "epoch: 8235 train_loss: 4.976432319381274e-05\n", + "epoch: 8236 train_loss: 4.9723854317562655e-05\n", + "epoch: 8237 train_loss: 4.968669964000583e-05\n", + "epoch: 8238 train_loss: 4.964669278706424e-05\n", + "epoch: 8239 train_loss: 4.960586011293344e-05\n", + "epoch: 8240 train_loss: 4.956693737767637e-05\n", + "epoch: 8241 train_loss: 4.952826566295698e-05\n", + "epoch: 8242 train_loss: 4.948970308760181e-05\n", + "epoch: 8243 train_loss: 4.945020918967202e-05\n", + "epoch: 8244 train_loss: 4.941041333950125e-05\n", + "epoch: 8245 train_loss: 4.9371250497642905e-05\n", + "epoch: 8246 train_loss: 4.933411764795892e-05\n", + "epoch: 8247 train_loss: 4.929540227749385e-05\n", + "epoch: 8248 train_loss: 4.925630855723284e-05\n", + "epoch: 8249 train_loss: 4.9217738705920056e-05\n", + "epoch: 8250 train_loss: 4.917911428492516e-05\n", + "epoch: 8251 train_loss: 4.9139707698486745e-05\n", + "epoch: 8252 train_loss: 4.910144707537256e-05\n", + "epoch: 8253 train_loss: 4.906184767605737e-05\n", + "epoch: 8254 train_loss: 4.902375803794712e-05\n", + "epoch: 8255 train_loss: 4.8985733883455396e-05\n", + "epoch: 8256 train_loss: 4.894794255960733e-05\n", + "epoch: 8257 train_loss: 4.8908616008702666e-05\n", + "epoch: 8258 train_loss: 4.8870602768147364e-05\n", + "epoch: 8259 train_loss: 4.8831985623110086e-05\n", + "epoch: 8260 train_loss: 4.8793957830639556e-05\n", + "epoch: 8261 train_loss: 4.8755395255284384e-05\n", + "epoch: 8262 train_loss: 4.871891360380687e-05\n", + "epoch: 8263 train_loss: 4.8680478357709944e-05\n", + "epoch: 8264 train_loss: 4.864334550802596e-05\n", + "epoch: 8265 train_loss: 4.8604608309688047e-05\n", + "epoch: 8266 train_loss: 4.856745363213122e-05\n", + "epoch: 8267 train_loss: 4.8528167098993436e-05\n", + "epoch: 8268 train_loss: 4.849182369071059e-05\n", + "epoch: 8269 train_loss: 4.8453952331328765e-05\n", + "epoch: 8270 train_loss: 4.841699774260633e-05\n", + "epoch: 8271 train_loss: 4.837760207010433e-05\n", + "epoch: 8272 train_loss: 4.8340934881707653e-05\n", + "epoch: 8273 train_loss: 4.8303871153621e-05\n", + "epoch: 8274 train_loss: 4.82651375932619e-05\n", + "epoch: 8275 train_loss: 4.8226887884084135e-05\n", + "epoch: 8276 train_loss: 4.818973320652731e-05\n", + "epoch: 8277 train_loss: 4.815338252228685e-05\n", + "epoch: 8278 train_loss: 4.811759208678268e-05\n", + "epoch: 8279 train_loss: 4.808055382454768e-05\n", + "epoch: 8280 train_loss: 4.8043682909337804e-05\n", + "epoch: 8281 train_loss: 4.800506940227933e-05\n", + "epoch: 8282 train_loss: 4.796738357981667e-05\n", + "epoch: 8283 train_loss: 4.792911568074487e-05\n", + "epoch: 8284 train_loss: 4.789434387930669e-05\n", + "epoch: 8285 train_loss: 4.78563888464123e-05\n", + "epoch: 8286 train_loss: 4.78213514725212e-05\n", + "epoch: 8287 train_loss: 4.7783556510694325e-05\n", + "epoch: 8288 train_loss: 4.7746518248459324e-05\n", + "epoch: 8289 train_loss: 4.771127350977622e-05\n", + "epoch: 8290 train_loss: 4.7674289817223325e-05\n", + "epoch: 8291 train_loss: 4.763724427903071e-05\n", + "epoch: 8292 train_loss: 4.7601264668628573e-05\n", + "epoch: 8293 train_loss: 4.756451380671933e-05\n", + "epoch: 8294 train_loss: 4.7527195420116186e-05\n", + "epoch: 8295 train_loss: 4.749248182633892e-05\n", + "epoch: 8296 train_loss: 4.7454868763452396e-05\n", + "epoch: 8297 train_loss: 4.741857264889404e-05\n", + "epoch: 8298 train_loss: 4.738142524729483e-05\n", + "epoch: 8299 train_loss: 4.734456888400018e-05\n", + "epoch: 8300 train_loss: 4.731065564556047e-05\n", + "epoch: 8301 train_loss: 4.727284249383956e-05\n", + "epoch: 8302 train_loss: 4.723726669908501e-05\n", + "epoch: 8303 train_loss: 4.720102879218757e-05\n", + "epoch: 8304 train_loss: 4.7165834985207766e-05\n", + "epoch: 8305 train_loss: 4.71297898911871e-05\n", + "epoch: 8306 train_loss: 4.7094934416236356e-05\n", + "epoch: 8307 train_loss: 4.705810351879336e-05\n", + "epoch: 8308 train_loss: 4.702155274571851e-05\n", + "epoch: 8309 train_loss: 4.698647899203934e-05\n", + "epoch: 8310 train_loss: 4.6950670366641134e-05\n", + "epoch: 8311 train_loss: 4.6915480197640136e-05\n", + "epoch: 8312 train_loss: 4.687943874159828e-05\n", + "epoch: 8313 train_loss: 4.684333907789551e-05\n", + "epoch: 8314 train_loss: 4.680851998273283e-05\n", + "epoch: 8315 train_loss: 4.6773067879257724e-05\n", + "epoch: 8316 train_loss: 4.673759758588858e-05\n", + "epoch: 8317 train_loss: 4.670240741688758e-05\n", + "epoch: 8318 train_loss: 4.666649692808278e-05\n", + "epoch: 8319 train_loss: 4.6631415898445994e-05\n", + "epoch: 8320 train_loss: 4.659541082219221e-05\n", + "epoch: 8321 train_loss: 4.6561202907469124e-05\n", + "epoch: 8322 train_loss: 4.65253324364312e-05\n", + "epoch: 8323 train_loss: 4.648973481380381e-05\n", + "epoch: 8324 train_loss: 4.645474109565839e-05\n", + "epoch: 8325 train_loss: 4.642056592274457e-05\n", + "epoch: 8326 train_loss: 4.638398968381807e-05\n", + "epoch: 8327 train_loss: 4.6350985940080136e-05\n", + "epoch: 8328 train_loss: 4.6314435167005286e-05\n", + "epoch: 8329 train_loss: 4.628016540664248e-05\n", + "epoch: 8330 train_loss: 4.624420034815557e-05\n", + "epoch: 8331 train_loss: 4.6210123400669545e-05\n", + "epoch: 8332 train_loss: 4.617495142156258e-05\n", + "epoch: 8333 train_loss: 4.614100544131361e-05\n", + "epoch: 8334 train_loss: 4.610588075593114e-05\n", + "epoch: 8335 train_loss: 4.60725677839946e-05\n", + "epoch: 8336 train_loss: 4.603610432241112e-05\n", + "epoch: 8337 train_loss: 4.600194370141253e-05\n", + "epoch: 8338 train_loss: 4.596762664732523e-05\n", + "epoch: 8339 train_loss: 4.593293851939961e-05\n", + "epoch: 8340 train_loss: 4.5897922973381355e-05\n", + "epoch: 8341 train_loss: 4.586417708196677e-05\n", + "epoch: 8342 train_loss: 4.582912879413925e-05\n", + "epoch: 8343 train_loss: 4.5795837650075555e-05\n", + "epoch: 8344 train_loss: 4.57609276054427e-05\n", + "epoch: 8345 train_loss: 4.57271198683884e-05\n", + "epoch: 8346 train_loss: 4.569402881315909e-05\n", + "epoch: 8347 train_loss: 4.56573543488048e-05\n", + "epoch: 8348 train_loss: 4.562433241517283e-05\n", + "epoch: 8349 train_loss: 4.5588789362227544e-05\n", + "epoch: 8350 train_loss: 4.5555600081570446e-05\n", + "epoch: 8351 train_loss: 4.552106111077592e-05\n", + "epoch: 8352 train_loss: 4.5486878661904484e-05\n", + "epoch: 8353 train_loss: 4.54535947937984e-05\n", + "epoch: 8354 train_loss: 4.541991074802354e-05\n", + "epoch: 8355 train_loss: 4.5386128476820886e-05\n", + "epoch: 8356 train_loss: 4.53521752206143e-05\n", + "epoch: 8357 train_loss: 4.531875310931355e-05\n", + "epoch: 8358 train_loss: 4.528377758106217e-05\n", + "epoch: 8359 train_loss: 4.5250442781252787e-05\n", + "epoch: 8360 train_loss: 4.521797382039949e-05\n", + "epoch: 8361 train_loss: 4.518342393566854e-05\n", + "epoch: 8362 train_loss: 4.5150260120863095e-05\n", + "epoch: 8363 train_loss: 4.5115295506548136e-05\n", + "epoch: 8364 train_loss: 4.508178972173482e-05\n", + "epoch: 8365 train_loss: 4.504941898630932e-05\n", + "epoch: 8366 train_loss: 4.501463263295591e-05\n", + "epoch: 8367 train_loss: 4.498268390307203e-05\n", + "epoch: 8368 train_loss: 4.4948552385903895e-05\n", + "epoch: 8369 train_loss: 4.491538857109845e-05\n", + "epoch: 8370 train_loss: 4.488272679736838e-05\n", + "epoch: 8371 train_loss: 4.484883538680151e-05\n", + "epoch: 8372 train_loss: 4.481566429603845e-05\n", + "epoch: 8373 train_loss: 4.478170376387425e-05\n", + "epoch: 8374 train_loss: 4.474918023333885e-05\n", + "epoch: 8375 train_loss: 4.471488136914559e-05\n", + "epoch: 8376 train_loss: 4.4682034058496356e-05\n", + "epoch: 8377 train_loss: 4.464945959625766e-05\n", + "epoch: 8378 train_loss: 4.461728167370893e-05\n", + "epoch: 8379 train_loss: 4.4584576244233176e-05\n", + "epoch: 8380 train_loss: 4.455131056602113e-05\n", + "epoch: 8381 train_loss: 4.4519194489112124e-05\n", + "epoch: 8382 train_loss: 4.4484891986940056e-05\n", + "epoch: 8383 train_loss: 4.4452168367570266e-05\n", + "epoch: 8384 train_loss: 4.4419335608836263e-05\n", + "epoch: 8385 train_loss: 4.438696851138957e-05\n", + "epoch: 8386 train_loss: 4.4354768760968e-05\n", + "epoch: 8387 train_loss: 4.4321164750726894e-05\n", + "epoch: 8388 train_loss: 4.428876127349213e-05\n", + "epoch: 8389 train_loss: 4.4256041292101145e-05\n", + "epoch: 8390 train_loss: 4.422374695423059e-05\n", + "epoch: 8391 train_loss: 4.4190644985064864e-05\n", + "epoch: 8392 train_loss: 4.4158332457300276e-05\n", + "epoch: 8393 train_loss: 4.412699490785599e-05\n", + "epoch: 8394 train_loss: 4.409277607919648e-05\n", + "epoch: 8395 train_loss: 4.4061762309866026e-05\n", + "epoch: 8396 train_loss: 4.4028638512827456e-05\n", + "epoch: 8397 train_loss: 4.3996104068355635e-05\n", + "epoch: 8398 train_loss: 4.3963606003671885e-05\n", + "epoch: 8399 train_loss: 4.393137714941986e-05\n", + "epoch: 8400 train_loss: 4.389876630739309e-05\n", + "epoch: 8401 train_loss: 4.3866784835699946e-05\n", + "epoch: 8402 train_loss: 4.383486520964652e-05\n", + "epoch: 8403 train_loss: 4.380262180347927e-05\n", + "epoch: 8404 train_loss: 4.377100049168803e-05\n", + "epoch: 8405 train_loss: 4.373778938315809e-05\n", + "epoch: 8406 train_loss: 4.370570968603715e-05\n", + "epoch: 8407 train_loss: 4.3674470362020656e-05\n", + "epoch: 8408 train_loss: 4.364240885479376e-05\n", + "epoch: 8409 train_loss: 4.361031096777879e-05\n", + "epoch: 8410 train_loss: 4.357829311629757e-05\n", + "epoch: 8411 train_loss: 4.3546991946641356e-05\n", + "epoch: 8412 train_loss: 4.351442839833908e-05\n", + "epoch: 8413 train_loss: 4.348297807155177e-05\n", + "epoch: 8414 train_loss: 4.3451713281683624e-05\n", + "epoch: 8415 train_loss: 4.34192297689151e-05\n", + "epoch: 8416 train_loss: 4.338754661148414e-05\n", + "epoch: 8417 train_loss: 4.3356620153645054e-05\n", + "epoch: 8418 train_loss: 4.332368916948326e-05\n", + "epoch: 8419 train_loss: 4.3291958718327805e-05\n", + "epoch: 8420 train_loss: 4.3261774408165365e-05\n", + "epoch: 8421 train_loss: 4.3228850699961185e-05\n", + "epoch: 8422 train_loss: 4.319809886510484e-05\n", + "epoch: 8423 train_loss: 4.316654667491093e-05\n", + "epoch: 8424 train_loss: 4.3135445594089106e-05\n", + "epoch: 8425 train_loss: 4.310342774260789e-05\n", + "epoch: 8426 train_loss: 4.30719846917782e-05\n", + "epoch: 8427 train_loss: 4.304063259041868e-05\n", + "epoch: 8428 train_loss: 4.301045191823505e-05\n", + "epoch: 8429 train_loss: 4.297733539715409e-05\n", + "epoch: 8430 train_loss: 4.2946823668899015e-05\n", + "epoch: 8431 train_loss: 4.291558434488252e-05\n", + "epoch: 8432 train_loss: 4.288373020244762e-05\n", + "epoch: 8433 train_loss: 4.28521707362961e-05\n", + "epoch: 8434 train_loss: 4.282295049051754e-05\n", + "epoch: 8435 train_loss: 4.279016502550803e-05\n", + "epoch: 8436 train_loss: 4.2759689677041024e-05\n", + "epoch: 8437 train_loss: 4.27285376645159e-05\n", + "epoch: 8438 train_loss: 4.269739656592719e-05\n", + "epoch: 8439 train_loss: 4.266612450010143e-05\n", + "epoch: 8440 train_loss: 4.26358928962145e-05\n", + "epoch: 8441 train_loss: 4.260408240952529e-05\n", + "epoch: 8442 train_loss: 4.257311229594052e-05\n", + "epoch: 8443 train_loss: 4.25430916948244e-05\n", + "epoch: 8444 train_loss: 4.2512147047091275e-05\n", + "epoch: 8445 train_loss: 4.248162076692097e-05\n", + "epoch: 8446 train_loss: 4.2451039917068556e-05\n", + "epoch: 8447 train_loss: 4.242019713274203e-05\n", + "epoch: 8448 train_loss: 4.238803740008734e-05\n", + "epoch: 8449 train_loss: 4.235859523760155e-05\n", + "epoch: 8450 train_loss: 4.232620995026082e-05\n", + "epoch: 8451 train_loss: 4.229651312925853e-05\n", + "epoch: 8452 train_loss: 4.226611417834647e-05\n", + "epoch: 8453 train_loss: 4.223531504976563e-05\n", + "epoch: 8454 train_loss: 4.220529444864951e-05\n", + "epoch: 8455 train_loss: 4.217431342112832e-05\n", + "epoch: 8456 train_loss: 4.2143932660110295e-05\n", + "epoch: 8457 train_loss: 4.211283157928847e-05\n", + "epoch: 8458 train_loss: 4.2082927393494174e-05\n", + "epoch: 8459 train_loss: 4.2052190110553056e-05\n", + "epoch: 8460 train_loss: 4.202244963380508e-05\n", + "epoch: 8461 train_loss: 4.199199247523211e-05\n", + "epoch: 8462 train_loss: 4.1961662645917386e-05\n", + "epoch: 8463 train_loss: 4.193037239019759e-05\n", + "epoch: 8464 train_loss: 4.190010440652259e-05\n", + "epoch: 8465 train_loss: 4.187052036286332e-05\n", + "epoch: 8466 train_loss: 4.1840739868348464e-05\n", + "epoch: 8467 train_loss: 4.1810693801380694e-05\n", + "epoch: 8468 train_loss: 4.177926530246623e-05\n", + "epoch: 8469 train_loss: 4.175032154307701e-05\n", + "epoch: 8470 train_loss: 4.172016269876622e-05\n", + "epoch: 8471 train_loss: 4.168968735029921e-05\n", + "epoch: 8472 train_loss: 4.166029975749552e-05\n", + "epoch: 8473 train_loss: 4.1629038605606183e-05\n", + "epoch: 8474 train_loss: 4.1599916585255414e-05\n", + "epoch: 8475 train_loss: 4.156981594860554e-05\n", + "epoch: 8476 train_loss: 4.153970076004043e-05\n", + "epoch: 8477 train_loss: 4.150961831328459e-05\n", + "epoch: 8478 train_loss: 4.148059815634042e-05\n", + "epoch: 8479 train_loss: 4.144986451137811e-05\n", + "epoch: 8480 train_loss: 4.142034595133737e-05\n", + "epoch: 8481 train_loss: 4.139131124247797e-05\n", + "epoch: 8482 train_loss: 4.13607522204984e-05\n", + "epoch: 8483 train_loss: 4.1331095417262986e-05\n", + "epoch: 8484 train_loss: 4.130131856072694e-05\n", + "epoch: 8485 train_loss: 4.127083229832351e-05\n", + "epoch: 8486 train_loss: 4.1242732550017536e-05\n", + "epoch: 8487 train_loss: 4.1212388168787584e-05\n", + "epoch: 8488 train_loss: 4.118353535886854e-05\n", + "epoch: 8489 train_loss: 4.1153180063702166e-05\n", + "epoch: 8490 train_loss: 4.1124421841232106e-05\n", + "epoch: 8491 train_loss: 4.109461951884441e-05\n", + "epoch: 8492 train_loss: 4.1065079130930826e-05\n", + "epoch: 8493 train_loss: 4.103646278963424e-05\n", + "epoch: 8494 train_loss: 4.100569276488386e-05\n", + "epoch: 8495 train_loss: 4.097644705325365e-05\n", + "epoch: 8496 train_loss: 4.0946884837467223e-05\n", + "epoch: 8497 train_loss: 4.09181448048912e-05\n", + "epoch: 8498 train_loss: 4.0888655348680913e-05\n", + "epoch: 8499 train_loss: 4.085895125172101e-05\n", + "epoch: 8500 train_loss: 4.082940358784981e-05\n", + "epoch: 8501 train_loss: 4.080171856912784e-05\n", + "epoch: 8502 train_loss: 4.077138510183431e-05\n", + "epoch: 8503 train_loss: 4.074153184774332e-05\n", + "epoch: 8504 train_loss: 4.071231160196476e-05\n", + "epoch: 8505 train_loss: 4.068425914738327e-05\n", + "epoch: 8506 train_loss: 4.065446410095319e-05\n", + "epoch: 8507 train_loss: 4.0625775000080466e-05\n", + "epoch: 8508 train_loss: 4.059682032675482e-05\n", + "epoch: 8509 train_loss: 4.056686884723604e-05\n", + "epoch: 8510 train_loss: 4.0538474422646686e-05\n", + "epoch: 8511 train_loss: 4.051013820571825e-05\n", + "epoch: 8512 train_loss: 4.048126720590517e-05\n", + "epoch: 8513 train_loss: 4.0451603126712143e-05\n", + "epoch: 8514 train_loss: 4.04224447265733e-05\n", + "epoch: 8515 train_loss: 4.039461782667786e-05\n", + "epoch: 8516 train_loss: 4.036489917780273e-05\n", + "epoch: 8517 train_loss: 4.0336570236831903e-05\n", + "epoch: 8518 train_loss: 4.0307699237018824e-05\n", + "epoch: 8519 train_loss: 4.027962131658569e-05\n", + "epoch: 8520 train_loss: 4.0250295569421723e-05\n", + "epoch: 8521 train_loss: 4.022156645078212e-05\n", + "epoch: 8522 train_loss: 4.019293555757031e-05\n", + "epoch: 8523 train_loss: 4.016359889646992e-05\n", + "epoch: 8524 train_loss: 4.013615398434922e-05\n", + "epoch: 8525 train_loss: 4.0105987864080817e-05\n", + "epoch: 8526 train_loss: 4.007869938504882e-05\n", + "epoch: 8527 train_loss: 4.004963921033777e-05\n", + "epoch: 8528 train_loss: 4.002185960416682e-05\n", + "epoch: 8529 train_loss: 3.9992246456677094e-05\n", + "epoch: 8530 train_loss: 3.996397936134599e-05\n", + "epoch: 8531 train_loss: 3.993551945313811e-05\n", + "epoch: 8532 train_loss: 3.990744153270498e-05\n", + "epoch: 8533 train_loss: 3.9878439565654844e-05\n", + "epoch: 8534 train_loss: 3.9849554013926536e-05\n", + "epoch: 8535 train_loss: 3.9823335100663826e-05\n", + "epoch: 8536 train_loss: 3.9794216718291864e-05\n", + "epoch: 8537 train_loss: 3.976442530984059e-05\n", + "epoch: 8538 train_loss: 3.9735386963002384e-05\n", + "epoch: 8539 train_loss: 3.970962279709056e-05\n", + "epoch: 8540 train_loss: 3.9680846384726465e-05\n", + "epoch: 8541 train_loss: 3.965245559811592e-05\n", + "epoch: 8542 train_loss: 3.96243340219371e-05\n", + "epoch: 8543 train_loss: 3.959511377615854e-05\n", + "epoch: 8544 train_loss: 3.956840737373568e-05\n", + "epoch: 8545 train_loss: 3.953941268264316e-05\n", + "epoch: 8546 train_loss: 3.951166581828147e-05\n", + "epoch: 8547 train_loss: 3.948322409996763e-05\n", + "epoch: 8548 train_loss: 3.945541538996622e-05\n", + "epoch: 8549 train_loss: 3.942687180824578e-05\n", + "epoch: 8550 train_loss: 3.939833914046176e-05\n", + "epoch: 8551 train_loss: 3.937117799068801e-05\n", + "epoch: 8552 train_loss: 3.9343776734312996e-05\n", + "epoch: 8553 train_loss: 3.931589890271425e-05\n", + "epoch: 8554 train_loss: 3.928690421162173e-05\n", + "epoch: 8555 train_loss: 3.925957207684405e-05\n", + "epoch: 8556 train_loss: 3.923288386431523e-05\n", + "epoch: 8557 train_loss: 3.920404560631141e-05\n", + "epoch: 8558 train_loss: 3.9176506106741726e-05\n", + "epoch: 8559 train_loss: 3.914764238288626e-05\n", + "epoch: 8560 train_loss: 3.912113606929779e-05\n", + "epoch: 8561 train_loss: 3.909253791789524e-05\n", + "epoch: 8562 train_loss: 3.906479469151236e-05\n", + "epoch: 8563 train_loss: 3.903714241459966e-05\n", + "epoch: 8564 train_loss: 3.901035597664304e-05\n", + "epoch: 8565 train_loss: 3.898208524333313e-05\n", + "epoch: 8566 train_loss: 3.895456757163629e-05\n", + "epoch: 8567 train_loss: 3.8928064896026626e-05\n", + "epoch: 8568 train_loss: 3.8900157960597426e-05\n", + "epoch: 8569 train_loss: 3.887170532834716e-05\n", + "epoch: 8570 train_loss: 3.884452598867938e-05\n", + "epoch: 8571 train_loss: 3.881588054355234e-05\n", + "epoch: 8572 train_loss: 3.87894942832645e-05\n", + "epoch: 8573 train_loss: 3.8761911127949134e-05\n", + "epoch: 8574 train_loss: 3.873416062560864e-05\n", + "epoch: 8575 train_loss: 3.8706355553586036e-05\n", + "epoch: 8576 train_loss: 3.868004205287434e-05\n", + "epoch: 8577 train_loss: 3.865157486870885e-05\n", + "epoch: 8578 train_loss: 3.862535231746733e-05\n", + "epoch: 8579 train_loss: 3.8597165257669985e-05\n", + "epoch: 8580 train_loss: 3.8570946344407275e-05\n", + "epoch: 8581 train_loss: 3.854326132568531e-05\n", + "epoch: 8582 train_loss: 3.8517231587320566e-05\n", + "epoch: 8583 train_loss: 3.848880442092195e-05\n", + "epoch: 8584 train_loss: 3.846059553325176e-05\n", + "epoch: 8585 train_loss: 3.8435049646068364e-05\n", + "epoch: 8586 train_loss: 3.840599674731493e-05\n", + "epoch: 8587 train_loss: 3.83805381716229e-05\n", + "epoch: 8588 train_loss: 3.8352765841409564e-05\n", + "epoch: 8589 train_loss: 3.83253391191829e-05\n", + "epoch: 8590 train_loss: 3.8300066080410033e-05\n", + "epoch: 8591 train_loss: 3.8270842196652666e-05\n", + "epoch: 8592 train_loss: 3.8245110772550106e-05\n", + "epoch: 8593 train_loss: 3.8217640394577757e-05\n", + "epoch: 8594 train_loss: 3.819028279394843e-05\n", + "epoch: 8595 train_loss: 3.816411845036782e-05\n", + "epoch: 8596 train_loss: 3.8135935028549284e-05\n", + "epoch: 8597 train_loss: 3.810976704698987e-05\n", + "epoch: 8598 train_loss: 3.8082194805610925e-05\n", + "epoch: 8599 train_loss: 3.8056838093325496e-05\n", + "epoch: 8600 train_loss: 3.802917854045518e-05\n", + "epoch: 8601 train_loss: 3.8002213841537014e-05\n", + "epoch: 8602 train_loss: 3.7975594750605524e-05\n", + "epoch: 8603 train_loss: 3.794915392063558e-05\n", + "epoch: 8604 train_loss: 3.792177449213341e-05\n", + "epoch: 8605 train_loss: 3.789542824961245e-05\n", + "epoch: 8606 train_loss: 3.78693439415656e-05\n", + "epoch: 8607 train_loss: 3.784109867410734e-05\n", + "epoch: 8608 train_loss: 3.7814828829141334e-05\n", + "epoch: 8609 train_loss: 3.778851169045083e-05\n", + "epoch: 8610 train_loss: 3.776283483603038e-05\n", + "epoch: 8611 train_loss: 3.773684147745371e-05\n", + "epoch: 8612 train_loss: 3.7708276067860425e-05\n", + "epoch: 8613 train_loss: 3.768316673813388e-05\n", + "epoch: 8614 train_loss: 3.765545625356026e-05\n", + "epoch: 8615 train_loss: 3.7628979043802246e-05\n", + "epoch: 8616 train_loss: 3.760282197617926e-05\n", + "epoch: 8617 train_loss: 3.757563536055386e-05\n", + "epoch: 8618 train_loss: 3.755018406081945e-05\n", + "epoch: 8619 train_loss: 3.752408883883618e-05\n", + "epoch: 8620 train_loss: 3.749633106053807e-05\n", + "epoch: 8621 train_loss: 3.747082519112155e-05\n", + "epoch: 8622 train_loss: 3.744408240891062e-05\n", + "epoch: 8623 train_loss: 3.7417303246911615e-05\n", + "epoch: 8624 train_loss: 3.73913389921654e-05\n", + "epoch: 8625 train_loss: 3.736646249308251e-05\n", + "epoch: 8626 train_loss: 3.7338795664254576e-05\n", + "epoch: 8627 train_loss: 3.731287142727524e-05\n", + "epoch: 8628 train_loss: 3.728697629412636e-05\n", + "epoch: 8629 train_loss: 3.7260339013300836e-05\n", + "epoch: 8630 train_loss: 3.723504414665513e-05\n", + "epoch: 8631 train_loss: 3.7207701097941026e-05\n", + "epoch: 8632 train_loss: 3.7181573134148493e-05\n", + "epoch: 8633 train_loss: 3.715411003213376e-05\n", + "epoch: 8634 train_loss: 3.713054320542142e-05\n", + "epoch: 8635 train_loss: 3.710333112394437e-05\n", + "epoch: 8636 train_loss: 3.707753057824448e-05\n", + "epoch: 8637 train_loss: 3.705246854224242e-05\n", + "epoch: 8638 train_loss: 3.702478716149926e-05\n", + "epoch: 8639 train_loss: 3.699945955304429e-05\n", + "epoch: 8640 train_loss: 3.6973069654777646e-05\n", + "epoch: 8641 train_loss: 3.694800034281798e-05\n", + "epoch: 8642 train_loss: 3.692112659336999e-05\n", + "epoch: 8643 train_loss: 3.689378354465589e-05\n", + "epoch: 8644 train_loss: 3.687112621264532e-05\n", + "epoch: 8645 train_loss: 3.6843375710304826e-05\n", + "epoch: 8646 train_loss: 3.681831731228158e-05\n", + "epoch: 8647 train_loss: 3.679130895761773e-05\n", + "epoch: 8648 train_loss: 3.676601772895083e-05\n", + "epoch: 8649 train_loss: 3.6741166695719585e-05\n", + "epoch: 8650 train_loss: 3.671376180136576e-05\n", + "epoch: 8651 train_loss: 3.668915087473579e-05\n", + "epoch: 8652 train_loss: 3.666264092316851e-05\n", + "epoch: 8653 train_loss: 3.663729876279831e-05\n", + "epoch: 8654 train_loss: 3.661059236037545e-05\n", + "epoch: 8655 train_loss: 3.658530113170855e-05\n", + "epoch: 8656 train_loss: 3.656162152765319e-05\n", + "epoch: 8657 train_loss: 3.6533539969241247e-05\n", + "epoch: 8658 train_loss: 3.650846701930277e-05\n", + "epoch: 8659 train_loss: 3.648302663350478e-05\n", + "epoch: 8660 train_loss: 3.6457735404837877e-05\n", + "epoch: 8661 train_loss: 3.643265881692059e-05\n", + "epoch: 8662 train_loss: 3.640586874098517e-05\n", + "epoch: 8663 train_loss: 3.6380508390720934e-05\n", + "epoch: 8664 train_loss: 3.6356228520162404e-05\n", + "epoch: 8665 train_loss: 3.632926018326543e-05\n", + "epoch: 8666 train_loss: 3.630558057921007e-05\n", + "epoch: 8667 train_loss: 3.627956903073937e-05\n", + "epoch: 8668 train_loss: 3.6253451980883256e-05\n", + "epoch: 8669 train_loss: 3.6228961107553914e-05\n", + "epoch: 8670 train_loss: 3.6202414776198566e-05\n", + "epoch: 8671 train_loss: 3.617720358306542e-05\n", + "epoch: 8672 train_loss: 3.615203240769915e-05\n", + "epoch: 8673 train_loss: 3.612740692915395e-05\n", + "epoch: 8674 train_loss: 3.6101479054195806e-05\n", + "epoch: 8675 train_loss: 3.607607868616469e-05\n", + "epoch: 8676 train_loss: 3.605083838920109e-05\n", + "epoch: 8677 train_loss: 3.602611104724929e-05\n", + "epoch: 8678 train_loss: 3.6000983527628705e-05\n", + "epoch: 8679 train_loss: 3.59757941623684e-05\n", + "epoch: 8680 train_loss: 3.5950848541688174e-05\n", + "epoch: 8681 train_loss: 3.592519351514056e-05\n", + "epoch: 8682 train_loss: 3.589981497498229e-05\n", + "epoch: 8683 train_loss: 3.587495302781463e-05\n", + "epoch: 8684 train_loss: 3.5849559935741127e-05\n", + "epoch: 8685 train_loss: 3.5824494261760265e-05\n", + "epoch: 8686 train_loss: 3.5799814213532954e-05\n", + "epoch: 8687 train_loss: 3.577481766114943e-05\n", + "epoch: 8688 train_loss: 3.574959555407986e-05\n", + "epoch: 8689 train_loss: 3.572378045646474e-05\n", + "epoch: 8690 train_loss: 3.56996497430373e-05\n", + "epoch: 8691 train_loss: 3.5675522667588666e-05\n", + "epoch: 8692 train_loss: 3.5649867641041055e-05\n", + "epoch: 8693 train_loss: 3.562474012142047e-05\n", + "epoch: 8694 train_loss: 3.55982847395353e-05\n", + "epoch: 8695 train_loss: 3.5574703360907733e-05\n", + "epoch: 8696 train_loss: 3.5550259781302884e-05\n", + "epoch: 8697 train_loss: 3.552550697349943e-05\n", + "epoch: 8698 train_loss: 3.5500346712069586e-05\n", + "epoch: 8699 train_loss: 3.547445157892071e-05\n", + "epoch: 8700 train_loss: 3.5450237191980705e-05\n", + "epoch: 8701 train_loss: 3.5426470276433975e-05\n", + "epoch: 8702 train_loss: 3.540060788509436e-05\n", + "epoch: 8703 train_loss: 3.537614975357428e-05\n", + "epoch: 8704 train_loss: 3.5351840779185295e-05\n", + "epoch: 8705 train_loss: 3.532654227456078e-05\n", + "epoch: 8706 train_loss: 3.5302542528370395e-05\n", + "epoch: 8707 train_loss: 3.5277913411846384e-05\n", + "epoch: 8708 train_loss: 3.525162901496515e-05\n", + "epoch: 8709 train_loss: 3.522864426486194e-05\n", + "epoch: 8710 train_loss: 3.520346945151687e-05\n", + "epoch: 8711 train_loss: 3.517905861372128e-05\n", + "epoch: 8712 train_loss: 3.515405478538014e-05\n", + "epoch: 8713 train_loss: 3.512917101033963e-05\n", + "epoch: 8714 train_loss: 3.510531678330153e-05\n", + "epoch: 8715 train_loss: 3.508030204102397e-05\n", + "epoch: 8716 train_loss: 3.505550557747483e-05\n", + "epoch: 8717 train_loss: 3.503242987790145e-05\n", + "epoch: 8718 train_loss: 3.500692764646374e-05\n", + "epoch: 8719 train_loss: 3.498313162708655e-05\n", + "epoch: 8720 train_loss: 3.495895361993462e-05\n", + "epoch: 8721 train_loss: 3.493432450341061e-05\n", + "epoch: 8722 train_loss: 3.490991730359383e-05\n", + "epoch: 8723 train_loss: 3.4885328204836696e-05\n", + "epoch: 8724 train_loss: 3.486058994894847e-05\n", + "epoch: 8725 train_loss: 3.4836055419873446e-05\n", + "epoch: 8726 train_loss: 3.481234307400882e-05\n", + "epoch: 8727 train_loss: 3.4787208278430626e-05\n", + "epoch: 8728 train_loss: 3.476433994364925e-05\n", + "epoch: 8729 train_loss: 3.473885954008438e-05\n", + "epoch: 8730 train_loss: 3.471485979389399e-05\n", + "epoch: 8731 train_loss: 3.469181319815107e-05\n", + "epoch: 8732 train_loss: 3.4666696592466906e-05\n", + "epoch: 8733 train_loss: 3.464248948148452e-05\n", + "epoch: 8734 train_loss: 3.461783489910886e-05\n", + "epoch: 8735 train_loss: 3.4594046155689284e-05\n", + "epoch: 8736 train_loss: 3.4570610296214e-05\n", + "epoch: 8737 train_loss: 3.454598117968999e-05\n", + "epoch: 8738 train_loss: 3.452145756455138e-05\n", + "epoch: 8739 train_loss: 3.449708310654387e-05\n", + "epoch: 8740 train_loss: 3.447405106271617e-05\n", + "epoch: 8741 train_loss: 3.444849426159635e-05\n", + "epoch: 8742 train_loss: 3.44252803188283e-05\n", + "epoch: 8743 train_loss: 3.440226646489464e-05\n", + "epoch: 8744 train_loss: 3.437688428675756e-05\n", + "epoch: 8745 train_loss: 3.435410326346755e-05\n", + "epoch: 8746 train_loss: 3.432862285990268e-05\n", + "epoch: 8747 train_loss: 3.430572178331204e-05\n", + "epoch: 8748 train_loss: 3.428132913541049e-05\n", + "epoch: 8749 train_loss: 3.425719842198305e-05\n", + "epoch: 8750 train_loss: 3.423478119657375e-05\n", + "epoch: 8751 train_loss: 3.42099265253637e-05\n", + "epoch: 8752 train_loss: 3.418567212065682e-05\n", + "epoch: 8753 train_loss: 3.416282561374828e-05\n", + "epoch: 8754 train_loss: 3.41382110491395e-05\n", + "epoch: 8755 train_loss: 3.411401849007234e-05\n", + "epoch: 8756 train_loss: 3.409045166336e-05\n", + "epoch: 8757 train_loss: 3.406622272450477e-05\n", + "epoch: 8758 train_loss: 3.40436672559008e-05\n", + "epoch: 8759 train_loss: 3.401949652470648e-05\n", + "epoch: 8760 train_loss: 3.399593697395176e-05\n", + "epoch: 8761 train_loss: 3.397262844373472e-05\n", + "epoch: 8762 train_loss: 3.3948079362744465e-05\n", + "epoch: 8763 train_loss: 3.3924345189007e-05\n", + "epoch: 8764 train_loss: 3.390138954273425e-05\n", + "epoch: 8765 train_loss: 3.3876953239087015e-05\n", + "epoch: 8766 train_loss: 3.385339368833229e-05\n", + "epoch: 8767 train_loss: 3.3830358006525785e-05\n", + "epoch: 8768 train_loss: 3.380666021257639e-05\n", + "epoch: 8769 train_loss: 3.378217661520466e-05\n", + "epoch: 8770 train_loss: 3.376016320544295e-05\n", + "epoch: 8771 train_loss: 3.373682193341665e-05\n", + "epoch: 8772 train_loss: 3.3710883144522086e-05\n", + "epoch: 8773 train_loss: 3.3688582334434614e-05\n", + "epoch: 8774 train_loss: 3.366578675922938e-05\n", + "epoch: 8775 train_loss: 3.3642609196249396e-05\n", + "epoch: 8776 train_loss: 3.361830022186041e-05\n", + "epoch: 8777 train_loss: 3.3595086279092357e-05\n", + "epoch: 8778 train_loss: 3.3572046959307045e-05\n", + "epoch: 8779 train_loss: 3.354755972395651e-05\n", + "epoch: 8780 train_loss: 3.352577914483845e-05\n", + "epoch: 8781 train_loss: 3.350145198055543e-05\n", + "epoch: 8782 train_loss: 3.347772144479677e-05\n", + "epoch: 8783 train_loss: 3.345395452925004e-05\n", + "epoch: 8784 train_loss: 3.3431682822993025e-05\n", + "epoch: 8785 train_loss: 3.340875991852954e-05\n", + "epoch: 8786 train_loss: 3.3384250855306163e-05\n", + "epoch: 8787 train_loss: 3.336135341669433e-05\n", + "epoch: 8788 train_loss: 3.333893255330622e-05\n", + "epoch: 8789 train_loss: 3.331490734126419e-05\n", + "epoch: 8790 train_loss: 3.3292395528405905e-05\n", + "epoch: 8791 train_loss: 3.3268803235841915e-05\n", + "epoch: 8792 train_loss: 3.32452509610448e-05\n", + "epoch: 8793 train_loss: 3.322192424093373e-05\n", + "epoch: 8794 train_loss: 3.3198677556356415e-05\n", + "epoch: 8795 train_loss: 3.317631853860803e-05\n", + "epoch: 8796 train_loss: 3.315378853585571e-05\n", + "epoch: 8797 train_loss: 3.312979606562294e-05\n", + "epoch: 8798 train_loss: 3.3107713534263894e-05\n", + "epoch: 8799 train_loss: 3.308413943159394e-05\n", + "epoch: 8800 train_loss: 3.3061089197872207e-05\n", + "epoch: 8801 train_loss: 3.3038235415006056e-05\n", + "epoch: 8802 train_loss: 3.301470133010298e-05\n", + "epoch: 8803 train_loss: 3.299245145171881e-05\n", + "epoch: 8804 train_loss: 3.2968739105854183e-05\n", + "epoch: 8805 train_loss: 3.294603811809793e-05\n", + "epoch: 8806 train_loss: 3.292324981885031e-05\n", + "epoch: 8807 train_loss: 3.290112363174558e-05\n", + "epoch: 8808 train_loss: 3.287696381448768e-05\n", + "epoch: 8809 train_loss: 3.285345883341506e-05\n", + "epoch: 8810 train_loss: 3.283209298388101e-05\n", + "epoch: 8811 train_loss: 3.280840246588923e-05\n", + "epoch: 8812 train_loss: 3.278537042206153e-05\n", + "epoch: 8813 train_loss: 3.276233474025503e-05\n", + "epoch: 8814 train_loss: 3.274027039879002e-05\n", + "epoch: 8815 train_loss: 3.271715831942856e-05\n", + "epoch: 8816 train_loss: 3.269458102295175e-05\n", + "epoch: 8817 train_loss: 3.2671421649865806e-05\n", + "epoch: 8818 train_loss: 3.264933548052795e-05\n", + "epoch: 8819 train_loss: 3.262606333009899e-05\n", + "epoch: 8820 train_loss: 3.260288940509781e-05\n", + "epoch: 8821 train_loss: 3.257988646510057e-05\n", + "epoch: 8822 train_loss: 3.2559593819314614e-05\n", + "epoch: 8823 train_loss: 3.2534426281927153e-05\n", + "epoch: 8824 train_loss: 3.251266753068194e-05\n", + "epoch: 8825 train_loss: 3.248968278057873e-05\n", + "epoch: 8826 train_loss: 3.2467061828356236e-05\n", + "epoch: 8827 train_loss: 3.244457911932841e-05\n", + "epoch: 8828 train_loss: 3.242279126425274e-05\n", + "epoch: 8829 train_loss: 3.239899160689674e-05\n", + "epoch: 8830 train_loss: 3.237808414269239e-05\n", + "epoch: 8831 train_loss: 3.235473559470847e-05\n", + "epoch: 8832 train_loss: 3.233146344427951e-05\n", + "epoch: 8833 train_loss: 3.230948277632706e-05\n", + "epoch: 8834 train_loss: 3.2286960049532354e-05\n", + "epoch: 8835 train_loss: 3.2263717002933845e-05\n", + "epoch: 8836 train_loss: 3.224152169423178e-05\n", + "epoch: 8837 train_loss: 3.221877705072984e-05\n", + "epoch: 8838 train_loss: 3.219637801521458e-05\n", + "epoch: 8839 train_loss: 3.217433550162241e-05\n", + "epoch: 8840 train_loss: 3.215190372429788e-05\n", + "epoch: 8841 train_loss: 3.2129657483892515e-05\n", + "epoch: 8842 train_loss: 3.210746945114806e-05\n", + "epoch: 8843 train_loss: 3.2085063139675185e-05\n", + "epoch: 8844 train_loss: 3.206223118468188e-05\n", + "epoch: 8845 train_loss: 3.2041079975897446e-05\n", + "epoch: 8846 train_loss: 3.201806975994259e-05\n", + "epoch: 8847 train_loss: 3.199541606591083e-05\n", + "epoch: 8848 train_loss: 3.197258774889633e-05\n", + "epoch: 8849 train_loss: 3.195146200596355e-05\n", + "epoch: 8850 train_loss: 3.192907388438471e-05\n", + "epoch: 8851 train_loss: 3.190651841578074e-05\n", + "epoch: 8852 train_loss: 3.188390110153705e-05\n", + "epoch: 8853 train_loss: 3.186237518093549e-05\n", + "epoch: 8854 train_loss: 3.184055822202936e-05\n", + "epoch: 8855 train_loss: 3.181690044584684e-05\n", + "epoch: 8856 train_loss: 3.179625127813779e-05\n", + "epoch: 8857 train_loss: 3.177382313879207e-05\n", + "epoch: 8858 train_loss: 3.175153324264102e-05\n", + "epoch: 8859 train_loss: 3.1729556212667376e-05\n", + "epoch: 8860 train_loss: 3.170728814438917e-05\n", + "epoch: 8861 train_loss: 3.16846817440819e-05\n", + "epoch: 8862 train_loss: 3.1664210837334394e-05\n", + "epoch: 8863 train_loss: 3.1641244277125224e-05\n", + "epoch: 8864 train_loss: 3.161833228659816e-05\n", + "epoch: 8865 train_loss: 3.1597050110576674e-05\n", + "epoch: 8866 train_loss: 3.157473111059517e-05\n", + "epoch: 8867 train_loss: 3.155260856146924e-05\n", + "epoch: 8868 train_loss: 3.1530438718618825e-05\n", + "epoch: 8869 train_loss: 3.150952761643566e-05\n", + "epoch: 8870 train_loss: 3.1486506486544386e-05\n", + "epoch: 8871 train_loss: 3.146446397295222e-05\n", + "epoch: 8872 train_loss: 3.14422431983985e-05\n", + "epoch: 8873 train_loss: 3.142118293908425e-05\n", + "epoch: 8874 train_loss: 3.1399646104546264e-05\n", + "epoch: 8875 train_loss: 3.1377003324450925e-05\n", + "epoch: 8876 train_loss: 3.135525548714213e-05\n", + "epoch: 8877 train_loss: 3.133356949547306e-05\n", + "epoch: 8878 train_loss: 3.1312181818066165e-05\n", + "epoch: 8879 train_loss: 3.128966272925027e-05\n", + "epoch: 8880 train_loss: 3.126884621451609e-05\n", + "epoch: 8881 train_loss: 3.1247021979652345e-05\n", + "epoch: 8882 train_loss: 3.122471025562845e-05\n", + "epoch: 8883 train_loss: 3.120273686363362e-05\n", + "epoch: 8884 train_loss: 3.118032691418193e-05\n", + "epoch: 8885 train_loss: 3.1158546335063875e-05\n", + "epoch: 8886 train_loss: 3.1137969926930964e-05\n", + "epoch: 8887 train_loss: 3.111572004854679e-05\n", + "epoch: 8888 train_loss: 3.109468161710538e-05\n", + "epoch: 8889 train_loss: 3.107271186308935e-05\n", + "epoch: 8890 train_loss: 3.105066571151838e-05\n", + "epoch: 8891 train_loss: 3.102829577983357e-05\n", + "epoch: 8892 train_loss: 3.100846879533492e-05\n", + "epoch: 8893 train_loss: 3.0985585908638313e-05\n", + "epoch: 8894 train_loss: 3.096520958933979e-05\n", + "epoch: 8895 train_loss: 3.094251951551996e-05\n", + "epoch: 8896 train_loss: 3.092128099524416e-05\n", + "epoch: 8897 train_loss: 3.090007885475643e-05\n", + "epoch: 8898 train_loss: 3.087772347498685e-05\n", + "epoch: 8899 train_loss: 3.085678690695204e-05\n", + "epoch: 8900 train_loss: 3.083456977037713e-05\n", + "epoch: 8901 train_loss: 3.081370232393965e-05\n", + "epoch: 8902 train_loss: 3.0791918106842786e-05\n", + "epoch: 8903 train_loss: 3.077013752772473e-05\n", + "epoch: 8904 train_loss: 3.074848427786492e-05\n", + "epoch: 8905 train_loss: 3.07285699818749e-05\n", + "epoch: 8906 train_loss: 3.070638558710925e-05\n", + "epoch: 8907 train_loss: 3.068509613513015e-05\n", + "epoch: 8908 train_loss: 3.066378485527821e-05\n", + "epoch: 8909 train_loss: 3.064191696466878e-05\n", + "epoch: 8910 train_loss: 3.0620707548223436e-05\n", + "epoch: 8911 train_loss: 3.0599116144003347e-05\n", + "epoch: 8912 train_loss: 3.057792491745204e-05\n", + "epoch: 8913 train_loss: 3.055766865145415e-05\n", + "epoch: 8914 train_loss: 3.053590262425132e-05\n", + "epoch: 8915 train_loss: 3.051382373087108e-05\n", + "epoch: 8916 train_loss: 3.049251790798735e-05\n", + "epoch: 8917 train_loss: 3.0471601348835975e-05\n", + "epoch: 8918 train_loss: 3.044980257982388e-05\n", + "epoch: 8919 train_loss: 3.042910248041153e-05\n", + "epoch: 8920 train_loss: 3.0407010854105465e-05\n", + "epoch: 8921 train_loss: 3.0386840080609545e-05\n", + "epoch: 8922 train_loss: 3.036504494957626e-05\n", + "epoch: 8923 train_loss: 3.034368455701042e-05\n", + "epoch: 8924 train_loss: 3.0322664315463044e-05\n", + "epoch: 8925 train_loss: 3.0302857339847833e-05\n", + "epoch: 8926 train_loss: 3.0280429200502113e-05\n", + "epoch: 8927 train_loss: 3.0259176128311083e-05\n", + "epoch: 8928 train_loss: 3.0237919418141246e-05\n", + "epoch: 8929 train_loss: 3.021783231815789e-05\n", + "epoch: 8930 train_loss: 3.0195054932846688e-05\n", + "epoch: 8931 train_loss: 3.0175011488609016e-05\n", + "epoch: 8932 train_loss: 3.0155317290336825e-05\n", + "epoch: 8933 train_loss: 3.0132243409752846e-05\n", + "epoch: 8934 train_loss: 3.011186890944373e-05\n", + "epoch: 8935 train_loss: 3.0091430744505487e-05\n", + "epoch: 8936 train_loss: 3.0070226785028353e-05\n", + "epoch: 8937 train_loss: 3.0049019187572412e-05\n", + "epoch: 8938 train_loss: 3.0027935281395912e-05\n", + "epoch: 8939 train_loss: 3.0006904125912115e-05\n", + "epoch: 8940 train_loss: 2.9986254958203062e-05\n", + "epoch: 8941 train_loss: 2.9965389330754988e-05\n", + "epoch: 8942 train_loss: 2.9944892958155833e-05\n", + "epoch: 8943 train_loss: 2.9923585316282697e-05\n", + "epoch: 8944 train_loss: 2.9902819733251818e-05\n", + "epoch: 8945 train_loss: 2.9880713555030525e-05\n", + "epoch: 8946 train_loss: 2.9860779250157066e-05\n", + "epoch: 8947 train_loss: 2.9839447961421683e-05\n", + "epoch: 8948 train_loss: 2.9818209441145882e-05\n", + "epoch: 8949 train_loss: 2.9798669856972992e-05\n", + "epoch: 8950 train_loss: 2.97775895887753e-05\n", + "epoch: 8951 train_loss: 2.9756698495475575e-05\n", + "epoch: 8952 train_loss: 2.9735731004620902e-05\n", + "epoch: 8953 train_loss: 2.9715838536503725e-05\n", + "epoch: 8954 train_loss: 2.969374691019766e-05\n", + "epoch: 8955 train_loss: 2.967365253425669e-05\n", + "epoch: 8956 train_loss: 2.9651931981788948e-05\n", + "epoch: 8957 train_loss: 2.9633720259880647e-05\n", + "epoch: 8958 train_loss: 2.961084283015225e-05\n", + "epoch: 8959 train_loss: 2.9591001293738373e-05\n", + "epoch: 8960 train_loss: 2.9569851903943345e-05\n", + "epoch: 8961 train_loss: 2.954836054414045e-05\n", + "epoch: 8962 train_loss: 2.9528078812290914e-05\n", + "epoch: 8963 train_loss: 2.950733687612228e-05\n", + "epoch: 8964 train_loss: 2.948609835584648e-05\n", + "epoch: 8965 train_loss: 2.9467135391314514e-05\n", + "epoch: 8966 train_loss: 2.944584957731422e-05\n", + "epoch: 8967 train_loss: 2.942581159004476e-05\n", + "epoch: 8968 train_loss: 2.9405104214674793e-05\n", + "epoch: 8969 train_loss: 2.9384245863184333e-05\n", + "epoch: 8970 train_loss: 2.9364107831497677e-05\n", + "epoch: 8971 train_loss: 2.9343165806494653e-05\n", + "epoch: 8972 train_loss: 2.932293682533782e-05\n", + "epoch: 8973 train_loss: 2.9302311304491013e-05\n", + "epoch: 8974 train_loss: 2.9281942261150107e-05\n", + "epoch: 8975 train_loss: 2.9261114832479507e-05\n", + "epoch: 8976 train_loss: 2.9240927688078955e-05\n", + "epoch: 8977 train_loss: 2.922029852925334e-05\n", + "epoch: 8978 train_loss: 2.919892176578287e-05\n", + "epoch: 8979 train_loss: 2.918012069130782e-05\n", + "epoch: 8980 train_loss: 2.9157978133298457e-05\n", + "epoch: 8981 train_loss: 2.9138613172108307e-05\n", + "epoch: 8982 train_loss: 2.9117711164872162e-05\n", + "epoch: 8983 train_loss: 2.9097573133185506e-05\n", + "epoch: 8984 train_loss: 2.9077078579575755e-05\n", + "epoch: 8985 train_loss: 2.9056749554001726e-05\n", + "epoch: 8986 train_loss: 2.903747918026056e-05\n", + "epoch: 8987 train_loss: 2.9016113330726512e-05\n", + "epoch: 8988 train_loss: 2.8995902539463714e-05\n", + "epoch: 8989 train_loss: 2.8976362955290824e-05\n", + "epoch: 8990 train_loss: 2.8955566449440084e-05\n", + "epoch: 8991 train_loss: 2.8934771762578748e-05\n", + "epoch: 8992 train_loss: 2.891546319006011e-05\n", + "epoch: 8993 train_loss: 2.8894792194478214e-05\n", + "epoch: 8994 train_loss: 2.8874092095065862e-05\n", + "epoch: 8995 train_loss: 2.885542926378548e-05\n", + "epoch: 8996 train_loss: 2.8834459953941405e-05\n", + "epoch: 8997 train_loss: 2.8813627068302594e-05\n", + "epoch: 8998 train_loss: 2.8793816454708576e-05\n", + "epoch: 8999 train_loss: 2.8772848963853903e-05\n", + "epoch: 9000 train_loss: 2.8753498554578982e-05\n", + "epoch: 9001 train_loss: 2.873357880162075e-05\n", + "epoch: 9002 train_loss: 2.8713307983707637e-05\n", + "epoch: 9003 train_loss: 2.8691898478427902e-05\n", + "epoch: 9004 train_loss: 2.8672515327343717e-05\n", + "epoch: 9005 train_loss: 2.8652368200710043e-05\n", + "epoch: 9006 train_loss: 2.8632664907490835e-05\n", + "epoch: 9007 train_loss: 2.861097345885355e-05\n", + "epoch: 9008 train_loss: 2.8593845854629762e-05\n", + "epoch: 9009 train_loss: 2.8573254894581623e-05\n", + "epoch: 9010 train_loss: 2.8552669391501695e-05\n", + "epoch: 9011 train_loss: 2.8531867428682745e-05\n", + "epoch: 9012 train_loss: 2.8512738936115056e-05\n", + "epoch: 9013 train_loss: 2.8492419005488046e-05\n", + "epoch: 9014 train_loss: 2.847181531251408e-05\n", + "epoch: 9015 train_loss: 2.8452244805521332e-05\n", + "epoch: 9016 train_loss: 2.8431844839360565e-05\n", + "epoch: 9017 train_loss: 2.841265086317435e-05\n", + "epoch: 9018 train_loss: 2.8392551030265167e-05\n", + "epoch: 9019 train_loss: 2.8372769520501606e-05\n", + "epoch: 9020 train_loss: 2.8352204026305117e-05\n", + "epoch: 9021 train_loss: 2.8333208319963887e-05\n", + "epoch: 9022 train_loss: 2.831337769748643e-05\n", + "epoch: 9023 train_loss: 2.8292153729125857e-05\n", + "epoch: 9024 train_loss: 2.8273070711293258e-05\n", + "epoch: 9025 train_loss: 2.8253800337552093e-05\n", + "epoch: 9026 train_loss: 2.8234020646777935e-05\n", + "epoch: 9027 train_loss: 2.8213484256411903e-05\n", + "epoch: 9028 train_loss: 2.819403016474098e-05\n", + "epoch: 9029 train_loss: 2.8174325052532367e-05\n", + "epoch: 9030 train_loss: 2.8154297979199328e-05\n", + "epoch: 9031 train_loss: 2.8135080356150866e-05\n", + "epoch: 9032 train_loss: 2.8114951419411227e-05\n", + "epoch: 9033 train_loss: 2.8095268135075457e-05\n", + "epoch: 9034 train_loss: 2.807491910061799e-05\n", + "epoch: 9035 train_loss: 2.8055557777406648e-05\n", + "epoch: 9036 train_loss: 2.803610186674632e-05\n", + "epoch: 9037 train_loss: 2.801641312544234e-05\n", + "epoch: 9038 train_loss: 2.799680623866152e-05\n", + "epoch: 9039 train_loss: 2.7977082936558872e-05\n", + "epoch: 9040 train_loss: 2.795615182549227e-05\n", + "epoch: 9041 train_loss: 2.793771454889793e-05\n", + "epoch: 9042 train_loss: 2.7918074920307845e-05\n", + "epoch: 9043 train_loss: 2.7898331609321758e-05\n", + "epoch: 9044 train_loss: 2.7878626497113146e-05\n", + "epoch: 9045 train_loss: 2.785875585686881e-05\n", + "epoch: 9046 train_loss: 2.7840134862344712e-05\n", + "epoch: 9047 train_loss: 2.7819751267088577e-05\n", + "epoch: 9048 train_loss: 2.779995156743098e-05\n", + "epoch: 9049 train_loss: 2.7781301469076425e-05\n", + "epoch: 9050 train_loss: 2.776083056232892e-05\n", + "epoch: 9051 train_loss: 2.7741099984268658e-05\n", + "epoch: 9052 train_loss: 2.772223888314329e-05\n", + "epoch: 9053 train_loss: 2.7703599698725156e-05\n", + "epoch: 9054 train_loss: 2.7683277949108742e-05\n", + "epoch: 9055 train_loss: 2.766373654594645e-05\n", + "epoch: 9056 train_loss: 2.7645313821267337e-05\n", + "epoch: 9057 train_loss: 2.7624393624137156e-05\n", + "epoch: 9058 train_loss: 2.7605216018855572e-05\n", + "epoch: 9059 train_loss: 2.7586309442995116e-05\n", + "epoch: 9060 train_loss: 2.756634057732299e-05\n", + "epoch: 9061 train_loss: 2.754754495981615e-05\n", + "epoch: 9062 train_loss: 2.7527314159669913e-05\n", + "epoch: 9063 train_loss: 2.75081729341764e-05\n", + "epoch: 9064 train_loss: 2.7488902560435236e-05\n", + "epoch: 9065 train_loss: 2.746894460869953e-05\n", + "epoch: 9066 train_loss: 2.7450745619717054e-05\n", + "epoch: 9067 train_loss: 2.7431384296505712e-05\n", + "epoch: 9068 train_loss: 2.7410924303694628e-05\n", + "epoch: 9069 train_loss: 2.7392552510718815e-05\n", + "epoch: 9070 train_loss: 2.7372279873816296e-05\n", + "epoch: 9071 train_loss: 2.7352729375706986e-05\n", + "epoch: 9072 train_loss: 2.7334877813700587e-05\n", + "epoch: 9073 train_loss: 2.7315074476064183e-05\n", + "epoch: 9074 train_loss: 2.7296182452118956e-05\n", + "epoch: 9075 train_loss: 2.727681385295e-05\n", + "epoch: 9076 train_loss: 2.7257832698523998e-05\n", + "epoch: 9077 train_loss: 2.7238218535785563e-05\n", + "epoch: 9078 train_loss: 2.7219068215345033e-05\n", + "epoch: 9079 train_loss: 2.719969597819727e-05\n", + "epoch: 9080 train_loss: 2.7181084078620188e-05\n", + "epoch: 9081 train_loss: 2.7161173420608975e-05\n", + "epoch: 9082 train_loss: 2.7142255930812098e-05\n", + "epoch: 9083 train_loss: 2.7122088795294985e-05\n", + "epoch: 9084 train_loss: 2.7104135369881988e-05\n", + "epoch: 9085 train_loss: 2.708555621211417e-05\n", + "epoch: 9086 train_loss: 2.706564191612415e-05\n", + "epoch: 9087 train_loss: 2.704643520701211e-05\n", + "epoch: 9088 train_loss: 2.7026831958210096e-05\n", + "epoch: 9089 train_loss: 2.7008594770450145e-05\n", + "epoch: 9090 train_loss: 2.6989187972503714e-05\n", + "epoch: 9091 train_loss: 2.697009222174529e-05\n", + "epoch: 9092 train_loss: 2.6950643587042578e-05\n", + "epoch: 9093 train_loss: 2.693203896342311e-05\n", + "epoch: 9094 train_loss: 2.6913472538581118e-05\n", + "epoch: 9095 train_loss: 2.6893885660683736e-05\n", + "epoch: 9096 train_loss: 2.6874919058172964e-05\n", + "epoch: 9097 train_loss: 2.6855528631131165e-05\n", + "epoch: 9098 train_loss: 2.683670936676208e-05\n", + "epoch: 9099 train_loss: 2.681833939277567e-05\n", + "epoch: 9100 train_loss: 2.679910721781198e-05\n", + "epoch: 9101 train_loss: 2.67803934548283e-05\n", + "epoch: 9102 train_loss: 2.676133590284735e-05\n", + "epoch: 9103 train_loss: 2.674200186447706e-05\n", + "epoch: 9104 train_loss: 2.6723486371338367e-05\n", + "epoch: 9105 train_loss: 2.67044197244104e-05\n", + "epoch: 9106 train_loss: 2.6684965632739477e-05\n", + "epoch: 9107 train_loss: 2.666773616510909e-05\n", + "epoch: 9108 train_loss: 2.6647307095117867e-05\n", + "epoch: 9109 train_loss: 2.6628847990650684e-05\n", + "epoch: 9110 train_loss: 2.6610006898408756e-05\n", + "epoch: 9111 train_loss: 2.659094207047019e-05\n", + "epoch: 9112 train_loss: 2.657240656844806e-05\n", + "epoch: 9113 train_loss: 2.6553874704404734e-05\n", + "epoch: 9114 train_loss: 2.653460978763178e-05\n", + "epoch: 9115 train_loss: 2.6515979698160663e-05\n", + "epoch: 9116 train_loss: 2.649748421390541e-05\n", + "epoch: 9117 train_loss: 2.64777809206862e-05\n", + "epoch: 9118 train_loss: 2.6459832952241413e-05\n", + "epoch: 9119 train_loss: 2.644134292495437e-05\n", + "epoch: 9120 train_loss: 2.6421483198646456e-05\n", + "epoch: 9121 train_loss: 2.640317688928917e-05\n", + "epoch: 9122 train_loss: 2.638488876982592e-05\n", + "epoch: 9123 train_loss: 2.636571844050195e-05\n", + "epoch: 9124 train_loss: 2.6346800950705074e-05\n", + "epoch: 9125 train_loss: 2.6329282263759524e-05\n", + "epoch: 9126 train_loss: 2.6310117391403764e-05\n", + "epoch: 9127 train_loss: 2.629154550959356e-05\n", + "epoch: 9128 train_loss: 2.6272293325746432e-05\n", + "epoch: 9129 train_loss: 2.6254641852574423e-05\n", + "epoch: 9130 train_loss: 2.6235955374431796e-05\n", + "epoch: 9131 train_loss: 2.6217427148367278e-05\n", + "epoch: 9132 train_loss: 2.619790939206723e-05\n", + "epoch: 9133 train_loss: 2.6179632186540402e-05\n", + "epoch: 9134 train_loss: 2.6160647394135594e-05\n", + "epoch: 9135 train_loss: 2.6142102797166444e-05\n", + "epoch: 9136 train_loss: 2.6124460418941453e-05\n", + "epoch: 9137 train_loss: 2.6105248252861202e-05\n", + "epoch: 9138 train_loss: 2.6087622245540842e-05\n", + "epoch: 9139 train_loss: 2.6069335945066996e-05\n", + "epoch: 9140 train_loss: 2.6050027372548357e-05\n", + "epoch: 9141 train_loss: 2.60307097050827e-05\n", + "epoch: 9142 train_loss: 2.6013436581706628e-05\n", + "epoch: 9143 train_loss: 2.599420986371115e-05\n", + "epoch: 9144 train_loss: 2.5975796233979054e-05\n", + "epoch: 9145 train_loss: 2.5957355319405906e-05\n", + "epoch: 9146 train_loss: 2.5939334591384977e-05\n", + "epoch: 9147 train_loss: 2.591977499832865e-05\n", + "epoch: 9148 train_loss: 2.5901930712279864e-05\n", + "epoch: 9149 train_loss: 2.5884100978146307e-05\n", + "epoch: 9150 train_loss: 2.5864646886475384e-05\n", + "epoch: 9151 train_loss: 2.584780304459855e-05\n", + "epoch: 9152 train_loss: 2.5829271180555224e-05\n", + "epoch: 9153 train_loss: 2.5809957151068375e-05\n", + "epoch: 9154 train_loss: 2.5792429369175807e-05\n", + "epoch: 9155 train_loss: 2.5774181267479435e-05\n", + "epoch: 9156 train_loss: 2.5755494789336808e-05\n", + "epoch: 9157 train_loss: 2.573736128397286e-05\n", + "epoch: 9158 train_loss: 2.5719102268340066e-05\n", + "epoch: 9159 train_loss: 2.5700848709675483e-05\n", + "epoch: 9160 train_loss: 2.56820821959991e-05\n", + "epoch: 9161 train_loss: 2.5663843189249747e-05\n", + "epoch: 9162 train_loss: 2.5645133064244874e-05\n", + "epoch: 9163 train_loss: 2.5627010472817346e-05\n", + "epoch: 9164 train_loss: 2.5608753276173957e-05\n", + "epoch: 9165 train_loss: 2.5590674340492114e-05\n", + "epoch: 9166 train_loss: 2.5572515369276516e-05\n", + "epoch: 9167 train_loss: 2.555512764956802e-05\n", + "epoch: 9168 train_loss: 2.5535719032632187e-05\n", + "epoch: 9169 train_loss: 2.5517219910398126e-05\n", + "epoch: 9170 train_loss: 2.5500430638203397e-05\n", + "epoch: 9171 train_loss: 2.5480951080680825e-05\n", + "epoch: 9172 train_loss: 2.5463272322667763e-05\n", + "epoch: 9173 train_loss: 2.5445964638493024e-05\n", + "epoch: 9174 train_loss: 2.5426825231988914e-05\n", + "epoch: 9175 train_loss: 2.5408457076991908e-05\n", + "epoch: 9176 train_loss: 2.5391178496647626e-05\n", + "epoch: 9177 train_loss: 2.5372874006279744e-05\n", + "epoch: 9178 train_loss: 2.53546404564986e-05\n", + "epoch: 9179 train_loss: 2.5336656108265743e-05\n", + "epoch: 9180 train_loss: 2.5318076950497925e-05\n", + "epoch: 9181 train_loss: 2.530014535295777e-05\n", + "epoch: 9182 train_loss: 2.5282442948082462e-05\n", + "epoch: 9183 train_loss: 2.5263985662604682e-05\n", + "epoch: 9184 train_loss: 2.5246767108910717e-05\n", + "epoch: 9185 train_loss: 2.522773138480261e-05\n", + "epoch: 9186 train_loss: 2.5210647436324507e-05\n", + "epoch: 9187 train_loss: 2.5192075554514304e-05\n", + "epoch: 9188 train_loss: 2.5174686015816405e-05\n", + "epoch: 9189 train_loss: 2.515576488804072e-05\n", + "epoch: 9190 train_loss: 2.513900471967645e-05\n", + "epoch: 9191 train_loss: 2.512034188839607e-05\n", + "epoch: 9192 train_loss: 2.510228478058707e-05\n", + "epoch: 9193 train_loss: 2.508407305867877e-05\n", + "epoch: 9194 train_loss: 2.5066132366191596e-05\n", + "epoch: 9195 train_loss: 2.5048422685358673e-05\n", + "epoch: 9196 train_loss: 2.5030161850736476e-05\n", + "epoch: 9197 train_loss: 2.501289600331802e-05\n", + "epoch: 9198 train_loss: 2.499471156625077e-05\n", + "epoch: 9199 train_loss: 2.497679270163644e-05\n", + "epoch: 9200 train_loss: 2.4958999347290955e-05\n", + "epoch: 9201 train_loss: 2.4940620278357528e-05\n", + "epoch: 9202 train_loss: 2.4923119781306013e-05\n", + "epoch: 9203 train_loss: 2.4905324607971124e-05\n", + "epoch: 9204 train_loss: 2.4888109692255966e-05\n", + "epoch: 9205 train_loss: 2.4869425033102743e-05\n", + "epoch: 9206 train_loss: 2.4852039132383652e-05\n", + "epoch: 9207 train_loss: 2.4834414944052696e-05\n", + "epoch: 9208 train_loss: 2.481557021383196e-05\n", + "epoch: 9209 train_loss: 2.4798562662908807e-05\n", + "epoch: 9210 train_loss: 2.4781771571724676e-05\n", + "epoch: 9211 train_loss: 2.476249028404709e-05\n", + "epoch: 9212 train_loss: 2.4745615519350395e-05\n", + "epoch: 9213 train_loss: 2.472788946761284e-05\n", + "epoch: 9214 train_loss: 2.470950857969001e-05\n", + "epoch: 9215 train_loss: 2.4692839360795915e-05\n", + "epoch: 9216 train_loss: 2.4675371605553664e-05\n", + "epoch: 9217 train_loss: 2.4656268578837626e-05\n", + "epoch: 9218 train_loss: 2.4638718969072215e-05\n", + "epoch: 9219 train_loss: 2.4621116608614102e-05\n", + "epoch: 9220 train_loss: 2.460288305883296e-05\n", + "epoch: 9221 train_loss: 2.4586512154201046e-05\n", + "epoch: 9222 train_loss: 2.4567685613874346e-05\n", + "epoch: 9223 train_loss: 2.4551001843065023e-05\n", + "epoch: 9224 train_loss: 2.453280467307195e-05\n", + "epoch: 9225 train_loss: 2.4516428311471827e-05\n", + "epoch: 9226 train_loss: 2.4498120183125138e-05\n", + "epoch: 9227 train_loss: 2.4480050342390314e-05\n", + "epoch: 9228 train_loss: 2.4462931833113544e-05\n", + "epoch: 9229 train_loss: 2.444503115839325e-05\n", + "epoch: 9230 train_loss: 2.4427859898423776e-05\n", + "epoch: 9231 train_loss: 2.4410439436906017e-05\n", + "epoch: 9232 train_loss: 2.4391802071477287e-05\n", + "epoch: 9233 train_loss: 2.437559305690229e-05\n", + "epoch: 9234 train_loss: 2.4357370421057567e-05\n", + "epoch: 9235 train_loss: 2.433992995065637e-05\n", + "epoch: 9236 train_loss: 2.4323029720108025e-05\n", + "epoch: 9237 train_loss: 2.4304332328028977e-05\n", + "epoch: 9238 train_loss: 2.4287624910357408e-05\n", + "epoch: 9239 train_loss: 2.4270551875815727e-05\n", + "epoch: 9240 train_loss: 2.425236743874848e-05\n", + "epoch: 9241 train_loss: 2.4235041564679705e-05\n", + "epoch: 9242 train_loss: 2.421830504317768e-05\n", + "epoch: 9243 train_loss: 2.420052987872623e-05\n", + "epoch: 9244 train_loss: 2.418252915958874e-05\n", + "epoch: 9245 train_loss: 2.4165738068404607e-05\n", + "epoch: 9246 train_loss: 2.414799564576242e-05\n", + "epoch: 9247 train_loss: 2.4130602469085716e-05\n", + "epoch: 9248 train_loss: 2.4112468963721767e-05\n", + "epoch: 9249 train_loss: 2.4096225388348103e-05\n", + "epoch: 9250 train_loss: 2.40781664615497e-05\n", + "epoch: 9251 train_loss: 2.406104249530472e-05\n", + "epoch: 9252 train_loss: 2.40433855651645e-05\n", + "epoch: 9253 train_loss: 2.402699101367034e-05\n", + "epoch: 9254 train_loss: 2.4008762920857407e-05\n", + "epoch: 9255 train_loss: 2.399174809397664e-05\n", + "epoch: 9256 train_loss: 2.3974856958375312e-05\n", + "epoch: 9257 train_loss: 2.395719275227748e-05\n", + "epoch: 9258 train_loss: 2.3939668608363718e-05\n", + "epoch: 9259 train_loss: 2.3922322725411505e-05\n", + "epoch: 9260 train_loss: 2.3905260604806244e-05\n", + "epoch: 9261 train_loss: 2.3888564101071097e-05\n", + "epoch: 9262 train_loss: 2.387079621257726e-05\n", + "epoch: 9263 train_loss: 2.3853961465647444e-05\n", + "epoch: 9264 train_loss: 2.3836470063542947e-05\n", + "epoch: 9265 train_loss: 2.3819518901291303e-05\n", + "epoch: 9266 train_loss: 2.380211662966758e-05\n", + "epoch: 9267 train_loss: 2.378555291215889e-05\n", + "epoch: 9268 train_loss: 2.3767544917063788e-05\n", + "epoch: 9269 train_loss: 2.3751152184559032e-05\n", + "epoch: 9270 train_loss: 2.3733433408779092e-05\n", + "epoch: 9271 train_loss: 2.3716476789559238e-05\n", + "epoch: 9272 train_loss: 2.369941103097517e-05\n", + "epoch: 9273 train_loss: 2.3682065148022957e-05\n", + "epoch: 9274 train_loss: 2.366524495300837e-05\n", + "epoch: 9275 train_loss: 2.364784995734226e-05\n", + "epoch: 9276 train_loss: 2.3631200747331604e-05\n", + "epoch: 9277 train_loss: 2.3613383746123873e-05\n", + "epoch: 9278 train_loss: 2.3596548999194056e-05\n", + "epoch: 9279 train_loss: 2.3579097614856437e-05\n", + "epoch: 9280 train_loss: 2.3561768102808855e-05\n", + "epoch: 9281 train_loss: 2.3544880605186336e-05\n", + "epoch: 9282 train_loss: 2.3527592929895036e-05\n", + "epoch: 9283 train_loss: 2.3510741812060587e-05\n", + "epoch: 9284 train_loss: 2.3494498236686923e-05\n", + "epoch: 9285 train_loss: 2.3476592104998417e-05\n", + "epoch: 9286 train_loss: 2.3460504962713458e-05\n", + "epoch: 9287 train_loss: 2.34427261602832e-05\n", + "epoch: 9288 train_loss: 2.3426437110174447e-05\n", + "epoch: 9289 train_loss: 2.340923856536392e-05\n", + "epoch: 9290 train_loss: 2.339195998501964e-05\n", + "epoch: 9291 train_loss: 2.3374901502393186e-05\n", + "epoch: 9292 train_loss: 2.3358214093605056e-05\n", + "epoch: 9293 train_loss: 2.3341062842519023e-05\n", + "epoch: 9294 train_loss: 2.3324120775214396e-05\n", + "epoch: 9295 train_loss: 2.3307611627387814e-05\n", + "epoch: 9296 train_loss: 2.329033668502234e-05\n", + "epoch: 9297 train_loss: 2.3272557882592082e-05\n", + "epoch: 9298 train_loss: 2.3256887288880534e-05\n", + "epoch: 9299 train_loss: 2.3239896108862013e-05\n", + "epoch: 9300 train_loss: 2.3222946765599772e-05\n", + "epoch: 9301 train_loss: 2.3206728656077757e-05\n", + "epoch: 9302 train_loss: 2.3189892090158537e-05\n", + "epoch: 9303 train_loss: 2.3171840439317748e-05\n", + "epoch: 9304 train_loss: 2.315517485840246e-05\n", + "epoch: 9305 train_loss: 2.3138147298595868e-05\n", + "epoch: 9306 train_loss: 2.312179458385799e-05\n", + "epoch: 9307 train_loss: 2.3104985302779824e-05\n", + "epoch: 9308 train_loss: 2.3088196030585095e-05\n", + "epoch: 9309 train_loss: 2.3071497707860544e-05\n", + "epoch: 9310 train_loss: 2.3054919438436627e-05\n", + "epoch: 9311 train_loss: 2.3038075596559793e-05\n", + "epoch: 9312 train_loss: 2.3021086235530674e-05\n", + "epoch: 9313 train_loss: 2.3004095055512153e-05\n", + "epoch: 9314 train_loss: 2.2987820557318628e-05\n", + "epoch: 9315 train_loss: 2.2970987629378214e-05\n", + "epoch: 9316 train_loss: 2.2953392544877715e-05\n", + "epoch: 9317 train_loss: 2.293783109053038e-05\n", + "epoch: 9318 train_loss: 2.2921291019883938e-05\n", + "epoch: 9319 train_loss: 2.2904236175236292e-05\n", + "epoch: 9320 train_loss: 2.288721407239791e-05\n", + "epoch: 9321 train_loss: 2.2871105102240108e-05\n", + "epoch: 9322 train_loss: 2.2855021597933955e-05\n", + "epoch: 9323 train_loss: 2.2836480638943613e-05\n", + "epoch: 9324 train_loss: 2.282093555550091e-05\n", + "epoch: 9325 train_loss: 2.280494663864374e-05\n", + "epoch: 9326 train_loss: 2.2787369744037278e-05\n", + "epoch: 9327 train_loss: 2.277083149238024e-05\n", + "epoch: 9328 train_loss: 2.2754638848709874e-05\n", + "epoch: 9329 train_loss: 2.2738131519872695e-05\n", + "epoch: 9330 train_loss: 2.272182609885931e-05\n", + "epoch: 9331 train_loss: 2.2705058654537424e-05\n", + "epoch: 9332 train_loss: 2.268812750116922e-05\n", + "epoch: 9333 train_loss: 2.267187664983794e-05\n", + "epoch: 9334 train_loss: 2.265490184072405e-05\n", + "epoch: 9335 train_loss: 2.2638221707893535e-05\n", + "epoch: 9336 train_loss: 2.2622001779382117e-05\n", + "epoch: 9337 train_loss: 2.2605676349485293e-05\n", + "epoch: 9338 train_loss: 2.258866334159393e-05\n", + "epoch: 9339 train_loss: 2.2572516172658652e-05\n", + "epoch: 9340 train_loss: 2.2555374016519636e-05\n", + "epoch: 9341 train_loss: 2.2539665224030614e-05\n", + "epoch: 9342 train_loss: 2.252213926112745e-05\n", + "epoch: 9343 train_loss: 2.250615398224909e-05\n", + "epoch: 9344 train_loss: 2.248995406262111e-05\n", + "epoch: 9345 train_loss: 2.247441625513602e-05\n", + "epoch: 9346 train_loss: 2.245722498628311e-05\n", + "epoch: 9347 train_loss: 2.244068673462607e-05\n", + "epoch: 9348 train_loss: 2.2424484996008687e-05\n", + "epoch: 9349 train_loss: 2.2408155928133056e-05\n", + "epoch: 9350 train_loss: 2.2391897800844163e-05\n", + "epoch: 9351 train_loss: 2.237536318716593e-05\n", + "epoch: 9352 train_loss: 2.235832653241232e-05\n", + "epoch: 9353 train_loss: 2.2343130694935098e-05\n", + "epoch: 9354 train_loss: 2.2326497855829075e-05\n", + "epoch: 9355 train_loss: 2.230958671134431e-05\n", + "epoch: 9356 train_loss: 2.229346864623949e-05\n", + "epoch: 9357 train_loss: 2.2277219613897614e-05\n", + "epoch: 9358 train_loss: 2.226072501798626e-05\n", + "epoch: 9359 train_loss: 2.2244819774641655e-05\n", + "epoch: 9360 train_loss: 2.2228034140425734e-05\n", + "epoch: 9361 train_loss: 2.2212039766600356e-05\n", + "epoch: 9362 train_loss: 2.219559064542409e-05\n", + "epoch: 9363 train_loss: 2.2179192455951124e-05\n", + "epoch: 9364 train_loss: 2.2163414541864768e-05\n", + "epoch: 9365 train_loss: 2.2146674382383935e-05\n", + "epoch: 9366 train_loss: 2.2129797798697837e-05\n", + "epoch: 9367 train_loss: 2.211456376244314e-05\n", + "epoch: 9368 train_loss: 2.2097960027167574e-05\n", + "epoch: 9369 train_loss: 2.2082336727180518e-05\n", + "epoch: 9370 train_loss: 2.2065118173486553e-05\n", + "epoch: 9371 train_loss: 2.2049622202757746e-05\n", + "epoch: 9372 train_loss: 2.2033247660147026e-05\n", + "epoch: 9373 train_loss: 2.201704955950845e-05\n", + "epoch: 9374 train_loss: 2.2001077013555914e-05\n", + "epoch: 9375 train_loss: 2.198436231992673e-05\n", + "epoch: 9376 train_loss: 2.196843342971988e-05\n", + "epoch: 9377 train_loss: 2.1952742827124894e-05\n", + "epoch: 9378 train_loss: 2.193659202021081e-05\n", + "epoch: 9379 train_loss: 2.19205812754808e-05\n", + "epoch: 9380 train_loss: 2.1904439563513733e-05\n", + "epoch: 9381 train_loss: 2.1888223272981122e-05\n", + "epoch: 9382 train_loss: 2.1871859644306824e-05\n", + "epoch: 9383 train_loss: 2.1855645172763616e-05\n", + "epoch: 9384 train_loss: 2.184000186389312e-05\n", + "epoch: 9385 train_loss: 2.182411299145315e-05\n", + "epoch: 9386 train_loss: 2.1807627490488812e-05\n", + "epoch: 9387 train_loss: 2.1792504412587732e-05\n", + "epoch: 9388 train_loss: 2.177608257625252e-05\n", + "epoch: 9389 train_loss: 2.1759047740488313e-05\n", + "epoch: 9390 train_loss: 2.1743704564869404e-05\n", + "epoch: 9391 train_loss: 2.1727670173277147e-05\n", + "epoch: 9392 train_loss: 2.171127198380418e-05\n", + "epoch: 9393 train_loss: 2.1695015675504692e-05\n", + "epoch: 9394 train_loss: 2.167951788578648e-05\n", + "epoch: 9395 train_loss: 2.1663483494194224e-05\n", + "epoch: 9396 train_loss: 2.1647012545145117e-05\n", + "epoch: 9397 train_loss: 2.1632282368955202e-05\n", + "epoch: 9398 train_loss: 2.1615145669784397e-05\n", + "epoch: 9399 train_loss: 2.159951691282913e-05\n", + "epoch: 9400 train_loss: 2.158364441129379e-05\n", + "epoch: 9401 train_loss: 2.1567750081885606e-05\n", + "epoch: 9402 train_loss: 2.155227957700845e-05\n", + "epoch: 9403 train_loss: 2.1536667190957814e-05\n", + "epoch: 9404 train_loss: 2.1520574591704644e-05\n", + "epoch: 9405 train_loss: 2.1504487449419685e-05\n", + "epoch: 9406 train_loss: 2.1487687263288535e-05\n", + "epoch: 9407 train_loss: 2.1471461877808906e-05\n", + "epoch: 9408 train_loss: 2.1456062313518487e-05\n", + "epoch: 9409 train_loss: 2.144079735444393e-05\n", + "epoch: 9410 train_loss: 2.1425061277113855e-05\n", + "epoch: 9411 train_loss: 2.140986362064723e-05\n", + "epoch: 9412 train_loss: 2.139335083484184e-05\n", + "epoch: 9413 train_loss: 2.1377554730861448e-05\n", + "epoch: 9414 train_loss: 2.1362240659072995e-05\n", + "epoch: 9415 train_loss: 2.134519127139356e-05\n", + "epoch: 9416 train_loss: 2.1329758965293877e-05\n", + "epoch: 9417 train_loss: 2.131405744876247e-05\n", + "epoch: 9418 train_loss: 2.129871973011177e-05\n", + "epoch: 9419 train_loss: 2.1282859961502254e-05\n", + "epoch: 9420 train_loss: 2.1267322154017165e-05\n", + "epoch: 9421 train_loss: 2.125192440871615e-05\n", + "epoch: 9422 train_loss: 2.123516605934128e-05\n", + "epoch: 9423 train_loss: 2.1219306290731765e-05\n", + "epoch: 9424 train_loss: 2.1203723008511588e-05\n", + "epoch: 9425 train_loss: 2.1189040126046166e-05\n", + "epoch: 9426 train_loss: 2.1172516426304355e-05\n", + "epoch: 9427 train_loss: 2.1156844013603404e-05\n", + "epoch: 9428 train_loss: 2.1141029719728976e-05\n", + "epoch: 9429 train_loss: 2.1125411876710132e-05\n", + "epoch: 9430 train_loss: 2.110959030687809e-05\n", + "epoch: 9431 train_loss: 2.1094438125146553e-05\n", + "epoch: 9432 train_loss: 2.1078627469250932e-05\n", + "epoch: 9433 train_loss: 2.1062849555164576e-05\n", + "epoch: 9434 train_loss: 2.1047299014753662e-05\n", + "epoch: 9435 train_loss: 2.103169208567124e-05\n", + "epoch: 9436 train_loss: 2.101625614159275e-05\n", + "epoch: 9437 train_loss: 2.100041638186667e-05\n", + "epoch: 9438 train_loss: 2.098420554830227e-05\n", + "epoch: 9439 train_loss: 2.0969186152797192e-05\n", + "epoch: 9440 train_loss: 2.0954275896656327e-05\n", + "epoch: 9441 train_loss: 2.093804687319789e-05\n", + "epoch: 9442 train_loss: 2.0923078409396112e-05\n", + "epoch: 9443 train_loss: 2.090690759359859e-05\n", + "epoch: 9444 train_loss: 2.0891926396870986e-05\n", + "epoch: 9445 train_loss: 2.0876130292890593e-05\n", + "epoch: 9446 train_loss: 2.0860730728600174e-05\n", + "epoch: 9447 train_loss: 2.0845722247031517e-05\n", + "epoch: 9448 train_loss: 2.082992796204053e-05\n", + "epoch: 9449 train_loss: 2.0813782612094656e-05\n", + "epoch: 9450 train_loss: 2.0799332560272887e-05\n", + "epoch: 9451 train_loss: 2.07835382752819e-05\n", + "epoch: 9452 train_loss: 2.0767265596077777e-05\n", + "epoch: 9453 train_loss: 2.0752013369929045e-05\n", + "epoch: 9454 train_loss: 2.0737326849484816e-05\n", + "epoch: 9455 train_loss: 2.0721141481772065e-05\n", + "epoch: 9456 train_loss: 2.0705814677057788e-05\n", + "epoch: 9457 train_loss: 2.0690946257673204e-05\n", + "epoch: 9458 train_loss: 2.0675515770562924e-05\n", + "epoch: 9459 train_loss: 2.0660505470004864e-05\n", + "epoch: 9460 train_loss: 2.0644454707507975e-05\n", + "epoch: 9461 train_loss: 2.0630050130421296e-05\n", + "epoch: 9462 train_loss: 2.0613861124729738e-05\n", + "epoch: 9463 train_loss: 2.060012411675416e-05\n", + "epoch: 9464 train_loss: 2.0584526282618754e-05\n", + "epoch: 9465 train_loss: 2.056942139461171e-05\n", + "epoch: 9466 train_loss: 2.0554700313368812e-05\n", + "epoch: 9467 train_loss: 2.054105425486341e-05\n", + "epoch: 9468 train_loss: 2.0526655134744942e-05\n", + "epoch: 9469 train_loss: 2.0515053620329127e-05\n", + "epoch: 9470 train_loss: 2.0503710402408615e-05\n", + "epoch: 9471 train_loss: 2.049537215498276e-05\n", + "epoch: 9472 train_loss: 2.0489846065174788e-05\n", + "epoch: 9473 train_loss: 2.0492527255555615e-05\n", + "epoch: 9474 train_loss: 2.0502382540144026e-05\n", + "epoch: 9475 train_loss: 2.0529836547211744e-05\n", + "epoch: 9476 train_loss: 2.0581945136655122e-05\n", + "epoch: 9477 train_loss: 2.0676716303569265e-05\n", + "epoch: 9478 train_loss: 2.0825329556828365e-05\n", + "epoch: 9479 train_loss: 2.1072461095172912e-05\n", + "epoch: 9480 train_loss: 2.139124808309134e-05\n", + "epoch: 9481 train_loss: 2.1848463802598417e-05\n", + "epoch: 9482 train_loss: 2.2205938876140863e-05\n", + "epoch: 9483 train_loss: 2.2476353478850797e-05\n", + "epoch: 9484 train_loss: 2.2155569240567274e-05\n", + "epoch: 9485 train_loss: 2.1507683413801715e-05\n", + "epoch: 9486 train_loss: 2.068188950943295e-05\n", + "epoch: 9487 train_loss: 2.0249855879228562e-05\n", + "epoch: 9488 train_loss: 2.0360077542136423e-05\n", + "epoch: 9489 train_loss: 2.0771087292814627e-05\n", + "epoch: 9490 train_loss: 2.108971784764435e-05\n", + "epoch: 9491 train_loss: 2.097885953844525e-05\n", + "epoch: 9492 train_loss: 2.059177313640248e-05\n", + "epoch: 9493 train_loss: 2.021813088504132e-05\n", + "epoch: 9494 train_loss: 2.0150328055024147e-05\n", + "epoch: 9495 train_loss: 2.034705175901763e-05\n", + "epoch: 9496 train_loss: 2.0537650925689377e-05\n", + "epoch: 9497 train_loss: 2.052912714134436e-05\n", + "epoch: 9498 train_loss: 2.0308290913817473e-05\n", + "epoch: 9499 train_loss: 2.0097402739338577e-05\n", + "epoch: 9500 train_loss: 2.005147143790964e-05\n", + "epoch: 9501 train_loss: 2.0152636352577247e-05\n", + "epoch: 9502 train_loss: 2.0253510228940286e-05\n", + "epoch: 9503 train_loss: 2.0228177163517103e-05\n", + "epoch: 9504 train_loss: 2.010359094128944e-05\n", + "epoch: 9505 train_loss: 1.998431616812013e-05\n", + "epoch: 9506 train_loss: 1.9958839402534068e-05\n", + "epoch: 9507 train_loss: 2.000959648285061e-05\n", + "epoch: 9508 train_loss: 2.005389251280576e-05\n", + "epoch: 9509 train_loss: 2.0034969566040672e-05\n", + "epoch: 9510 train_loss: 1.995728598558344e-05\n", + "epoch: 9511 train_loss: 1.9886549125658348e-05\n", + "epoch: 9512 train_loss: 1.986425559152849e-05\n", + "epoch: 9513 train_loss: 1.9884777429979295e-05\n", + "epoch: 9514 train_loss: 1.990322743949946e-05\n", + "epoch: 9515 train_loss: 1.9887127564288676e-05\n", + "epoch: 9516 train_loss: 1.9842324036289938e-05\n", + "epoch: 9517 train_loss: 1.9795301341218874e-05\n", + "epoch: 9518 train_loss: 1.9771781808231026e-05\n", + "epoch: 9519 train_loss: 1.9773888197960332e-05\n", + "epoch: 9520 train_loss: 1.9779157810262404e-05\n", + "epoch: 9521 train_loss: 1.976821840798948e-05\n", + "epoch: 9522 train_loss: 1.9739416529773735e-05\n", + "epoch: 9523 train_loss: 1.970551602425985e-05\n", + "epoch: 9524 train_loss: 1.9683047867147252e-05\n", + "epoch: 9525 train_loss: 1.9672977941809222e-05\n", + "epoch: 9526 train_loss: 1.9669381799758412e-05\n", + "epoch: 9527 train_loss: 1.96598848560825e-05\n", + "epoch: 9528 train_loss: 1.964141301868949e-05\n", + "epoch: 9529 train_loss: 1.9617506040958688e-05\n", + "epoch: 9530 train_loss: 1.959594555955846e-05\n", + "epoch: 9531 train_loss: 1.9581031665438786e-05\n", + "epoch: 9532 train_loss: 1.9570084987208247e-05\n", + "epoch: 9533 train_loss: 1.9560393411666155e-05\n", + "epoch: 9534 train_loss: 1.954743311216589e-05\n", + "epoch: 9535 train_loss: 1.9530900317477062e-05\n", + "epoch: 9536 train_loss: 1.9510218407958746e-05\n", + "epoch: 9537 train_loss: 1.9491641069180332e-05\n", + "epoch: 9538 train_loss: 1.9476985471555963e-05\n", + "epoch: 9539 train_loss: 1.9464496290311217e-05\n", + "epoch: 9540 train_loss: 1.9452189008006826e-05\n", + "epoch: 9541 train_loss: 1.9438974049990065e-05\n", + "epoch: 9542 train_loss: 1.9423096091486514e-05\n", + "epoch: 9543 train_loss: 1.9406354113016278e-05\n", + "epoch: 9544 train_loss: 1.9388960936339572e-05\n", + "epoch: 9545 train_loss: 1.937404158525169e-05\n", + "epoch: 9546 train_loss: 1.9360302758286707e-05\n", + "epoch: 9547 train_loss: 1.9346913177287206e-05\n", + "epoch: 9548 train_loss: 1.933273597387597e-05\n", + "epoch: 9549 train_loss: 1.931776751007419e-05\n", + "epoch: 9550 train_loss: 1.9302553482702933e-05\n", + "epoch: 9551 train_loss: 1.92873012565542e-05\n", + "epoch: 9552 train_loss: 1.9272163626737893e-05\n", + "epoch: 9553 train_loss: 1.9257422536611557e-05\n", + "epoch: 9554 train_loss: 1.9244474970037118e-05\n", + "epoch: 9555 train_loss: 1.922953197208699e-05\n", + "epoch: 9556 train_loss: 1.9214992789784446e-05\n", + "epoch: 9557 train_loss: 1.9200120732421055e-05\n", + "epoch: 9558 train_loss: 1.9184881239198148e-05\n", + "epoch: 9559 train_loss: 1.9170578525518067e-05\n", + "epoch: 9560 train_loss: 1.9156157577526756e-05\n", + "epoch: 9561 train_loss: 1.9140557924401946e-05\n", + "epoch: 9562 train_loss: 1.9127166524413042e-05\n", + "epoch: 9563 train_loss: 1.9112358131678775e-05\n", + "epoch: 9564 train_loss: 1.9098026314168237e-05\n", + "epoch: 9565 train_loss: 1.908458216348663e-05\n", + "epoch: 9566 train_loss: 1.906912075355649e-05\n", + "epoch: 9567 train_loss: 1.9054512449656613e-05\n", + "epoch: 9568 train_loss: 1.9039907783735543e-05\n", + "epoch: 9569 train_loss: 1.9026057998416945e-05\n", + "epoch: 9570 train_loss: 1.9012115444638766e-05\n", + "epoch: 9571 train_loss: 1.899693779705558e-05\n", + "epoch: 9572 train_loss: 1.898275877465494e-05\n", + "epoch: 9573 train_loss: 1.8967848518514074e-05\n", + "epoch: 9574 train_loss: 1.8953638573293574e-05\n", + "epoch: 9575 train_loss: 1.8939465007861145e-05\n", + "epoch: 9576 train_loss: 1.892536602099426e-05\n", + "epoch: 9577 train_loss: 1.8911234292318113e-05\n", + "epoch: 9578 train_loss: 1.8896324036177248e-05\n", + "epoch: 9579 train_loss: 1.888229053292889e-05\n", + "epoch: 9580 train_loss: 1.886763857328333e-05\n", + "epoch: 9581 train_loss: 1.8852635548682883e-05\n", + "epoch: 9582 train_loss: 1.883963523141574e-05\n", + "epoch: 9583 train_loss: 1.8825114239007235e-05\n", + "epoch: 9584 train_loss: 1.8811306290444918e-05\n", + "epoch: 9585 train_loss: 1.8796858057612553e-05\n", + "epoch: 9586 train_loss: 1.8782273400574923e-05\n", + "epoch: 9587 train_loss: 1.876851820270531e-05\n", + "epoch: 9588 train_loss: 1.8754362827166915e-05\n", + "epoch: 9589 train_loss: 1.8739336155704223e-05\n", + "epoch: 9590 train_loss: 1.8724733308772556e-05\n", + "epoch: 9591 train_loss: 1.8710527001530863e-05\n", + "epoch: 9592 train_loss: 1.86970028153155e-05\n", + "epoch: 9593 train_loss: 1.8683133021113463e-05\n", + "epoch: 9594 train_loss: 1.8668079064809717e-05\n", + "epoch: 9595 train_loss: 1.8654540326679125e-05\n", + "epoch: 9596 train_loss: 1.863988654804416e-05\n", + "epoch: 9597 train_loss: 1.8625647498993203e-05\n", + "epoch: 9598 train_loss: 1.8612116036820225e-05\n", + "epoch: 9599 train_loss: 1.859785697888583e-05\n", + "epoch: 9600 train_loss: 1.8582788470666856e-05\n", + "epoch: 9601 train_loss: 1.8569544408819638e-05\n", + "epoch: 9602 train_loss: 1.8554932466940954e-05\n", + "epoch: 9603 train_loss: 1.8540666133048944e-05\n", + "epoch: 9604 train_loss: 1.852742934715934e-05\n", + "epoch: 9605 train_loss: 1.8512950191507116e-05\n", + "epoch: 9606 train_loss: 1.849875843618065e-05\n", + "epoch: 9607 train_loss: 1.8485259715816937e-05\n", + "epoch: 9608 train_loss: 1.847020394052379e-05\n", + "epoch: 9609 train_loss: 1.8456075849826448e-05\n", + "epoch: 9610 train_loss: 1.8442136934027076e-05\n", + "epoch: 9611 train_loss: 1.8429045667289756e-05\n", + "epoch: 9612 train_loss: 1.841525772761088e-05\n", + "epoch: 9613 train_loss: 1.8401337001705542e-05\n", + "epoch: 9614 train_loss: 1.838734169723466e-05\n", + "epoch: 9615 train_loss: 1.8373277271166444e-05\n", + "epoch: 9616 train_loss: 1.8359478417551145e-05\n", + "epoch: 9617 train_loss: 1.8346716387895867e-05\n", + "epoch: 9618 train_loss: 1.8333945263293572e-05\n", + "epoch: 9619 train_loss: 1.8320219169254415e-05\n", + "epoch: 9620 train_loss: 1.8308026483282447e-05\n", + "epoch: 9621 train_loss: 1.8295928384759463e-05\n", + "epoch: 9622 train_loss: 1.8284952602698468e-05\n", + "epoch: 9623 train_loss: 1.8275808542966843e-05\n", + "epoch: 9624 train_loss: 1.8267544874106534e-05\n", + "epoch: 9625 train_loss: 1.8262200683238916e-05\n", + "epoch: 9626 train_loss: 1.8262471712660044e-05\n", + "epoch: 9627 train_loss: 1.8267392078996636e-05\n", + "epoch: 9628 train_loss: 1.828084532462526e-05\n", + "epoch: 9629 train_loss: 1.8308055587112904e-05\n", + "epoch: 9630 train_loss: 1.8357573935645632e-05\n", + "epoch: 9631 train_loss: 1.843328027462121e-05\n", + "epoch: 9632 train_loss: 1.8556142094894312e-05\n", + "epoch: 9633 train_loss: 1.87181885848986e-05\n", + "epoch: 9634 train_loss: 1.8962022295454517e-05\n", + "epoch: 9635 train_loss: 1.9214534404454753e-05\n", + "epoch: 9636 train_loss: 1.9518887711456046e-05\n", + "epoch: 9637 train_loss: 1.9643206542241387e-05\n", + "epoch: 9638 train_loss: 1.9634177078842185e-05\n", + "epoch: 9639 train_loss: 1.925120159285143e-05\n", + "epoch: 9640 train_loss: 1.8741347957984544e-05\n", + "epoch: 9641 train_loss: 1.824101127567701e-05\n", + "epoch: 9642 train_loss: 1.8005144738708623e-05\n", + "epoch: 9643 train_loss: 1.8073144019581378e-05\n", + "epoch: 9644 train_loss: 1.8314520275453106e-05\n", + "epoch: 9645 train_loss: 1.8539933080319315e-05\n", + "epoch: 9646 train_loss: 1.856325616245158e-05\n", + "epoch: 9647 train_loss: 1.8399870896246284e-05\n", + "epoch: 9648 train_loss: 1.8128428564523347e-05\n", + "epoch: 9649 train_loss: 1.793367846403271e-05\n", + "epoch: 9650 train_loss: 1.7903164916788228e-05\n", + "epoch: 9651 train_loss: 1.8000460840994492e-05\n", + "epoch: 9652 train_loss: 1.8119621017831378e-05\n", + "epoch: 9653 train_loss: 1.8148295566788875e-05\n", + "epoch: 9654 train_loss: 1.807404805731494e-05\n", + "epoch: 9655 train_loss: 1.7936717995326035e-05\n", + "epoch: 9656 train_loss: 1.7829350326792337e-05\n", + "epoch: 9657 train_loss: 1.779912054189481e-05\n", + "epoch: 9658 train_loss: 1.783695006452035e-05\n", + "epoch: 9659 train_loss: 1.789005909813568e-05\n", + "epoch: 9660 train_loss: 1.790413080016151e-05\n", + "epoch: 9661 train_loss: 1.786491156963166e-05\n", + "epoch: 9662 train_loss: 1.7792484868550673e-05\n", + "epoch: 9663 train_loss: 1.7730022591422312e-05\n", + "epoch: 9664 train_loss: 1.770026756275911e-05\n", + "epoch: 9665 train_loss: 1.7706735889078118e-05\n", + "epoch: 9666 train_loss: 1.7725849829730578e-05\n", + "epoch: 9667 train_loss: 1.7731481420923956e-05\n", + "epoch: 9668 train_loss: 1.77143192559015e-05\n", + "epoch: 9669 train_loss: 1.767513640515972e-05\n", + "epoch: 9670 train_loss: 1.7634029063628986e-05\n", + "epoch: 9671 train_loss: 1.7606214896659367e-05\n", + "epoch: 9672 train_loss: 1.7594646124052815e-05\n", + "epoch: 9673 train_loss: 1.759621409291867e-05\n", + "epoch: 9674 train_loss: 1.7597607438801788e-05\n", + "epoch: 9675 train_loss: 1.7589976778253913e-05\n", + "epoch: 9676 train_loss: 1.757018981152214e-05\n", + "epoch: 9677 train_loss: 1.7544076399644837e-05\n", + "epoch: 9678 train_loss: 1.7517688320367597e-05\n", + "epoch: 9679 train_loss: 1.749767761793919e-05\n", + "epoch: 9680 train_loss: 1.7485726857557893e-05\n", + "epoch: 9681 train_loss: 1.7478612790000625e-05\n", + "epoch: 9682 train_loss: 1.7470967577537522e-05\n", + "epoch: 9683 train_loss: 1.7459789887652732e-05\n", + "epoch: 9684 train_loss: 1.7444946934119798e-05\n", + "epoch: 9685 train_loss: 1.74265824171016e-05\n", + "epoch: 9686 train_loss: 1.7408116036676802e-05\n", + "epoch: 9687 train_loss: 1.7391346773365512e-05\n", + "epoch: 9688 train_loss: 1.737778256938327e-05\n", + "epoch: 9689 train_loss: 1.7365960957249627e-05\n", + "epoch: 9690 train_loss: 1.7355914678773843e-05\n", + "epoch: 9691 train_loss: 1.7343834770144895e-05\n", + "epoch: 9692 train_loss: 1.733165845507756e-05\n", + "epoch: 9693 train_loss: 1.7316984667559154e-05\n", + "epoch: 9694 train_loss: 1.7302118067163974e-05\n", + "epoch: 9695 train_loss: 1.728559800540097e-05\n", + "epoch: 9696 train_loss: 1.7270949683734216e-05\n", + "epoch: 9697 train_loss: 1.725802394503262e-05\n", + "epoch: 9698 train_loss: 1.724446156003978e-05\n", + "epoch: 9699 train_loss: 1.7231419406016357e-05\n", + "epoch: 9700 train_loss: 1.72196432686178e-05\n", + "epoch: 9701 train_loss: 1.720665386528708e-05\n", + "epoch: 9702 train_loss: 1.719373176456429e-05\n", + "epoch: 9703 train_loss: 1.7178754205815494e-05\n", + "epoch: 9704 train_loss: 1.7165852113976143e-05\n", + "epoch: 9705 train_loss: 1.715191319817677e-05\n", + "epoch: 9706 train_loss: 1.713844721962232e-05\n", + "epoch: 9707 train_loss: 1.712473385850899e-05\n", + "epoch: 9708 train_loss: 1.711121149128303e-05\n", + "epoch: 9709 train_loss: 1.709927528281696e-05\n", + "epoch: 9710 train_loss: 1.7085712897824124e-05\n", + "epoch: 9711 train_loss: 1.707276896922849e-05\n", + "epoch: 9712 train_loss: 1.7059321180568077e-05\n", + "epoch: 9713 train_loss: 1.7045998902176507e-05\n", + "epoch: 9714 train_loss: 1.7032973119057715e-05\n", + "epoch: 9715 train_loss: 1.7020629456965253e-05\n", + "epoch: 9716 train_loss: 1.7006188500090502e-05\n", + "epoch: 9717 train_loss: 1.6993544704746455e-05\n", + "epoch: 9718 train_loss: 1.6980064174276777e-05\n", + "epoch: 9719 train_loss: 1.6967347619356588e-05\n", + "epoch: 9720 train_loss: 1.695351420494262e-05\n", + "epoch: 9721 train_loss: 1.694127422524616e-05\n", + "epoch: 9722 train_loss: 1.692785917839501e-05\n", + "epoch: 9723 train_loss: 1.691561919869855e-05\n", + "epoch: 9724 train_loss: 1.690233330009505e-05\n", + "epoch: 9725 train_loss: 1.6888865502551198e-05\n", + "epoch: 9726 train_loss: 1.6876225345185958e-05\n", + "epoch: 9727 train_loss: 1.686290488578379e-05\n", + "epoch: 9728 train_loss: 1.684948438196443e-05\n", + "epoch: 9729 train_loss: 1.6837631847010925e-05\n", + "epoch: 9730 train_loss: 1.6824156773509458e-05\n", + "epoch: 9731 train_loss: 1.681041430856567e-05\n", + "epoch: 9732 train_loss: 1.6798332580947317e-05\n", + "epoch: 9733 train_loss: 1.6784717445261776e-05\n", + "epoch: 9734 train_loss: 1.6771995433373377e-05\n", + "epoch: 9735 train_loss: 1.6759959180490114e-05\n", + "epoch: 9736 train_loss: 1.6746878827689216e-05\n", + "epoch: 9737 train_loss: 1.673333281360101e-05\n", + "epoch: 9738 train_loss: 1.6719888662919402e-05\n", + "epoch: 9739 train_loss: 1.6708732800907455e-05\n", + "epoch: 9740 train_loss: 1.6694413716322742e-05\n", + "epoch: 9741 train_loss: 1.6681016859365627e-05\n", + "epoch: 9742 train_loss: 1.6668589523760602e-05\n", + "epoch: 9743 train_loss: 1.6656613297527656e-05\n", + "epoch: 9744 train_loss: 1.6642372429487295e-05\n", + "epoch: 9745 train_loss: 1.6629928722977638e-05\n", + "epoch: 9746 train_loss: 1.6616937500657514e-05\n", + "epoch: 9747 train_loss: 1.6605325072305277e-05\n", + "epoch: 9748 train_loss: 1.65918972925283e-05\n", + "epoch: 9749 train_loss: 1.6578942449996248e-05\n", + "epoch: 9750 train_loss: 1.6567362763453275e-05\n", + "epoch: 9751 train_loss: 1.655437699810136e-05\n", + "epoch: 9752 train_loss: 1.654168954701163e-05\n", + "epoch: 9753 train_loss: 1.6530228094779886e-05\n", + "epoch: 9754 train_loss: 1.6519552445970476e-05\n", + "epoch: 9755 train_loss: 1.651044476602692e-05\n", + "epoch: 9756 train_loss: 1.650220474402886e-05\n", + "epoch: 9757 train_loss: 1.6497027900186367e-05\n", + "epoch: 9758 train_loss: 1.6497155229444616e-05\n", + "epoch: 9759 train_loss: 1.6504081941093318e-05\n", + "epoch: 9760 train_loss: 1.6524190868949518e-05\n", + "epoch: 9761 train_loss: 1.656321546761319e-05\n", + "epoch: 9762 train_loss: 1.6636560758342966e-05\n", + "epoch: 9763 train_loss: 1.6755993783590384e-05\n", + "epoch: 9764 train_loss: 1.6962925656116568e-05\n", + "epoch: 9765 train_loss: 1.726244590827264e-05\n", + "epoch: 9766 train_loss: 1.773536678228993e-05\n", + "epoch: 9767 train_loss: 1.825009530875832e-05\n", + "epoch: 9768 train_loss: 1.886195423139725e-05\n", + "epoch: 9769 train_loss: 1.899144808703568e-05\n", + "epoch: 9770 train_loss: 1.871650601970032e-05\n", + "epoch: 9771 train_loss: 1.7703334378893487e-05\n", + "epoch: 9772 train_loss: 1.672228790994268e-05\n", + "epoch: 9773 train_loss: 1.6276968381134793e-05\n", + "epoch: 9774 train_loss: 1.653486287978012e-05\n", + "epoch: 9775 train_loss: 1.710669312160462e-05\n", + "epoch: 9776 train_loss: 1.7383028534823097e-05\n", + "epoch: 9777 train_loss: 1.7175072571262717e-05\n", + "epoch: 9778 train_loss: 1.6606720237177797e-05\n", + "epoch: 9779 train_loss: 1.622751369723119e-05\n", + "epoch: 9780 train_loss: 1.6281417629215866e-05\n", + "epoch: 9781 train_loss: 1.658626388234552e-05\n", + "epoch: 9782 train_loss: 1.6777381460997276e-05\n", + "epoch: 9783 train_loss: 1.6628844605293125e-05\n", + "epoch: 9784 train_loss: 1.6322270312230103e-05\n", + "epoch: 9785 train_loss: 1.613179119885899e-05\n", + "epoch: 9786 train_loss: 1.618882924958598e-05\n", + "epoch: 9787 train_loss: 1.6359606888727285e-05\n", + "epoch: 9788 train_loss: 1.642211282160133e-05\n", + "epoch: 9789 train_loss: 1.6314161257469095e-05\n", + "epoch: 9790 train_loss: 1.6135856640175916e-05\n", + "epoch: 9791 train_loss: 1.6052146747824736e-05\n", + "epoch: 9792 train_loss: 1.60995277838083e-05\n", + "epoch: 9793 train_loss: 1.6184298146981746e-05\n", + "epoch: 9794 train_loss: 1.6198717275983654e-05\n", + "epoch: 9795 train_loss: 1.611767766007688e-05\n", + "epoch: 9796 train_loss: 1.6018620954127982e-05\n", + "epoch: 9797 train_loss: 1.5978874216671102e-05\n", + "epoch: 9798 train_loss: 1.600560972292442e-05\n", + "epoch: 9799 train_loss: 1.6042164133978076e-05\n", + "epoch: 9800 train_loss: 1.6037247405620292e-05\n", + "epoch: 9801 train_loss: 1.5988120139809325e-05\n", + "epoch: 9802 train_loss: 1.5930741938063875e-05\n", + "epoch: 9803 train_loss: 1.5905425243545324e-05\n", + "epoch: 9804 train_loss: 1.5913383322185837e-05\n", + "epoch: 9805 train_loss: 1.592712214915082e-05\n", + "epoch: 9806 train_loss: 1.5920282748993486e-05\n", + "epoch: 9807 train_loss: 1.5889452697592787e-05\n", + "epoch: 9808 train_loss: 1.5853589502512477e-05\n", + "epoch: 9809 train_loss: 1.5830166375963017e-05\n", + "epoch: 9810 train_loss: 1.5826839444343932e-05\n", + "epoch: 9811 train_loss: 1.5828862160560675e-05\n", + "epoch: 9812 train_loss: 1.5822843124624342e-05\n", + "epoch: 9813 train_loss: 1.5803801943548024e-05\n", + "epoch: 9814 train_loss: 1.5778839951963164e-05\n", + "epoch: 9815 train_loss: 1.575795977259986e-05\n", + "epoch: 9816 train_loss: 1.574657107994426e-05\n", + "epoch: 9817 train_loss: 1.574066118337214e-05\n", + "epoch: 9818 train_loss: 1.5733354302938096e-05\n", + "epoch: 9819 train_loss: 1.572262954141479e-05\n", + "epoch: 9820 train_loss: 1.5704263205407187e-05\n", + "epoch: 9821 train_loss: 1.568638617754914e-05\n", + "epoch: 9822 train_loss: 1.5671754226787016e-05\n", + "epoch: 9823 train_loss: 1.5660963981645182e-05\n", + "epoch: 9824 train_loss: 1.5653871741960756e-05\n", + "epoch: 9825 train_loss: 1.564236663398333e-05\n", + "epoch: 9826 train_loss: 1.56289115693653e-05\n", + "epoch: 9827 train_loss: 1.56140868057264e-05\n", + "epoch: 9828 train_loss: 1.560048622195609e-05\n", + "epoch: 9829 train_loss: 1.5586516383336857e-05\n", + "epoch: 9830 train_loss: 1.557539690111298e-05\n", + "epoch: 9831 train_loss: 1.556393544888124e-05\n", + "epoch: 9832 train_loss: 1.555368726258166e-05\n", + "epoch: 9833 train_loss: 1.5540957974735647e-05\n", + "epoch: 9834 train_loss: 1.5527710274909623e-05\n", + "epoch: 9835 train_loss: 1.551478635519743e-05\n", + "epoch: 9836 train_loss: 1.5502877431572415e-05\n", + "epoch: 9837 train_loss: 1.5491017620661296e-05\n", + "epoch: 9838 train_loss: 1.5479034118470736e-05\n", + "epoch: 9839 train_loss: 1.5467485354747623e-05\n", + "epoch: 9840 train_loss: 1.545629493193701e-05\n", + "epoch: 9841 train_loss: 1.544307633594144e-05\n", + "epoch: 9842 train_loss: 1.5430581697728485e-05\n", + "epoch: 9843 train_loss: 1.541775418445468e-05\n", + "epoch: 9844 train_loss: 1.5405656085931696e-05\n", + "epoch: 9845 train_loss: 1.5394578440464102e-05\n", + "epoch: 9846 train_loss: 1.538291144242976e-05\n", + "epoch: 9847 train_loss: 1.537015486974269e-05\n", + "epoch: 9848 train_loss: 1.535922274342738e-05\n", + "epoch: 9849 train_loss: 1.5345887732109986e-05\n", + "epoch: 9850 train_loss: 1.5334704585256986e-05\n", + "epoch: 9851 train_loss: 1.5321729733841494e-05\n", + "epoch: 9852 train_loss: 1.5309407899621874e-05\n", + "epoch: 9853 train_loss: 1.529857217974495e-05\n", + "epoch: 9854 train_loss: 1.5286881534848362e-05\n", + "epoch: 9855 train_loss: 1.5275150872184895e-05\n", + "epoch: 9856 train_loss: 1.5262237866409123e-05\n", + "epoch: 9857 train_loss: 1.5250161595758982e-05\n", + "epoch: 9858 train_loss: 1.5238815649354365e-05\n", + "epoch: 9859 train_loss: 1.5227225958369672e-05\n", + "epoch: 9860 train_loss: 1.521622107247822e-05\n", + "epoch: 9861 train_loss: 1.520357091067126e-05\n", + "epoch: 9862 train_loss: 1.5191984857665375e-05\n", + "epoch: 9863 train_loss: 1.5179300135059748e-05\n", + "epoch: 9864 train_loss: 1.5168378922680859e-05\n", + "epoch: 9865 train_loss: 1.51561398524791e-05\n", + "epoch: 9866 train_loss: 1.514398718427401e-05\n", + "epoch: 9867 train_loss: 1.5132703083509114e-05\n", + "epoch: 9868 train_loss: 1.5121198885026388e-05\n", + "epoch: 9869 train_loss: 1.510946276539471e-05\n", + "epoch: 9870 train_loss: 1.5096895367605612e-05\n", + "epoch: 9871 train_loss: 1.5085304767126217e-05\n", + "epoch: 9872 train_loss: 1.5074253497004975e-05\n", + "epoch: 9873 train_loss: 1.5062521924846806e-05\n", + "epoch: 9874 train_loss: 1.5049917237774935e-05\n", + "epoch: 9875 train_loss: 1.5039382560644299e-05\n", + "epoch: 9876 train_loss: 1.502729173807893e-05\n", + "epoch: 9877 train_loss: 1.5015380995464511e-05\n", + "epoch: 9878 train_loss: 1.5003401131252758e-05\n", + "epoch: 9879 train_loss: 1.4991876923886593e-05\n", + "epoch: 9880 train_loss: 1.4979301340645179e-05\n", + "epoch: 9881 train_loss: 1.4968787581892684e-05\n", + "epoch: 9882 train_loss: 1.4956784980313387e-05\n", + "epoch: 9883 train_loss: 1.4945236216590274e-05\n", + "epoch: 9884 train_loss: 1.4934069440641906e-05\n", + "epoch: 9885 train_loss: 1.492247793066781e-05\n", + "epoch: 9886 train_loss: 1.4910481695551425e-05\n", + "epoch: 9887 train_loss: 1.4898800145601854e-05\n", + "epoch: 9888 train_loss: 1.488715315645095e-05\n", + "epoch: 9889 train_loss: 1.4875917258905247e-05\n", + "epoch: 9890 train_loss: 1.486437122366624e-05\n", + "epoch: 9891 train_loss: 1.4851442756480537e-05\n", + "epoch: 9892 train_loss: 1.4840441508567892e-05\n", + "epoch: 9893 train_loss: 1.4828955499979202e-05\n", + "epoch: 9894 train_loss: 1.4817559531365987e-05\n", + "epoch: 9895 train_loss: 1.4806433682679199e-05\n", + "epoch: 9896 train_loss: 1.4794428352615796e-05\n", + "epoch: 9897 train_loss: 1.47834525705548e-05\n", + "epoch: 9898 train_loss: 1.477161276852712e-05\n", + "epoch: 9899 train_loss: 1.4760610611119773e-05\n", + "epoch: 9900 train_loss: 1.474845066695707e-05\n", + "epoch: 9901 train_loss: 1.4736408047610894e-05\n", + "epoch: 9902 train_loss: 1.4725916116731241e-05\n", + "epoch: 9903 train_loss: 1.4715109500684775e-05\n", + "epoch: 9904 train_loss: 1.4703785382153e-05\n", + "epoch: 9905 train_loss: 1.4691896467411425e-05\n", + "epoch: 9906 train_loss: 1.4680345884698909e-05\n", + "epoch: 9907 train_loss: 1.4670475138700567e-05\n", + "epoch: 9908 train_loss: 1.4657866813649889e-05\n", + "epoch: 9909 train_loss: 1.4646963791165035e-05\n", + "epoch: 9910 train_loss: 1.4635713341704104e-05\n", + "epoch: 9911 train_loss: 1.462491763959406e-05\n", + "epoch: 9912 train_loss: 1.4615086911362596e-05\n", + "epoch: 9913 train_loss: 1.4603953786718193e-05\n", + "epoch: 9914 train_loss: 1.4593879313906655e-05\n", + "epoch: 9915 train_loss: 1.4585061762772966e-05\n", + "epoch: 9916 train_loss: 1.4577096408174839e-05\n", + "epoch: 9917 train_loss: 1.4569204722647555e-05\n", + "epoch: 9918 train_loss: 1.4564281627826858e-05\n", + "epoch: 9919 train_loss: 1.4561638636223506e-05\n", + "epoch: 9920 train_loss: 1.456504196539754e-05\n", + "epoch: 9921 train_loss: 1.4573390217265114e-05\n", + "epoch: 9922 train_loss: 1.4594196727557573e-05\n", + "epoch: 9923 train_loss: 1.4630464647780173e-05\n", + "epoch: 9924 train_loss: 1.4690825082652736e-05\n", + "epoch: 9925 train_loss: 1.4791019566473551e-05\n", + "epoch: 9926 train_loss: 1.4935073522792663e-05\n", + "epoch: 9927 train_loss: 1.5162376257649157e-05\n", + "epoch: 9928 train_loss: 1.5446095858351327e-05\n", + "epoch: 9929 train_loss: 1.584760866535362e-05\n", + "epoch: 9930 train_loss: 1.6193136616493575e-05\n", + "epoch: 9931 train_loss: 1.652680293773301e-05\n", + "epoch: 9932 train_loss: 1.6441592379123904e-05\n", + "epoch: 9933 train_loss: 1.6083886293927208e-05\n", + "epoch: 9934 train_loss: 1.533832801214885e-05\n", + "epoch: 9935 train_loss: 1.4673616533400491e-05\n", + "epoch: 9936 train_loss: 1.4350214769365266e-05\n", + "epoch: 9937 train_loss: 1.4460259080806281e-05\n", + "epoch: 9938 train_loss: 1.4815162103332113e-05\n", + "epoch: 9939 train_loss: 1.5097151845111512e-05\n", + "epoch: 9940 train_loss: 1.5135694411583245e-05\n", + "epoch: 9941 train_loss: 1.4854355868010316e-05\n", + "epoch: 9942 train_loss: 1.4499386452371255e-05\n", + "epoch: 9943 train_loss: 1.428017822036054e-05\n", + "epoch: 9944 train_loss: 1.4305156582850032e-05\n", + "epoch: 9945 train_loss: 1.4481452126346994e-05\n", + "epoch: 9946 train_loss: 1.4624190953327343e-05\n", + "epoch: 9947 train_loss: 1.4625112271460239e-05\n", + "epoch: 9948 train_loss: 1.4467800610873383e-05\n", + "epoch: 9949 train_loss: 1.4286604709923267e-05\n", + "epoch: 9950 train_loss: 1.4192017260938883e-05\n", + "epoch: 9951 train_loss: 1.4215404007700272e-05\n", + "epoch: 9952 train_loss: 1.430116481060395e-05\n", + "epoch: 9953 train_loss: 1.4357394320541061e-05\n", + "epoch: 9954 train_loss: 1.4337246284412686e-05\n", + "epoch: 9955 train_loss: 1.424900347046787e-05\n", + "epoch: 9956 train_loss: 1.415833776263753e-05\n", + "epoch: 9957 train_loss: 1.4111961718299426e-05\n", + "epoch: 9958 train_loss: 1.4124570952844806e-05\n", + "epoch: 9959 train_loss: 1.416256509401137e-05\n", + "epoch: 9960 train_loss: 1.418299234501319e-05\n", + "epoch: 9961 train_loss: 1.4166075743560214e-05\n", + "epoch: 9962 train_loss: 1.4118856597633567e-05\n", + "epoch: 9963 train_loss: 1.4067476513446309e-05\n", + "epoch: 9964 train_loss: 1.4037123037269339e-05\n", + "epoch: 9965 train_loss: 1.4031822502147406e-05\n", + "epoch: 9966 train_loss: 1.4042283510207199e-05\n", + "epoch: 9967 train_loss: 1.4048206139705144e-05\n", + "epoch: 9968 train_loss: 1.4039550478628371e-05\n", + "epoch: 9969 train_loss: 1.4014824955665972e-05\n", + "epoch: 9970 train_loss: 1.398620406689588e-05\n", + "epoch: 9971 train_loss: 1.3963489436719101e-05\n", + "epoch: 9972 train_loss: 1.395008439430967e-05\n", + "epoch: 9973 train_loss: 1.3946675608167425e-05\n", + "epoch: 9974 train_loss: 1.3945413229521364e-05\n", + "epoch: 9975 train_loss: 1.3940586541139055e-05\n", + "epoch: 9976 train_loss: 1.3927755389886443e-05\n", + "epoch: 9977 train_loss: 1.390975830872776e-05\n", + "epoch: 9978 train_loss: 1.3890600712329615e-05\n", + "epoch: 9979 train_loss: 1.3874744581698906e-05\n", + "epoch: 9980 train_loss: 1.3863626008969732e-05\n", + "epoch: 9981 train_loss: 1.3855630641046446e-05\n", + "epoch: 9982 train_loss: 1.3849402421328705e-05\n", + "epoch: 9983 train_loss: 1.3840331121173222e-05\n", + "epoch: 9984 train_loss: 1.3829027921019588e-05\n", + "epoch: 9985 train_loss: 1.3814764315611683e-05\n", + "epoch: 9986 train_loss: 1.3801504792354535e-05\n", + "epoch: 9987 train_loss: 1.3789223885396495e-05\n", + "epoch: 9988 train_loss: 1.377736589347478e-05\n", + "epoch: 9989 train_loss: 1.3766678421234246e-05\n", + "epoch: 9990 train_loss: 1.3758347449766006e-05\n", + "epoch: 9991 train_loss: 1.3748336641583592e-05\n", + "epoch: 9992 train_loss: 1.3739103451371193e-05\n", + "epoch: 9993 train_loss: 1.3727727491641417e-05\n", + "epoch: 9994 train_loss: 1.3715713066630997e-05\n", + "epoch: 9995 train_loss: 1.3704430784855504e-05\n", + "epoch: 9996 train_loss: 1.369291749142576e-05\n", + "epoch: 9997 train_loss: 1.3681632481166162e-05\n", + "epoch: 9998 train_loss: 1.3670921362063382e-05\n", + "epoch: 9999 train_loss: 1.3660293916473165e-05\n" + ] + } + ], + "source": [ + "best_model = trainer.train()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABpcAAAUOCAYAAACYe2sWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3hUZfrG8Xsy6Qkp9N4RFpAmAlKDFAWkNxHbWlGxFxT0R1BpoqLoquyqC+qqNCkWEKRKF5AqiIC0UEJ6LzNzfn+oI0PaJGRmUr6f68p15X3Pc877hF0mMvec85oMwzAEAAAAAAAAAAAAOMHL0w0AAAAAAAAAAACg9CBcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNO8Pd0AkJeEhARt3LjRPq5Tp478/Pw82BEAAAAAAAAAAJ6XmZmpM2fO2Mc9evRQWFiY29YnXEKJtXHjRg0ZMsTTbQAAAAAAAAAAUKItW7ZMgwcPdtt6PBYPAAAAAAAAAAAATiNcAgAAAAAAAAAAgNN4LB5KrDp16jiMly1bpsaNG3uoGwAAAAAAAAAASoZjx445bCtz5fvprka4hBLLz8/PYdy4cWO1aNHCQ90AAAAAAAAAAFAyXfl+uqvxWDwAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATiNcAgAAAAAAAAAAgNMIlwAAAAAAAAAAAOA0wiUAAAAAAAAAAAA4jXAJAAAAAAAAAAAATvP2dANASWMYhmw2mwzD8HQrAFBsTCaTvLy8ZDKZPN0KAAAAAAAASjnCJZR7hmEoLS1NSUlJSklJkcVi8XRLAOAy3t7eCg4OVkhIiAIDAwmbAAAAAAAAUGiESyi3DMNQdHS0EhMTZbVaPd0OALiFxWJRQkKCEhISZDabFRoaqqpVqxIyAQAAAAAAwGmESyiXDMPQuXPnlJSU5OlWAMBjrFar4uLiZLFYVLNmTQImAAAAAAAAOMXL0w0A7kawBACOkpKSdO7cOfaaAwAAAAAAgFO4cwnlTnR0dK7Bkr+/vypUqKCgoCB5e3vzCX4AZYphGLJYLEpNTVVycrIyMjIcjiclJcnb21vVqlXzUIcAAAAAAAAoLQiXUK4YhqHExESHOZPJpNq1ays4ONhDXQGAe/j4+CggIECVK1dWSkqKzp4963C3UmJiIvsvAQAAAAAAoEA8Fg/lSlpamqxWq8McwRKA8ig4OFi1a9d2mLNarUpLS/NQRwAAAAAAACgtCJdQrlz5ODx/f3+CJQDlVnBwsPz9/R3m2I8OAAAAAAAABSFcQrmSkpLiMK5QoYKHOgGAkuHK18ErXycBAAAAAACAKxEuodz4azP7ywUFBXmoGwAoGa58HbRYLA77MAEAAAAAAABXIlxCuWGz2XLMeXt7e6ATACg5zGZzjrncXi8BAAAAAACAvxAuodzI7ZP4JpPJA50AQMnh5ZXzPwW4cwkAAAAAAAD5IVwCAAAAAAAAAACA0wiXAAAAAAAAAAAA4DTCJQAAAAAAAAAAADiNcAkAAAAAAAAAAABOI1wCAAAAAAAAAACA0wiXAAAAAAAAAAAA4DTCJQAAAAAAAAAAADiNcAkAAAAAAAAAAABOI1wCABRZZGSkTCZTrl/169f3dHulisVi0fTp0+Xv72//Mzx58qSn2wIAAAAAAAByIFwCgD/dfffdeQYlxf01b948T/+4yMWSJUsc/nc6ceJEjpoTJ0441HzxxRdXve7+/fvVqVMnTZw4UZmZmVd9PQAAAAAAAMCVCJcAAEUWGRkpwzDsX/Xq1fN0S1dl8+bN9u+rV6+uhg0b5lsjSV27di3yetnZ2YqMjFT79u21e/fuIl8HAAAAAAAAcCdvTzdQnmVmZurIkSM6fPiwLl26pKSkJPn7+yssLExNmzZVmzZtFBwc7Ok2gXKnXr16BT6ObMOGDerZs2ehzjl58qQaNGhQDB3CVS4Pjrp06ZJrzZYtW+zf16tXT3Xq1CnSWrt379Y999yj/fv3S5KaN2+uX375pUjXAgAAAAAAANyJcMnN9u7dq6VLl2rdunXauXOnsrKy8qz18fFRv3799OSTTyoiIsLpNe6++27Nnz+/yD3Onj1bTzzxRJHPB4DSKDU1VXv37rWPO3funGvd5QFUUe5astlsevHFFzVr1ixZLBZ5e3vrueee0//93//J39+/0NcDAAAAAAAA3I1wyY2uueYa/fbbbw5zISEh6tGjh5o0aSJ/f3/FxcVp586d2rNnj7Kzs7VixQqtWLFC99xzjz744AP5+Ph4qHsAKNu2b98ui8ViH+d251J8fLwOHz5sH3fr1q3Q6yQlJWn69OmSpFatWum///2v2rVrV4SOAQAAAAAAAM8gXHKjy4Mlk8mkSZMm6fnnn1dQUFCO2p07d+qOO+7Q0aNHJUkff/yxEhMTtXjxYrf1CwDlyeV3JPn7++ca+GzZskWGYdjHRd1vycfHRxMnTtSkSZP40AAAAAAAAABKHS9PN1BezZgxQ6+88kquwZIkdejQQevXr1fVqlXtc0uWLNGCBQucXmPy5MkyDKPQXzwSD+VVo0aN1LFjR7Vt29Yl1/fz81PHjh3VsWNHValSxSVroOguD5euv/76XEOfy/dbqlixopo3b17odfz9/bVr1y5FRkYSLAEAAAAAABSWzaaYn5ZIl30AGO5HuOQB11xzjZ5++ukC62rWrKlnnnnGYe799993VVtAuffSSy9p+/btWrp0qUuuX6NGDW3fvl3bt2/XgAEDXLIGisZqtWrHjh32cW6PxJMcA6guXbrIZDIVei1/f3+1atWq8E0CAAAAAACUc8kn9+j0611V+dt7dGztx55up1zjsXgeMGrUKJnNZqdqBwwYoOeee84+3rx5s6xWq9PnAygdDMPQb7/9pgMHDujcuXNKSkpSQECAKlasqJYtW6p169Yuu8vl5MmT2rhxo6KiouTv76+aNWuqW7duqlWrlkvWK4n27dun5ORk+7hz5845arKysrRr1y77uKiPxAMAAAAAAEDhGBlJOr5wohqc+J8qyCZJqrRlirI6DpVvhYoe7q58Ilxyo7/uVOjbt6/T59SvX99hbLVaFRMTo2rVqhVnawA8wGKxaOXKlVqwYIHWrFmj6OjoPGuDg4N111136bnnnlPdunXzvW5CQoLCw8PzPL5+/XpFRETo7NmzGj9+vFasWOGwj9BfhgwZojlz5qhOnTrO/1BOOHnypBo0aFBg3V133aV58+YV27qRkZGaMmWKU7WDBg0qsGbChAmaMGFCjvni7hsAAAAAAKDcMgyd3/al/H6YpMa2WIdD4UaiDn7xnFo+8KGHmivfCJfc6Jtvvin0Obk9csnPz6842kEhWaw2nU/M8HQbZV6NUH95m8vHEztHjhypZcuWOcx16dJFTZs2VfXq1ZWQkKB9+/Zp27ZtSklJ0b/+9S999tlnmj9/vgYPHnxVax85ckQRERG6ePFinjXLli3Trl27tHXr1mIPmAAAAAAAAID8ZFz4Tee/GK8GidtlSFofGKAqFqtaZmXZa5pHLdbFw/9UtX/kvsUBXIdwqYQ7c+aMw7h69eoKCwvzTDPl3PnEDHV7bb2n2yjzfnyup+pUDPR0G26Rnp5u/75t27b673//q9atW+eoO378uO6//36tX79eiYmJGjVqlFavXq0ePXrket2goCB98cUX9vHixYu1ZMkS+zg1NVWDBg3SxYsXFRERoX79+ql69epKSkrSxo0b9dVXX8lm++P24r/ublq+fHlx/diqX7++/U6p559/XjNnzpSXl5feffddPfTQQ8W2DgAAAAAAAEqh7AydWD5VtQ6+rwbK1gkfb71WMVxbAgPUIjNTn5+7qL8+mu5lMpS87FlV+8dWj7ZcHpWP2wNKsTVr1jiMhw0b5qFOALhKrVq1tHLlylyDJUlq1KiRVq5cqU6dOkn6Y++fBx54QFarNdd6Hx8f3Xrrrfavli1bOhx/7bXXdOrUKS1ZskTr16/Xc889pzvvvFPjx4/XokWLtGrVKnl7//3Zg6+//lonT54snh/2TxaLRXfffbdmzpwpPz8/LViwwOXBUmRkpAzDyPG1fft2h7o1a9bkqElPT5evr6+9Zs6cObleyzAMHokHAAAAAABQRDH7Vunia+3U8OAc+SlbXwcHanitGtoSGCBJOuTnp+XBQfb6bV5tdbHX255qt1wjXCrBUlJSNGvWLPs4NDRUzz//fKGucfbsWb322mu66aabVLt2bQUGBsrf31+1atVS+/bt9dhjj+mbb76x36UAwP3uu+++AvdR8/Pz04wZM+zjo0eP6uuvvy7Seps2bdKbb76ZZ1jdp08fjRkzxj42DEMrV64s0lq5SUtL0+DBgzV//nxVqFBB3333nUaMGFFs1y+szZs327/39vbWDTfckKNmx44dyrrslutu3bq5pTcAAAAAAIDyIDshSsfeG6XKS0erWnaUfb5dRqbMV+wV/lbFMB0zVdSyJtPVZsIP6tLhene3CxEulVjR0dEaOHCgTp06JUkKCAjQggULCrXvyYIFC9S4cWNNmDBBq1evVlRUlNLT05WZmalz585p9+7deueddzRw4EA1b95cS5cuddWPAyAX48aN0+zZs3Xvvfc6Vd+1a1f5+/vbx6tXry7SujVr1tS4cePyrblyT6d9+/YVaa0rxcbGqlevXvruu+9UtWpVbdiwQTfeeGOxXLuofvzxR/v31113nYKCgnLUXB5AhYSEqFWrVm7pDQAAAAAAoEyzWnTquzeU9dZ1ahz9fY7DtSxW/TMx2WEuzmzWx93u1JCxDyvAj51/PIVwqYTIyMjQ+fPntXr1aj355JNq1qyZNmzYIElq166dtmzZoptuuqlQ1zxy5IgyMzPVu3dvffbZZ/r999+Vnp6u+Ph47dmzR1OmTFF4eLgk6ddff9WwYcP05JNP2vdCAeBaQ4YM0RNPPOF0aGw2m1W5cmX7+MCBA0Vad/DgwTKbzfnWtGjRwmF88eLFIq11udOnT6tr167avn27GjZsqC1btqhdu3ZXfd2rtWXLFvv3ee1jdXm41LlzZ3l58esTAAAAAADgaiQe266zszqp3s6XFaT0POvuSUxSdYvFYe77qG8Umx7r6haRD2I9Dzt27JiaNGmSYz4kJET33HOPbr31VvXu3Vsmk6nQ1/bz89PHH3+s2267zWHe399fbdu2Vdu2bfXQQw+pf//+2rVrlyTprbfekr+/v6ZPn160HygP0dHRunTpUqHOOXbsWLH2AJQFl4dCsbFF+wXatm3bAmtq1qzpME5OTs6j0jkHDx7UzTffrKioKDVv3lxr165V9erVr+qaxeHw4cOKiYmxj7t3756jxmazadu2bfZx165d3dIbAAAAAABAWWRLjdfxBc+p0elFClXBNzpk2ILUXT20UH98QLhd1XZ6vsPzqhRQydWtIh+ESyVUUlKSVqxYoYSEBKWkpGjw4MFOf1K+Xbt2SkhI0P33368BAwbkW1ulShV9//33+sc//qHo6GhJ0owZM9SrVy/17t37qn+Ov7z33nuaMmVKsV3PE2qE+uvH53p6uo0yr0aof8FFZUxCQoIWL16sdevWaf/+/bpw4YKSkpKUnZ2d73lpaWlFWq9GjRoF1gQGBjqMLVd8OqQwNm/erIEDByohIUGSFBMTU2LukLz8jiQvL69cg6MDBw4oMTHRPma/JQAAAAAAgCIwDEVtnKegjZFqYiTokK+vWly2x3VuVvv2VvURr+nFJg2V8uPz6lG7h/o16FekmzFQvAiXPKxx48b2N1lTUlIUHR2tn376SV9++aVWrFihr776Sl999ZVat26tDz/8UO3bty/wmo899pgee+wxp3uoWLGiXn75ZYc9WCZNmlSs4VJZ4G32Up2KgQUXAk6yWCyaOXOmpk+frtTUVLetm9ueQlfy9i6eXw/Lly/XrbfeqoyMDPtcdHS07rjjDq1evdrjj5e7fL+lVq1aKTQ0NEfN5Y/N8/X1VYcOHdzSGwAAAAAAQFmRGnVIl74cr/rJe/S7j7deqFhFmwMD9OH5i+qYkZmj/qhRR79d/7Ju6jdE3uY/3j+a2X2mu9tGPtg0ogQJDg5Ww4YNNXr0aC1dulQ//vij/dFU+/btU/fu3bVq1SqXrH3bbbfJ3//vO0Z27typgwcPumQtAFJWVpaGDh2qF1980R4sNWjQQHPmzNGhQ4eUnJwswzByfNWrV++q13bXJzvOnz+v4cOHKyMjQw8++KCqVatmP7Z27dpif/xmXurXry+TyZTr16effmqv27t3b641jzzyiL0mKytLAQEBudb9tU8eAAAAAAAA/mBkperYF8/K9z/dVTnlZ70RHqZhtWpoc2CAJGlGpXBd/rycVMNPSyuPU+gT2zTglmH2YAklD3culWCdO3fWd999p06dOikjI0Pp6ekaPXq0fv75ZzVs2LBY16pQoYLatGmj7du32+d++OEHtWzZsliu//DDD2vkyJGFOufYsWMaMmRIsawPlDRTp07VN998Yx936tRJa9asUXBwsAe7Kl5Zf97WPG3aNL3wwgsaMWKEbrrpJtlsNknS5MmTFRERoS5duniyTQAAAAAAALhA9K6lMq2coIbWi/o6OEizw8MU6212qDnm66uFFYJ1W3KKNpk7yW/gaxraprWHOkZhEC6VcK1bt9YDDzygOXPmSPpjL6bJkyc7fNq+uLRo0cIhXCrOO5eqVq2qqlWrFtv1gNIsIyNDb731lsPc3Llzy1SwJElms1lz587VvffeK0nq3bu3XnjhBU2dOlWSZLVaNWbMGO3bt0/h4eGebBUAAAAAAADFJDP2lM5+/qgaxW7UAV9fPV61mg74++VZ/054uFR7koYNe1D+PuY861CycE9ZKTB27FiH8aJFi5Senl7s61z55m5MTEyxrwFA2rFjh5KSkuzjevXqqVWrVh7syDVq165tD5b+MmXKFHXr1s0+PnPmjO655x6X9nHy5MlcHzE4dOhQe027du1yrZkxY4a9JiAgQBkZGbnWGYahiIgIl/4cAAAAAAAAJZo1WyeXT5XtnesVmvCjXqxcUbfVqp5vsCRJKWaTjtWNIVgqZQiXSoHrrrtO3t5/32SWmZmpXbt2Ffs6vr6+DmNXBFgA/tiL6HK1atVy+lyr1Vrc7biV2WzWF198ocqVK9vnli1bpnfffdetfdhsNm3cuNE+7tWrV651P/zwg/37rl27ys8v//8YAgAAAAAAKI/if9mgczPbq9bPr2lBiK9uqV1Tyys495Se1lVaa/g1w13cIYob4VIpYDabVbFiRYe5CxcuFPs6l99JIUmVKlUq9jUASP7+/g7j1NRUp86zWCxl4o7CWrVqaf78+TKZTPa5Z555Rnv37nVbD3v37lVcXJx93Lt37xw1mZmZ2rJli32cVwAFAAAAAABQXlmTL+nYv+9Q+MLBOm6+oGG1auiNSuFK9So4eqgSUEXTuk7Tp/0+VYtKLdzQLYoT4ZKb7Nq1S5s3b85xx4KzbDabw9grj7+cM2bMUGRkZJH2Szp79qzDuEaNGoW+BoCCNWvWzGF86NAhxcfHF3je+vXrlZGR4aq23Kp///566qmn7OPMzEyNHj3a6aDtaq1bt87+va+vr7p27ZqjZvPmzQ53cBIuAQAAAAAA/Mlm05k17yntzTbyif5Oj1SrooerV9VJX58CT/Xx8tG9Le/V10O/1sBGAx0+gIzSg3DJTUaMGKFu3brpvffeK/S56enpOd54rl69eq61M2bM0JQpU7R69epCr7N7926Hcffu3Qt9DQAFa9asmZo3b24fWywWvfLKK/mek5mZqYkTJ7q6NbeaPn26OnbsaB8fPXpUDz/8sFvWvjxc6ty5swIDA3PUXP5IvLCwMLVr184tvQEAAAAAAJRkySf36PTrXVVx60R9GGbWkNo1tCkwwKlze9TuoaWDl+qJ655QkE+QizuFKxEuudnlj1hy1saNGx32WfH391fr1q3zPWfTpk2FWmPHjh06c+aMfRwQEKCePXsWrlEATps1a5bDpzJmz56tF198Mdc7k86ePasBAwZo165dMpvLzsaGPj4++vLLLxUWFmaf++STT/Tpp5+6dF2LxaLNmzfbx87st9SzZ8887xgFAAAAAAAoD4yMJB37ZLz85/XSPq/fNbB2DX0cFiqLE3ce1Q+pr/d6vad3e72reiH13NAtXI13ytxs48aNOnToUKHOef311x3G/fv3V3Bw/puhrVy5UqdOnXJ6jZkzZzqMH3nkEYWEhDjfJFDGnTx5UiaTyf51Zfh66tQph+MRERH5Xq9///56++23HcKiqVOnqm7duho7dqwmTpyoZ599Vv3791ejRo20YcMGffjhh6pdu3aea27YsMF+rH79+vb5KVOmOKzds2dP+7HIyEj7/IYNGxyud7mNGzc6HDt58mSu51z+upNffxERETKZTGrQoIESEhIc1rrzzjvt59SvXz/fP8ei2Llzp5KTk+3j3PZbio+P1549e+zj4n4k3pV/brn9mUtSgwYNctTMmzevWHsBAAAAAADIl2Ho/NYvFP9aG2WcXaC7a1TRxCqVdcnbu8BTg3yC9Ez7Z/TVoK/UrXY3NzQLdyn4f30UK5vNprvuukvr1q1zKryZNm2a1q5dax/7+vpq2rRpBZ6XlZWlf/7zn/r+++/l45P/cy4//PBDLV261D6uW7eunn/++QLXAHB1Hn30UbVv316TJk3S+vXrJUmXLl3S559/bq/x8vJS3759NX36dLVp06bAx+ehYH/9WUtSSEiI2rdvn2vN5Xvd3XjjjW7pDQAAAAAAoCTJuPCbzn8xXg0StyvBy0t316ipTCef7jKk8RA93u5xVQ6o7OIu4QkmwzAMTzdRHtSvX9/hE/3NmjXT22+/rT59+uT6afWoqCi9+OKLDp9QN5vNmjdvnm6//fY81wkLC1NiYqJ9fMMNN+iDDz5Qq1atctSmpqZq6tSpmjFjhv76v0FoaKh+/PFHXXvttUX5MYvVoUOH1LJlS/v44MGDatGiRZGvZ7FY9NtvvznMNWnSRN5OJOyAq0VFRWn79u06c+aMUlNTFRYWplq1aql79+6qWLGip9tDGcZrIwAAAAAAyCE7QyeWT1Wtg+/LT9n26TnhofpPWGi+p7aq3ErPd3he11bx/HvMZVlxv39eWLxz5CbDhw/X3LlzlZqaKkk6cuSIbrrpJtWpU0c33HCD6tSpI39/fyUkJGjfvn3asWOHsrP//ktbt25dvf/+++rfv3++64waNUqfffaZ0tPTJUnbtm1T69at1bZtW11//fWqXLmy0tLSdOLECa1du9bejyS1a9dOCxcuVKNGjVzwJwAgP7Vq1dLw4cM93QYAAAAAAADKudh9q2T55ik1zI7Kcey+hCQtDw5SdC4fSq3kX0lPXvekBjYaKC8TO/KUddy55EZJSUlauHChvv32W61bt05JSUn51ptMJnXo0EG333677rnnHgUGBjq1TkJCgr788kv7OmlpaXnWenl5qWPHjnrsscc0cuRIh/1fPI07lwDA9XhtBAAAAAAAkpSdEKVTnz+pxtHf51v3bVCgnq/696PuvL28dcc/7tADrR5QsG+wq9vEn7hzqRwJCQnRfffdp/vuu09Wq1UnTpzQ4cOHde7cOSUlJSkrK0vBwcEKCwtT48aN1apVK6f2ZbpSWFiYxo0bp3HjxslisejXX3/VL7/8oosXLyopKUm+vr4KDw9XnTp11KlTpyKtAQAAAAAAAAAoA6wWnV79tirtmKXGSi+wvG9Kht4PC9Yp3xR1rdVVE66foPqh9V3fJ0oUwiUPMZvNatKkiZo0aeLSdby9vdWiRQu3JpYAAAAAAAAAgJIv6dh2JS1+RIe9olTdz6rWmfnX79M1iomYrtdb1VZ0erS61+7unkZR4hAuAQAAAAAAAABQjhhp8Tq+4DlZzy3Ta5XCtDOgipplZunLcxeU28Yp8UawNtR5RDeOeVqtg/wkSc3UzL1No0QhXAIAAAAAAAAAoDwwDJ3/cZ4sGyO1KNSkBbWqyWoySZKO+PlqSYVgjUpOcThltW8fVR8xU0OvaeSJjlFCES4BAAAAAAAAAFDGpZ87pAtfPKI9xlG9XStM8eac9yjNCQ/VTalpCrXZdNSoo9+uf1k39Rsib7OXBzpGSUa4BAAAAAAAAABAWZWVpt+/ilTc759oVqUQHfKrlGdpotms2WEV1cprhLqMfVEDwiu4sVGUJoRLAAAAAAAAAACUQbF7lit21bOaH5KtFTWrOHXO8rAQjR/5rCoHECwhb4RLAAAAAAAAAACUIdlxp3Ty80e1NWuP3q8RqlQvP6fOa1/tek3s+IIqB1R2cYco7QiXAAAAAAAAAAAoC6zZOvvdLB0/9J7erBSsExXCnTqtsn9VPd/xOfWt11cmk8nFTaIsIFwCAAAAAAAAAKCUS/51o44vf0zzglO0toZzoZK3yVv3Xnuv7r32XgV4B7i4Q5QlhEsAAAAAAAAAAJRStuRLOrrgKa1L2aiPq1RQplegU+d1q9lDL3SaoDoV6ri4Q5RFhEsAAAAAAAAAAJQ2NpvOr5+rXXtm6t3wAJ0LD3XqtBr+tTS560vqUquLixtEWUa4BAAAAAAAAABAKZJ+5mf9vPghfRwQqx1VKzh1jq/JV4+0Ha87mt8uH7OPiztEWUe4BAAAAAAAAABAaZCZrFOLX1Tt3z7RtvAQ7QgIceq03rX7aeINz6pKYBUXN4jygnAJAAAAAAAAAICSzDAU+9NCeX3/gupZYyVJDyYk6pvgIMV4m/M8rW5AfU2NeEVtqrZxU6MoLwiXAAAAAAAAAAAoobIvHdP5L8arbtw2h/lgw9CT8QmaVKVSjnMCFKAnOjyt0U1HyOyVd/gEFBXhEgAAAAAAAAAAJY0lU2e/ma6qe99VXWXnWnJLSqoWVAjWfn8/SZLJkPrVHaKJXZ5RqF+oO7tFOUO4BAAAAAAAAABACZJ0aI0ylz+h2lln863zkjQxNk5jatZQw4BrNKP3VDWr1Mw9TaJcI1wCAAAAAAAAAKAEsCWe17cLH9D2zIN6JSuuwPrzRkUdqPWU/t2rizrWaiuTyeSGLgHCJQAAAAAAAAAAPMtm1f7VM/XxiXlaG+Qn+QarfUamhqak5lpuMbz0dcBgNRn1qm5tWNvNzQKESwAAAAAAAAAAeEzCia36cOV4LQjMVEaQn33+rYph6pWWphCb4VC/17hGp7tM1aDefWT24k4leAbhEgAAAAAAAAAAbmakJ2jh4gf138z9igr21h87KP0tzmzW+2GhmhCXIEmKN4K1qvo49brtabUJDXR/w8BlCJcAAAAAAAAAAHAXw9CeH9/Vv355TzsDvCWfvN+m/yKkgoYnp+qo0UMVB0/XmGuvcWOjQN4IlwAAAAAAAAAAcIO4qH2a882DWu6XIktAwW/PW00mvdvwds0Y8Yb8fcxu6BBwDuESAAAAAAAAAAAuZGSl65OlD+m/KTsV62+WVPBeSVUtFfRk5+m65R89XN8gUEiESwAAAAAAAAAAuMhPOz/WG3vf1CE/k+Rd8N1HgVaT+tW4XZP6Pikfs48bOgQKj3AJAAAAAAAAAIBiFnvpV81Ycb++N8fJ8Cv4TiWTYaiNqaVeHT5HdUOruqFDoOgIlwAARRYZGakpU6bkeqxevXo6efKkexsqhX7//Xft2bNHFy9eVEJCgvz9/RUeHq5mzZqpbdu28vf393SLAAAAAACgEKyWLH38zWOaF/ejkry95Mwj8OpkBeuhTq9p4LXdXN8gUAwIlwDgT3fffbfmz5/vlrX++9//6u6773bLWnDekiVLNGLECPv4+PHjatiwoUPNiRMn1KhRI/v4888/15gxY5xew2azae3atVq4cKFWrFih6OjoPGt9fHw0aNAgPfbYY+revXshfhIAAAAAAOAJO/Z/qek7p+u4j00yexVYH2YxqU+lMZo4cIK8nagHSgrCJQBAkUVGRioyMtI+rl+/vk6dOuW5hq7S5s2b7d9Xr149R7B0ZY0kde3a1alrG4ahjz/+WLNmzdKvv/5qn/f29tYNN9ygVq1aKSwsTElJSdq7d6+2bdum7OxsLVmyREuWLNHdd9+td955R8HBwUX86QAAAAAAgKvEJZ7SlOX3ap1xUXJimyRvw9B1ln/oxaHvqX6lKq5vEChmhEsAcAVnHue2YcMG9ezZs1DnnDx5Ug0aNCiGDuEqlwdHXbp0ybVmy5Yt9u/r1aunOnXqOHXtzMxM3XfffQ5zI0aM0OzZs1W7du0c9ceOHdP999+vDRs2SJLmzZun48ePa9WqVQoMDHRqTQAAAAAA4GKGoZgdC5S2dqL21PCXzOYCT7kmPVB3tp+hwe17FlgLlFTcZwcAgKTU1FTt3bvXPu7cuXOudZcHUM7etZSbO+64Q4sWLco1WJKkxo0ba/Xq1erRo4d97scff9STTz5Z5DUBAAAAAEDxyYo+rlNz+qnyqgdVNztWj8cn5FtfLdvQrQGj9L97txAsodQjXAIAQNL27dtlsVjs49zuXIqPj9fhw4ft427dirbJZnh4uObMmVNgnY+Pjz766CN5ef396/rDDz/UL7/8UqR1AQAAAABAMbBk6syySOm9jqoXv80+PTQ5VS0yM3OU+9kM9UhvpPf6/6BJo16Svw8PFEPpR7gEAIAc70jy9/dXu3btctRs2bJFhmHYx0W9c2n48OEKCwtzqrZRo0bq1auXfWyz2bRo0aIirQsAAAAAAK5O4i8/KPq161Rn72z5KtvhmFnSxNh4h7k2qX56vtEsvfPgUl1Ts7obOwVci4gUAP7UqFEjdezYUTVq1HDJ9f38/NSxY0dJUpUqbNRY0lweLl1//fXy8cm5++bl+y1VrFhRzZs3L9JahQ2lbrjhBq1Zs8Y+vrxXAAAAAADgetbECzq94Ck1OPdtvnWtMrM0LDlFP/kFqqvfYD16zxRV8M/5HgNQ2hEuAcCfXnrpJb300ksuu36NGjW0fft2l10fRWe1WrVjxw77OLdH4kmOoU6XLl1kMpmcXsPX11fr16+XJLVu3bpQ/V0ZeF64cKFQ5wMAAAAAgKKJSjqtV1Y+opvOHNDQlPgC6y2Gl5qlddPw/q+oVcN6bugQ8AzCJQAoAQzD0G+//aYDBw7o3LlzSkpKUkBAgCpWrKiWLVuqdevWud5JUxxOnjypjRs3KioqSv7+/qpZs6a6deumWrVquWS9kmjfvn1KTk62jzt37pyjJisrS7t27bKPC3v3kZeXlyIiIorc4+VsNluxXAcAAAAAAOQu05qpuZunav7vS5Vlkn4LD1Df1AQFXfa4/Cv9rKY623WqRvXqLbOX8x9IBUojwiUA8BCLxaKVK1dqwYIFWrNmjaKjo/OsDQ4O1l133aXnnntOdevWzfe6CQkJCg8Pz/P4+vXrFRERobNnz2r8+PFasWKFwz5CfxkyZIjmzJmjOnXqOP9DOeHkyZNq0KBBgXV33XWX5s2bV2zrRkZGasqUKU7VDho0qMCaCRMmaMKECTnmi7tvSbp06ZLDuEmTJsV6fQAAAAAA8AfDMLThxEpN2zxZF5Qh/ZkRRXt7a25YqJ6KT8hxTrwRrO9rPqxeY55S25AA9zYMeAjhEuAsq0VKivJ0F2VfSC3JXD5emkaOHKlly5Y5zHXp0kVNmzZV9erVlZCQoH379mnbtm1KSUnRv/71L3322WeaP3++Bg8efFVrHzlyRBEREbp48WKeNcuWLdOuXbu0devWYg+YUDj79+93GN90000e6gQAAAAAgLLrVOJJvbLmSe1IPZbr8U9DK2hISooaZlvsc6u8b1TFITN0a8um7moTKBHKxzu4QHFIipLebuXpLsq+x/dL4eXjebTp6en279u2bav//ve/ue7Fc/z4cd1///1av369EhMTNWrUKK1evVo9evTI9bpBQUH64osv7OPFixdryZIl9nFqaqoGDRqkixcvKiIiQv369VP16tWVlJSkjRs36quvvrI/du2vu5uWL19eXD+26tevb79T6vnnn9fMmTPl5eWld999Vw899FCxrVNWWCwWrV271j4OCgrSrbfe6sGOAAAAAAAoW9Ky0zR3xyx9cmyxLPk8zc5iMml6pXD9+8IlHTNqa3/r/9Mtg0bIz9vsvmaBEoJwCQA8rFatWlq5cqWqVauW6/FGjRpp5cqVioiI0Pbt25WVlaUHHnhAv/zyi8zmnP/x4uPj4xA+HDlyxCFceu2113Tq1CktWbJEw4YNczh3/PjxWrNmjfr37y+L5Y9P4Xz99dc6efKk6tevXww/7R8sFovuu+8+zZ8/X35+fvrss880YsSIYrt+biIjIxUZGZljfseOHerUqZN9vGbNGvXu3duhJiMjQ6GhocrKypIkzZkzR48++qhL+/3L8uXLFR//94ahjz32WL6PPQQAAAAAAM4xDENrfv9OMzZP0SUj3f4IvPwkeHnrk7A7FXHbyxpelX+fo/zy8nQDAFDe3XfffXkGS3/x8/PTjBkz7OOjR4/q66+/LtJ6mzZt0ptvvpkjWPpLnz59NGbMGPvYMAytXLmySGvlJi0tTYMHD9b8+fNVoUIFfffddy4PlvKzefNm+/fe3t664YYbctTs2LHDHixJUrdu3dzSm2EYmj59un1ct25dTZw40S1rAwAAAABQlp1IOKF/Lhuhp398/o9gqQChVqtuiwnWuGvn687H56gewRLKOe5cAgAPGTdunG6++WYNHz7cqfquXbvK399fGRkZkqTVq1dryJAhhV63Zs2aGjduXL41gwcP1qeffmof79u3r9Dr5CY2Nla33HKLtm/frqpVq2rlypVq165dsVy7qH788Uf799ddd52CgoJy1FweQIWEhKhVK/c8IvOjjz7S7t27JUleXl76+OOPFRwc7Ja1AQAAAAAoi1KyUvT+rjf1v6OLZHXiTiWTYahfskXNQh7QiIfHq0KAr+ubBEoBwiUA8JDCBkNms1mVK1fW2bNnJUkHDhwo0rqDBw/O9XF6l2vRooXD+OLFi0Va63KnT5/WTTfdpCNHjqhhw4b6/vvv1bhx46u+7tXasmWL/fu89rG6PFzq3LmzvLxcf+Pv8ePH9dRTT9nHkydPVq9evVy+LgAAAAAAZZFhGPr2+Deate1VxdnSnHoE3rUZmeqS0kY9h7+l5vVrur5JoBQhXAKAUuTyUCg2NrZI12jbtm2BNTVrOv4HU3JycpHW+svBgwd18803KyoqSs2bN9fatWtVvXr1q7pmcTh8+LBiYmLs4+7du+eosdls2rZtm33ctWtXl/eVkpKiYcOG2f/cb731Vr300ksuXxcAAAAAgLLo17hf9eqmSdqb+KtT9RWtVo2I81O9a2dpQJ+bZPZyIokCyhnCJcBZIbWkx/d7uouyL6SWpztwu4SEBC1evFjr1q3T/v37deHCBSUlJSk7Ozvf89LS0oq0Xo0aNQqsCQwMdBhbLJYirSX9cdfPwIEDlZCQIEmKiYmRYRhFvl5xuvyOJC8vr1yDowMHDigxMdE+dvV+S9nZ2Ro9erT27//j9aZ3796aN2+eTCb+QxYAAAAAgMJIzEzUv3bN1oJjS2Rzot5sGBqWlKH6vmPU74GJqhIS4PIegdKKcAlwltlbCq/n6S5QhlgsFs2cOVPTp09Xamqq29bNbU+hK3l7F8+vh+XLl+vWW2+17xMlSdHR0brjjju0evVqtzxeLj+X77fUqlUrhYaG5qi5/LF5vr6+6tChg8v6sVqtuv322/Xdd99J+iPIWr58ufz8/Fy2JgAAAAAAZdF3J77V9K0vK8Hq3Idzr0vPUI/Exmo5YLaub9nMxd0BpZ9n39UDgHIqKytLQ4cO1YsvvmgPlho0aKA5c+bo0KFDSk5OlmEYOb7q1bv6gNNdd8CcP39ew4cPV0ZGhh588EFVq1bNfmzt2rWaPn26W/qoX7++TCZTrl+ffvqpvW7v3r251jzyyCP2mqysLAUEBORat2HDhqvq02q16o477tDChQslSTfeeKNWrVqV4y4yAAAAAACQv8xLJ/T76hlOBUtVLRY9ddGqQVWm6LanvyFYApzEnUsA4AFTp07VN998Yx936tRJa9asUXBwsAe7Kl5ZWVmSpGnTpumFF17QiBEjdNNNN8lm++NG9MmTJysiIkJdunTxZJslgsVi0e23364FCxZI+iNY+vrrrwmWAAAAAAAoDEuWTn0zU9X2ztGDytL6mtX1q59vrqXehqHbElNV0xigbne/qrpVw9zbK1DKcecSALhZRkaG3nrrLYe5uXPnlqlgSZLMZrM+/PBDvfDCC5L+2Dvor++lP+7UGTNmjOLj4z3VYolgsVh02223ESwBAAAAAHAVEg6v14XX2qve3tflryx5S5oYm/t7Djekp+ulc+G6vsMC3fb4OwRLQBEQLgGAm+3YsUNJSUn2cb169dSqVSsPduQatWvX1r333uswN2XKFHXr1s0+PnPmjO655x6X9nHy5MlcHzE4dOhQe027du1yrZkxY4a9JiAgQBkZGbnWGYahiIiIQvdmsVh06623atGiRZIIlgAAAAAAKCxb8iWd+M8dClswRNWzTjkca5eZqVtS/t7nuobFov+7kK7egU+o71PrFHFDB7dtHwCUNYRLAOBm58+fdxjXqlXL6XOtVmtxt+NWZrNZX3zxhSpXrmyfW7Zsmd5991239mGz2bRx40b7uFevXrnW/fDDD/bvu3btKj8/v2LrITs7W6NGjdKSJUskOR8sRUREKCIiQqtWrSq2XgAAAAAAKE1shk2y2XR+3QdKfbONGkatyLP2qbh4VbRadX98ku6Paa+Wozdq1J3jFezv48aOgbKHcAkA3Mzf399hnJqamkelI4vFopiYGFe05Fa1atXS/PnzHT4Z9Mwzz2jv3r1u62Hv3r2Ki4uzj3v37p2jJjMzU1u2bLGP8wqgiiIrK0sjR47U0qVLJRXujqWNGzdq48aNunDhQrH1AwAAAABAaZBty9Ynhz7RsCUDdOzNbqqxaYIqGCn5nlPFatPrZwLUuMV/NPzZT/SP+s5/yBdA3giXAMDNmjVr5jA+dOiQU/sOrV+/XhkZGa5qy6369++vp556yj7OzMzU6NGjnQ7arta6devs3/v6+qpr1645ajZv3qz09HT7uLjCpaysLA0fPlzLly+XxKPwAAAAAABwxs7zOzVqxQjN2jVLx1PP6jufMwWek2gEalGNp9Xgqc3q36evvLx4BB5QXAiXAMDNmjVrpubNm9vHFotFr7zySr7nZGZmauLEia5uza2mT5+ujh072sdHjx7Vww8/7Ja1Lw+XOnfunGuwc/kj8cLCwtSuXburXjczM1PDhg3TN998I0nq2bMnwRIAAAAAAPm4kHpBz258VveuvlfHEk/Y5+eFhui0t3ee5632jtBvI9dr5IP/p8oVAtzRKlCuEC4BgAfMmjXL4bFws2fP1osvvpjrnUlnz57VgAEDtGvXLpnNZne26VI+Pj768ssvFRYWZp/75JNP9Omnn7p0XYvFos2bN9vHzuy31LNnT3l5Xd2vzMzMTA0dOlTffvutfW79+vUKCgqSyWRy+gsAAAAAgPIg25qtjw9+rEFLB2rVyZz7DmebTJpZKTzH/Amjppa2+kARzy9V+5bNchwHUDwIlwDACSdPnnR4g79nz54Ox0+dOuVwPCIiIt/r9e/fX2+//bZDWDR16lTVrVtXY8eO1cSJE/Xss8+qf//+atSokTZs2KAPP/xQtWvXznPNDRs22I/Vr1/fPj9lyhSHtXv27Gk/FhkZaZ/fsGFDniHGxo0bHY6dPHky13NOnTrlVH8REREymUxq0KCBEhISHNa688477efUr18/3z/Hoti5c6eSk5Pt49z2W4qPj9eePXvs4+J4JN62bdu0cuXKq74OAAAAAABl3fbz2zV8xTDN3j1b6da8twjYFBigjQF/7G2dYfhoUejdMj+yRUOHjZGvN299A66U932DAACXevTRR9W+fXtNmjRJ69evlyRdunRJn3/+ub3Gy8tLffv21fTp09WmTZsCH5+Hgv31Zy1JISEhat++fa41NpvNPr7xxhvd0hsAAAAAAOXZhdQLen3X6/r+5PdO1QfYbIozm7XV1FYZfWdoxA0deeoH4CYmwzAMTzcB5ObQoUNq2bKlfXzw4EG1aNGiyNezWCz67bffHOaaNGki73yezQq4S1RUlLZv364zZ84oNTVVYWFhqlWrlrp3766KFSt6uj2UYbw2AgAAAAA8Lduarc8Of6b3976X751Kl+ufkqo7Yg39Uu8p3TzqQYUE+Lq4S6BkKe73zwuLd44AoASoVauWhg8f7uk2AAAAAAAA3Gr7+e2atn2afk/63an6JllZmhCToAumvtLt0zSqYR0XdwggN4RLAAAAAAAAAAC3uph6Ua/vel2rTq5yqj7YZtMj8YlqkVhVZzq9pVtuullmLx6BB3gK4RIAAAAAAAAAwC3sj8Db977SLelOnTMwOVX3x2Voe+UHVPOeZ9U2LMjFXQIoCOESAAAAAAAAAMDldpzfoWk7pulE4gmn6ptkZWlSTLxiLZ10ftB0jWnjvv1kAOSPcAkAAAAAAAAA4DKJmYl6dfurhX4EXsfEYP3c4g0NGnqb/H3MLu4SQGEQLgEAAAAAAAAAXCbQ5KNDZ7Y6VTswOVWPxKVoc+AomcZFalSNyi7uDkBREC4BAAAAAAAAAFwi7fhWJS8er5eMs3qgRrU865pkZWlibLyyM5pp/43TNapbZ5lMJjd2CqAwCJcAAAAAAAAAAMXKSIvTmUUTVPf3hQqUVE3STSmp+j44yKEuyGbT+PhE3Zho1vq6E9V/9EMKD/bzSM8AnEe4BAAAAAAAAAAoHoah2G2fyueHl1TXluBw6Jm4BG0KDFC6l5ck6ZaUVD0em6Dt3v10YexUjb2mvvv7BVAkhEsAAAAAAAAAgCIzDEMmk0lZF39V9BePqHbCT7nWVbdaNS4hUV8HB2lSbLz80mtp8/Vva3C/AfIxe7m5awBXg3AJAAAAAAAAAFBoF1Mv6vVdr+ua0Ibq//s5Vdn3nmrLku85dyQma0iCRd9VekA97pugEZUruKlbAMWJcAkAAAAAAAAA4LRsW7b+98v/9P6+95VmSdN6m6EBUefkK2uB527w6iLvfjM0tv21MplMbugWgCsQLgEAAAAAAAAAnLLj/A5N2zFNJxJP2OcyvUx6rWK43oqOyfO8U0ZVbb7mBQ0ecaeC/XhbGijt+FsMAAAAAAAAAMjXX4/AW3VyVa7H1wYFanOAv7qmZzjMZxlmLQ0aqZajX9bYetXc0SoANyBcAgAAAAAAAADk6spH4OVneqVwLT17Xr5/jn9Sc53rNk0jboyQ2YtH4AFlCeESAAAAAAAAACCH3B6Blx9fw1C0t1mB2QH6ruZ49R3zhK4PCXBxlwA8gXAJAAAAAAAAAGB3MfWi3tj1hlaeXOlUfZDNpkfiE3VrUrLWePdWxZEzdHvLJi7uEoAnES4BAAAAAAAAAAr1CLy/3JKSqqfi4pVgqaml176hQYNHyN/H7OJOAXga4RIAAAAAAAAAlHOFfQRe46wsTYqNV4t0Q8tD71aH217SqOoVXdwlgJKCcAkAAAAAAAAAyqmreQTeTlNb/dhnpkZ36SCTyeTiTgGUJIRLAAAAAAAAAFDOXM0j8KyWUC2q/4oGjBqn0CBfF3cKoCQiXAIAAAAAAACAcuTn6J8VuTWy0I/Aa5uepW/8b1G9MdN0W+O6Lu4SQElGuAQAAAAAAAAA5UhyVrJTwdLlj8D71Wiorzu8rFtuHiBvs5cbugRQkhEuAQAAAAAAAEB5YclU/Z/WqkdqhjYG+edZ9tcj8Pwtflpcebx6jH1BQyoGu7FRACUZ4RIAAAAAAAAAlAOJv6xV5rLHVTfrjJ73Nmt7QA1lejnehfTXI/DaZ2RqrVdn+QycoTHtW3uoYwAlFeESAAAAAAAAAJRhtuRonfryKTWI+to+V9ti1X2JSfpXeJgkx0fgXTCqaGHTF3TLiLsU6MtbyABy4pUBAAAAAAAAAMoim03nN/xbwT++ogZGSo7D/0xM0orgILXOzNJTcfEKs5i0Imi0Wo55RaPqVPNAwwBKC8IlAAAAAAAAACgDDsYc1Fu739L0btMVHHdesV8+rNopB/Ks9zOkhVEXFGwY2qNm+qn7dA3t2VNeXiY3dg2gNCJcAgAAAAAAAIBSLDEzUXP2zNGio4tkyNCUJWP11vFdqi1rgedm24L0Zc2H1fu2p9SuQoAbugVQFhAuAQAAAAAAAEApZDNsWn5suWbvnq34zHj7/Ebbee3x91aHjPzDpVXeN6ri0Jm6tcU1rm4VQBlDuAQAV4iIiNDGjRudrjebzQoPD7d/NWrUSDfccIM6d+6s1q1by9ubl1oAAAAAAFC8fo37Va9uf1V7L+3N9fjUShW1OOq8fHI5dtyoqb2tJuuWwSPl5212aZ8Ayibe8QSAq2S1WhUTE6OYmBhJ0s6dO/XFF19IkqpWrapx48bp4YcfVrVqbIQJAAAAAACuTkpWiv6191/64sgXshp535l0wtdHn4ZW0D2Jyfa5DMNHX4eNVYexkzW8akV3tAugjPLydAMAUNJs2LBBhmHYv+rVq+dwfP369Q7H09PTdebMGe3du1fz5s3TXXfdperVq0uSoqOj9fLLL6tu3bp67rnnlJWV5YkfKU8bNmyQyWSyf0VGRnq6JQAAAAAAkAvDMPTdie80cNlAfXb4s3yDpb8c8fW1f7/N1Fpbb/pGI554S/UIlgBcJe5cAoCr5O/vr9q1a6t27dpq3bq17rrrLmVmZuqjjz7StGnTFBUVpaysLM2aNUtr167V559/rqZNm3q6bQAAAAAAUEqcSDihqTumaueFnU7V18q26IXYOPVIz1C0EaYNDZ7UzaMfVkiAb8EnA4ATuHMJAFzAz89PDz/8sPbv36+ePXva5/fs2aMbbrhBe/bs8WB3AAAAAACgNEjLTtPs3bM1fMVwp4IlH8PQg/GJWhZ1Xt3SMvWN3wBF3/WjRt39BMESgGJFuAQALlSxYkWtXr1agwcPts/Fx8erX79+ioqK8mBnAAAAAACgpDIMQz+c+kGDlw/Wxwc/lsWwFHhO57R0LT17XuMTEvW7rZ6+7fiJ+k34n1o2rOuGjgGUN4RLAOBi3t7emjdvnho0aGCfi46O1h133OHBrgAAAAAAQEl0Oum0Hlr7kJ7c8KQupF4osL6qxaI3Ll7SBxcvqVK2txZXfkThT2zRwP6DZPYyuaFjAOUR4RIAuEFYWJjef/99h7n169dr8eLFHuoIAAAAAACUJBmWDL239z0NXT5UW6K2FFjvbRj6Z0KSvj57Xn3T0rXR3En7B6/WiPHTVD082A0dAyjPvD3dAACUFzfddJNatmypgwcP2uemT5+uESNGFHiu1WrV4cOHdejQIV24cEEpKSkKDg5WpUqV1Lp1a7Vo0UJeXp7/vEBaWpoOHDigw4cPKzY2VhkZGQoLC1O1atV0/fXXq169ep5uEQAAAACAEmfT2U2avmO6zqacdaq+fXqGJsXGq3F2ts4albXyHy+o/7B/KsDX7OJOAeAPhEsA4EYPPfSQHnnkEft4z549OnTokFq0aJGjNiMjQ0uXLtWiRYu0bt06JSYm5nndypUr67777tMzzzyjSpUq5dtDZGSkpkyZkuuxKVOm5Hnsrrvu0rx583LMR0dH6/PPP9fy5cu1detWZWVl5bl2s2bN9Oijj+qBBx6Qtze/ggAAAAAAMAxDn/7yqVPBUiWLVc/ExWtAaposhlnLg0eqxZipGl67mhs6BYC/8c4eUERRKVEuu3a1wGry9ir4r+eF1AuyGlaX9FA5oLL8zH4F1sWkxyjTmnlVa9UKrnVV55cm3bt3zzH37bff5hou3XDDDdq7d699bDabFRERoUaNGqly5cqKjY3Vrl27tHv3bsXExGjGjBn65JNPtGjRInXu3NmVP4ZdTEyMatWqJYvl741FQ0NDFRERoXr16ikgIEDnzp3Tjz/+qJMnT+rIkSN65JFH9Nlnn2nJkiWqUaOGW/oEAAAAAKCkMplMerr+SI05t12WPLZI8jIMjUlK0SPxCapgGNqrprrYY7oG9bxRJhP7KgFwP8IloIhuXnKzy669avgqpwKXu1bepXOp51zSw8c3fazrq19fYN2zG5/Vrou7rmqtA3cduKrzS5MWLVooLCxMCQkJ9rnt27fnWpuenm7/vk+fPnr//ffVqFGjHHU///yz/vnPf2rfvn06d+6cBgwYoG3btqlZs2a5XjcyMlKRkZGSpA0bNqhnz572Y5MnT7Yfc4bFYnEIlp588klNnjxZoaGhDnWGYWjJkiUaN26cYmNjtW3bNt1yyy368ccfFRgY6PR6AAAAAACUKVlpOrU0Uo0Pf6h/hgfrP2GhOUpaZ2Tqxdg4NcvKVoIRpEU1H1avsc+oTbC/BxoGgD94foMOAChHTCaTmjRp4jB39OjRfM9p3bq1li5dmmuwJElt27bV+vXr7ccTEhIcHr3nLvfee6/efPPNHMGS9MfPPWLECH3//ffy8fGR9McjAd944w13twkAAAAAQIkQv/cbxbzWVvUOz5W3rLo/IUk1s//+AGeY1aopl2L1yfmLapaVrTU+PXV81HqNfPBFVSRYAuBhhEsA4Gbh4eEO46io/B+x+MQTTygoKKjAa7700kv28bp16xweqecOkyZNKrDmuuuu09ixY+3jt956S1arax7tCAAAAABASWRNiNLJ90cofNlYVbZcsM8HGIYmxMXLZBgamZSsr8+e17CUVJ00amhpqw/UY8JXuq5FUw92DgB/47F4AOBmV4ZLqampudZNnDhRcXFxGjp0qFPX7dOnj8N49erVatOmTZF6dFZISIhmz56tChUqqEGDBk6d06dPH82bN0+SFBcXp927d6tDhw4u7BIAAAAAAM/YfXG39lzco/tb3S/ZrDq3Zo7Cts9UfSM91/qeaelaFnVeDbMtyjR8tCT0dl03doqGVqvo5s4BIH+ESwDgZoZhOFV35513Fuq61apVcxgfOOD6vawCAwP1xBNPFOqc3PokXAIAAAAAlCUx6TGavXu2VhxfIUlqrQqqvWq2aqYdyfc8k6SG2RbtMLVScu8ZGtals0wmkxs6BoDCIVwCADeLj493GAcHBxfLdc1ms8M4Nja2WK5b3EpLnwAAAAAAFJbVZtWio4s0Z88cJWcn2+dnbZ+sL9Mu5HPmHy4ZIVpX7wndfOujCg30dWWrAHBVCJeAIlo1fJXLrl0tsFrBRZLm95svq+Ga/WoqB1R2qm5Wj1nKtGa6pIey6spwqVatWvnWX7hwQQsXLtSmTZt08OBBRUdHKzk5WRaLJd/z0tLSrrrXwjh06JAWLlyoHTt26PDhw4qPj1dKSkqBd2q5u08AAAAAAFzhwKUDenXHq/ol9pccx474+WpBhWDdlpyS67k2w6Tv/G5W7REzNPqa+i7uFACuHuESUES1gvMPBNyhelB1T7fgdAiFP9hsNv36668Oc02b5r4ZZ2pqql566SW9++67ys7Odkd7RfL777/rscce0zfffOPpVgAAAAAAcLvEzES9vedtLT66WIby/oDlu+Fh6puWpspWm8P8YaOejlw3RbcMGCwfs5er2wWAYsGrFQC40f79+5WcnOww16lTpxx1CQkJuvHGGzV79mx7sNSqVSt99NFH+u2335SamirDMHJ8udu+ffvUsWNHh2Dplltu0fLlyxUVFaXMzMwcPa5fv97tfQIAAAAAUNwMw9CyY8s0cOlALTq6KN9gSZKSzV76ITDQPk41/LQg/EEFP7pZQwcNJVgCUKpw5xIAuFFuwcott9ySY+7xxx/Xzp077eOhQ4dqwYIF8vHxcWl/hZGZmanRo0fr0qVL9rnXX39dTz/9tAe7AgAAAADA9X6L/02vbn9Ve6L3OFVfPytbk2Lj1Cnjj60FNpqul63fTI3q0E4mk8mVrQKASxAuAYCbGIahDz74wGGuY8eOatasmcNcVFSUPv30U/vYz89Pc+fOLVHBkiQtWbLE4RF/7dq1I1gCAAAAAJRpadlp+mDfB/r0l09lMfLfC1mS/G02PZiQpDsTk+Qr6ZxRSRsbPatbRt2nCv4l69/5AFAYhEsA4CbLly/X0aNHHeZeeOGFHHU//PCDwyPuOnXqpCpVqri8v8Jas2aNw3jgwIEe6gQAAAAAANcyDEPrTq/TjJ9m6ELqBafOuTE1TRPi4lXTYpXF8NJXAYN1zeipGtPA8/t4A8DVIlwCADeIiYnR+PHjHeZuuukmDR48OEft+fPnHca1ajn3H51Wq7XoDRZBaekTAAAAAICrcTb5rKbvnK5NZzc5VV8r26KJsXHqnp4hSdpnNNbvnaZqUN++8mZfJQBlBOGSB2VmZurIkSM6fPiwLl26pKSkJPn7+yssLExNmzZVmzZtFBwcXCxrZWdna9u2bTp06JDi4uLk6+urunXrqlOnTqpXr16xrAEgd5mZmbr99tsVFRVln6tRo4bmzZuXa72/v7/DODU11al1rgx7nGE2mx3Gl98xdfncXz14e3vb+3NnnwAAAAAAuFuWNUvzDs3Tv/f/W5nWzALrfQxD9yQk6b7EJPkbhpKMAH1b5QFFjH1OrcOL5z0+ACgpCJfcbO/evVq6dKnWrVunnTt3KisrK89aHx8f9evXT08++aQiIiKKtF5ycrKmTp2quXPnKiEhIdeazp07a8qUKerdu3eR1gCQt0uXLmnIkCHaunWrfa5SpUpatWqVqlevnus5V+7BtH37dlmt1hxB0JVWrlxZ6P4qVKjgMM7IyMhRc/ToUXtPQ4cO1VdffWXvc/ny5fa6zZs364knnihwzaL0CQAAAACAO+04v0Ovbn9VJ5NOOlXfMT1Dk2Lj1CD7j32Y1np1ke8tMzSmXSsXdgkAnkO45EbXXHONfvvtN4e5kJAQ9ejRQ02aNJG/v7/i4uK0c+dO7dmzR9nZ2VqxYoVWrFihe+65Rx988IF8fJzf6G/fvn0aPHiwTp06JenvsOqaa65RfHy8fvzxRx09elRbt25Vnz599Nhjj2n27Nny8uL2XOBqZWRkaO7cuZoxY4YuXPj7WcwdOnTQ559/rkaNGuV5bs+ePVWxYkXFxcVJki5evKh//etfeuyxx/I8Jy4uTlOnTi10nw0aNJDJZLLfsXT53VV/+fXXX+3fN2/e3P798OHDNXPmTPt42bJl2rNnj9q1a5fnejt37tSCBQsK3ScAAAAAAO4SlRKlB9Y8IJthK7C2ssWq5+LidXNqmkySzhhVtKXpCxo04i4F+vLWK4Cyi1c4N7o8WDKZTJo0aZKef/55BQUF5ajduXOn7rjjDh09elSS9PHHHysxMVGLFy92aq1Dhw7pxhtvtL853alTJy1YsEB169a119hsNv373//W+PHjZbVaNWfOHKWmpurDDz+8mh8TKHcyMjIUGxurmJgY7d27V+vWrdOqVasUHR1tr/Hz89NTTz2lKVOmFBgS+/n56dVXX9XDDz9sn3v66adlMpn08MMP57iD6ciRIxozZkyuwVBBQkND1bZtW+3Zs0eStH79eiUnJ9vvaMrMzNScOXPs9ZfvEXX99ddr1KhRWrhwoaQ/9lLq37+/Pvvss1zvhPz222911113yWQyFbpPAAAAAADcpVZwLd3a9FZ9fuTzPGu8DENjklL0SHyCKhiGsg2zVgQOU/MxU3Vr3Wpu7BYAPMNk5LbBBlzi8jdUZ86cqeeeey7f+nPnzqlt27YOb1B/+eWXGj16dL7nZWRkqE2bNva7DZo1a6adO3fmePzVX+bOnatx48bZx//5z3903333FfjzuNqhQ4fUsmVL+/jgwYNq0aJFka9nsVhy3DnWpEkTeXuTscJRRESENm7cWCzXqlatmsaNG6eHH35YVatWLdS5zz33nGbNmuUwV6dOHfXq1Us1a9ZUenq69u7dq40bN8rf31+LFi3SgAED8rze77//rvr16+eYX7RokUaNGmUfN2jQQP3795fJZNIPP/ygI0eOSJJGjhxpD5L+kpqaqltuuUUbNmxwmG/Tpo06d+6s8PBwxcXFafPmzTpw4IAaNWqkF154Ic/XmHr16unkyZP5/KmguPHaCAAAAACOMqN/04nPx+nhCucV453zEfXXZmTqxdg4Nc/KliTt1TU622Wa+vfqLS8vPlAJwD2K+/3zwiJccqO/wqVrrrlGv/zyS4H7p0jSrFmzHEKoHj165HgT90qvvfaaJkyYYB//8MMP6tWrV571hmGoS5cu2rZtmySpSpUqOn78eJ5hlLsQLsFTChsumc1mhYaGKjw8XOHh4WrcuLE6d+6sLl26qHXr1k79Xc/Lt99+q8jISO3atSvX4z4+Pho+fLimTp2qhg0b5ntXUF7hkiS99957mjRpUq57s3l7e+uee+7R7NmzFRgYmOO41WrVO++8ozfffFNnzpzJ9fohISEaP368JkyYoD179qhnz5651hEuuR+vjQAAAADwJ0umTn89Q9X3vSNfZWtlUKCeq1rZfriC1aYn4hM0PDlFZklJRqC+qz5ON459VlVDcv57GQBciXCpHPnrTd8XX3xRr7zyilPn/PLLLw7/hzCbzcrMzMzzzer4+Hg1bNjQ/gZxq1attG/fvgLXufLOhf/7v//TlClTnOrRVQiXgL+dOHFCO3bs0Pnz55WRkaHw8HDVq1dP3bp1K7YgOC0tTVu2bNGRI0eUlJQkPz8/1atXT927d1e1agXf0m+1WrV//379/PPPiomJkWEYqlSpkpo1a6ZOnTrxd62E4rURAAAAAKTEwxuUvvQxVc86ZZ8zJN1fvap2BPhrUHKKnopLUCXbH/swrTF3U9Cg19S5dfM8rggAruXpcIl3jtzor8dV9e3b1+lzrrzLwGq1KiYmJs83ehcsWOBw58HYsWOdWmfgwIEKCQlRUlKSpD8ejRcZGcneKEAJ0bBhQzVs2NClawQGBqpPnz7q06dPkc43m81q27at2rZtW8ydAQAAAABQPE4knJBMUsPQP/6NbUuJ1ckvn1bDs0sVekWtSdJLMXG65G1W+4xMSdJpo6p2Np+kW4bdIX+foj+pBABKO8IlN/rmm28KfU5u4Y6fn1+e9YsXL3YY5/XoqSv5+/urU6dOWr16tSTp/Pnz2rJli7p27VqIbgEAAAAAAICSJ92Srrn75mr+L/PVslJLzb95nqI3f6LA9ZPV0EjM87x6FovqWSzKNsz6OnikWt32ikbUKtyeygBQFnl5ugHk78r9S6pXr66wsLBca5OSkhz2ifH19VWrVq2cXqtDhw4O4xUrVjjfKAAAAAAAAFACbTizQUOWDdFHBz+SxWbR3kt79dH73VR93RMKySdY+svPaqq1PZZoyNMfqDHBEgBI4s6lEm/NmjUO42HDhuVZe+DAAVksFvu4YcOG+d7ldKUrn8e4d+9ep88FAAAAAAAASpJzKec0fed0bTizIcexTwISNNLLS2F/7qGUmwQjSKtrPqJetz2lthUCXNcoAJRChEslWEpKimbNmmUfh4aG6vnnn8+z/tChQw7j2rVrF2q9WrVq5Xs9AAAAAAAAoKTLtmZr/i/zNXffXGVYM3KtSTCb9VbFMEXGxOV6fI13hMKGzNSols1c2SoAlFqESyVUdHS0Ro8erVOnTkmSAgICtGDBAtWpUyfPc44cOeIwvjIsKsiV9efOnVNycrIqVKhQqOsAAAAAAAAAnvDThZ80dftUHU88XmDtkgrBGpOUrKZZ2fa5k0Z17bn2JQ0YMkZ+3mZXtgoApRrhUgmRkZGh+Ph4HThwQCtXrtT8+fMVHx8vSWrXrp0+/PBDtW3bNt9rxMU5ftIiJCSkUD3kVh8fH18s4VJ0dLQuXbpUqHOOHTt21esCAAAAAACg7ItNj9Ubu97Q1ye+dqq+ksWqZ+Lidc2fwVKWYdY3IaPV9rZXNKxGZVe2CgBlAuGShx07dkxNmjTJMR8SEqJ77rlHt956q3r37i2TyVTgtZKTkx3GhdlvSZL8/f0LvGZRvffee5oyZUqxXAsAAAAAAACQJKvNqsVHF+vtn99WclbB72OZDEOjk1P0aHyCQmyGJGm3miu+1wwN7dbdqffgAACESyVWUlKSVqxYoYSEBKWkpGjw4MHy8vLK95wrg6DcwqL8uDJcAgAAAAAAAIrTL7G/6JVtr+hg7EGn6ltkZuqlmHi1yMqSJMUbwVpbZ7x6j3lKYUGF+5A2AJR3hEse1rhxYxnGH5+SSElJUXR0tH766Sd9+eWXWrFihb766it99dVXat26tT788EO1b9/eZb3k9smMv3oDAAAAAAAASoLkrGS98/M7WvDrAtkMW4H1Faw2PRafoJHJKfprF6XVPjeqyvDXNKJZzicKAQAKRrhUggQHBys4OFgNGzbU6NGjtXXrVo0cOVLnzp3Tvn371L17d3311Ve6+eabcz3/yr2RMjIyCrV+enp6gdcsqocfflgjR44s1DnHjh3TkCFDimV9AAAAAAAAlG6GYei737/TrJ9mKTYj1qlzbklJ1dOx8aps+yOE+t2ooX1tJqv/wNHy9c7/KUEAgLwRLpVgnTt31nfffadOnTopIyND6enpGj16tH7++Wc1bNgwR31wcLDDODMzs1Dr5RZGFVe4VLVqVVWtWrVYrgUAAAAAAIDy5ffE3zV1x1TtOL/DqfoGWdl6MTZOHTL+eH8s0/DWd2G3qf3YlzWkargrWwWAcoF4voRr3bq1HnjgAfs4KSlJkydPzrW2YsWKDuOkpKRCrZVbfXg4v2wBAAAAAADgOetOr9OwFcOcCpb8bTY9HpegJVHn7cHST6aW2tp3hYY8MUd1CJYAoFgQLpUCY8eOdRgvWrQo10fYNWvWzGEcFRVVqHWurK9Ro4ZCQkIKdQ0AAAAAAACgOLWr2k7BPsEF1kWkpmlZ1Hndl5gkH0lxRrCW1H1RTZ9br55duuS63zgAoGgIl0qB6667Tt7efz/BMDMzU7t27cpR17JlS4fx2bNnC7XOleHSldcDAAAAAAAA3C3MP0z3VumV5/EaFovevnhJ70THqJbFKkn63rePom7frOH3PKuQAF93tQoA5QZ7LpUCZrNZFStWVHR0tH3uwoULOequvfZamc1mWa1//BI9fvy4MjMz5efn59Q6Bw8edBi3bt36KroueXL7dIrtz80cAaC8yu110MuLz54AAAAAKBmyE8/r5P+e0J3Rq/RDjWra5//3+1zehqE7E5P0YEKSAg1DknTcqKnD172smwcMl7eZf9sAgKvwCusmu3bt0ubNm3X+/PkinX/lm3+5vfEXEhKiHj162MfZ2dnat2+f02v89NNPDuNBgwYVssuSLbc/s+zsbA90AgAlx5WvgyaTiUdFAAAAAPA8m02nV7+rzNnXqUn0KnlJeikmTuY/Q6T26RlaHHVeT8YnKtAwlGn4aFn4P+X/6DbdMmgkwRIAuBivsm4yYsQIdevWTe+9916hz01PT1d8fLzDXPXq1fNc53IbNmxwao2MjAxt377d4fpdunQpXKMlnMlkkq+v423QSUlJHuoGAEqGK18HfXx8CJcAAAAAuE1qdqqMPwOjv6Sc3qfTb3RT3a2TFKxU+3zT7Gw9lJCoqZdi9fGFaDXKtkiSdppaaWe/bzTk8bdUq3KYO9sHgHKLcMnNtmzZUuhzNm7caH/UnST5+/vn+ci60aNHKzQ01D7+3//+59QaX3/9tcMbjPfdd1+ZfCzS5X820h9vqlosFg91AwCeZbFYcoRLV75OAgAAAIArGIahb058o/5f9deaU2v+mMtK1fHPn5H/xz1VN/Vgruc9mJCkQSmpMkmKMUK0tEGkmk9Yp26dOrmxewBA2UsPSriNGzfq0KFDhTrn9ddfdxj3799fwcHBudZWrFhRzz//vH28f/9+rV27Nt/rG4ah2bNn28eVKlXSs88+W6geS4sr3zS12Ww6deqUsrKyPNQRAHhGVlaWTp06leOxq4RLAAAAAFztZOJJ3b/mfr3w4wuKy4jTzJ0zdWrXIsW81k6Njv5H3rIWeI3v/W7SpTs3a+hdTyrY38cNXQMALuft6QbKG5vNprvuukvr1q1TSEhIgfXTpk1zCId8fX01bdq0fM95/PHH9fHHH+u3336TJD366KPauXNnnoHUv//9b23bts0+njp1qlO9lUY+Pj4KCgpSaurft1RnZWXpxIkTCgwMVHBwsAIDA2U2m3ksFIAyxTAMWa1WpaWlKSUlRWlpaTkePREUFCQfH/5RBgAAAMA1Mq2Z+ujAR/rwwIfKtv29/2t0erS+3PqMJlgSCrzGMaO2fuvwivr2GyqzF+/dAICnEC55wO7du9WxY0e9/fbb6tOnT64hRlRUlF588UXNmzfPPmc2m/XRRx+padOm+V4/ICBAS5YsUffu3ZWQkKDDhw+rb9+++vLLL1W3bl17nc1m03/+8x898sgj9rm7775bDz744NX/kCVYtWrVdPr0aYfH4RmGodTUVIfQCQDKEx8fH1WrVs3TbQAAAAAoo7ae26qp26fqdPLpXI9/HlJBA1NS1TwrO9fjGYaPvq98lzrdPln9wsvmh6IBoDQhXHKT4cOHa+7cufbw4siRI7rppptUp04d3XDDDapTp478/f2VkJCgffv2aceOHcrO/vuXad26dfX++++rf//+Tq137bXXat26dRo8eLDOnDmjbdu2qUmTJurXr5+uueYaxcfH68cff9Svv/5qP+eRRx7R22+/Xbw/eAnk5+en+vXr68yZM8rMzPR0OwDgcX5+fqpTpw53LQEAAAAodjHpMXrtp9e08veV+dbZTCa9XLmi/nfuosxXHNvh1UbWfq9r8PXXu65RAEChmIwrn4kDl0lKStLChQv17bffat26dTk2Ub+SyWRShw4ddPvtt+uee+5RYGBgoddMTEzUtGnTNHfuXCUmJuZa06lTJ02ZMkV9+/Yt9PVd6dChQ2rZsqV9fPDgQbVo0aLYrm+1WnX+/HklJycX2zUBoLSpUKGCatSoIbP5yn++AQAAAEDRWW1WLT66WG/veVvJ2QW/9+JtGPpnYpLGxSfK98+5S0aotjR+Rn1HPaRAPz4MBwCXc/X75wUhXPIQq9WqEydO6PDhwzp37pySkpKUlZWl4OBghYWFqXHjxmrVqlWx7X2UlZWlrVu36tChQ4qPj5evr6/9rqn69esXyxrFzV1/OaxWq1JTU5WSkqKUlBRZrQVvGgkApZXZbFZwcLCCg4MVFBREqAQAAACg2B2OPaxXtr+iAzEHnKpvl5Gh/4uJU6Psv7cwWOnfX/VHz9Q/GtTN50wAKL88HS7xWDwPMZvNatKkiZo0aeKW9Xx9fRUREaGIiAi3rFeamM1mhYSE2IM8wzBks9lybHQPAKWZyWSSl5dXrvv8AQAAAEBxSM1O1bs/v6vPj3wum2ErsD7MatXTcQkanJKqv/6lctSoq2MdX9VNNw+S2Yt/vwBASUW4BFzBZDLxSX4AAAAAAAAnGYahtafXavrO6YpOi3bqnGHJKXoyLkFhtj9CqHTDVysr3a0bbn9J/SsWz5N8AACuQ7gEAAAAAAAAoEjOJp/V9J3TtensJqfqG2dl6aWYeLXLzLTPbfVqJ+vNszSsQ3tXtQkAKGaESwAAAAAAAAAKJduarfm/zNfcfXOVYc0osN7fZtO4hETdmZgsnz/noo0wbWr0jPqNGqcgf598zwcAlCyESwAAAAAAAACctufiHr2y/RUdSzjmVH33tHRNjI1TLYtVkmQzTPrOf4Aa3jpDIxrUcWWrAAAXIVwCAAAAAAAA4LSDMQedCpaqWiyaGBuvG9PSZfpz7ohRT791fFX9bx4os5cp3/MBACWXl6cbAAAAAAAAAFB63PaP29QsvGmex70MQ3ckJmnF2fPq9WewlGb4aVHFBxXy+BYN7D+IYAkASjnuXAIAAAAAAADgtKzzR3T/iSg9E2bIMDmGRNdmZOql2Dj9IyvbPrfVq52yb56lkR3au7tVAICLEC4BAAAAAAAAKFh2hk58NUV1Dv9bfWXRKHO4FoRUkCRVsNr0RHyChienyPxn+SUjVBsaPqN+ox9SsL+P5/oGABQ7wiUAAAAAAAAA+Yo7sFqWFU+oYXaUfe6x+AT9EBiojhkZejYuXpWtNvuxlX43q86o1zSyUT1PtAsAcDHCJQAAAAAAAAC6mHpRHx38SE9d95T8vf0lSdaUGP3+v8fV+Pw3OepDbIaWRp1XuO3vUOmYUVuHr39F/foNkbeZ7d4BoKwiXAIAAAAAAADKMYvNoi+PfKl3fn5HaZY0VfCtoEfbjFfUho9UYdMUNTaS8jz3r2Ap0/DRtxXvUMfbIzWwUqi7WgcAeAjhEgAAAAAAAFBOHbh0QK9sf0WH4w7b5z4+8JHabFykbgn7nLrGT6ZWSr/5dQ3t2EEmk8lVrQIAShDCJQAAAAAAAKCcScpK0pw9c7Tw14UyZDgcsxhW/df/vLpKyi8qijUqaGP9J9Xn1kdVIcDXpf0CAEoWwiUAAAAAAACgnDAMQyt/X6nXfnpNsRmxedb9FOCvb4IDNTAlLdfjq317q+bI1zWsSQNXtQoAKMEIlwAAAAAAAIBy4FTSKU3dPlXbzm9zqv7r4KAc4dLvRg39ct3LumnACHmbvVzRJgCgFCBcAgAAAAAAAMqwLGuWPj74sf6z/z/KsmUVWB9gs2l8fKJuS0q2z2Ua3loVNkbX3f6KBlQJd2W7AIBSgHAJAAAAAAAAKKN+uvCTXt72sk4mnXSqvndqmibExqu61Wqf22NqrpQ+r2tQ584ymfLbhQkAUF4QLgEAAAAAAABlTEJGgt7Y/YaWHVvmVH3NbIsmxsapR3rG39cwgrSh3mO6ccyTCgnwc1GnAIDSiHAJAAAAAAAAKCMMw9DXJ77W6z+9rvjM+ALrvQ1DdyYm6cGEJAUahn1+nU+Eqox4XUOaNnFluwCAUopwCQAAAAAAACgDTiae1CvbX9HOCzudqm+bkaGXYuLVJDvbPnfKqKaDbSer78Ax8jF7uapVAEApR7gEAAAAAAAAlGJZ1ix9dOAj/efAf5Rtyy6wPsRq1dNxCRqSkqq/4qNsw6zvQ0eqze3TNKBqJdc2DAAo9QiXAAAAAAAAgFLsyQ1PatPZTU7VDkxO1dNx8apks9nn9puaKqHXaxrQtYdMJpOr2gQAlCGESwAAAAAAAEApNvYfYwsMl+plZ+ulmDh1zMi0zyUZgdpQ52FFjH1OIQF+rm4TAFCGEC4BAAAAAAAApVjnmp3Vu3JH/RCzI8cxb8PQfQlJui8xUX7G3/ObfLoobPhsDWrW1I2dAgDKCsIlAAAAAAAAoJSypSfp1wUv6IXTX2lH7RpKNnvZj7VPz9BLsXFqmG2xz0UZlbWv1UvqM+RO+VxWCwBAYRAuAQAAAAAAAKXQ2e1L5Ld6gv5huyRJeio+XlMqV1KY1aqn4xI0OCVVf+2gZDG8tCZkmK69fab6V6vsuaYBAGUC4RIAAAAAAABQQkWnRatqYFWHuYzYMzr1v/FqGrfBYX5YcqrivMwamZyicJvNPn9IjRRz42u6uXsvmUwmAQBwtQiXAAAAAAAAgBImLiNOr//0un44/YOWD16uGsE1JJtVx757WzV2vaamSs9xjpekBxKT7OMUw18baj2obmMnqkWQvxu7BwCUdYRLAAAAAAAAQAlhGIaWHVumN3a/ocTMREnStJ3T9Er9u5WwcLwaZ/zi1HW2endU8NA3dUuLlq5sFwBQThEuAQAAAAAAACXAiYQTenn7y9p9cbfD/IYzG/TTrsXqk5FW4DUuGBX1c8uJ6j3sXvmYvVzUKQCgvCNcAgAAAAAAADwow5Kh/xz4jz4++LEsNkuuNTMqhalzerqCDCPX4zbDpB8qDFKzsa+pX43qrmwXAADCJQAAAAAAAMBTtp3bple3v6rTyafzrYv29ta74aGaEJeQ49ivqq8LETPUJ+JmmUwmF3UKAMDfCJcAAAAAAAAAN4tNj9WsXbP07Ylvnaqvn5WtG9PSHebSDD9tqHmvuoz9PzUNDnBFmwAA5IpwCQAAAAAAAHATm2HT0t+W6s3dbyopK6nAel+bofsTE3VPQpJ8L5vf4X2d/Aa/pf7XtnJdswAA5IFwCQAAAAAAAHCD4wnH9fK2l7Uneo9T9R3TM/RiTJzqW/7eh+mSEaqfmj2vXiMekJ8Pb+0BADyD30AAAAAAAACAC2VYMvTv/f/Wfw/9VxabpcD6cKtVz8bF65aUNF2+g9KawP5qfNvr6l+7luuaBQDACYRLAAAAAAAAgItsPbdVr25/VWeSzzhVPyw5RU/GJSjMZrPPHVMdnbphmnr3HSiTyZTP2QAAuAfhEgAAAAAAAFDMYtJjNOunWfru9++cqm+Yla2XYuPUPiPTPpdp+GhNlbvU6Y5INQ6t4KpWAQAoNMIlAAAAAAAAoJgYhqElvy3Rm7vfVHJWcoH1vjZDDyYk6p+JSfK5bH6XVytZB7ypW6673nXNAgBQRIRLAAAAAAAAQDFad3qdU8FSp/R0vRQTr7qWv/dhijUqaEvjp9Rn1GMK8OOtOwBAyeTl6QYAAAAAAACAssJkMmlSp0nyN/vnWVPRatX06Bj9+8Ilh2DpB/8+irlriwbd8RTBEgCgROO3FAAAAAAAAFCMapgraER2DX3m9XuOY8OTUvRkfIJCbTb73Emjho60f1l9BoyU2cvkzlYBACgSwiUAAAAAAACgmETtWCrf75/VU7ZL2lmzuo76+UqSGmVl6f9i4tUuM9Nem2WY9X34GF13+6u6uXK4p1oGAKDQCJcAAAAAAACAq5QRF6VT/3tUTWPX2uf+LzZO91evqgcSknRXYpJ8LqvfZ2qq5D5vaGCXbu5vFgCAq0S4BAAAAAAAADjhVNIpbTq7SXc0v+PvSZtNx7//l6rtmK6mSnWob52ZpTVnzjk8Ai/JCNCGuo8o4rbnFBLg567WAQAoVoRLAAAAAAAAQD6yrdn6+ODH+vf+fyvLlqVmFZvp+urXK/H0QcV++ZAape3P89zLg6UfvTsrbMRsDWrWzB1tAwDgMoRLAAAAAAAAQB5+jv5ZU7ZO0fHE4/a5KVsjNTWjhZof/UihshR4jQtGRe25dpL6DL1HPmYvV7YLAIBbEC4BAAAAAAAAV0jKStLbu9/WwqMLcxw7lXxam+MPqHUBwZLNMOmHCoPUbOxr6l+juqtaBQDA7QiXAAAAAAAAgD8ZhqHVp1Zrxs4ZikmPybPuw7AQ3ZyaqkbZuQdMv6muorrPVJ8b+8lkMrmqXQAAPIJwCQAAAAAAAJB0PuW8pu6Yqo1nNxZYazGZtLhCsCbEJTjMZxg+Wlvtn+p8e6SahAS5qFMAADyLcAkAAAAAAADlmsVm0eeHP9e7e99VuiW9wPoQq1VPxyVoSEqqw/xucyuZbpmtAW3bu6pVAABKBMIlAAAAAAAAlFu/xP6iyK2ROhx32Kn6fimpei42XpVtNvtcnBGsHU2eVs9Rj8nfl7fbAABlH7/tAAAAAAAAUO6kZafpX3v/pc8OfyabYSuwvla2RS/GxqlreobD/Hr/Xqpz62z1q1/PVa0CAFDiEC4BAAAAAACgXNl0dpOmbp+qc6nnCqw1G4buTEzWuIREBRqGff6Mquno9a+oZ79R8vIyubJdAABKHMIlAAAAAAAAlAsx6TGasXOGvj/5vVP1LTIzFRkTp2ZZ2fY5i+GltRVvVdvbp6pXpYquahUAgBKNcAkAAAAAAABlms2waclvSzR792wlZyUXWB9os+mx+ATdmpQi82Xzh0xNlNL3dd3UOcJlvQIAUBoQLgEAAAAAAKDMstqsemDNA9p5YadT9RGpaZoUG6/qVqt9LsXw1+a6D6vbbc8rKMDPVa0CAFBqEC4BAAAAAACgzDJ7mdWycssCw6UqFosmxsarV1q6Lt9BaYdPB4UOn6Obm/3DtY0CAFCKEC4BAAAAAACgTBvXepxWn/xeZ1OichwzGYZGJafo8bgEVTAM+3y0Ea79rSYqYvC98vY25zgPAIDyjHAJAAAAAAAAZVrsL9s17kSUXqzqON84K0uTY+LUJjPLYX5d8C26Zuzr6l2jhhu7BACg9CBcAgAAAAAAQJmUmRKvXz97Ri3PL1Ftk6FtKZX0bXCQfG2GHkpI1F2JSfK5rP6Eaut8j5nqGTFAJpMpz+sCAFDeES4BAAAAAACg1DIMI2cQZBg6tukLhW2YpFZGnP7aROnZ2HhlmUx6PC5B9SwWe3mm4a1N1e9Wh7FT1DAk2I3dAwBQOhEuAQAAAAAAoNTJtmXrs18+06azm/Rh3w9l9vpjX6Ski6d09n+PqHnSjznOqWSz6c3oGIe5feaW8hr0lvq0vt4tfQMAUBYQLgEAAAAAAKBUORhzUJFbI/Vr/K+SpC+OfKGxTW/VLytmq96+N9Rc6QVeI8EI0q5rnlK3UU/Iz4e3yAAAKAx+cwIAAAAAAKBUSM1O1Ts/v6PPD38uQ4Z9/u3db6nJN3PUMe1Xp66z2T9Ctce8pd71GriqVQAAyjTCJQAAAAAAAJR460+v19QdU3Ux7WKOYxm2TH0WnKYOafbtlXIVpSo6fv3L6tZ/TM59mgAAgNMIlwAAAAAAAFBiRadFa/qO6frh9A/51m0ICtQPgQHqk5bzkXhWw6SNlUaq1e0z1b1iRVe1CgBAuUG4BAAAAAAAgBLHZti0+Ohizd49WynZKQXWB9tsysjlbqRfTQ2VcvOburFTT1e0CQBAuUS4BAAAAAAAgBLlROIJTdk6RXui9zhV3yc1Tc/Hxquq1WqfSzP8tKXug+oydpIC/f1d1SoAAOUS4RIAAAAAAABKhGxrtj48+KH+s/8/yrZlF1hf3WLRpJh4RaQ7PgrvJ5/rFDJ8jvo0a+mqVgEAKNcIlwAAAAAAAOBxe6P3KnJrpI4nHi+w1mQYGpuUrPHxiQoyDPt8jBGqfS2fV4+hD8rb2+zKdgEAKNcIlwAAAAAAAOAxKVkpemvPW1r460IZMgqsb5qZpciYOLXMynKY3xB0s5qMfVO9atZyVasAAOBPhEsAAAAAAADwiHWn12nqjqmKTosusNbPZtPDCYm6IzFZPpfNn1RNnekyXT16D5bJZHJdswAAwI5wCQAAAAAAAG51Ke2Spu+crjWn1jhV3zE9Q5Nj4lTHYrHPZRlmbagyVu3vmKpuoSGuahUAAOSCcAkAAAAAAABuY7VZ9c/v/6lTSacKrA21WvVsXIIGpaTq8nuSDno1VVa/t9T3+s6uaxQAAOTJy9MNAAAAAAAAoPwwe5n1UOuHCqzrn5Kq5WfPa/BlwVKyEaDV9Z5Rowlb1I5gCQAAj+HOJQAAAAAAALhV/wb9tfSXhdoRuyfHsRoWi16KiVO39AyH+R2+HRQ24h31vaaZu9oEAAB5IFwCAAAAAACA2xhWiw4tm6XnD6/WbbUqKt3rjwfreBmGbktK1qPxiQo0DHt9jBGqfa0mKWLI/TKbeQgPAAAlAeESAAAAAAAA3OLi0V1KXfywWmb9KkkaH2/WrErhuiYzS1Ni4tQyK8uhfmNwPzUe+6Z61ajpiXYBAEAeCJcAAAAAAABQbGLSY1Q5oLLDnDUzTQe+mKQWv89XNZPVPj82KVnBNpsGpqTK57L6U6qhM11nqHuvwTKZTAIAACUL4RIAAAAAAACuWkx6jKbvmK5dF3dpxZAVCvULlSSd3LVKvt89qTa2c9IVOZFZ0rCUVPs42zBrY5Xb1P7OaaoXEuLG7gEAQGEQLgEAAAAAAKDIDMPQV799pTd2v6HkrGRJ0uu7Xteka5/Qr58+odaXVjh1nV+8miir39vqfX0XV7YLAACKAeESAAAAAAAAiuRk4klN2TZFuy7ucphfdmyZum/+n/qkxxZ4jVTDT9vqP6Kut70gfz9fV7UKAACKEeESAAAAAAAACiXbmq3/Hvqv5u6bqyxbVq41syv5qluUSf6Gked1dvler9AR76j3Nf9wVasAAMAFCJcAAAAAAADgtP2X9mvy1sk6lnAs37ozPj76ICxET8Qn5jgWY4TqYKsX1G3IgzKbvVzVKgAAcBHCJQAAAAAAABQoNTtVc/bM0RdHvpChvO9G+kuTrCzdmJaeY35z8E1qePtbiqhe0xVtAgAANyBcAgAAAAAAQL42nd2kV7a/ogupFwqs9bUZGpeQqLsTk+Rz2fwZVdfZrtPVpddQmUwm1zULAABcjnAJAAAAAAAAuYpJj9HMnTO16uQqp+qvT8/Q/8XEqb7FYp+zGF7aXHWM2t4+QzeEhriqVQAA4EaESwAAAAAAAHBgGIaWHVum13e9rqSspALrK1hteiYuXkNTUnX5PUlHvBorq/9bimjfzXXNAgAAtyNcAgAAAAAAgN2ppFN6edvL2nlhp1P1fVNS9UJcvCpbbfa5NMNPOxo8pBvGTJS/n5+rWgUAAB5CuAQAAAAAAABl27I1/9B8fbDvA2VaMwusr2ax6MWYeEWkpzvM/+x7nUJGvKue1zR3VasAAMDDCJcAAAAAAADKuYMxBxW5NVK/xv9aYK3JMHRrUooei09QsGHY5+OMCjrU6gV1GfKQvMxermwXAAB4GOESAAAAAABAOWYYhmbsnOFUsNQ4K0uTY+LUJjPLYX5rcB81vP0tdate21VtAgCAEoSPkQAAAAAAAJRjJpNJL3V6Sd6mvD+D7GMYGh+foIVRFxyCpShV1c6uH+mGpxepOsESAADlBuESAAAAAABAOde0YlMNrhSR67Hr0jO0JOq8HkxIks+fc1bDpE1Vxij4yZ/UofcImUwmt/UKAAA8j8fiAQAAAAAAlGPpyfH65dOn9PylpfqpVnWd9vkjQqpgtenJ+HgNT051+HTyb14Nldn/bXVv390zDQMAAI8jXAIAAAAAACinDq37XFV+fFHXGbGSpMkxcbq3RjX1SU3TC7FxqmK12WvTDV/9VH+cOo59UX6+fp5qGQAAlACESwAAAAAAAGWUzbDpUMwhXVvlWof5hIundeqz8WqdvNFhvkNGphZGndc/srId5vf5tlXIyHfVvUlLl/cMAABKPvZcAgAAAAAAKINOJJ7QP1f9U3euvFO/xv0qSTJsVu1b9pbM73fMESz95fJgKcEI1pZrX9W1E9apAcESAAD4E3cuAQAAAAAAlCHZtmz99+B/9cG+D5Rt+yMomrx1st78x/NKXvioWmfud+o6O4J7qf7YOepSo7Yr2wUAAKUQ4RIAAAAAAEAZcSjmkP5v6//paPxRx/nYQ1q5fLDuzUwo8BrnVEXnuk5Tx96jXNQlAAAo7QiXAAAAAAAASrl0S7r+9fO/9OnhT2UzbLnWfBAerL5pKapjseR63GqYtK3KKF17x0y1Dw13ZbsAAKCUI1wCAAAAAAAoxbaf364pW6fobMrZfOsyvLw0s1K43r14KcexY14NlH7zm+ra4UZXtQkAAMoQwiUAAAAAAIBSKDEzUa/vel3Lji1zqr5jeoYmxMY7zGUYPtpR7351vG2y/P39XdAlAAAoiwiXAAAAAAAAShHDMLTm1BpN2zFNsRmxBdZXsNr0bFy8hqSkynTZ/H6fVgoY9q56/KO165oFAABlEuESAAAAAABAKRGdFq2p26dq3Zl1TtX3SU3TxNg4Vbb+vQ9TohGkfc2fUZcRT8hs9nJVqwAAoAwjXAIAAAAAACjhbIZNX/32ld7c9aaSs5MLrK9isWhSbLx6paU7zO8M6KZat72r7nXqu6hTAABQHhAuAQAAAAAAlGCnk04rclukfrrwk1P1w5NS9FR8vEJshn0uWuE6fv0Udep/p0wmUz5nAwAAFIxwCQAAAAAAoASy2Cyaf2i+3t/3vjKtmQXW183OVmRMnK7PcKzdEjZQzW5/UzdUruqqVgEAQDlDuAQAAAAAAFDCHI49rMlbJ+tw3OECa82GobsSk/RQQpL8jb/vVjptqqHYnrPUpftAV7YKAADKIcIlAAAAAACAEuaLI184FSz9IzNLkTGxap6VbZ+zGF7aVv12tb1jmuoGV3BlmwAAoJwiXPKwqKgo7d69W+fOnVN8fLx8fHwUHh6uRo0aqX379goODvZ0iwAAAAAAwM2ebv+0Np3dpNiM2FyP+9lseighUXcmJsvnsvnfvBrJMnCOurXt6p5GAQBAuUS45AFbt27VwoULtXTpUp0+fTrPOi8vL/Xq1Uvjx4/XoEGDCrXG3Xffrfnz5xe5x9mzZ+uJJ54o8vkAAAAAAKDoQv1CdUdoH72V8WWOY+3TMxQZE6d6Fot9Lt3w1a6GD6njmBfl6+vrzlYBAEA5RLjkRkuXLtW0adO0a9cu+5zJZFL79u3Vrl07VapUSampqTp8+LA2bdqkjIwMrVmzRmvWrNGAAQP00UcfqVq1ah78CQAAAAAAgKslxUbr6GeP6Z74ldpXtbLWBwVKkoJtNj0dF69hyanyuqz+gG9rVRj5L3Vrcq1nGgYAAOUO4ZIbPfTQQ7p48aJ93KNHD82dO1dNmzbNUXv+/Hk9/vjjWrRokSTp22+/VUREhDZu3KiqVau6rWcAAAAA/8/efUdHUfZtHL9mUwkpJIFAqAGkSRMERFCaitiliqgIigUbdkFRikpRBFFEaQpWQMX+KCKKSC9SQ0dqAqT3bJLdnfcPJC+RsKEku9nk+znHc5jZ38xcPOf5I+Ha+x4AcA3T4dDmxXNVe+1otVGqJOmlxGStr+CvdtlWvZSYrAi7PX8+1ayo6ObPq33PJ2TxspzttgAAAMWOcslNunXrpl9++UU+Pj6Ffh4ZGakFCxbI19dXn332mSRp165dGjhwoH755Zdzfs6oUaM0evTo4ogMAAAAAAAukmmaWhm7Uh2rd5RhGPnn42IOKPazR9Qqa1WB+ap2u76OOaZIm13Gaec3BFytWndNU4caUa4JDgAAcBq+1uIG3t7emjlz5lmLpVMMw9B7772n4ODg/HOLFy/W4sWLSzoiAAAAAAAoZkfSj+iBJQ9o6G9D9b8D/5MkOex2rV34pirMvFKX/adYOqX6acVSvEK14Yp3dflzP6gqxRIAAHATyiU36NKli+rXr39OsyEhIbrjjjsKnJs//8yXeQIAAAAAgNLJ7rBrXvQ89fqul9YeWytJmrhuorZF/6VdEzrpih2vKcjILvI+a0Jvke8T69XmhoEFVj0BAAC4GuWSG1x11VXnNX/llVcWOF6xYkVxxgEAAAAAACVkb/Je3fPzPZq0YZKsdmv++eScZH3yx2Bdmre9yHscMapr23Wfq/2wTxUSVqUk4wIAAJwT3rnkQosWLVJubq4aNWp0XtdFRkYWOD5+/HhxxgIAAAAAAMUsz56n2dtma+a2mbI5bIXO/BxUQbdk+uvqbGuhn9tMi9ZVv1ut7h6vWhUDSzIuAADAeaFccqEOHToUy30cDkex3AcAAAAAABS/7Qnb9cqqV7Q3eW+RsxPDQ9Xh6DF5/ef8Pq/60q3vqkPLjiUTEgAA4CJQLnmA+Pj4AscNGjRwUxIAAAAAAHA22bZsTd88XR/v+FgOs+gvhra2WjUqIalAsWQ1fbT5kkfUpv9Iefv4llxYAACAi0C55AG2bt1a4Pj6668/r+uPHj2qzz//XEuXLlV0dLSSkpLkcDgUHh6uyMhIdejQQd27d9eNN94oi4XXcAEAAAAAcL7WH1+v0atG63D64SJnAxwOPZWUon7pGQVehh3t21Ih/aar/SXNSi4oAABAMaBc8gC//PJL/p8Nw9B99913ztcuWLBAEyZMUE5OzhmfxcbGKjY2Vhs3btS7776rRo0aafz48erZs2ex5AYAAAAAoKzLyM3QlI1TtHDPwnOa75iVrVEJSYq02/PPpSlAu1u8oDa3PyGDL30CAAAPQLlUym3cuFHbt2/PP+7fv78aNWp0ztfv2rVLknTttddq0KBB6tixo6pVqyar1aoDBw7ohx9+0Ntvv63k5GTt3r1bvXr10pNPPqnJkyfLMIxi+3vExcWdsb1fUfbt21dszwcAAAAAoLgtP7pcY1eP1YmsE0XOhtjteiEpWTdnZOn037Y3BXZSrbumqW1knZILCgAAUMwol0q5cePG5f85ODhYb7zxxnld7+fnpw8//FADBgwocN7f31+tWrVSq1atNHToUN14443asGGDJOntt9+Wv7+/xo8ff/F/gX9Nnz5dY8aMKbb7AQAAAADgLsnWZE1cP1E//fPTOc13z8jUiMRkVXb8/3uY4hWqmA6vqlX3e0oqJgAAQImhXCrFfvvtNy1atCj/eOrUqapZs+Y5Xdu6dWulpKTogQce0E033eR0tkqVKlq8eLGaNGmiuLg4SdKECRN0zTXX6Nprr73wvwAAAAAAAGWIaZpafGixxq8dryRrUpHzlW12jUxM0jVZ2QXOrw+/VY3vmaLLKlUuqagAAAAlio18S6mkpCQNHjw4/3jw4MEaNGjQOV//xBNP6Ntvvy2yWDolLCxMY8eOLXDupZdeOufnAQAAAABQlsVlxWnYH8P03J/PnVOxdHt6hr6NiS1QLB01IrXr+i/U9vFPFESxBAAAPJhhmqbp7hAoyGaz6cYbb9SSJUskSZ06ddKSJUvk6+tbos9NT09XRESErFZr/rlt27apWbNmF33vC33n0u23355/vH37djVt2vSiswAAAAAAcL4+2/mZJqybUORc9TybRiUkqcNpv1vbTIv+rnm3Wtw1Xv4BgSUZEwAAlBPR0dEF/u3e1f9+zrZ4pdAjjzySXyy1aNFC3377bYkXS5IUFBSkyy67TGvWrMk/99tvvxVLuRQREaGIiIiLvg8AAAAAAO7Qv1F//e/A/7Q1fmuhnxumqQFpGXoiOUUBp32Pd7/3JfK6fZraNbvSVVEBAABKHNvilTLPPvusZs2aJUlq0qSJlixZotDQUJc9/7/N5vbt2132bAAAAAAASisvi5fu8e8qn0I2gInKzdO8Yyc0PCk5v1iymj5ad8kwRQ1foyiKJQAAUMawcqkUeeGFF/TWW29Jkpo3b66lS5eqSpUqLs3w3yIrISHBpc8HAAAAAKC0SU1O0O6Ph6lH8o86WClY74VWkiR5mabuS03TQymp8jutc9rh11Khd7yvdvXY2h0AAJRNlEulxHPPPadJkyZJcl+xJOmM7feys7PPMgkAAAAAQNm38dfPVGvVSLVTkiTp/pQ0LQkIkEXS2IRENcnNy59NU4D2tByuy297XIaFzWIAAEDZRblUCjz99NOaMmWKJPcWS5KUlpZW4Dg8PNwtOQAAAAAAcJVdSbsUFRwlf2///HPxJ47o0CePq03GHwVmfSS9dyJe4Xa7fE47vymwk2rdNU1tIuu4JjQAAIAbUS652ZNPPqmpU6dKKr5iacKECbJarerTp4+aNWt2XtcePXq0wHFkZORFZQEAAAAAoLTKsefo/c3va270XN3b9F49dflTMh0Orf3+AzXe/LraKKPQ66rZ7fl/jleojnZ4Va263+Oq2AAAAG5HueRGjz/+uKZNmybp3Iul/v376/jx4xo0aJAGDRpU6MyECROUmpqq4ODg8y6XNm7cWOC4U6dO53U9AAAAAACe4O8Tf2vUqlE6mHZQkjQvep5a+TZWpZ/eUnvr+nO6x/rQm9Rw4FS1CnXP7iMAAADuwgbAbmCaph599NHzLpYkac2aNfrzzz918ODBImeXL19+XrnWrl2rI0eO5B9XqFBBXbt2Pa97AAAAAABQmmXmZWrc2nEa9Mug/GJJkuymXVNXP6Wm51AsxRpVFX3Nx2o77HOFUCwBAIByiHLJxUzT1NChQzV9+nRJJfuOpZ9//lmHDh065/mJEycWOH700UcVHBxc3LEAAAAAAHCLlTEr1fO7nvpi1xcyZZ7x+T4/H31Y6ey/B9tNQ2ur3anQZzao6dW3lWRUAACAUo1yyYVM09RDDz2kGTNmSJKaNWtWYsWSJOXm5mrw4MHKy8srcnb27Nn65ptv8o9r166t4cOHl0guAAAAAABcKTUnVS+teEkP//awjmUeczo7o1KIYr29zjh/yFJL/9z2ja54+ANVCOSLmAAAoHyjXHIR0zT1wAMPaNasWfnntm/froiICBmGcc7/nc9KJEn6448/1LlzZ23durXQzzMzM/Xiiy/qwQcfzD8XEhKiH3/8UeHh4Rf2lwUAAAAAoJT47dBvuu3b2/T9/u+LnA2z2zU+LkGRNnv+uVzTS+tqP6DqL6xXg9ZsHQ8AACBJ3u4OUF4cOnRIc+bMccmz+vXrp08//VTZ2dmSpNWrV6tly5Zq1aqV2rZtq8qVKysrK0v//POPli5dqszMzPxrW7durYULF6p+/fouyQoAAAAAQElIyE7QuLXjtOTQknOavzU9Q88lpaiSw5F/bq93Q/n1fk/tmrQrqZgAAAAeiXKpDJo5c6beeOMNzZ8/Xz/99JN+//13ZWVladOmTdq0adMZ8xaLRVdccYWeeOIJ9e3bV15eZy7/BwAAAADAE5imqe/3f6831r+htNy0Iuer2Wx6JSFJV2db889lm77a3uhxXd7vRVm8+acTAACA/+InJBeJioqSaZ75stCSUqlSJT388MN6+OGHZbPZtHv3bu3YsUMnTpxQWlqafH19FRoaqlq1aql9+/YKDma/aAAAAACAZzuWcUxj1ozRypiV5zR/R1q6nkxKUeBpv6/v8LtMof3fV9u6l5ZUTAAAAI9HuVQOeHt7q2nTpmratKm7owAAAAAAUOwcpkNf7flKkzdOVmZeZpHzdfLyNDohSW2sOfnn0lVBey8brla3PiHDwiuqAQAAnKFcAgAAAAAAHutI+hGNXjVa646vK3LWYpq6NzVdj6Skyv+01UpbAzuq5l3T1ToyqgSTAgAAlB2USwAAAAAAwOM4TIe+2PWFpv49Vdm27CLnG+bkamxCkprm5uafS1KwYtqPUYvrB0uGUZJxAQAAyhTKJQAAAAAA4HG2xm/VhHUTipzzMU09lJKq+1LS5HPa+U2h1+uSe95R87BqJRcSAACgjGITYQAAAAAA4HEui7hMvRv0djrTwpqjL2OO6aHTiqU4I1y7us1Rq2ELFUSxBAAAcEEolwAAAAAAgEfqGXKDQm1nbmfn53Do2cRkfXzshOrn2fLPb4zoreBnNqpxpz6ujAkAAFDmsC0eAAAAAADwKDm5uVr1+ThdcWC6Xgsw9Gi1iPzPWlutGhufpDq2/y+VYizVlXPjVF3eprs74gIAAJQ5lEsAAAAAAMBjbN+0RpYfHldXxx7JkDplS7ekZ+q3ihX0ZFKK+qdn5G/TYjMt2lpnoJoPGCcf/4puzQ0AAFCWUC4BAAAAAIBSJc+ep8y8TFXyr5R/LiMrS+s+Hqmrjs2Vr2EvMP9CUrIeSUlRTdv/nz/gXV/evd5T60uvdFVsAACAcoNyCQAAAAAAlBrbE7br5ZUvq1rFapp+zXQZhqGNq35TyJKn1c08JJ35iiWFOBwKcZz8c67preiGQ9Wy3yuy+Pi6NjwAAEA5QbkEAAAAAADcLseeo+mbp2tu9Fw5TIf2pezT/O3zVW3ZMnVKWCAvwyzyHnv9miqk/wdqVbeFCxIDAACUX5RLAAAAAADArTbHbdbLK1/WwbSDBc6/s/51fZ8SU2SxlCV/7WvxrJrf/rQMi1cJJgUAAIBEuQQAAAAAANwkKy9L7256V5/t/EymziyQMrwMvRoepqlxCYXthidJ2lmxnSLv+kAtqtcv2bAAAADIR7kEAAAAAABcbv3x9Xpl5Ss6mnHU6dwfFQO0uGKAemRmFTifpkAdbf+KLr3+Qck4W/UEAACAkkC5BAAAAAAAXCYzL1NTNk7Rgt0Lzmn++oxMtc22Fji3vVJX1R04XZeGVS+JiAAAACgC5RIAAAAAAHCJVTGrNHr1aB3LPFbkbLjNrpGJSbo2Kzv/XKIRqqQu49Ws850lGRMAAABFoFwCAAAAAAAlKi03TZPWT9I3+745p/lb0jP1fFKyKjkc+ee2VLlFje6ZqvDg8JKKCQAAgHNEuQQAAAAAAErMn0f+1NjVYxWXHVfkbITNplcSktT5tG3wjlsilHX9FLW84uaSjAkAAIDzQLkEAAAAAACKXYo1RRPXT9SP//x4TvO90jP0TFKygh2mJMlhGtpSo7+a3v2mqgUElWRUAAAAnCfKJQAAAAAAUKyWHFqi19a8piRrUpGz1fNsGpWQpA7W/1+tdNirtnTru2rVsksJpgQAAMCFolwCAAAAAADFIjE7Ua+vfV1LDi05p/n+ael6MilFFc2Tq5XyTC9trztYLQa8Li9f/5KMCgAAgItAuQQAAAAAAC5aniNPd/3vLsVkxBQ5WysvT2MSktTWmpN/7oBPffn2/kCtGrcryZgAAAAoBhZ3BwAAAAAAAJ7Px+KjQU0HOZ0xTFP3pKbp65jj+cVSrumtzQ2fUJ3n16gGxRIAAIBHoFwCAAAAAADF4sZat6i+PbTQz+rm5unjYyf0fFKKKvy7Dd4+v0uVcu/vumzAq7L4+LoyKgAAAC4C2+IBAAAAAICLtnHNHwpe/KTe8Tqq3jWqyWo5+X1Wi2lqcGqahqakyu9kp6Rs+Wpvs6fUvOfzMrz4pwkAAABPw09wAAAAAADggqWkpWnDvBHqkvC5vA2HZJMeT07Vm+GhuiQ3V6/FJ6lpbm7+/O4KrVR5wAdqUauxG1MDAADgYlAuAQAAAACAIjlMhyxGwd311yz7SVWXPadrFSMZ/3/+rrR0+ZumeqZnyOffcxmqoIOtR6jZzY9LFnbpBwAA8GT8NAcAAAAAAM7KNE19vedr3fnTncq2ZUuS4pOStPTt+9Tuj7tUVzFnXOMlqd9pxdLOwCvkeHiNmt06jGIJAACgDGDlEgAAAAAAKNSxjGMavXq0VsWukiS9+/e7ujK5nqJWv6hrdKLAaqXCpClQse1Hqcn1D0hGEcMAAADwGJRLAAAAAACgANM09fXerzVpwyRl5mXmn/90xye67thx1VKuk6tP2hHSSXUGfqDG4TVKMioAAADcgHIJAAAAAADki82I1ehVo7X62OozPjMN6eUq4foq5rj8TbPQ65ONECV0el2Xdrmb1UoAAABlFBsdAwAAAAAAmaapL/d8qV7f9yq0WDrlkI+P3g0NKfSz7eHXq8KTG9Sg6z0USwAAAGUYK5cAAAAAACjnYjNiNWrVKK05tqbIWV+HqQibvcC5BCNM6ddNUrMOvUsqIgAAAEoRyiUAAAAAAMqpU6uV3trwlrJsWUXOt7Dm6NWERNXLs+Wf2171djW8521VDgwtyagAAAAoRSiXAAAAAAAoh2IyYjRq5SitPb62yFk/h0OPJ6fq7rR0ef177oSlqnJvfFvN2txYskEBAABQ6lAuAQAAAABQjjhMh77c/aXe2viWsm3ZRc63/He1Ut3TVyvV7K8md0+Sl39QSUYFAABAKUW5BAAAAABAOXE0/ahGrRqldcfXFTlb2GqlWK8aMm6bpmYtupVsUAAAAJRqlEsAAAAAAJRxDtOhhbsXavLGyee0Wukya47GnrZayW4a2lVvkJr0HyeLX0BJxwUAAEApR7kEAAAAAEAZdiT9iEatGqX1x9cXOevncOiJ5FTdddpqpSM+UfLv/b6aNu5QskEBAADgMSiXAAAAAAAoo3765yeNWT3mnFYrtbJaNTY+SVG2k6uV8uSlfQ0fUuN+o2V4+5V0VAAAAHgQyiUAAAAAAMqoiICIIosl/39XKw04bbXSIb+GCrpjhprUa13yIQEAAOBxLO4OAAAAAAAASkbbam11XWjXs37e2mrVVzHHdc+/xVKOfLS72TOq8/xqhVEsAQAA4CxYuQQAAAAAQBmUlpmltfNe0qi4z7SzZhUd9fHJ/8zf4dCwf1crnfrW6YEKzRQ2YJYa1brUPYEBAADgMSiXAAAAAAAoY9avXqaQX4fpOvOgJGlsQpLui6wq6eRqpbHxSarz77uVsuWnw62eU6NbnpYsXme7JQAAAJCPcgkAAAAAgDIiJT1D6+aNUNf4z+Rj2PPPt7XmaHBKmqrabbozLSN/tdK+iq0VcfdMNYps4J7AAAAA8EiUSwAAAAAAeBiH6dAXu75Q55qdVTOopiRp9YrfVPm3p9RdhyXjzGueTk7J/3OmKiim3UtqeMNjklHIMAAAAOAE5RIAAAAAAB7kcNphvbzyZf0d97d+P/y7Jl4xWX9/PELdEr+Qt+Eo8vrdwVeq5j0z1LBKHRekBQAAQFlEuQQAAAAAgAdwmA59tvMzvfP3O7LarZKkdcfXaf6cDnos/Wihq5VOl6ZAneg4Wo2uHcJqJQAAAFwUyiUAAAAAAEq501cr/dfHYVLPbC/VsNkLufKknZU6qc7A99UgrGZJxgQAAEA5QbkEAAAAAEApderdSm9vfDt/tdJ/ZVssGlU5XLOOx52xeClVQUro9LqadB3IaiUAAAAUG8olAAAAAABKoaPpR/XKqle0/vj6Ime3+vlqv4+PLsnLyz+3M7Sb6g6crvqhkSUZEwAAAOUQ5RIAAAAAAKWIaZr6cs+XmrRhkrJt2UXOt822akxComr9uy1eshGilC7j1KTz3SUdFQAAAOUU5RIAAAAAAKVEbEasRq0apTXH1hQ5W8Hh0DNJKeqbniHLv+d2hndXvYHTFBpStWSDAgAAoFyjXAIAAAAAwM1M09SivYv05oY3lZmXWeR8u39XK9X8d7VSklFJ6de8oSZX3VHSUQEAAADKJQAAAAAA3Ol45nGNXj1aK2NWFjlbweHQk0kp6n/6aqUqN6j+PdMUFly5ZIMCAAAA/6JcAgAAAADADUzT1Pf7v9fEdROVnpde5Hxrq1Wvxiepts0mSUo0wpXVY5KaXNGrpKMCAAAABVAuAQAAAADgYvFZ8Rqzeoz+PPpnkbN+DoeGJafqrrT0/1+tVO0WNbj7HYUHhpVsUAAAAKAQlEsAAAAAALiIaZr66cBPGr92vNJy04qcb2nN0WvxiYr6d7VSgqWycm+YrCZtbyvpqAAAAMBZUS4BAAAAAOAiSdYkvbbmNWXmZTqd83WYejw5Rfekpcvr33O7qvdUg7vflldApRLPCQAAADhjKXoEAAAAAAAUh/AK4Xqq9TNOZ5rl5Ghh7DEN+rdYirdE6NitX6jxg3MplgAAAFAqsHIJAAAAAAAX2fXPIVVe9Kk6hmZrZUCFAp95m6YeTU7VoNS0/F/Wd9fsqwZ3TZalQrDrwwIAAABnQbkEAAAAAEAJy7U59PNXc3TlztfU2EhR0wQv9aoRqXSvkxuKNMnJ1WvxiWqYlydJivOqJt36rhq17O7O2AAAAEChKJcAAAAAAChBO/cf0PH5T+i2vOWScfJcNbtdzycla0zlMD2YkqohKWny+Xd+d5071XDAmzL8gtyWGQAAAHCGcgkAAAAAgGKSmpOqEL8QSSdXKy3+cqau3PW6mhhpZ8zelpGpVtYc1bHZJEknvKvL6/b31KhZN5dmBgAAAM4X5RIAAAAAABcpLTdNE9dN1MYTG/X1rV/r8KHjil/wuG7JW5m/Wum/DEl1bDY5ZGhf3bvV4M6JMnwrujQ3AAAAcCEolwAAAAAAuAh/Hf1Lo1ePVlxWnCRp2Pz7NHHfSjUx0ou89rhPTfn2el8Nm3Qq6ZgAAABAsaFcAgAAAADgAmTkZujNDW9q0d5FBc6vdezQ7gp56mA9+7V2GfrnkkG6pN84Gb4BJZwUAAAAKF6USwAAAAAAnKfVsav1yqpXdDzzeKGfj6oSpkVHjynINM/47JhPHfn3/UANGnYo6ZgAAABAiaBcAgAAAADgHGXmZWryhslauGeh07nj3t6aFB6qMQlJ+edssuhAwyG6pO9YGT4VSjoqAAAAUGIolwAAAAAAOAfrjq3TK6teUUxGTJGztfPydHt6Rv5xjG9dBfSdoQYNrijJiAAAAIBLUC4BAAAAAOBEVl6Wpv49VZ/v+vyc5u9OTdMTyamqYJrKk5cONHpQDfqMluHjX8JJAQAAANegXAIAAAAA4Cz+PvG3Rq4cqSPpR4qcrZmXp7EJSWprzZEkHfGtr8A7Zqph/TYlHRMAAABwKcolAAAAAAD+w2qzatqmafp4x8cyZRY5f0daup5OSlHAv6uV/mkyVI16j5K8fV2QFgAAAHAtyiUAAAAAAE6zPWG7Xlrxkv5J/afI2UibTWPjE9U+f7XSJQrsP1ON6l1e0jEBAAAAt6FcAgAAAABAUp49TzO2ztDsbbNlN+1FzvdJS9czSSkKPPVupcYPq2Gf0axWAgAAQJlHuQQAAAAAKPf2JO/RyBUjtTNpZ5GzVW02jU1IUodsqyTpqG89Vew/Sw3r8W4lAAAAlA+USwAAAACAcm3R3kV6bc1rynPkFTnbMz1DzyUmKyh/tdJDathnDKuVAAAAUK5QLgEAAAAAyrW6IXVlc9iczlS22TUmIVGd/l2tFONbTxXvmKWG9VmtBAAAgPLH4u4AAAAAAAC4k09qiLqlBZ318xsyMvVNzDF1yrbKJov2Nn5ENZ5fq0oUSwAAACinWLkEAAAAACiXrHl2/fzlTF29e5wmWtJ0h3817ff9/+3tKtntGpmQpOuzsiVJMb51VbHfTDW4pJ27IgMAAAClAuUSAAAAAKDc2bb3gBIWPK6etr8kQ5IpvR6fqLuqV5PdMNQlM0ujEpNU2e6QTRYdbPygLukzVvL2c3d0AAAAwO0olwAAAAAA5YY1z67/LZylTnteV3MjrcBnTXPzNCw5RaF2h27LyJQhKdY3SgH9ZuqSS65wT2AAAACgFKJcAgAAAACUWb8c+EVNw5uqVnAtbdt7QHELhqmX7c+Tq5UKMTg1XZJkl0UHGg3RJX1fY7USAAAA8B+USwAAAACAMifZmqzX1rymXw/9qlZVWuuWpPbqsne8mhupRV57zLeOAvrNYrUSAAAAcBaUSwAAAACAMuWPw39o9OrRSrImSZI2xf+taxKXqoqR7vQ6uyw62Oh+1e/zmuTj74qoAAAAgEeiXAIAAAAAlAnpuemauG6ivtv/3RmfvRNaSVdlZ6t+nq3Qa0+uVpqp+pe0L+mYAAAAgMezuDsAAAAAAAAXa3XsavX6vlehxZIk5VoMvVQlXHn/OW+XRf80ekCRz61TCMUSAAAAcE5YuQQAAAAA8FhZeVmavHGyFuxeUOTsbl9fbfb3U1trjiTpuG9tVeg7U/UaXFnSMQEAAIAyhXIJAAAAAOCRNsVt0ksrXtKR9CNFztbPzdXr8Ylqmpsnuyw61HCw6vUdx7uVAAAAgAtAuQQAAAAA8Cg59hy9t+k9zY2eK1Om01nDNDUoNV2PpqTIz5RO+Nb6d7VSBxelBQAAAMoeyiUAAAAAgMeITozWS3+9pP2p+4ucrZWXp9fjE9UqJ1cOGTrQcLDq9h0n+VRwQVIAAACg7KJcAgAAAACUenmOPM3eOlszt86UzbQVOd8/LV1PJaUowDRPrlbqM0N1G3Z0QVIAAACg7KNcAgAAAACUavuS9+nFFS9qZ9LOImer2WwaG5+oK605J1crNbhPdfuxWgkAAAAoTpRLAAAAAIBSye6w6+MdH+vdTe8qz5FX5Pzt6Rl6PjFZQaapOJ+a8u/zgeo2utoFSQEAAIDyhXIJAAAAAFDqHE47rJErR2pT3KYiZ8Ntdo1KTFLXrGw5ZOifS+5VvX4TJN8AFyQFAAAAyh/KJQAAAABAqZJnz9PgxYMVlxVX5Gz3jEyNTExWqMOhOJ8a8u39vuo17uyClAAAAED5ZXF3AAAAAAAATufj5aO7693vdCbEbtebcQl6Kz5RIQ5T++vdoyrPrVcliiUAAACgxLFyCQAAAABQajgcpv73v2/VZf0Yba1q028Vz9zarlNWtkYnJKqK3aET3tXl2+t91b+0i+vDAgAAAOUU5RIAAAAAoFQ4fCJJmz9+VjdnLJLFMDUywaK//f2U5OUlSarocOiFxGTdnpEpQ9K+qAGqf+ebMvwC3RscAAAAKGcolwAAAAAAbuVwmPrl15/UaPXzutWIkYyT58MdDr2ckKSnqlZRu2yrXk1IVHWbXfFeVWXp+Z4uaXade4MDAAAA5RTlEgAAAADAbY7Ep2jDx8N1S9oCeRuOMz6/NitbHxyP05XZVlkk7a/dR/UGTJHhH+z6sAAAAAAkSRZ3BwAAAAAAlB8bT2zU/YvvV1pOmn7+bYmypl2tnulfFFosndIx26oUr8qKv+0z1b9vDsUSAAAA4GasXAIAAAAAlLhce66mbZqmudFzZcrUo/N668OYjfIx7EVeu7/6Lap3z7syKoS6ICkAAACAolAuAQAAAABK1K6kXRrx1wjtS9mXf26z33Etr+ira7Kyz3pdiiVUeTdMUf22PV0REwAAAMA5olwCAAAAAJQIm8OmudFz9d7m92Rz2M74fGzlMF129JjCHWduifdP1R6Kume6LIHhrogKAAAA4DxQLgEAAAAAit3htMN6ccWL2hK/5awzSV5eGlM5TFPjEmT8ey7VCJb1+jdVr31/1wQFAAAAcN4olwAAAAAAxcY0TX2550tN2jBJ2bazb3l3SpjDIZskH0kHK3dVrYEzFBJctcRzAgAAALhwlEsAAAAAgGJxIvOERq0apZWxK4ucDbfZNSYhUZ2zrcowApXYbZyirhooGUaR1wIAAABwL8olAAAAAMBF+/nAz3ptzWtKy00rcva6zCy9nJCkUIdDh8I6qsY9MxUYWtMFKQEAAAAUB8olAAAAAMAFS81J1WtrXtMvB38pcjbI7tCIxCTdnJmlbKOCjnceqzpdHmC1EgAAAOBhKJcAAAAAABdkRcwKvbLyFcVnxxc5e0W2Va/FJ6qa3a7Dldop8p5ZqhYeVfIhAQAAABQ7yiU3i4mJ0caNGxUbG6vk5GT5+PgoNDRU9evXV5s2bRQYGFhsz8rLy9Pq1asVHR2tpKQk+fr6qnbt2mrfvr3q1KlTbM8BAAAAULZl5WXprQ1vaeGehUXO+jsceiopRf3TM5QrP8V2HKPa1zwqWSwuSAoAAACgJFAuucGqVau0cOFCffPNNzp8+PBZ5ywWi6655ho99thjuvXWWy/4eenp6Xr99dc1Y8YMpaSkFDrToUMHjRkzRtdee+0FPwcAAABA2bc5brNeXPGijqQfKXK2WU6OxsUnqm6eTUeDL1PE3R+qekR9F6QEAAAAUJIol1zom2++0bhx47Rhw4b8c4ZhqE2bNmrdurXCw8OVmZmpnTt3avny5bJarVqyZImWLFmim266SXPmzFHVqlXP65lbtmzRbbfdpkOHDkmSfHx8dMMNN6hhw4ZKTk7WX3/9pT179mjVqlW67rrr9MQTT2jKlCmy8C1CAAAAAKfJtedq+ubp+ij6IzlMh9NZb9PUgympeiAlTXb5KvaKl1Xz+qdZrQQAAACUEZRLLjR06FCdOHEi/7hz586aMWOGGjVqdMbssWPHNGzYMH355ZeSpJ9++kldunTRn3/+qYiIiHN6XnR0tLp166akpCRJUvv27bVgwQLVrl07f8bhcGjmzJl67LHHZLfb9c477ygzM1OzZ8++mL8qAAAAgDJmf8p+zY2eW2SxVC83T+PiE9U0N1exgU1V+Z4PVb1qYxelBAAAAOAKfG3MTbp166YlS5YUWixJUmRkpBYsWKC77ror/9yuXbs0cODAc7q/1WpV796984ulxo0b69dffy1QLEknt957+OGH9d577+WfmzNnDuUSAAAAgAJyk/x1TYrzd8Lek5qmBbHH1SDXoZjLn1f1p5bLl2IJAAAAKHMol9zA29tbM2fOlI+Pj9M5wzD03nvvKTg4OP/c4sWLtXjx4iKf8c4772j37t35x9OmTVNQUNBZ5x988EFdeeWV+ccvvvii0tPTi3wOAAAAgLItx2bX1/Nnq9qnXTQhaZua5OSeMRNps2nOsRN6PilFyRUayHxgmWrc8pLkxWYZAAAAQFlEueQGXbp0Uf365/YS25CQEN1xxx0Fzs2fP9/pNcnJyRo/fnz+cYsWLXTNNdc4vcYwDD311FP5x/Hx8Zo0adI5ZQQAAABQNu06GKNlb9yh3rueUVUjRT6SxscnyNdh5s/clp6hr48eU2urTUdaDlPkM6vkV6O5+0IDAAAAKHGUS25w1VVXndf86SuKJGnFihVO5xcsWKCUlJT849O31nPmlltuKbBKatasWTJN08kVAAAAAMoim92hbxd9ocCPOun63CUFPqufZ9Ow5BSF2e16+0S8XktIUqZfXeUOXqJaPcdKXs53aAAAAADg+dijwIUWLVqk3Nzcs75n6WwiIyMLHB8/ftzp/FdffVXguGvXruf0HH9/f7Vv316//vqrJOnYsWNauXLleZdhAAAAADxPti1bFbwr6J9j8Yr++Bndnv2dZBQ+e3daum7JyFSwQzp06cOq02us5O3n2sAAAAAA3IZyyYU6dOhQLPdxOBxn/SwtLU1//vln/rGvr69atGhxzvdu165dfrkkSd9//z3lEgAAAFCGpeema8K6CTqcdli9HL3Ucv2LusWIdXqNRVKud01l95ulOpe0d01QAAAAAKUG5ZIHiI+PL3DcoEGDs85u27ZNNpst/7hevXry8zv3bxA2bdq0wPHmzZvP+VoAAAAAnmXD8Q16acVLis08WSZ1TPpT9YxUp9c4ZOhQg3tVt98EyaeCK2ICAAAAKGUolzzA1q1bCxxff/31Z52Njo4ucFyzZs3zelaNGjWc3g8AAACA58u152ra5mmau32uTP3/e1ZnhAbr6uwsNc3NK/S6eO9I+fT+QHWbdHFRUgAAAAClkcXdAVC0X375Jf/PhmHovvvuO+vsrl27Chz/tywqyn/nY2NjlZ6efl73AAAAAFB67U3eqwE/DdBH2z8qUCxJks0wNKJKZVmNM1+2dKBOX1V+dp0qUSwBAAAA5R7lUim3ceNGbd++Pf+4f//+atSo0Vnnk5KSChwHBwef1/MKm09OTj6vewAAAAAofRymQ/Oi5+mOH+/Q7uTdZ5074Oujt0Mr5R8nW8KUdPtnqjt4tgz/8/v9AgAAAEDZVC62xbPb7fr555916aWXql69eu6Oc17GjRuX/+fg4GC98cYbTuf/u8rofN63JEn+/v5F3vNCxMXFnfHuqKLs27fvop8LAAAAQDqWcUwjV47UuuPripytlZenHpmZkqQDkTco6p7pMgLCSjoiAAAAAA/iMeXS8uXLJUmdOnU672utVqtuvfVWGYahpk2b6o033lCPHj2KO2Kx++2337Ro0aL846lTpxb5DqX/FkGFlUXOlFS5NH36dI0ZM+ai7wMAAADg3JmmqZ8O/KRxa8YpPa/on+v7pKXruaQU2RSk+B7vqm77/i5ICQAAAMDTeEy51KVLF1ksFtlstgu+h2ma2r59u26++WbNnz9fffr0KcaExSspKUmDBw/OPx48eLAGDRpU4s81Ctlb3TTNQiYBAAAAlGapOal6dc2rWnxwcZGzYXa7xsQnqUt2tg6Fd1LNe2cpOLiaC1ICAAAA8EQe9c6lCy05fH19NXz4cPXs2VP+/v5yOBwaNmyY7HZ7MScsHjabTf3799fRo0clnVyt9cEHH5zTtUFBQQWOrVbreT07Ozu7yHsCAAAAKN1WxaxSr+96nVOx1CUzS4uOHlM7q3SiyyTVeex7eVEsAQAAAHDCY1YuXQwfH5/8dxdt375d7du31/Hjx7VixQp17tzZzenO9Mgjj2jJkiWSpBYtWujbb7+Vr6/vOV0bGBhY4DgnJ+e8nl1YGVUc5dIjjzyivn37ntc1+/bt0+23337RzwYAAADKi2xbtqZsnKIvdn1R5GyAw6Hhicm6PSNTR0MuV/DAD1U1PKrkQwIAAADweOWiXDpds2bN1KtXL3322WeKjo4udeXSs88+q1mzZkmSmjRpoiVLlig0NPScrw8LK/ii3bS0tPN6fmHz5/P8s4mIiFBERMRF3wcAAABA4aITozXirxE6kHqgyNnLrDkaF5+gCJuXjl05WrWuGyZZPGpjCwAAAABuVO7KJUmKjIyUJKWmpro5SUEvvPCC3nrrLUlS8+bNtXTpUlWpUuW87tG4ceMCxzExMed1/X/nIyMjFRwcfF73AAAAAOA6NodNc7bN0ftbPpDddP6OWm/T1KPJqRqcmqYTFS+VMeRDVa/WxEVJAQAAAJQV5bJc2rx5syTJz8/PvUFO89xzz2nSpEmSLrxYkk6uzDrdqfc2nav/lkv/vR8AAACA0uNI2hGNWDFCW+K3FDlbLzdP4+MT1DDXoeOtn1GNm16UvMrlr4QAAAAALlKp+k3i8OHDRc4cOXJEpmme131N05TValVMTIy+//57LVmyRIZhqGbNmhcatVg9/fTTmjJliqSLK5ZOXe/l5SW73S5J2r9/v3Jycs65SNu+fXuB45YtW15QDgAAAAAlb0v81nMqlu5OTdOw5FSl+tVV3n1zVKN2axekAwAAAFBWlapyKSoqSoZhnPVz0zQVFRVVLM8yDEMdOnQolntdjCeffFJTp06VdPHFkiQFBwerc+fO+v333yVJeXl52rJli9q1a3dO169fv77A8a233nrBWQAAAACUnP3Hk5T91bfqEZipXwIrFjoTYbPptfhEtbPmKfbSB1Wr16uSd+nZwQEAAACAZyqVb2w1TfOM/5x9dj7/SSeLpT59+rh95dLjjz9+3sVS//791aVLF82dO/esM3369ClwvGzZsnPKY7VatWbNmvzjatWqqWPHjud0LQAAAADXcDhMfffLYuW+30V9sxdqZGKSqtrOfNdSj4xMLYo5rgaOyrLe/YNq9XuDYgkAAABAsSiV5VJJMk1TN9xwg2bOnOnWDI8++qimTZsm6fxWLK1Zs0Z//vmnDh48eNaZO+64QyEhIfnHn3322Tnl+uGHH5SWlpZ/PGTIEFks5e7/IgAAAECpFZuUri/fflo3rL5TTYxDkqQQh6nX4hPzZ4LsDk2MS9Cb8YlKq9tflZ9Zp4qXXOWuyAAAAADKoFK1Ld6999571s/mzZsnwzA0cODA876vl5eXgoKCVLduXXXr1k3NmjW7mJgXxTRNDR06VDNmzJBUPFvh/VdYWJiGDx+uESNGSJK2bt2qpUuX6pprrnGa69R7nyQpPDxczz33XLFlAgAAAHDhTNPUkhWrFLH0Sd2hPdJ/dhNvb83R3alp2uvrq9fiE+VnhCqtz1zVana9ewIDAAAAKNNKVbn00UcfnfWzefPmFTlT2pmmqYceekizZs2SJDVr1qzYi6VThg0bpg8//FB79+6VdHILvnXr1ikwMLDQ+ZkzZ2r16tX5x6+//rqCg4OLPRcAAACAc5Nnz1OuI1c5OV76dd7rujVuhgKMnLPOP52UIi9JMbVuVdU735EREOq6sAAAAADKlVJVLpVlpmnqgQce0Jw5c/LPbd++XRERESXyvAoVKujrr79Wp06dlJKSop07d6p79+6aP3++ateunT/ncDg0a9YsPfroo/nnBg0apIceeqhEcgEAAAAo2j8p/2j4X8MVaK+kh7bsVH9z6xmrlf4r2xIi+41TVKtNb9eEBAAAAFBueUy5VLt2bY9+/8+hQ4cKFEuu0Lx5c/3++++67bbbdOTIEa1evVoNGjTQDTfcoIYNGyo5OVl//fWXdu/enX/No48+qqlTp7o0JwAAAICTHKZDX+z6QlM2TlGO/eQqpT4BCVKm8+uORHRVzXtmyAiq6oKUAAAAAMo7jymXDh486O4IHqlVq1batm2bxo0bpxkzZig1NVXffffdGXPt27fXmDFj1L17dzekBAAAAHAi84ReXvmyVh9bXeD8a+Fham3NUTW7/YxrMo0AZV0zXrU63isZRSxtAgAAAIBi4jHlkqeLioqSaZpueXZISIgmTpyoV199VatWrVJ0dLSSk5Pl6+urWrVq6corr1RUVJRbsgEAAACQfj34q8asHqO03LQzPkv3smhklXDNPB6n0/dyOFKpnSIHzlbFsDquCwoAAAAAKqflUrdu3WQYhpYuXeruKC7l6+urLl26qEuXLu6OAgAAAEBSRm6GJqyboO/2n7m7wOnWVvDXgqBA3ZmeIat8ldThZdW69jHJg7cOBwAAAOC5ymW5tGzZMhlsGQEAAADAjTbFbdKIv0YoJiOmyNlOWdm6LitLMRWbqvI9H6l6tUYuSAgAAAAAhSuX5RIAAAAAuEueI08fbPlAs7fOlkMOp7MVHA49m5SinunZOn7Zk6p1y0uSF7/GAQAAAHAvj/2tJDs7W9u2bdOJEyeUnp4um83m7kgAAAAA4NShtEMa/tdwbU/YXuRsC2uOxsUnyt+rhnIHzVGtqLYuSAgAAAAARfO4cum7777TO++8o+XLl8vhcP4tPwAAAAAoDUzT1Nd7v9bEdRNltVudzlpMUw+lpOmBlFTFNhikqv0mSD4VXJQUAAAAAIrmMeWSaZq677779PHHH+cfXwjetQQAAADAlZKsSRq1apSWHVlW5GzNvDyNj09UbVslZfX7WnUuvbbE8wEAAADA+fKYcmnixImaN2+epJMFkWEYF1QwXWgpBQAAAADn66+jf2nkipeVlJNY5GzP9Ay9kJishBq3KPSud2RUCHVBQgAAAAA4fx5RLlmtVk2cODF/1ZFpmgoODlbXrl3VpEkTRUZGKiAgQN7e5/bXGTx4cEnGBQAAAFDOWW1WTd44WV/s+qLI2RC7XaMTknSF1UfWG2aqTrt+LkgIAAAAABfOI8qllStXKjU1Nb9ceuihhzRp0iRVrFjxgu5HuQQAAACgpOxM3KkXlg/XgbR/ipy9Mjtbr8UnKafSlar40GwFhUS6ICEAAAAAXByPKJf27NmT/+eWLVvq/fffd2MaAAAAADi7+Vu/L7JY8nWYeio5RT3T8pTR+XXV6vKwxPthAQAAAHgIjyiXUlJS8v/cp0+fi77fwIED81dBAQAAAEBxyLM79NW3i3Tv1jnaV13a6u9X6FyD3FxNiEtUoH9j+T46V1WrXOLipAAAAABwcTyiXAoKCsr/c61atS76fnPnzr3oewAAAADAKXtjE/X3J8PVL+tLeRmmJsR7q3eNasq2WArM3ZuapqHJ6Upt/bSq3zhc8vKIX8kAAAAAoACP+E2mVatW+X/OyspyYxIAAAAA+H8Oh6lvfv1NjVc/qzuMg9K/GyTUstk0IjFZr1QJlyRF2Gx6PT5R9RQpr8HfqnrtVme/KQAAAACUcpaiR9yvQ4cOqlu3riRpw4YNF32/w4cP6/Dhwxd9HwAAAADlV2xypj5/+3ndvPpONTUOnvH57RmZuiYzS90zMvVVzAnVjLpLEc+slT/FEgAAAAAP5xHlkmEYmjJlikzT1MKFC3Xs2LGLul9UVJTq1atXTOkAAAAAlBd59jzZHDb9umqdjk69TnenzZSfkVforCFpYnyCXkz2lk+/r1Wz/xTJx9+1gQEAAACgBHhEuSRJt956qyZNmqSMjAzdcsstiouLu6j7maZZTMkAAAAAlAf/pP6j/j8O0KMf3qP2i29VO0UXeU1crdsV/ux6BTbu6oKEAAAAAOAaHlMuSdLTTz+tn3/+WampqWrUqJFGjhypjRs3Kjc3193RAAAAAJRRpmlqwa4F6vtdX+1J2aU13tv0j7/d6TVplhCl3PKRat03T/IPcVFSAAAAAHANb3cHuJDt6fLy8pSamqrx48dr/Pjx8vLyUqVKlVSxYkUZhlECKQEAAACURwnZCRq54mWtjF2Rf85hGBpRJVxfxRxXxUJ2RIip0lnVB86UEVTNlVEBAAAAwGXcXi4dPHhQhmGc1zZ1hmEUuMZmsykhIUEJCQklFRMAAABAObPsyDK99NdIpeWlnvHZUR8fTQwP1diEpPxz2Ya/Mru8qhqdHpD40hsAAACAMszt5dIpF7Li6EJXKfG+JQAAAABnk5WXpTfXT9JXe790OvdNUKA6Z2XrmqxsxQa3VMQ9H6lylfouSgkAAAAA7lNqyqXatWu77FmHDh1y2bMAAAAAeI7ohGg9s+w5xWQeKXL2qqxsXZpj17G2L6j6DS9IFi8XJAQAAAAA9ys15dKBAwdc9iyLxeKyZwEAAAAo/ewOu+Zsn6P3Nr0nhxxOZ/0cDj2TlKKueVVUadBX8q91mWtCAgAAAEApUWrKJQAAAABwh2MZx/Tsny9oa8KmImcb5+RqXHyi/OoPVLXe4yQffxckBAAAAIDShXIJAAAAQLn1y4Ff9MqKUcp2ZDmdM0xTg1LTNSDdTxX7fKmgxl1dlBAAAAAASh+3l0tTpkxx+TP/+OMPlz8TAAAAQOmRmZepsate0/8O/ljkbDWbTePiE1Wlcg9VfehdGf4hLkgIAAAAAKWX28ulYcOGufyZnTt3dvkzAQAAAJQOW+O36qnfn1Wc9ViRszdkZOrJpDz5Xj9Nldv1c0E6AAAAACj93F4uAQAAAIAr2B12zdw6S+9vmS5TptPZQIdDIxOS1Nyvpao+8aG8Qqq7KCUAAAAAlH4eUy5169ZNhmFo6dKl7o4CAAAAwMPEZsTqqd+f047krUXOtrZaNSY+TX7tXlTkdU9IhuGChAAAAADgOTymXFq2bJkMfqkDAAAAcJ5M09TIX8ZoR6bzYsnLNPVwSqpuzq2qKvd9K7/qTV2UEAAAAAA8i8XdAQAAAACgpCSkW/XptNEaH/2tqufZzjpXMy9Pc4/F6aYad6nm06solgAAAADACY9ZuXTKkSNHZJrO90c/F4ZhKDAwUKGhocWQCgAAAEBp89emaOn7x3SP+bckaVx8ou6LjJDjPzsi3JqeoYdSfRTW5ysFNurkjqgAAAAA4FE8rlyKiooq1vtZLBY1aNBAXbp00X333ac2bdoU6/0BAAAAuFZmjk1ffz5LNx4cp8pGWv75y3NyNCQlTTNDQyRJQXaHXklM0qVh3VV7yLuSf7C7IgMAAACAR/G4cqk4Vi2dzm63a9euXdq9e7dmzJihW265RR9++KHCwsKK9TkAAAAASt7m/Ud19IsnNdC2RCrkla0Pp6RqTQV/ecvUyHirwq+fqrC2/VwfFAAAAAA8mEeVS6eKJeM/21g4K5zOZfbUjGma+uGHH9S2bVstX75cNWrUuNjIAAAAAFwgz+7QV999ow5bRugy48RZ53wkTTsRr7RK7VTr8Y9kCanuupAAAAAAUEZ4TLk0cOBAGYYhq9Wqr776Sna7XZJUpUoVXXrppQoPD1dgYKAMw5BpmsrMzFRiYqKio6MVHx8v6eQWeD179lRQUJAkKSsrS6mpqdq9e7cOHTqU/6wDBw6ob9++Wr58uby9PeZ/IgAAAKDcycjN0It/jlbIzoMalbhU3obD6XyOfJV75UjVueZxyWJxUUoAAAAAKFs8pjmZO3eu9u/fr969e8swDD322GMaMmSIWrRoUeS127dv16xZs/TBBx8oOjpaixYtUpMmTQrMxMbG6sMPP9Qbb7yhjIwMrV27Vp988okGDx5cUn8lAAAAABdh04lNenLJU0qyJyowyKGH0wzVsJ19/nhAQ4XdM1dVI5u6LiQAAAAAlEGGWdwvMSohGRkZatWqldLS0vTTTz+pTZs2532PjRs36sYbb1SFChW0efNmVapU6YyZvXv3qkuXLjp27JiaNm2qbdu2FUN6XIjo6Gg1a9Ys/3j79u1q2pR/CAAAACjvbA6b3tnwvubumCXT+P9fZ1pZrfrwWNwZ36BzyNDxZg+p+u2vSt6+rg0LAAAAACXA3f9+7jH7QLzwwgv6559/NG/evAsqliTp8ssv17x583T48GE999xzhc40aNBAM2fOlCTt2LFDx44du+DMAAAAAIrX0fSj6rOovz7aObNAsSRJm/z9NbtScIFzST7VlD3gO1XvM5FiCQAAAACKiUeUS1arVZ999pmaNm2qHj16XNS9evTooebNm2vBggXKzs4udOamm25SvXr1JElr1qy5qOcBAAAAKB7f7Plety+6Tfszd5915oNKIdrsd7JEOlr7NoU9s04VG3Z2VUQAAAAAKBc8olxavny50tLSdPXVVxfL/a666iplZmZq+fLlZ5059azjx48XyzMBAAAAXJj03HQN/eUJvbL6JeUo1+lsDZtNNiNAKTfPUs37Ppb8Q1yUEgAAAADKj/9uR14qHT16VJIUGhpaLPc79a6lU/ctTLVq1SRJKSkpxfJMAAAAAOdv4/G/9eSSYUpxpBQ52zM9QwMdl6jew3NlqVSj5MMBAAAAQDnlEeVSXFycpOJbRXTixAlJUkJCwllnLJaTi7q8vT3ifyIAAACgTLE5bJq8bpo+3TVHpuF8Nsju0EsJqWrT6llVveYJyeIRGzQAAAAAgMfyiObk1IqlX3/99aLvZZpm/n1OrWAqTGxsrCQpMDDwop8JAAAA4NwdST+iR/73uA5a90tFFEtts60alh6sxncvkF/1Zq4JCAAAAADlnEd8pa9u3bqSpJiYGL399tsXda8pU6bkb4d36r6FWbFihSSpZs2aF/U8AAAAAOfuq93f6favbztZLDnhbZp6IilFL4feppZPraZYAgAAAAAX8oiVS126dFFQUJAyMjL0/PPPyzAMDRs27LzvM3nyZA0fPlySFBQUpC5duhQ69+2332r//v0yDEMNGjS4mOgAAAAAzkFGboae/W2EVsYvK3K1Up28PA1PMtXi1k8U3LiLK+IBAAAAAE7jESuXfH19df/998s0TdlsNj399NNq3ry5pk2bpn379jm9ds+ePZo6daqaNm2q5557TjabTYZhaMiQIfL19T1j/tdff9WgQYMkndw2r3HjxiXxVwIAAADwr00nNuvG+TecLJaK0Cs9Q2+al6nj42splgAAAADATTxi5ZIkjR07Vl999ZViYmJkmqaio6PzVy/5+/srKipKQUFB8vf3l9VqVVpamg4ePKicnBxJJ9+1dErt2rU1ZsyYAvefPXu25s6dq9WrV8s0TRmGcdaVTQAAAAAunt1h15S17+uT3TPlMEyns8F2u4YnZumKjq8posPdLkoIAAAAACiMx5RLgYGBWrJkibp06aITJ07IMIz8wig7O1s7d+6UpALnT3fqfLVq1bRkyRJVrFixwOdz5szR2rVrC5zr169fCf1tAAAAgPLNNE099u1TWpH+R5Hb4LXLtuoxazU1u+9/8gmPckk+AAAAAMDZeUy5JEmNGjXS2rVrNWjQIC1btkyGUfhvof89b5qmTNNU165d9dFHH6l27dpnXDNw4MACK5UMw9Dtt99enPEBAAAASErJzNGP8ybqqcQv9XfNMGVZCt+t29s0NTQ5TdfXG6I6t7wkWbxcnBQAAAAAUBiPKpekk1va/f7771q4cKGmTZumFStWFHnN1Vdfrccee0x9+/Y968zQoUOLMyYAAACAQqyL3qusrx7V3ebJXQNGJkovVql8xlytvDwNT/bS5X2+UsW67VwdEwAAAADghMeVS6f069dP/fr104kTJ7Rq1SpFR0crKSlJ6enpCgoKUlhYmJo2baoOHTqoatWq7o4LAAAAlGs5Nru+XviJrtk9SlWNlPzzt2RkaWWFTP0U+P/bVt+anqG7A7uoybBpkm/FQu4GAAAAAHAnjy2XTqlatap69uypnj17ujsKAAAAgELsjYnXto+f0YCc7wp9v9LIhCRt8fNVspeXnkvMVtcubymsTS/XBwUAAAAAnBOPL5cAAAAAlE6maeq7X39T41VPq5dx+KxzgaapKXEJSgtqqTYPfCJLSHUXpgQAAAAAnK9yWS4tX75cktSpUyc3JwEAAADKpsX7l2vLz/M1LH6h/Iw8p7O58lZI6xFq3P0pyWJxUUIAAAAAwIUql+VSly5dZLFYZLPZ3B0FAAAAKFPyHHl64efR+i3+e9Xwz9MjFpv8zLPPn/Cvp5C75ymyZgvXhQQAAAAAXJRy+7VA03TyGy4AAACA87Yn8YBu+riHliR8L9OQjvr4aFx42FnnjzS8V1WfWS1/iiUAAAAA8CjlcuUSAAAAgOL1wdpPNXvHm8qxOAqc/yGoojpkZ+vmzKz8cyleYTJun65azW9wdUwAAAAAQDEoFeVSWlqaFixYIIfDoX79+ik0NPSMmW7durkhGQAAAABn0qzpGvrtI9qas/ms+yK8VjlMLXNyVMtm15GILqo5cLaMwCouzQkAAAAAKD5uL5fi4+PVtm1bHTlyRJL02muvaePGjYqIiCgwt2zZMhmG4Y6IAAAAAArx5z9rNXLZ40rxynY6l2mx6LeAIN3UarhqdXlY4ud6AAAAAPBobn/n0oIFC3T48GFJJ9+DFBsbq4ULF7o5FQAAAICzsTvseunnsRq2fEiRxVIlu11jU3x114DFiug6lGIJAAAAAMoAt69cioyMzP/zqZVJp5/7L9M0SzwTAAAAgMIdTo3VI98M0iHjmFRET3RFtlVPhN2oFgPflLx9XRMQAAAAAFDi3L5yqXfv3ho6dGh+sfTggw+qd+/eZ513OBwX/R8AAACA8/fJxq/U9+sbThZLTnibph5KydPkzh+oRb+pFEsAAAAAUMa4feWSJL333nt68803JUkBAQFuTgMAAADgdNl52Xp80eNaa10reTmfrZWXp6fNhrrmgXkyAkJdExAAAAAA4FKlolySKJUAAACA0mjdkW0avuQBxXtlFjl7Y4ZVjzR/XnWuHsK7lQAAAACgDCs15VJRBg4cmL91Xmm6FwAAAFAWmaap8b+9pS9j5slWxGqlig6HHs0I1B39v5dvlbquCQgAAAAAcBuPKZfmzp1bKu8FAAAAlDUnMpL0yNf3ao8OSkV8J6u5NUfDKt+qKwZOkLw85tcLAAAAAMBF4Lc/AAAAAPm+37ZUb6x7VqneNqdzhmlqQJpDD14/R2GNrnZROgAAAABAaUC5BAAAAECmaerHXxfL8ffTSou0yNmSpQibTcPMRrrlwXky/ENcFxIAAAAAUCp4fLm0bds2rV27Vlu2bFFiYqJSU1P1008/5X9+8OBBWa1WNW7c2I0pAQAAgNIrMT1bSz4crZ5Js+Vn2HQkJUQzQwsvjTpn5uiJps+qYecHXZwSAAAAAFBaeGS5lJeXp+nTp+v999/X3r1788+bpinDKPgNy7Vr12rAgAHq0KGDJkyYoI4dO7o6LgAAAFBqrd6yQ/p2qPqbm/MXKw1NSdX6Cn7a5O+fP+fncOiBjADde8e38o+o756wAAAAAIBSweLuAOdr+/btatOmjZ5++mnt2bNHpmnKNE2n15imqVWrVqlz58569dVXXZQUAAAAKL1ybHbN/3SWGiy6Xleamwt85i1pYlyiguwOSVL93DxNqdhNDz2ymmIJAAAAAOBZK5d27typLl26KDk5ucAqJWcFU4MGDdS8eXNt27ZNpmlq9OjR8vX11QsvvODK6AAAAECpsT82XtvnPaX+OT+c9dVKkXa7Xk1I1NKAUD3Z7V1FXHqda0MCAAAAAEotj1m5ZLVaddNNNykpKanA+fr16+vGG29U//79C72udevW2rJli37++WfVrl1bpmnq5ZdfVnR0tCtiAwAAAKWGw+HQol9/lm1GN92W80OR8/WDr9br962iWAIAAAAAFOAx5dK7776rgwcPyjAMBQUFacKECYqNjdWePXv0448/6vPPP3d6/fXXX681a9aobt26stvtev31112UHAAAAHC/I8mJuvPDm/TdP8N0iXHY6Wy2/HWi61uKemihjIBQFyUEAAAAAHgKj9kW77333pNhGIqKitLvv/+uOnXqnPc9qlWrplmzZunaa6/Vd999p6ysLAUEBJRAWgAAAKD0WLj2f3p/24tK8LFLPn6aWSlYQ1PSCp2NDWis8IEfq2q1Ri5OCQAAAADwFB6xcmnPnj06fPiwDMPQ559/fkHF0indunVTkyZNZLVa9ffffxdjSgAAAKB0ybHZ9ORnj2v8zudPFkv/+qBSiDb6+Z0xf7jJA6r+9F/yo1gCAAAAADjhEeXSpk2bJElt2rTRFVdccdH369ixoyRp165dF30vAAAAoDTaeuSA+n/YRUtty2QzjAKfOQxDwyPClWo5+etAsleYUvt+qdp3TJK8fd0RFwAAAADgQTxiW7z4+HhJUrt27YrlfhEREZKk5OTkYrkfAAAAUJpM/3WOvjjytlLOXJyU77i3t8aGh2qYmqvWoDkyKlZ2XUAAAAAAgEfziHIpIyNDkhQUFFQs98vMzJQkmaZZLPcDAAAASoPUrCy98MUgrfLaIdPbcDpbM8+mW+vdo9o9RkuG81kAAAAAAE7nEeVSeHi4JCkmJqZY7rdv3z5JUuXKfDsTAAAAZcOyHev01oqhOuiXK8l5WdQt26JXbpyn8NrFszMAAAAAAKB88YhyqUaNGpKkxYsXKy8vTz4+Phd8r9TUVP3++++SpDp16hRLPgAAAMBdHA5TExeN1XdpXyrTz3mpVMHh0EPel+q++z6W4VvBRQkBAAAAAGWNxd0BzsVVV10lb29vxcXFacyYMRd1rxdffFHZ2dny8/NTx44diykhAAAA4HpHEhN1/6zu+jzzK2V6OS+WGuTaNbPJs7r/ni8plgAAAAAAF8UjyqXg4GB169ZNpmlq/PjxGjlypGw223ndw+Fw6KWXXtL7778vwzDUo0cP+fv7l1BiAAAAoGQtWv2DHljUVRv8jxc5e0tOoD7ts1iXtR/sgmQAAAAAgLLOI8olSQVWLI0fP16NGjXSG2+8oR07dji9LjY2Vh988IFatmypCRMmSJIMw9CoUaNKNC8AAABQEnLy7Brx8aN6fdcIxfiaTmdD7A69EtJV44asVEBoLRclBAAAAACUdR7xziVJuuKKKzR06ND8lUcHDhzQiBEjNGLECAUGBqpevXr5s506dVJ6erpiYmKUmJgoSTLNk794G4ahJ554Qi1btnTL3wMAAAC4UNGH/9Hr/7tb2yqkSxbn2+A1z5Fe6zxV9Rpd66J0AAAAAIDywmPKJUl69913dfjwYf30008yDCO/MEpPT9eWLVsknSyRVq5cmf/ZKafmb775Zr311lsuzw4AAABcjFm/zNEXR6covoLzUslimrrDrKXnBy6Qt3+wi9IBAAAAAMoTj9kWT5IsFou+++47Pffcc/nnDMM447//nj/l+eef1zfffFPgHAAAAFCaZVjzNG3GU3rv+BTF+zj/OTbCZtekOoP04uCfKZYAAAAAACXGo8ol6WTBNHHiRG3YsEG9e/eWl5eXTNM8639eXl7q3bu3NmzYoAkTJshi8bi/MgAAAMqp7fsOatObN+nRYx/quswsp7Ptc3z0xY0LdV3XZ12UDgAAAABQXnnUtnina9Wqlb788ktlZGTor7/+0pYtW5SQkKC0tDQFBwercuXKatmypa6++moFBga6Oy4AAABwzhwOUz/+8KXa/v2CmhlJkqRXEpK0zc9PMT4Ff4T3dZga7N9Sj941V4a3jzviAgAAAADKGY8tl04JDAzUDTfcoBtuuMHdUQAAAICLFpeaoRVzXtBtqZ/Jy/j/94gGmabeiE/QvZFVZft3m+faeQ6NvmyE2ra5211xAQAAAADlkMeXSwAAAEBZservzfL//mH10k6pkNcrtcjJ1ePJKZoSFqrrcoM0tt+XCgyp4fqgAAAAAIByjXIJAAAAcLMcm13ffzFD1+17TZWMTKezd6bmqPIlN+nWm8dLRiENFAAAAAAAJaxUlEsWi0UWi0U2m61MPg8AAAA4mz0xsVq08H4NT11V6Gql0x3zjVLwPZ/o1lotXBMOAAAAAIBClIpySZJM0yx6yIOfBwAAAJzONE19vuRLfXlgrPaHGbrMFqAemVlnnf+nTj/Vu2uq5BvgwpQAAAAAAJyp1JRLAAAAQHmRnp2rSZ88osU+q5Xpb5EkjakcpqY5OaplsxeYzTAqKvP6t1WvfT93RAUAAAAA4Aylqlw6cuQIK4oAAABQpm3avVszlgzUyqAsSZb88xkWi56LqKxPYk/I599zRwJbqurgTxQYXsctWQEAAAAAKEypKpeioqLcHQEAAAAoEQ6HqY++m6Hv4t/VgSBLoTPRfn6aElZJzySl6UizRxXVc7TkVap+ZAcAAAAAoHSVS6xaAgAAQFmUlJ6ttz8eqJ8DdsjqV3ixdMpPgUHq3+U9RbW42UXpAAAAAAA4P6WqXDIMwyXPocQCAACAq6zavF4fr3xQKwNtOn0bvMK0tFXQ5Ns+VUTlhq4JBwAAAADABShV5RKlDwAAAMoKu8PU7Pnj9H3mZzoc6OV01mKauieorZ66fZa82AYPAAAAAFDKlarfXB0OxznPWiwWGYYhu91+3s+xWJx/YxQAAAC4GMcSkvTBFwP0Y+BR5fo6L5Yq26XX2r6ijs37uSgdAAAAAAAXp1SVSwAAAICn+331Us3/+0mtDpYk59s+tzEr6a2+8xUWVMMl2QAAAAAAKA6USwAAAEAxyM2za/ZnL+o72/eKDXT+Y7a3aer+iOv06A2TXfbeUQAAAAAAikupKJdq167t0q3qXP08AAAAlG2HYo9r9lf99WNwgmw+zn/Ermo3NLHTW7r8ku4uSgcAAAAAQPEqFeXSwYMHy/TzAAAAUHb99Pt3+nrXi1ofYlFR2+B1sERqUr8FCqoQ6ppwAAAAAACUgFJRLgEAAACeJjvHppnzhukHrz90oqKX01kf09Sjtfvpvq4vsw0eAAAAAMDjUS4BAAAA52nvoSM6/sn9WlfloE54+zmdrWH31lvXva+mtdq7KB0AAAAAACWLcgkAAAA4R6Zp6rdff9Clq57S1UaCouK91bdGNWWe5X2eXX3raULvzxXgW9HFSQEAAAAAKDmF/xYMAAAAoIC07Bx9995z6rrqXtUwEiRJtWw2jU5IOmPW32FqxCWD9c6d31EsAQAAAADKHFYuAQAAAEXYvmevsuYP0e2OzdJ/XpnUIzNL69LS9WVwkCSpjt1Pb984R5dUa+n6oAAAAAAAuADlEgAAAHAWDoepn7+fr7abhivCSDnr3PNJKdrk768GlVpq7O1z5e9TwXUhAQAAAABwsVJRLh0+fFiSVLt27TL5PAAAAHiexLRMrZr9rG5K/UIWw3Q6m+RdW+93m6Vq9a9wUToAAAAAANynVJRLUVFRslgsstlsZfJ5AAAA8Czrt2zRz38MVh/r4SKLpT01eqrBwGky/AJdlA4AAAAAAPeyuDvAKabp/Jd2T39eUWbPnq1KlSrJMAwZhqFly5a5OxIAAEC5Y7M79OkXUzV91R36MjRPz0ZUVrphFDqbJX8d6fquGj4wl2IJAAAAAFCulJpyqbw6dOiQunfvrgceeECpqanFcs9Bgwbll1QX8t/bb79dLDkAAAA8ybHEFE1/p4/mZM3QhgAfSdIRHx+Nrhym/34t6Yh/Q5kP/aVanQe6PigAAAAAAG5WKrbFO+Wvv/467xVFF3JNaWCapt5//3298MILysjIcHccAACAcm3VurVauuoBfRXqkMPwKvDZr4EVtcCao/7pJ39m21f3bl1y12TJ288dUQEAAAAAcLtSVS516dLlvOZN0zzva0qDffv2aciQIfrzzz8lSTVr1lRqaqrS09PdnAwAAKB8ybM7tPCzN7Q08yOtD/WVVPgWeG+Eh+qSXC/VuOZtXdKul2tDAgAAAABQypSqbfFM0zzn/05t4XY+15z6z52mTp2qli1b5hdLQ4YMUXR0tMLCwor9WaNGjbqg/32efPLJYs8CAABQ2sTGJ2rO1Fs0J2+e1gf4Op31Ng2l3DZZkRRLAAAAAACUrpVLxllellzc17izYBo1apSysrIUFRWlWbNm6dprr3VbFgAAgPJq1ao/9ee6RzQ/zJDDcP4jcT0jWO/2/ES1K9VzUToAAAAAAEq3UlUu1a5d2yXPOXTokEueUxiLxaJHHnlEEydOVGBgoNtyAAAAlEd5NrsWfTpWS7K/0NrQot+ZdHvljnq5xzvy9XK+sgkAAAAAgPKkVJVLBw4ccMlzLBb37Qb4yy+/qF27dm57PgAAQHkVc/y4fvnsbn1WKUbxAc6LpQoOQ6OveEk3XnqHi9IBAAAAAOA5SlW5VB5QLAEAALjeyr9+1cqNw/RZuFfR2+BZKund2z5R7UpRrgkHAAAAAICHoVwCAABAmZWbZ9d3n4zU4pyvtDbUv8j52yM6aWT3yfLzKnrLPAAAAAAAyqtSUS516tRJhmGU2ecBAADA9Y4eO64lnw3QJ6HHFB/gvFiqYBoa036Ubmjc20XpAAAAAADwXKWiXFq2bFmZfp47HT16VJ9//rmWLl2q6OhoJSUlyeFwKDw8XJGRkerQoYO6d++uG2+80a3vogIAAChOK/5crFWbntRnlYveBq+uV5im3fKxaofUcVE6AAAAAAA8W6kol1AyFixYoAkTJignJ+eMz2JjYxUbG6uNGzfq3XffVaNGjTR+/Hj17NmzRLLExcUpPj7+vK7Zt29fiWQBAABlV06eTd/NG6lf874+t23wqnXTyGvfYBs8AAAAAADOA+VSGbZr1y5J0rXXXqtBgwapY8eOqlatmqxWqw4cOKAffvhBb7/9tpKTk7V792716tVLTz75pCZPnlzs2wZOnz5dY8aMKdZ7AgAAnO5I7DEdmXufoiwbta5ahNPZCqZFY64crRsalcwXawAAAAAAKMsol8owPz8/ffjhhxowYECB8/7+/mrVqpVatWqloUOH6sYbb9SGDRskSW+//bb8/f01fvx4d0QGAAC4ICv//FV1fn9UHYw4SdLQlFRND61U6Gxd73BNu3ke2+ABAAAAAHCBeMlOGdS6dWvddttt+vrrr88olv6rSpUqWrx4sSIi/v/bvRMmTNBvv/1W0jEBAAAumjXXpv/NekVtf++vmv8WS5L0YEqarsi2njF/e+Q1+rL/YoolAAAAAAAugmGapunuEJCioqJ06NCh/OM//vhDXbp0cdnzZ8yYoYcffjj/uF27dlq7dm2x3f9C37l0++235x9v375dTZs2LbZMAADAsx0+GqOj8+5Th7w1hX6eYLGob41IJXh7ndwGr8MY3dDwdteGBAAAAACgBERHR6tZs2b5x67+93O2xYMkacCAAXryySdltZ78hu+6deu0ffv2Av/nvBgREREFVkcBAABcjBXLflHUH4+pg3H2L69Udjj0anyq3qrVWFNv/pDVSgAAAAAAFBO2xYMkKSgoSJdddlmBc2yNBwAAShtrrk0/zXpZ7f4YoJpOiiVJivGupSb9ftDXA5ZQLAEAAAAAUIwol5Dvv0vmtm/f7qYkAAAAZzp0NEbfvt1d63M+lZdhdzq7K+IGVXt2tcLrtZbF4EdeAAAAAACKE9viIV9oaGiB44SEBDclAQAAKGj57z9r199PakYVH+VaAlXVZtPQlLQz5qzy1dErx6px94clw3BDUgAAAAAAyj7KJeTz9fUtcJydne2mJAAAACfl5Nn0v49GanXul/q5SkD++fcrhailNVcd/n1fpHRyG7yAuz7RJXVbuSMqAAAAAADlBnuEIF9aWsFv/4aHh7spCQAAgHQ0JkY/Tb5Oc41v9XNQQIHPTMPQiIhwnfDykiTtqnqTIp9drVCKJQAAAAAAShwrl8qYCRMmyGq1qk+fPmrWrNl5XXv06NECx5GRkcUZDQAA4JytXf6L9qx9Qu9G+Cjb4lPoTJKXl56NqKKRUU+ocfdH2AYPAAAAAAAXoVwqYyZMmKDU1FQFBwefd7m0cePGAsedOnUqzmgAAABFyrPZtWTuy1qbPV+LIioWOV+5dmfVvuY+iiUAAAAAAFyIbfHKqOXLl5/X/Nq1a3XkyJH84woVKqhr167FHQsAAOCsjh2P1eK3rtNHjq+1KNh5seRtGnrp8uc0uccMVfCu4KKEAAAAAABAYuVSmfXzzz/r0KFDqlOnzjnNT5w4scDxo48+quDg4JKIBgAAcIa/Vy7WvpWPa0qEjzIsvk5nq3oFa+oNM9U0vKmL0gEAAAAAgNOxcqmMys3N1eDBg5WXl1fk7OzZs/XNN9/kH9euXVvDhw8vyXgAAACSJJvNrl/nvqLFGx/Wq1X9lGFx/uPpVeGX6+u+/6NYAgAAAADAjSiXyrA//vhDnTt31tatWwv9PDMzUy+++KIefPDB/HMhISH68ccfFR4e7qqYAACgnIqPj9Ovk2/QvJz5+jwk0OmsxZSebvm4pt/0kUL8QlyUEAAAAAAAFIZt8Vzs4MGDqlu3bpFzhb3vaNSoURo9erTT6/r166dPP/1U2dnZkqTVq1erZcuWatWqldq2bavKlSsrKytL//zzj5YuXarMzMz8a1u3bq2FCxeqfv365/eXAgAAOE9b1v+p/b8/pMlVLEr18nM6G2apqLevf1+tIlq5KB0AAAAAAHCGcqmMmTlzpt544w3Nnz9fP/30k37//XdlZWVp06ZN2rRp0xnzFotFV1xxhZ544gn17dtXXl5ebkgNAADKC4fdoaWfT9S2xJn6qJrz1UqS1KZSc711/TSF+Ye5IB0AAAAAADgXlEsuFhUVJdM0S/QZlSpV0sMPP6yHH35YNptNu3fv1o4dO3TixAmlpaXJ19dXoaGhqlWrltq3b6/g4OASzQMAACBJiUmJWvvhYH0VuFPrQ50XS4YpPdR8iB5u9Zi8LHz5BQAAAACA0oRyqYzz9vZW06ZN1bQpL70GAADus33zWv3zy32aXMVUore/09kQo4ImdX9H7SPbuygdAAAAAAA4HxZ3BwAAAEDZZZqmfl/4jup9c4v+CspWorfzVUjNgxpqUZ8fKZYAAAAAACjFWLkEAACAEpGalq7Nsx5St/SfJEN6JSFXO/x8ddjHp9D5exvdpSfbPStvCz+iAgAAAABQmvGbOwAAAIrdrujNsnw1SJ3NA/nngkxTb8Ul6K7Iasq1GPnnKxq+mtBlkrrU7uqOqAAAAAAA4DyxLR4AAACKjWmaWvbNbNVY2EMNTyuWTmmcm6cXE5PyjxsGROnrXt9TLAEAAAAA4EFYuQQAAIBikZ6ZqfWzHle3lK8l4+xzvTIy9UdQbVW9tLte6DBSvl6+rgsJAAAAAAAuGuUSAAAALtrePTuVN3+gujn2OJ2zmRbtbPa0pvYaIS8vfhQFAAAAAMAT8Rs9AAAALspfP32muOiRCvPP1qVZZ5+LN8JlvX22ml/WzXXhAAAAAABAsaNcAgAAwAWx5uTor9lP6m/7//Rp1WAFOgK0IOa4attsZ8zurthGtYZ8piqh1dyQFAAAAAAAFCeLuwMAAADA8xw9fECrJ3fRPO+l+jQkWJKUYbHoqYjKyjb+/4VLDtPQtgaPqOHTixVAsQQAAAAAQJlAuQQAAIDzsnHZd4r+vJtGV03VFn+/Ap/t8fPVa+GhMiUlKUSHb/5Mze8aL4P3KwEAAAAAUGbwWz4AAADOic1m04q5I7Qrfb7erxYix2krlE73fVCgatiraOCArxRVpbaLUwIAAAAAgJJGuQQAAIAiJZyI1e6PBujLkKNaHlbJ6axhSv5dH1QgxRIAAAAAAGUS5RIAAACcil63VEm/PaTXI3wU41PB6WywJUBvXTtV7SPbuygdAAAAAABwNcolAAAAFMp0OLTq83E6cvwDvRlZSbmWwrfBO6VZSCO9fd17qlqxqosSAgAAAAAAd6BcAgAAwBnS0pK1dea9+tl/m76vElrk/F2N7tQz7Z6Tj8XHBekAAAAAAIA7US4BAACggP07NurENwM1pYpNe/wCnc76Gz56tdM49Yjq4aJ0AAAAAADA3SiXAAAAkG/N9zOVtPNVvVo9WBkWX6ezdQJq6J3u01UvpJ6L0gEAAAAAgNKAcgkAAACyWrO1ftYjWu/4XR9Vq1TkfI/a3TXmqlcV4BNQ8uEAAAAAAECpQrkEAABQzsUe2qdDn92pOWEp2lgh2OmslywafsUI3dHoDhmG4aKEAAAAAACgNKFcAgAAKMf+/mORUtc+rbFVA5Tg7e90trJPqKZeN00tqrRwUToAAAAAAFAaUS4BAACUQzabTavnvqiWR2fphtqRSvPycjrfrkobTeo2WaH+oS5KCAAAAAAASiuLuwMAAADAtRLijmvbmzfo6qMzFCyHRiUknXXWkPRwi4c0s8dsiiUAAAAAACCJlUsAAADlSvSGPxX64xC1Ulz+ue5Z2bo7NU2fhhR831KgJUBvdntLV9W4ytUxAQAAAABAKUa5BAAAUA6YDodWLHxL7XZOkJ9hO+Pzp5NSFO3nq03+J9+71Di4gaZeN03VA6u7OioAAAAAACjlKJcAAADKuPT0VG2f+YCuTl98cp+7QvhIejMuUb1qRalHw9v1whXD5evl69KcAAAAAADAM1AuAQAAlGEHdm+RY8FAXek46HQuU/6Ku2Kivr/6FoVXCHdNOAAAAAAA4JEolwAAAMqo9T/PU86ml9TazHA6d8irtnwHfKbm9Vu4KBkAAAAAAPBklEsAAABlTF5ertbNfkK7rT9qavVK6p7pqzfiEwvdEW9Tpe5q8sAc+VcMdnlOAAAAAADgmSiXAAAAypCEY4d0cO4AfRVyXL+FhUqSfgmsqBY5ubonLT1/Ltf0UnSLF9Wq1zOScZYXMQEAAAAAABSCcgkAAKCM2LXmf8pc+qjGRPjpoG9Agc/eCqukS3NydXlOjo4bVZTdc45atezspqQAAAAAAMCTUS4BAAB4ONPh0IYvxighZpZGVQ9VtsVyxozdMPRsRGWNTaqqy+7/QtXCqrkhKQAAAAAAKAsolwAAADxYVnqSds24R3/6bte8quFOZxO8vXT4xvt1NcUSAAAAAAC4CJRLAAAAHipm999K+vJuvVs5TxsqBDud9TV8NOaqsbq53s0uSgcAAAAAAMoqyiUAAAAPtPWXD5W16WW9FBmsOG9/p7PVK1TTO9dOU6OwRi5KBwAAAAAAyjLKJQAAAA9iz8vV3x8+rn0ZP+qNyFDZDMPp/NXVr9aEzhMU7Ot8ZRMAAAAAAMC5olwCAADwEMlxR3X4wzu0KOiYfqwc5nTWkPRYq8c1pPkQWQyLawICAAAAAIBygXIJAADAA+zb+Jsyfn5Qr0b4aI9fRaezgV4V9VbXyepQo4OL0gEAAAAAgPKEcgkAAKA0M01t/OoNJf8zVa9UD1W6l/NVSI1CGmrqte+oRmANFwUEAAAAAADlDeUSAABAKWXNStf2mYO1Rus0o1p4kfM96/fUS1e+JD8vPxekAwAAAAAA5RXlEgAAQCl07MAOxX9+p2aHZWplQIjTWW95aeSVL6t3w94uSgcAAAAAAMozyiUAAIBSZvsfC+S78mk9Xy1YMT4VnM5W8ausd659V80qN3NROgAAAAAAUN5RLgEAAJQSDptNGz4ernaHZ8kmqYYtQDE+Z/9x7Yqq7fRml0kK9Q91XUgAAAAAAFDuOX8jNAAAAFwiLSlO0W/1ULvDsySd/AbQG3EJirDZCp0f0nyIZnSfSbEEAAAAAABcjnIJAADAzQ5sX6XMdzuqefb6AufDHQ5NjkuQt2nmn6tg8dfUrlM1rPUweVm8XB0VAAAAAACAcgkAAMCdNn0/XZFf3qpIM67Qz1vm5Gp4YrIkqW5glL687St1q93NlREBAAAAAAAK4J1LAAAAbmDLydaW2UN1efw3kuF8tkZgL41s11G3XHKrAnwCXBMQAAAAAADgLCiXAAAAXCz52AHFfXiHLs/b7XQu3ayg3VdO0lU97nZRMgAAAAAAgKKxLR4AAIAL/bPuZ8XO6aJRVVK0wd/vrHMHLLWVOGCx2lAsAQAAAACAUoZyCQAAwBVMU1sWjFXM74P0UPWKivbz0zMRlXXcy+uM0Q2BXVX5yeWKatTSDUEBAAAAAACco1wCAAAoYblZ6do6tZfWx87SY9WqKPXfQinJy0tPR1RW7r9zNtOilfWf0eVPL1JQcKj7AgMAAAAAADjBO5cAAABKUOKRXYr7uJ/mhmZqScVKZ3y+zd9P4yqH6bEEu2K6f6COHW90fUgAAAAAAIDzQLkEAABQQvau/EY5fzyukVUrar9vwFnnvg4KVFTbYRp0BcUSAAAAAAAo/SiXAAAAipvDoS1fvKLEo7P1Uo1wZVic70R8eZXLdUuLni4KBwAAAAAAcHEolwAAAIpRTmay9sy4Wyst2/R+tSpFzg+8dKCeuvwpeVv4sQwAAAAAAHgG/hUDAACgmMQd2KbEz+7UjHCr/gwIcTrra/jo1ate04312AoPAAAAAAB4FsolAACAYrBn2XxZVz6jF6sF6ZBPBaezkRUi9e6176pRWCMXpQMAAAAAACg+lEsAAAAXwXTYteWT4Yo78YlGVg9XdhHvV2pf7UpN6vKmQvycr2wCAAAAAAAorSiXAAAALpA1PUl7Z9ypP3x26sOqRb9f6YHmD+jRyx6Vl8XLBekAAAAAAABKBuUSAADABTi2d5NSFtypdyrbtKaC81VIFSz+Gt9pgq6pc42L0gEAAAAAAJQcyiUAAIDztHPpJ7KufUEjqoUopoj3K9WqWEvTrp2mepXquSgdAAAAAABAyaJcAgAAOEem3abN857R0cSFGhMZppwi3q/UuWYXTbh6vAJ9A12UEAAAAAAAoORRLgEAAJyDrJQ4HZp5p6rlbNL9taorzzDOOmtIevSyx/RAiwdkMZwXUAAAAAAAAJ6Gf+0AAAAowvHd65T2Tkc1ydqgSLtdLyYmnXW2oleA3rtmuh5q+RDFEgAAAAAAKJP4Fw8AAAAndi/5UCFf3KRqjrj8c33SM9U7LeOM2XpB9bTw1i91dc2rXRkRAAAAAADApdgWDwAAoBCmPU/R855Us8OfFvr5i4lJ2uvro63+fpKk7nW669WOryrAJ8CVMQEAAAAAAFyOcgkAAOA/rCkndHRmPzXL2nzWGV9Jo09k6b664RrS+mENvHSgDCfvYQIAAAAAACgrKJcAAABOE79nrcz5d+kSR7zTuf1Gbanvp1p8SQNWKwEAAAAAgHKFcgkAAOBf+3+fq7zVw1Xfke10brV/JzV6aJ7CQsNclAwAAAAAAKD0sLg7AAAAgNs57Noxb5j2bhyhgdXDNTE8tNAxu2loSY1H1fbZbymWAAAAAABAucXKJQAAUK7lpidp/4x++tVnj+ZEVJYkLQgOUpOcXPXOyMyfSzYDte3Kt3Vdj77uigoAAAAAAFAqUC4BAIByK/HAZiV+1l9Tw21aGRBS4LPXKoepfl6eLsvJ1W6jruz9PlGnS5u7KSkAAAAAAEDpQbkEAADKpQN/LVDG8qc0vFqwDvtUOONzm2HoqYgqejqxrq4Y8okiwtgGDwAAAAAAQOKdSwAAoLxxOLTj8xH6Z/UwDakeqsM+PmcdTfD20oFrelAsAQAAAAAAnIaVSwAAoNywZaVoz4y79IexTR9UreJ01pD0ROthur/Z/a4JBwAAAAAA4CEolwAAQLmQcnSnTszrp/dDs7SsYojT2QCvAL3Z5U11qtnJRekAAAAAAAA8B+USAAAo8w6t/U4ZSx7RiKpBOuAb4HS2dmAdvXftNEWFRLkmHAAAAAAAgIehXAIAAGWXaWrHV2MVv/99jagernQv56+b7FSjsyZ2mqBA30AXBQQAAAAAAPA8lEsAAKBMsudkatfMgVptW6d3qlWWaRhO5x9u8bCGXjZUFsN5AQUAAAAAAFDeUS4BAIAyJ+34fsV+2EdzKqVpSXAlp7P+Fj9N6DxR19S+xjXhAAAAAAAAPBzlEgAAKFNiNv2q1J8e0Miq/tpbxPuVqleorundp6t+pfouSgcAAAAAAOD5KJcAAEDZYJra88NbitsxSS9UD1Oal5fT8SsjO2hSlzcV7BvsooAAAAAAAABlA+USAADweGZetnbNeUDrspZpcrXKchTxfqX7m92vx1s9Li+L8wIKAAAAAAAAZ6JcAgAAHs2adFTHZ/ZVfesOjapezWmx5Gv46vVOr6tHVA8XJgQAAAAAAChbLO4OAAAAcKGSdq1Q1rSrFGXdIV9JU0/EK8xuL3Q2wr+qPr/5c4olAAAAAACAi0S5BAAAPNKh32crcP5tCnMk55+LtNv1VlyCvE2zwGybiLb6+rav1CiskatjAgAAAAAAlDmUSwAAwLM47Nr7yTDVWf6MfGU74+M21hw9n/j/hdM9TQZq1vUzVcm/kgtDAgAAAAAAlF28cwkAAHgMe1ayDs7orwapa5zOdUvz0YqoK9Xjslt0S/1bXJQOAAAAAACgfKBcAgAAHiEjZofSP+qr+rajTue2GQ3lNeBTvdeQLfAAAAAAAABKAuUSAAAo9Y5t/FGJvwyVn5HtdG6p/3Vq/uAcRYSFuCgZAAAAAABA+cM7lwAAQOllmtr3/UTt+m2IhlQP1uNVqyjZcuaPL3bT0LdVH1fHp+dTLAEAAAAAAJQwVi4BAIBSycyzas+HQ7Qia5mmVq0s0zCUabHomYjKmnE8Tj7/zqWaAVrVapJuu22ADMNwa2YAAAAAAIDygJVLAACg1MlJidXuyV01x7ZKb4eFyjytNFpfwV8Tw0MlSQdUXbtv+U433H4XxRIAAAAAAICLsHIJAACUKkl71+nEwgEaXcWiHX4VC51ZEBwkX1uk+vb9Wu1qVndxQgAAAAAAgPKNcgkAAJQah/78RMdXvaAXqlVSoreX09nDzdsqqkaki5IBAAAAAADgFMolAADgfg6Hds8frh2xn+rVyDDlFbHF3f3NhuiJ1o+zFR4AAAAAAIAbUC4BAAC3cmSnac/MAfrO2KZPq4Q7nfUxfDTu6nHqUbeHi9IBAAAAAADgvyiXAACA22Qc36cjH/bS5LAsrakQ7HQ23Ddc07tP16Xhl7ooHQAAAAAAAApDuQQAANzixJbfFPvTfXopIkBHfCo4nW0a2lzTrntHlStUdlE6AAAAAAAAnA3lEgAAcLkDP0/V/q0T9VJkqLIsFqezt9W7Xa90eFm+Xr4uSgcAAAAAAABnKJcAAIDr2PO0d95QLUtdrHerhsk0jLOOWmTo+bYvaECTATKczAEAAAAAAMC1KJcAAIBL2DMStO+D3ppT4Yh+DqvkdLaipaLevvZttY9s75pwAAAAAAAAOGeUSwAAoMRlHtmqw5/01djKprb7VXQ6W7tiHX1w/fuqFVTLRekAAAAAAABwPiiXAABAiYrb8L2O/PqInq8apDhv5z96XBXZSZO6vqGKPs4LKAAAAAAAALiP8zdoAwAAXCjT1KEfJ6ryjwO1LsAoslga0uwBvXfduxRLAAAAAAAApRwrlwAAQPGz5eqfeQ+p3pFFkqSHUtK019dXSyoGnDHqI2+N6zxePaJ6uDolAAAAAAAALgDlEgAAKFb2jAQd/aC36mVszj9nkfRafKKOentrp59v/vlQnzDNuP4DNQlv4vqgAAAAAAAAuCBsiwcAAIpN5tHtSnz7KtU5rVg6JcA09c6JeIXb7JKkhsGN9X/t3XeYFeX5P/57C0tfelMpNiyo2KJYQWOJGoUYjSZGQQW7Jho1xpgQkqhfe+wVWzSW2I2KFYmKvSJWVEAFBGSXvrC7Z35/5Od+XNhdzspyzu7Z1+u6uC6fmfuZucnns8Nzzntn5oGf3S9YAgAAAGhi3LkEADSI2W/9J9o+Miq6x5Jaa3pWVsbPF24ZX2+1bozZ+c/RsqBlBjsEAAAAoCEIlwCA1ZMkMfXxS6L363+PgkhqLVuWFMYjfc6K40b8LloUuHkaAAAAoKkSLgEAP1xleXx627Exb/Z/ol8dwdLcpDhe2/6qOGifAyIvLy+DDQIAAADQ0PzaMADwg1Qu+jY+uHzPuKJsQozs1SOeadO6xrpPok98NuzR2HffoYIlAAAAgBzgzqVG4qabborTTz895s+fHxER48ePjyFDhjTY8cvLy+Pll1+OyZMnx7x586KoqCj69OkTgwYNir59+zbYeQBoHhZ//UFMuf3nMaZrKj4tahMREWd36xJrz/wmNlleXlX3YsF20evIf8b26/TMVqsAAAAANDDhUpZNmzYtRo0aFU8//fQaOf7ChQvj3HPPjeuvvz5KS0trrNlxxx1jzJgxsccee6yRHgDILbPffiI+HXds/KFHuygpKKravjQ/P07p0S3umjErulam4pF2B8eux10ZHdvVfEcTAAAAAE2TcClLkiSJa6+9Nn7/+9/HokWL1sg53n333Rg6dGhMmzYtIiJatGgR++yzT/Tv3z9KSkrihRdeiE8++SQmTpwYe+65Z5xyyilx2WWXRX6+pyUCULOpj18Wb35wcfy9V6eoqOERd7MKC+OU7t3jgMLh8fMRZ0WLAv+mAAAAAOQa4VIWTJkyJUaOHBkTJkyIiIh11lkn5s+fHwsXLmywc0yePDl23333mDdvXkREDBo0KO65557o06dPVU0qlYobbrghTjrppKisrIwrrrgiFi9eHDfddFOD9QFAjqgsj49uPyEeXfhU3N6tc52ln7RuH5vvO1SwBAAAAJCjfOuTYZdffnkMHDiwKlgaOXJkTJ48OTp3rvuLuvooKyuLn//851XB0sYbbxxPPfVUtWApIiI/Pz+OO+64uPrqq6u2jR07VrgEQDWVi0ti0hV7x+Vl4+P2DsV11nYr6hb3HHBPDOg6IEPdAQAAAJBpwqUMGz16dCxZsiT69esXTz/9dNx4441RXFz3F3X1dcUVV8THH39cNb7qqquiffv2tdYfc8wxscMOO1SNzz777Aa9iwqApmvJjI/i3St3jnPazYgX29T97qTNOg6MB372QKzfcf0MdQcAAABANgiXMiw/Pz9OOOGEmDRpUuyxxx4NfvySkpI4//zzq8ZbbLFF/PjHP65zTl5eXpx66qlV4zlz5sTFF1/c4L0B0LR8O+mpeO2fe8Up3ZP4vKhFnbUHrPuzuP2nt0THVh0z0xwAAAAAWSNcyrBx48bF1VdfHe3atVsjx7/nnnuitLS0anzYYYelNW///fevdgfVjTfeGEmSNHR7ADQRXz99dTz71FFxao/imF9QUGtdXpIXZ277+/j7LmOiRUHdARQAAAAAuUG4lGHbbbfdGj3+fffdV2282267pTWvVatWMWjQoKrxzJkz46WXXmrQ3gBoAior4rN/nhj/+vDC+FvXTlGRl1draau8lnHtntfG4QN+HXl11AEAAACQW4RLOWTBggUxYcKEqnFRUVFsscUWac9fMfh65JFHGqw3ABq/pGx+fHT1T+OyRU/G7R3qfh9gj6Iece/Qf8dOa++Uoe4AAAAAaCwKs90ADWfSpElRUVFRNV5vvfWiZcuWac8fMGBAtfE777zTUK0B0Mgtnzs1Prx5aIzpVBafFrWus3Zgp63i6r2vjA4tO2SoOwAAAAAaE3cu5ZDJkydXG6+zzjr1mr/22mvXeTwActPCKS/H6zftHr/pUh6fFhXVWfuz9Q6KW396s2AJAAAAoBlz51IO+eijj6qNVwyLVmXF+hkzZsTChQujffv2q93b7NmzY86cOfWaM2XKlNU+LwB1++aVu+PVF86IMT06xPL82t+blJfkxRk/OisOH/CrDHYHAAAAQGMkXMoh8+bNqzYuLq77fRkrqqm+pKSkQcKla665JsaMGbPaxwGggSRJTH/kb9H23cvi773XqjNYahkt44o9r4gd194xgw0CAAAA0Fh5LF4OWbhwYbVxfd63FBHRqlWrVR4TgBxQsSymjh0efd6+JLqkUnH+nG9rLe1S2DXuHXqvYAkAAACAKsKlHLJiEFRTWFQX4RJA7kst+jamX7539Pvq4aptP16yNH47r2Sl2o3abxoP/vyBWK/jeplsEQAAAIBGzmPxqJKXt/IjkZIkaZBjn3DCCXHwwQfXa86UKVNi2LBhDXJ+ACLKZn4cC27+WfQp/3qlfUfNXxhftGgRD7dvFxERe6y9T1yw29+jqKAo020CAAAA0MgJl3LIiu9GKisrq9f8pUuXrvKYP1T37t2je/fuDXIsAOqvZPKzUXjfEdE9WVTj/ryIGD13XrzTap3Yd+vD4/itRtX4SwcAAAAAIFzKIe3atas2XrZsWb3m1xRGNVS4BED2fD3+xug+4axoERW11pQlLeKhfufEfb8+IVq1cLcSAAAAALUTLuWQzp07VxsvWLCgXvNrqu/UqdNq9QRAFqVSMeXeM2Kdj8dGi6j9Madzk+J4ebur45B993e3EgAAAACrJFzKIRtvvHG18ddfr/xOjbqsWN+rV68oLi5e7b4AyLxk+eJ4/6bD4vL8yVHcrUtcPHtu5NdQ90nSO+YecHvsv83WGe8RAAAAgKappu+ZaKI222yzauOvvvqqXvNXDJdWPB4ATUN56Yx4/Yrd4uwWH8WrrVvF023bxFWdOqxU93LeVpEc9WTsKFgCAAAAoB6ESzlk8803j4KCgqrxZ599Vq/3Lr3//vvVxgMHDmyw3gDIjEXT34kJNwyJ0zoviqlFLaq239ixQzzark3V+LFWP431f/Of2Kjv2tloEwAAAIAmTLiUQ4qLi2Pw4MFV4/Ly8nj33XfTnv/6669XGx9wwAEN1hsAa97ctx6J/9w7LM7oXhTzv/fLBt8Z3bVLvFHUMu7tdlLsftrt0b1juyx0CQAAAEBTJ1zKMQcddFC18fPPP5/WvLKysnjllVeqxj179oyddtqpIVsDYA368olL49YXTolzu7WPiry8GmvK8/LijHU2jp8dOyZaF60cPgEAAABAOoRLOeaQQw6JDh3+770ad955Z1rzHn300ViwYEHVeOTIkZGf7/89ABq9VGV8/M/j4+Ivro7bOravs7R7Yfe4fdid0aKwMEPNAQAAAJCLpAc5pnPnznHWWWdVjd9777149tln65yTJElcdtllVeMuXbrEGWecscZ6BKBhJMsWxVvX/jT+tPS5eK5tmzprB7TfIh48+MHoXdw7Q90BAAAAkKuESznoN7/5TWy44YZV45NPPjkWLVpUa/0NN9wQL7/8ctX43HPPjeLi4jXaIwCrp6J0Rrx41ZA4s9XU+LBlUZ21+/UeGncMuy2Ki1zbAQAAAFh9wqUc1Lp167j//vujY8eOERHx4Ycfxl577RXTp0+vVpdKpeL666+PE088sWrbiBEj4thjj81kuwDU05Iv34unbhwSp3deGt/U8Yi7vCTiN1ueHv9v979HYb5H4QEAAADQMHzTlGFTp06Nddddd5V1u+2220rbRo8eHX/5y1/SOs/mm28ezz33XAwdOjS+/PLLePnll2PDDTeMffbZJ/r37x8lJSXxwgsvxMcff1w158QTT4zLL7887b8LAJk3770n4z9PHxeXdGsbqby8WuuKksK4aLd/xO59B2ewOwAAAACaA+FSDttqq61i0qRJcd5558X1118f8+fPj4cffnilukGDBsWYMWNir732ykKXAKTry2evizsnXxB3dm1XZ12HvOK4ef9bon/n/hnqDAAAAIDmRLiUYf369YskSTJ2vg4dOsQFF1wQf/vb32LixIkxefLkKCkpiaKioujdu3fssMMO0a9fv4z1A8APkErFx/8+M67+9sEY36HuYKl3Ud+4fdit0bV11ww1BwAAAEBzI1xqJoqKimLIkCExZMiQbLcCQH2Ul8WbN/8qLsx7Pz5o26bO0m06bh/X7ndltC5snaHmAAAAAGiOhEsA0EilFs2NF288IP5WXBKzClvWWfuzvofEXwafHfl5+RnqDgAAAIDmSrgEAI3Qsm8+iRdvHxZ/7JoXi/Nr/+c6P4k4das/xIiBv8pgdwAAAAA0Z8IlAGhkSj/+b+TffVhsmbcoOlb2jMX5Nd+N1DIpjEt2vzIG99k5wx0CAAAA0Jx5dg4ANCKzXrozWt91YBQnC6JLKhXXfDM72lemVqrrEO3jzv3vESwBAAAAkHHCJQBoDJIkpj389+j59AnRMsqrNq9XXhGXzp4ThUlStW2dFr3joV88Eht16Z+NTgEAAABo5oRLAJBtleXx+S1HR9+3L6px96CyZfHnufMiImKr4m3jgV/cH11bd81khwAAAABQxTuXACCLkqWlMe36Q2K90lfqrFtr8QZx9m6nxiFbD438PL8bAgAAAED2CJcAIEuWfzstvr1haPRb9kWddeNa7hVbHntzbN+5fYY6AwAAAIDa+dVnAMiCxVPfjHtv3SOSyul11t3X8ajY5dR/RU/BEgAAAACNhHAJADJszjuPxhWP/CIu6NoqTuzRLRbm5a1UsyxpEff2GxPDTr4k2rZqkYUuAQAAAKBmwiUAyKDPn706/jbx1PhXhzYRETGlqChO7941yr9XMy9pF09te0McPPw3UVjgn2oAAAAAGhffWAFAJiRJvPPv0+Pszy6P8W1bV9s1sU3rOL9Lp0giYmrSM97/yf2x//4HRl4NdzQBAAAAQLYVZrsBAMh5FcvjhVt/HX+PSTGjZcsaS/5d3D4KyjvHT3/679i1//oZbhAAAAAA0idcAoA1KCmbH4/fdECc22ZuLCyo/Z/d/CSiyy4nx0DBEgAAAACNnHAJANaQ8pKv4p7bfhqXdKyIirzan0TbMpUff9vlsthng90z2B0AAAAA/DDCJQBYAxZ/+V7c9MAv4qZOLSKi9ncnFadax/X7/TM2675R5poDAAAAgNUgXAKABjZ70ri4fMLJ8UjHVnXW9Yxucccv7okebbtlqDMAAAAAWH3CJQBoQJ9NuCEu+OCieLl93cHSRi02itsPvj3atGiToc4AAAAAoGEIlwCgISRJvPng2XH+3Afi4zZ1B0s7dxgSVx5wWRTm+2cYAAAAgKbHt1oAsLoqK2L8P4fHuZVvxTcti+osPbT3EXH2bqdHXl7t72ECAAAAgMZMuAQAqyFZtigeumloXNhmViwqrP2f1cIk4rQt/hyHb31wBrsDAAAAgIYnXAKAH6hi/qz45237xRXFy6IiL7/Wujapgvh/g6+J3dbbMYPdAQAAAMCaIVwCgB9g8dcfxDX3HxS3dyiIiNofcdepsnXcsP9dsXG39TPXHAAAAACsQcIlAKinko/+G+MeGxG3d21bZ93aSbf456H/jm5tumSoMwAAAABY82p/hg8AsJJvXr472tx9YBy08NvYccnSWus2bbFxPHDYfwRLAAAAAOQc4RIApOmrJy6Jbk8eFy2jPFpExCWz50b/ZctXqhvSYbf416F3R5sWbTLfJAAAAACsYcIlAFiVVCqm3XVarPPqXyM/kqrN7ZIkrv5mTnSvqIiIiLwk4rDeI+LKYVdEQX5BtroFAAAAgDVKuAQAdalYHlNv+nX0/Xhsjbt7VlbGNd/MifaVefH7LUbHWbv/LsMNAgAAAEBmFWa7AQBorJKyBTH9up9Hv9LX6qybmrdb3H3ANdGna7cMdQYAAAAA2SNcAoAaVMyfGd9cu3/0Lfu0zrr7io+In5xwabRr1SJDnQEAAABAdnksHgCsYOHX78foO34cs5NptdZUJPlxV6/fxwGnXC5YAgAAAKBZES4BwPfM/Gh8nPbIQfFIu4I4qUe3+LzFyjf5LklaxkMbXxyHHvOHKCr0TykAAAAAzYtvxADg//fRq/+KU/57fLzS5n93Ii0oKIjje3SPOQX/98/lt0n7GD9obBz0y6MjLy8vW60CAAAAQNYIlwAgIl558sI4ddLf4qOW1R9xN6NFYZzYo3sszsuLL5PuMfkn/4799tk/S10CAAAAQPat/KwfAGhOkiTG3XdKnLvw2Sit4RF4EREftiyKk7r1jlOG3Be7brpRhhsEAAAAgMZFuARA85WqjLtuOyQujQ+jrKCg1rK2lXlx4C6XxlaCJQAAAAAQLgHQPCXLl8S1t+wX17ecE6m82p8S27miMC7a4/bYru/mGewOAAAAABov4RIAzU7Fom/j/92+d9zTdllE5NVa16u8TVx34AOxXue1M9ccAAAAADRywiUAmpVFcz6LP/97WDzdtu669Su6xc2HPRSdWxdnpjEAAAAAaCJqfw4QAOSYmZ+9Eqfc/9NVBksDY8O4Z/g4wRIAAAAA1EC4BECz8PHbD8RJzx4Zr7eu+6bd3VruFP884v5oWViUoc4AAAAAoGnxWDwAct6rz18Zf5pyTcxsWfs/e/lJEgd3PSTO+emfMtgZAAAAADQ9wiUActq4R/4Qf5/7cMxvUfs/eUWpJI5f/7QYuetRGewMAAAAAJom4RIAuSlJ4l93HxWXlr0WywoKai1rVxnxx20uiZ8O3DuDzQEAAABA0yVcAiD3pCrjytuGxo15UyPJr/31gl0rCuKC3W+N7dbdMnO9AQAAAEATJ1wCIKck5Uvj0ZsOjBvafBURebXWrVPeKq4e9kCs17V35poDAAAAgBxQ+69zA0ATk1o6P6ZdsW8c8M3EGD5/Qa11G5Z3jjsOfVawBAAAAAA/gHAJgJywvHRWfP2PH0e/hW9FRMRp80pjv0WLV6rbsmLduGP4U9GlXXGmWwQAAACAnCBcAqDJWzJrSpRctVv0XvZp1bb8iPjbnG9jxyVLq7YNyds2bjvyoWjTomUWugQAAACA3CBcAqBJK/38zSi7fo/oUTFjpX0tIuKy2XNjs7LyOLDNfnHlEbdEfr5/+gAAAABgdRRmuwEA+KFmv/9stLnv19EultRaszhVHCM3vDx+vPveGewMAAAAAHKXcAmAJumrl++Nbk+eEC2jvNaa6UmPmHnAv+LH22ybwc4AAAAAILcJlwBocv71yBlR+Om/4hd1BEsfR98o/9V9sf1G/TPYGQAAAADkPuESAE1HksTVd4+IG5a9GdGlU3SprIwfL1m6UtlbeQOi09H3xUbrrJWFJgEAAAAgt3mrOQBNQlJZGX+/bf+4bvlbkcrLi1ReXpzZrWu80apltbqXCgfFWic9HusKlgAAAABgjRAuAdDoVSxfEqffslvckzet2vbl+XlxSvdu8UmLFhER8Uzrn8Rmv30oenbpmIUuAQAAAKB58Fg8ABq1pYu/jVPu/Em80rKsxv0LC/Lj+J7dYtTCnWLYCddFqyL/tAEAAADAmuQbOAAarW/nTo0THxgak1um6qzbJAbEz0+6PloUFmSoMwAAAABovjwWD4BGafpXb8WIB/evM1jKS5LYP2+HuPKofwuWAAAAACBDhEsANDqTPnoyjnry8JhaVHtNiySJX7cdFucdcUPk5eVlrjkAAAAAaOY8Fg+ARuWFN+6MP7x3XswvrP33H9qkkhjV89gYuc/JGewMAAAAAIgQLgHQiDwy4R/xt89virKC2oOlThWp+G3/v8SBuxycwc4AAAAAgO8IlwBoFG594o/xj28ejsr82h9x16s8ibN/dHUMGTgkc40BAAAAANUIlwDIun88eHyMXfBiRB3vTlpvWV6M3v3O2HqDLTLYGQAAAACwIuESAFmTJEn89Z5fxX3L3q+zbtOlLeLcoQ/FBr36ZKgzAAAAAKA2wiUAsqKysiLO+NcB8XTqyzrrtl3SNs4/9PHo2alzhjoDAAAAAOoiXAIg45aXl8WJd+wdr+TPq7Nu8OKucd6Ix6O4TesMdQYAAAAArIpwCYCMSpUvi1G3D4m3ChfXWbfPkn7x15EPRqsi/1QBAAAAQGOSn+0GAGg+UssWx5Qr5GA6NgAATNlJREFUh8Yh86ZFXpLUWJOfJHHgsoFx3jEPC5YAAAAAoBHyrR0AGVG+uCS+vGr/6L90UvSPiNL8/Di/a/X3KLVIkjgkBseZo66KvLy87DQKAAAAANTJnUsArHFlJTNj5uU/jvWWTqra9quFi+KEktKqcdtUKo5seWCcOVywBAAAAACNmTuXAFijFsz6PBbd+NPoU/n1SvuOK10QJfkFMa5d2ziqyzExYuhvstAhAAAAAFAfwiUA1ph5U9+L1G3DYq3k2xr350XEsd+Wx+abnhP77/HLzDYHAAAAAPwgwiUA1ohvPpwYre75RXSOhbXXJJ1i+n53xv7b7ZTBzgAAAACA1eGdSwA0uCdeuCba3vOz6FBHsDQ9esTsgx+JHwmWAAAAAKBJES4B0GCSJIkLH/1NnPn5tXFzp5a11n0afWP5EU/E5pttkcHuAAAAAICG4LF4ADSIVJKKP95/ZPxn8VsREXFjxw7RqTIVhy+ofvfSpPyNo9PIB2OdtdbKRpsAAAAAwGoSLgGw2ipSFfHbe38RE5Z9Wm37hV06RcdUZey/aElERLxeuHX0PeG+6N65SzbaBAAAAAAagHAJgNWyrHJZHH/X0Hi98usa9/+pa5foUJmKgtR2sdnJd0eHdm0z3CEAAAAA0JC8cwmAH2zJ8sUx/I69aw2WIiIq8/Li+bZbxtan3i9YAgAAAIAc4M4lAH6Q+WWlMeLufWNK3sJaawqTJA5ZsmGcdux9UdSiIIPdAQAAAABrinAJgHqbs2hWDP/3/vFlflmtNa1SqThs+bZx8rG3REGBG2UBAAAAIFcIlwCol69Lp8WIB34WswrKa61pX5mKI5Ld4thjroy8vLwMdgcAAAAArGl+lRyAtE2Z80Ec9sDQOoOlzhWVcUyLoXHsUYIlAAAAAMhF7lwCIC3vfvVanPD0yFhQkNRa07OiIo4uHh6HHnxWBjsDAAAAADJJuATAKk38bHyc+t9TYkkd97v2WV4Ro3qcHMMOOCFzjQEAAAAAGSdcAqBOT3/4UJz1yp9ieR3B0obLyuPYfufE3nv9OnONAQAAAABZIVwCoFYPvH17/PXdC6Myv/Z3J21eVh7HbXJh7LrrARnsDAAAAADIFuESADW67eWr4pKPr4skr/Zgadsl5XHcttfE9j/aPYOdAQAAAADZJFwCYCVXPn9u3DDt7og6gqWdF1fE8TvfHltssV0GOwMAAAAAsk24BEA177z5n7jji7si6ngU3h4LU3H8XvdF//4DMtgZAAAAANAY1PF6dgCamy/eeiY2eHRkXP3N7GiZStVYs//8iN8e8KhgCQAAAACaKeESABERMeXVx6LnI7+KdrE0ti1bFpfOnhuFSVKt5uDSwjj5F+Oib5/1stQlAAAAAJBtwiUA4pMX74/ejw+P1rGsatuuS8vi/DnfRt7/HzAdXtIqTjz8mejVc+1stQkAAAAANALeuQTQzH343J2x/oSToyivcqV9P1m8JBbl58VXBevGkUc9ER2Ki7PQIQAAAADQmAiXAJqx958cGxtPPD0K82p+v1JERO+KbWLfE+6JNq3bZLAzAAAAAKCx8lg8gGbqvUevik0n/q7OYGliuz1i4G/vEywBAAAAAFWESwDNzLyyefHHu34Vm775x8jPS2qte7H4p7Htb+6JVi1bZrA7AAAAAKCx81g8gGZk9pLZcfh9P4sZyYKIrp3jb3Pn1fhbBv/t9PPY8cQbo7CwIOM9AgAAAACNmzuXAJqJGYtmxC//vf//gqWIeKR9uzi3S6dY8d6l57v9OnY+6SbBEgAAAABQI+ESQDMwbf7U+OV9Q2N2LKm2/d7i9nFJ545VAdP4XiNj8PFXRn6Bfx4AAAAAgJp5LB5Ajvt03idx5COHxvy88hr339ahOHpWVMY6HYfHkCP/Hnl5eRnuEAAAAABoSoRLADls8pz3Y+Rjh8eivIpaa9ZbXh7tuw6PIUecm8HOAAAAAICmSrgEkKPemvlGHPfk0bE0L1VrzUbLlseRxUfEfof+MYOdAQAAAABNmXAJIAe9/OWLcfKzJ8SyvKTWms3LlsWIrsfHXj8/NYOdAQAAAABNnXAJIMeM/+KZ+N2EU6O8jlcnbbt0WRyx1mmx2wHHZa4xAAAAACAnCJcAcsjjnz4aZ790dlTWESztuKQsDl/3nNj5J8Mz1xgAAAAAkDOESwA54oEP742/vPq3SOoIlnZbXBa/2vjcGLT7LzLXGAAAAACQU4RLADngX5P+Gf/vzQvrDJb2XlgWvxx4aWyzy/6ZawwAAAAAyDnCJYAm7tZ3xsYl7/4joo5gaf8FZXHoj66JLQbtmbG+AAAAAIDcJFwCaMJufPO6uOL9q+usOWh+WRy889jYdOtdM9QVAAAAAJDL8rPdAGvG1KlTIy8v7wf/6dixY7b/CsAqXPP6lasMln5dWha/HHKHYAkAAAAAaDDuXAJogv7x6iUx9qNb66wZOa8s9tvr7thgwDaZaQoAAAAAaBaESwBNzLQZn8R9k2+NKKi95oRvy2Lvff8d6228ZabaAgAAAACaCY/FawaSJKn3n9LS0my3DdSgdM7MqBz7i7hl5szoWFlZY83Jc5fFvj+9T7AEAAAAAKwRwiWAJmLeN19FyXU/ifUqv4gNy8vjxlmzo/h7AVNeksSpc5bF3kMfjL79B2axUwAAAAAglwmXAJqAb7+ZHguv/0msWzm1atvGy8vjhlmzo31lKvKSJH43tzz2OvCR6LvBgOw1CgAAAADkPO9cAmjk5s6YGktu2jf6pr5ead+A5eVx3Tez470WXWL3gx+Ntfr2z0KHAAAAAEBzIlwCaMRmf/V5LBu7X/RJZtRa03l5l/jxrx+LXr3Xz2BnAAAAAEBzJVwCaKS+mf5pVNyyX/ROvqm1Znre2tFy5GPRY+11M9gZAAAAANCceecSQCNTniqPiyecG4tv3TfWriNYmpa/TrQ+ZpxgCQAAAADIKHcuNQOpVCrGjRsX999/f7zxxhsxffr0WLRoUbRr1y66dOkSm266aQwZMiQOPvjg6N27d7bbhWatvLI8TnriuJj47WvxUfeIq77Ji1ZJslLdF/l9o/2xj0fXHutkoUsAAAAAoDkTLjUDW2+9dbz77rsrbS8tLY3S0tL47LPP4tFHH42zzjorDj/88Ljooouic+fOWegUmrfllcvj+MdGxWslb0VExKutW8VvuneNK2bPiZbfy5c+y183Oh33eHTuvlaWOgUAAAAAmjPhUjPw7rvvRqdOneL444+PoUOHxnrrrRfFxcUxZ86cmDhxYowdOzaefPLJKC8vj5tvvjmeffbZeOihh2LLLbdssB5mz54dc+bMqdecKVOmNNj5obErqyiL4x8bGW+UVg+CJ7ZpHad27xb/+GZOFEXElIL1o8vxj0enrj2z0ygAAAAA0OwJl5qBPfbYI+64447o0aNHte1rr712HHzwwXHwwQfH2LFj45hjjolUKhXTpk2Ln/zkJ/Haa69Fnz59GqSHa665JsaMGdMgx4Jcs7RiaRzzn6Pinfnv17j/hTatY3S3LnHUvM7R/cTHo0Pn7hnuEAAAAADg/+RnuwHWjDZt2sTQoUNj1KhR8cgjj6wULK3o6KOPjr/+9a9V42+++SZ+9atfrek2odlbWrE0Rv3nyFqDpYiI9pWp2HFx5+h+0jjBEgAAAACQdcKlHNW9e/d46KGH4oYbbojWrVunNefMM8+M3r17V41feumleOKJJ9ZUi9DsfRcsvTt/cq01xZWV8ce5bWPIsU9Fh05dM9gdAAAAAEDNPBaPKi1atIgjjjgizj333KptY8eOjX322We1j33CCSfEwQcfXK85U6ZMiWHDhq32uaExWlK+JI557Kg6g6VOlZVx9tx2sfNxT0a74k4Z7A4AAAAAoHbCJarZZZddqo3Hjx8fqVQq8vNX7ya37t27R/fuHucFEekFS50rK+OPc9rFjscLlgAAAACAxsVj8ahmwIAB1cbz5s2LGTNmZKkbyD1LypfEqMfqfhRel4rK+NOc9oIlAAAAAKBREi5RTadOK3+RPXfu3Cx0Arnnf8HSUfHe/A9qrelSURnnzG0fg44fJ1gCAAAAABolj8WjmqKiopW2LV26NAudQG75v2BpFXcszW0X2x//hGAJAAAAAGi0hEtUs2DBgpW2denSJQudQO5YUr4kRj52ZExaxR1L/wuWxkW74s4Z7A4AAAAAoH6ESznolVdeiXHjxkXXrl3jpJNOqtfcr776qto4Ly8vevbs2ZDtQbOSTrDUtaIyzhEsAQAAAABNhHApB73yyisxZsyYaN++fb3DpTfeeKPaeODAgVFcXNyQ7UGzkW6w9Ke5beNHxwmWAAAAAICmIT/bDbDmLFy4MN555516zbnvvvuqjffdd98G7Aiaj3oFS8eOi/YdBEsAAAAAQNMgXMpx1157bdq1b7/9djz11FNV4zZt2sQpp5yyJtqCnPen5/6w6mBpTpv/BUsdvdcMAAAAAGg6hEs5buzYsfHkk0+usq6kpCSGDx8eqVSqatuYMWOiR48ea7I9yEkzv/wsjnj9iehbXl7j/q4VlfHnOW3iR8c9KVgCAAAAAJoc4VKOq6ysjKFDh8all14aZWVlNda89NJLsfPOO8ekSZOqth111FFx+umnZ6pNyBmzv54WFTf/NAZWfBNjZ85eKWDqVlERf57TOrYVLAEAAAAATVRhthug4W277bYxYMCAmDx5ckRELFu2LH73u9/F3//+99h1111j/fXXj1atWsXs2bNj4sSJ8cEH//forsLCwjjvvPMES/ADzJk5PZbetG/0TWZERESPysoYO3N2HN2re0xr0SK6VVTEn+a0iW2Pe0qwBAAAAAA0WcKlHLTzzjvH+++/HxMnToz77rsvHn/88fj444+jpKQkHn744RrndO3aNX75y1/GqaeeGuuuu26GO4am79vZM2LRjT+NdZOvqm3/LmA6q1uXGF5aHNu4YwkAAAAAaOKESzlsxx13jB133DEuvfTSmDt3bkyaNCk+//zzKCkpiWXLlkWHDh2ia9euscUWW8Qmm2wSeXl52W4ZmqSSud9EyfX7xQapaTXu71FZGX+c0z66n/xktO/YNcPdAQAAAAA0LOFSM9G1a9fYbbfdYrfddst2K5BT5s+bE3Ov3Tc2rPy81prPC9aN7ieMi2LBEgAAAACQA4RLAD9Aeao8Zn87MxZef1BsXDml1rqp+X2i83GPR3GX7hnsDgAAAABgzREuAdRTRaoiznjud/HZFxPin6nptdZNz18nio99PDp2WyuD3QEAAAAArFn52W4AoCmpTFXG758/M579enxMLUrFUb26x7z8lS+lX+atFW1GPRade/TOQpcAAAAAAGuOcAkgTakkFX/879nx1JdPV237tKgojurVPeYW/N/l9Ou8HtFq5GPRtVe/LHQJAAAAALBmCZcA0pBKUvHnF/4Uj017fKV9nxUVxZE9e8TsgoKYldctCo/8T3Rbe70sdAkAAAAAsOYJlwBWIUmS+NvEv8bDXzxSa82cwoL4qKBzpI54NHr06Z/B7gAAAAAAMqsw2w0ANGZJksS5L58b9025v9aa1qlUnD+rLNY/5KFYa91NMtgdAAAAAEDmCZcAapEkSVz42oVxz6f31FrTKpWK879ZEhse9GCsvf7mGewOAAAAACA7PBYPoAZJksRlb14Wd3x0R601Lb8LlobeG+tsuGXmmgMAAAAAyCJ3LgHU4Op3ro5bJt9S6/4WSRLnz14UG/z03uizyY8y2BkAAAAAQHYJlwBWMHbS2Lj+vetr3V+YJHHeNwti/Z/8K/pttn0GOwMAAAAAyD6PxQP4nn99+K/4x1v/qHV/YZLEebMXxAZ73h7rDdw5c40BAAAAADQS7lwC+P89+OmDcf5r59e6vyBJ4u+zS2O9wWNjg62HZK4xAAAAAIBGRLgEEBFPfPFEjJ7451r35ydJ/H12SfTb4erYaPu9M9gZAAAAAEDj4rF4QLM3fvr4+MN/z4qkjprRc0qjzzYXx4BdhmWqLQAAAACARsmdS0CzNvHriXHa+FOjMlK11vxxzrxYd8BfY4sf/zKDnQEAAAAANE7uXAKarTdmvREnP3tiVERlrTWnf1sSG27w+9hq36Mz2BkAAAAAQOMlXAKapSRJ4sIJf43lSUWtNSeUlMYma58U2ww7JYOdAQAAAAA0bsIloFn68LVn4vKPXo0typbVuP/I0gWxdefhsd0hZ2W4MwAAAACAxk24BDQ7n7z9QvR+/PDolZTFDbNmx7ZLy6rtP3TBwtix3YGx/RF/z1KHAAAAAACNl3AJaFY+n/xadHv4l9E+b2lERLRNkrjmmzmx05L/jYcuXBQ/Ltwrtj/ykmy2CQAAAADQaBVmuwGATJn+6XtR/O+Do1MsrLa9dZLEFd/MiXuK20f/FrvFdsdeF3n5sncAAAAAgJoIl4BmYeaXn0XRnT+LrlFa4/6iiNgkb4fY+oRbBUsAAAAAAHXwDSqQ876d/XUsv/mA6Blza615u+0useVJd0Z+QUEGOwMAAAAAaHrcuQTkrCXlS2L2vBlRfsMhsWHyVa1177XeLgaccl8UtijKYHcAAAAAAE2TcAnIScsql8VJz5wYX379Vtya92WtdZOLtoj+Jz8YRS1bZbA7AAAAAICmy2PxgJxTkaqIM54/PV6f/UbMapGKI3r1iM9arJylf1LYP/qd9Ei0atMuC10CAAAAADRNwiUgp6SSVPz5pT/H+K+er9o2u7AwRvTqEZOL/u+xd1Pz+0SP4x+NtsWdstAlAAAAAEDTJVwCckaSJHHhaxfGo58/utK+0oKCOKpX93ijVcuYmdc92o18NDp06ZmFLgEAAAAAmjbhEpAzrnv3urjzoztr3d8qSaKgom0khz8cXdfql7nGAAAAAAByyMovIQFogu744I645t1rat3fvjIVl8xaGJ0OvD/WWm/TDHYGAAAAAJBbhEtAk/fwlIfjgtcvqHV/q1QqLplVGsV7/zP6bbpdBjsDAAAAAMg9wiWgSXt2+rPx55f+VOv+wiSJi74pifa7XBv9t9k9g50BAAAAAOQm4RLQZL0y85U4ffzvIhVJjfvzkiTOnf1tdNjqgthsl6EZ7g4AAAAAIDflZ7sBgB/ivTnvxcnPnBgVUVlrzZ+/nRfdNjw7ttr7iAx2BgAAAACQ24RLQJPzWelnceyTx0RZanmtNafNK4nePY+LH/3s5Ax2BgAAAACQ+4RLQJMyc9HMGDnu6FhUubjWmpGl82OT9r+I7Q/7cwY7AwAAAABoHoRLQJNRUlYSo54cGXOXfVtrzSELFsb2hXvE9kddnMHOAAAAAACaD+ES0CQsKV8SJzx9fExbNL3Wmn0WLY69l28Z2x13Y+Tlu7wBAAAAAKwJvn0FGr3yyvI4dfxv4/15k2ut2WXJ0jh0Yd8YeNLdkV9QkMHuAAAAAACal8JsNwBQl1SSinNePCcmzny51poty5bF8fM6xnqnPBhFLVtlsDsAAAAAgOZHuAQ0and9dFc8PvXxWvdvsHx5/GF2QfQ89uFo275j5hoDAAAAAGimPBYPaNR6v/lxDF6ytMZ9PSsq4u+zyqPj4Q9F5+5rZ7gzAAAAAIDmSbgENFpvPnpt7Drl8vjHN3Ni6MJF1fZ1rKyMS2ctjNY/vzvW6rdRljoEAAAAAGh+hEtAozTp+ftiizf+GBH/e37n3+bOiyNLF0REROtUKv4xqyQK9xgb6226XRa7BAAAAABofrxzCWh0Pn1zfKw//oRokVdZtS0vIk4rKY2ulZXRb3lF5G93WWyy/d7ZaxIAAAAAoJly5xLQqHw1ZVJ0ffSIaJO3rMb9RyxYGK36nx1b7fHLDHcGAAAAAECEcAloROZ981Xk3XlQdIoFtdZMXPeU2O7AUzLYFQAAAAAA3ydcAhqFJYvmx9wbfxZrJ7NqrXm5+6Gxw+FjMtgVAAAAAAAr8s4lIKuWVS6LP77wx9jtzTdiv4pPaq17vXjP2P7YayIvXyYOAAAAAJBNwiUga1JJKs7671nxzPRnYmKnVHQvbxk/Klv5XUuTWm4VA0+8I/ILCrLQJQAAAAAA3+cWACArkiSJi16/KJ6Z/kxERCwsyI9je3aPJ9q2qVY3pWC96HvCA1HUslU22gQAAAAAYAXCJSArbv/g9rjjwzuqbSvPy4szu3eN24rbRxIRs6JrFB/1YBR36JydJgEAAAAAWIlwCci4J754Ii5+4+Ja99/WoX18nd8uyg65N7qv3S9zjQEAAAAAsErCJSCjXp/1epz9wtm17m+bSsU/ZpXE/D1vin6bbJPBzgAAAAAASIdwCciYT0s+jZOfOSkqkooa9xcmSVzyzdxYvtX5MWCHfTLcHQAAAAAA6RAuARkxa/GsOO6pY2Jx5ZJaa/4699vI731ybLvvkRnsDAAAAACA+hAuAWvcwuUL4/inj4vZZXNrrTllXml0bTM0djjsnAx2BgAAAABAfRVmuwEgt5VXlsdvnvtNTJn/Wa01v1iwMLas3Dq2OfbqDHYGAAAAAMAPIVwC1phUkopzXjonXv/m9VprhixeEsMWrB0bnnZX5BcUZLA7AAAAAAB+COESsMZc9fZV8fgXj9e6f4uyZXHit22i14kPRavWbTLYGQAAAAAAP5RwCVgjHpryUNw46cZa9/ctL4+/fFMe7UY8Fh06d8tgZwAAAAAArA7hEtDgXpv5Wvxl4l9q3d+5sjIunTk/8oY9EL36bJi5xgAAAAAAWG352W4AyC2fz/88fvPcKVGZVNa4v3UqFVfMmhtLdro8Nthihwx3BwAAAADA6hIuAQ1mXtm8OP6p42NRxeIa9+cnSVw4+9tYuv7pseXuv8hwdwAAAAAANAThEtAgllUui1OePTlmLJlRa82Z80qiZfuhMeiQMzPYGQAAAAAADck7l4AGcd8n98W7c9+rdf8v5y+MTSq2jIHHXJ3BrgAAAAAAaGjuXAIaxPrvTo+jSufXuG+XJUvjZ/O7xMYn3hUFhTJtAAAAAICmzLe8wGp777l74kcfXhCD8pLoXVERf+/SOSrz8iIiYqNly+P02Um0P+bBaNO2OMudAgAAAACwuty5BKyWzye9HBtMODkK8pKIiDho4eK4ZtacaJdKRfeKirhg1sKIg+6Kbr36ZLlTAAAAAAAagjuXgB9s7tdfRPv7fxVt8pZV275jWVncPuObKIuCWDz4uthiwHZZ6hAAAAAAgIbmziXgBylbsjBKbzkousW8GvdvWF4eSzY6K7YY/LMMdwYAAAAAwJokXALqLUlVxofXHBYbVEyptWZiryNi+4NOzWBXAAAAAABkgnAJqLfXb/19bLVoQq3732w3OAaN/EfmGgIAAAAAIGO8cwlI2x0f3BHJJ5/E4dNvrLXmo8KNY9Pj/xX5BQUZ7AwAAAAAgEwRLgFpeW76c3Hh6xdGfpKKgvbt4pcLF0XeCjUzo2t0Ofrf0bptu6z0CAAAAADAmuexeMAqfTzv4/j9f38fSSRRmZcX53ftHH/v0inKv1ezOGkZiw+8I7r16pO1PgEAAAAAWPOES0Cdvl36bZz07IlRVllWbfu9xe3j2J7dozQ/P1JJXny0wyWxwRY7ZKlLAAAAAAAyxWPxgFotr1wep47/bcxa8k2N+19v3SrebNUyWnU/Onb6yeEZ7g4AAAAAgGwQLgE1SpIk/vbK3+LtOe/UWnNcyfxoX7hL/OiIv2WuMQAAAAAAskq4BNTo9g9uj4emPFTr/j0XL4ndFvWM9X53a+Tle8ImAAAAAEBzIVwCVvLfr/4bl7xxSa37N1m2PE6eE9HumPuiVeu2GewMAAAAAIBsEy4B1XxW+lmc8fzpkURS4/4uFZXx/2bNj4phD0a3Xn0y3B0AAAAAANnmWVZAlQXLF8Qpz54cSyqX1ri/KJXE5bPnxLztLooNB+6Q4e4AAAAAAGgMhEtARERUpirjrP+eFdMXfVlrzV/mfhsLe46KbX9yeAY7AwAAAACgMfFYPCAiIq5+5+p44esXat1/dOn86J6/U2w3/O8Z7AoAAAAAgMZGuATEM9OeiRsn3Vjr/iGLl8ReC3vGuqfdFnn5bngEAAAAAGjOhEvQzH1a8mn84b9n1bq/3/Ly+O2ciPaj7ovWbdpmsDMAAAAAABoj4RI0Y/OXzY9Tnj05ylLLatzfNpWKi74pifL974vua/XJcHcAAAAAADRGnm8FzVRlqjJ+/9/fx1eLv6615v/N/jZKN/tLbLz1LhnsDAAAAACAxky4BM3UVe9cFS/NeKnW/SeUlEZR+2ExaNjxGewKAAAAAIDGzmPxoBl6cuqTcdOkm2rdv/viJbHjkvVi0xOvyGBXAAAAAAA0Be5cgmboy68+jIIkqXHfusvL48S5BdF71N3RokVRhjsDAAAAAKCxEy5BM7Ow9NvY67kbYuzM2dG5srLavnapVFz4zfzIP/Cf0blbryx1CAAAAABAYyZcgmYkVVkZn99wWPRJfR3bLFsW93w9KzZbtiwiIvKSJC6YPTcWbX1ebLDZ9lnuFAAAAACAxso7l6AZefP238ePlrxcNe5ZWRm3zvwm/t6lc6xTURGFnQ6Nbfc9MosdAgAAAADQ2LlzCZqJD567M3407caVtrdMIv46d15sV7ZRbH/UJVnoDAAAAACApkS4BM3AzE/fjr7/Pa3W/V/lrRXrHXN3FBS6mREAAAAAgLoJlyDHlS0qiYq7fh1to6zG/YuS1lF5yJ3RoXPXDHcGAAAAAEBTJFyCHJakUvHp9UdE79RXtdZ8uMNF0W/jrTPYFQAAAAAATZlwCXLUi1+/GH+88xex6cL/1lozYa2R8aOfHJ7BrgAAAAAAaOq8YAVy0IxFM+KM534Xi1JLYnbP7vH/Zs+NrqlUtZo3Wg2KnY66IEsdAgAAAADQVLlzCXLM8srl8dunT45FqSUREfFq61ZxyNo9462WLatqvoxese6oO6KwUL4MAAAAAED9CJcgx1z02oXx4YJPqm2bXVgYR/XqHrcVt4+lSVEsHHZLdOnSLUsdAgAAAADQlAmXIIc8O/3ZuPuTe2rcV5mXF98WFMSbA8fEplvukOHOAAAAAADIFcIlyBEzF82MPz7/+1r3b7O0LLbJ2z12+tnxGewKAAAAAIBcI1yCHFCRqohTnzoxFifLatzfpaIyRs3rFNsfc03k5eVluDsAAAAAAHJJYbYbAFbfVa9dFpMXflrjvrwkiXPmLI11f/1otGrVOsOdAQAAAACQa4RL0MS9NvPVuPmj2yNquSFpZOnC6LbTVbFWn/Uz2xgAAAAAADnJY/GgCSspK4nTnzo5klqCpa3LymKzjofHwF32z2xjAAAAAADkLHcuNTPTp0+PV155JaZNmxbLly+Pzp07x4ABA2LQoEFRVFSU7faohyRJ4ndPHB8lsbTG/cWVlXHIgvVj8Gl/zXBnAAAAAADkMuFSM/Hcc8/F6NGj48UXX6xxf4cOHeKYY46Jc845J4qLizPcHT/EbW/fGK8vmFzr/pPmRmw/8s4oKHCDIgAAAAAADUe4lONSqVScfvrpcdlll1Vt22ijjWLnnXeOTp06xSeffBJPPPFEzJ8/Py666KK4++674+GHH46tttoqi12zKp+XfBZXvndlre9ZOnj+4th8z39Fl85dMtsYAAAAAAA5T7iU444//vi44YYbIiKioKAgrr766hg1alTk5//f3SzTp0+PX/ziF/Hqq6/Gl19+Gbvvvnv897//jc033zxbbVOH8lR5/PaRI2N5LcFS/2XLY4fuJ8RmWw3KbGMAAAAAADQLnpeVw2655ZaqYCki4rrrrotjjz22WrAUEdGnT5946qmnon///hERUVpaGgceeGAsXVrzu3zIrgvG/SG+iJIa97VKpeKXizeJPQ75XYa7AgAAAACguRAu5ahFixbFWWedVTXeeeedY+TIkbXWFxcXxxVXXFE1njJlSlx++eVrtEfq75Up4+Pfs8fVun94SX7sefRtkZdXy21NAAAAAACwmoRLOeriiy+O2bNnV41PO+20Vc7Ze++9Y9NNN60aX3DBBVFSUvMdMmTe4mWL4s8TTo1ULcHRoCXLYs+9bokOxR0y3BkAAAAAAM2JcCkHJUkSN954Y9W4Y8eOsd9++6U199e//nXVf5eWlsY999zT4P3xw/zhrkNjZmFljfuKKyvjZ92PiY022zbDXQEAAAAA0NwIl3LQSy+9FDNmzKga77jjjlFUVJTW3CFDhlQb33fffQ3ZGj/QXU9fFuPzptW6/5Cl68Y+B3rPEgAAAAAAa55wKQc98sgj1cY/+tGP0p671VZbRYsWLarGEyZMiAULFjRYb9TfnJnTY/NXL48fLS2rcf8ui/Ni5Ii7vWcJAAAAAICMEC7loLfffrvaeJNNNkl7bqtWrWK99darGldUVMT777/fYL1RPxXl5THrlsNjs4qSuGnW7Djj25IoSiVV+7tVVMaJQ66PNm3bZ7FLAAAAAACaE+FSDpo8eXK18TrrrFOv+WuvvXadxyNzvp7yXvRd/klE/O+H9YgFC+PuGbNi42XLIyLiiC4Hx4BNd8hihwAAAAAANDfCpRyzYMGCmDlzZrVtK4ZFq7Ji/UcffbTaffHD9N1km1g0/LmYUrhB1bYNy8vjXzNmxclLNogRw8ZksTsAAAAAAJqjwmw3QMOaN2/eStuKi4vrdYwV60tKSlarp4iI2bNnx5w5c+o1Z8qUKat93lyw1rqbxLLTX4hXbjopBs29PyIiphVuEMOPvDPLnQEAAAAA0BwJl3LMwoULV9rWsmXLeh2jVatWqzxmfV1zzTUxZoy7bH6olq3axKCTbo7XH985er92XrQ57I5o2apNttsCAAAAAKAZEi7lmJqCoBXDolVZE+ESDeNH+x4Vy3/8qyhqWb//mwIAAAAAQEPxziVWKUmSbLfA9wiWAAAAAADIJncu5Zj27duvtK2srCzatm2b9jHKyspWecz6OuGEE+Lggw+u15wpU6bEsGHDVvvcAAAAAABAwxEu5Zh27dqttG3ZsmVZD5e6d+8e3bt3X+3jAAAAAAAA2eWxeDmmc+fOK21bsGBBvY6xYn2nTp1WqycAAAAAACB3CJdyTIcOHaJnz57Vtn399df1OsaK9RtvvPFq9wUAAAAAAOQG4VIO2myzzaqNv/rqq3rNXzFcWvF4AAAAAABA8yVcykFbbbVVtfEHH3yQ9tyysrL4/PPPq8YFBQXCJQAAAAAAoIpwKQftv//+1cavv/562nPffvvtKC8vrxoPHjw4iouLG6w3AAAAAACgaRMu5aCddtopevXqVTV++eWXY/ny5WnNff7556uNDzrooIZsDQAAAAAAaOKESzkoPz8/Ro4cWTUuLS2Nxx57LK25d955Z9V/d+jQIQ455JAG7w8AAAAAAGi6hEs56owzzohu3bpVjS+77LJVznnyySdj8uTJVeMzzzwzOnfuvEb6AwAAAAAAmibhUo5q3759nHfeeVXjF154IcaOHVtr/cKFC+OUU06pGq+//vrx29/+dk22CAAAAAAANEHCpRw2cuTIOProo6vGxx57bNxwww2RSqWq1U2fPj323HPP+OSTTyLif4/Du//++6NNmzYZ7RcAAAAAAGj8CrPdAGvWDTfcEG3bto0rrrgiKisr49hjj41LL700dt111+jQoUN8+umn8cQTT8Ty5csjImLttdeOhx9+OAYOHJjlzgEAAAAAgMZIuJTj8vPz4/LLL4/9998/Ro8eHRMnToyPP/44Pv7442p1xcXFMWrUqPjTn/4UHTp0yFK3AAAAAABAYydcaib22GOP2GOPPWLatGnx8ssvx/Tp02P58uXRqVOnGDBgQOywww7RsmXLbLcJAAAAAAA0csKlZqZv377Rt2/fbLcBAAAAAAA0UfnZbgAAAAAAAICmQ7gEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2gqz3QDUZtmyZdXGU6ZMyVInAAAAAADQeKz4ffmK36evacIlGq0vv/yy2njYsGHZaQQAAAAAABqxL7/8MrbeeuuMnc9j8QAAAAAAAEibcAkAAAAAAIC05SVJkmS7CahJaWlpTJgwoWrcu3fvaNmyZRY7yq4pU6ZUezTgQw89FBtssEH2GgKaFNcQYHW5jgCrwzUEWB2uIcDqyNVryLJly6q9Wmbw4MHRsWPHjJ3fO5dotDp27BhDhw7NdhuN1gYbbBADBgzIdhtAE+UaAqwu1xFgdbiGAKvDNQRYHbl0DcnkO5ZW5LF4AAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkrTDbDQDp6datW4wePbraGCBdriHA6nIdAVaHawiwOlxDgNXhGrJm5CVJkmS7CQAAAAAAAJoGj8UDAAAAAAAgbcIlAAAAAAAA0iZcAgAAAAAAIG3CJQAAAAAAANImXAIAAAAAACBtwiUAAAAAAADSJlwCAAAAAAAgbcIlAAAAAAAA0iZcAgAAAAAAIG3CJQAAAAAAANImXAIAAAAAACBtwiUAAAAAAADSVpjtBoBVmz59erzyyisxbdq0WL58eXTu3DkGDBgQgwYNiqKiomy3BwBk2Ndffx1vvvlmzJgxI0pKSqJFixbRqVOnWH/99WPbbbeNdu3aNdi5ysvL4+WXX47JkyfHvHnzoqioKPr06RODBg2Kvn37Nth5Iqx5IBOWLVsWH330UXz44YcxZ86cWLBgQbRq1So6duwYG220UWy55ZYNdg1x/QAAsslaZM0SLkEj9txzz8Xo0aPjxRdfrHF/hw4d4phjjolzzjkniouLM9wd0BBuuummOP3002P+/PkRETF+/PgYMmRIgx3fQgpyx8SJE+Pee++NBx98MKZPn15rXX5+fvz4xz+Ok046KQ444IAffL6FCxfGueeeG9dff32UlpbWWLPjjjvGmDFjYo899vjB54mw5oE17Z133okHH3wwnnvuuXjttddi+fLltda2aNEi9tlnnzj11FN/8JrE9QOanyRJYpdddomXXnqpatvw4cPj1ltvXa3j+jwDTd/UqVNj3XXX/cHzO3ToUOt6ojbWIpmRlyRJku0mgOpSqVScfvrpcdlll1Vt22ijjWLnnXeOTp06xSeffBJPPPFElJeXR0RE79694+GHH46tttoqWy0D9TRt2rQYNWpUPP3009W2N1S4ZCEFuePBBx+M8847L954442qbXl5ebHtttvG1ltvHV26dInFixfHhx9+GP/973+jrKysqm6//faLsWPHRo8ePep1znfffTeGDh0a06ZNi4j/+7K5f//+UVJSEi+88EJ88sknVfWnnHJKXHbZZZGfX7+nblvzwJrXv3//+PTTT6ttKy4ujsGDB8eGG24YrVq1innz5sVrr70Wb731VrW6o446Kq677rpo0aJF2udz/YDm6brrrovjjz++2rbVCZd8noHckelwyVokgxKg0TnmmGOSiEgiIikoKEiuu+66pLKyslrNtGnTku23376qrmPHjsl7772XpY6BdKVSqeTqq69O2rVrV/Xz+/0/48ePX+1zvPPOO0nfvn2rjtmiRYvkgAMOSE4//fTk6KOPTvr371/tnKeccspK15h0VFZWJqeeemq1Y2200UbJ0UcfnZx++unJAQcckLRo0aJqX+/evZO33nprtf9+0Nz06NGj2s/Z4MGDk48++qjG2hkzZiQHH3xwtfqNN944+eabb9I+3/vvv5907ty5av6gQYOSadOmVauprKxMrr322qSgoKCq7uijj673382aB9a8718P8vLyknPOOSdZtGhRjbWvvvrqSuuEn//852mfy/UDmqcZM2YkHTp0WOmzzfDhw3/Q8XyegdzyxRdf1Pj9R7p/OnTokPa5rEUyS7gEjczNN99c7QJ644031lo7f/78aouqDTbYIFmyZEkGuwXq49NPP00GDx5c9TO7zjrrJO3bt2/QcMlCCnLP98Ol3XffPVm+fHmd9alUKjnssMOqXVv23nvvtM61dOnSZKONNqoWTC1YsKDW+uuuuy7tdcuKrHkgM77/c3bBBRessv7rr79OunfvXm3e3Xffvcp5rh/QfB144IE1fiH8Q8Iln2cg93w/XFqTrEUyT7gEjcjChQurfZDbeeedVzln3Lhx1S5m559/fgY6BerrH//4R9KmTZuqn9WRI0cm8+fPr/YbeasbLllIQW76LlwqLCxMpkyZktac0tLSpLi4uNrP6bhx41Y574ILLqg255lnnqmzPpVKJTvssENVfbdu3eq87nzHmgcy57ufmf79+ycVFRVpzbnwwgur/bwNHjx4lXNcP6B5euihh6p+tla8e6m+4ZLPM5CbMhUuWYtknnAJGpHRo0dXu9A88MADac3bdNNNq/0Wzbx589Zwp0B9ffdBq1+/fsnTTz9dtb0hwyULKchN34VLe+yxR73mjRo1qtrP3YgRI+qsnzdvXtKxY8eq+i222CKt89x7773VzvPnP/95lXOseSBzvvuZOeecc9KeM3ny5Go/owUFBXUGU64f0DwtWLAgWWeddZKISNZdd93kjDPOWK1wyecZyE2ZCJesRbKjfm+pAtaYJEnixhtvrBp37Ngx9ttvv7Tm/vrXv67679LS0rjnnnsavD9g9eTn58cJJ5wQkyZNWu0XztakpKQkzj///KrxFltsET/+8Y/rnJOXlxennnpq1XjOnDlx8cUXr/JcF198ccyePbtqfNppp61yzt577x2bbrpp1fiCCy6IkpKSVc4D/s/OO+9cr/oddtih2ri2l1R/55577qn2otzDDjssrfPsv//+1V5ufeONN0aSJLXWW/NAZu23336x3377xV577ZX2nH79+lUbV1ZWxty5c2utd/2A5ukPf/hDfPXVVxERce2110abNm1+8LF8ngFWh7VIdgiXoJF46aWXYsaMGVXjHXfcMYqKitKaO2TIkGrj++67ryFbAxrAuHHj4uqrr4527dqtkeNbSEHueuCBB2L8+PFxzDHH1Gter169qo1nzZpVZ/2K64fddtstrfO0atUqBg0aVDWeOXNmvPTSS7XWW/NAZv3nP/+J//znP7HLLrukPScvL2+lbS1btqy13vUDmp9XXnklrr322oiI+NWvfhV77733ah3P5xlgdViLZIdwCRqJRx55pNr4Rz/6Udpzt9pqq2jRokXVeMKECbFgwYIG6w1Yfdttt90aPb6FFOSuHXfcMYYMGbJSWFRfqVSq1n0LFiyICRMmVI2Liopiiy22SPvYK17jVlzX1LXPmgcany+//LLauGfPntGxY8caa10/oPkpLy+PUaNGRSqVik6dOsVll1222sf0eQb4oaxFske4BI3E22+/XW28ySabpD23VatWsd5661WNKyoq4v3332+w3oDGzUIKqMmcOXOqjTfccMNaaydNmhQVFRVV4/XWW6/OuxRWNGDAgGrjd955p9Zaax5o/J5++ulq4wMPPLDWWtcPaH4uuOCCqp+fiy66KLp3775ax/N5Blgd1iLZI1yCRmLy5MnVxuuss0695q+99tp1Hg/IXRZSQE3ee++9auO6HleTyXWINQ80bosWLYqLLrqoatyhQ4c466yzaq13/YDm5ZNPPolzzz03IiIGDx4cRx111Gof0+cZaD5SqVQ8/vjjcfTRR8fAgQOjU6dO0aJFi+jUqVNssMEGccABB8Sll1660l3UdbEWyR7hEjQCCxYsiJkzZ1bbtuLFZlVWrP/oo49Wuy+gabCQAmoybty4qv/Oy8ur88ufFdcNq7sOmTFjRixcuHClOmseaNxmz54d+++/f0ybNi0iIlq3bh333HNP9O7du9Y5rh/QvBx77LFRVlYWLVu2jOuvv77Gd7TVl88z0HxsvfXWsd9++8XNN98c7733XpSWlkZFRUWUlpbGZ599Fo8++mj87ne/i/XXXz+OPvromDdv3iqPaS2SPcIlaARqulB+/4WU6VixvqSkZLV6ApoOCylgRW+++Wa136Q99NBDY6ONNqq1fsW1yOquQyJqXotY80DjUlZWFjNnzoynnnoqTj311Nh4443j+eefj4j/ffnz0ksv1XnXY4TrBzQnY8eOrbpG/OEPf6hzbVEfPs9A8/Huu+9Gp06d4uyzz45XX3015syZE8uWLYuvvvoq7r333qp1R3l5edx8882x9dZb13k3YoS1SDYVZrsBIGpc9NTnFvCI/92evapjArlpTS2k2rdvX+d5GuJcTX0hBY3VeeedV/XfxcXFceGFF9ZZv+K6YXXXITUds7Zt1jyQeVOmTKnxPWzFxcVx1FFHxaGHHhp77LFHWnckuH5A8/DNN9/EGWecERERG2+8cfzhD39osGP7PAPNxx577BF33HFH9OjRo9r2tddeOw4++OA4+OCDY+zYsXHMMcdEKpWKadOmxU9+8pN47bXXok+fPjUe01oke4RL0AjUdCGp6cJWl1y7OAHps5ACvu+ZZ56JBx54oGp8+eWXr/KRLyv+LK7uOqSmY9a2zZoHGo8FCxbEI488EqWlpbFo0aIYOnRo5OfX/cAT1w9oHn7zm99ESUlJ5OXlxQ033BBFRUUNdmyfZyC3tWnTJoYOHRrdu3ePyy+/PFq3bl1n/dFHHx2zZs2Kc845JyL+F27/6le/ihdffLHGemuR7PFYPMhRSZJkuwUgQyykgO/MmzcvjjzyyKrxkUceGSNGjFjj563p7oZMrUWseaD+Nthgg0iSJJIkiYULF8Znn30Wd999dwwbNizmzZsXDzzwQBx44IGx9dZbxxtvvLFGe3H9gMbv8ccfj3vuuSci/vel7y677NKgx/d5BnJb9+7d46GHHoobbrhhlcHSd84888xq73x86aWX4oknnlgj/VmL/HDCJWgEVrxVO+J/zz+vjxXrazomQE0spCA3VFRUxKGHHhpfffVVRETsuuuucd1116U1d8V1Q33XIUuXLl3lMWvbZs0D2dWuXbtYb7314pBDDokHH3wwXnjhhVhrrbUi4n/vRdh1111j3Lhxtc53/YDctnjx4jjhhBMiIqJHjx6rfNRuNvg8A7mnRYsWccQRR1TbNnbs2BprrUWyR7gEjUC7du1W2rZs2bJ6HSPXLk5A+iykgIiIE044IZ5++umIiNhiiy3ioYceSvuRNSuuRVZ3HRJR88+3NQ80fjvuuGM8/vjjVb+dv3Tp0jjkkEPi888/r7He9QNy2znnnBPTpk2LiIh//OMf0alTpwY/h88zQE1WvEty/PjxkUqlVqqzFske4RI0Ap07d15p24IFC+p1jBXr18SCD2icLKSA008/PW688caIiNhkk03i6aefrtdaYMW1yOquQyJqXotY80DTMHDgwDjmmGOqxgsWLIjRo0fXWOv6AbnrjTfeiCuvvDIiIvbZZ5849NBD18h5fJ4BajJgwIBq43nz5sWMGTNWqrMWyR7hEjQCHTp0iJ49e1bb9vXXX9frGCvWb7zxxqvdF9A0WEhB8/b73/8+LrnkkoiI2HzzzWPChAnRvXv3eh1jxXXD6q5DevXqFcXFxSvVWfNA03HYYYdVG//73/+u8e4A1w/ITRUVFTFq1KiorKyMNm3axDXXXLPGzuXzDFCTmn6+5s6du9I2a5HsES5BI7HZZptVG3/3voR0rXhxWvF4QO6ykILm64wzzqh698Hmm28ezz77bHTr1q3ex8nkOsSaB5qGbbbZJgoLC6vGy5YtizfeeGOlOtcPyE2XXnppvPPOOxERMWbMmOjXr98aO5fPM0BNanrEd02/6GItkj3CJWgkttpqq2rjDz74IO25ZWVl1Z6BXlBQ0OQvTkD6LKSgeTrttNPi4osvjojVC5a+m19QUFA1/uyzz+r1mJj333+/2njgwIG11lrzQNNQUFCw0m/5z5o1a6U61w/ITY8//njVf59xxhmRl5e3yj9jxoypdozbbrutxrpbb721Wp3PM0BNarqzsEuXLittsxbJHuESNBL7779/tfHrr7+e9ty33347ysvLq8aDBw+u8bd0gNxkIQXNz29/+9u47LLLImL1g6WIiOLi4hg8eHDVuLy8PN59992056+4bjnggANqrbXmgcx544034sUXX4yZM2f+oPkrvjQ7P3/lrxBcP4DV5fMM5K5XXnkl/vKXv8RVV11V77krhr95eXkr3X0YYS2STcIlaCR22mmn6NWrV9X45ZdfjuXLl6c19/nnn682PuiggxqyNaCRs5CC5uXkk0+Oyy+/PCLSD5YOPfTQGDJkyEq/Kfx9K64fVlxf1KasrCxeeeWVqnHPnj1jp512qrXemgcy56CDDopddtnlB70rZenSpVFSUlJtW01f6Hx3nu9z/YCm7/nnn48kSer1Z/To0dWOMXz48BrrRowYUa3O5xnIXa+88kqMGTMmzj777HrPXfFxvAMHDqz1Z85aJDuES9BI5Ofnx8iRI6vGpaWl8dhjj6U1984776z67w4dOsQhhxzS4P0BjZuFFOS+JEnixBNPrPqtv/rcsfTKK6/EhAkTYurUqbXWHHLIIdGhQ4eq8ffXF3V59NFHqz2yYuTIkTXe3fAdax7IvJdeeqnecyZMmBCVlZVV41atWtV6N4DrB7C6fJ6B3LZw4cKq97il67777qs23nfffWuttRbJDuESNCJnnHFGtS+IvnvcTV2efPLJmDx5ctX4zDPPXOnZ6EDus5CC3JYkSRx//PFVdx80xKPwVtS5c+c466yzqsbvvfdePPvss6vs6/vrlS5dusQZZ5yxynNZ80BmTZgwodrPTzq+e6fbd/bdd99o165djbWuH8Dq8nkGct+1116bdu3bb78dTz31VNW4TZs2ccopp9Raby2SJQnQqNx4441JRFT9uemmm2qtXbBgQdK/f/+q2vXXXz9ZvHhxBrsFVlffvn2r/cyPHz/+Bx/r/PPPr3asZ555ps76VCqV7LDDDlX1Xbp0SebPn7/K8yxYsCDp1q1b1bxddtlllXPGjRtXrbdzzz037b8XNHepVCoZNWpU1c/PZpttlsyePbtex/juWjN69Og665YsWZJsuOGGVefaZJNNkoULF9Zaf91111X72b7uuuvS7smaB9a8768zttlmm7T+nU+SJDn33HOr/XwWFRUlH330UZ1zXD+A0aNHV/vZHD58eL3m+zwDueeyyy6r+rkpKChIxo0bt8o58+bNSzbffPNqP3MXXXTRKudZi2SecAkaoaOPPrrahff6669PKisrq9VMmzYt2X777avqOnTokLzzzjtZ6hj4oRoyXLKQgtyTSqWqrQtW98+qwqUkSZL33nsv6dixY9WcHXbYIZk2bVq1msrKyuS6665LCgoKqupGjBhR77+fNQ+sWSuuMzbeeOPkySefTFKpVI31X331VTJixIhqcwoKCpJ//vOfaZ3P9QOat9UNl3yegdzz/XApIpKWLVsml1xySbJ06dIa61988cVk0003rTbnqKOOSvt81iKZJVyCRqiysjI55ZRTql1IN9poo2TUqFHJ6aefngwdOjQpKiqq2rf22msnb7zxRrbbBn6AhgyXksRCCnLNF1980WDBUrrhUpIkyVtvvZX07t27al5RUVEydOjQ5IwzzkhGjhyZbLTRRtWOe+KJJyYVFRX1/vtZ88CaddpppyVt27Zd6VrQu3fv5Be/+EXyu9/9LvnjH/+YnHjiicnOO++ctGjRolpdnz59kscee6xe53T9gOZrdcOlJPF5BnLNCy+8kAwYMGCltUinTp2SoUOHJqeddlpy9tlnJyNHjlwpVCosLEwuvPDCWn8ppjbWIpkjXIJG7Omnn0523HHHWr8gKi4uTn73u98lpaWl2W4VWIXV+YI43S+Dv2MhBbkjW+FSkiRJaWlpcuaZZyYdOnSo9XiDBg1KnnzyydX+e1rzwJozf/785MYbb0yGDRuWFBcXr/I6kZeXl2y//fbJlVde+YN/M9/1A3LfLbfcssbWIj7PQO556aWXklNPPXWln9+a/nTt2jU5+eSTk88///wHn89aJDPykiRJAmjUpk2bFi+//HJMnz49li9fHp06dYoBAwbEDjvsEC1btsx2e0Aapk6dGuuuu+4Pmjt69Oj4y1/+Uq858+fPj/POOy+uv/76mD9/fo01gwYNijFjxsRee+31g/r6zjPPPBOjR4+OiRMn1ri/uLg4Ro0aFX/605+qvaQXaBqWL18eEydOjMmTJ0dJSUkUFRVF7969Y4cddoh+/fo16LmseWDNqqysjM8//zw+/PDDmDFjRixYsCCWL18e7dq1i44dO8YGG2wQW2yxRRQXFzfI+Vw/IHfdeuutceSRR9Z7XrqfbXyegdw1d+7cmDRpUnz++edRUlISy5Ytiw4dOkTXrl1jiy22iE022STy8vIa5FzWImuWcAkAcpiFFAAA0FT5PAPQeAmXAAAAAAAASFt+thsAAAAAAACg6RAuAQAAAAAAkDbhEgAAAAAAAGkTLgEAAAAAAJA24RIAAAAAAABpEy4BAAAAAACQNuESAAAAAAAAaRMuAQAAAAAAkDbhEgAAAAAAAGkTLgEAAAAAAJA24RIAAAAAAABpEy4BAAAAAACQNuESAAAAAAAAaRMuAQAAAAAAkDbhEgAAAAAAAGkTLgEAAAAAAJA24RIAAAAAAABpEy4BAAAAAACQNuESAAAAAAAAaRMuAQAAAAAAkDbhEgAAAAAAAGkTLgEAAAAAAJA24RIAAAAAAABpK8x2AwAAAKwZ5eXlcdddd8WSJUvi17/+dbRr1y7bLQEAADnAnUsAAABr0IgRIyIvLy8jf2699dZq5x42bFgMHz48jj/++Bg8eHCUl5dn538EAAAgpwiXAAAActBHH30Ujz/+eNX4rbfeiueeey6LHQEAALlCuAQAAJABffv2jSRJ6vwzfvz4es/54osvajxfkiQrbUulUmvk7wYAADQvwiUAAIActMkmm8Tee+9dNd58883jxz/+cRY7AgAAckVhthsAAABgzXjkkUfirrvuiiVLlsRhhx0WRUVF2W4JAADIAcIlAACAHFVUVBTDhw/PdhsAAECOES4BAACsQeuvv35sv/320atXrzVy/JYtW8b2228fERHdunVbI+cAAAD4vrykpre8AgAAkHHPP/987LbbblXjvn37xtSpU7PXEAAAQA3cuQQAAEDakiSJl156Kd58881YvHhxdO3aNbbbbrvYcsst65wzceLEeOutt2LhwoXRuXPn2GKLLWL77bePgoKC1eonlUrF66+/Hh9//HHMnj07IiK6du0a6667buywww7eMwUAAGuAcAkAACCHDBkyJCZMmFDjvuHDh8ett9660vaHHnoofvazn9V6zO8eeDFhwoQ47rjj4qOPPlqpZsstt4yrr746dtxxx2rbx40bFyeffHJMmTJlpTl9+vSJyy+/PIYNG1bH36hm8+bNi3PPPTduv/32mDt3bo01bdq0iaFDh8aYMWNiww03rPc5AACAmuVnuwEAAAAav3vvvTf22GOPGoOliIh33nkndtttt/jPf/5Tte2aa66Jfffdt8ZgKSJi+vTpceCBB8btt99er16eeOKJWH/99ePSSy+NuXPnRosWLWKvvfaK0047LU4//fQYOnRotG3bNpYsWRJ33XVXbLrppnH55ZfX6xwAAEDtvHMJAACgkWjody5NnTo11l133apxbXcuff311/HCCy9Ujf/617/Ghx9+WDWeNGlSbLvttlFYWBiHHHJIbLvtttG6deuYMmVK3HHHHTFt2rSq2g4dOsRnn30W7777buy5555RWFgYBx98cOy4447Rtm3bmDJlSvzzn/+sNqd9+/bxySefRM+ePVf5d7rzzjtjxIgRUVFRERER2223Xdx5552xwQYbVKubN29enHjiiXH33XdX+3v96U9/WuU5AACAugmXAAAAGolshUsrWvHRervuumvMmjUrnnzyyejXr1+12iVLlsTee+8dL774YtW2v/zlL3HHHXfE4sWL46mnnorNNttspTl77rlnTJw4sWrbueeeG2effXadfb3zzjuxww47RFlZWURE9O/fP15//fUoLi6usT6VSsWBBx4YDz/8cERE5Ofnx/PPPx+77LLLKv83AAAAauexeAAAANTp5ZdfjkceeWSlYCnif+81uuqqq6ptO++882LKlClx9913rxQsfTfniiuuqLbt+4/Tq82IESOqgqWIiCuvvLLWYCnif2HSVVddFYWF/3vdcCqVipNOOmmV5wEAAOomXAIAAKBOhx56aGy00Ua17h84cGD07du3arx8+fIYPHhw7LrrrrXO2WabbWKdddapGr/33ntR14M1HnvssXj33XerxhtttFHstddeq+x9nXXWiT333LPaeb5/lxUAAFB/wiUAAADqNGzYsFXWbLzxxtXGQ4cOXeWcTTbZpOq/Fy9eHAsXLqy19vbbb682/ulPf7rK439np512qja+//77054LAACsTLgEAABAnQYOHLjKmk6dOtV7TufOnauNFyxYUGvt888/X208aNCgVR7/O/379682fvXVV9OeCwAArEy4BAAAQJ169OixypqWLVvWe06rVq2qjSsqKmqsmzlzZsyePbvatvXXX3+Vx//Oiu9l+v7j9QAAgPorzHYDAAAANG5t27at95w2bdo02Pnnzp270ratt976Bx9vyZIlUVZWtlK4BQAApMedSwAAANQpLy8vI3NqU9fj8n6o0tLSBj8mAAA0F+5cAgAAoFFb8bF2ERGffvppbLDBBlnoBgAAcOcSAAAAjVrXrl1X2rZw4cIsdAIAAEQIlwAAAGjkevXqFd27d6+27euvv85SNwAAgHAJAACARm/IkCHVxu+880695s+bNy/uvvvuuPvuu+PZZ59tuMYAAKAZEi4BAADQ6B1++OHVxo888ki95t92223xy1/+Mn75y1/Gk08+2ZCtAQBAsyNcAgAAoNH76U9/GgMHDqwav/766zFx4sS05i5btiyuuOKKiIjIz8+PI488co30CAAAzYVwCQAAgCbhlltuiVatWlWNR40aFSUlJauc95vf/CamTp0aEREjRoyITTbZZE21CAAAzYJwCQAAgCZhq622iptuuikKCwsjIuKDDz6IIUOGxOuvv15j/axZs+LQQw+N66+/PiIiBgwYEJdffnnG+gUAgFyVlyRJku0mAAAAmqOpU6fGuuuum3b94MGD4/nnn6+zZsiQITFhwoS0jvfFF19Ev3796tXH+PHjY8iQIRER0a9fv5g2bdoq59xyyy0xYsSIes0ZPXp0/OUvf6lx39NPPx2HHnpozJs3r2rbwIEDY9CgQdGlS5dYsmRJvP/++zFhwoQoLy+PiIhddtklHnjggejatesqzw0AANStMNsNAAAAQH3sueee8fnnn8fFF18cY8eOjZkzZ8a7774b77777kq1W2+9dZx88skxfPjwyMvLy0K3AACQe9y5BAAAQJP27rvvxqRJk2LOnDmxZMmSaN++ffTp0ye22Wab6N27d7bbAwCAnCNcAgAAAAAAIG352W4AAAAAAACApkO4BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApE24BAAAAAAAQNqESwAAAAAAAKRNuAQAAAAAAEDahEsAAAAAAACkTbgEAAAAAABA2oRLAAAAAAAApO3/A5zgLHC+xrL4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAUeCAYAAAA4hQ9LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd5idZZk/8O+ZPimTQhJKAgFCk1CkSltAkLUtikpxBUWlREFZbNgXdXdZCwvKivhDXXtBRcGyyCIQQOmCIAGEUJLQUiBhUqbP+f0xk0kmmZAJmZkzyfl8rutc5zzP+77Pe08gkMx37uctFIvFYgAAAAAAAKAMVZS6AAAAAAAAACgVYRkAAAAAAABlS1gGAAAAAABA2RKWAQAAAAAAULaEZQAAAAAAAJQtYRkAAAAAAABlS1gGAAAAAABA2RKWAQAAAAAAULaEZQAAAAAAAJQtYRkAAAAAAABlS1gGAAAAAABA2RKWAQAAAAAAULaEZQAAAAAAAJQtYRkAAAAAAABlS1gGAAAAAABA2RKWAQAAAAAAULaEZQAAAAAAAJQtYRkAAAAAAABlS1gGAAAAAABA2RKWAQAAAAAAULaEZQAAAAAAAJQtYRkAAAAAAABlS1gGAAAAAABA2RKWAQAAAAAAULaEZQAAAAAAAJQtYRkAAAAAAABlS1gGAAAAAABA2RKWAQAAAAAAULaqSl0Aydy5c3P77bdnzpw5aW1tzfjx4zN9+vQcdNBBqampKXV5WbRoUe666648/vjjefHFF1NRUZGGhoZMnTo1u+22W6ZNm1bqEgEAAAAAAF4WYVkJ3XDDDTn//PPzpz/9qc/jY8aMyZlnnpnPfOYzaWhoGNLaisVirrjiilx66aX585//nGKxuM5zx48fn8MPPzxvetOb8p73vGcIqwQAAAAAANg4heJLpSAMis7Oznz0ox/NxRdf3DO366675rDDDsu4cePyyCOP5JprrklbW1uSZNttt83VV1+dffbZZ0jqe/TRR3PKKafkzjvvTJJUV1fn8MMPz0477ZRx48blmWeeyYMPPpi7776713VbbLFFFi1aNCQ1AgAAAAAADARhWQnMmDEjl19+eZKksrIyl156ac4444xUVKx6hNzcuXNz4okn5o477kiSjB07NjfffHP23HPPQa3t9ttvzxve8IYsXrw4lZWV+fCHP5xPfvKTGTdu3Frn/vnPf86ZZ56ZBx98MImwDAAAAAAA2PQIy4bYd7/73bz3ve/tGX/rW9/K6aef3ue5jY2NOeCAA/LII48kSXbaaafcf//9qa+vH5TaHn300Rx00EF54YUXUllZmV//+tc59thjX/KaZ599NrvvvnuWLFkiLAMAAAAAADY5Fes/hYGybNmyfOITn+gZH3bYYesMypKkoaEhl1xySc949uzZ+drXvjZo9Z122ml54YUXkiT/9m//tt6gLEm23nrrnHrqqYNWEwAAAAAAwGDSWTaEPve5z+Xzn/98z/hXv/pV3vKWt6z3uunTp/dsdTh27Ng8/vjjfW6LuDF+8IMf9IRekydPzuzZs1NXV9evax9++OHMnDkz9fX1gjMAAAAAAGCTorNsiBSLxXzrW9/qGY8dOzZvfOMb+3XtKaec0vN5yZIlueKKKwa0ts7OznzmM5/pGb/rXe/qd1CWJLvttlve9773CcoAAAAAAIBNjrBsiPz5z3/OM8880zM+5JBDUlNT069rjzzyyF7jX/7ylwNZWm688cbMmzevZ/ymN71pQNcHAAAAAAAYroRlQ+Q3v/lNr/EBBxzQ72v32WefVFdX94xvuummNDY2DlhtP/zhD3s+V1VVZb/99huwtQEAAAAAAIYzYdkQuffee3uNX/GKV/T72rq6uuy444494/b29jzwwAMDVtu1117b83nHHXfsFcwBAAAAAABszoRlQ2TWrFm9xlOmTNmg6ydPnvyS671c8+fPz3PPPdcz3n777Xs+P/HEE7ngggvyD//wD5kyZUpqa2szbty47LLLLjn55JPz/e9/P83NzQNSBwAAAAAAQClUlbqActDY2Jhnn32219ya4df6rHn+ww8/vNF1JWt3vI0ePTotLS35zGc+k0suuSStra29jre2tmbJkiV59NFH85Of/CSf+tSn8qUvfSmnnHLKgNQDAAAAAAAwlHSWDYEXXnhhrbmGhoYNWmPN8xcvXrxRNa30yCOP9Bq3t7fnda97XS688MK0trbm5JNPzo033phFixalqakpjzzySC6++OJMmjQpSfLMM8/kne98Zz72sY8NSD0AAAAAAABDSWfZEFi6dOlac7W1tRu0Rl1d3XrXfDmWLFnSa3z11VcnSSorK/OTn/wkJ554Yq/jO++8c84999ycfPLJOfLII/Pggw8mSS688MJMmTIl//Iv/zIgdSXJggULsnDhwg26prGxMXfffXcaGhoyduzYbLvtthv8aw0AAAAAAJublpaWzJs3r2d8xBFHZOzYsaUraBgRlg2BvoKtNcOv9RmssKyxsbHP+Y9//ONrBWWrmzhxYn7zm99k+vTpaWlpSZJ87GMfyz/90z9l2rRpA1LbN77xjXz+858fkLUAAAAAAIBVrrrqqrz5zW8udRnDgm0YN1HFYnFA1ukrdBsxYkQ+8YlPrPfaadOm5fTTT+8Zt7W15ctf/vKA1AUAAAAAADAUhGVDYPTo0WvNNTc3b9Aaa57f15oD5Q1veEO/13/HO97Ra/zTn/40HR0dg1EWAAAAAADAgLMN4xAYNWrUWnMtLS0ZOXJkv9cYrLCsr3UOOOCAfl+///77p7q6Om1tbUm6OtXuvffe7L///htd21lnnZUTTjhhg6558MEHe20fedVVV2WnnXba6FoAAAAAAGBTNnv27Bx33HE942233bZ0xQwzwrIhMH78+LXmGhsb+5xflzWfLTZu3LiNritJGhoa1prbcccd+319TU1NdthhhzzyyCM9cw899NCAhGWTJk3KpEmTNmqNnXbaKdOnT9/oWgAAAAAAYHNSW1tb6hKGDdswDoExY8Zkq6226jX39NNPb9Aaa56/2267bXRdSbLllluuNddXgPZSxowZ02v8/PPPb1RNAAAAAAAAQ0VYNkT22GOPXuOnnnpqg65fMyxbc72Xq691CoXCBq1RU1PTa9zU1LRRNQEAAAAAAAwVYdkQ2WeffXqNH3zwwX5f29zcnMcff7xnXFlZOWBh2Z577rlWOLZ06dINWmPN8ydMmLDRdQEAAAAAAAwFYdkQOfbYY3uN77rrrn5fe++996atra1nfMQRR2zwVonr0tDQkL333rvX3Jw5czZojWeffbbXePLkyRtdFwAAAAAAwFAQlg2RQw89NFtvvXXP+Lbbbktra2u/rp05c2av8fHHHz+QpeWkk07qNb7vvvv6fe1zzz2XhQsX9oyrqqpy2GGHDVhtAAAAAAAAg0lYNkQqKipy+umn94yXLFmS3//+9/269sc//nHP5zFjxqwVbm2sf/7nf05lZWXP+JprrklHR0e/rv3d737XazyQXW8AAAAAAACDTVg2hD72sY9l4sSJPeOLL754vddce+21mTVrVs/4vPPOy/jx41/ymueffz6XX355Lr300jz99NPrvcfUqVPz/ve/v2e8YMGCXHHFFeu9rrOzM5dddlmvuc985jPrvQ4AAAAAAGC4EJYNodGjR+eCCy7oGd9yyy35zne+s87zly5dmnPOOadnPG3atJx77rkveY958+Zl+vTpmTFjRj7wgQ9k9913z/3337/e2r7whS9k0qRJPePzzjtvrWeRreniiy/OPffc0zM+5ZRTcuSRR673XgAAAAAAAMOFsGyInX766TnttNN6xjNmzMjll1+ezs7OXufNnTs3xxxzTB555JEkXdsvXnnllRkxYsRLrn/ZZZdl/vz5PePGxsZ8+ctfXm9d48aNy//+7//2bKH49NNP56ijjuoVhq3U1taWf//3f8/HPvaxnrlDDjkk3/rWt9Z7HwAAAAAAgOGkqtQFlKPLL788I0eOzCWXXJKOjo7MmDEjF110UQ4//PCMGTMmjz76aK655pq0trYmSSZPnpyrr746e++993rXLhaLa82tGcSty3777Zc//OEPOfnkk/PEE0/k4Ycfzv7775+DDz44++67b0aNGpWnnnoq1157bRYuXNhz3bvf/e5cdtllqaur6+evAAAAAAAAwPBQKPaVrjAk/vjHP+b888/Prbfe2ufxhoaGnHHGGfnsZz+bMWPG9GvNOXPm5IADDugJs0aNGpVbbrklr3zlK/td14oVK/Kf//mf+f73v5958+b1eU51dXWOOeaYfOpTn8qhhx7a77UH26xZs7LHHnv0jB944IFMnz69hBUBAAAAAEDp+f75ugnLhoE5c+bktttuy9y5c9Pa2ppx48Zl+vTpOfjgg1NbW7vB6y1atChXXnll2tractxxx2XKlCkvq65isZh77rknjzzySJ599tm0tbVliy22yNSpU3PIIYdk5MiRL2vdweQ3OwAAAAAArM33z9fNNozDwNSpUzN16tQBW2/ChAmZMWPGRq9TKBSy3377Zb/99huAqgAAAAAAAIafilIXAAAAAAAAAKUiLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAylZVqQsgmTt3bm6//fbMmTMnra2tGT9+fKZPn56DDjooNTU1pS4PAAAAAABgsyUsK6Ebbrgh559/fv70pz/1eXzMmDE588wz85nPfCYNDQ2DWsvnPve5fP7zn3/Z1//Lv/xLvvrVrw5cQQAAAAAAAEPANowl0NnZmQ9/+MM5+uije4KyXXfdNaeddlo++tGP5k1velOqq6vz4osv5itf+Ur22GOP3HvvvSWuGgAAAAAAYPOjs6wE3v/+9+fyyy9PklRWVubSSy/NGWeckYqKVdnl3Llzc+KJJ+aOO+7IvHnzctRRR+Xmm2/OnnvuWaqyAQAAAAAANjs6y4bYd7/73Z6gLEm++c1vZsaMGb2CsiTZbrvt8n//93/ZZZddkiRLlizJW9/61jQ1NQ1qfaeeemqKxeIGv2zBCAAAAAAAbIqEZUNo2bJl+cQnPtEzPuyww3L66aev8/yGhoZccsklPePZs2fna1/72qDWCAAAAAAAUE6EZUPowgsvzIIFC3rGH/7wh9d7zWtf+9rsvvvuPeMvfelLWbx48aDUBwAAAAAAUG6EZUOkWCzmW9/6Vs947NixeeMb39iva0855ZSez0uWLMkVV1wx4PUBAAAAAACUI2HZEPnzn/+cZ555pmd8yCGHpKampl/XHnnkkb3Gv/zlLweyNAAAAAAAgLIlLBsiv/nNb3qNDzjggH5fu88++6S6urpnfNNNN6WxsXHAagMAAAAAAChXwrIhcu+99/Yav+IVr+j3tXV1ddlxxx17xu3t7XnggQcGrDYAAAAAAIByJSwbIrNmzeo1njJlygZdP3ny5JdcbyA9//zzufTSS3Psscdm++23z6hRo1JTU5Otttoqe++9d84888xcccUVaW1tHbQaAAAAAAAAhkJVqQsoB42NjXn22Wd7za0Zfq3Pmuc//PDDG11XX26++ebsuOOOfW7zOH/+/MyfPz/3339/vvWtb2XKlCn57Gc/mzPPPHNQahkI81fMz9hlY0tdBgAAAAAADIotR2yZqgpxz8bwqzcEXnjhhbXmGhoaNmiNNc9fvHjxRtW0Lk888USSrmeqnX766TnqqKOyzTbbpKOjI/Pmzcsf/vCHXHTRRXn66afz1FNPZcaMGbnhhhvyve99L3V1dYNS08aYcd2M1D04/OoCAAAAAICB8Ie3/SGTR21Ygw69CcuGwNKlS9eaq62t3aA11gyi+lpzIBQKhXzlK1/Jhz70oVRU9N6lc/fdd8/uu++eGTNm5KSTTsrvf//7JMkVV1yRioqK/OQnPxnQWhYsWJCFCxdu0DWzZ88e0BoAAAAAAIDNm7BsCPQVbG1oF9Zgh2W77bZb3vzmN+fNb35z3vOe97zkuSNHjsyvfvWr7LPPPnnwwQeTJD/96U9z1FFH5fTTTx+wmr7xjW/k85///ICtBwAAAAAAsKaK9Z/CcFQsFgd0vbe//e256qqr1huUrVRTU5OLLrqo19wXvvCFtLS0DGhdAAAAAAAAg0lYNgRGjx691lxzc/MGrbHm+X2tOdSOOeaYbLvttj3jefPm5brrrithRQAAAAAAABvGNoxDYNSoUWvNtbS0ZOTIkf1eYziGZRUVFTn00EPzs5/9rGfuj3/8Y/7pn/5pQNY/66yzcsIJJ2zQNbNnz85xxx03IPcHAAAAAAA2f8KyITB+/Pi15hobG/ucX5fGxsZe43Hjxm10XQNh+vTpvcYPPPDAgK09adKkTJo0aaPW+H/H/L/s+opdB6giAAAAAAAYXrYcsWWpS9jkCcuGwJgxY7LVVlvlueee65l7+umns/322/d7jaeffrrXeLfddhuo8jbKmqHdokWLSlRJ37YcsWUmj5pc6jIAAAAAAIBhyjPLhsgee+zRa/zUU09t0PVrhmVrrlcqNTU1vcZNTU0lqgQAAAAAAGDDCcuGyD777NNr/OCDD/b72ubm5jz++OM948rKymETlq25PeQWW2xRokoAAAAAAAA2nLBsiBx77LG9xnfddVe/r7333nvT1tbWMz7iiCPS0NAwYLV985vfzOc+97n86U9/2uBr1+yQ23rrrQeqLAAAAAAAgEHnmWVD5NBDD83WW2+dZ599Nkly2223pbW1da1tDPsyc+bMXuPjjz9+QGv75je/mfvuuy8vvPBCDjvssA269u677+41PvzwwweyNAAAAAAAgEGls2yIVFRU5PTTT+8ZL1myJL///e/7de2Pf/zjns9jxozJSSedNOD1JcnNN9+8Qec/88wzue2223rGhUIhr3/96we6LAAAAAAAgEEjLBtCH/vYxzJx4sSe8cUXX7zea6699trMmjWrZ3zeeedl/PjxL3nN888/n8svvzyXXnppnn766X7Xd9999/UKv9bnwgsvTEdHR8/4bW97W3bZZZd+Xw8AAAAAAFBqwrIhNHr06FxwwQU941tuuSXf+c531nn+0qVLc8455/SMp02blnPPPfcl7zFv3rxMnz49M2bMyAc+8IHsvvvuuf/++/td4xlnnJEXX3xxvedde+21ueSSS3rGY8eOzX/+53/2+z4AAAAAAADDgbBsiJ1++uk57bTTesYzZszI5Zdfns7Ozl7nzZ07N8ccc0weeeSRJF3bL1555ZUZMWLES65/2WWXZf78+T3jxsbGfPnLX+53fbNmzcrBBx+cP/3pT30eb2try8UXX5w3v/nNPV1lNTU1+cUvfpGddtqp3/cBAAAAAAAYDqpKXUA5uvzyyzNy5Mhccskl6ejoyIwZM3LRRRfl8MMPz5gxY/Loo4/mmmuuSWtra5Jk8uTJufrqq7P33nuvd+1isbjW3JpB3JqOO+64PPnkkz0dZQ899FD+4R/+IbvttlsOPvjgbLnllmlra8vcuXNz/fXX54UXXui5dscdd8zPf/7z7LfffhvySwAAAAAAADAsFIp9pSsMiT/+8Y85//zzc+utt/Z5vKGhIWeccUY++9nPZsyYMf1ac86cOTnggAOycOHCJMmoUaNyyy235JWvfOVLXrdixYpceeWV+e1vf5vrrrsuS5YsWee5hUIhe+65Z84+++y8613vSl1dXb9qGwqzZs3KHnvs0TN+4IEHMn369BJWBAAAAAAApef75+smLBsG5syZk9tuuy1z585Na2trxo0bl+nTp+fggw9ObW3tBq+3aNGiXHnllWlra8txxx2XKVOmbND1nZ2deeyxxzJr1qw888wzefHFF1NRUZHx48dnm222yUEHHZQttthig+saCn6zAwAAAADA2nz/fN1swzgMTJ06NVOnTh2w9SZMmJAZM2a87OsrKiqy8847Z+eddx6wmgAAAAAAAIajilIXAAAAAAAAAKUiLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyAAAAAAAAypawDAAAAAAAgLIlLAMAAAAAAKBsCcsAAAAAAAAoW8IyNmsX/d/fUywWS10GAAAAAAAwTAnL2Kxd88Bzae8UlgEAAAAAAH0TlrHZa2nvLHUJAAAAAADAMCUsY7P2nlm/T9OiF0pdBgAAAAAAMEwJy9isvWr+Q2l+5tlSlwEAAAAAAAxTwjI2ey2LFpW6BAAAAAAAYJgSlrHZa1u4sNQlAAAAAAAAw5SwjM1e+0KdZQAAAAAAQN+EZWz2Op9/odQlAAAAAAAAw5SwjM1e5/M6ywAAAAAAgL4Jy9j8LdZZBgAAAAAA9E1YxmavICwDAAAAAADWQVjGZq9yibAMAAAAAADom7CMzV7lssYU29pKXQYAAAAAADAMCcvY7BWKxbS/sLjUZQAAAAAAAMOQsIyy0L5oYalLAAAAAAAAhiFhGWWh4/nnS10CAAAAAAAwDAnLKAvtCxeVugQAAAAAAGAYEpZRFtp1lgEAAAAAAH0QllEWPLMMAAAAAADoi7CMstCxyDaMAAAAAADA2oRllIX2RbZhBAAAAAAA1iYsoyy06ywDAAAAAAD6ICyjLAjLAAAAAACAvgjLKAudjY3pbG0tdRkAAAAAAMAwIyyjbHToLgMAAAAAANZQVeoCYDDdNHnvPLb9znn3P+2XilGjSl0OAAAAAAAwzAjL2Kz9dNdjstvuu+dDbz+y1KUAAAAAAADDkG0Y2ey1tHWWugQAAAAAAGCYEpax2WtpF5YBAAAAAAB9E5ax2Wtp7yh1CQAAAAAAwDAlLGOzp7MMAAAAAABYF2EZm73W9s4Ui8VSlwEAAAAAAAxDwjLKgu4yAAAAAACgL8IyyoKwDAAAAAAA6IuwjLLQ0tZR6hIAAAAAAIBhqKrUBcBgOvC5h7LbC4/mxc/fnKaFz2Wrz52f2h13LHVZAAAAAADAMCEsY7P23gd/n51ra9P+UNKepPXJJ4VlAAAAAABAD9swUlba5s0rdQkAAAAAAMAwIiyjrLQ+9XSpSwAAAAAAAIYRYRllRWcZAAAAAACwOmEZZaXt6adKXQIAAAAAADCMVJW6AJK5c+fm9ttvz5w5c9La2prx48dn+vTpOeigg1JTU1Pq8nrMmjUr++yzT9ra2nrmbrzxxhx55JGlK2oDtT71dIrFYgqFQqlLAQAAAAAAhgFhWQndcMMNOf/88/OnP/2pz+NjxozJmWeemc985jNpaGgY4up6KxaLOfPMM3sFZZuiYlNTOp5/PlUTJpS6FAAAAAAAYBiwDWMJdHZ25sMf/nCOPvronqBs1113zWmnnZaPfvSjedOb3pTq6uq8+OKL+cpXvpI99tgj9957b0lrvuyyy3LrrbeWtIaB0uq5ZQAAAAAAQDedZSXw/ve/P5dffnmSpLKyMpdeemnOOOOMVFSsyi7nzp2bE088MXfccUfmzZuXo446KjfffHP23HPPIa/3mWeeySc/+ckhv+9gaXvqqWSffUpdBgAAAAAAMAzoLBti3/3ud3uCsiT55je/mRkzZvQKypJku+22y//93/9ll112SZIsWbIkb33rW9PU1DSk9SbJ2WefncbGxlRVVWXEiBFDfv+B1vbUU6UuAQAAAAAAGCaEZUNo2bJl+cQnPtEzPuyww3L66aev8/yGhoZccsklPePZs2fna1/72qDWuKZf/epXueqqq5IkH/nIRzJx4sQhvf9gaJ0nLAMAAAAAALoIy4bQhRdemAULFvSMP/zhD6/3mte+9rXZfffde8Zf+tKXsnjx4kGpb02NjY354Ac/mCTZcccdc/755w/JfQebzjIAAAAAAGAlYdkQKRaL+da3vtUzHjt2bN74xjf269pTTjml5/OSJUtyxRVXDHh9ffn4xz+eZ555Jkly2WWXpb6+fkjuO9han5pX6hIAAAAAAIBhQlg2RP785z/3BE9Jcsghh6SmpqZf1x555JG9xr/85S8HsrQ+3Xrrrfl//+//JUlOPvnk/OM//uOg33OotD83P8XW1lKXAQAAAAAADAPCsiHym9/8ptf4gAMO6Pe1++yzT6qrq3vGN910UxobGwestjW1trbmjDPOSLFYzPjx43PxxRcP2r1KorMzbc8+W+oqAAAAAACAYUBYNkTuvffeXuNXvOIV/b62rq4uO+64Y8+4vb09DzzwwIDVtqYvfvGLefDBB5N0PWdt4sSJg3avUmn13DIAAAAAACDCsiEza9asXuMpU6Zs0PWTJ09+yfUGyt///vdccMEFSbq2f3zPe94zKPcZKi/WjOxzvm2esAwAAAAAABCWDYnGxsY8u8a2f2uGX+uz5vkPP/zwRte1pmKxmDPPPDMtLS2pra3teWbZpmxR/Zg+59ueFpYBAAAAAABJVakLKAcvvPDCWnMNDQ0btMaa5y9evHijaurLt7/97dx8881Jkk9/+tPZZZddBvweG2LBggVZuHDhBl0ze/bsXuPn68Ykzc+vdV6rzjIAAAAAACDCsiGxdOnSteZqa2s3aI26urr1rrkxnnvuuZx33nlJup6n9vGPf3xA1385vvGNb+Tzn//8Rq2xqH5MsmTt+TbPLAMAAAAAAGIbxiHRV7C1Zvi1PoMdlp1zzjlZsmRJCoVCLr/88tTU1Azo+qWyzm0Y580b4koAAAAAAIDhSFi2iSoWiwO21u9+97v84he/SJKcccYZOeywwwZs7VJbVD+2z/mOF19M+yBsZQkAAAAAAGxabMM4BEaPHr3WXHNzc0aOHNnvNZqbm9e75suxbNmynHXWWUmSLbfcMl/60pcGZN2BcNZZZ+WEE07YoGtmz56d4447rmf83IjxWVpdn/njt8n+R+yX2p12Su1O01Kz006pHDt2YAsGAAAAAAA2OcKyITBq1Ki15lpaWoZFWPapT30q87q3JPza176WscMoQJo0aVImTZq0UWs01ozIiW/4QrYeW5/bPnn0AFUGAAAAAABsLmzDOATGjx+/1lxjY+MGrbHm+ePGjduompLkzjvvzKWXXpokecMb3pCTTjppo9ccfgpJoZCW9s5SFwIAAAAAAAxDwrIhMGbMmGy11Va95p5++ukNWmPN83fbbbeNqqm9vT1nnHFGOjs7M3LkyHzjG9/YqPWGu+a2jlKXAAAAAAAADEO2YRwie+yxR5577rme8VNPPbVB168Zlu2xxx4bVc9TTz2V+++/P0myfPnybL/99i9rnVe/+tV9zheLxZdb2qDQWQYAAAAAAPRFZ9kQ2WeffXqNH3zwwX5f29zcnMcff7xnXFlZudFhWbnp6CymvUNgBgAAAAAA9CYsGyLHHntsr/Fdd93V72vvvffetLW19YyPOOKINDQ0bFQ922+/fYrF4ga/pk6d2mudG2+8sc/zhiPdZQAAAAAAwJqEZUPk0EMPzdZbb90zvu2229La2tqva2fOnNlrfPzxxw9kaWVDWAYAAAAAAKxJWDZEKioqcvrpp/eMlyxZkt///vf9uvbHP/5xz+cxY8bkpJNOGvD6ykFLe0epSwAAAAAAAIYZYdkQ+tjHPpaJEyf2jC+++OL1XnPttddm1qxZPePzzjsv48ePf8lrnn/++Vx++eW59NJL8/TTT7/8gjczLW29O8uKxWI6XnyxRNUAAAAAAADDQVWpCygno0ePzgUXXJAzzjgjSXLLLbfkO9/5Tk477bQ+z1+6dGnOOeecnvG0adNy7rnnvuQ95s2blwMOOCDz589PknzqU5/KLbfckr322mtgvohN1Ii25jTffnteeOGZtMye3fV67LEUqquzy59uKXV5AAAAAABAiQzrsGzu3LlJku22267ElQyc008/Pbfffnu+853vJElmzJiRjo6OnH766amoWNXoN3fu3Jx44ol55JFHknRtv3jllVdmxIgRL7n+ZZdd1hOUJUljY2O+/OUv50c/+tEgfDWbjl0Wz03xo5/J/D6OtS9enKpx44a8JgAAAAAAoPSGdVi2/fbbp6KiIu3t7aUuZUBdfvnlGTlyZC655JJ0dHRkxowZueiii3L44YdnzJgxefTRR3PNNdektbU1STJ58uRcffXV2Xvvvde7drFYXGuus7OzjzPX78gjj8xNN930kue8+tWvXmvuiSeeyPbbb/+y7jlY5jRstc5jrbNnp+qAA4awGgAAAAAAYLgY9s8s6yv82dRVVFTka1/7Wq677roccsghSZK///3v+da3vpULL7wwV199dVpbW9PQ0JCPfOQjmTVrVvbbb79+rf2+972v13PRRo0alfPOO29Qvo5NyeLa0ekcNbrPYy2PPTbE1QAAAAAAAMPFsO4sW+kTn/hETjzxxOy7776lLmVAveY1r8lrXvOazJkzJ7fddlvmzp2b1tbWjBs3LtOnT8/BBx+c2traDVpz6tSpefDBB3PllVemra0txx13XKZMmfKy6ps5c+bLum5YKhTSNmVqah9+YK1DLY/OLkFBAAAAAADAcLBJhGVf+cpX8pWvfCU77rhj3v72t+fEE0/MnnvuWeqyBszUqVMzderUAVtvwoQJmTFjxoCtt7lombJ932HZbGEZAAAAAACUq2G/DWOSnq0KH3vssVxwwQV55Stfmd133z1f+MIX8vDDD5e4OjYVK7bZrs95YRkAAAAAAJSvTSIsu+WWWzJ37txceOGF2X///VMsFvPwww/n85//fKZPn55XvvKV+eIXv5jHPHuKl7Bsq237nO94/vm0LVgwxNUAAAAAAADDwSYRliXJ5MmT8+EPfzh33HFHHn/88fzHf/xH9tprrxSLxdx///359Kc/nV122SUHHHBA/uu//ivz5s0rdckMMy9us/06jzXPmjV0hQAAAAAAAMPGsA7LDj/88Bx++OFrzW+//fb55Cc/mXvvvTcPP/xwzj///Oy2224pFov5y1/+kvPOOy/bb799Dj300FxyySV59tlnS1A9w83y+tGp2mbrPo81PyAsAwAAAACAcjSsw7KZM2fmxhtvfMlzdtlll5x//vmZNWtW7rvvvnzyk5/MDjvskGKxmNtuuy0f+tCHsu222+bII4/MN7/5zSGqnOGoua0z9dOn931MZxkAAAAAAJSlYR2Wbag999wz//Ef/5HZs2fnm9/8ZkaNGpVisZjOzs7cfPPNOfvss0tdIiXU0t6Ruul79HlMWAYAAAAAAOWpqtQFDKS//e1vueKKK/Lzn/88jz32WJKkUCgkSYrFYilLYxhoae9M3To6y9oXLkzb/AWp3nLSEFcFAAAAAACU0iYflj300EM9Adnf//73JKuCsTWDsurq6tIUybDQ0t6Ruj36DsuSru4yYRkAAAAAAJSXTTIse/TRR3sCslnd2+etHpAVCoUUi8UUi8VUVVXlqKOOykknnZS3vOUtpSybEmtp60zVuHGp2mbrtD/z7FrHm2fNyuijXl2CygAAAAAAgFLZZMKyJ554Ij//+c9zxRVX5L777kuy7oCssrIyRx55ZE488cS87W1vy/jx40tZOsNES3tnkqR++h5Zuo6wDAAAAAAAKC/DOiybN29eT0D2l7/8JUnvZ4+tHpBVVFTk8MMPz4knnpjjjz8+EydOLFXZDFMt7R1Jkrrp07P0uuvWOt4064GhLgkAAAAAACixYR2WTZ06tScQW2nN8aGHHpqTTjopxx9/fLbaaqtSlMkmYmVnWd30vp9b1rFwUdrmL/DcMgAAAAAAKCPDOixbqVAoJElPF9mrXvWqnHTSSTnhhBMyefLkElfHpqKlrTss26PvsCzp2opRWAYAAAAAAOWjotQFvJRp06b1BGRJV2j2qle9Kh/5yEfyvve9T1DGBmnu3oaxaty4VG+zTd/nPGArRgAAAAAAKCfDOix79NFHc/fdd+cjH/lItt122xSLxdxxxx056aSTMnHixLzjHe/IVVddldbW1lKXyiZgZWdZsu6tGJtnzRqqcgAAAAAAgGFgWIdlSbLvvvvmK1/5Sp588sn8+c9/zgc/+MFstdVWWb58eX72s5/lbW97WyZNmpRTTz01v//979Pe3l7qkhmmWro7y5Kkbo89+jynadasXs/EAwAAAAAANm/DPixb3cEHH5yvfe1reeqpp3LjjTfmzDPPzBZbbJHGxsb88Ic/zJve9KZMmjQpp512Wq699tp0dHSsf1HKRkv7ujvLCvX1GXHQQRl34glJW9tQlwYAAAAAAJRIVakLeDkKhUKOOOKIHHHEEbn00ktzww035Kc//WmuuuqqLFmyJN/97nfzve99L+PHj89b3/rWnHTSSXn1q1+dQqFQ6tIpodXDsvq99szoY45J/X77ZsR++6Vut91SqK4uYXUAAAAAAEApbFKdZX2prKzMMccck//5n//J/Pnzc/XVV+cd73hHRo0aleeffz7f/va3c8wxx2TrrbfOBz7wgVKXSwm1tK3qNKxsaMiU/74kW7z73anfc09BGQAAAAAAlKlNPixbXXV1dY499thcdNFF+dd//deMGjUqxWIxxWIxCxYsyGWXXVbqEimh1TvLAAAAAAAAkmG+DeMPfvCDJMm73vWu9Z67cOHCXHnllfn5z3+eW265JZ2dXcHIyq0Xi8Xi4BXKJqGlvTPFYtF2nAAAAAAAQI9hHZa9+93vTkVFxTrDsueff74nILvpppt6ArKVwVihUOj5XFFRkSOOOGJoCmfYWri0JZMa6kpdBgAAAAAAMEwM67AsWbsj7IUXXsivfvWr/PznP8/MmTPT0dHR67zVu4YKhUIOO+ywnHjiiTn++OOz5ZZbDl3hDEtfufbv+coJe5e6DAAAAAAAYJgY9mFZkixZsqQnILvxxhvT3t6epO+ALEkOPfTQnHjiiTnhhBOy1VZbDXm9DF+/+MtTefuB22W/qeNKXQoAAAAAADAMbBJh2ZZbbtlnQLb6NosHH3xwT0C2zTbblKxWhr/zf/NArj77sFRWeHYZAAAAAACUu00iLGtra0vSOyArFos58MADc+KJJ+bEE0/MlClTSlwlm4oHnm7MT++cm1MOmlrqUgAAAAAAgBLbJMKy1QOy/fffvycg22677UpdGpuoi697JMftMzmjalf9FuhsbU3zA7PSdM9fsuKeezPysEMz/h3vKGGVAAAAAADAYNskwrJ99tmnJyDbfvvtS10Om5BDd9oid7249vzzy1vz7Vsez7mv2SVLfvXrLPnVlWm+/28ptrauOqmzU1gGAAAAAACbuU0iLLv77rtLXQKbqBlHTMv9/7swLe2dax371s2P55SDpqb47DNpuvsvax1fcc89KXZ0pFBZORSlAgAAAAAAJVBR6gJgMG09pj6nHbZDn8eWt3bk6zfMzoj99uvzeGdjY5offGgwywMAAAAAAEpsWIdl3/3ud/M///M/pS6DTdyMI6ZlTH11n8d+fMecPD91lxRqavo8vvy22wazNAAAAAAAoMSGdVh26qmn5tRTTy11GWzixtRX56wjp/V5rK2jmK/ePDf1++3b5/Hlt906mKUBAAAAAAAlNqzDMhgopx6yfbYeU9fnsV//9ems2KPvsKzpL/eks7l5MEsDAAAAAABKqKrUBWyo9vb23HDDDZk5c2b++te/ZtGiRXnxxRczZsyYTJgwIXvvvXde/epX56ijjkpV1Sb35TFI6qorc+5rds7Hr/zbWseKxeQHrZPyrj6uK7a2pumeezLykEMGv0gAAAAAAGDIbTJpUmdnZy699NJceOGFeeqpp3rmi8Viz+dCoZBrr702X/7ylzN58uR87GMfy9lnn52KCg10JG/bd0ouv/nxPLZw+VrHrlgyIu8cNTqFZUvXOrb8ttuFZQAAAAAAsJnaJFKkBQsW5Oijj865556befPmpVgs9oRkhUKh55Wk59hTTz2Vc889N0cddVSee+65UpbPMFFVWZGPvXbXPo91Fioya6td+jy2/LbbBrMsAAAAAACghIZ9WLZ48eIcfvjhufnmm1MsFvsMxlZ/JasCtGKxmJtvvjlHHHFEXnjhhVJ+GQwTr52+VV657dg+j80cObXP+eZZs9KxZMngFQUAAAAAAJTMsN+G8cQTT8wjjzzSKyCbOHFi9txzz0ybNi0NDQ2pr6/PihUrsnTp0syePTt/+9vfsmjRoiRdwdmjjz6aE044Iddff30pvxSGgUKhkI+/brf887duX+vYvRN37vuiYjHL77gzDa/9x0GuDgAAAAAAGGrDOiy76qqrcv311/cEZe94xzvywQ9+MK961ate8rpisZjbb789X/va1/KLX/wiSTJz5sz8+te/zlve8pZBr5vh7eBpW+SIXSbmpkcW9pp/ZuSEzK8fmy2blqx1zfLbbhWWAQAAAADAZmhYb8P4xS9+MUkyatSoXHPNNfnRj3603qAs6eoeOvjgg/Ozn/0sv/vd7zJq1Khe60Gfzy4rFPLXiet4btmfb+3Z5hMAAAAAANh8DNuwbOHChbnrrrtSKBRy2WWX5R//8eV19bz+9a/PpZdemmKxmL/85S9ZuHDh+i9is7fH5DF5415brzV/76S+t2JsmzcvrU88MdhlAQAAAAAAQ2zYhmW33trVybPDDjvkHe94x0at9c53vjM77LBDisVibr311gGqkE3duUfvnO4dPnv8deLO6Uyhz/OX3Thz8IsCAAAAAACG1LANy5577rkkyVFHHTUg6x199NG91oWdtxydY/faptfci7Wj8vD47fo8f9nMmUNQFQAAAAAAMJSGbVj2wgsvJEkmTZo0IOtNnDgxSbJ48eIBWY/NwzlH75yKNRrJ7txy9z7PXXHPPel48cUhqAoAAAAAABgqwzYsGzNmTJJVodnGWhmSNTQ0DMh6bB52mjQqb37l5F5zd2z1ir5P7ujIsj/9aQiqAgAAAAAAhsqwDcu23HLLJMmfBiicuOWWW3qtCyt98KidenWXPdmwdRbUj+3z3GUzbxqaogAAAAAAgCExbMOyV73qVUmSWbNm5brrrtuotf7whz9k1qxZvdaFlXacOCpv2WfKqolCIXeuo7ts+c03p9jePkSVAQAAAAAAg23YhmVTpkzJ7rvvnmKxmHe/+9154IEHXtY69913X9797nenUChk9913z5QpU9Z/EWXnnKN3SuVq7WXrem5Zx4svpum++4aqLAAAAAAAYJAN27AsST70oQ8lSZ577rkcfPDBOf/88zN//vx+Xfvcc8/lM5/5TA499NAsWLAgSfLhD3940Gpl0zZ1i5F5276rnl1238Sd0lxZ3eucut13z4SzzkrVllsNdXkAAAAAAMAgKRSLxWKpi1iXzs7O7LPPPnnggQdSLBZTKBRSKBSy3377Ze+99860adPS0NCQ+vr6NDU1pbGxMbNnz859992Xe+65J8Visee6vfbaK/fcc08KhcL6b8wma9asWdljjz16xg888ECmT5/er2vnvbAir75wZto7u35LfPyuH6Wmoy13brV75u3yylz1r8elpmpY58sAAAAAANCnjfn++eauqtQFvJSKiopcffXVOeigg7Jw4cKe8Ouuu+7K3Xffvc7r1sz/Jk6cmKuuukpQxkvadvyInLD/lPz0znlJki8dcMqqg63Jz++el1MOmlqi6gAAAAAAgMEw7Ntktt9++1x33XWZNm1akvR0l60Mzvp6rTwnSXbeeedcf/31mTpVyMH6nf3qnVJd2XeoeumNs9PS3jHEFQEAAAAAAINp2IdlSbLnnnvmL3/5Sz7wgQ+krq6up3NsZSi2+ivp6iyrq6vLOeeck7vvvlsbIf02ZdyInLj/tn0ee/bF5lxx17whrggAAAAAABhMm0RYliSjR4/OJZdckjlz5uQb3/hGTjjhhOy8884ZN25cKisrM27cuOy888454YQT8o1vfCNz5szJV7/61YwePbrUpbOJOfvVO6Wmsu/fGpfeODvNbbrLAAAAAABgczGsn1nWlwkTJuR973tf3ve+95W6FDZT24ytz9sP3DY/uG3OWsfmN7bkp3fOzXsO3aEElQEAAAAAAANtk+ksg6F01pE7paaq798e35j5mO4yAAAAAADYTAjLoA9bjanLOw7crs9jC5e25Ee3r911BgAAAAAAbHrKJix773vfm9NOO63UZbAJOevIaaldR3fZN296LMteWJKWxx8f4qoAAAAAAICBVDZh2fe+971873vfK3UZbEImNdTllIOm9pob2dqUo+fenbP/+M3MOfwf8szHP1Gi6gAAAAAAgIFQVeoCYDh73xHT8uM75mTrRU/lPQ/+b1654NFUF1c9r6z5b39LyxNPpHaHHUpYJQAAAAAA8HKVJCybO3duKW4LG2zi6Nq86+Dt89v/XZAD5j/c5zmNv/1dJp7zwSGuDAAAAAAAGAglCcu23377FAqFUtwaNtiZh++YH942Jw+P2y67LV476F38299mwgc/4N9pAAAAAADYBJXsmWXFYnFIX/ByTRhVm1MP2T43bLtvn8c75s1L8333DXFVAAAAAADAQChZWKYLh03JmYfvmLu33y8dhb5/yyz41VVDWxAAAAAAADAgSrIN40qnnnrqkN3r+9///pDdi83P+JE1Of41e+buO3bNq+Y/tNbxxb+/Jtt99tMpVFeXoDoAAAAAAODlKmlY9t3vfnfI7iUsY2OdftiOOW/HA/oMy2qXN+bZ62dmm9cdU4LKAAAAAACAl6tk2zDCpmbMiOrsdeKxWVFV2+fxB753xRBXBAAAAAAAbCxhGWyAU4/aLXdvu1efx7a6//Y8O/e5Ia4IAAAAAADYGCUJy2688cbccMMNm/092fyMqq3K2De9qc9j1Z0duf7rPxjiigAAAAAAgI1RkrDsiCOOyBFHHLHZ35PN07HvflMWjRzX57EtZl6TeS8sH+KKAAAAAACAl8s2jLCBRtTXpPno1/d5bPvG53LFD64d4ooAAAAAAICXq6pUNz7qqKP6nN9xxx3z7W9/e4irgQ1z0Nnvztzf/DQVKa51rOIPv82Tp7w2208YWYLKAAAAAACADVGysGzmzJkpFAopFnuHDYsWLSpRRdB/o6dum6V77psxf/vLWseOeOrefP339+fCUw8uQWUAAAAAAMCGKFlYttIOO+yQ7bbbrtcYNgW7vPvkzP/I2mHZiPaWNF77hzz0j9Pziq0bSlAZAAAAAADQXyUPy2bMmJHzzjuv1GXABht7zNF5evSYVC19ca1jr3/i9nzl2r/nf959QAkqAwAAAAAA+qvkYdlLWddzzVZXKBRy/fXXD0E10FtFTU0mvOXNWfKDH6x1bLfFc3Pp7ffkziOm5cAdxpegOgAAAAAAoD+GdVi25nPNCoVCkqRYLPbMr5yDUhh/4gl9hmVJcuzjf86X/rBnfvm+g/17CgAAAAAAw9SwDssOP/zwXiHDTTfdlEKhkCOOOKKEVcEqtTvtlBGvelVW3HHHWseOeOrefPvRp/LHhxbkmN23LEF1AAAAAADA+gzrsGzmzJm9xhUVFUmSG2+8sQTVQN/GveMdfYZltZ3t+cc5d+Yr126Zo3ablMoK3WUAAAAAADDcVJS6ANjUjT76qFRttVWvuRdqR+fHux6TmVP2zSPzl+XX9z5douoAAAAAAICXMqw7y2BTUKiqyriTTszCr12SB7bYIb/d4dDcus0eaa9Y9dvr4useyT/ttXXqqitLWCkAAAAAALAmYRkMgLFvf3tGvfrVuezeptx83zNrHX96SVN+fMfcnHbYDiWoDgAAAAAAWBfbMMIAqBo3LnW77ZYPH7NLqtbxbLJLb5ydpc1tQ1wZAAAAAADwUsomLDvqqKNy9NFHl7oMNnPbTxiZfz5wuz6PvbC8NZff/PgQVwQAAAAAALyUsgnLZs6cmZkzZ5a6DMrAB4/eKfXreDbZt255PM++2DTEFQEAAAAAAOtSNmEZDJVJo+vW+Wyy5rbOfOXavw9xRQAAAAAAwLoIy2AQnHnEjhk/sqbPY7+65+n87akXh7giAAAAAACgL8IyGAQNddU59zU7r/P4v//+wRSLxSGsCAAAAAAA6EtVqQv40pe+lG9+85sbdM2OO+44SNXAwPnnA7fL9299Mo8tXJ7a9pa8/sk7ctgz9+cTh70vdzzxQq57cH7+cfpWpS4TAAAAAADKWsnDssWLF2fx4sX9Pr9YLObJJ58cvIJggFRXVuTTR2yba//j0rzlsZszpnV5kuTV8+7JdVMPzH9e83CO3HVSaqo0eAIAAAAAQKmU/Lv0hUJhSF4w1BZ+4xuZ/L63590PXdMTlCXJiY/ckIpiZ55YtDw/vmNOCSsEAAAAAABKHpYVi8UhecFQa5+/IJ3Llq01P2X5ohz29P1Jkq9d/2heXNE21KUBAAAAAADdSr4N4/e///1st912g3qPYrGYo446alDvAWva4ozTs+SXv0w6OtY6dtIj1+fmyXtnyYq2/PcNj+Yz/7R7CSoEAAAAAABKHpa96lWvyi677FLqMmDA1UyZkjH/9Ma8ePVv1jq2Y+OzedVzD+aOrafn+7c9mXcePDVTtxhZgioBAAAAAKC8lXwbRticbXHGGes8dvLD/5cUi2nrKObffvfQEFYFAAAAAACsJCyDQVS7004ZfcwxfR7b+cWnc/Czs5Ikf3xofm58eMFQlgYAAAAAAKSEYdkTTzyRxx9/PDvuuOOQ3g+G2hbvm7HOY+98+NoUip1Jks//dlZa2td+vhkAAAAAADB4ShaWTZ06NVOnTk1V1dA8Nm3l/WCo1U+fnlFHH93nsR0an81hz9yfJHny+RX59i1PDGVpAAAAAABQ9mzDCENg4jkfXOexUx7+v1R0d5d9/YbZeWZJ01CVBQAAAAAAZU9YBkOgbtddM/p1r+vz2HZLF+SIp+5NkjS1deSC/31oKEsDAAAAAICyJiyDITLx7LOSQqHPY+966A+p7mhPkvzu/mdz62OLhrI0AAAAAAAoW0PzwDAgtTvvnIY3vjGNv/vdWse2WrE4b3jytlw97R+SJJ/7zaz8/px/SHWlPBsAAAAAYHNQLBbT3tqZ1ub2tDV3pLW5Pa1N7Wnt/rxqbo1xc3um/8Pk7Lz/lqX+EjZbwjIYQhPOPiuN11yTdHSsdeyf/35drttu/6yors8j85flB7fNyWmH7VCCKgEAAAAA2FAP3fpMnn3sxbQ2daStO+Rqbe5Ia1N72lq63ovFl7f2lN3GD2yx9CIsgyFUu8MOGXv88VlyxRVrHRvTuiLHPzozP9j99UmSr173SI7de+tMGl031GUCAAAAAGzyVu/kam1a1bHV1c215rhjHed15Ih37JJdDthqvfd7+u9L8vc7nhuUr6WtuX1Q1qWLsAyG2ISzz8qLv/lNik1Nax17y2M357c7HprFdQ1Z2tKef/vdQ/nvf96nBFUCAAAAAJRGsVhMe1tnWpvaU1tflaqayvVec9uvZ+fZ2S+uFYK93E6u1bWu6F9QVVO3/jpfdg1Na+9WxsARlsEQq540KePffWqev+ybax2r62jLqQ/+IV/d98QkyW/veyZv3XdyXr3rpKEuEwAAAABggxSLxXS0d3aFVT3dW6t3ba0239zHOd3jtqaOdHZ2pVxvPHuvbL/nhPXe+4VnlufZx14clK+rtbl/QVVN/eBFLq06ywaVsAxKYIvTTsuSn12RjsWL1zp2zNy78tsdD81jYycnST7z6wdy3YcPz4gav10BAAAAgMFRLBbT0daZlqau8KqlqT3jtx6Zmrr1f1/yt//91yx4cmlam9vT2TEArVyraRsOQVVTPzvLBjUs01k2mHz3HUqgctSoTHj/+zP/ggvWOlaRYs7829X5+GHvTwqFPL2kKRdf90g+/cbdS1ApAAAAALApaG/rSMuK1Z651R14rezcWhmCta5Yfb5j1XzT2kHX2z6+X7baYcx6793a1JHm5W2D8nX1t6OqP6Hey66hv2HZy9yGsbq2MjV1lampr0p1XVXX5+736vqq1NRWZvzkkS9rbfpHWAYlMu7tJ+WFH/8obXPmrnWso6IyI9pbsqK6LknynT89kTe/cnL2mLz+/zEBAAAAAJuWNTu6Wpvas/W0Mf16VtfP/v3OLH5ueTrbB7ajK9mAZ3UNaldXfzvLBvF5Yf3s6hq31cjsvP+kntCrtr5yjfCrKtX1lamprUpNfddcdW1lChWFQaud/hGWQYkUamqy5Xnn5amzP9Az1zhh61w07XW5Y6vdk8Kq/0B2FpNP/Or+XHXWoamqrChFuQAAAABAH7qe0dW+Vti1ssNr9XHfnzvS0d651rrv+NyrMm6r9XcTdXYUByUoS5KWfnZU1Q5qUNW/Gqr721lW6OpCWxlWdX1efdzV4dVzTn1VGibU92vpybuOy+Rdx/WvDoYVYRmU0KijjsqIgw5K86xZmXDWWdnm+BPz5H/fmjS2rHXuA0835nu3PpnT/2HHElQKAAAAAJunjvbOnu0LW1a0p6WpLVN2HZeKfvzQ+rc/cnNalvcvzNlQ/e2oGtSgajg8q6ufNUzeeWwO+KcdUltfleruTq7a+u5OrrpV4Vd1bWUKBZ1c9CYsgxIqFArZ+t//LRUjRqRq/PgkyeffND3v+9E9fZ7/X//3SF47fatsO37EUJYJAAAAAMNWry0Mu8Ou3uHXqud0dc239Zpvb1u7q+u9Fx6W+lE167135SDuAjU8gqr+boH40jWs/kyurq6t1bq3Vuvg6unyWu34iIb1/3NIkq13Gputdxrbr3NhTcIyKLGaKVN6jV87fascs/uWue7B+Wud29TWkc9e/UC+++4D/PQDAAAAAJuFXp1dTe3ZcvuGfl3zg0/fus6wa2O1rGjvV1hWO6IqKxpbB/z+Sf+3QBzUsKyfWyDuvP+Wmbjt6N5BV/fn6rqqVHgmF8PcZhmWPfbYY2lsbMw+++xT6lJggxUKhXzhzdNz6+xFWd669k9uzPz7wlz912dy3D6TS1AdAAAAAPTW0dGZluUD19n1/kuPXO8WiJVVFWlZ3t7ns74GwrDo6upnULXOGgpJbX3vZ3LVrgyxul+1a7yveV51bf+2eJy43ehM3G50f780GHaGfVh23nnn5e677+41d+CBB+aLX/ziOq+5/fbb8653vSvTp0/P5z//+bzlLW8Z7DJhQG09pj4fe+2u+dxvH+zz+Pm/mZWDp22RLRvqhrgyAAAAADZH7W0daW3q6NeWd03LWnPVRfd2BV4r2tLeOrCBVWtTR+pGrX97w5oRVWkarK6uFf0LqmpHDNK32AtJex8/SN+XPQ6fnB32mtAr8KrtDroKOrqgX4Z1WPbss8/mq1/9ajo6Vv1HoVgspq5u/QFBsVjMrFmzcvzxx+ed73xnvvOd76SycvAedAgD7Z0Hb59f//WZ3DdvyVrHXmxqy6d+9bd8+9T9bccIAAAAQIrFYtrbujq8Wla09QRZXe/taV5jrnVFe5pXG3e0daamrjJnfPWI9d6rqqYyLzyzfNC+lpamttSNql7vebX1wyAsW0dXV3Vd5Tq6tqpSu9rzuWpHrN3lVVNflZoNCLombjs6E7fV1QUbY1iHZT/84Q/T3t6eQqGQYrGYmpqaHHPMMXn729/+ktftvPPO2W+//fKXv/ylZ50k+d73vjfYJcOAqawo5Itv3TPH/vef0t5ZTIrFjGhvyYrqrrD4+ocX5Jd/eSon7L9tiSsFAAAAYKgsf7Elt145u1fwtTL06mwvbtTarc0d6ewsrvf5UlXVFamoKmz0/dal1F1dhQ3o6tr3ddtnjyMmp6a+umf7Qs/oYkh0diad7V2vqrqkYv3dmKzbsA7Lfvvb3/Z8Pvnkk3PRRRdl4sSJ673uwAMPzF133ZV7770373//+3PnnXfmhz/8Yd761rfmTW9602CWDAPqFVs35INH7ZyfXn1bPnDflans7MgnD31f1/+xk3zhtw/msJ0nZOsx9SWuFAAAAICkq8OrraWjK8RavkaHVx9dXyuDrpq6qpz4qQP6cYPkkTvnD1r9rSva19vVVSgUUjuievC6uvr5vLB1dXUVCl1bNNbWV6V2RHVX11b3eNX8ynF1z3jledW1lf3ezWnClFH9/roYYJ0dSUdbd2DUttq4e66jfbVj7b3Dpc72rvN7jduT4vrO6VjH3MrrO17iuoFao/s9q4XVZ92RTNqtZP8oNgfDNixbvnx5br/99hQKhbz3ve/Nt771rQ1eY5999snNN9+c173udZk5c2YuuOACYRmblGJbW/75sRtz5I1fT017W5LkNXPvzh+ndv3BaWlLe8775f35wXsPtB0jAAAAwCBb0dia2X9Z0BV0Le/e2nB5W5q7Q7Dm5V3znZ0b3nFVU9e/R8jUDNYzsro1r+jfFoh1g/m8sOX9C8v2e/3U7HHklI0KuzZrxWIf4dHKz93hUmfbaoFT+2rHVg+fVp/vRzC1+tovdd9ea/anpjU+Z3A6GzdJnf37PcO6Dduw7IEHHkhHR0dGjBiRCy+88GWvU1NTk+9+97vZaaedctddd2Xu3LnZbrvtBrBSGBxN99+fZz/7r2n5+9+z+mNVz3jgt7lrq93yYm3XPsS3PLooP7trXv75QP9eAwAAAKypo62zO9RaR7i1oj01dVU5+C3T1rtW09LW3HLFI4NS5+a0BWKhotCzJeHL7ezqj212Htev8zZKsbhagNPaFfx0tK4KdDra1jHuPm/l3HqvX9f5G7FmsX9bSbIZ8M96ow3bsOzhhx9Okhx55JEZM2bMRq01derUHHHEEbnxxhtz5513CsvYJCy46OK0/P3va803tK3IB+77Vf7jgHf1bMf47797MIftNCHbjh8x1GUCAAAADImO9s6saGztDrnau0OvtlXbHS5v69rScPUwbEV72lvW/03k0VvU9Sssqx2x/o6rjTEstkBc0dav8/b5x6lpWdGe2hFVqRvZOxTrd2dXsdgd9rQm7S1Jx9KkqSVZ1tY9bl3teGvvcc81bUlHS9/n9Dq++pobGF7pYGK401m20YZtWLZ48eIkyW67Dcw+m3vttVduvPHGPP300wOyHgy2rf71X/PEm9+cYtvaf0A57Jm/5Yin/5qbpuyTJFne2pHzfnl/fnz6qzw8FAAAABi2isViWps70rysraezq6KyIlN2XX+H0PwnXsyv/+veQamrZXn/AqLakZvWFohV1RVdnVwjqlNXX5na+orU1hdSW5vU1hZTW9vZ9apuT211W2qr29LQcXvyQHN38LRmyLQqhNpxZQi1oL/B1srPq63Z2b9fd2A9OnWWbaxhG5Y1NTUlSerq6gZkvREjujpuVqxYMSDrwWCr3XGHbDFjRhZ9/et9Hj/7vl/l/gnTsriuIUly2+PP53/+/ERO/4cdh7JMAAAAoEx1tHWmubu7q3lZW5pXdL93d3atnF/ZAbau53lN2HZUTvr0geu932B2dbU2d6SzozMVlRUveV5VdUUqqyrS0d45KHW03H9tMqEpae8Oq9qbu4Om5q5wqb0l6WjJLqOmpXnbqtRWrEhtxfLUVixLbWFZatPY/Vqc2s4XU9W5bNX1KzoT3xqFzZPOso02bMOy8ePHJ0nmz58/IOs999xzvdaFTcEWZ56Rpf/3f2l5ZO29sEe3NeWcv/4yn3/Ve3q2Y/zSHx7OQTtukT0mb9zWpQAAAACrm/9EY26/+rFV4djy/m1v2B8ty/v7jKzB3QKx5W/Xpr66OWlr7g6nmpO2pu6Qqilpa06hvTm1la/Nivb6DVq7urCiK8yqWJ66imWpLXQFXDWF3uOGm/+aVCxd73r7v8yvEehWqEwqqrpfld2vqjXmVhsXKl76eM94zXXXcU2hr/PXNe7HORN2KfWv6CZv2IZlW221VZLk+uuvH5D1brjhhl7rwqagoqYmW//nBXnypLcn7Wv/wfGg5x7Ma+bdnT9ud0CSpK2jmHN+dm9+98HDMqJm2P72BgAAAAZJe2vHWp1dzat3dq3R+TVhyqi89ow9+rXuUw8vHpSam5e3JPMf7A6mmrre25rWCqvqmluT7DcoNSRJyy8/nPqqZ9Z73qRMTnP16J5urrqKZamtWJq6wrLUVnSPC0u757uCsIrC4HSiwaCpqEoqqpPK6u5wprprrrJqtc+rHaus7h3grD5e1+eecfc6Pcequ+9TtY77Vr1EfX3da7XjK8f9eaYeZWXYfjf9kEMOSaFQyJw5c/KjH/0op5xyyste60c/+lGefPLJVFRU5NBDDx3AKmHw1U+fngkzZmTRpZf2eXzG/VfnrxN3zqL6sUmSxxcuz+d/82C+dPxeQ1glAAAAMFhWNLZmwZONvUKv5uXtvYKwlu5grL1tw0KZ6trK3hMd7Unbiu7AakVPgFX34vIB/Ip6a2sppuMbh6Wy8NKdalVJKvOzdKR2o+5XmdbUVSztCrYKXUFXbcXyVBT69/ysN467YKPuTxnoCXJquoKdyppVwc7KV8/x1ccrX2ueX9Md/qx5/rrWX+P8tcKo1YOk1Y9VC5MoW8M2LJs4cWIOOOCA3HnnnTn77LOz5ZZb5phjjtngda6//vqcffbZKRQKOeCAAzJhwoRBqBYG14T3zcjSG29Iy4MPrXVsVHtzzr335/nMwWf0/E/sirvn5fBdJuaNe2091KUCAAAAaygWi2lr6UjzsrY0LVv1jK+6kdWZuscW673+2dlL8ofLHxiU2pqfnZNceHLX1oNtK5LOvgOjuo5xSf5nUGpIktbiyNQXGtd7Xl3Fsizv7ArLarq3LlwZeK3aznDl52WpW+3zyq6vqkLroH0dDKKK6qSqtjsMqu0KgqpqugOh7lfP8b7m1jy2riDqZQRTq59TUZVUvPSz74DhZ9iGZUny8Y9/PG9729uydOnSvP71r8/JJ5+cD3zgAznggAPWe+3dd9+dr3/96/nxj3+cjo6OFAqFfPzjHx+CqmHgFaqrs81/fjFPHH980rb2H1r3W/BIXj/njlyz/UE9c5/81f155XZjM3nshu2hDQAAALy09taOrtCr+9W0vHVVELa0Lc1Lm9O0tCXNy1rTvLw9TSs609lH09S2Wzdm6oIHktYVSdvyrvfW5as+t3WN6xonJ/nIoHwtze31ybL56z2vrh/P0Xo5CulIbWF5WjvrU1+x/rDsreM/meqKltQUlq+3E42XobKmK1Sq6n6tFTb1EVD1mus+92Vf8xLBl04nYBAN67DsLW95S4488sjMnDkznZ2d+dGPfpQf/ehHmTRpUvbaa69MmzYtDQ0NqaurS1NTUxobG/PYY4/lb3/7WxYsWJCk6yd3CoVCjjzyyBx33HGl/YJgI9TtuksmfuADWXjxxX0eP/2B3+avE3fKsyO7uicbm9tz7s/uzc/OPDiVFf4wAQAAAGspFrsCqZZlSevK1/Je46fmdOae+8akubkiTS1VaW6tTnvHwHxLrXnhwuTmr6z3vLq2tZ9jPlDaivXpKFalsvDS96gstKeq0JT24rp/KLe60JS6wtLubq5Vr9o153o6vhpTU2hKoVDsd70NVQv7fe4mpVdAtdrndY7rusKmqrruYKmv8QZeX1mjIwooW8M6LEuSX/7ylznwwAPz+OOPJ+kKv+bPn58//vGP+eMf/9jnNcVi1/9gC90/bTBt2rT88pe/HJqCYRBtcdp7s/T669N8//1rHRvR3pKP3/XjfPTws9Ne0fVb+64nF+frN8zOv7xm56EuFQAAAAZeR1vSsrQr0FoZbLUu6w63lqfYsjQty5rT1NiSpmUdaVrRkeYVxTQ1FdLcUpnm1qo0t9amqa0uW9U8kn8Y+f+SvHRQ09r8qsxb8olB+XKaOkf367z+dFxtjObO0RlZuXi95+038lepSMc6grBl6w3chrdCUl3fHSLVJdV1SVV9V7i01vzKz93Hq+p7z/cEVf0MsHRNAZTcsA/Lxo8fn5tvvjknnHBCbrvttp4ALFkViq2uUCj0nFMsFnPooYfm5z//ecaNGzdkNcNgKVRVZZv/vCBPvOWtKbauvb/2rkvm5dQHr8l39ji2Z+5r1z+SA3cYn4OnrX8PdAAAABhwnR3dgdbS9bwa15rrbFmR5hUdaWrq6upqaqtPc+eYNHU2pKnY9d7c2ZCmzpWfp6aYyn6VVVNsTEauv6OpbhCDquZiQ7/Oq61Y9rLvUVNY3t3NtbT7mV1Le8YrP1cXmvq11v6jhuiH0Str1gioXiKUeslQa/X5Pq5ffb6yWmAFUMaGfViWJNtss01uuummfO1rX8tFF12UZ599ttfxQqHQE5ytfJ88eXI+8pGP5IMf/GAqK/v3hyTYFNROm5aJ556bBV/+cp/Hj599U+6buFPu3vIVSZLOYvLBn96b/z3nsExqqBvKUgEAANiUtbesFmKtGXatHWylpbHvUKx1VdDTUaxKc3c3VX86mR5acUxmNp41KF9eU2f/gqrBelZXkrQX69JWrEl1Ye0fiF1dZaEj9RWLU0hxjW0Mu7u71gi/Vg/HBvS5XpXdwVP1iNXe6/qY6w6t1px7yfPru8f1SYXv5QEwtDaJsCxJqqqqesKv66+/PjfeeGPuu+++PP/882lsbExDQ0MmTJiQvffeO69+9atz9NFHp7q6utRlw6AYf+q7suzmm7Pi9tv7PP7Rv/wsZ736w3mhfkySZNGylnzgJ/fmx2e8KtWV9p4GAADY7LU1d4VXzY1J84tJy4td7z3jxlXjltXmVg+5Ol46wEmS9mJ1d0dXd7dX55g0dW6zxtzK+TFpLY5Mkuxcd0v+cexF611/MLcfbC7hFoiFdKSuojH1FUvT1lmf6sr1/1q/Z+J7X7rxaWU4VTMyqRmVVE/q+rwyjKoZuSqM6gmm1gyz1hVwdYdfQiwANlObTFi2Uk1NTV7/+tfn9a9/falLgZIpVFZmmy99KU+85S3peOGFtY6PaV2ej/3lp/n0oWems9AVjt355Av5yrV/z6fe8IqhLhcAAIAN0dnRFVatGWr1jBuT5iXrONY97mjZ6DKWtG+V59p269nisKlzTPeWh6u2PWwrjnhZa/e/q2sww7KGFIvr33mvtrAsSWeSdf3waWd3p1dX+FVX0dj7c2G1zzUtqa9pT01dZQo19UnNiKRmr+6Qa0RSPbL7fWXoNbLnc2HNc2pG9j5fkAUAL9smF5YBXaq3nJRtvvifmXfmjD6Pv3LR7Jz4yA352a6v6Zm7/ObHs+92Y/O6PbYeqjIBAADKT7GYtK1ImpZ0hVo974vXmHux7y6vloELiIrFpKU4sqeza0Xn2IyoWJJtah5a77VPt+5Z8i0Q6yteHJT7J0lHatJerE11oY9gsbKmO6wanYqakdmvcGuqawqpr+tM3YhC6kYUUj+yOnWja1I7oiYVdSO6u7nGv3ToJdACgGFJWAabsFGHH57x731vXvif/+nz+D///Y+5duqBWVy36i8hH/vF/dl1q4bsMGHkUJUJAACw6Vln4NXHe9Pitec62wattI5iVa/wq+t9TJo6xqw2v+pzZ3o/pmLnulv6FZYNZlDV1DmmX+dtbA1VlW2pr2lNfW176uo6U1ef1NUXUj+qKnUjq5O9f5aMHJ3Ujlq1fWHNqKSqptc6B21UFQDAcFc2YVlFRUUqKirS3t5e6lJgQE0691+y4u6703z//b3mF44Yl//c7+ReQVmSLG1pz/t/9Jf8+qxDU1/jJ9oAAIDNXHtrd0fXC6s6u/oKt/p678czuwbLwrYd80TzAb0CsZWvluKojVp7xRAFVS+lubMhxdqxKdQ1dAVVtaPXeDUktaNTWzM6FT8sprPYtVdiTW1SN6Ii9aOqUj+6tus1ZkTqG2pSP6qr06t+VHXqu9+r/L0XAOiHsgnLkqRYLJa6BBhwhZqaTP6vC/PEW96azmXLkiSjj3lNFr773Dz8y4eTPv61f/i5pfn0VX/Lf52wdwrr25wdAABgOOjsTFpe7Aq6VnSHXyteWBWCrfzca25x0rq0NOUWK3qCrlXdX2MztvLZ7Fh3x3qvX9i2Q+5a/vZBqa2pc2y/zhsxiGFZZ6rScs7sru6ul1BIcuLUZakdUZ36UdWprF7Xc8MAAF6+sgrLYHNVs+222foLn88zn/hkJn3i4xn3z/+cKYVC/mVxR776x0f7vOZX9zyd6duMyWmH7TDE1QIAAGWvrWmNcGtx7899hWBNS5JiR0nL7grAGtLUOTYrOsdkRee4rjCsY2z33NiecXNxdJK1g51pdX/uV1g2qFsgZnwy9dCu7q26MUld9/tqHV2pbUh9RiUXNfd/4UK6urtGrezuqk79qJrUdb93jbu6vupGVae2vn/fltpi8sZ10gEArE9Jw7JHH300nZ2d2XXXXfs8/oUvfGGIK4JNV8Mb3pD6ffdN9VZb9cydc9TOuWfuktz8yMI+r/mP3z+YnSaNyhG7TByqMgEAgM1NR3t30PV8snxRsmJR9+fnV/u8qCv0WvF8VwDW3lTqql/Sc60757HmQ7q7wcb1BGPNnaNTzMZt69fUUfotEJs6RqXz1N+nouKldxqpLhYzevxtqa6r7NrWcI3Qq25U77nakdXrXRMAYDgqSVjW3t6e448/Pr/97W+TJK973ety9dVXp6qqdzmf+9znbBEHG2D1oCxJKioK+epJr8yx//2nPL1k7b+MdhaTD/zknlx19qGZNtFP6gEAAElaV3SFXD0B18rP3eHX8udXfV4Zfg0zxWLSUhy1VtdXQ+X87FB313qvf6F9u/x1xXGDUltTxaRku0OS+rFJ3dg1OrtWdXqNaB6VXNI44Pevrq1MfUNNWpva178FYqGQd11wyIDXAAAw3JQkLPvJT36S3/zmNz3jP/zhD/nxj3+cU089tRTlwGZt/MiaXHryvjnxm7eltaNzreNLm9tzxvfvzq/POjRjRrz0X5QAAIBNTLGYNL+YLF+4RtfXyvBr9W6wF7o+D9Our2IxaSvW92x9uLwnBFvV+dXUsaoTrDNr//1mWt2f+xWWDeazupqqJifvvWa959W3dCS5ab3nFQpJ3eiajFjZ+TW6JiMaVvs8uib1q42razauMw4AYHNUkrCsublrv+vVu8ZaW1vXeX6xWBz0mmBz9sptx+Y/37pnPvKL+/o8/vii5fnAT+/Jd999QKoqPSwZAACGtY727g6vhcmyBV0B1/IF3eOF3cHYyvmFSce6/749HC1q2z5zWvbN8s5xWdExPis6x2V5dyjWXqzbqLVXdIxNqupXdXX1vI/rNTeicUJy5cZ+JX1rXt6Wzo7OVKzn717VtZWZvOvY1NRVrRWArQrBqlM3ojoFWx8CAGyUkoRlJ598ci677LLcd1/XN+732muvvOMd71jn+TfeeONG3a9YLOaoo47aqDVgU/e2/abk7/OX5vKbH8+ItuYcMP+h3DRln57jtzy6KBf878P512N3L2GVAABQplqX9xF2rT5euCoca3qh1NX2S0exqqvjq2N8lneOS31FY7aueXi91y1om5bbl71zUGpqGrdf8pnn1nveiMXNyZW3Dth9CxWF1I+q7nnuV1trZ2rr1/+Disd9aN8BqwEAgHUrSVg2cuTI3HXXXbn++utTLBZz9NFHp7p63du/HXHEEUNYHWy+Pv663fL8g4/kH392SbZbtiAVxWJu3HbVX77+589PZNetRuWkA7YrYZUAALCZaGtKls3vCriWPtf9uXu8evi1fFHStrzU1fZba2dd91aH47K8Y9xan7s6wsaludjQ67ppdX9ed1hW29DV3TVifEY0bZcM/KO6kiQrGtv6dV796Jr1n1RI6kdVZ0RDd9dXQ01GNNRmxOiajBhT0zM/oqEmdSN1fwEADGclCcuSpKqqKq997WtLdXsoSytuvCFn/PTfUlze9RfxD917RRbUj82sCTv2nPPpXz+QbcbW5x92nliqMgEAYPjq7EyaFneHXs+tFoQtWDVeNj9ZOj9pGbznXg2WFR1j8nz79j2B1/I+QrG2Yv3LW3v0K5M3fT0ZMT6pH98TjqV+XFK56gdoR85dmjy0/ueKvRytzR1pb+1I1Xqe21VZVZHt95qQ6trKXqFX/eqfR1WvdytFAAA2DSULy/pju+226/Vcs41dq6LCH2IpT8XOziz6+tez6BuX9Zqv7uzIZ+/8Xj50+Dl5dtSEJEl7ZzHv/9E9+fmMg7P7Ng19LQcAAJuftuZVXV8vGYQtSDr71500HBSLSVuxPh2pTn3F+tu15rTsmxsazxmUWpZnQrLvses9b8SYfnR1baDaEVXdz/yqSVs/wrIkeeNZew14HQAADE/DOix78sknh+VasKlpuu++LLrsm30eG9O6Il+4/Tv50OEfzLKaEUmSZS3tec/37syvzzo024x9eT81CgAAw0J7a1fQ1fhssnS118rxyiCsedPrAmsv1mR5x7gs7xzf/b5Flnc/H2xF5/gs7xifZZ3j016sz7S6P+d1Yy9MqkckIyYkI7dIRmzR9XnEFt3jCRm5cGJy1eDUu+LFlhSLxfX+UGz96JoUCl1B30upruvd9bVy+8P60TUZMaZ2VQfY6OpUVa8/HAMAoHwN27Bs+fLl+eAHP7jW/Dvf+c68+tWvLkFFsOkasc8+mfTRj2bBV77S5/Epyxbms3d8L58+9My0V3T9Z2F+Y0ve/d0784v3HZIx9et+piAAAJREZ2eyYlHv4KtXEPZcsvSZZMXzpa50g3UUK9PUObYn+FresUVXINY5rnuuKwhrKY7u95ortjw6+chHku4fkFuXEU8tTa4anC0Q21s709bSkZq6l/5WREVFIZN3HZeKyoqMXPnsrzG1XZ9XhmBjalLdj+4wAADoj2Eblj300EP53ve+t9ZPnO2///7CMngZxr/3PWmdMydLfv7zPo/v9fzjOefeX+aifU9Kun/fPTJ/WWb88O58/70HprbKX0QBABgCxWLSsnTtDrA1g7BlzyWd7aWudkA93nxgZja+L02dY5IM7GMEli/PeoOyJBnRUDug912poqqQEQ01aVnRvt6wLEnefO4+g1IHAAD0ZdiGZX//+997PheLxVRWVubggw/OLrvsUsKqYNNVKBSy1Wc/k7annsryW2/t85xj5t2dZ0ZNyM92fU3P3O2Pv5CP/eL+fPWkV6aiYmCeIQgAQJkqFru2O2x8Oml8Jnnxqa73xqdXzTU+k7QuK3WlG6yzWNHTBbasc4uu944tsrxzi4yteioHjv1NMmrL7tekrtfIScmoicnIicnISal6ZlSavr9wUOpbvqS1f1sgjqpORUUhnZ3r2QOxW3VdZUZ2d3ut3vnV83lMTUaOqU3tiKoBeyY5AAAMtGEbli1atChJV1A2atSozJw5M/vuu2+Jqxocc+fOze233545c+aktbU148ePz/Tp03PQQQelpmbgH2zcH4sWLfr/7N13fJXl/f/x131m9t57AWFvUaaAWrdoq9a6d6u/2m1bq9Xa3Vr7ra3WRd2tddYqahWQDTJk7xFIyN57nXPu3x8HApGME0hIgPfz8cgjOfe57uv+HCUh3O9zfS62bt3Knj17qKqqoqmpiZCQEKKjoxk9ejRDhgzBYunddzpK3zPsdhL/8n/sv+46Wvbs7XDMzds/ptIZzP/SJrUd++/GAuJD/fjpxUNPVqkiIiIicqoxTWiqOhSCHR1+Hfq6+tDj1vr+rrTHWk2HtxWiO4I6T9Shz4cCMWKpc0fS6ArC7GQ1WHx6IGfd/2xbB4fOBNrqgL4Jy9wuD80NLvwCu26xblgMAkIduF0eAkIOtz48OgQ7HIA5CAhxYneqA4WIiIiInPoGbFhWX+/9B5RhGNx1112nZVC2cOFCHn74YZYtW9bh86Ghodx11108+OCDhISE9GktTU1NfPzxx8ybN49FixaxZ8+eLsfHxsZyww03cP/99xMTE9OntUnvsgYHk/z0M+y/9lrc5R3v3/DtDW9R4whkZcKItmPPLNlHaICde87NOlmlioiIiMhA0WEQdlQYdgoHYYfVuiPJax5LnSeCek8MdUY89Z4o6lpDaHb5ndDcdTXuboMygMDQvmmBeFh9VXO3YRnAjb+erK4SIiIiInJGGbBh2dHh0PDhw/uxkt7n8Xj44Q9/yJ///Oe2Y0OGDGHq1KmEh4eza9cuPvroI6qrq/njH//I66+/znvvvcfYsX3Ts/3jjz/mmmuuoba2tt3xQYMGMXnyZOLj43G73eTl5fHZZ59RXFxMcXExf/rTn5g7dy5z587lqquu6pPapG84khJJfupJDtx0M2Zz8zHPWzH5ydpXeXDynWyOymw7/oePdxLsZ+fGs1NPZrkiIiIi0tfcLu9+YNUHoToPqnKPfF19EKryTrkgzDQNGjyhuE0HIbYS70F7AATHez9C4iE4zvt1UCwVJVF89qanT2qpr2rG9JgY3QRQzkAbVpsFt6vndRxuhxgY5l395f360Eeog8AwJ0HhvoVxCspERERE5EwzYMOyYcOGtX3d0tLSj5X0vm9961s8++yzAFitVp588knuvPPOdm0Nc3Nzueaaa/j888/Jy8tj1qxZLFmyhJEjR/Z6PUVFRe2CssTERJ5//nkuvPDCY8a2trby5JNP8uMf/5iWlhaqqqq45pprePvtt7niiit6vTbpO/6jR5Pw+9+R/93vdfi8w+Pi4VUvcP/Ub7EvLLHt+M/f20KQ08qVY5NOVqkiIiIicqJa6o8KwvLah2DVed5VYaa7v6v0mWlCkxlMnTvK++GJoc6aQq2R4H3cGkJ9kx8ej4W4BPjqtxK9wZgzpNMVXkH5dcDqPqnX4zZprGslIKTrNvuGYRAY5qCmrKntmNVmaQvAAg6HYWFHhWGHgjCH34D9572IiIiIyIA3YH+bnjZtGuHh4VRVVbFx48YTni89PR2LxcLevR3v03SyvPDCC21BGcDTTz/NHXfcccy4lJQUPvnkEyZOnMiuXbuoqqriqquuYtOmTfj7+/dZfSEhISxatIisrI5b7dntdr773e8SHBzcVrfb7ebuu+9m5syZfd4uUnpXyIUX4nqglOLf/KbD5wNdTfxy5fP8cPq9FAZGAd4bEz98cxOBDhsXDI87meWKiIiISEdMExrK268GawvEDn3dWNHfVfZIi8efWncUdZ4o6qyp1FlTqDPjqHNHUtcSTF2DE5fbtz2U65qcED2k23GBYX3fArG7sAxg2jWDsViNtkDMGWjD8KGFo4iIiIiIHL8BG5bZ7XZ++MMf8rOf/Yy3336b3//+9wQHBx/3fAcOHOj3f2DU1dXxk5/8pO3x1KlTOwzKDgsJCeGJJ55oW+G1Z88e/vKXv7Sbo7f96Ec/6jQoO9ptt93Gn//8Z7Zu3QpAcXEx77zzDrfcckuf1SZ9I+KmG3FVlFP+9DMdP99cy6+XP8cPpt9LpZ83DHV7TP7fP9fzwq0TmZIVdTLLFRERETnzmCY0VEDVfqg8AFUHDn3OPRKQuRr7u8rjYHhXe4UkUm4ZxorcadQ1B1HX4KSlpff+7dZQ1eJbC8QAGzaHBVfLibditDksbW0Pg8L8CAxz4gzw7Z/faaP0+7WIiIiIyMk2YMMygB//+McsXryYTz75hDvuuIPXX3+93wOvE/HYY49RUlLS9vj73/9+t+d85StfYdiwYWzbtg2A3//+99x9992Eh4f3SY3XXXedT+MMw+Diiy9uC8sAFi9erLDsFBX9ne/gLq+g6s03O3w+vqGcX694jh9P/Sa1jkAAWtwe7nx5La/eMYlxKX3z51FERETkjNFc20EQduDIsZa6/q7QJx7TQr0ngjp3NHWOTEz/SAanVUJoEoQkQEjioY8Eb1BmtQNgHqwj91d91ALRY9JQ20JgaNcrx7wtEJ1Ul3QdPDoDbASFOwkM8yMozEFguB9BYU4Cw53ez4eCsVP5364iIiIiImeaAR2WWSwW3nvvPe69917+8Y9/UFBQwGOPPcakSZP6u7QeM02T5557ru1xWFgYl1xyiU/n3nDDDTzwwAMAVFVV8e9//5tvfvObvVZbcnIyl1xyCU6nk8zMTJ/PS0tLa/e4qKio12qSk8swDOIeeRh3VRW1n37a4Zj0mkJ+s/xZfjrlbuocAQA0tLi5ee5qXrljEmOSw05ixSIiIiKnmNYmb0vEw+HX0UFY5YFTpk1ii8ePWncMtc7B1NkyqCWRWk80tc2h1DX6UV9vwTSPjA+O8GPwtZO7nTcovO9bIHYXlgFEJQXj9LcdWhXmR2CY49BnZ1sgZndY+7RWERERERE5+QZ0WPboo48C3v27zj33XBYtWsTkyZNJS0vjrLPOIikpiaCgoFPiHXvLly+noKCg7fHkyZNxOLrvVw9w7rnntnv81ltv9WpYNnv2bGbPnt3j8778393p7Nt/4ErfMqxWEh77I3l33U3D5593OCarOp9frXiOB6bcRYPdu3debbOLG5//nJdvP4uxWmEmIiIiZyqPB2oLoTIHKvd/aZXYAe9zA5xpQqMnlFpLKrXOIdRa06gz46l1RVDbFEhtnY3mpp7NWV/VjMdjYvGlBaLTiqvZfQKvoHN1lc3EpHY/7sK7RvTJ9UVEREREZGAb0GHZI488ckwgY5omOTk57N+/v3+KOk7//e9/2z2eOHGiz+eOHTsWu91Oa2sr4G13WFNTQ0hISK/W2FN5eXntHmdnZ/dTJdJbLE4nSU/+jQM33UTztu0djhlSlcfUgs18knpW27HaZhc3zV2twExEREROb64W7+qwin1QkeMNxg5/rtwPrh4mSf0lKA7Ckr2tEUOTqbJkMG9BMrW1Ftyu3r2Ux2PSWNNCYFj3LRCDw51UFjX0+BoWi7d9YlCEdzVYULiT4Ajv58OrwvyD7Mf7EkRERERE5AwwoMOyw0zTxDCMU2IFWWfWr1/f7vHQoUN9PtfPz4+MjAx27twJgMvlYsuWLUye3H07k7706Zfa9V111VX9VIn0JmtQECnPPceB62+gpYNQ+oVhF7ULyg47HJi9dPtZ2sNMRERETl3Nde1DsKODseqDYHr6u8JOtXj8vG0RndnU2dJpccQwbmwjhCYfCcdCEsHWPrjyq2ul6q2lfVZXbWVTt2EZeFsxHhOWGRAQ4m2FGHwo/GoLxSKcBIf74R/i6HblmoiIiIiISFdOibAMvIHZqWzr1q3tHiclJfXo/MTExLaw7PB8/RmWvf/++6xdu7bt8VVXXcVZZx0boMipyRYZScpLL3Lgxptozc1tOx75ox9R6xwNWzren6622cXNCsxERERkIDNNaCj3BmAV+44NxupL+7vCTjV7AqgliRq/YdRaM6khkdrWyKNaJLb/N5PFZjD2O+didNcCMbCPWyBWNEN69+OGnB1P4pBwbzAWcWRVmNVm6ZO6REREREREDjslwrKf//znzJw587jPN02TWbNm9WJFPVNTU0NhYfs9ChITE3s0x5fH79ix44TrOl7z58/nhhtuaHs8fvx45s6d22/1SN+wx8aS+uIL3sAsP5/YBx8k4obrecLt4b5/reejLgKzm+au5qXbzmJ8qgIzERER6SdN1VC+99DHHqg49Ll8HzRX93d1HWr1OKnxxFHrN4waWxY1JFPrjqKmMdiH/cKOfXOhx2XSUNtCYGjftUDsit1pJSjCD8PHrGvIpLhevb6IiIiIiIivTomwbNiwYcyYMaO/yzhuFRUVxxzr6X5jXx5fWVl5QjX5yjRN6urqKCgoYM2aNbz++uvMmzcPAIvFwt13380f/vAHgoKCTko9cnLZExJIeelFGtauJWzOHO8xq4UnrhvbZWBW1+zixrmf89xNE5iSFXUSKxYREZEzSkvDoTaJRwVhh4OxAbxCjOB4CEuFsBRagjJ4b9lYausdNPZuVgVAbXlTt2EZQHCkX4/CMsPAu09YuB/BkX4ERxxaDRbh17ZfmMPfdkq30hcRERERkTPHKRGWnepqa2uPOeZ0dv8P1qP5+fl1O2dve/DBB/n1r399zPHhw4fzta99jVtuuYW0tLQ+u35JSQmlpT27ybFnz54+qubM5UhKwvGltqGHA7PvvL6eDzd3HJg1tLi59YU1/O0bY7lguN4lLCIiIsfJ1QJVBzpYIbYXavL7u7p23KaNWnc0tdZ0ah1DGJpVgRGeCuGpEJbm/RyaDPYjv9vbTZPyDxbjbu2bvdBqK5qIywjtdlxwRPt/b1jtlmMCsCOhmB+B4U6sVrVHFBERERGR08OADstGjRqFYRiEh594K7ebbrqp397V2FGw9eXwqzv9EZZ1Ztu2bbz++uvU1dVx2223MWzYsD65zlNPPcUvfvGLPplbTpzdauEvXx8LdB6Ytbg9fOu1L3js6lFcObZn+/SJiIjIGcQ0oa4YynYd+thzKBDbA1W5YPbNXlo9ZZoG9Z4IatyxVNuzva0SzQRqWyOpaQigvr59eJR+31T8gx1dzmkYBiE9XNXVE7UVXfZubDN0cgJJ2RFtgZh/sF2rwkRERERE5IwxoMOyDRs29NpcL774Yq/NNRCY5rF7EvS2X/3qV/zqV7/C4/FQVVVFTk4OS5Ys4ZlnnmHnzp3s3LmTP//5z9x222383//9H4GBgX1ekwwsHQVmF+WsZGX8CKr8ggFwe0y+9++N1DW5uPGctP4rVkRERPqfqwUqc44KxXYf+dxc09/VAYf2DXPHUu1JoMaRTY0lnRp3HDXNodTUOXC7fQ+Qasqbug3LoOctELtlQGCo0xt6Bdl9OiU2PYTY9J61ihcRERERETldDOiw7ESYpsnWrVvJysrq8Squ3hYcHHzMsaamph6FS01N7d8R2tGcfcVisRAREUFERATjx4/nO9/5Dr/61a94+OGH8Xg8PP/886xbt46FCxcSFhZ20uqSgeFwYGa3bsT25mvcsXUeV+5dwk+nfJNy/yMtfx56bys1TS7uOTdT71IWERE53TVUeFeFfTkUq8gZMKvEALAHsqb1Vqo8qdS4oqluDKKx0dpr09eWNxGb1n0AFRLp36N5LRaDoAgnwZH+hES2b48YHOlHYJgTq00tEkVERERERHw1oMOy3NxcAFJSUnp8bkNDA6NGjcLpdHL++efz6KOPMmbMmF6u0DdBQUHHHGtubj5lwrIvs1gs/PznP6exsZHf/e53AKxfv54bb7yR999/v9euc88993D11Vf36Jw9e/YwZ86cXqtBfGO3Wvh5yxZKts4DILmulD8t+Rs/m3IX+UHRbeP++L+dVNS38LOLh2KxKDATERE5pXnc3haJbavDjgrFGsr6tbRW04EVFxbDAzY/iMiEyMMfWd7HERkQFMOOh1ZSU+Zbq8Keqilr9GlccGT7N/cZBgSGOwk5KgwLifJv+xwY6sCi/cJERERERER6zYAOy9LS0rBYLLhcruOeo7m5mXnz5jF//nw+/vhjpk+f3osV+iYiIuKYYzU1NR0e70xNTfu2NL2xj9uJ+vnPf84LL7xAcXExAB988AELFixg9uzZvTJ/TEwMMTExvTKX9K3KN96g5De/aXcstrGSx5b8jYcm38mesCP7lc1dlkNRTRN/uno0fvbee+e2iIiI9BF3q3dFWOl2KN0JpTugZId35Zi7uV9KMk1o8IR72yW646hxx1NjzaTaTKSmOZyGZifX3mIQNXQQBCeApfNgKSTKv8/Cstpy3+ZNHRGJX5D9UDDmT1CEE6vCMBERERERkZNmQIdlcPx7c9ntdq699lp27drF+vXraWpq4s4772Tnzp29XGH3QkNDiYuLo6ioqO1Yfn4+aWlpPs+Rn5/f7nF2dnZvlXfc/P39ueqqq/j73//eduyll17qtbBMTg01n3xC0cOPdPhcWEs9v1/2d3551s1siBncdnzepkJKa5t57sYJhAb4to+GiIiI9DF3K1Tsg5LDodihz2W7wdN60ssxTYN6TwRVrniq3Yc+jAyqPQlUN4fjcnf9T5ka5wiiQqO7HAMQEu0POyp7q+w2/iEOn1shRiYGEZl4bDcKEREREREROTkGfFh2vBwOB//6178AmD9/PhdffDF79uzh888/Z9KkSSe9nhEjRrQLyw4ePNij878clo0YMaJX6jpRkyZNaheWLV++vB+rkf4QMG4czqwsmnfv7vh5VzOPrpzLHydcx9LEMW3HV+dU8NWnV/DSbWeRGNazfTpERETkBLhboXzvkTDscDhWvuekh2Ie00KdO/JIGOaKo5pUqs0kqpsjcHuOfxV6tY8tEEOjju/3EGeAjZAof+9HpB8hUd5VYcGH2ibaHVpBLyIiIiIicqo4bcOyo5133nnMmTOHt99+mw0bNvRLWDZ27Fjmz5/f9njbtm0+n9vU1MS+ffvaHlut1gETln25TeLRgaCcGWxRUaS8/BJ5d95F05YtHY6xm25+suY1Qpvr+SBjStvxPSV1XPnkcl64dSLDE0JPVskiIiJnBlcLVOw9dqVY+R7wHH+b815hWCA8jffyf0BBdUKfXMLX/cJCOgnLDItBcITTG4ZF+xN6KBgLjfYGYn6BWh0vIiIiIiJyujgjwjKAjIwMACoqKvrl+pdddhl//OMf2x6vWbPG53PXr19Pa+uRd/nOmDGDkJCQXqmrurqazZs3AzB58mQsXezn0BGPx9PucU/Pl9ODLTyclBdfJP++b1O/YmWHYyyY3LvpXSKbanhp6IXeneuBktpmrn1mFU9eP44Zg7tvlSQiIiJf4vFAdS4Ub4OSrYc+bzupoZjbtFHrjqHKHUe1K55k50YibAfBEQxRgyBq8FGfB0NEOticBL+4DVb1zZutfA3LIhICyRwX3RaEHV4tpn3DREREREREzhxnTFi2+1CLOLu9f94BOmXKFOLj4yksLARg5cqVtLS04HA4uj130aJF7R5/7Wtf67W61q9fz8yZMwHYs2cPmZmZPTr/y+0h4+Lieq02ObVYgwJJevppCn/yE2o+/KjTcV/ftYDYhgr+PPZaWq3eH0F1zS5ufWE1P790GDdPTsM4FKSJiIjIlzRUeIOwLwdjLXV9fmnTNKj1RFHtSqDKlUCV+8jnWncMJkeCpelnG0Scnw3BcW1vkOlIaHTftWKuLvUxLIsP5MK7RvZZHSIiIiIiIjLwndZhWXNzM/n5+fz3v//lP//5D9B/YY7FYuGOO+7gl7/8JQBVVVXMmzePK6+8sttzX3vttbavQ0NDufbaa/ukxuXLl/c4LFu4cGG7x2effXZvliSnGIvDQcJjj2ENj6DyqD+3Xzbz4HqiG6t4dNIt1DoCAfCY8Mj729hVUscvLh+OXe/kFhGRM5mrGcp2QfFW78fhgKy2oM8v3egJ9oZgh4Kw6rZgLB43Tp/mqPYkQUh8t+NCY048LHP4Wdu1SQyJ9ickyo/Q6IATnltERERERETODP0ellmtXW98bZpmt2N8YZomhmH0a5jzox/9iKeffprS0lIA/vznP3cblv3vf/9j69atbY/vv/9+IiIiujynvLyct99+m9bWVubMmUNiYqJP9f3973/nxhtv9HlVz759+3jnnXfaHbvmmmt8OldOX4bFQuyDP8MaGUHZE3/tdNyI8hweX/xXfn7OHRQGRbUd/+fnuewvq+ep68cRFtD9yksREZFTmmlCVe6hMGzLkZViZbvBdPfppatdsZS6MtsFY1WuBJrN4BOf28dVXb4GWn5BdkKj/QmN8Sc0OoDQaH/CYgIIifbuHaZV6SIiIiIiInIi+j0sM02zV8Z0xzAMZs2aRVZW1gnPdbyCg4P5zW9+w5133gnA0qVLmTt3LrfffnuH42tra7nvvvvaHmdmZvLd7363y2vk5eUxceJEiouLAXjggQdYunQpo0aN6ra+VatW8Zvf/Iaf/exn3Y6tra3lmmuuabeX2rnnnstll13W7bly+jMMg+h77sEWEUnRo49691LpQFJ9GX9e8gS/mHQb2yPT2o6v2FvOlU+t4PmbJ5AZHXSSqhYREeljLQ3eIKxoExRthqItULIdWmr7pZytjReyvn5On8xdXdLg07ij2zD6hzgIi/Y/FIoFHArGvB/OgP5ppS4iIiIiIiJnhn4Py8B7Y703ArGujBw5kpdeeqlPr+GLO+64g1WrVjF37lwA7r77btxuN3fccQcWy5G2c7m5uVxzzTXs2rUL8LZffPvttwkI6Prdt3//+9/bgjKAmpoa/vCHP/Dqq6/6VN+DDz7I7t27+cUvfkFqamqHYxYuXMg999zDzp07245lZWXx8ssv+3QNOXOEf/1abDHR5P/gh5iNHb/DPLSlgd8tf5o/j72GRcnj2o7nlNVz5ZPLeeK6sZw7JOZklSwiItI7aosPBWKHg7HNULEXzI7fQHK8TBOazBAqXYlUupKociUQbd/LYP9lRwZZbBCRCdFDIGao93P0UMJ2BsE/9/RqPYdVlzXi8ZhYLF2v+PILtHPtgxMJifLH4Tcg/mkiIiIiIiIiZ6B+/xfp9OnTO22bsnjxYgzDYPr06T2e12q1EhwcTHp6OrNmzeKiiy7qlXaOveHZZ58lMDCQJ554Arfbzd13383jjz/O9OnTCQ0NZffu3Xz00Ue0tLQAkJiYyHvvvcfo0aO7nbuj0NHTyaoegLS0NKZNm8bSpUvbjr300ku88sorjB8/ntGjRxMVFYVpmhQVFbFs2TL27t3bbo5LL72UZ599lvj47velkDNP8KxZpL7yCnnf+ibu0rIOxzg8Ln687p+k1RTx8rAL8Rje4LimycWtL67hB+cP5p5zs7q94SYiInLSedxQvudLwdgWqC/p3cuYFmrcMVS5kqh0J7aFY5WupGPaJg6K3sPgaWdD7DCIGeYNymzHtjYOq6nq1RoPCwp3EhrjT0ujC7/A7leERSWdeNtHERERERERkRNhmH29pOsEWCwWDMPA7e7b/Rr6y/z583n44YdZsWJFh8+HhIRw55138tBDDxEaGurTnAcOHGDixIlt+6IFBQWxdOlSxowZ0+V527Zt4/XXX+fjjz9m3bp1XQZsAIGBgVx++eXcfvvtzJ4926faToatW7cyYsSItsdbtmxh+PDh/ViRHNaan0/eN79J8+6u38H+eexQ/jDhehrsfu2Onz8slj9dM5oQP7VhEhGRftJcB8Vbj4Rih/cYc/m2P5cvWj1Oqr4UhlW6E6lyJeDBt78Do1OCueaBid2Oa6hp4YX7l3U7riMBIQ7CYgO8H4daJobFBBAS5YfNMTDeoCYiIiIiIiLt6f555xSWDQAHDhxg5cqV5Obm0tLSQnh4OMOHD+ecc87B6XT2eL6ysjLefvttWltbmTNnDklJST06v66ujh07drBz504qKiqora3FYrEQEhJCZGQkI0aMIDs7e8Cs1DuavtkHNndtLfnf+Q71K1Z2Oe6TlAn8edzXjzmeERXIMzeOZ1Cs3oEuIiJ9rKECCjdC4YZDnzdBxT6gd351bvH4U9KaeSgYS2oLx+o80Sc8t91p5c7/67x7w2GmafL895bQ0tTx79p2PyvhsQGExhwKxWK9gVhYTAAO/35vUCEiIiIiIiI9pPvnndO/cgeA1NTUTvcHOx5RUVHcfffdx31+UFAQEyZMYMKECb1WkwiANTiY5GeeofAXv6D6rbc7HFPqH8oLwy7p8Ll9ZfXMeXI5j109motGqu2niIj0krrSQ4HY+kOfN0JVbp9eMr9lOB9W/axP5m5tdtNQ3UJgWNdvujIMg8jEIJrqW9tWiB0OxUJjAggIcXQbuImIiIiIiIicDgZ0WNZdK0AROfUYdjvxv/wlzvR0Sh77Exy1uNXw82PLtx6kal/nN+bqW9x867UvuH1qOj++MBuHzXIyyhYRkdNFTeGRQOzwqrGa/BOa0m1aqXHHUeFKxm3aGey/tOsT7IGER0dB1QldtktVxQ3dhmUAV/5wnAIxEREREREROeMN6LBMRE5PhmEQefvtOLOyyP/BD/HU1QGQ8NvfcM9FF5G6qZAfvbWRhpbOW7DOXZbD2gOV/O26sSRHBJys0kVE5FRhmt4QrGBD+2Csrvi4p3SbVqrd8VS4kqlwJVN56PPR+4kFW0rah2XBCRA3sv1HeDohJljuW4zH3Xsd0Z0BNsJiAwiP9b1NooIyEREREREREYVlItKPgmbMIO3fr5N3zz2EXHwxIRddBMAlo+IZFBvE3a+sI6esvtPzN+ZVcckTS3ns6tFcMDzuZJUtIiIDUU0hFHwB+V94PxduhIby45rKbdqocsUfFYilUOFOotqVgKebX59rPTG0nPtrHMnDvcFYYFSH4yxAaEwAlYWd/z3XmeAIP8LjAgiPCyQsLqDta/9gu8IvERERERERkeNwSoZl1dXVrFmzho0bN1JeXk5VVRVPPfVU2/OlpaU4nU5CQkL6sUoR8YUzM5P0t97CEhjY7vjg2GDe+39T+P6/NzJ/e+erAGqaXNz1yjq1ZRQROZM0VEDB+kPh2KHPtYU9nsYbiiUcWimWQqUriQpXMtXu+G5Dsa5Upd9ETGr3v4dGxHUellltFu8qsbgAwuICiDgUjIXFBmB3WI+7NhERERERERE51ikVlr333ns8+eSTLFy4ENNs37Lm6LBs4cKF3HLLLXzta1/jkUceITMz82SXKiI9YA0O7vB4iJ+dZ28cz5Of7eHx+bvatjdLrSkkLygGj+XIzcLDbRmf+PoYUiMDO5xPREROQS31ULjpyKqx/HVQmXNiU3r8ebP8D1S74zHp/eCpoqDep7AsLC4A/2D7oVAs0BuMxQYQER9IUIQfFotWiYmIiIiIiIicDKdEWFZUVMQtt9zCp59+CnBMUNZRu5nm5mb++c9/8s477/D3v/+dm2666aTUKiK9y2Ix+PbsQYxJCeO7r2/AUVzAY0ueJCc0nj9MuJ4y/7C2sRvzqrj4L0t59IoRXDUuUa2oRERONa4WKNl6pJVi/noo3Q6mx6fTD/+K2N2Pf7vRSJMnpE+CMoAKH1srnnVpOmdfoTd1iYiIiIiIiPS3AR+WFRQUMHnyZPLy8jBNE8Mw2t0A/3JwBpCQkEBERAQVFRU0NjZy6623YrFYuOGGG05m6SLSi6YNimbeXRPY8dVrCHI1MbI8h7999jh/Gncda+KGto2rb3Hzgzc38tnOEn595UhC/e39WLWIiHTK44GKvXBw7aFgbB0UbQF3s0+nN3sCqHClUO5K9X5uTaXclcLXo75LkLWiy3MNAyL9islv7N2W3YYBIdH+OPx8+xXbYlXrYBEREREREZGBYECHZR6Ph0svvZTc3Ny2gMw0Tfz8/MjIyCAkJIRVq1Ydc960adMoKipi7ty5/OQnP6G6upq7776bGTNmkJycfLJfhoj0AtM0cf/xN8SWHWw7FtrSwKOr5vJm1rm8NOwi3Ee1ZfxgUyHrc6t4/JrRTMqI7I+SRUTkaI2V3kDs4Fo4uMb7uamq29Pcpo1KVxLlrhQqXN5ArLw1lTpPdIfjy12px4Zl4WkQPwbiRx/6GEPEB+Xkf3awoym6ZVgMQqP9iUgIJCI+kPD4ACLigwiL9cdm135iIiIiIiIiIqeaAR2W/eMf/2DDhg0YhoHFYuHOO+/k1ltvZfz48Vgs3nfiHv78ZTabrS0gmz59OuXl5fzqV7/imWeeOZkvQUR6SeWrr1HzwQcdPnf1nkUMr8jhdxNuoDQgvO14flUj1z23invOzeK+2YNw2PQOfhGRk8LtgpJtR0Kxg2ugfHeXp5gm1HsiKWtNo8yVRrkrlXJXKtWuBDw9+JW1wjaa1OFpkDD2UEA2CvzDjxkXmdDU7VwWi0FojL83EDsUjEXEBxIWE4DVrr9TRERERERERE4XAzose/zxxwGIiIjgww8/ZOLEiT2eIzs7m6eeeoprrrmGN954g7/97W/Y7WrLJnIq8dTXU9ZN0D2s4gBPfvY4fxlzNcsTRx0514S/fbaHhTtKePza0WTH9W7LLRERAWqLDgVja+DgOm9bxdaGToe7TRsVrmTKWtMod6VR5kqnrDWNZjP4hEspz7wbrh7W7bjIxKC2ry1Wg7DYAMLjAtutFguLCcCqN1qIiIiIiIiInPYGbFiWl5fHjh07MAyDl19++biCssO+9rWvkZaWxoEDB1i/fj1nnXVWL1YqIn3NEhhI+hv/Jv/7P6Bxw4ZOxwW3NvLgmpf5uOQsnhl5BU02Z9tz2wpruOyvy/je+YO5e3omVovR6TwiItKF1iYo3Aj5R7VTrM7r0RQfV/2I/c198/tYeX6dT+MiE4P4yp0jiEgIJDTGH6v2DxMRERERERE5Yw3YuwKrV68GYPjw4Vx00UUnPN+MGTMA2Lp16wnPJSInnz0hgdRXXibyjtu7HXvhgdX89bM/M6iy/c3bVrfJHz7eydeeXsG+Ut9upoqInPFqCmHru/DxT+HZmfDbJPjHBfC/B7zHDwVlbtNKi8fPpykjbQf6rNzKwgY8HrPbcXanlazxMUTEByooExERERERETnDDdiVZSUlJQBMnTq1V+ZLSEgAoKKiopuRIjJQGXY7MT/8IQETJ1Lw45/grqrqdGxSfRmPL/krLw+9kLcHnYvHOHIjdH1uFRc/sZT7v5LNzZPTtMpMROQwj9u711juKsj73PtRlXvMsGZPAKWtGYdaKKZR1ppGhSuFcYHvMCn49W4vE2Xf32slO/ysRCYGEZEYRGRCIJGJgb02t4iIiIiIiIicGQZsWFZ16CZ4REREr8zX3NwMQGtra6/MJyL9J2jGDNL/8y75P/ghjevWdTrOZnq4bduHjC/ZyeNjr6Uk8MjPk6ZWD49+sI33NxXw+6+OYnDsie+TIyJyymmu9bZSzFvtDcgOroWW2nZDGtyhlLoyKW1Np6w1g1JXBjXuuA6nK3eldX/NoFiiUtJgdc9KtdgMwuO8YVhkQhARCYFEJgYRFO7EMPSmBxERERERERE5fgM2LAsPDweOrDA7Ufv37wcgKiqqV+YTkf5lj4sj9aUXKXvq75Q9/TR4PJ2OHV22l79/9ieeG3EZH6dOgqNuqq7PreKSJ5Zyz7lZ3DMzE6fNejLKFxE5+UzT2zIx99CKsbxVULwVTE/b07WeaMpah1F6KBQrbc2gweP7G5fKvhyWWZ0QPxqSJkLSBO/n0CRCTLBtWIyrpeOf3UERTqKSgolKOhKKaV8xEREREREREekrAzYsi4+PB2D+/PknPFdzc3PbPImJiSc8n4gMDIbNRvR93yZwymQKfnQ/rQUFnY4NcDXznQ1vMblgM0+MvZoy/7C251rdJn9ZsJsPNxfyu6+OYnxq+EmoXkSkj7lboWizNxjLXeVdPVbr/TlpmgZV7njKWie3hWKlrRk0mye2yrbWHUtz9jdwpo/xhmOxI8HmOGacxYDIxCDK8uqISAgkKimIyKQg7+fEIPwC7SdUh4iIiIiIiIhITwzYsGzKlClYLBYOHDjA3/72N/7f//t/xz3X7373O2pqarDb7b22B5qIDBwB48eT/t5/KPrFo9R88EGXYyeW7OTvCx7j6VFzWJA8vt0qs90ldXzt6RXcdHYqP7owmyDngP0RKSJyrNZGbxvF3JVwYLk3HGttOGZYQctQPqh8iFbTv0/KKB//WxIGhXU77qJvjsQ/yI5Fq8VEREREREREpJ8N2DvBUVFRnH322axYsYLvf//7+Pn5cccdd/R4nueee45f/vKXGIbB9OnTCQ7WvkQipyNrcDCJj/2RoBnTKXrkF3jq6zsdG+Rq4odfvM7kgs38edy11DkC2p4zTXhp5QE+3VbMr68cyczsmJNRvohIzzVVewOxA8vhwErIXwee7vdmDbGW9FlQBlB2sM6nsCww1NlnNYiIiIiIiIiI9MSADcsAHnzwQS6++GLcbjd33303L730Et/+9re56KKLugy93G43n376Kf/3f//Hp59+immaGIbBQw89dBKrF5H+EHrZZfiPHUvBj39C47p1XY5Nqiulxdpxq6+C6iZufXENl41O4MFLhhIb4tcX5YqI+K6+DA6s8H7krsBTuJXK1nhKXVmUtI6gzj2Di8N/3+00gZZy/C3VNHpCT7gkZ6CtbW+xw60UI+ICT3heEREREREREZGTaUCHZRdeeCFXXnkl7777LgArVqxgxYoVWCwWhg4dSmZmZtvYm266idraWvLz89m6dStNTU0AbUHZtddey/Tp0/vldYjIyeVISiL15ZeoePkVSv/8Z8yWlmPGmIaF5yZf32lYdtj7GwtYuL2Y750/mJsnp2FXuzAROVmqDx4Kx5Zj7l9FdXENJa2ZlLRmUdJ6NaWuH+P60gqxRk8I/paaLqc1DIiy7SOvZWyPygkMcxKdHERUSjDRycFEpwQTFO7EOKqdrYiIiIiIiIjIqcgwTdPs7yK60tjYyIwZM1i7di2GYXB0uUc/PnyjpqPnzzrrLBYvXozTqXY/p7utW7cyYsSItsdbtmxh+PDh/ViR9LfmvXsp+MlPadq8ud3xyLvvxnrnt3j0g228t6HAp7mGxAbz6BXDmZQR2RelisiZzDShfO+hYGwFtXt3UFIR0BaOlbZm0mJ2v2Lr0vBHSXWu73bcStd9fFE2s9PnQ6L9iU4OIjolmKhkbzgWEOLo0UsSERERERERkYFF9887N6BXlgH4+/uzcOFC7rjjDt54441j3r18dEhmGEa7x6Zpcs011zB37lwFZSJnKGdmJmn/+iflz8+l9MknobUV5+DBRN17DxaHg798fSxzxiTys3c3U1Dd1OVcO4trufbZVVw5NpGfXpxNTLBaM4rIcTocju1fSsPONRTvKaGkJurQqrGLaDKvPa5pS1szjw3LbH6QOB6SJx36OIuoba3w/FYMA8LjA4lKDvKuFksOJio5CGdA16tuRUREREREREROJwN+ZdnR3n33XX73u9+xZs2absdOmDCBBx54gDlz5vR9YTJgKBmXrjTt3Enhgw8R/+gv8Bs6tN1zdc0uHvvfTl5auR9ffioGO218/4LB3Hh2Kja1ZhSR7pgmVOZAzlKKN26jcF8txXVxFLcMptYT02uXSXOu5pK4pyDlbEidDKlTIH402NqvCmuqb6WquIHIpCDsDmuvXV9EREREREREBi7dP+/cKRWWHbZjxw4+++wzNm7cSFlZGTU1NYSEhBAVFcXo0aOZOXMm2dnZ/V2m9AN9s0t3Dq9C7cy6A5U88M5mdhbXAnDZvmXsCktmZ0Rqh+Oz44J59IoRnJUe0Sf1isgprPIA7F8K+5dBzlKoOQjAfyp+QX7LqD65ZGCwhVt+Pw0sCsBEREREREREpD3dP+/cgG/D2JHs7GyFYSJyXLoKygDGp4bzwX1TeWnFfv7z5mfcvfm/GKbJ+xlTeGnohTTa27de3FFUyzXPrOTikXH89KKhJEcE9GX5IjKAmZV5GAeWecOx/UugKrfDcbH2Xb0allksBpFJQUSnBhOTEoyJha5/0omIiIiIiIiIyNFOybBMRKQv2a0Wbj8nhel/mofb9ABwxb5lTCnYzDMjL2dZwij4Uuj24eYi5m8r4bap6dw7M5NgP+33I3I6c7W6KdtxgOINWyjeV0lxmT/DnR8yLujdbs+Nte8+7use3mMsJjWYmNQQYlJDiEwKxGbXSjIRERERERERkeOlsExEpAMVL7+Ce8f2dseimqr52ZpXWB89iKdGXcnB4Pb7DLW4PTy9eC9vrcvjBxcM4ZoJyVgtWt8hcjqor2qmcHs+RRt3UbS/ntLqYDymDQg69AFFlsE+zRVr3+XzdcOincSkhxGTGkJ0ajDRycHYnQrGRERERERERER60xkTllksFiwWCy6Xq79LEZEBruXgQUr/+tdOnx9bupunFv6Jd7Om868h59Fkc7Z7vqyuhZ++s5mXVuzn55cOY3JWVF+XLCK9yOP2UJ5fT9HuMgq35FB0oInahsMtWB2HPo5V3DoY0zxm4ekxAq1VBFlKqPO0D9yDQ0xiMiK8H6khRKcE4/Q/Y35VExERERERERHpN2fUHRjTNPu7BBE5BdR+/DFmY2OXY+ymm2t2f8bMg1/w7IiOWzPuKKrlG89/znlDY3ng4mwyooP6smwROU5N9a0U59RQtLeSwu0FFB9sxuU6evWWX6fnHq3BE0GdJ5Jga3kXowyIG0Gys5Uaj4e4IfHEDoohJi2EwFBnF+eJiIiIiIiIiEhfOaPCMhERX0TecQeOjEyKHn0UV1FRl2OjG72tGb+IHsTfO2jNCDB/ezGf7Szh2onJfHf2IGJCfLvxLiK9zzRNqksaKdxbTdG+Kgp3lVFZ0vqlUcff5rC4dQjB1hXtD8YMh/RpkDYNUidDQASzjvsKIiIiIiIiIiLS206ZsKy5uZmlS5eyYcMGioqKqKmpUUtFEekzwbNmEnDWWZT99QkqXn0N3O4ux4871JrxP5nTeH3IbBrs/u2ed3tM/vl5Lu9+kc/tU9O5a0YGIX72vnwJItKB6twCXvvtzj6bv7hlEFnJFd5gLH0apE6FwMg+u56IiIiIiIiIiJy4AR+WNTY28sgjj/Dss89SU1PT3+WIyBnEGhRI7E9/SuhVX6Xol4/SuHZdl+Ptppur9yzi/Nw1vDz0Qv6XNgmPYWk3prHVzd8+28Nrnx/g3plZ3HhOKk7b8a9iEZFutDRA7grYtwj2LSK0cDP+lhdp9IT2yvQ2o5EY/wLi4j3EDk4gduKPISGxV+YWEREREREREZGTY0CHZVVVVcyaNYuNGze222/M+NK+QCIifclvyGBSX3mFmg8+oPgPf8BdWtbl+LCWeu7b+DaX5azg2RGXsSFm8DFjKhta+dW87bywfD8/uGAwV4xJxGrRzzaRnqqvbqZwTzUFe6o4Z04mdocFSrbBngWwdwEcWAnu5rbxhgFx9h3kNE86ruuFWguIC8wjLtlO3PAMIsadjSXskt56OSIiIiIiIiIi0g8GdFj2ne98hw0bNgDegOxwYHZ0cCYicjIYhkHoZZcRNHMmZX/9GxWvvtpta8b0mkJ+u+JZVsUN4/kRl5EfFH3MmPyqRr7/xkaeXbKPH14whNlDY/SGAJFOmKZJTVkjBburKdxTRcHuKqpLG9ueT6/7J8lVr0NtYZfz+BqWWWkhxr6XOP8c4lIcxI3KImD4DIi43pu6iYiIiIiIiIjIaWHAhmUlJSW8+uqrbTeNTdPk0ksvZc6cOQwdOpSIiAj8/Px8mss0TTIyMvqyXBE5Q1iDgoj96U8Iveoqn1ozApxdtI0JxTt4P2MK/xxyPnWOgGPG7Ciq5Y6X1zI6OYzvnz+Y6YOiFJrJGc/0mJQX1HuDsUPhWEN1S6fjC7YVkhzcdVAGEO/Y0eHxAEsF8fYdxDn3EJdiJ3rEUKyDZkD8N8GidqkiIiIiIiIiIqerARuWffbZZ20ryCwWC++88w5XXHFFP1clIuLV09aMNtPDxTkreTdzeodh2WEb86q4+R+rmZgWzvfPH8I5mZG9XbrIgGV6TMry6yjYVcXBnZUU7qmiucHl8/mFrcN8Ghdt34uNZsJsB4l37CTOvpO4RIPg7DEYmedC8vehi+9TERERERERERE5vQzYsCw/Px/wtj676qqrFJSJyIBzuDVj8KxZlD33HBUvvIjZ3Nzp+LwLrqI+JApaum7fCLBmfyXXPbeKyZmR/OCCwYxPjejN0kUGhMMrx/J3VpK/q5KC3T0Lx76sqGUwbtOG1eh6DpvRyu1Dfo4tawpknAvpD0CAvsdERERERERERM5UAzYsa21tbft65syZJzzfCy+8cMJziIh0xBIYSMx3v0v41VdT8qfHqfnww2PG2GJiuOTX9zPJY+WvC/bwr9W5uDzd77+4Ym85K/6+khmDo/n++YMZnRzWB69A5OSprWgiZ2Mp+buqKNhVRVN9a/cn+ciNk9LWTOIcO4990j8CMmZAxkzImIEtPK3XrisiIiIiIiIiIqe2ARuWpaWltX0dFBR0wvPdfPPNJzyHiEhX7ImJJD7+J8JvuIHi3/2Opk2b2p6L/t73vKEa8Ms5I7h9ajqPfbKTDzZ1v78SwOJdpSzeVcrMIdF8e/YgxqWE99GrEOlbhXurWPrv3b0+b4i1kATHNuxGo/eAYYXkSZA1CzJnQ/wYsFh6/boiIiIiIiIiInLqG7Bh2cyZM7HZbLjdbvbv39/f5YiI+Cxg3FjSXv8XNR98QMmfHscWFUXoFZe3G5MWFcjfvjGOb86o5s+f7mLBjhLvE6ZJTGMlJZ20hPtsZymf7SxlalYU356VxaQM7Wkmp5bE2MZemMVDpO0ACY5txNu3keDYTqC1EsJSIes8bziWPh38QnrhWiIiIiIiIiIicrozTNPsvg9YP7nrrrt4/vnnGT58OJs2bcIwjOOeKz09HYvFwt69e3uxQhlotm7dyogRI9oeb9myheHDh/djRXKm8zQ04Covx5Gc3OW49bmVPP7pLsxFC/jx2tf4X+okXh8ymzL/sC7Pm5QewX2zBzE5M/KEfkaKHK/66mYO7qikqriBSZdnHDvA3Qq5q2D3J7D7Uyjdzmulf6XKneTzNSy0EmPf2xaOxTu247Q0gD0A0qZB1mxvSBaRAfo+EBERERERERHpkO6fd25Ah2W1tbWcc845bN++ne9973s89thjxz2XxWLBMAzcbncvVigDjb7Z5VRmtray7cJLsOTnAdBisfFh2jm8MXgmld2skBmXEsa3Zw/i3MHRCs2kT7U0uSjYXcXB7ZXk7aigoqC+7bnbHpuKf5ADaotgz3xvQLb3M2iuaTfHoupvsrXxK51ew0IrcfZdJDi2kOjYQqxjF3ajxftk7MgjrRVTzgabs09ep4iIiIiIiIjI6Ub3zzs3YNswAgQHB7N48WKuvvpqHn/8cTZv3syDDz7ItGnT+rs0EZFeV/X2O21BGYDD42LOvqVceGAV72dM4c1BM6l1BHZ47he5Vdz6whpGJYXyrRmZXDA8DqtFoZmcOLfbQ0lODXk7Kjm4o4LifTV4PB2/z+bgOy8yqPE1KNzQ5ZyJjs3twjILrcTad5PYFo7tPBKOBURC5hXecCxzFgTH9tZLExERERERERERAQZ4WAYQGRnJwoULeeaZZ/jOd77D/PnzCQsLY+TIkcTGxhIQEKBVFCJyyvM0NFD65N86fM7P3crVuxdxSc5K/pM5jXcyZ1Dv8O9w7KaD1XzrtS/IiArkrukZXDkuEafN2pely2nGNE0qCuo5eCgcy99VRWuzb6uyD67fx6DQDd2OS3BsJc6+vS0ci3PsOBKOASSMg0EXeD8SxoBFf4ZFRERERERERKTvDPiwzOVy8eijj/LEE0/Q2tqKaZpUVlaydOnS/i5NRKTXVLz8Mu7Ssi7HBLia+cbO+Vy2bznvZM3gvxlTabD7dTh2X1k9P3lnM49/uovbpqZz/aQUgv3sfVG6nAYaalrI21ZO7rYKDu6opKGmpfuTOnCwZZRP4wKtVXw18oEjB/xCIfNSbziWNRuCYo7r+iIiIiIiIiIiIsdjQIdlLS0tXHjhhSxevBjTNDEMQ6vIROS0ZE9OxpYQj6ugsNuxwa2N3Lz9Y67as5j/ZE7jvYxpna40K6lt5ncf7eDJhXu44ZxUbp2SRkxwxwGbnDncLg9F+6rJ3VpB7rZyyvLqemXeGncc1a5YQm3F3Q+OHQmDzvcGZEkTwTqgfyUREREREREREZHT2IC+M/Xggw+yaNEiAAzDwDQ73iNFRORUF3rJJQSffz5Vb71F+dPP4Cop6fac4NZGbtzxCVftWcJ/M6bwbtb0Tvc0q2128fdFe5m7LIevjkvirukZpEd1PFZOb9uWFbDszd0+t1b0VZg1nyTnJgw6+bvaEQQZ5x5aPXYehCb26vVFRERERERERESO14ANy2pqanjyySfbrSSbM2cOV1xxBdnZ2YSHh+N0On2ayzRNMjIy+qpUEZFeYXE4iPjGNwi76ioqX3+d8mefw11R0e15ga4mrtu1gCv2LWNe+jm8nTWDamdwh2NbXB7+tTqX19fkctGIOL45I5NRSWG9/EpkIAsMc/ZKUOZvqSTJsYlkxyaSnJsItnbQRjRq8KG9x86HlHPA5tvf2yIiIiIiIiIiIifTgA3LFi1aRGNjIwAWi4V33nmHyy+/vJ+rEhHpexY/PyJvuYXwq6+m4rV/Uj53Lp7q6m7PC3A1c/XuRVy2bzkfpp3DW4POpdIvpMOxpgkfbi7iw81FnJUWwe3T0jlvaCxWi1rdnu4SBodhtVlwuzw9Os9mNJLo2EqyYyNJjk1E2HI5pjOyxQapk2HwRTDkQojQG1VERERERERERGTgG7Bh2Z49ewBv+8Urr7xSQZmInHEsgYFE3XUn4dd9nYqXXqbixRfx1HW/t5Sfu5Wr9i7h0pwVfJoygbcHnUthYFSn41fvr2D1/gpSIgK4dUoaV09IJsg5YP96kKO4Wtzk76riwOYyKosbuOK7YzsfbJpQsh37jnkk+IeRV5vZ5dwGbuLsu0hybCTJuYlY+26shuvYgX5h3tVjQy70tlf0Cz2xFyUiIiIiIiIiInKSDdi7oS0tLW1fz5w584Tne+GFF054DhGR/mANDib6/91LxA3XU/7SS1S+8qpPoZnD4+KS/avYGZ7SZVh2WG5FA794fxuPf7qL685K4ebJaSSG+ffGS5BeVFvRxIEt5RzYXMbBHZW4Wo+sEKsqbiAsNuDIYI8bDq6BHR/A9g+gMgeAZC4nj2PDsjBrPsnO9SQ7NpLo2IrD0thxEZGDvOHY4IsgeRJYB+yvEyIiIiIiIiIiIt0asHe3UlJS2r4OCem4jVhP3HzzzSc8h4hIf7KGhRHzne8QeeutVLzyChUvv9Jte0ZrTAzn3H09W1fmUVDd5NN1aptcPLtkH3OX5XDhiDjumJrO2JTw3ngJchw8bg9FOTUc2FzOgS1llOfXdzp2/+YyxkTEQM4Sb0C280OoLz1mXIpjPSu4FbvRQJJjEynODaQ41hNiK+l4YsN6qL3ihTDkIojselWaiIiIiIiIiIjIqWTAhmXnnXcedrsdl8tFXl5ef5cjIjJgWENCiL73XiJuvpnKf/6LihdewF1Z2eHYyNtu5bZzB3PjtCz+u6GAZ5bsZVdx96vSANwek3mbCpm3qZBxKWHcPjWDrwyPxWa19ObLkQ401bVyYGs5B7aUk7u1nOaGDtofduDAgqWMWX0/tHT9/zjClseVEQ8Qa9+F1XB3PMgvFLLO94ZjWbPBX4GpiIiIiIiIiIicngzTNM3+LqIz9913H3/729+YMGECq1evPqG5Zs2ahWEYLFiwoJeqk4Fo69atjBgxou3xli1bGD58eD9WJNL3PA0NVP77DcrnzsVdVtZ23BIayqCFC7AEBh4Z6zH5bGcJzyzZx+qcih5fKzHMnxvOTuXaiclEBDp6pX7xqippIGdjGfs3lVG4p4rj+dvZQiu3x9yEw+LbKsJjhKVA9qUw5GJIORus9uObR0REREREREREBhzdP+/cgA7LmpqamDVrFp9//jm/+93v+NGPfnTcc1ksFgzDwO3u5B30clrQN7ucyTxNTVS9+Rblc+fiKioi6p5vEX3ffZ2O33ywmn8sz+H9jQVcvvMzAlub+CBjMpV+3be+ddgsXD46gZvPSWNkUmhvvowzhukxKT5QQ87GMnI2llFZ2Hl7xZ64MOz3ZPqt8v2E2JGQfQkMvRRiR4Bh9EodIiIiIiIiIiIysOj+eecGdFgG0NDQwJ133snrr7/OzTffzEMPPUR6enqP51FYdmbQN7sImC0tVH8wj6BzZ2CLiOh2fGFxJSUXfwVHfS2tFiufJY3l3czp7A9N8Ol641LCuHlyGheNiMdhU4vG7lQU1rNxYR77N5XRUN3SK3M6jVpSnF+Q5lxHivML/CxdBG+GBVLO8QZk2ZdAeFqv1CAiIiIiIiIiIgOb7p93bsDuWQbw6KOPAjBkyBCmTZvGiy++yEsvvcTIkSMZPXo0sbGxBAYGYuhd8CIibQyHg7CrrvR5vN9nn+CorwXA7nFzQe5aLshdy/roQbybOZ21sUMwjc5DsC9yq/gidwO/DNrON85K5vqzU4kN8Tvh13G6am5wsW1pwQnPE2nLIdW5jjTnOmLtu7AYns4HW52QOcsbjg25CAKjTvj6IiIiIiIiIiIip4sBvbLs8Gqww44utacBmWmaWll2BlAyLtIzpsfDvksupSUnp9MxeUHRvJs5nYXJ42m2db9Pmc1i8JURcdx8ThoT08L1hoYv8XhMXvzxMhprW3t0ns1oIsmxiVTnOlKd6wi2lnd9gl8oDL7QuwdZ5ixwBp1A1SIiIiIiIiIicqrT/fPODeiVZYcdDrp0w1VEpHfVL13aZVAGkFxXyn0b3+bm7R/xYdo5fJh+DmX+YZ2Od3lM5m0qZN6mQrLjgrl+UgpzxiYS7Gfv5eoHlurSBkKi/Lv9u8piMUgbFcX25YXdzhliLSLVuZY05zoSHFuxGd0EbMEJR/YfS50C1tP7v7mIiIiIiIiIiEhvOCXCMmi/qkxERHpH5ev/9nlsaEsD1+1awDW7P2Nl/HDeT5/CpqhM6CIc2lFUy0PvbeW3H+3g8tEJXD8plZFJob1Rer8zTZOKwnr2flHKvvUllOfXc/VPJxCTGtL1iZUHSLetZDtpHT4dY99FunMN6c7VRNhyu/rP6xWWAsOugGFzIGEcWLRvnIiIiIiIiIiISE+cEmHZz3/+c2bOnHnc55umyaxZs3qxIhGR00PCH/9A1VtvUfnyK7QW+LaPltX0MLVgM1MLNnMgOJb3M6awMGkcjfbO9ylraHHz+po8Xl+Tx6ikUK6flMJloxMIcJwSfw21MU2Tsrw69n5Rwt71pVQVN7R7fu8XpR2HZTUFsPU/sPUdOLiGJNOBjZdx4cRCK0mOTaT7rSbduYZAa2X3hURkHgrIroD40V0GliIiIiIiIiIiItK1U2LPsn/9619cc801vTKX9iw7vannqsjxMV0uaucvoOLFF2ncsKHH5zfYnHyaMpH30yeTHxzj0znBThtXjkvkG5NSyI7rZjVWPzI9JsX7a9j7RQn7NpRSU9bU6djQGH+u/8XZ3laMdaWw7T+w9V04sAJo/9ftxvpLCbSWk+JYj8PS+ZxtorOPBGQxwxSQiYiIiIiIiIhIj+j+eedOrbf0i4hInzBsNkIu/AohF36Fxg0bKH/pJWr/9wl4PD6dH+Bq5op9y7hi3zK+iB7M+xmTWR03DI/ReUvA2mYXL688wMsrDzA+NZzrJ6Vw8ch4/OzW3npZx800TYpzati9ppi960upr2r26bzqkkYqFvyLyIJ/Q84SMDv/7zc68IPuJ4wdCcMuh6GXQ0y2r+WLiIiIiIiIiIhIDwzosGzUqFEYhkF4ePgJz3XTTTd53+kvIiJd8h8zhqQxY2g5mE/lq69S9dZbeOrqfD5/XOkuxpXuYmHSOP444Rs+nbPuQCXrDlTyyH+3MmdsItdOTGZ4wsnd2+xwi8Xda4vZs7aE2gofVnt1YO9Hi4gMXnT8hcSPObKCLDLz+OcRERERERERERERnwzosGzDcbQC68yLL77Ya3OJiJwJHEmJxP7kx0T9v3upfvc/VP7zn7Tk5Ph8fvCFFxDV5KSszrdVWQA1TUdWm41IDOHaCclcPiaRUH/78bwEn1QU1LN7bTG71xZTXdJ4wvNVu+N6flLiBBg+B4ZeBuFpJ1yDiIiIiIiIiIiI+G5A71km0lPquSrSd0zTpGHlSipe+yd1n33WZYtGW0I8WZ9+SqtpMH97Ma99foDle8qP67pOm4WLR8Zz7cRkJqVH9Moq4aqSBvasLWH32mIqCupPcDYPCfbtZPitJMNvFcFWH19n3CgY8VUYfiWEp55gDSIiIiIiIiIiIl3T/fPODeiVZb2ppqYGgJCQkH6uRETk1GQYBoGTJxM4eTKt+flUvv5vqt58E3dV1TFjw6+7DsNqxQFcPDKei0fGk1NWz79W5/Lm2jwqG1qPzGt6MLvY26zZ5eHd9fm8uz6ftMgArp6QzNfGJxEb4ndcr8M0Td7783rqKn1f8fZlBm4SHZvJ9FtJhvNzAqzVvp0YPRRGXAXDr4KorOO+voiIiIiIiIiIiPSeM2ZlmcViwWKx4HK5+rsU6UNKxkVOLk9zMzUffkTla6/RtGULAIbDQdbiRdg62W+yqdXNx1uK+OfnuRRu3s4vVzzPx2mT+CRlIhX+vu1TZrUYzBwSzTUTkpmZHYPd2nnY1pHlb+9hw6e5PTrHQivJzo1kOleS7rcGP0utbydGZBxaQXYVxA7r0TVFRERERERERER6i+6fd+6MWVkG3tUEIiLSeyxOJ2FXziHsyjk0btpE5WuvYTj9Og3KAPzsVuaMTWTO2ER2PPQpZmMlN2//mBt2fMKa2Gw+TZnI6rihuCyd/xXl9pjM317C/O0lRAc7+eq4JK6ekERmdJBPdQ+aEONTWGahlRTnerL8lpPuXIPD4uOeZqEpMOJKb0AWPxp6oXWkiIiIiIiIiIiI9I0zKiwTEZG+4z9qFP6jRvn8xgRPczOWTz7Efeix1fRwdtE2zi7aRrUjkIXJ4/gkZSL7QxO6nKe0tpmnF+1l3vwcsiMDmT4rlctHJRAaYO/0nOiUYEKi/akpPTb8MnCT5NhMlt8yMvxW4WfxcU+zoDjv/mMjvgpJExSQiYiIiIiIiIiInCIGdFj26KOP9ncJIiLSQ4aPIVHtJ5/gru54r6/Qlnqu3LuUK/cuZXdoIp+mTuSzpHHUOQLajYt0GwxrsTKsxUqIaaG6oYWH3t3CL9/fxnnDYvjquCSmD45u36bR48bIWcygoC2sKz287NxDgn07g/yXkuFc5fseZAGRMGyOdx+ylHPAYvXtPBERERERERERERkwBnRY9sgjj/h801VERE4tVf9+w6dxg6rzGbQpnzu3vM+K+BEsSjkHV+hghrXaiXW336ss1LSQ5LZw0PDw4eYiPtxcRFSQgyvGJHJdRhNZBf+Fjf+G2gIGtaaQZ7+XQX7LyPJbQZC13LfC7QGQfQmMvAYyZ4K18xVsIiIiIiIiIiIiMvAN6LDseH25BZgCNxGRgcVVWkrjpk0+j/cYVqoiRhAefjbTHcMwmzpfwTWsxcpBmweAUOq4sHEll61eQtbave3GRdpzuTryx74VYFi9wdioa2HIxeD0bW80ERERERERERERGfhOibDM1/1vjnY4IDNN87jOFxGRvmOLjiZr8SKq3/0PVW+8Qcv+/R2OqwtMoDDuHIpiJ9LqCPZp7iEtVjyBn3OVbQmzLV/gNFzHX2jieG9ANvxKCIo5/nlERERERERERERkwDolwrLPPvvMp3H19fWUlZWxdetWPvroI7Zs2UJWVha///3viYiI6OMqRUSkJ2zh4UTedisRt95C47p1VL3zLjUff0xLCxTHTqQw7mxqg1N6PK8fBj92rWCQc/XxFRaRCaOugZFXQ2Tm8c0hIiIiIiIiIiIip4xTIiybMWNGj8/5/e9/z/z587nrrru49957ee+995g4cWIfVCciIifCMAz8xo2n1S+d/clXk7OpHI95fO1zDU8rUeVb8NTWwyDfzys1Q/jAfQ7LAmYzZNB05gxNYnCkbyvZRERERERERERE5NR2SoRlx+u8885j2bJljBs3jssuu4xVq1aRlpbW32WJiMghNWWNbFtewI4VhdRXtxw62vOgLLRqD3HFnxNTuh67u4GMy4u7PafZtPOJZzxvu6ez1DMSN1aogQWL9/HU4n0MjQ/hyrEJXD46kbhQvx7XJCIiIiIiIiIiIqeGAR2W/fznP2/be+x4JSQk8PDDD3Pvvfdy11138cknn/RSdSIicrwaalpY8OI2crdXwHFuK+nfUEx80efElqzBv6mi7XhgbDN2f0+n5631DOZt9zTmuc+mhsBOx20vrGF7YQ2//WgHZ6dHMmdsAheOiCfU3358BYuIiIiIiIiIiMiAZJimeZy3KU8deXl5pKamYhgGO3fuJCsrq79Lkj6ydetWRowY0fZ4y5YtDB8+vB8rEpGOeDwmrzy4grqK5h6dZ6eRlNZVxOR+jl9eXodr0BImVRKa3tjumCs4kS/CLuT/ysazojIMgJDmes7PXc2SxDGUBoT7dH2HzcLs7BiuGJPIzOxonDZrj+oXERERERERERHpL7p/3rkBvbKst8THx7d9vXTpUoVlIiL9zGIxGDYlgdXv5/g0PtGxmWz/hWQ6V2K3NEMytNRaqT7gT/X+AFrrvH+dGVYPwUlN3pPsgTDsChhzHbbUqZxlsfCaabLuQCVvf3GQprff4o6t87hj6zy2RqSxJHEMSxNHUekX0mkdLS4PH20p4qMtRYT42bh4ZDyXj05gUkYkVsuJrYQWERERERERERGR/nFGhGU1NTVtXxcVFfVjJSIictjQyQmsmbcf09PxAucgSwnZ/ovI9l9IqO3YPcgcwW6iR9QRNbyOpnI71fsDwDCxDJoKY74BQy8HZ1C7cwzDYEJaBBPSIsj5z584FKsxvGI/wyv2c9fm99gclcnipDEsTxhJraPzNo01TS5eX5PH62vyiApycsnIOC4dncD4lHAsCs5EREREREREREROGWdEWLZkyZK2r/38/PqxEhGR05fHY3JgcxmuFg+DJsZ2Oz4o3EnayEhyNpa1HbPSTIbfKob6LyTJsRnD6L5TsGGA/6Ak/K++HkZfC2Ep3Z7TWlJC05o1xxy3YjKmbA9jyvZw78Z3WB8zmMWJY1gZP5wGu3+n85XVNfPSygO8tPIA8aF+XDIynstGJzAqKfSE994UERERERERERGRvnXah2XV1dU89NBDbY8TExP7sRoRkdNPU10r25YXsGVxPrUVTQSGOckYF43Vaun8pMZK2PhvhlUtJ4dbibTlMDzgEwb7LcFpafDtwjY/7+qxcTdB6hSwdHG9L6n9+H/QzZadNtPDxOIdTCzeQavFyhfRg1mWMIpV8cOpcwR0el5hdRPPL8vh+WU5pEQEcOmoeC4dlcDQ+GAFZyIiIiIiIiIiIgPQaReWNTU1UVFRwd69e1m0aBHPPPMMhYWFbc9Pnz69H6sTETl9lByoYfOig+xeU4Lb5Wk7Xl/VTM6GMrLGx7Q/wTQhfx2s/QdseRtcTaSYFr4WuY0Y2x58zpHiRnkDspFfA//w46q95sMPezTe7nEzqXg7k4q349pgYVNUFssSRrIyfgRVfsGdnpdb0cBTi/by1KK9ZEYHcumoBC4bHU9WTOfniIiIiIiIiIiIyMk1oMMyq9V6wnOYh1YOGIbB5ZdfTlxc3AnPKSJypnK3etjzRQmbFx2kOKem03FbFh88EpY118KmN2DtC1C8ud04i+Eh1r6n+ws7Q2HUNTDuRogffSIvAdM0CZo9C09TE807dvT4fJvpYVzpLsaV7uLeje+wNTKd5QmjWJ4wknL/0E7P21taz18W7OYvC3aTHRfMZaMTuGxUAimRna9SExERERERERERkb5nmGY3faj6kaUHLbU6crjdlWmaJCQksHLlSpKTk3ujNBmgtm7dyogRI9oeb9myheHDh/djRSKnh9qKJrYuyWfb8gIaa1t9Oufr3wolMvdl2PwWtNQd34XTpnlXkQ29DLrYM+x4Ne/bR82HH1Ezbx4tOTknPN/28FQ+TZ3IR2ln+3zOqKRQLh0Vz0Uj4kmOUHAmIiIiIiIiIiJ9Q/fPOzegV5aBN/A63jzPNE0Mw+DSSy/lySefVFAmItJDRfuq2TA/j33rS7rb4usYW158nRmhL/b8okFxMPZ6GHM9RGb2/PwecGZkEP3/7iXq3nto3rmTmnkfUvPhh7Tm5x/XfEMrD3AgJLZHYdmmg9VsOljNbz7cwaikUC4aEc9FI+JIiwo8rhpERERERERERESkZwZ8WAYwY8YMn8fabDaCgoKIi4tj9OjRXHjhhaSlpfVdcSIipxmP28O+DWVsmJ/bZavFzlhoJctvOdn+n/l+kmGBQV+B8TdD1vlgPbl/PRmGgV92Nn7Z2UR//3s0bd7sDc4++ghXSUmP5qqeOBWrx8Dt6fkbPQ4HZ7//eAdD40O4eEQcF42M0x5nIiIiIiIiIiIifWjAt2E0DAO3293fpcgpQstIRY5fS6OLbcsL2LTwILUVTT0+P8hSxvCAjxnmP58Aa7WPJ8V52yyOuwnCBt7qX9PjoXHDRmo/+YTaTz6htaCgy/GW4GAGL19GZSt8tKWQDzYWsiqnvMNVeak1hRQGRtFitXdbx6CYIC4aGc/FI+MYEhvc1mZYRERERERERETEV7p/3rlTYmWZiIj0nZqyRjYtOsi2ZQW0NvX8zQmJjk2MDPiIdOdqLIbHt5MyZ8GE22DwheBDWNRfDIuFgHFjCRg3lpgf30/Tlq1twVnLgQPHjA+eNRPD4SDCAddPSuX6SamU1DTx4eZC3t9UyLoDld6BpskvVz5PcEsDX0QPZlX8cFbHDaPaGdRhHbtL6ti9YDdPLNhNelQgF42I4+KR8QxPCFFwJiIiIiIiIiIicoK0skxOK0rGRXpm2Zu72bQwr8f7kdmNRob4L2JkwIdE2A76dlJAFIy9wdtqMSKj58UOIKZp0rxrd1tw1rx7NwBJT/6N4NmzOz0vv6qReZsKWD9/Ffe98at2z3kw2B6Rysr44ayKH0F+UHS3dSRH+LftcTYmOUzBmYiIiIiIiIiIdEr3zzs3oFeW5eTk9HcJIiKntaBwZ4+CsjDrQUYGfEi2/yIclkbfTkqbBhNuhexLweY8vkIHGMMw8BsyGL8hg4n+9v+jOSeH2k/nEzhlSpfnJYb5c9f0TEo3zKPsS89ZMBlesZ/hFfu5Y+s88oKiWRU3nDVxQ9kWkYbbYj1mvryKRp5dso9nl+wjIdSPr4yI44JhcUxMC8dmtfTiKxYRERERERERETl9DeiwLDU1tb9LEBE5rQ2bksDqD3K6bb+Y5NjAmMD3SXGsxzB8SNccwTDmGzDxdoge0kvVDlzO9HScd93p8/jaBQu7HZNcV0rynkVcvWcRdTY/1sUOYU3sUNbGZnfYrrGguokXlu/nheX7CQ+wM3toLBcMi2X64Gj87McGbSIiIiIiIiIiIuI1oMOy3vToo49iGAYPPfRQf5ciIjJgOPxtDJuawMb5ecc8Z6GVwf5LGB3wPlH2Y/fn6lDUEDjrThj9dXAG93K1p4eWgwdp3rmzR+cEuZqYkb+RGfkb8WCwKzyZ1bFDWR03lL2hifCl9ouVDa28te4gb607iL/dyvTBUVwwLI7ZQ2MIC3D05ssRERERERERERE55Q3oPct6k/Y/OzOo56qIV2NtC84AGxYfWvHVlDfy6oMr29ox+hk1jAj4mBEBHxForer+YoYFhlwMZ90F6dOPCW6kvbrlyyn4wQ9xV1X1ynzlfiGsic1mTexQ1kcPotHu1+lYq8VgUnoEFwyL5fzhcSSG+fdKDSIiIiIiIiIiMvDp/nnnzpiVZSIiZ4Ka8kY2fJrH9uUFzLwxm8FnxXU+2OOGXR8TsvJJMp1nU96axujA/zLEfzE2o6X7i/lHwPibYcJtEJbSey/iNBc0ZQqDli+jcf16ahcspHbhAloP5B73fJFNNVx4YDUXHlhNq8XKbyfcyMqEER2OdXtMVuwtZ8Xech55fxsjE0O5YFgsFwyPY3BsEIaCThEREREREREROQMpLBMROQ1Ulzaw7uMD7FxZhMfjXSL2xf9yGTQx9tgApKUe1r8Gq56CyhwAzg1Zj8No9G0/svgxMOluGH4VdLGKSTpnWK0ETJhAwIQJxNz/I1r27aN2wULqFiygcdMmOM5F33aPm72hCT6P35xfzeb8av706S7SIgO4YHgcFwyLZWxKOFaLgjMRERERERERETkz9EtYZrVa++OyIiKnncqietZ9fIBdq4sxPe0DlvL8OnK3VpA6ItJ7oL4cVj8Dq5+Fxsp2Y52Whq4vZFhh2OVw9j2QNFGtFnuRYRg4MzNxZmYSddeduEpLqV20iLpFi6lfuRKzoZv/N0fJDYmlJDDCt8Gm2e7/4/7yBp5dso9nl+wjMtDBzOwYzhsaw7RB0QQ69d4aERERERERERE5ffXL3a8zZJs0EZE+U15Qx7qPDrBnbXGXi5C++N8BUhPrYOXf4ItXwNXYsws5Q7ytFs+6G8KST6xo8YktOprwq68m/Oqr8bS00LB6DXWLF1O3eDGtuV23axz51Yt57rIJfLK1iPnbi6lsaO1wXGhzLU8tfJz10YNYF5vNFzGDqHYGtz1fXt/CW+sO8ta6gzisFs7JjOS8oTHMGhqrfc5EREREREREROS0Y5j9kFxZLBYMwzhpodnhaxmGgdvtPinXlP6hDQrldFd2sJa1H+5n7/pS8PFH6FWRPyPevq1nFwpPg0nfgrHXw1EhivQf0zRpydnfFpw1rF0LLle7MSkvv0TgWWcB4HJ7WHugkk+2FvO/rUXkVx0JSmfmfcH96/7Z7txdYUl8ETOEtTFD2BGRitvS8SrwofEhnDc0htlDYxmVGIpF7RpFRERERERERE4Jun/euX7tqzRjxoyTdq3FixeftGuJiPS28vw6Vn+Qw771pT06L8BSQaM7COw+npAyGc65F4ZcBJ2EJdI/DMPAmZGOMyOdyFtvwV1XR/3yFd7wbMkSzOZmAsaObRtvs1o4OyOSszMieejSoWwrrOGTrcV8sq2Y8Wt3HDP/4KqDDK46yNd3LaDB5mRzZAbrYwazPnoQucGxbS0btxfWsL2whr8u3EN0sJNZQ2KYPTSGqYOiCHCoXaOIiIiIiIiIiJx6+nVl2clc5dUf15STT8m4nG6qihtY/UEOu9cW+7ySDCDYWsz4wLfJ9v8Mq+HqerDFBsOvgnPugYSxXY+VAcn0eGjNz8eR3H2rTNPjYceUaVBZ4fP8Fc5g1kcPYkPMIDZED6LMP+yYMU6bhcmZkcweGsvsoTHEh6pdo4iIiIiIiIjIQKL7553TW8BFRAagmrJG1szLYeeqoi73JPuyUGsB4wPfYrD/EqxGN28OcIbAhFth0jchJOHECpZ+ZVgsPgVlAM07dvQoKAOIaK5l9sEvmH3wCwByg2LYEJ3FhujBbIrKpN7hT7PLw2c7S/lsZykP/geGJ4QwOzuGc7NjGJ0UhlXtGkVEREREREREZIBSWCYiMoDUVjSx7qP9bF9eiMfje0oWbs1jQtCbZPktx2J4uh4cFAtn3+MNyvxCT7BiOdXULV12wnOk1JWQUlfC5TkrcGOwOzyZ9dGDWB89iB0RabRabWwtqGFrQQ1PLNxDeICdGYOjmZkdw/RB0YQHOnrhlYiIiIiIiIiIiPSOfgnLXnjhhTPimiIivmqoaWHdR/vZsjQfj8v3kCzSlsOEoLfIdK7EMLo5LyITpnwHRn8dbM4TrFhOVRE3XI9z8CDqly6jbvkyWg/kntB8VkyyK3PJrszlul0L+N70b7MjIrXdmMqGVv6zoYD/bCjAYsCY5DBmDolhZnYMw+JDsGjVmYiIiIiIiIiI9KN+2bNMpK+o56qcqj59YSu7Pi/2eXyUbR8Tg/5NunNN9yFZwjiY+l3IvhQs1hMrVE47Lbm51C1bRv3SZdR//jlmQ8Nxz1Vv8+Oai3+Bpwd/zqKDnZx7aNXZ1EFRhPjZj/v6IiIiIiIiIiLSOd0/75zaMIqIDAATL05n95oSzG5aL0bYcjkr6F9kOD/vPiTLnO0NydKmgaGVO9IxR0oKEd/4BhHf+AZmSwuNmzZRv3IV9StX0rhxI7i72fvuKJuiMn0KyhzuVi7OWcmmqExyzHjeXHeQN9cdxGYxGJ8azszsGGYOiWFwbBCG/uyKiIiIiIiIiEgfO6XDspKSEsrKyqiuriY0NJSoqChiYmL6uywRkR4Liw1g+NQEtizJ7/D5UGsBZwW93v2eZIYFhl/pbbcYP7qPqpXTleFwEDBhAgETJhD97f+Hu66OhjVrqF+5koaVK2nevafL8wsyR3T5/GFDK/Zz95b/AlBr92dzVCYbozLZFJXJarebz3Mq+N1HO0gI9WPGkBhmDI5mSlYkwVp1JiIiIiIiIiIifeCUC8s+/vhjXn75ZRYtWkRx8bEty2JjYzn33HO58cYbueiii/qhQhGR4zPhkjR2rCrE1XIkDAu2FjMx8N8M8V/cdUhmscHo62Da9yEi4yRUK2cCa1AQwTNnEjxzJgCtJSU0rFpF/YqV1K9cietLfw//6IEbuTk8noU7Sli0s4QVe8tpdh3753ZU2d62r4NbG5lcuIXJhVsAqHYEsDkyk03R3vDs9aoG/rU6F6vFYHxKONMHRzF9cDQjEkK115mIiIiIiIiIiPSKU2bPss2bN3Prrbeyfv16ALoq+3DLprFjx/LCCy8wcuTIk1Kj9D/1XJWByDTN7lvJuVthw2t8/vZW1lZcRKCljAlBbzLUfyFWw9X5eVYHjL0BpnwXwlN7tW6RrpimSUtODvUrvcFZy/79ZLz/frs/640tblbtK+eznSUs3FHCwcpGAP6w9ElGluf4dJ1qRyBbItPZEpnB1sh09oYm4LFYiQh0MDXLG5xNHxRFTIhfn7xOEREREREREZHThe6fd+6UCMveeOMNbrvtNhobG3276cyRMM3f35+5c+fy9a9/va/LlAFA3+wykDTUtPD5+/sAmHl9dseD3C7Y/AYs/j1U7qfF48/2xlkMD/gEm9Ha+eQ2Pxh/C0y+D0ITe794kR7q7u9n0zTZW1rPkk25nHXfNVg9vu+FdrQGm5PtEalt4dnO8BRarHay44KZMTia6YOjmZAWjtPW/d5pIiIiIiIiIiJnEt0/79yAb8O4cOFCbrzxRlpbWzEMA8MwulxVdtjhG3aNjY3cfPPNREdHM3v27L4uV0QEd6uHjZ/lse7D/bQ0ucGAEdMSiU4JPjLINGHbf2Dhr6F8d9thh6WR0YHzOp/cHgATbvOGZMGxffciRHqouzeyGIZBVkwQ8YHV5B5nUAYQ4GpmfMkuxpfsAqDVYmVXWDJbIjP4YkM6L0emQ0AgZ2dEMH1wNDMGR5MeFejTG21EREREREREROTMNKDDspqaGq699lpcLldbSDZkyBAuvfRSRo8eTWZmJiEhIfj7+9PQ0EBtbS179uxh48aNvP/+++zevRvDMGhtbeXrX/86e/fuJSQkpL9floicpkzTZN/6Ula8s4easqajnoBlb+5mzvfHem/Y5yyBTx+Ggi98n9weAGfd6Q3JAqN6v3iRk8h/wngaN26C1i5WT/rI7nEzvGI/wyv2w254ZNKtfB4/nM92lvLZzlIAksL9mT44mqlZUZyTEUl4oOOErysiIiIiIiIiIqePAR2W/fGPf6S8vBzDMMjOzuYvf/kL5513XpfnnHPOOdx444089thjfPzxx3z/+99nx44dVFRU8Mc//pFf/vKXJ6l6ETmTlObWsuzN3RTsrurw+YLdVeQsWkdG/m9hz3zfJ7Y6YeLtMPV7EBTTO8WK9KPAc84h8Jxz8DQ20rhhA/WrV9Pw+WoaN2/ulfBsa2T6MccOVjbyz89z+efnuRgGjEgIZUpWFFOzopiQFo6fXS0bRURERERERETOZAN6z7LExESKioqYOHEin3zyyXGtCqupqWH27NmsW7eOuLg4CgoK+qBSGSjUc1VOtoaaFlb+Zy87VhZCNz9NQ6xFfCPq21gNV/cTW+ww/maY9gMISeidYkUGME9Dgzc8+3w1DasPhWcuH75XjpITEsc9s37Y7TjD9PCTNa+yLzSR3dHphIwZxVnDEpmaFcXwhFCsFrVsFBEREREREZHTj+6fd27ArizbtGkThYWFWK1WXn311eNunxgSEsJrr73GsGHDKC4uZtOmTYwaNaqXqxWRM43H7WHLknw+f2+fd18yH9W4Ywi3dRHaG1YYez1M/xGEpfRCpSKnBktAAIGTJxM4eTIAnvp6GtZvoGHdWhrXrqNx0ybM5uYu59gSmeHTtRLryphesInpBZtgO7iXWtgbmsCHEWk8FZdJ8PhxjB4/hKlZUaRGBmi/MxERERERERGR09yADcu2bNkCwPTp08nKyjqhuQYPHsyMGTNYtGgRW7ZsUVgmIiekYE8VS/61i/L8Op/GO4x6xge9xeiADzpfVWZYYOQ1MON+iMzsxWpFTk2WwECCpk4haOoUADwtLTRt2UrDurU0rF1L4xfr8dTWtjtnb5xvvy8Mq9jf7rHV9DC46iCDqw7CvmWw4iVK/UP5OCKNgsRBBI0bS/a0CUweEktUkLNXXp+IiIiIiIiIiAwcAzYsKy0tBWDkyJG9Mt/IkSNZtGhR27wiIj3VUNPCynf2sGNVkU/jDdwM85/PWUH/IsBa3fnAwRfB7J9D7LBeqlTk9GNxOAgYN5aAcWPhzjsx3W6ad++mYe26tgDtL7++hS0tTpbsKmXx7jI2Hayio2bTQ78UlnUkurGaGfkbIX8jrH6LpufsLAxLpihlMAFjx5I18xzOGp1OgGPA/iolIiIiIiIiIiI+GrB3eJqamgDw9/fvlfkOz9PcTQsnEZEva2u5+N8cWhp920MpybGBqcEvEGnP7XxQ8iQ47xeQek4vVSpy5jCsVvyys/HLzibihusxTRPDMJgATEiL4PsXDKGyvoVle8pYtruMZXvKyK9qBI5dWeYLP3crI8v3MbJ8H6z/GP4By4OiKUvKwjZiJMlTJjJ6xgT8A/x694WKiIiIiIiIiEifG7BhWXR0NAC5uV3caO6Bw/NERUX1ynwicmYo3FPF4td3UX7Qt5aLYdZ8pgS/SKpzLZ1ucxQ1BM57GIZcTOeDRKQnOtpXLDzQwWWjE7hsdAKmaXKgvIGVG3JI+U9Jr1wzqa6UpB2lsGMlvPUsuyw2lp59GS3X3cI5GZGMTQnDz27tlWuJiIiIiIiIiEjfGbBhWUpKCgD/+9//aG1txW63H/dczc3NfPzxx+3mFRHpSlN9Kyvf3cu2ZQU+jbcZjUwMfIPRgV3sSxacADMfgNHXgXXA/vgVOS0ZhkFaVCBJ4xOp+u53aVi/nrovvsD40r5nJ8LhcbG13sJHC3bzxILdOGwWxqeEc3ZGJOdkRjImOQyHzdJr1xMRERERERERkd4xYO/WTpkyBafTSWVlJQ8//DC/+c1vjnuuhx9+mMrKSvz8/Jg6dWovVikip6P9m8tY+MoOGmtafBqf5beMKcEvEmQt73iAMwSmfR8mfRPsvdNaVkSOjy08nKhv3g2A6fHQsn8/jV98Qe26L6he8wXWgwdOaP6d4UfelNPi8rByXzkr95Xz5/ngZ7cwITWCczIjmbJvNUn+BkFjRuMcPBjDNmB/JRMREREREREROe0N2Dsz/v7+XHDBBbz//vv8/ve/x26389BDD2Hrwc0kl8vFww8/zB/+8AcMw+ArX/kKfn7aS0REumHiU1AWZj3I9JDnSHZu6niAYYHxt3pXkwWqBazIQGNYLDgzMnBmZBD2ta+RDLgqK2ncuJHK1eso+3wt9l3bsLX6Fpw3We3sD4nr/PlWj3cPtT1lpHz2D5zV+ZQCbrsTY0g2ERPGEjh6FH4jR2JPTOywtaSIiIiIiIiIiPS+ARuWATzyyCN88MEHAPzqV7/itdde41vf+hYXX3wx2dnZHd5EMk2T7du388EHH/D0009z4ID3HeKGYfDII4+czPJF5BSVNiqKrPEx7FnX8b5GNqPpUMvF9ztvuZgxE77yG4gd1oeVikhvs4WHE3zuuQSfey4pgNnaStOOnRQs/5ySlWuwbt9CcE3Hq0h3hyXjsXS/R5nT1UJ6TWHbY2trM2zZSNWWjVQdOmYGhxAwcgQBo0biP2IEfiNGYIuNVYAmIiIiIiIiItIHBnRYNnbsWL797W/zxBNPYBgG+/bt4/777+f+++/H6XSSmppKSEgI/v7+NDY2UlNTw/79+2lp8b4D3DRNwBuU3XfffYwePbo/X46InEKmXjOIvG0VNDe2D8My/ZYzJfgFgjtruRg5CL7yaxh0Aeimtsgpz7Db8R85gsyRI8j85u0ANOcXsG/p5xSsWIu5bQtRhTk43a3sCPdtX9Ss6nyspqfr69bW0LhiBY0rVrQds0ZFtQVn/iMPBWiRkcf/4kREREREREREBOjHsGzWrFkYhsGCBQu6HPf444+zd+9e5s2bh2EYbQFYU1MTO3fuBGh3/GiHj1966aX86U9/6v0XISKnrUDXQSYnfsJne2YBEGItYkbI06Q4N3Z8gl+Yt93ihNvAaj95hYrISedMTGDo169k6NevBMDd3MKOVRtIL2/lvFoHn+dUUNvUyapTYEjF8e2L5i4ro27RIuoWLWo7ZouPbwvQ/EYMx3/4cKxhYcc1v4iIiIiIiIjImarfwrJFixb51ErIYrHw3nvv8ZOf/KQt8OrovC8fOxye3X///fzmN79R2yIR8U1rIyz9Eyz/C0NdLex2RBBt38fEoH9jNzrYt8iwwsQ74NyfQEDEya9XRPqd1elg+IyzGA7cCLg9JlsLqlm1r5yVe8tZs7+SuuYj4dmQytxeu7arsJDawkJqP/0UAEtAAIPXrsGwWHrtGiIiIiIiIiIip7sB3YbxMIvFwh/+8AeuvfZafvvb3/Lf//4Xl6vzd2zbbDauuOIKHnjgAcaOHXsSKxWRgczt9rBxQR7DpyXi9O/gx9/+ZfDf+6BiL+DtonhZ+C+xGJ20S0s5By5+DOJG9GHVInKqsVoMRiWFMSopjLumZ+Jye9icX83KfeWs2ldB3p4ktjVVk1WVj8PT+e8zx2NnSAL/eGcLZ6VHcFZ6BEnh/p3u8ao3EomIiIiIiIiIePV7WHbnnXdy2223cc4553Q7dvz48bz11lvU1dWxdOlSNm7cSFlZGTU1NYSEhBAVFcXo0aOZNm0aQUFBJ6F6ETlVlOfXMf/FbZTl1VFZ1MDsm4YeebKxCuY/DOtePOa8DoOywGg4/5cw+uval0xEumWzWhibEs7YlHDuORdab57ApoNVLNtZRM7nG3Bv3UJm2QEGV+WRXFd6QtfaHJjAv9fm8e+1eQDEh/oxIS2CCanhjE8NJzsuGJvVQv2KFRT+7EH8hg7Fb9gw/IYPw2/oUGxxcQrRREREREREROSMY5gdbfZ1ElgslnY3Y4YMGcIdd9zBjTfeSHR0dH+UJKeBrVu3MmLEkVU+W7ZsYfjw4f1YkfQ3j9vD+k9zWf1+Dh73kR93l9wzirRRUbD9A5j3A6gr6n4ywwIT7/TuTeYf1ndFi8gZpdnlZmNeNatzylm/I5+aTVtIKd3PoKqDDK48SHxDuc9z/W7C9SxO6nxVfaDDypiUMK7e9RlD/vvyMc9bw8O94dmwQyHa0KHYU1LU1lFERERERETkNKD7553r97AsLi6OwsJCbzGGgc1m47LLLuO2227joosu0rubpUf0zS5HqyyqZ8FL2ynOqTnmuYBgG9eNfhm/PW/6NlnSWXDJnyB+VC9XKSLSnsvtYVthDatzKvg8p4LtO/OIKcxhUOVBBlXlMbgqj+jG6g7Pvf28H1MQ1P2bjn6y5lVm5G/wqR5LYCB+Q4fiPBygDRuGMyMDw9bvDQpEREREREREpAd0/7xz/X6XIy8vjw8//JC5c+cyb948Wltbeffdd3n33XeJj4/nlltu4dZbbyUzM7O/SxWRU4TpMdn02UFW/mcv7taO9xtrqHWxZG0SF4R1M1lAJJz/KIz+BmhlhYicBDarpW3PszumZeDxjGdPaR2f51SwJqeC53LKaSkpZVDVQQZV5nlXoFXlYXe7KAyM9OkamVUHfa7HU19Pw9q1NKxd23bMcDpxDhnibeM4NNv79eDBWAIDe/x6RURERERERET6W7+vLHO73W3HSkpKeOmll3jhhRfYsWOHt8BDK8umT5/OHXfcwVe/+lX8/Pz6o2Q5BSgZl7rKZha8tI2DOyq7Hes0avl61HcJslZ0PGDM9XDBryAgoperFBE5fqZpklfRyOc55azZX8HqnAr2l9UT2lJPtbP7PVsDWpt4e96DfVKbPSWFmO9/n5ALv9In84uIiIiIiIjI8dP9884NqLDsaCtXruT555/nzTffpK6uDvAGZyEhIXzjG9/g1ltvZcKECSezZDkF6Jv9zLZvfSkLX91Oc72r27FpztWcG/I0gdYOQrWwVLjsL5A5sw+qFBHpfSU1Taw+FJytzqlgR1Ftp2OHl+3jsWVP9VktSU89RfAs/fwUERERERERGWh0/7xz/RaWHThwAIDU1NQux9XX1/P666/zj3/8g5UrVwJHVpuNGDGCO+64g+uvv56ICK38EH2zn6lam90se3M325YVdDvWYdQzLWQuQ/w+45gtEQ0LnH0PzHwAHGolJiKnrqqGFtbur2TtgUrWHahg48FqWlzetrQBrU0Mq8ghqyqfzOp8MqvyiW/oZIXtcTj499cZPX4IMSFddwIofOQRPDW1OLOz8csegnNINraYaO1XKyIiIiIiItJHdP+8c/0Wlh2PnTt38vzzz/PKK69QUlICeIMzh8PBnDlzuO222zj//PP7uUrpT/pmP/OU5tbyydytVBU3dDs22bGeWaFPEmQtP/bJ2BFw+V8hcVwfVCki0r+aXW62FtSwbn8law9UsO5AJWV1LW3PB7U0kFFdQFbVQbKqvSFaUm0pFnr2a2Kt3Z9rLn4UDIPEMH/GpIQxNjmMsSnhDE8Iwc9ubRu7a9o03KVl7c63hofjzB6C35Bs7+fsbBwZGVgcjhP7DyAiIiIiIiIiun/ehVMqLDvM5XLxwQcfMHfuXD7++GPcbnfbu5CTk5O59dZbueWWW7pdtSanH32znzlM02TjgjxWvrsXj7vrH2M2o5EpwS8y3P+TY1eTWZ1w7o9h8n1gtfddwSIiA4hpmuRWNLB2fyXrcitZt7+SXSW1HP1bodPVTHpNIVlV+W2r0FJrirCbHbfQBtgUmcGPp93T4XN2q8Gw+BDGpoQzIdQk8+6rfSvWasWRnoZz0CD8Bg/GOXgwzkGDsCclYVgsPXnZIiIiIiIiImc03T/v3CkZlh2tsLCQF198kRdeeIE9e/YA3tVmhmEwa9Ys7rjjDubMmYND70g+I+ib/czQVN/Kgpe2s39TWbdjY+07OT/0/wi1FR37ZMo53tVkUYP6oEoRkVNLdWMrX+RW8sWBStbur2RDXhWNre2DMbvbRUptEZlV+WRV55NRXUB6TSEBrmYA/pMxlWdGzen2WmNLdvGbFc+eUL1GQADOrCycg7LahWi2qKgTmldERERERETkdKX755075cOyoy1ZsoTnn3+ed955h4aGhrbVZuHh4dxwww3ceuutjB49up+rlL6kb/bTX9G+av73/BbqKpq7HGfgZnzg20wIegOr8aVVEFYnnPcwTPoWaFWCiEiHWt0edhTWsvZAhXfvs/2VFNU0HTPOMD3ENlSSUV1AcUA4e8OSup37q7sXccfWD/qibKxRUQxauABDb5QSERERERERaUf3zzt3WoVlh9XW1vKnP/2JX/3qV3g83s3sD682c7lc/Vyd9CV9s5++TI/J+vm5fP6ffXg8Xf/YCrKUcH7Y/5Hg2H7skwnj4MqnIXpIH1UqInJ6Mk2Tguom1udWsj63ig15VWzOr6bF5enxXD9c+09mH/yiD6oEe0oKWZ/8r9txpscDbjeGXS14RURERERE5Myg++eds/V3Ab3J4/Ewb948nn/+eT766CNM02xbXXYaZoIiZ4zWZjf/e24LB7aUdzt2kN9SZoQ8jdPS0P4Jix3O/QlM+S5YT6sffSIiJ4VhGCSG+ZMY5s+loxIAaHF52F5Y4w3Q8qpYn1tFbkVDNzPBgpQJlAaEk15dQEZNAdGN1b1Wp3OQb611W/btY9+cK3GkpeLMzPK2dMzKxJmVhSM1VSvTRERERERERM4gp8Ud4z179jB37lxeeukliouLgSPh2OGwTEROXTaHBaut63aJNqOJ6cHPku3/Gcd828cMh6uegbiRfVekiMgZyGGzMDo5jNHJYdxy6FhZXTMbcqtYn+fd92xDbhX1Le3b4a6PGcz6mMFtj4Nb6r37n1UXknEoQEupLcbu+VIbXR+ss4SzaVMho5JCSQr37/R3weZdu8DlomXPXlr27KX2f0etRrPZcKSm4szMPBKgZWbhSE/DohBNRERERERE5LRzyoZlTU1NvPnmm8ydO5elS5cC7VePHX1jxDRNbDYbF1988UmvU0ROnGEYzLp5KBWF9VQVH7tiIcKWy1fC/kiE7eCxJ599L8z+Odj9TkKlIiISFeTkvGGxnDcsFgC3x2RPSV1b+8b1eZXsLqnj6EX/tY5ANkYPYmP0kVVhVo+bxLpS0mqKSK0pIq2mkPSaIuIbul5l/HaVH0v/6W3xGBZgZ0RCKMMTQxiZGMqIhFBSIwMwDIOmXbs6n8TlomXvXlr27qX2k6OOW604UlJwZmXiyMryrkgblIUjLQ2L09nj/1YiIiIiIiIiMjCccmHZunXrmDt3Lv/617+oqakBOl5FdvjYoEGDuO2227j55puJi4s7+QWLSK9w+tu48K4RvPXbVbhcR1aZDfX/lGkhz2M3WtqfEBQLc56CrPNOcqUiInI0q8VgSFwwQ+KC+fpZKQDUNLWyKa+a9bne1WcbD1ZTVtfc7jy3xUpuSBy5Ie1/f/NzNZNSW0xadSFptUWkHQrSwpvrADgQfGR8VUMry/aUsWxPWduxYD8bwxNCuHPpFyT09MW43bTk5NCSkwOfzj9y3GLBkZKCIysTZ2YWgZPOInDy5J7OLiIiIiIiIiL95JQIy6qqqnj11VeZO3cumzZtAjpeRXb4WEBAAF/72te4/fbbmTZt2skvWER6X2MVkUvvZVZgJZ9U/xCb0ci5IU8zxH/JsWMHXwRX/A0Co05+nSIi0q0QPztTB0UxdZD357RpmhRUN7HpUHC26WAVmw9WU9vsOubcJpuTXeEp7ApPaXc8tLmWtJoiDgZFd3nt2iYXq/ZVcFfOvt57QR4PLfv307J/P3XzF+CurlJYJiIiIiIiInIK6bewbNasWRiGwYIFCzods3DhQubOncu7775Lc3Nzl20WASZOnMjtt9/OddddR3BwcN8VLyInV8EGeONGqMplkD/UeyJIda4j3FbQfpzND77ya5hwO8duXCYiIgOVYRgkhvmTGObPRSPjAfB4THLK69l0sIqNed4AbWtBDc0uT4dzVDuD2Rjt2+9/fq7mbts5nghnZpZP42o+/JD6NWtwpmfgyMjAmZGOLS4Ow9L1Pp0iIiIiIiIi0rv6LSxbtGhRhxuu5+fn8+KLL/KPf/yD/fv3A123WYyMjOSGG27g9ttvZ8SIEX1fuIicXBv+BR98F1xNbYfGBL5/7LiowXD1ixA7/KSVJiIifcdiMciMDiIzOogrxyYB0Or2sKu4lk2HVp9tzKtmZ3Etbo/ZzWzttVjtfGvmD0ipLSa1toiU2mJSaotJrCvDanYcxvWEMyvTp3F1S5dR/e677Y4Z/v4409NxZGTgyEjHmZGBIz0DR1qq9kUTERERERER6SMDog2j2+3mv//9L88//zyffPIJHo+ny1VkFouF888/n9tvv505c+Zgt9v7o2wR6QVut4flb+wmY2w0SdkRR55wtcD/HoA1z3U/yahr4ZLHwRnUd4WKiEi/s1stDE8IZXhCKNcd2v+sqdXN1oIaNh2sYtPBajbmVbGvrL7LeTyGhf2h8ewPjW933OZxkVBX5g3QaooPhWnFJNaVYutBiFYenUiAaXb4xrCjtew7thWk2dhI07ZtNG3b1v4JiwV7UlL7IC0zE0d6OrbwcJ9rExEREREREZFj9XtY9qMf/YhXXnmF0tJSoOtVZKmpqdx6663ceuutJCcnn/xiRaRXNda18PEzWyjYXcWutcVc/ZMJhEYHQG0RvHEz5K3qegKbH1z8GIy9QW0XRUTOUH52K+NTwxmfeiQwqmlqZVtBDVvyq70fBTXsLa3D7GYBmstiIzckjtyQOEg8ctzqcZNQX0ZqzeFVaCWk1BaRVFuK3XS3m6PW7s9Fz20ixH87wxJCGBofwrD4EIYlhDAoJhiHzdti0TRNmnNyfH+hHg+tubm05ubC4sXtnrKGh7e1cXSkZ+BIT8N/zBiFaCIiIiIiIiI+6vew7PHHH+9yFZnT6WTOnDncfvvtnHfeef1Rooj0gfL8OuY9tYnacm97xeZ6F/Oe2szXvmHieO9mqCvqegK1XRQRkU6E+Nk5OyOSszMi247VN7vYXljD5vxqtuTXsLWgmt0ldT61cHRbrOQFx5IXHNvuuMXjJqG+vK2NY2pNES1WGxgGNU0uVu2rYNW+irbxdqtBVkwww+JDGBXo4qyaml55ve7KShrXraNx3bq2Y0l/f4rgmTN7ZX4RERERERGR012/h2Xml1rUHA7ORo0axe23384NN9xAuN4VK3Ja2b+5jE+e30prc/t341cW1vPp39ZycVhx1wvFRnwVLntCbRdFRMRngU4bE9IimJB2pOVvY4ubHUWHV6DVsKWgmp1Ftbh83APNY7FyMDiGg8ExrGBkt+Nb3SbbC2vYXljDrtI9nHXcr6Z7jrQ0n8aVPvUUuFw40tLaPqwhIX1YmYiIiIiIiMjA0+9hmWEYbQFZaGgo1113Hbfffjvjx4/v58pEpC9sXnSQpf/e1WkrrP3NE/i87jrODv7nsU8aVrjgl3D2PWq7KCIiJ8zfYWVsSjhjU468MavZ5eb/s3fn8VFWd///39ds2feFhF0RRUFR665oQFzQqrih9ra3tNW61NJWW9ufXUC7qF2/UpfWpdLWFYSK1lvrBihCXQEVlE0S9uzLTJLJbNfvj0kmmWQmmYRkJiSv5+ORx8y5zrmu6zM6Cpn3nHO27HcFZ6DtDS7j+MU+pzz+2Pcsi4XTkaZ/H3KqRjsrNMZVqTx3/8wykyRZrXKMHh3T0LrnFstXXh5+em5uMDg7pD1ASxo/XvaxY2VJSuq/OgEAAAAAGCQSHpZJ0llnnaVvfetbuuKKK5ScnJzocuJu586d+u9//6uysjJ5PB7l5uZq8uTJOuWUU+RwOOJej9/v12effabPPvtMVVVVcrlcyszMVF5enqZOnaojjzxSFosl7nXh4BYImFqzbJs2vLGr23HJRr3GJq3v2pGaH1x28ZBpA1IfAACSlGSz6ujRWTp6dFbomNcf0NZylz7f16BN+xq0aW/wsb7Z2+f7lGYV68Gpl4faqd5mjXZVaqyzXKOdlRrjqtBoZ4VGNlbJZvYuqHOMHi3Dbu9xXKCxsUtQJkn+mho119So+eOPwzsMQ/aRI9tnoR1ySOi5vbhIhtXaqzoBAAAAABgsEh6WbdmyRRMmTEh0GQnx1ltvaf78+Vq9enXE/qysLH3729/Wz372M2UO8HI4jY2NeuGFF7RkyRK9/vrrampqijo2OztbX//61zVv3jwddthhA1oXhgavx683/rZJX66v7HZcnm2HLsi+R5m2TuNGfUWa808pa9QAVgkAQGR2q0VHjczUUSMz1RZvmaapffXuUHDW9rizJvrfobrTZE/Rlpyx2pIzNuy4NeBXcWO1xjgrNNpVoTHOCo1pfUzzuSNeqzq3SO699TqsMF1JtugBlmfnzt4VaZry7tkj7549anz33bAuw+GQfcwYOcaOlWPsWNnHjVX27NmypKb27h4AAAAAACSAYZrRFkMbWBaLRYZhyO/39zx4iAkEAvrhD3+oP/3pT6FjRxxxhM444wzl5ORoy5YteuWVV+T1Br+tPGbMGC1fvlzHHXdcv9fS0NCgP/7xj3rggQdUXV0dOp6Zmalp06Zp4sSJSk1NVWVlpdasWaONGzeGxiQnJ+tXv/qVbr/99n6vq682btyoKVOmhNqfffaZJk+enMCK0NTg0csPfaKK0u6Xlzo06b86O+t+OSydPvg7/n+lWb+T7MNv1ikA4ODjdHv1xX5nMDxrDdA2lzvl8fXvMo4yTeW0OEPh2WhnhcY6KzTKVanVo47RY1MuktViaHxeqiYWZujwEek6bETw8ZD8NCXZrGp45RXt+cFt/VtXB0esXyfLMFw1AgAAAAAGKz4/jy7hM8uGo5tvvlmPPPKIJMlqterBBx/UDTfcELa04c6dOzVnzhy999572rVrl2bMmKG3335bRx/d8+bxvbFmzRrdddddobbVatXPfvYz/fCHP1R6enqX8StWrNDcuXO1c+dOud1u/fCHP9TevXv1hz/8oV/rwtBQu79RL/15g5zVkb/53ub4tKU6Jf0pGUaH7N6wSrPuk066YYCrBACg/2Qk23Xi+FydOD43dMzrD+jLykZt2levz/cFg7SNe+tV29T3ZRxlGKpNzlRtcqY+Keg007/1u3D+gKntlY3aXtmoV9u/7ySrxdC4vFT9z+Z3dVrfK+iWragopqAs0NKiLy++WI4xwRlpjnFjZR87Vo5x42UfPUqWBCxJDgAAAAAYfhIWlj3xxBOJunVCPfHEE6GgTJL+8pe/6Prrr+8ybuzYsXrttdd04oknasuWLaqrq9Nll12mTz75RCkpKQNW3yOPPKJvfvObUfunT5+uNWvW6LjjjlNlZXCpvD/+8Y864YQTdM011wxYXTj4lJc26N8PbJDbFf2DQEN+nZX5V01OfT28IylLmrNImjBjYIsEACAO7FaLjijK0BFFGbq0daEA0zRV4WzRF/ud2ry/QV/sd+qLfU5tq3DJ4z/AWWiG0W23P2Dqy8pGrWhOlW/kMRrlqtKoxkol+w8gvOvEMXZsz4MkeXfvlrdsp7xlO9XYudNikb24uD1AGztOjnGtyzyOHStLUlK/1QsAAAAAGN4StgzjcORyuTRhwgRVVFRIks444wy988473Z7zn//8R+eff36ofc899+gnP/lJv9X06quvatasWZKkkpISrVixIqbzFi1apG984xuh9qhRo1RWViZrgjd2Zxrp4LBrU43+76+fytcSfZlVu9Gk87N/p7FJ68M7cg+VrnlOKjh8YIsEAGAQ8vkDKq1ubA3RnPp8n1Obyxu0q6Z5QO9rmAHluRs0ylXZ+lOlUa5KjXZVqqipRlazdwFe9pVXqviXd/c4zvnWCu2+5ZY+FGzIVlQkx5gxso8ZLceYsa2PY2QfM0bW7GwZPYSGAAAAADDc8Pl5dCzDGEe///3vQ0GZJN12W897RJx33nk66qijtGnTJknSfffdpxtvvFE5OTn9Xl+kGW7RfO1rX9Ott96qxsbgd4D37Nmj1atX66yzzur3unBw2fpBud5YtEkBf/QcPt1SpQtzfqV8e1l4x/hp0px/SKm5kU8EAGCIs1ktOqwwQ4cVZuirx7Qfd7X4tKU8GKB9sS84E21zuVN1B7KUYwemYVFVSraqUrK1oWBieE0Bn0Y01mh0W5DWWBUK1fLdkfcktcc4s8yzs6znQRELNuXbt0++ffuk99/v0m1JT1fKscdq7GOP9u36AAAAAIBhhbAsTkzT1KOPtv+ynp2drQsvvDCmc6+99lrdeeedkqS6ujo999xzuummm/q9xjPOOCPmsQ6HQ1/5ylf09ttvh44RluGTFbv1zuItUjfzVfNt2/XVnF8rzVob3vGVudIFv5es9gGtEQCAg1F6kk3Hj83R8WPbvzDVtpTj5/satLl1JtoX+/tpKccOfBab9mQUak9GYZe+FK9bIxurgj+u6tDzf3/kksu3RhMK0jShID34U5iuMTkpslnb9+n17tzZb3V2FHC5FGiObTaer6ZGTe+9J/voMXKMGS1rdvaA1AQAAAAAGLwIy+Lk3Xff1d69e0Pt0047TY4YNywvKSkJaz///PP9FpaddNJJoaUXx8b4DeA2xcXFYe39+/f3S004+Jimqfdf2qEP/6+023FjHOt1fvZ9cljc4R0z75JO/16Pe6wAAIB2hmFoRGayRmQmq+SI9iDL6w+otKpRW8pd2lrh1NbWxx1VjfJ2M/O7L5rtydqePVrbs0d37Syr1Udl4V+OsVsNjc9L06GtIdr0T7covV8raucYHaGmCNyffaY9P2hf8cGSmSnH6NGyjwmGZ/bRY+QYG1ze0V5UJMPOF3sAAAAAYKghLIuTF198Max94oknxnzucccdJ7vdLq83uMzOqlWr1NDQoMzMzAOuKzc3t0sY11eBQP99gxkHD9M0tXrxVn2yYne34yYmv6OzsxbKavjaD1rs0uyHpWOuHOAqAQAYPuxWiyaOyNDEERmS2r/c5PUHVFbdGqKVu7Slwqlt5S59WeXq9xAtGq/f1NYKl7ZWuCSVa03GVzRhcrGKG6s03l2jUU3VynLWyOiHbZXtY8fENM6za1dYO9DQIPemTXK3LoMexmqVvbg4uD/a6DGyjx0TDNZGjZJ99GhZc3LYKw0AAAAADkKEZXGybt26sPaRRx4Z87nJyck69NBDtXnzZkmSz+fTZ599ptNOO61fa+ytysrKsPbEiROjjMRQ9vmafT0GZUen/lvTMv4mw+jwwVdSpnT1U9IhZw5whQAAQAqGaG37oeno9uPBEK1JW8ud2lrh0pby4FKOX1Y29utyjpGsLzxc6wsPD6/T79OIpprWpR2rNKapWod4alXsqlJWfZUMM7aaHGNiC8u8O3f1PKiN3y/v7t3y7t6tJv23S7eRmirHqJGyjwyGZ6knfEWZs2bFfn0AAAAAQEIQlsXJxo0bw9qjY1wWps2oUaNCYVnb9RIdln366adh7XPPPTdBlSCRjjilSDs2VKn0k6qI/SenP6WvpD0fvsJixkjp2uelEZPjUyQAAIgqGKKl67DCdHWMdXz+gMpqWkO0cpe2VLi0tdw54CGa12rT7oxC7Y6wR5ot4FNhU20oSBvtrtWhnjoVNdUou65CVq+nfWyMf9/27O7+Sz+9YTY1qWXrNrVs3SYpuHdaLGGZ39UomQFZMzL6rRYAAAAAQOwIy+KgoaFB+/btCzs2atSoXl2j8/gvvvjigOs6EB999FHYzLLTTjtNRx11VAIrQqJYrRadf8MU/d9fPtHOjTWh44b8Oivzr5qc+nr4CYVHSf/zvJTVu/8GAABAfNmsFk0oSNeEgnSdP6X9uM8f0M6aJm2vbNT2Spe2V7i0vdKlbRUuNbh90S/YD3wWm/amF2hveoE0olOnaSqnxanixmoVNdZo09JdGrG2WYfmp2l8XpoOKUjTIXlpGp+fqozk9n3HvLt6MbOsl+wx/p2/fvkLKv/lr2TJypJ91Eg5RrUv7WgfNVL2UaPkGDVKlrS0AasVAAAAAIYzwrI4qKmp6XKst/uNdR5fW1sbZWR8LFq0KKw9f/78xBSCQcFqt2jWmTv07627tMczRRZ5dW72HzUhudPyRGNOkb72nJSSnZA6AQDAgbNZLTq0IF2HFqTrnA6JlWmaqm70tIZnrUFa68/u2mb1wzZk3TMM1SZnqjY5U5vyDpH80v5dddqwq67L0Pz0JB2Sn6qxuWm6skXKsDtk6TArrb/YY5zd5t2zV5IUqK9XS329WjZ9HnGcNSenNUAbJcfoUe2BWnGx7CNHypKa2m+1AwAAAMBwQlgWB06ns8uxpKSkXl0jOTm5x2vGy759+/TEE0+E2pdeeumALMFYUVHRZV+0nmzbtq3f60AMNjwn2ws36YJsh16p+4mmpr2o8Ukfh4+ZMEO66knJwTeiAQAYigzDUH56kvLTk3TyoXlhfW6vXzuq2maitQdpX1Y2qtnrj3utVa4WVbla9EFprZYe920ZxwaU43aquKlGh3hqdbi/QWNaalXoqlZGTbns9X37olqsM8u8MS4F6a+tlb+2Vu5Oy6G3sWZnyz5yZHA22siRshUXK/WEE5UyhaWvAQAAAKA7hGVxECnY6hx+9WQwhWU/+tGP1NjYKEkaMWKEHnrooQG5z0MPPaS77rprQK6NfrThOelfN0oy5bC4dXHOgvD9ySTpyIulyx+TbL0LiQEAwNCQbLfqyOJMHVkcvlpCIGBqX4M7tJRjxzCtwtkSt/pMw6KalCzVpGRpow7p0p/ka1FRU43GuGt1ZKBB41v3Scupr1RydbkMT+RZaY7RMYZle/YcUP1t/HV18tfVyb1pU+hY/q23xhSWBZqaZDgcMmz8iggAAABg+OE3oYOUOeDr2ES2ZMkSPfXUU5Ikq9Wqp59+WkVFRQmpBYPAhmelf90kqf392CUoO/Z/pIsWSlb+dwMAAMJZLIZGZadoVHaKzjy8IKzP1eJTaVWjSqsbtaOyUTuqG7WjqlGlVY2qbfLGtc4WW5LKMotVllms1Z07W/dKK2qu1STTpcMCDRrdUqf8xhq9Wh7QmECdxuSkKDfNIaPLX5SCYp1Z1hf24uKYxlXev1A1Tz4p24jC4Oy0kSNlLx7Z/nzUSNmLi2VJSRmwWgEAAAAgUfj0Og4yMjK6HHO73UrrxQbdbre7x2sOtM8++0zf+ta3Qu0HHnhAM2bMiHsdiK+APyBXXYsy8zp9MBIhKOvi5Jul834jWSwDWiMAABh60pNsmjIqS1NGZXXpq2vyaEdVe3j2ZYdQrdET52UdO+yV1mWnscWfhJ6mOqwak5OqMbkpGp2TqjG5qRqdk6IxjoCM+voBK88+amRM47x790p+v3x798m3d5+a9VHEcdacnPYAbWRwrzTbyPZQzZqdHTUUBAAAAIDBirAsDtLT07sca2lpOajCsr179+qiiy4KLf/485//XDfddNOA3vOWW27RlVde2atztm3bptmzZw9MQcNQIGDqjSc2affmWl3y/eOUN6r1vbz+GemFm9VtUHbWj6WS/y/CVDMAAIADk53q0HFjHTpubE7YcdM0Velq0Y7KYHj2ZWuYtqOqUaXVTfL4AgmqWGry+LW53KnN5eHLqRtmQAXn3qkJfqeOMJ0a76tXcXOdchqqlFpTIWt1pRToe932kTGGZfv2xTQutG/axo0R+42UFNmLimQvLpKtqFj2oiJlnDNTyUceGXPNAAAAABBvhGVxkJub2+VYQ0NDxOPRNDQ0hLVzcnKijOx/lZWVmjlzpkpLSyVJt99+u+6+++4Bv29hYaEKCwsH/D6IzAyYeusfn2vrhxWSpBf+uE4Xf/9YFVT/u+egrOROqeTH8SkUAACglWEYKsxIVmFGsk4+NC+sLxAwtbe+WaVVTdpR3aid1cEAbWd1k8pqGuX2JiZIMw2LKlJzVaFcre3Y0brdmS3gU35zvSbJqcMDLo3z1mtEU42yG6qUUl0uS0211M0S7bYYl0z37t3b9xfRgdncLM+OHfLs2BE6Zh87JqawzFNaKhmGbEVFsiSx1y0AAACA+CEsi4OsrCwVFRVp//79oWN79uzR+PHjY77Gnk6bfk+aNKm/yutWZWWlZsyYoc8/Dy4q8+Mf/1j33ntvXO6NxDEDplY+9YU2/7f9Petu9Gr579/Txem/V6GdoAwAABxcLBZDo3NSNTonVWdMzA/rM01Tlc4WlVY3qay6UTtrmlRW3aSymmC7Ls57pHXks9i0Py1P+5WnlW0HO3znzu73qcBdpyOMJh1mOjXG26ARTbXKdtUoOeDT9toWjcy2KC0p+q9+geZm+WtqBuw12Iti2zet/He/l+vNNyVJ1txc2YuLZSsukr2ouHWmWpHsxcHZarbCQhk2fp0FAAAA0D/47SJOpkyZEhaW7e7lJt6dw7IpU6b0S13dKS8v19lnn62NrUus/OQnP9E999wz4PdFYpmmqXeXbdOmd7suxdPSYtFyzwJdlHO3ihxbup48/afSWXfEoUoAAID+YxiGCjOTVZiZrJMO6br6Q32zNzQDrax1Nlppa6i2r94d4Yrx47XatDctX3slrWg7mN1hwJ/eDh5KtWtkVopG5aRoVHbrT06KRmanaETdfg0ke3Fss9t8HZaC9NfUBAO8KMs9ymKRrbAwGJx1CdRGyl5cJGturgz2zgUAAAAQA8KyODnuuOP0xhtvhNqbNm2K+Vy3260vv/wy1LZarQMelu3fvz9sRhlB2fCx7rWd2vDGrqj9piwyFWEfMoIyAAAwRGWl2HX06CwdPTqrS5/b69fu2uBMtOCyjsEQbVdts3bXNiVsecfO6pq8qmvyatO+hi59toBPh8z8oY40GnWo36mRnnoVNNUqs75KyTUVstQe2KyzmJeC3N+L0C4QkG//fvn275fWRx5i2O2yFRXJNqJQhbfdrtTjj4v9+gAAAACGFcKyOLnooov0u9/9LtT+4IMPYj533bp18nrbl34566yzlJmZ2a/1dbRv3z5Nnz5dmzdvlkRQNpxsenev1v5re9R+m+HWV3N+pWLH5vAOgjIAADBMJdutOqwwQ4cVZnTpM01Tla4W7aoJBme7apq0q6ZZu2qbtKu2SXvr3PIHulneOk58Fpu2phdpa5T+tqUeD5dLEwIujfHUq7C5TjnOaqXWVcleXSHD54t4rjUvL6b9xwItLf2+FKTp9cq7a5e8u3ZJAX9M59Q++6z8TmdwxtqIEbKPGCHbiBGyJCf3a20AAAAABhfCsjg5/fTTVVxcrH2tS4usXbtWHo9HDoejx3NXrlwZ1r7iiisGokRJ0t69ezV9+nRt2RJcYi+WoGz9+vX6/ve/L0l69tlnVRTjN0cxuHy5vlIrn/wiar9VLbow+zca6eg0K7LkToIyAACACAzDUGFGsgozkvWVcTld+n3+gPY3uEMB2u7WGWm7aoJhWnlDSwKq7qp9qcf89n3TOjDMgHLcThU11+pQNWq836WR3gYVNNXJnpGuzRv2amR2soqyUjQiI0k2a9elEX29mVXWB7HObqt95lm1bN7c5bg1Kys4S61ohOyFI4KPRUWyFY6Qvag1UMvIkGFEWIEBAAAAwKBHWBYnFotF119/vX75y19Kkurq6vTyyy/r0ksv7fHcp556KvQ8KytLV1111YDUuGfPHk2fPl1btwa/UxrrjLK6ujqtWrVKUnDJSBx89myp1WuPbZQZ5YvNFvk0K+e3Gp30aXjHad8lKAMAAOgjm9Wii+bgmgAAxyxJREFU0TmpGp2TqlOV16Xf7fVrT11beNbcGqa1z06ra/JGuGr8mYZFNSlZqknJUsTF5p9ZF3pqMaSCjCQVZ6WoOCtZRVnJGpmVovF7tmj0ANZoKyyMaZyvvDzicX99vfz19RGDtDZGampoJlrbY8dQLWnCobKkpPSpfgAAAAADi7Asjn70ox/pL3/5iyorKyVJf/rTn3oMy/7zn/9oY4dNre+44w7l5nbddLyj6upqLV26VF6vV7Nnz9aoUaN6rG3Xrl2aPn26tm8PLsHH0ovDR+VOp/7voU/k90XfT2NG1p81Lunj8INfmSud80uJb88CAAAMiGS7VRMK0jWhID1iv9Pt1Z66Zu2ta9ae2mbtrmvW3jq39rQu8VjudEf9MlSiBEypvKFF5Q0tWt9pm9ykr/5a+c31GuGu0yEBl8b5nSpqaVBeU50ynTVKqauS1d3c63tac3NliWFFj4DbLX9dXa+v38ZsapJnxw55duyI2D/u6aeUevzxPdfR0hLT0pUAAAAA+g9hWRxlZGToN7/5jW644QZJ0jvvvKPHH39c3/rWtyKOdzqdmjdvXqg9YcKE0HKH0ezatUsnnniiylu/EXnnnXfqnXfe0THHHBP1nJ07d2r69On68ssvJUk//vGPCcqGiYaqZr30wAZ53NH3cDgj43EdkfJ2+MEpl0sX/pGgDAAAIIEyku2aVGTXpKLI+xl7fAHtr3drT11zWKgWel7XrJZuvjAVby22JO3JKNSejEJ9HGmAaSrN61ZBc50KmmtV3NKgcX6nRnoblN9Up2xXrVLrq2TptH+abcSImO7vq6g48BfRDXuMdey47HL59u2TrbAw7Mc+IrxtKyhgLzUAAACgnxCWxdn111+v//73v3r88cclSTfeeKP8fr+uv/56WSzta/fv3LlTc+bMCe0dlpWVpaVLlyo1NbXb6z/88MOhoEySGhoa9Nvf/lZPPvlkxPFlZWWaPn26dnT49uN9992n++67r8+vEQeHliav/v3ABjU3eKKO+Ura85qa9u/wgxPPky79q2SxDnCFAAAAOBAOm0Vj81I1Ni/y7xCmaaq60aM9te3h2e4Oz/fWNat2kCz1KEkyDDU6UtToSFFpVnHkMaapLI9LhU11KmiuU567XmZyijb/cZVGZCa3/iR1eZ6fniTvQO+bVlAQ0zhfRYUCTU3ylJbKU1ra7VhrVlaXUM1WWBBcBrKtnZcnw27vh1cAAAAADF2EZQnwyCOPKC0tTQsXLpTf79eNN96oP/7xjzrzzDOVlZWlrVu36pVXXpHHEwwxRo0apeXLl2vq1Kk9XtuMsM5KIBD926JPPPFEWFCG4cHvD+jVRz5T7f6mqGOOSnlNJ6c/FX5w/DRpzt8lK79sAwAAHOwMw1B+epLy05M0dUx2xDGNLT7trQsu8bi/3q199W7tq2vW/ga39tY1a1+9W02e6KsUxJ1hqD4pQ/VJGdqaM6b9eIVLWytc3Z56QtMefW30Ucpz1yvLVackd2O/lWXNz5cRy1KQTU0KOJ0xXze0l1rrvtMRGYaseXmyFRZo9B//KMf48TFfHwAAABguCMsSwGKx6P7779dFF12k+fPna82aNdq8ebM2d9osOjMzUzfccIN+/vOfKysrK6Zr33TTTXr88cdD+6Klp6frjjvu6PfXgIOXaZp6++nN2v1FbdQxhyat1VmZfw1fZXHkcdI1z0h2NiUHAAAYLtKSbJo4IkMTR2RE7DdNUw1un/bXu7W3vjVQaw3RBm2gFsWHqaP04QnfDLWTfC3Kdzcov7lOec0NynfXKb+5XgUtDSpqaVBuc70ymhpkqOeN4eyFhTHV4Gv9Pa5fmab8VVXyV1XJSInt7/L77/6lJMlWWCBbQetPfr5sBQWy5ubKsLLKBAAAAIYWw4w0FQlxVVZWprVr12rnzp3yeDzKycnR5MmTdeqppyqpDxs7V1VVaenSpfJ6vZo9e7ZGjx49AFUPThs3btSUKVNC7c8++0yTJ09OYEWDz8evlWntsu1R+0faP9NFuXfLZnRYcifnEOlbr0vpsS0dAwAAALTpLlAL/hw8gVpntoBPue6GsDAtr7le+e565TfXq7ClQbnNddp+6FSt+vodKshMUkF6kgozk5Wf5lB+RpLy0hzKSXXIYjHU9MEHKvv6/w5MsRaLJn2yQYat5+/Mbv7KCQo0RplZZ7XKlpsra0F+e5DWKVCzFRTKVpAvSx9+nwUAAMDA4fPz6JhZNgiMGzdO48aN67fr5efn68Ybb+y362Ho2L6uQmv/FT0oy7bu1qyce8ODstQ86dqlBGUAAADoE8MwlJViV1aKXUcUxTZDraLBrf31LSp3ulVe7w4+NrSoytWiwfR1T5/FporUXFWk5kYdY5gBJfm9cq/bE3WM1WIoJ9Whc/Zv0ABFZcG9y2IIyvyuxuhBmST5/fJVVspXWakWfd7ttSyZmV3CtLxv3yBbTk5vywcAAAAGFGEZMEyUlzbojb9tUrRVYpKNBn0159dKtnT4xdiWLF3znJQ3IT5FAgAAYFiKJVCTJK8/oCpXi/bXB8OzCqc79Ly8wa3yhuDyj063L47Vd880LHLbup9h5Q+YqnK16CXHWG2Y9h3luhuU31wfnLXmblCuu155rc9TfS19qsMW81KQFX26fiSBhgZ5Ghrk2d7+hb28678V07k1/3xSlpTk4NKPbTPW8vJYAhIAAAADgrAMGAZctW69/NAn8nkDEfst8mpWzr3Ksu1vP2hYpCv+Jo05MU5VAgAAAN2zWy0qzkpRcVb3e281eXyqaGjR/tYALfjTEvZ8f4NbHl/kvx8nisuRqk15h3Q7JsXrVm6LU3nN9WFBWluwltfcoDx3vRyB8MDw40ab7nrifeWmOZSX5lBuWpJy0+ydHh2yVvRfWNaFzSZrDLPKTNNUxe9+J9PjCe+wWGTNzW2dqZYvW37H5R/zZcvLCwZr+fmypKfLCNuEGQAAAIiOsAwYBkxTSstyqLnBE7H/7Kw/a6Sj0xIqs34rTbowDtUBAAAA/SvVYdP4fJvG56dFHWOapuqbvap0tqjC2dL66FZl6Hn7Y32zN+p14q3Znqw99mTt6W6ZdNNUurdZeW1BWnOD6pLT9eHmyh6vf/aedfphP9bbkS0vT4bF0uO4QEND16BMkgIB+auq5K+qUkv3K0DKSEoKC89seXmyFeTLmpen7NmzZUmL/t4AAADA8ENYBgwDGbnJuvxHX9HKpzZr83v7w/pOSn9Gh6e8E37C6d+TTrohjhUCAAAA8WUYhrJTHcpOdWjiiOhLP0pSi8/fJUQLf94asrla5PUPgk3VDEMuR6pcjlSVZRb36tS9yTl6ZdzJym2drZbb4lS22ylrtPXceyGQkydXi09pDmu3s758lT2Hej0xW1rk3btX3r17u/RlXXRRTNeo+9cLsqSnyZbXPnPNkpp6wLUBAABg8CEsA4YJm8Oqs+ceqUJzvVa/XyBTVh2RvEInpC0OHzj5UunsBQmpEQAAABiMkmxWjc5J1eic7oOSQKB1tpqrRRUNLap0uYOPEWavNQyifdU6+jxvvD7PGx92zGIGlNnS2BqeNSjX7VSO2xlqB587ldPSoGR/9Fl4a2tNLZj/H9mtrUFlil05qQ5lp7Y+ptmVneLQmNJNGqhdkw2HQ5aM7sNRSTIDAe372c8kvz/suCU1NThbLS9Ptvx8WfPzWmeudVoKMi9PlpTulwsFAADA4EFYBgwjxrY3dMyu7yg/d5I2NH5V07MeUtgXOouPlS55SIphaRQAAAAA4SwWQzlpDuWkOXR4D7PVPL6Aaho9qnK1tP54VN36vNrlUWXrY5WrRdWNHvkDiZuxFjAsqkvOUF1yhr7UqOgDTVOpPndrmBaclZbrbggFa9uyR0uSvH4zNDsvkum7NuiOgXghkqz5eTHtZeavr+8SlElSoKlJgZ075d25s8drWNLSWgO1TuFaXr6yLrlYluTkPr0GAAAA9D/CMmC4qNwiPf9NyQxopGOTRjo2hfenj5CuflpysKwIAAAAMNAcNouKspJVlNVzYNI2Y626sUWVTo+qG1tU5QyGaG1BW1WHcK3J0zXkiQvDUJM9RU32FO3OKOzzZVqsdm3JHh0M2lpcspqBfitxp5mih59br8wUu7I6/GSnhreT95Uf8L0CjY3yNDZKZWVd+rIu+mpM16h5+mlZMzJkzc0NBm55ebLm5Miw8XEOAABAf+JvV8Bw0FwnPXO11NIQud+aJF31lJTVzbdEAQAAACRExxlrh8WQQTV5fKHgLGzGWqNHNZ1+qhs98vj6L4zqD2tGHq01I4+WJBlmQJmeRuW6O8xSa10Ksm1ftewWl3JanEr1RZ6p1tFOM1nL1u3pcdyxlVt1zwG/ksiM1NSY9j4zfT6V3/3LiH3W7GxZ8/Jky80NPublyZqXK1tu62PoWJ4saWkxzaYDAAAYzgjLgKEuEJD+dZNUsz36mIsXSmNOjF9NAAAAAAZMqsOm1FybxuTGEMiYppo8/i4BWm2nx5rGFtU2eVXtiu9+a6ZhUX1ShuqTMrQja2S3Y5N8HmW3OJXT4lSO26WclmCQlut2ho7vyCyO6b45bmd/lB9RY0qGnnh3R2gWW2aKXRnJNmUmBx/Tk2wyDEO+mpqo1/DX1clfVyfP9m5+z2tlOBwdgrXc4P5qebnKv/lmWdLS+vOlAQAAHLQIy4Ch7t3/J215JXr/afOkqVfHrRwAAAAAg4dhGEpLsiktKbZwTZK8/oBqm1rDNZdHNU1dZ6vVdnrui8Oeay02h8pteSpPyzvga5mS9qXmKqfFqWS/98CL66AskKy7XtoUtd9iSOlJNh3VXK75/XA/0+ORb98++fbtCzue/93vxnR++b33yZKeLltebnvolpsra06OrFlZMtjzGgAADAGEZcAQUVfepJVPfaGSaycpu7D1l9wdb0tvRV62Q5I08Txp5oK41AcAAABgaLBbLSrMSFZhRs/7rUnB2WsNbp9qGj2qbfKovsmr2iaPapu8qmsKHqtr8qqu9XjbY8L2XpO0cszxWjnmeMk0leJrCc5Wa3Epp23ZR3dwplpwCciG1plsTjkCPc+6q0tK77Y/YEoNbp9aKqv76+V04UtO1T8/2hc2o61thltGkl1pSVbZrBaZHo9qFi2KfiGrVdbsbNlyc2TNCYZo7c9zgsFax+fZ2ey3BgAABiX+hgIMAX5vQP957DNV7XJp8a8/UMn/HKHDJwWk578pRdsMO/9w6fLHJIs1vsUCABAHpmkqEAjINAd+JgMAoGdpdkNp2Ukak50U8zken18NzT7VNQdDtfpmr+qavapv8rY+96iuyaf6Zo8amr2h5/07i82QHCmqT01RvQpV2t3Q1mAtu8Wl7Bansj0uZbsbleVxKbvFpayW4OP+/NFKs/e8h9gINcuMYW+zXvH7pZYWlVtTNf/Fjd0OTbFbNcbv1P09XM9fXS1/dYzBnmHImpkZnJmWm6sxf3lY1oyMmMsHAAAYKIRlwBCw5l/bVLXLJUnytvj1+t82aXf+J5pmaZA90ooY9jTpqiel5Mz4FgoAwAAxTVNut1tOp1NOp1MejyfRJQEA+lGWpCybNDZDUoYkGZKSWn/C993yB8zQjy9gyh8IdHje4ccMb8dhpUg1S5og6RcxjM3wnqKGrx4layAgq+lXz/FajExTDleLZgVS9Ul5i/Y4I8/ga/b65a+Lvm9aX+/tr6+Xv75e2rFDP391m9LTkpXmsCk92aaMpOBjelJ42/U/c2RLS2tdAjLCjLWc1hltubmypKT0b80AAGBYICwDDnI7NlTqk7d2dzn+edUx2m/9vS7J/bnSrHXhnRcvlAqOiE+BAAAMsKamJu3du1deb//uKQMAODhZLYaslt5HS4FO4VmkQC2eQZvTniqnPTizzJApqxmQNeBvfQzIZvrDj5l+2VqDNUt3M6sNQ0ZujkrSUlQyLkU1zX4t3uTSjrquS0hmt7j6/4W1ctpT9PRHe3scl+Rr0QvbtqnnBS6DfI4kedOz5M/MkpmVLSM7R5acYKjmyM9Vcl6eUvJzlVaYr5T81qUhjX6LIgEAwEGKsAw4iLlq3XrzH59H7U+3VirVUh9+8KQbpaOvGODKAACIj6amJu3cuZPlFgEAB8xiGLJYDdn7sFJ98I8hU60PMoMPktl6rHVMx2NtYweCKTM4E80MPhptNwqYUsAvh9evdJ+hpha/clOs+tZxmXp8XUOXwGwgw7L6HvZua5PV0tir69o8LbLVVEg1FRH73a0/ta3tb176aykzS2lJNqU5rEpLsinVYVN6klWpScFZbqkOqwr37ZAjK0tJ+TlKycpSanJbX7A/+GOTwxZpeRcAADDYEZYBB6mAP6DXHt+olsbI369LsdRqZtb9MowOv32NPlE691dxqhAAgIFFUAYAGCyCE5MMtT507Onx3LCgLdRuPRIWvLVla2aHMYoSuLXGY4YR3m2VZLXJbpeKFZxNt7/erUaPP2JgVpuUobVFk1v3YQvuxZbi75+ljutiDMuyPQMX2PllaH/ALrPe3f1A09SLL/5EdjO4ZKXPsKjBkaY9jlQ1ONLUkJSmekeaGhxpciWny52aIU9ahrzpWfKlZ8rMzJQ1LU2pSTalOWxKaQ3XUjoEbSl2a5fgLSX03KoUh1UOq4VZcAAADBDCMuAg9cH/lWrftvoovQGdk/X/lGrt0J+aJ125SLI54lEeAAADyjRN7d27t0tQZrfblZmZqfT0dNntdj5QAgAMeaZpKmCaCgQkf+vz4FKRwf3bzI7LRvoD8vl98jQ3yetulPw+FWcna19dMDCbc1S67ltTF7r2xyOO0Mcjwpfwd/i9ympxKcvTGHxsaVSWJ8pji0vpvshBVL0jLeLxzno7s6w3nI5UmUbPM8FSfS2hoEySbGZAuS1O5bY4Y76X12INBWoNjjTVJwUfdzvStOyws9RkT+7xGlaLoVS7ValJrWGavT1ICwvY7MFZcZ2DuBSHRcn2YLvtMcXR/txuNfi7EwBg2CIsAw5Ce7fV6cP/K43af3zaMo1J+qTDEUO6/DEpa/SA1wYAQDy43e4ue5RlZGRo1KhRfMgDAECP8mSapvbs2SOn06lDC9Pl9wcUMKUXpx6uJr9FLrdPrhafnC2+1ufe1kd/8Hnr8dJQv09NHn+XO9kCPmW2NLaHa62PFak5MVWa6Rm4sKwhxsCuP2qwB/zKdzco393Qpe9fE86M6Rq3fLxEXotNDa0z2pytj3sdqXI6gnvcNduS2qY69prVYijZZgkL0Do+T7ZbuhxrC96SHe3ttlCu4xhCOQDAYEdYBhxkvC1+vfn3z6OubV9k/1wnpT8bfnD6ndKEGQNfHAAAceJ0hn+T2263E5QBANALhmFo1KhR2r59u7xer2zW4AyrvBRThYV5fbqmzx9Qo8cfCtJcLV45W4O0xhZf6LnL7VNqi095HYK2UDjnDgZxgdbfeb/IGasHjrm0S9gWfAyGcFYz0Kd6G5LiF5ZF4zcsaoxhVplhBnRe2fs9vlavxSqnPVUNjlQ5Q4FaaihYa7C3HU8JBW5OR6p8Fpv8AVONHr8aI4Se/cliqGvo5rAq2dYWullCIVySLRi8JXV4nmy3KMkW/thxbLLNqiS7JfSYZGP5SgBAzwjLgIPM2n9tV0Nlc8S+JMOlc7L/JKvR4S+2h06Xpv0wTtUBABAfncOyzMxMPgQBAKCXDMNQZmamqqurQ8ecTqcKCwv7dD2b1aKsFIuyUuwHVJdpmmr2toduTrdPjR6fGlv8amp93NPi0xaPT43NHnkbnArU1sioq5NRXye7s152V72SGxuU0uRUarMztGRkpqdRjkBwX7ZYZ5YN5FKQ9Y60mGaCpXndMYWC9oC/10tEStL/nvtTVcYw2298/V612BxqsKcFQ74+/P0rYCouoVxHSTZLh7AtSvDWMZzrEry1hXaWTmFc5Gsl262yWZhBBwAHE8Iy4CCy+4safbpyd9T+6VkPKtNa2X4gNU+69C+Spec12AEAOFiYpimPxxN2LD09PUHVAABwcEtPTw8Lyzwej0zTTOiH/IZhKNVhU6rDpsKMA7+eaZpq8QXU2DrDrbHepeaqah3u8evhrPzQEpLBQC4YxjW2HnO1+DSx6fMDLyKKBkdqTOMGcnabFNy/LRa/Xf2wMrzBL/D6DYuc9pTQrLX2WWxp7TPb7Cmt+7S1H/daDyxM7YsWX0AtvoAa3L643dMwgiGdwxoM4oKP7e2ksHbw0WELBm6O1nAvcrvtp+dxjtb7E9oBQM8Iy4CDhKfZp7f+8UXU/kkpb2pC8n/DD85+WMooGuDKAACIr0Cg67eq7fb4f+gCAMBQYLN1/WgoEAjIarUmoJqBYRhGaEZRXnqSlJcmHToi5vNN80QFGm+Sv65O/tpa+Wtr5a2pVXNltVqqa+StqZGvtlaBujqZdXUyGuplcdbLiPB3ls78GVmaUJCmJo9fTR6/mj1+efxdzxvIsMxrscptdfQ4zmIGlOZ1h9pWM6BsT6OyPY2SKqOf2Inbag+Ga/bUsIDtqUnnqDY5sy8vYVAyTcntDcjtDUhxDOki6T5k6xC2dQnwgmODoZshh80iuzX40xbEtR0LPhpKimEMAR6AwYiwDDhIvLtsm5w17oh96ZYqnZHxt/CDJ98kHX5eHCoDACC+TLPrxp38sg0AQN9YIqxEEunP2uHMMAxZ09NlTU+XRo8OHe9u0UIzEFDA5QqFa77aWvlrW8O2uvb2SRMP05vfLwk71+cPqMkbDM6aPMFZbp53/NLbA/P6GmJeCrJZlmgbqPdCst+r5OY6FTbXhR1/9vCzYzr/7rWPKcnnCe231ha6uVpnublCx1LktKeq2ZbUp+UihxKPLyCPL6DeLc45sOxWo0OA1h6qOawW2W1G12OdQjdH5/M7BXP21nCva1hn6RDohQeAttYgz2YxZGUZTWDYISwDDgI7N1Zr0zt7o/ZPz3pASZam9gMjpkgz74pDZQAAAAAAoDPDYpE1M1PWzExp3LhenWuzWpRptSgzuX3mfPPkQ1R76aWh8M1fVxf8aWgITmE6ALnFBXr+plPV3BrQNXv9crc+d/sCwUevX7a9u6T/O6BbdcvpSIlp3FHVpUrzRf4ycSQ+wxIK0trCtY5tV2vY5nSkaFPuIWqyJ/f1JaAXvH5TXn8wEB6MDEOyW4KBmq01WGsL1OxWS7DPZshmCQZyoeOhcRbZLZ3O6dDnCF23w3GL0TW463yuxSJH633ttuA9OtZnt1pktRDyAX1BWAYMci1NXr31z+jLLx6V8h+NTdrQfsCWLF3+uMRf7gAAAAAAGBJSjj5aKfcc3eW46ffL39Agf12dAvX18rWFaB1/6utbn9eHjpnNzaFrpOXn6qjxuT3W0LTOrbJ+fVXtAja7bjp3sty+gNzeYIDS0vrc7QuopfXR6/b0KiiTJFvYcpHdu2nG7SqzF/c47qIvV8vu93UI21LCZrklYl829C/TlDz+gIJZ3uAM9KIxDLUGeobsttaArTWcs1kN2S3BQM1uDc6gawvbrJbgOdbW0C7Y1zrearT2WcLPsxitfR2vGbyPreOYTte0WSLXEvm+7WOY7YeBRFgGDHKrl2xVY11LxL4Ma7lOz1gUfvC830iFkwa+MAAAAAAAkFCG1SpbTo5sOd0tCtlVoKUlFKApxs+e/fX1fagwNo7cHP3g3CN6HOerqdHWRwesDE07/lBNSc1Wi7dDWOcNqMXnb91/LHj8im2rVNhUG/U6bqs9NGMtNIutNVRz2VPlsifL1drnsqeEPfdbhs5+gUgM02xdelOSBunMvb6yGIoYwHUJ2TqFgbaOj63jrJb2JTfbHq1h7U79VkNWo2M78vkRzw3rb6+12/5O5xMUDjzCMmAQK/usWl+s3R+1f0bmA3JYOnyjatJXpRO+GYfKAAAAAADAwcqSlCTLiBGyjxgR8znpZ52lwz94v+vMtdqOs9e6zmoLuFw9XtuanR1TDQMZ2EnS3deeJktyzyv1bH7xTgW66U/2e5Xsr1e+u/f1Lp47X2VFE+TxBUO64GMg9NjSenx8+Zfy+QJyOVoDN3uqvFY+6sXQFugYBA4zFkPhQZq1Y6Bm0YP/c7yOHZOd6DIPavwfFBikvC1+rXp6c9T+o1P/rdFJn7UfSB8hXfznYb9pLQAAAAAA6H+GYciakSFrRoY0ZkzM55leb3iYFiFYs+bnx3StwACGZUZyckxBmen1KtDY85KOffWTK09U0oQJPY778pLZatnc6XOjpGQpI0NKz5CZli5/eob8qenypaXLm5IuT0qaPClpcienyp2UpuakVDUlpanRkaJmw6YWv9ke0vkDavEGgksR+oKP3tbn3tZx4ceCxwEMjEDr0qDRVgX1B7qL8BELwjJgkHr/pS/lrIm8DneWda9OTX8y/OBFC6XUntcYBwAAAAAAiBfDbpctP1+2GAOx7tiKilR4xx3yN9QHZ63V1wf3Yqtv/wk4nX26tjUrK6Zx/j5eP+Y6MjNjq6OhoevBFnfwp6pShoIf/NokJcVwPcNulyUrS9aMDBX/+ldKPf4rPZ7jq60NnpeWJsMwFAiY8gbawzRvh6Ctc7u7Me3Hwsd4ewjuIp/vD47xB+QPEOZh6LJaLIku4aBHWAYMUla7RYbFkNnlD/KAZmQ9ILulwz5mx/6PdMT5ca0PAAAAAAAgnuxFRcr75je6HWP6fPI7ncEgreNPXX23IZs1L7YvIPvrBnYpSEuMYVl/z7IzvV75q6rkr6pSrBvZ7fnuPDV9+KFktcqakSFLVqasmVmyZmbKmpUpS2amkjIylZKZIWtGpqyZGbJkZMqakS5LZqasORmyZGbLkhRLnHfg/AEzGKT5A/KGBWymfIGAvL5g2Ofzm6HQzes35Ws9J3Q8YMrrCwTPaT3Wfk5rOxCQx9d6XX/4uOC1AvIFgkGfL9C1z9uhBjI+xMLKamMHjLAMGKROuWSCDvtKoVY8uVkVpe3fFpqS8h+NdHzePjBzlHTebxJQIQAAAAAAwOBi2Gyy5eRIOTm9Os80Y08kUk88Uf6GhlDQZjY397bMiIykpJiCI9PrVaCpqV/uGYk1q5ez2/z+0JKa3j7cz3A4guFZRoYsrcFa/i03K/X443s81/T5ZNhi+4jbajFktViVbLf2ocrE6Thjr0twFyGE8/ojh37e1oDO1zrLru16vkAw1Av2maFQ0ec3O/W1nxcaEzA79XW4dqDreH/rePQ/q4Ww7EARlgGDWP7oDF1+Wb0+e/RR/dd1reyGW6dkdFp+8eKFUkp2QuoDAADAwCkvL9df//pXvfHGG/riiy9UV1enjIwMjRgxQmPHjtWIESP0j3/8I+r5K1asUElJSfwKRsI99thj+uEPf6j61tkGvAcAIHZGjLMykg49ROP+Gf7nb6ClJThjrUOAFpq51tBpJltDQ+uxhuCSjv72DYhiXoJxgJeCtGRkxFZHpKUg+8D0eDrMagvK/d+vx3Tu7u/OU+O773YJ20Kz2Do+pme0tjNkzcwMPRpJSTH/+08Ei8VQksWqpCHySb5pBgOzzuFaxwDO3xoORhzTGgRGHNMl1At0Oc/nD8hvBo+1hXehR78Zur8vYCpgtgeIYePa+rscb79/2z3itZefzTp438MHiyHynxgwRLnrZfn3d3VM2h4dmvy+nP4CJVk6fHPoK3Olw2YmrDwAAIDBqqSkRKtWrYp5/I4dOzR+/PiBK6iXnn76aX37299WY2Nj2PGamhrV1NTo888/j3ImEumjjz7SCSecEGq/+eabmjFjRtgYt9utrKwseTweSdJvfvMb/X//3/93QPctKyvTDTfcoNdff/2ArgMA6BtLUpIshYVSYWGvzjNNU4HGJgUagiGa2fpnQ08CLpcMu12mty/zuHoW8/5t/RSWRRJzYOdsiBi29YZht3cI29pDt5xrrlHaSSf16ZqIzjAM2a2G7FYddLP8+io8VAuEgrpoIZzP3xrUhQK48HMjBXUjMpMT/TIPeoRlwGD25t1Swx5JUrq1WunW6va+rLHSub9KUGEAAAAYKK+88oq+/vWvKxAISJIuv/xy/exnP9OkSZNUX1+vFStW6LbbbtO+ffsktQd9CxYs0F133ZXI0oe91atXh55brVadfPLJXca8//77oaBMks4444w+3880TT388MP68Y9/LJfL1efrAAASwzAMWdPTZE1Pk33kyJjPc4wdqyM+2SDT7Q4tBxloaGidtdbQOsOt7Xl9+3Nn+3HT7Y5cUy+WgjQHcinIWPduazjwWXam1yt/dbX81dVhxzPOju0L6nt/+lO5VqwMD9syMmTJSJc1vfUxIzizLfg8s/1YRoas6eky7PYDfh0YvCwWQ47QMonDIyA8GBGWAYPVzvekDx6P3j/7QSkptm/ZAAAADDcrV64Ma48fP15lZWWh9mBdni4QCGjevHmhoOzkk0/WkiVLQksDJScn6+qrr1Z+fr7OOeecRJaKCDqGZccee6zS0tK6jHn33XdDz5OSknRSH7+xvm3bNl1//fWhGZSjR49WfX29nAO8NBcAYHAwDENGSoosKSmyjxjR6/MDHk9wecjWYC3gbA3RWlpiOn8gZ5VJvZlZNnB/7lkzY6yhplb+mhr5a2r6fC8jOblDuBYM0CwZGcq+/DKln3lmj+ebpjmol5IEDgaEZcBg5PNIL31PUpQ1bU/6tnRIz39QAgAA4OCyevVqbdu2LdS+7rrrIn7wcfbZZyslJUXNzc3xLA896BiEnXbaaRHHdAzUTjjhBCXF8O39zu6//37deeedamr9Rv/111+vP/zhDzrmmGMIywAAMbE4HLIUFMhWUNCn861ZWTr0lf9rn9FWHz5zzd9Qr4DT1RrCOeV3NijQ4AyGbB32aYt6/Zhnlg2OpSAPlOl2y+92y18ZvpRk2qmnxHR++S9/pbplyyIGbm37tYX1ZaS3H8vMlCU9ONPNsBEXYPji3Q8MRmsWSpVR9qHIGiudPT++9QAAACAuOoYtkjR16tSI4wzDUFlZmfx+vwr6+CEX+tf27dtDS2NK0umnn95ljGmaWrt2bag9bdq0Pt1r/vz5ampq0vjx4/Xoo49q5kz2MQYAxJdhsynpkEN6fZ5pmjKbm+V3OoNBm9PZukRkh0enU0YsS0H6fAp02t+1P8VzKchoLOkxBnYuZ9TArTeMlJRQyNYWrmXNvkRZF13U47kBj0eGxULghoMW71wgwQIBUxZLh28LV2+XVv02+glf/aOUlD7whQEAACDuOoYtkpSfnx91LCHZ4NJxxpgUeWbZxo0bVVtbG2r3db8yi8WiW265Rffdd5/S0/ndAABw8DAMQ0ZqqiypqVIflo/sdDGNe/rprrPXQo/tgVzHYE4+X0yXjzmoGsilIDNi+3M+4OyfvUvN5mb5mpulysrQsdQYl4yueughVf/lrzJSU9sDt/Q0WdM6PE9Pl6VzO73j89a+1FQZFku/vCYgVoRlQIKtWbZNDZXNOu2yw5RdmBJcftEfZX3oKZdLE9mbAgAAYKjqvISew+FIUCXorY5h2ZgxYzRmzJguYzrOHDQMI+Lss1i8+uqrfd7rDACAocKwWpV6/HG9Osc0zeAMrAZnKGSLFrZZsw6epSADAxjYWXoZ2JlNTfI1NUkVFQd237S01vAsXdmXXqq8b32rx3N8VVXy19a2hnHphG7oFcIyIIHqypv06YrdCvhNlX1WrWOmuHTCvo+UFOn/4clZ0vn3xr1GAAAAxI9pRtmzFoNex7AsWgjWccyUKVOUnZ3dp3sRlAEA0DeGYchISZElJUUaUdgv1xz1pz+Gh25t+7W5nPI7XcGlJV3O1j3cnAq07jkaC0uMM8j9rv6ZWRaJNdbAztW/gV2gsTG4zGZ5ufx1dTGdU798uSp+9/v2A4bRHrqFzXJrbad3eJ6REZz1lp4ua3pa+7i0dFnSUiPuI4yhhbAMSKA1y7Yp4A9+IBLwm1q/IU2bLQ/ppPSndVTKG7IYgfbB5/5KSu+fP8QBAADQf0pLS7Vq1Srt2bNHycnJGjlypKZNm6ZRo0YlurQ+qaio0Jo1a7R//37V1NQoKytLI0aM0MknnxxxthSk6upqbd68OdSOtASjFD6zrK9LMAIAgMEl/cwzezXe9PsVcLmCQZrL2bpPmysYtoVCtmC4Zotx2e0BnVkWa2DXT0tBRq4h1r3bOtVgmgq4XAocaJhoGMq69FKN/M2vexzq2b1b7s82tu751rq0ZHrwuZFK6DaYEZYBCbJnc612bOi64WZzIEsfuubo8OS35TDcwYPjTpeO+3qcKwQAABie6urqlJOTE7V/xYoVKikp0e7du3XrrbfqxRdfjDgjbPbs2Vq4cGG3AdPKlSs1ffr0qP2HHHJIxOM7duzQ+PHjo7+IPli2bJnuvfdeffjhh1FnuE2ePFm33XabrrvuOlmt1ohjenpNbebPn68FCxZE7Js5c6befPNNSdKqVat0ZpQPoebOnau///3vUe/R9u+qPyxatEjf+MY3Yho7b948zZs3r9sxDz/8sB5++OEux8866yytXLmyLyUCAICDgGG1ypqVJWtWVr9dc+Tvfid/XW178OZyts52C5/V5ne1P5oxznCzZsa4HOWABnZpsdXgahyYAkxTht0e09DGtWu1/+e/iNwZaaZbqB08ZknrsLdbaFxwjDU3V/YD3esPURGWAQlgmqbWLNsWtf+UjCflsLQGZVaH9NX/J/GtAwAAgEHjiy++UElJicrLy6OOeeGFF/Thhx9qzZo1g3pGVnV1ta644oqwgOaQQw7RjBkzVFhYqJqaGq1evVobN27Uxo0b9a1vfUsLFy7U8uXLNW7cuH6vp6KiIqyW5557LmpYBgAAAPV67zZJMn2+4Ay3tgDN6ezw2L6MpD3G1RIGdCnIGGe3DfrA7gBnuqWdOU1jH3mkT+eiZ4RlQAJs/7hSFWWR/+ddaNuqI5JXtR+Y9kOp4PA4VQYAwNDm8we0r96d6DKGheKsZNmsB+dm2mlpaXrmmWdC7eeff15Lly4NtRsbG3XxxRervLxcJSUlmjVrloqKitTQ0KBVq1Zp2bJlCgSCy2m3zT5bvnx5xHuVlJSEzeLqPFNqIGaQdbRnzx6VlJRo27bgF7kyMjL00EMP6dprr+0y9tVXX9XcuXNVXl6uDRs26OSTT9Zbb72lo446Kmxcx9d0+eWXa9myZaG+DRs26Jhjjum2piVLlsjv94fazz//vBYuXBhxJtuiRYu0aNEiSdK1116rp556SldccYWWLFkS2z8AAACAYcqw2WTNzpa1j3uodjbqt/fJV1Pbvoykq7E1GGqd0dba9rs69Dmd8jc2Sj5ft9e2xLpvWuPQDuxirQF9Q1gGxJnfH9B/X9getf/0zCdkGK0fmOQfIZ3x/fgUBgDAMLCv3q1pv12R6DKGhXfumK4xuamJLqNP7Ha7rr766lD7iy++CAvLfvvb36qsrExLly7VZZddFnburbfeqtdff10XXHCBfK2/9L/00ksqLS0d0NCrL3w+n6666qpQUGaxWLRkyRKdd955Eceff/75evXVV3X66aerqalJ5eXluuyyy/TBBx8oI8oHGHPmzAkLyxYvXtxjWPbcc8+Ftdtmmp199tlRz3G73XrxxRclSVdddVW31++ruXPnau7cuV2OV1RUaESH5XAeffRRXX/99V3GjR07Vrt27ZIk3XbbbfrDH/4wIHUCAAAkQtLEiUrqw3mmacpsaWndx601SGt0ddjXzaWkw4+I6VoDObst1n3TBjKws6TFNrsNfUNYBsTZpnf2qr6yOWLf+KT3NdLxefuBi/6fZOvLHzMAAAAYKG+//bYeeOCBLkFZm3POOUfXXHON/vnPf0oKfgDwyiuv6Oabb45nmT1auHCh3n333VD7mmuuiRqUtTn22GP1/e9/X7/5zW8kSZs3b9YvfvEL/elPf4o4/qtf/apSU1PV1LonxuLFi/WrX/0q6vX37Nmj1atXdzm+ePHibsOyl19+WU6nU2lpabrwwgu7fQ397Z133glrR1oycufOnaGgTJKmTZs24HUBAAAcDAzDkJGcLEtysmz5+Qd0rTEPPRQhcOswk62xPYALuFzyN7pal5xsazcGZ4a1rhLRkSXGWV0DGtilMbNsIBGWAXHkcfv0wcs7IvYZ8uuU9CfbDxxzlTTutDhVBgAAgFiNHDlSN910U7djLrnkklBYJgWXHxxMPB5Pl5lN8+bNi+ncW2+9Vffcc09oqcVHHnlEP/3pT5Uf4cONtLQ0XXDBBXr++eclSVu3btX69et17LHHRrz24sWLZZqmJk+erNLSUjU2Bvd8WLp0qR588EHZbJF/hW2bjXbxxRcrJSUlptfRXzqGZUVFRTr88K5LqHcO1M4444wBrwsAAGC4saSkyJKSIhX2/Rqmacpsbu6wdKRTAZdLjgkTYjrfsNllycgI7kvWYbn1/hBrYIe+ISwD4uiTFbvV7PRG7JuUskJ59tZvmzrSpXPujmNlAAAAiNUll1wScf+sjiZPnhzWLi8vH8iSeu3NN9/U3r17Q+3CwkKdeOKJMZ1bXFys448/Xh999JEkqampSc8//3zUAHHOnDmhsEwKBmLRwrJnn31WkvS///u/+vjjj0MhWHV1td58882IM98aGxv18ssvSxq4JRi703EmXKRZZZ3HTJo0KWKwCAAAgMQzDENGaqosqal9Ct2K71qg4rsWBEO3pib522a5OZ0KNDa2h3CNHWa/uVwKNDaFz3hrbAzNiDNbWiRJlnSWYRxIhGVAnLQ0+7T+9Z0R+6xq0Unpz7YfKPmJlFEUp8oAAADQG8cdd1yPY0aOHBnWdg7gRt99sWJF+N59Rx99tAzDiPn8qVOnhsIySVq5cmXUsOzCCy9UWlpaaJbY4sWLQ8s4dlRaWqr3339fUjBgmzhxYtj+Zc8991zEsOzFF19UU1OTMjMzdf7558f8GvqDy+XS+vXrQ+1YwjJmlQEAAAx9hmHISEtr3WfsAKa6STK9XgUaG2XY7f1THCKyJLoAYLjY8OYutTT5IvYdk/ay0q3VwUb+EdLJ3S/rAwAAgMQpLi7ucUxqampY2+eL/PfAROm8LOSEGJeViTa+Y2DUWWpqatg+Ytu3b9fHH3/cZVzbrLKTTjpJ48eP16xZs5SR0b6R+gsvvCCvt+sqDW2B2uzZs5WUFN/9fteuXSu/3x9qRwrL6urqtGnTplCb/coAAADQG4bdLmt2dmvwhoHCzDIgDtyNXm14I/KsMrvRpOPTXmg/MOs+ycq3BAAAGAjFWcl6547piS5jWCjOSk50CQMmLYZfUqPtrTVYVFVVhbUzMzN7dX7n8Z2v19mcOXO0ePHiUHvx4sU6/vjjw8a0hV5tSykmJyfr4osv1lNPPSVJqq2t1WuvvRYWvDU0NOjVV1+VJF199dW9eg39oeNeZLm5uZoyZUqXMWvWrFGgwybxzCwDAAAABp/B/RscMESsf2OnPG5/xL6pqS8p2dK6LM9Rl0gT+AAPAICBYrNaNCY3teeBQDd6s1zhYNXQ0BDWTklJ6dX5ncfX19d3O/6CCy5Qenq6XC6XJGnJkiW69957Q/1btmzR+vXrZRiGrrzyytDxq666KhSWScFArWNY9q9//UstLS3Kzc3VzJkze/UaYlVSUqJVq1b1OK6mpkYWS8+Lt0SbxffEE09o7ty5vS0PAAAAQD9gGUZggDW7PPrkrd0R+5IMl45NezHYsKVI5/46jpUBAABguOo8M6y5ublX5zc1NYW1s7Kyuh2fkpKiiy66KNT+8ssv9eGHH4babUswnnbaaRozZkzo+HnnnRd27eXLl6uldYNzqX022mWXXSY7ezgAAAAA6CPCMmCAbXhzl7wtkWeVHZu2XEmW1g8apt0uZY+JOA4AAADoT/n5+WHtzjPNeuJ0Oru9XiRz5swJa3dclrHzEoxtHA6HZs+eHVZn27KLNTU1euONNyKeBwAAAAC9QVgGDKCWZp8+XbknYl+y0aBjUv8dbOSMl077bvwKAwAAwLA2derUsPa2bdt6dX7n8Z2vF8msWbOUkZERai9ZskSS9Omnn2rTpk2yWCy64oorupzXOWRrC9aWLl0qr9ergoICTZ8+cEuZr1y5UqZpdvn5wQ9+EBqTl5enQCDQZUzbjLk2ZWVlEa9lmiZLMAIAAAAJRFgGDKBPV+6Wp9kXse+4tBfksLiDjfPukezJcawMAAAAw1nncOmTTz6RaZoxn79hw4ZurxdJUlKSLr744lC7tLRU77//fij8mjZtmoqLi7ucd8455yg3NzfUfumll9Tc3Bw674orrpDVao259v7y1ltvhZ7PmDEj4l52bTPfJGnixIkaO3ZsXGoDAAAA0DuEZcAA8Xr82vDmroh9SYZTU1JfCTYOOVM6YlYcKwMAAMBwd/bZZ2vUqFGhdlVVld57772Yzt27d6/WrVsXaqempuryyy+P6dxISzFGW4Kxjd1u16WXXhpqu1wuPfHEE1q5cqUk6eqrr47p3v2purpan3zySag9c+bMiOPefPPN0POzzz57wOsCAAAA0DeEZcAA2fTOXrld3oh9x6S+3DqrzJDO/bUU4VuoAAAAwEBxOBy6/fbbw44tXLgwpnMXLlwYNgvthhtuUEFBQUznnnfeecrKygq1//rXv2rbtm2yWq3dBm6dQ7Yf//jH8vv9GjlypM4444yY7t2fVqxYEfbPIFIQ9uWXX2rHjh3djgEAAAAwOBCWAQOk9NOqiMftRrOOSXs52Dj2f6TiY+JYFQAAABD03e9+V6effnqo/eyzz+qVV17p9px169aFhWoTJ07U3XffHfM9Oy/F6HK5JAWXcSwsLIx63owZM5Sfn9/lvCuvvFIWS/x/re24BOO4ceM0YcKELmNef/310HPDMAZ0XzUAAAAAB4awDBggF807VuddU6B8246w41NSX1WyxSXZU6UZP0tQdQAAABjubDabFi9eHAp6TNPUnDlz9I9//CPi+FdffVWzZs1Sc3OzJKmgoEDLli1TZmZmr+7beZaYFH0Jxo61XnbZZb0+b6B0DMuiLcHYcb+yY489Vnl5eQNeFwAAAIC+ISwDBojFYuiw8t9pTt5tujDnlyqyfy6rPJqa+lJwwOnfkzK7bmAOAACAA1dSUiLDMEI/ZWVlYf3Tp08P6y8tLQ3rHz9+fKjvrrvuinruggULQsdXrlwZds2OVq1aFfF+nc/5+9//HnbeIYccEtY/fvz4UF9paWlYX3d1lpSURPznNHLkSL333nuhfpfLpeuuu06HHnqobrjhBt155526+eabdfTRR2vWrFkqLy+XJB199NF67733NGXKlIjX7c65556r7OzsUNtms4XtSRZN52Bs7NixOuWUU3p9/wO1b98+bd68OdSOFJaZpqkVK1aE2v29BGPnf/exvs87v2cBAAAABNkSXQAwZJWtlTYtl2FI45M+1jjHx6r3FynNWitlFEunfTfRFQIAAADKy8vTihUrtGzZMt1777368MMPtWPHDj322GNdxh555JH6wQ9+oG9+85uyWq19up/D4dDs2bO1aNEiScGwKZZZV2eddZZGjBgRCuzmzJnTJZSMh46zygzD0IwZM7qMWbdunaqrq0PtSGMAAAAADB6G2XFXYuAgt3HjxrBvt3722WeaPHly/AsJBKTHZ0p7Porcf8lD0nH/E9+aAAAYInw+n7Zu3Rp2bOLEibLZ+B4Y0B8qKir07rvvav/+/aqtrVVmZqYKCwt18skna9y4cYkuD0A/489VAACGj0Hz+fkgxN98gIGw6YXoQVnR0dLUa+JaDgAAABCrwsLCmJZFBAAAAIChgj3LgP7m90pv/TJ6/7m/liz8pwcAAAAAAAAAwGDAJ/ZAf1v3T6nmy8h9h8+SDj0rvvUAAAAAAAAAAICoCMuA/uRpklbeF7nPsEgzF8S1HAAAAAAAAAAA0D32LAP6QSBgypBkvPcXybU/8qBjvyYVToprXQAAAAAAAAAAoHuEZUA/2P5Rhd5/cZum+D7TJHuqkixN4QOsSVLJ/5eY4gAAAAAAAAAAQFSEZUA/+HTlbtVVtmi1rtV/jct1RPIqHZ36ivLsO4MDTrpByhqd2CIBAAAAAAAAAEAX7FkGHKDKXU7t214favvMFG1sPl/PVt+vjxtnS0mZ0rTbE1cgAAAAAAAAAACIirAMOECfrdwdtW+sY510+jwpNTeOFQEAAAAAAAAAgFgRlgEHwN3o1Zb390fsK7ZvVH52s3TKLXGuCgAAAAAAAAAAxIqwDDgAW97fL5/XjNh3dOor0ll3SI60OFcFAAAAAAAAAABiRVgG9JFpmtq0YnvEvlRLjQ4t3i8df12cqwIAAAAAAAAAAL1BWAb0UeVOp6orAhH7jkp5Q9az75RsjjhXBQAAAAAAAAAAeoOwDOijTa+uj9IT0JFjd0uTL4tnOQAAAAAAAAAAoA8Iy4A+8Hr82vpJY8S+0Y5PlDlrnmThPy8AAAAAAAAAAAY7Ps0H+mD7q2/L40+K2HfU6FJp4jnxLQgAAAAAAAAAAPQJYRnQW6apTW/vjNiVZDh16OxLJcOIc1EAAAAAAAAAAKAvCMuAXqp7/w3tc42J2DdpxBZZJ5bEtyAAAAAAAAAAANBnhGVAb5imNr+yOmr3kV89jVllAAAAAAAAAAAcRAjLgF4wP39ZWyqPiNhXmL5feSecHueKAAAAAAAAAADAgSAsA2IVCGj/y/9Ug78oYvekaePjWw8AAAAAAAAAADhghGVArDb9S1v2jY3YZTECOuzsE+JcEAAAAAAAAAAAOFCEZUAsAn753/yttjVHXmZx7MRkpaQ74lwUAAAAAAAAAAA4UIRlQCw+XaKd+9LlNjMjdh9+5sQ4FwQAAAAAAAAAAPoDYRnQE79PWnWftrjPithtTzI0/pj8OBcFAAAAAAAAAAD6A2EZ0JNPnpOnap92uE+M2D3h+BGyO6xxLgoAAAAAAAAAAPQHwjKgO36vtOo+lXsnylTkQOzwk4viXBQAAAAAAAAAAOgvtkQXAAxqG56R6so0Jkn6RuFclbacqO3uU7Wz5TgFZFdqlkOjDs9JdJUAAAAAAAAAAKCPCMuAaHweadXvQs1kS6MmpazUpJSV8pjpKj3rVfmT82SxGAksEgAAAAAAAAAAHAiWYQSiWf+UVL8zYpfj+Et1+IyjdeRpI+NcFAAAAIaL8vJy3X333TrzzDNVWFgoh8OhvLw8HXXUUTr//PN13XXXyTCMqD8rV65M9EtAnD322GPKzs7mPQAAAAD0EmEZEImvRXr795H7LDbpzB/Ftx4AAAD0SklJSbdBUuef0tLSRJcc5umnn9aECRM0f/58vfPOO6qsrJTX61VNTY0+//xz/ec//9E//vGPRJeJTj766KOw99Vbb73VZYzb7VZSUlJozD333HPA9y0rK9O5556rG264QfX19Qd8PQAAAGC4ISwDIln3T6lhd+S+466VcsbFtx4AAAAMG6+88oq+/vWvq7GxUZJ0+eWXa926dWpubtb+/fv1zDPPqLi4ODR+x44dMk1T8+fPT1TJaLV69erQc6vVqpNPPrnLmPfff18ejyfUPuOMM/p8P9M09dBDD2nKlCl6/fXX+3wdAAAAYLhjzzKgM69bevsPkfssdmnaD+NbDwAAAHqt8/Jz48ePV1lZWai9YsUKlZSUxLeoGAQCAc2bN0+BQECSdPLJJ2vJkiUyjOA+ucnJybr66quVn5+vc845J5GlIoKOYdmxxx6rtLS0LmPefffd0POkpCSddNJJfbrXtm3bdP3112vVqlWSpNGjR6u+vl5Op7NP1wMAAACGM2aWAZ19/A/JuTdy3/H/K2WPiW89AAAAGDZWr16tbdu2hdpt+5J1dvbZZyslJSWepSEGHYOw0047LeKYjoHaCSecoKSkpF7f5/7779fUqVNDQdn111+vjRs3Kjc3t9fXAgAAAMDMMiCct1l6J8qsMqtDmnZ7fOsBAADAsNIxbJGkqVOnRhxnGIbKysrk9/tVUFAQj9LQg+3bt2vfvn2h9umnn95ljGmaWrt2bag9bdq0Pt1r/vz5ampq0vjx4/Xoo49q5syZfboOAAAAgCDCMqCjjxZJrv2R+74yV8oaFc9qAAAAMMx0DFskKT8/P+pYQrLBpeOMMSnyzLKNGzeqtrY21O7rfmUWi0W33HKL7rvvPqWnp/fpGgAAAADaEZYBbTxN0jt/DDU3NZ0tq+HT2KSPlWL3SGfclsDiAAAAMBx03m/K4XAkqBL0VsewbMyYMRozpuvy7R1nDhqGEXH2WSxeffXVPu91BgAAAKArwjKgzYd/kxorJEmmKb3vulqNgXwZ8qsot0Hj1rRo/NEu5Y5Mi7hvBAAAAHCgTNNMdAnoo45hWbQQrOOYKVOmKDs7u0/3IigDAAAA+hdhGSBJnkZp9Z9CzSrfeDUGgkvemLJqX02O9r3wpf77wpeaddPROvRYlrwBAABAUGlpqVatWqU9e/YoOTlZI0eO1LRp0zRq1MG5hHdFRYXWrFmj/fv3q6amRllZWRoxYoROPvnkiLOlIFVXV2vz5s2hdqQlGKXwmWV9XYIRAAAAQP+zJLoAYFD44DGpqSrULGs5IeIwi8XQqCNy4lUVAAAAEqCurk6GYUT9WblypSRp9+7dmj17tg499FDNnTtXP/3pT3X77bfrmmuu0ejRo3XppZdq165d3d5r5cqVYdf++9//HtZ/yCGHRKyhtLS031/3smXLdNJJJ6moqEiXXnqpbr75Zv30pz/VrbfeqiuvvFJjx47VlClT9Le//U1+vz/m1xTtZ8GCBVGvMXPmzNC4t99+O+q4uXPnxvTvqj8sWrQo6n3y8/PDZgXOmzcv4rgdO3aExjz88MMRx5SUlPRbzQAAAABiw8wyoMUlvXt/2KHSKGFZ8cRsJaXwnw0AAMBw98UXX6ikpETl5eVRx7zwwgv68MMPtWbNmkE9I6u6ulpXXHFFWLB0yCGHaMaMGSosLFRNTY1Wr16tjRs3auPGjfrWt76lhQsXavny5Ro3bly/11NRURFWy3PPPaczzzyz3+8DAAAAAG341B94/xGpqTrUbPJnqdw7MeLQ8UfnxasqAAAwEPw+qWFPoqsYHjJHSdaD89eNtLQ0PfPMM6H2888/r6VLl4bajY2Nuvjii1VeXq6SkhLNmjVLRUVFamho0KpVq7Rs2TIFAgFJwdlnt956q5YvXx7xXiUlJWEzkubOnRs2u2zHjh0aP358P7/Cdnv27FFJSYm2bdsmScrIyNBDDz2ka6+9tsvYV199VXPnzlV5ebk2bNigk08+WW+99ZaOOuqosHEdX9Pll1+uZcuWhfo2bNigY445ptualixZEjZz7fnnn9fChQtltVq7jF20aJEWLVokSbr22mv11FNP6YorrtCSJUti+wcAAAAAACIsw3DnbpDWLAw7VNZyvKKtUDr+6Pw4FAUAAAZMwx7p/u4/qEc/+d4nUk7/zzqKB7vdrquvvjrU/uKLL8LCst/+9rcqKyvT0qVLddlll4Wde+utt+r111/XBRdcIJ/PJ0l66aWXVFpaOqChV1/4fD5dddVVoaDMYrFoyZIlOu+88yKOP//88/Xqq6/q9NNPV1NTk8rLy3XZZZfpgw8+UEZGRsRz5syZExaWLV68uMew7Lnnngtrt800O/vss6Oe43a79eKLL0qSrrrqqm6v31dz587V3LlzuxyvqKjQiBEjQu1HH31U119/fZdxY8eODS3Ledttt+kPf/jDgNQJAAAAoPfYswzD2/t/lZprww5F268se0SqskekxqMqAAAADGJvv/22/vjHP3YJytqcc845uuaaa0Jt0zT1yiuvxKu8mC1cuFDvvvtuqH3NNddEDcraHHvssfr+978fam/evFm/+MUvoo7/6le/qtTU9r9DL168uNvr79mzR6tXr+5yvKfzXn75ZTmdTqWlpenCCy/sdmx/e+edd8LakZaM3LlzZ9j+ddOmTRvwugAAAADEjrAMw5e7Xlrz57BDftOmnZ7jIg4fxxKMAAAAkDRy5EjddNNN3Y655JJLwtobNmwYyJJ6zePxdJnZNG/evJjOvfXWW2UYRqj9yCOPqKqqKuLYtLQ0XXDBBaH21q1btX79+qjXXrx4sUzT1OTJk5WWlhY6vnTp0tBMvUjaZqNdfPHFSklJiel19JeOYVlRUZEOP/zwbsdI0hlnnDHgdQEAAACIHWEZhq///iUYmHWwz3OkvGbkX65ZghEAAABSMAiLtH9WR5MnTw5rl5eXD2RJvfbmm29q7969oXZhYaFOPPHEmM4tLi7W8ccfH2o3NTXp+eefjzp+zpw5Ye3uZok9++yzkqT//d//1Ve/+tXQ8erqar355psRz2lsbNTLL78saeCWYOxOx5lwkWaVdR4zadIk5efzuwUAAAAwmBCWYXhqqpHWPtjl8C5P5P0THMlWFR+WNdBVAQAA4CBw3HGRVyLoaOTIkWFtp9M5UOX0yYoVK8LaRx99dNhssZ5MnTo1rL1y5cqoYy+88MKwWWLRwrLS0lK9//77koIBW+fgq/NeZm1efPFFNTU1KTMzU+eff34s5fcbl8sVNlMulrCMWWUAAADA4ENYhuFp9Z+klvouh3d7pkYYLI2elCurlf9cAAAAEJxZ1ZOO+3RJ6nYJwUTovCzkhAkTenV+5/HdLa2Ympoato/Y9u3b9fHHH3cZ1zar7KSTTtL48eM1a9YsZWRkhPpfeOEFeb3eLue1hWizZ89WUlJSr17HgVq7dq38fn+oHSksq6ur06ZNm0Jt9isDAAAABh9bogsA4q5+j/T+I10OuwNpqvBG/pBg9KScga4KAADEQ+Yo6XufJLqK4SFzVKIrGDAdZ0lFY7MN7l+1Ou8xlpmZ2avzO4+PtmdZmzlz5oTNKFu8eHHYUo5Se+jVNqMsOTlZF198sZ566ilJUm1trV577bWw4K2hoUGvvvqqJOnqq6/u1WvoDx33IsvNzdWUKVO6jFmzZo0CgUCozcwyAAAAYPAZ3L/BAQNh5T2Sz93l8B7P0Yo22XLMkbkDXBQAAIgLq03KGZfoKnCQ681yhYNVQ0NDWDslJfK+vdF0Hl9f33XVho4uuOACpaeny+VySZKWLFmie++9N9S/ZcsWrV+/XoZh6Morrwwdv+qqq0JhmRQM1DqGZf/617/U0tKi3NxczZw5s1evIVYlJSVatWpVj+NqampksfS8GkW0WXxPPPGE5s6d29vyAAAAAPQD1pXD8FK5RVr/VMSu3YGTIx5Pz0lSVmHvPjwAAAAABrPOM8Oam5t7dX5TU1NYOyur+/19U1JSdNFFF4XaX375pT788MNQu20JxtNOO01jxowJHT/vvPPCrr18+XK1tLSE2m2z0S677DLZ7fZevQYAAAAAaENYhuHlrbslMxCxa5dOi3h89JG5Q+LbwwAAAECb/Pz8sHbnmWY9cTqd3V4vkjlz5oS1Oy7L2HkJxjYOh0OzZ88Oq7Nt2cWamhq98cYbEc8DAAAAgN4gLMPwsftD6fOXInY5049TfYMjYt8Y9isDAADAEDN16tSw9rZt23p1fufxna8XyaxZs5SRkRFqL1myRJL06aefatOmTbJYLLriiiu6nNc5ZGsL1pYuXSqv16uCggJNnz69V/X3xsqVK2WaZpefH/zgB6ExeXl5CgQCXca0zZhrU1ZWFvFapmmyBCMAAACQQIRlGB5MU3pjQdTu3WNvi9o3ehL7lQEAAGBo6RwuffLJJzJNM+bzN2zY0O31IklKStLFF18capeWlur9998PhV/Tpk1TcXFxl/POOecc5ea2/538pZdeUnNzc+i8K664QlarNeba+8tbb70Vej5jxoyIq1G0zXyTpIkTJ2rs2LFxqQ0AAABA7xCWYXjY/qZU+k7kvqJjtMt5aMSuvFFpSs2MPOMMAAAAOFidffbZGjVqVKhdVVWl9957L6Zz9+7dq3Xr1oXaqampuvzyy2M6N9JSjNGWYGxjt9t16aWXhtoul0tPPPGEVq5cKUm6+uqrY7p3f6qurtYnn3wSas+cOTPiuDfffDP0/Oyzzx7wugAAAAD0DWEZhr5AoNtZZebZ87X7i9qIfcwqAwAAwFDkcDh0++23hx1buHBhTOcuXLgwbBbaDTfcoIKCgpjOPe+885SVlRVq//Wvf9W2bdtktVq7Ddw6h2w//vGP5ff7NXLkSJ1xxhkx3bs/rVixIuyfQaQg7Msvv9SOHTu6HQMAAABgcCAsw9C3cZm0/9PIfeOnqSblZDU7vRG7R7NfGQAAAIao7373uzr99NND7WeffVavvPJKt+esW7cuLFSbOHGi7r777pjv2XkpRpfLJSm4jGNhYWHU82bMmKH8/Pwu51155ZWyWOL/a23HJRjHjRunCRMmdBnz+uuvh54bhjGg+6oBAAAAODCEZRjavC3SW7+M3j/zLu3bXh+xy2IxNHJi9sDUBQAAACSYzWbT4sWLQ0GPaZqaM2eO/vGPf0Qc/+qrr2rWrFlqbm6WJBUUFGjZsmXKzMzs1X07zxKToi/B2LHWyy67rNfnDZSOYVm0JRg77ld27LHHKi8vb8DrAgAAANA3hGUY2jY8JdWWRu478mJp9FdUW94UsbtgXIYcybaBqw0AAAADpqSkRIZhhH7KysrC+qdPnx7WX1paGtY/fvz4UN9dd90V9dwFCxaEjq9cuTLsmh2tWrUq4v06n/P3v/897LxDDjkkrH/8+PGhvtLS0rC+7uosKSmJ+M9p5MiReu+990L9LpdL1113nQ499FDdcMMNuvPOO3XzzTfr6KOP1qxZs1ReXi5JOvroo/Xee+9pypQpEa/bnXPPPVfZ2dmhts1mC9uTLJrOwdjYsWN1yimn9Pr+B2rfvn3avHlzqB0pLDNNUytWrAi1+3sJxs7/7mN9n3d+zwIAAAAIIgnA0Pbh36VIX+A0LNKMn0uSps05XMefN077t9dr3/Z67dtWp8pdLhUflh3XUgEAAIBEyMvL04oVK7Rs2TLde++9+vDDD7Vjxw499thjXcYeeeSR+sEPfqBvfvObslqtfbqfw+HQ7NmztWjRIknBsCmWWVdnnXWWRowYEQrs5syZ0yWUjIeOs8oMw9CMGTO6jFm3bp2qq6tD7UhjAAAAAAwehtlxV2LgILdx48awb7d+dnOaJhdG+CX+K3Oli+6Peh1vi19+b0DJ6fYBqBIAABwIn8+nrVu3hh2bOHGibDa+Bwb0h4qKCr377rvav3+/amtrlZmZqcLCQp188skaN25cossD0M/4cxUAgOGjy+fnn32myZMnJ7CiwYO/+WD4Sc6WZvyi2yH2JKvsSX37piwAAABwMCssLIxpWUQAAAAAGCrYswzDz9k/l9LYXBsAAAAAAAAAABCWYbgpOlr6yjcSXQUAAAAAAAAAABgkCMswvMz6nWRheUUAAAAAAAAAABBEWIbhZcxJia4AAAAAAAAAAAAMIoRlGD4sdmaVAQAAAAAAAACAMIRlGD5syYmuAAAAAAAAAAAADDKEZRg+bEmhp35/QFs/KJer1p3AggAAAAAAAAAAQKLZEl0AEDcdZpZV73bptcc3SpIycpNVNCFLIw/LUtGEbOWNTJNhMRJVJQAAAAAAAAAAiCPCMgwfHWaWVZQ5Q8+dNW45a9za+kG5bHaLrv9/Z8oqwjIAAAAAAAAAAIYDlmHE8GFPCT2tLGuIOCR/TIasVv6zAAAAAAAAAABguCAVwPDRcWbZTmfEIQXjMuJVDQAAAAAAAAAAGAQIyzB8tO5Z5vP6VbOnMeKQQsIyAAAAAAAAAACGFcIyDB+tM8uq9zQqEDAjDikYS1gGAAAAAAAAAMBwQliG4aN1Zlm0/cpsDotyitLiWREAAAAAAAAAAEgwwjIMH60zy6LuVzYmQxaLEc+KAAAAAAAAAABAghGWYfhom1kWLSxjCUYAAAAAAAAAAIYdwjIMH7Yk+bx+1expjNhdMI6wDAAAAAAAAACA4YawDMOHLUXVuxsVCJgRuwvHZsa5IAAAAAAAAAAAkGiEZRg+bEmq3NkQpcuq7KLUOBcEAAAAAAAAAAASjbAMw4ctWRVlUfYrG50ui8WIc0EAAAAAAAAAACDRCMswfNiSVLEzSlg2lv3KAAAAAAAAAAAYjgjLMGz4lKLavY0R+wrHEZYBAAAAAAAAADAcEZZh2Kh2pisQMCP2FYzNjHM1AAAAAAAAAABgMCAsw7BR05AW8bjNblF2UWqcqwEAAAAAAAAAAIMBYRmGjZq6pIjHc4rTZLEYca4GAAAAAAAAAAAMBoRlGDZq6xwRj+eOjDzjDAAAAAAAAAAADH2EZRg2amoiv91ziwnLAAAAAAAAAAAYrmyJLgCIB08gWc6GyEstEpYBAABgOFq+fLluvvlm7du3T5L0xBNPaO7cuYktCge1qqoqffDBB9q1a5dqampksViUk5OjsWPH6qSTTlJOTk6iSwQAAAAiIiwbBHbu3Kn//ve/Kisrk8fjUW5uriZPnqxTTjlFDkfkpQPjpaamRt/73vf05JNPSpLGjRun0tLShNbUF7X+0VH7WIYRAABg6CkpKdGqVatiHr9jxw6NHz9+4AoaRKqqqjRv3jw988wziS7loMX7q90nn3yiZ599VkuXLtWWLVuijjMMQ6eccopuueUWXXPNNbJarXGsEgAAAOgeYVkCvfXWW5o/f75Wr14dsT8rK0vf/va39bOf/UyZmZlxrk5atmyZbrnlFpWXl8f93v3Nbrh11FeSVVufpJq9jWpp8kmSbA6LMnKTE1wdAAAAEB9LlizRd77zHVVWVia6FBzkVq5cqV/96ld68803w44fffTROumkk1RYWKiWlhZt27ZNK1askNPp1Nq1a7V27Vo9+OCD+uc//6nDDjssQdUDAAAA4QjLEiAQCOiHP/yh/vSnP4WOHXHEETrjjDOUk5OjLVu26JVXXlF9fb1+97vf6dlnn9Xy5ct13HHHxaW+iooK3XrrrVqyZElc7hcPubbdmn5pgZQ/UaZpqqnBo5p9jWpu8MiwRF6eEQAAAAevlStXhrXHjx+vsrKyUHvFihUqKSmJb1EJVF5erltuuUXLli2TJOXk5CgpKUn79+9PcGUHJ95f0k9+8hO99957ofYxxxyjRx99VCeddFKXsfX19frZz36mBx54QJL03//+V9OmTdPbb7+tiRMnxq1mAAAAIBpLogsYjm6++eZQUGa1WvWXv/xFmzZt0mOPPabf/e53Wr58ubZt26aTTz5ZkrRr1y7NmDFDn3766YDX9swzz2jy5MmhoOyoo44a8HvGjS1JUnD5j7SsJI2ZlKvDTypKcFEAAADAwHruued01FFHhYKy2bNna9OmTTriiCMSXBmGismTJ+udd96JGJRJwVVT/vznP+vOO+8MHdu/f78uvfRS+Xy+eJUJAAAAREVYFmdPPPGEHnnkkVD7L3/5i2688UZZLOH/KsaOHavXXntNhx9+uCSprq5Ol112mZqbmwekrqqqKs2ePVtf+9rXVFVVpby8PD355JN68MEHB+R+CWFjuUUAAAAMP/fcc49qamqUn5+vp59+Wv/6179UVHTwfWls0aJFMgxDhmEM2f2/DlYPPvhgTFsH3H333ZowYUKovXHjRj3++OMDWRoAAAAQE8KyOHK5XPrJT34Sap9xxhm6/vrro47PzMzUwoULQ+1t27bp/vvvH5DaVq9ereXLl0uSLrvsMm3cuFH/8z//MyD3SpjWmWUAAADAcGIYhq688kpt2rRJ11xzTaLLwRBz2GGH6ayzzopprNVq1Te/+c2wY88+++xAlAUAAAD0CmFZHP3+979XRUVFqH3bbbf1eM55550XthTifffdp9ra2gGpr6CgQM8995yWLl2qESNGDMg9EoqZZQAAABiG/vrXv2rx4sUqKChIdCkYgs4444xejT/11FPD2u+++65M0+zPkgAAAIBeIyyLE9M09eijj4ba2dnZuvDCC2M699prrw09r6ur03PPPdfv9R1zzDHatGmT5syZ0+/XHhwMyepIdBEAAABA3EXbRwo4EA899JBWrFihX/ziF706r7i4OKzt9XpVU1PTn6UBAAAAvWZLdAHDxbvvvqu9e/eG2qeddpocjtjCm5KSkrD2888/r5tuuqk/y9Ohhx7ar9cbdGzJkmEkugoAAAAMQaWlpVq1apX27Nmj5ORkjRw5UtOmTdOoUaMSXRqGgMH6/jr++OP77VqBQKDfrgUAAAD0BWFZnLz44oth7RNPPDHmc4877jjZ7XZ5vV5J0qpVq9TQ0BDTBspoxX5lAAAAiFFdXZ1ycnKi9q9YsUIlJSXavXu3br31Vr344osRl5GbPXu2Fi5cqDFjxgxkuTjIDPf3V2VlZVg7JydH+fn5CaoGAAAACGIZxjhZt25dWPvII4+M+dzk5OSwmV8+n0+fffZZv9U2LLBfGQAAAPrRF198oRNOOEHLly+Put/SCy+8oNNOO027du2Kc3U42A3l99cnn3wS1j7nnHNksAoIAAAAEoyZZXGycePGsPbo0aN7df6oUaO0efPmsOuddtpp/VLbUOYNJGlF/Q3KDbiUu6lGuSPTlJrl4JcxAACGKV/Ap/Km8kSXMSyMSB0hm+Xg/HUjLS1NzzzzTKj9/PPPa+nSpaF2Y2OjLr74YpWXl6ukpESzZs1SUVGRGhoatGrVKi1btiy0rFzb7KDly5fH/XVgcBru769XX301rH399dcnqBIAAACg3cH52+tBpqGhQfv27Qs71tv15TuP/+KLLw64rsGuoqKiyxIdPdm2bVtYuyFQoE3N50rNkhaulyQlpdqUU5SmC79zjJLT7P1ULQAAOBiUN5Xr/KXnJ7qMYeHVy1/VqPSDc88uu92uq6++OtT+4osvwsKM3/72tyorK9PSpUt12WWXhZ1766236vXXX9cFF1wgn88nSXrppZdUWlqq8ePHx6V+DG7D+f21b98+vfbaa6H2qaeeqnPOOSeBFQEAAABBhGVxUFNT0+VYb/cb6zy+trb2gGo6GDz00EO66667Dugajf78LouNtjT5VLnLqaQU3v4AAADovbffflsPPPBAlyCjzTnnnKNrrrlG//znPyVJpmnqlVde0c033xzPMnGQGsrvr9///vfyeDySJJvNpgceeCDBFQEAAABB7FkWB06ns8uxpKSkXl0jOTl8z61I10RXLn9exOOZeckyLCzFCAAAgN4bOXKkbrrppm7HXHLJJWHtDRs2DGRJGEKG6vvr888/15///OdQ+6c//amOP/74BFYEAAAAtCMsi4NIwVbn8KsnhGV94wrkRzyemZ8S50oAAAAwVFxyySWyWq3djpk8eXJYu7ycvfIQm6H4/vJ4PPra174mr9crSZo5c6Z+8YtfJLgqAAAAoB3r0B2kTNNMdAkD7pZbbtGVV17Zq3O2bdum2bNnh9qN/jxFmj9GWAYAAIC+Ou6443ocM3LkyLA2X3aLrKSkRKtWrer1eWVlZTKM2FeKeOKJJzR37txe3ycRhuL76+abb9b69eslSZMmTdKSJUtksfDdXQAAAAwehGVxkJGR0eWY2+1WWlpazNdwu909XnOoKSwsVGFh4QFdwxnIU6Td4TLzezezDwAAAGhTXFzc45jU1NSwts/nG6hyMMQMtffXb37zG/3tb3+TJI0ZM0avvPKKsrOzE1sUAAAA0AlhWRykp6d3OdbS0kJYFgdN/pwoYRkzywAAGI5GpI7Qq5e/mugyhoURqSMSXcKAieXv8TYbv2qhb4bS++uBBx7QT3/6U0nBEPCNN97Q+PHjE1sUAAAAEMHB8Tfsg1xubm6XYw0NDRGPR9PQ0BDWzsnJOeC6hgMzylucmWUAAAxPNotNo9JHJboMHOR6s/wfurdy5cqYxy5atEjf+MY3JEnjxo1TaWnpwBSVYEPl/fXQQw9p3rx5kqTRo0drxYoVOuywwxJcFQAAABAZi4THQVZWloqKisKO7dmzp1fX6Dx+0qRJB1zXcJaZx8wyAAAAABgIf/7zn/Wd73xHpmkSlAEAAOCgQFgWJ1OmTAlr7969u1fndw7LOl8PsUtOs8uRwqRKAAAAAOhv999/PzPKAAAAcNAhLIuT4447Lqy9adOmmM91u9368ssvQ22r1UpYdgBYghEAAAAA+t+f/vQnff/735dEUAYAAICDC2FZnFx00UVh7Q8++CDmc9etWyev1xtqn3XWWcrMzOy32oabzHyWYAQAAACA/vT73/9et912m6TYg7Lvf//7Kikp0b333huPEgEAAICoCMvi5PTTT1dxcXGovXbtWnk8npjO7bzp9RVXXNGfpQ07hGUAAAAA0H/uu+8+/ehHP5LUuxll69ev16pVq/TFF18MdIkAAABAtwjL4sRisej6668Ptevq6vTyyy/HdO5TTz0Vep6VlaWrrrqq3+sbTliGEQAAAAD6xz333KOf/OQnklh6EQAAAAcvwrI4+tGPfqSCgoJQ+09/+lOP5/znP//Rxo0bQ+077rhDubm53Z5TXV2tRx55RA8++KD27NnT94KHKGaWAQAAAMCB+9WvfqU777xTkjRq1CiCMgAAABy0CMviKCMjQ7/5zW9C7XfeeUePP/541PFOp1Pz5s0LtSdMmBDaLDmaXbt2afLkybrxxht166236qijjtInn3xywLUPJcwsAwAAAIADc/fdd+vnP/95qL1nzx5NnDhRhmHE/LNq1aoEvgIAAACgHWFZnF1//fX61re+FWrfeOONeuSRRxQIBMLG7dy5U+ecc462bNkiKbj84tKlS5Wamtrt9R9++GGVl5eH2g0NDfrtb3/bj6/g4GYYUnouYRkAAMBQV1JSEvahfFlZWVj/9OnTw/pLS0vD+sePHx/qu+uuu6Keu2DBgtDxlStXhl2zo1WrVnV7v4EWS1DxjW98o8uYuXPnxrXOgwXvL2n+/PkDfg8AAAAgXmyJLmA4euSRR5SWlqaFCxfK7/frxhtv1B//+EedeeaZysrK0tatW/XKK6/I4/FICi5nsXz5ck2dOrXHa5um2eVY5yAumgULFnT5Ra2zsrKyLr+YSdKOHTs0fvz4mO6TSOk5ybJayYgBAAAAAAAAAEAQYVkCWCwW3X///brooos0f/58rVmzRps3b9bmzZvDxmVmZuqGG27Qz3/+c2VlZcV07ZtuukmPP/64KisrJUnp6em64447+v01HKwyC5hVBgAAMBysXLnygM7vy8yckpKSiF9eGwwGa129MXfu3EEz043319B4TwEAAABtCMsSaObMmZo5c6bKysq0du1a7dy5Ux6PRzk5OZo8ebJOPfVUJSUl9eqa48aN06ZNm7R06VJ5vV7Nnj1bo0ePjuncBQsWhC3zMRRl5qckugQAAAAAAAAAADCIEJYNAuPGjdO4ceP67Xr5+fm68cYb++16Q0lmHmEZAAAAAAAAAABox+ZNGFZYhhEAAAAAAAAAAHREWIYhbZRjg/JsO2RPMiQxswwAAAAAAAAAAIRjGUYMaWdmPq7J+VaZP9gkt7VAjmTe8gAAAAAAAAAAoB3JAYYFw56ilFRHossAAAAAAAAAAACDDMswYniwJSW6AgAAAAAAAAAAMAgRlmF4sBKWAQAAYHApKSmRYRj9+lNaWprol4VBgvcXAAAAEDvCMgx9FptkZcVRAAAAAAAAAADQFQkChj5bcqIrAAAAALpYuXJlokvAEMb7CwAAAIgdM8sw9LFfGQAAAAAAAAAAiIKwDEOfLSXRFQAAAAAAAAAAgEGKsAxDHzPLAAAAAAAAAABAFIRlGNL2eyaqxjdG7kavTNNMdDkAAAAAAAAAAGCQISzDkLai4bt6Zsv39Pjt76i+ojnR5QAAAAAAAAAAgEGGsAzDRmqmI9ElAAAAAAAAAACAQYawDMOC1W6RPdma6DIAAAAAAAAAAMAgQ1iGYSE10yHDMBJdBgAAAAAAAAAAGGQIyzAssAQjAAAAAAAAAACIhLAMwwJhGQAAAAAAAAAAiISwDMMCYRkAAAAAAAAAAIiEsAzDAmEZAAAAAAAAAACIhLAMwwJhGQAAAAAAAAAAiISwDMNCamZSoksAAAAAAAAAAACDEGEZhoUUZpYBAAAAAAAAAIAICMswLLAMIwAAAAAAAAAAiISwDMMCYRkAAAAAAAAAAIiEsAxDnt0ekD3JmugyAAAAAAAAAADAIERYhiEvNdVMdAkAAAAAAAAAAGCQIizDkJealugKAAAAAAAAAADAYEVYhiEvNY23OQAAAID4c7vdevTRR3XRRRdpzJgxSklJUUZGhiZOnKgzzzxT3//+91VYWCjDMCL+LFiwINEvAXG2evVqHXHEEbwHAAAA4owUAUNeagb7lQEAAAw3JSUlUQOISD82m00FBQU6/PDDdfLJJ+trX/ua/vznP+ujjz6Sz+dL9MsZlhYsWNCrf4eLFi1KdMlh1q1bp6OOOkrf/va39e9//1u7d++W2+2Wy+XStm3b9M477+j+++9XZWVloktFB4FAQNnZ2aH31S9+8YuI484888zQmPPOO++A79vY2Kjvfe97OvPMM7Vly5YDvh4AAAB6h7AMQ15Kui3RJQAAAGCQ8/v9qqqq0tatW/X+++/rmWee0bx583TCCSdo1KhRmj9/vsrLyxNdJg4Su3fv1nnnnacdO3ZIko455hj95z//UUNDg+rr67Vq1SqddNJJofFPPPGETNPUihUrElUyWn366aeqr68PtU8//fQuYzwejz744INQ+4wzzjige7711ls6+uijtXDhQpkme24DAAAkAmEZhrzUTEeiSwAAAECcrVy5UqZphn7GjRsX1r9ixYqw/ubmZu3atUvr16/XokWLdN1116moqEiSVFFRobvvvltjx47VHXfcIY/Hk4iX1K2VK1cOueX7FixYEPbv6Lrrrgvrnz9/flj/3LlzE1NoBD//+c9DM8bS09P12muv6dxzz1VGRoYyMzN15pln6t///reys7MTWyi6WL16dei5xWLRKaec0mXMRx99JLfbHWpPmzatT/dyOp266aabNHPmTO3YsUMpKSkaP358n64FAACAA0NYhiEvNSsp0SUAAABgkEtOTtbo0aM1depUXXfddVq0aJFKS0v14IMPatSoUZKCs0l+97vf6dRTT9XmzZsTXDEGq5aWFj377LOh9gUXXKARI0Z0GVdQUKCTTz45nqUhBh3DssmTJysrK6vbMXa7vU//Ht98801NnjxZf/3rX2Waps444wxt2LBBZ511Vt8KBwAAwAEhLMOQl5qVnOgSAAAAcBBKSkrSLbfcok8++UTTp08PHf/444916qmn6uOPP05gdRisPv7447BZR1OnTo069rnnntO+fft01VVXxaM0xODdd98NPY+0BGPnMV/5yleUkpLS6/v8+c9/1q5du5SWlqb7779fb7/9tiZOnNj7ggEAANAvCMswpFnkVWp2aqLLAAAAwEEsNzdXr732mi655JLQsdraWs2aNUt79uxJYGUYjPbt2xfWzs/Pjzo2KytLRUVFfQpb0P927typXbt2hdrRwrI1a9aEnh/IfmXTp0/Xp59+qnnz5skwjD5fBwAAAAeOsAxD2py825VekJHoMgAAAHCQs9lsWrRokQ455JDQsYqKCn39619PYFUYjJxOZ1jb4WAP5YPFO++8E9Y+7bTTuozZvHlzaD86qe/7lf30pz/Vm2++Gfb/FAAAACQOYRmGNMOQDDvf0gQAAMCBy87O1sMPPxx2bMWKFXr++ecTVBEGI9M0E10C+qjjXmRFRUU69NBDux1jGEbU2Wc9OfHEE5lNBgAAMIjYEl0AMKAcGZKVb3ICAACgf5x33nmaMmWKPvvss9Cxe+65R1dccUVM5/v9fn3++efauHGj9u/fL5fLpfT0dOXl5Wnq1KmaPHmyLJbEf6exqalJn376qT7//HNVV1fL7XYrOztbI0aM0Iknnqhx48YlusR+VVdXpzfffFPbt2+XJBUUFOikk07S5MmTE1xZ3zQ1Nendd9/Vzp07VVlZqeTkZBUUFGjKlCnd7qE23HXciyzSrLLOYyZNmqS8vLwBrwsAAAADj7AMQ9sNbwSnlwEAAAD95Oabb9Z3vvOdUPvjjz/Wxo0bowYrbrdb//rXv7RkyRK99dZbqq+vj3rt/Px8XX/99frhD3/Y44fwCxYs0F133RWx76677orad91112nRokVdjldUVOjpp5/W8uXLtWbNGnk8nqj3njRpkr773e/q29/+tmy2wflr5bHHHqsNGzZE7Js/f74WLFggt9utn/3sZ3rwwQfldrsjXmPhwoU9LrXX3Qyhb3zjG/rGN77R5fgTTzyhuXPndv8iemndunVasGCB/vOf/6ilpSXimOLiYn3zm9/Uj370I2VlZUW9Viyzns466yytXLkyYt+vfvUr/fznP5cUfD/+4he/iDhu0aJFEf/5tGn7d9UfSktLY172cNmyZT3+M/j888+jjmGGIQAAwMFlcP5WAwAAAACD1Jlnntnl2Msvvxw1LDv11FO1fv36UNtqtaqkpEQTJkxQfn6+qqur9eGHH+qjjz5SVVWV7r33Xv3jH//QkiVLos5u6W9VVVUaNWqUfD5f6FhWVpZKSko0btw4paSkaO/evXrnnXdUWlqqL774Qt/5znf05JNPaunSpSouLo5Lnf2psbFR5557rtasWRN1zPr16zVz5kwtX75c559/fhyr6x2/36/bb79dCxcuDIU0OTk5Ou+88zR27Fg1Nzfr008/1dtvv619+/bp17/+tf7yl7/oueee09lnnz0gNT333HNhz6OFZQAAAMBgQFgGAACAYcuze8+AXdteNEJGDDNuvPv3y/T5B6QGW0G+LElJPY7zVVYq0BJ9FlGsHKNHHfA1DgaTJ09Wdna26urqQsf++9//Rh3f3Nwcen7OOefo4Ycf1oQJE7qMW7dunb7xjW9ow4YN2rt3ry688EKtXbtWkyZNinjdBQsWhGbcrFy5UtOnTw/19XY2js/nCwvKfvCDH2j+/PldZh6ZpqmlS5fqpptuUnV1tdauXauvfvWreuedd5Samhrz/eLhvvvuU21trSRp06ZN+uUvfxnWf8MNN2jNmjWaNGmSrrjiCh166KHy+Xxav369nnzySTU0NEiSPB6PvvnNb2rr1q1KS0uLeK+Os4g6z5QaiBlkHfn9fs2ePVv//ve/Q8fuuOMO3X333Urq9N//li1bdO211+qDDz5QdXW1Zs2apX/84x+6+uqru1y37TX9+c9/1rx580LH77///rB2JJs2bQpbqrStPWXKlC5j586dG/rn89hjj+mGG27QiBEjtGfPHlmt1p7/AQAAAAD9gLDs/2/vzuOqLPP/j7/ZkQTEfUlxyw0TNS213HJr1NTMbaYFc6mmprJFZ2wZsG+2T6aNk22jWTMpWmlZaZpIomluuOVaioYrKYIKst2/P/pxDzecA+fAgQOe1/Px4PE413U+131/QM7tdc6H67oBAADgsX7u37/cjt1izRqHikdJf7pL2SdOlEsOTT78UNfcdGOJcclPPKnLW7aU+Xxt9+8r8zGqAi8vL1133XXaUuBndvDgwRLHRUZG6vPPP7dbcOnUqZPi4uLUtWtX/fzzz0pNTdXDDz+s7777zmW5O2LixIl64403bD7n5eWlUaNGqVmzZurevbuys7O1fft2/eMf/zC33KssBg0aZD5et26dpVgWFxen77//Xn/96181c+bMIkWZv/3tb7r55pt1/PhxSdLJkye1dOlSRUVFVUzyTpg+fbqlUPbMM8/ohRdesBnbqlUrrV69Wt27d9e+ffuUnZ2tCRMmqG3btnbvZTZq1ChNmTJFeXl5kqTY2NgSi2WLFi0q0rd48WKbxbLCMfnnLI9CWdOmTe1uj9i2bVvt379fknTXXXfp448/LhJzzz33mP2dO3fWtm3bXJ4jAAAA3MP9d44GAAAAgComLCzM0k5OLnmV4pQpU+wWygoet2DRae3atZYtHCvCM888U2LMDTfcoLvuustsv/nmm8rNLZ8VkuXh+++/16hRo/Tyyy/bLMo0bty4yMq8r7/+uoKyc9y2bdv0+uuvm+1mzZqVuN1haGioZs+ebbYzMjKKvWdYgwYNdMstt5jtjRs36tdffy32HAW3YMwXGxtb7JgzZ84oLi5OkjR27NhiY10tJSVFBw4cMNu2tlqVpISEBPNxSfexAwAAQNVCsQwAAAAAnFS4WHbp0iW7sU8//bRmzZqlO+64w6FjDxgwwNL+9ttvnU/QSSEhIZo1a5bef/99NWvWzKExBfM8d+5clVtl8/zzzxf7/LBhwyztnTt3lmc6pfLSSy9ZVko9+OCD8vf3L3HcgAED1Lp1a7O9Y8eOYouBY8aMMR8bhqGlS5fajd2xY4cOHjwoPz8/de7c2ew/ePBgsYXfpUuXKjc3V40aNbIU5ypCQkKC5edoq1h24sQJHT161GxXdI4AAAAoXxTLAAAAAMBJ9rZys+Xee+/VlClTitz/y5569epZ2rt373Yqt9IICgrSlClTNHHiRIfHuCNPV2nbtq3atm1bbEzt2rUt3+Pp06fLOy2npKena/ny5Za+IUOGODx+6NChlvbChQvtxo4aNUre3v/7+KC4VWL5WzD2799fkydPtjxna8VZ4edGjx4tLy8v+4mXg4IrxurWrWvzPoHr16+3tCmWAQAAXF0olgEAAACAk86fP29pV69e3WXHLrwt4G+//eayY7tSVcnTlk6dOjkU17BhQ/Nxenp6eaVTKuvXr1dOTo7ZDggIsFnksafwPcrWrVtnN7ZevXqW1VabNm0y7+dWWH4hbcyYMbrzzjstvyf2imwnTpwwC1YVvQWjZC2EObIFY8uWLVW/fv1yzwsAAAAVh2IZAAAAADipcLGsUaNGJY45deqU5syZo1GjRqlNmzaqWbOm/Pz85OXlVeSroMuXL7s095Ls3btX0dHRuu222xQeHq6QkBB5e3sXybFv375uzbMsGjRo4FBcUFCQ+biy3ZOt8LaQ4eHhNu+/Zk+LFi0s7dOnT+vUqVN24wtvxbhkyZIiMZs2bdLRo0fl7++vESNGqE6dOpbfk19++UVbt24tMi42NlZ5eXkKDw9Xt27dHP4eXOHy5cvasWOH2eZ+ZQAAAJ7J190JAAAAAO7SYs2acju2X/16JQdJCv/vf2TklM+H8L51ajsU1+iNfyjvSla55HA1ysvL04EDByx9Be//VNilS5f03HPP6Z///Keys7PLO71SO3LkiB599FGtWLHC3amUu2uuucahOF/fyvuWOSUlxdIOCQlxaryt+JSUFLsrpu6880498sgjZtEwNjZWTzzxhCUmfyvFQYMGqUaNGpJ+Xym2psC1dvHixerSpYvNce5YVbZp0ybL69JWsSw9Pd2yzShbMAIAAFx9Ku/MHwAAAChn/teWvBqovPlVgq28fOvUcXcKVcquXbuKbMlnbzVMamqqBg0apB9//NHs69Chgx577DH16tVLDRs2tKxeylfR92zauXOnBgwYoLNnz5p9Q4cO1eTJk9WlSxfVrl1b/v7+ljHr1q0rsrqsqqjon295SEtLs7SrVavm1Hhb8RcuXLAbX7duXfXu3Vtr166VJG3evFlJSUkKDw+XZF1tVrDoNXLkSD300ENmQSo2Nlavvvqq+W+QlJSkTZs2FRnnSjExMZoxY4ZDsR07diwxZuLEiTbv7xcVFaUFCxY4mR0AAAAqA7ZhBAAAAAAnxMXFFekbOnSozdjHHnvMUii74447tHXrVk2YMEEtW7a0WSiraFeuXNHYsWMthbLXX39dX375pYYNG6aGDRsWKZTB/QqvDMvIyHBqvK1tM0NDQ4sdU7iYVXArxvXr1ys5OVmBgYEaNmyY2V+zZk3169fPbB87dkybN2822/mrylq2bKnOnTs79T0AAAAArkKxDAAAAAAcZBiG5s2bZ+m76aab1KZNmyKxycnJ+uijj8x2QECA3nnnHfn5+ZV7ns749NNPLdtKdu7cWU8++aQbM4Ijate2brNaeKVZSQqvjrR1zMJGjhxp2ZoyNjbWfJxf9Bo8eLCCg4Mt4woX2fJjJWnRokU2YwAAAICKRLEMAAAAABy0fPlyHTx40NI3ffp0m7Fr1qyRYRhmu1u3bqpTCbe8XL16taV9++23uykTOCMyMtLSPnr0qHk/MUccPnzY0q5Xr57d+5Xlq127tmXrzS1btpjnXbp0qSTbRa8RI0ZYVicuWbJEhmHo0KFD2rFjh91xrhITEyPDMIp8LV++3BK3a9euIjGnTp2yxCxcuNDmsQzDYAtGAACAKoxiGQAAAAA4ICUlRX/5y18sfYMGDdLw4cNtxp88edLSbtTIsXvkOVPwcIWqkiesevbsaVnllZWVpX379jk8fufOnZZ2nz59HBo3ZswYSzs2NlZxcXE6c+aMgoKCbG5JWqNGDQ0cONBsJycnKyEhwVxh1rZtW11//fUO5+4q+fdfk36/J1v79u2LxKxZs8bSvvXWW8s9LwAAAFQ8imUAAAAAUIIrV67o7rvvVnJystnXoEGDYleSBAYGWtqXLl1y6FyFi1eO8PHxsbQLrmgr2Hfx4kVdvHhRmZmZbskTrhMcHFykULtixQqHx3/55ZeW9j333OPQOFtbMeZvpTh06FC79+ErvHKs4Lhx48Y5nLcrFSyW9evXT15eXkViChbL2rRp43AxGQAAAFULxTIAAAAAKMbZs2d16623atWqVWZfrVq1tHLlymK3rSt8H7NNmzY5tBrrm2++cTrHwveIKlgMy3fw4EEFBwcrODhYf/rTn+zmmZCQ4NA5S5MnXOvpp5+2FHjmzZunrKysEsetXLlShw4dMtsdO3bUkCFDHDpnzZo11a9fP7O9bds2h+47Nnz4cEthdsGCBdq7d6+koqvVKkJKSor27Nljtgt+TwV99913JcYAAACg6qNYBgAAAAA2ZGZmavbs2erQoYM2btxo9t94443avHmzOnToUOz4vn37qmbNmmb79OnTmjt3brFjzp07p5kzZzqda7NmzSxFk4Ir4PIdOHDAfNyuXTvz8Z133mmJW7ZsmbZv317s+X788UdzCz24T+fOnTV16lSznZSUpOjo6GLHXLhwQY8//rjZDgwM1Pz58506b+Hi1qVLlxQcHKzBgwfbHRMcHKzbbrvNbF+8eFHS7/deK1ywrQhr1661rMDs379/kZgDBw7o+PHjZptiGQAAwNWLYhkAAAAAj5eZmank5GTt3LlTH374oaKiohQeHq4pU6bo1KlTkqSAgABNnz5dCQkJatGiRYnHDAgI0AsvvGDpe/LJJ/XWW2/ZXGG2f/9+9evXz2ahqyShoaHq1KmT2Y6Li1N6errZvnLliubMmWO2C27f17VrV0vxIzc3V4MHDy5yr6Z8X331lQYPHmxzyzpUvBdffNFyn7CXX35Z06ZNs7u6sH///tq/f78kydfXV++//746duzo1DnvuOMO+fn5WfqGDRtWZEvPwmytICtuNVp5KrgFY4sWLRQeHl4kpuBrwNvb2+H7ugEAAKDq8TJsbWYPVFF79+613JR5z549ioiIcGNGAADA1XJycizbh0nSddddZ7mHDtCnTx/Fx8e75Fj16tXTgw8+qIceekh169Z1evy0adP02muvWfoaN26sfv36qWHDhsrIyFBiYqLi4+MVGBioJUuWFLsl3pEjR9S0adMi/UuWLLEUI5o1a2YWtdasWWMWSEaPHq3Y2FjL2EuXLmno0KFat26dpb9jx47q0aOHwsLCdO7cOSUkJGj37t1q0aKFpk+frkmTJtnMMTw8XEePHi3mp1KymJgYzZgxw+H4+fPna/z48WZ7/Pjx+vDDD0sc17t3b8v37WgRsOD5nC0cFvw3bNq0qZKSkhwaZ+/te25urp588knNmTPHjAkLC9Ntt92mJk2aKCMjQ7t371Z8fLzy8vIk/b6d4ieffKKBAwc6lXu+wYMHW7bi/OKLL3T77bcXO+bixYuqW7euMjIyzL7Dhw87VHx2tVatWpn/lzzwwAOaN29ekZg77rhDy5YtkyR16dJFW7ZscWkOzvzbF1T4d7as+H8VAADPwefn9jHzAQAAAODxfHx8FBoaqrCwMIWFhally5bq0aOHbr75ZkVGRsrHx6fUx3711VfVu3dvxcTEaOvWrZKk48ePa8GCBWaMn5+fxowZo5kzZ6p58+alOs/o0aM1d+5cPfPMM0pNTdWRI0cs2z76+vpqwoQJmjVrVpGx11xzjdasWaO33npLb7zxhrn1XGJiohITE824kJAQPf300/rrX/9a4laNqDg+Pj568803FRUVpZiYGK1atUrnz5/XJ598UiS2Xr16mjBhgqZNm6YaNWqU+pxjx441i2WhoaEaNGhQiWOqV6+uIUOGaOnSpZJ+L0C5o1CWnJxsKQ7Z2l4xLy/PUpC69dZbKyI1AAAAuAkry3BVoTIOAMDVj7+AR1X2yy+/aPPmzTp58qQyMzMVFham8PBw9ezZU8HBwS45x+XLl7Vhwwbt379faWlpCggIUHh4uHr16qV69eqVOD43N1e7du3Sjh07lJKSIsMwVKtWLbVp00bdunXjtVYFXL58WQkJCTp27JhSUlIUEBCgOnXqqH379oqMjGQLTVjw/yoAAJ6Dz8/tY+YDAAAAABWkefPmpV455qigoCANGDBAAwYMKNV4Hx8fderUyXIPNFQtQUFBpd5eEQAAAPBE3u5OAAAAAAAAAAAAAHAXimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI9FsQwAAAAAAAAAAAAei2IZAAAAAAAAAAAAPBbFMgAAAAAAAAAAAHgsimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI9FsQwAAAAAAAAAAAAei2IZAAAAAAAAAAAAPBbFMgAAAAAAAAAAAHgsimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI9FsQwAAAAAAAAAAAAei2IZAAAAAAAAAAAAPBbFMgAAAAAAAAAAAHgsimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBj+bo7AQAAAAAArkaZmZn66KOP9MUXXygxMVEpKSny9fVV/fr11aBBA3Xu3Fn//e9/dfbsWZvjo6OjFRMTU7FJo8JduHBB27Zt05EjR3Tu3Dnl5uYqLCxMDRs21I033qh69eq5O0UAAICrHsUyAAAAAFedPn36KD4+3uF4Hx8fhYWFmV8tWrRQ9+7d1aNHD0VGRsrXl7dOFS0mJkYzZsxwOH7+/PkaP358+SXkpB07dujOO+/UkSNHijx3+PBhHT58WOvXr3dDZihOXl6eatasqQsXLkiSnnvuOT3//PNF4nr16mX++w0cOFCrVq1y6jw///yzFi1apKVLl2rnzp0yDMNu7PXXX68HH3xQEyZMUGBgoFPnAQAAgGPYhhEAAACAx8vNzVVKSooOHTqkH3/8UZ988okeffRRdenSRY0aNVJ0dLROnz7t7jRRRfz6668aNGiQWSjr0KGDVq1apbS0NF24cEHx8fG68cYbzfj58+fLMAzFxcW5K2X8f7t37zYLZZJ08803F4nJysrSli1bzPYtt9zi8PHzi6itWrXSs88+q8TERBmGoZYtW+ree+/VtGnT9NRTT2n06NGqVauWmdPDDz+sTp06aevWrWX47gAAAGAPxTIAAAAAV51169bJMAzzKzw83PJ8XFyc5fmMjAwdP35ciYmJWrBggaKiolS/fn1J0pkzZ/T888+rSZMmmjZtmrKystzxLRVr3bp18vLyMr+uhq37YmJiLP9GUVFRluejo6Mtz1emVWXPPfecubVi9erV9e2332rgwIEKDg5WSEiIevXqpRUrVqhGjRruTRRFJCQkmI+9vb3VrVu3IjHbtm1TZmam2e7Zs6fDx3/llVf02WefKS8vT5IUHh6ulStX6tChQ/rwww/1yiuv6LXXXlNsbKx+/fVXPf/88/L2/v2jm/3796tv37764YcfSvvtAQAAwA6KZQAAAAA8XmBgoK699lpFRkYqKipKCxYs0NGjRzV37lw1atRI0u+rSV577TV1795dBw4ccHPGqKyuXLmiRYsWme3BgwfbvOdUnTp1dNNNN1VkanBAwWJZRESEQkNDi43x8/Mr9b9jgwYNlJCQoEGDBtl8PjAwUM8995zmzZtn9l28eFEjRoywrH4DAABA2VEsAwAAAAAbAgIC9NBDD2nXrl3q27ev2b99+3Z1795d27dvd2N2qKy2b99uWXUUGRlpN3bx4sU6efKkxo4dWxGpwQEbNmwwH9vagrFwzA033KBq1aqV6lwvvfSSrr322hLjJk+erN69e5vtM2fO6OWXXy7VOQEAAGAbxTIAAAAAKEbNmjX17bffavjw4Wbf+fPn9Yc//EHJycluzAyV0cmTJy3t2rVr240NDQ1V/fr1S11sgWsdO3ZMx48fN9v2imUbN240Hztzv7KCqlev7lSR9P7777e0C65eBAAAQNlRLAMAAACAEvj6+mrBggVq1qyZ2XfmzBndc889bswKlVF6erql7e/v76ZM4Kz169db2j169CgSc+DAAfN+dJJz9ysrqEuXLgoMDHQ4vnv37pb20aNHKdYDAAC4EMUyAAAAAHBAjRo19Pbbb1v64uLitHTpUjdlhMrIMAx3p4BSKngvsvr166t58+bFxnh5edldfWbP3//+d8XFxelf//qXU+MaNGhQpO/UqVNOHQMAAAD2+bo7AQAAAACoKgYNGqT27dtrz549Zt9LL72kUaNGOTQ+NzdX+/bt0969e3Xq1CldvHhR1atXV61atRQZGamIiAh5e7v/bxovX76s3bt3a9++ffrtt9+UmZmpGjVqqF69euratavCw8PdnaJLpaam6rvvvtPPP/8sSapTp45uvPFGRUREuDmz0rl8+bI2bNigY8eO6ezZswoMDFSdOnXUvn37Yu+h5ukK3ovM1qqywjFt2rRRrVq1nDpHu3bt1K5du9IlWEheXp5LjgMAAACKZQAAAADglD//+c96+OGHzfb27du1d+9eu4WVzMxMff7551qyZInWrl2rCxcu2D127dq1NWnSJD311FMlfggfExOjGTNm2HxuxowZdp+LiorSggULivSfOXNG//3vf7V8+XJt3LhRWVlZds/dpk0bPfLII7r//vvl61s531Z27NhRO3futPlcdHS0YmJilJmZqWeffVZz585VZmamzWPMmTOnxK32vLy87D5333336b777ivSP3/+fI0fP774b8JJO3bsUExMjFatWqUrV67YjGnQoIEmTJigqVOnKjQ01O6xivue8vXu3Vvr1q2z+dwLL7yg5557TtLvv49///vfbcYtWLDA5s8nX/6/lSscPXrUspVqcT777LMSfwb79u2zG+PqFYYFt36Ufv/3adGihUvPAQAA4Mkq57saAAAAAKikevXqVaTvq6++slss6969uxITE822j4+P+vTpoxYtWqh27dr67bfftHXrVm3btk0pKSl6+eWXtXDhQi1ZssTu6hZXS0lJUaNGjZSTk2P2hYaGqk+fPgoPD1e1atV04sQJrV+/XkePHtX+/fv18MMP6+OPP9ann35qc4u4yu7SpUsaOHCgNm7caDcmMTFR/fv31/Lly3XbbbdVYHbOyc3N1ZNPPqk5c+aYRZqwsDANGjRITZo0UUZGhnbv3q3vv/9eJ0+e1MyZMzVv3jwtXrxY/fr1K5ecFi9ebHlsr1gGx+zatcvS7tq1q2rWrOmmbAAAAK4+FMsAAADgsdJSMsrt2NXDAuTtU/J2ehfPZyovt3zucRQU6i9fP58S4y5duKLc7LJv5xVSu1qZj1EVREREqEaNGkpNTTX7Nm3aZDc+I+N/v2cDBgzQ22+/bXNFyI4dO3Tfffdp586dOnHihIYMGaIffvhBbdq0sXncmJgYc8XNunXr1LdvX/M5Z1fj5OTkWApljz/+uKKjo4usPDIMQ59++qkefPBB/fbbb/rhhx80dOhQrV+/XkFBQQ6fryK88sorOn/+vCTpp59+0v/93/9Znp88ebI2btyoNm3aaNSoUWrevLlycnKUmJiojz/+WGlpaZKkrKwsTZgwQYcOHdI111xj81wFVxEVXilVHivICsrNzdWIESO0YsUKs2/atGl6/vnnFRAQYIk9ePCg7r77bm3ZskW//fab/vCHP2jhwoUaN25ckePmf09vvfWWHn30UbN/9uzZlrYtP/30k2Wr0vx2+/bti8SOHz/e/Pm8//77mjx5surVq6fk5GT5+JR8/fIUK1eutLQnTZrkpkwAAACuThTLAAAA4LE+evaHcjv2PS90d6h49Nlr25V+ruj2b64w4vFOatQ6rMS4b9/fqxOHUst8vofn3VrmY1QFXl5euu6667Rlyxaz7+DBgyWOi4yM1Oeff2634NKpUyfFxcWpa9eu+vnnn5WamqqHH35Y3333nctyd8TEiRP1xhtv2HzOy8tLo0aNUrNmzdS9e3dlZ2dr+/bt+sc//mFuuVdZDBo0yHy8bt06S7EsLi5O33//vf76179q5syZRYoyf/vb33TzzTfr+PHjkqSTJ09q6dKlioqKqpjknTB9+nRLoeyZZ57RCy+8YDO2VatWWr16tbp37659+/YpOztbEyZMUNu2be3ey2zUqFGaMmWKeX+s2NjYEotlixYtKtK3ePFim8WywjH55yyPQlnTpk3tbo/Ytm1b7d+/X5J011136eOPPy4Sc88995j9nTt31rZt21yeoy2ZmZmWlXrh4eGV8ncRAACgKnP/naMBAAAAoIoJC7MWIZOTk0scM2XKFLuFsoLHLVh0Wrt2rWULx4rwzDPPlBhzww036K677jLbb775pnJzc8szLZf6/vvvNWrUKL388ss2izKNGzcusjLv66+/rqDsHLdt2za9/vrrZrtZs2YlbncYGhqq2bNnm+2MjIxi7xnWoEED3XLLLWZ748aN+vXXX4s9R8HCTr7Y2Nhix5w5c0ZxcXGSpLFjxxYb62opKSk6cOCA2ba11aokJSQkmI9Luo+dK7333nuWe5bNmTNH/v7+FXZ+AAAAT0CxDAAAAACcVLhYdunSJbuxTz/9tGbNmqU77rjDoWMPGDDA0v7222+dT9BJISEhmjVrlt5//301a9bMoTEF8zx37lyFrbJxleeff77Y54cNG2Zp79y5szzTKZWXXnrJslLqwQcfdKiIMmDAALVu3dps79ixo9hi4JgxY8zHhmFo6dKldmN37NihgwcPys/PT507dzb7Dx48WGzhd+nSpcrNzVWjRo0sxbmKkJCQYPk52iqWnThxQkePHjXbFZXjmTNnFB0dbbajoqKK/G4CAACg7CiWAQAAAICT7G3lZsu9996rKVOmFLn/lz316tWztHfv3u1UbqURFBSkKVOmaOLEiQ6PcUeertK2bVu1bdu22JjatWtbvsfTp0+Xd1pOSU9P1/Llyy19Q4YMcXj80KFDLe2FCxfajR01apS8vf/38UFxq8Tyt2Ds37+/Jk+ebHnO1oqzws+NHj1aXl5e9hMvBwVXjNWtW9fmfQLXr19vaVdUsWzChAnmvffat2+vuXPnVsh5AQAAPA3FMgAAAABwUv6H1/mqV6/usmMX3hbwt99+c9mxXamq5GlLp06dHIpr2LCh+Tg9Pb280imV9evXKycnx2wHBATYLPLYU/geZevWrbMbW69ePctqq02bNpn3cyssv5A2ZswY3XnnnZbfE3tFthMnTpgFq4reglGyFsIc2YKxZcuWql+/frnn9fzzz+urr76S9Pu/wYoVK0rcyhUAAAClQ7EMAAAAAJxUuFjWqFGjEsecOnVKc+bM0ahRo9SmTRvVrFlTfn5+8vLyKvJV0OXLl12ae0n27t2r6Oho3XbbbQoPD1dISIi8vb2L5Ni3b1+35lkWDRo0cCguKCjIfFzZ7slWeFvI8PBwm/dfs6dFixaW9unTp3Xq1Cm78YW3YlyyZEmRmE2bNuno0aPy9/fXiBEjVKdOHcvvyS+//KKtW7cWGRcbG6u8vDyFh4erW7duDn8PrnD58mXt2LHDbFeW+5V9/PHH5n3zQkND9fXXXys8PLzczwsAAOCpfN2dAAAAAOAu97zQvdyOXT0swKG4kVM7Ky/X8S39nBEUWvK9iyRp4KQI5WbnlUsOV6O8vDwdOHDA0lfw/k+FXbp0Sc8995z++c9/Kjs7u7zTK7UjR47o0Ucf1YoVK9ydSrlzdHWOr2/lfcuckpJiaYeEhDg13lZ8SkqK3RVTd955px555BGzaBgbG6snnnjCEpO/leKgQYNUo0YNSb+vFFuzZo0lpkuXLjbHuWNV2aZNmyyvS1vFsvT0dMs2o+W9BeOyZct03333yTAMBQcH65tvvrHc/w0AAACuV3ln/gAAAEA5C6ldzd0pqHpYoLtT0DWhjhX28Ltdu3YV2ZLP3mqY1NRUDRo0SD/++KPZ16FDBz322GPq1auXGjZsaFm9lK+i79m0c+dODRgwQGfPnjX7hg4dqsmTJ6tLly6qXbu2/P2txdd169YVWV1WVVT0z7c8pKWlWdrVqjl3PbMVf+HCBbvxdevWVe/evbV27VpJ0ubNm5WUlGSudiq42qxg0WvkyJF66KGHzIJUbGysXn31VfPfICkpSZs2bSoyzpViYmI0Y8YMh2I7duxYYszEiRNt3t8vKipKCxYscDI7q+XLl2vs2LHKyclRaGioVq1apZtuuqlMxwQAAEDJ2IYRAAAAAJwQFxdXpG/o0KE2Yx977DFLoeyOO+7Q1q1bNWHCBLVs2dJmoayiXblyRWPHjrUUyl5//XV9+eWXGjZsmBo2bFikUAb3K7wyLCMjw6nxtrbNDA0NLXZM4WJWwa0Y169fr+TkZAUGBmrYsGFmf82aNdWvXz+zfezYMW3evNls568qa9mypcevnvr88881evRoZWVlUSgDAACoYBTLAAAAAMBBhmFo3rx5lr6bbrpJbdq0KRKbnJysjz76yGwHBATonXfekZ+fX7nn6YxPP/3Usq1k586d9eSTT7oxIziidu3alnbhlWYlKbw60tYxCxs5cqRla8rY2FjzcX7Ra/DgwQoODraMK1xky4+VpEWLFtmM8TRLly7VmDFjlJ2dTaEMAADADSiWAQAAAICDli9froMHD1r6pk+fbjN2zZo1Moz/3Y+uW7duqlOnTrnmVxqrV6+2tG+//XY3ZQJnREZGWtpHjx417yfmiMOHD1va9erVs3u/sny1a9e2bL25ZcsW87xLly6VZLvoNWLECMvqxCVLlsgwDB06dEg7duywO85VYmJiZBhGka/ly5db4nbt2lUk5tSpU5aYhQsX2jyWYRil3oJxyZIl+uMf/8jWiwAAAG5EsQwAAAAAHJCSkqK//OUvlr5BgwZp+PDhNuNPnjxpaTdq1Mih8zhT8HCFqpInrHr27GlZ5ZWVlaV9+/Y5PH7nzp2Wdp8+fRwaN2bMGEs7NjZWcXFxOnPmjIKCgmxuSVqjRg0NHDjQbCcnJyshIcFcYda2bVtdf/31DufuKvn3X5N+vydb+/bti8SsWbPG0r711ltdmsOiRYucLpS9/PLL6tOnj6ZMmeLSXAAAADwZxTIAAAAAKMGVK1d09913Kzk52exr0KBBsStJAgMDLe1Lly45dK7CxStH+Pj4WNoFV7QV7Lt48aIuXryozMxMt+QJ1wkODi5SqF2xYoXD47/88ktL+5577nFonK2tGPO3Uhw6dKjd+/AVXjlWcNy4ceMcztuVChbL+vXrJy8vryIxBYtlbdq0cbiY7Ij//ve/uvvuu5Wbm+vUirL9+/crPj5eiYmJLssFAADA01EsAwAAAIBinD17VrfeeqtWrVpl9tWqVUsrV64sdtu6wvcx27Rpk0Orsb755huncyx8j6iCxbB8Bw8eVHBwsIKDg/WnP/3Jbp4JCQkOnbM0ecK1nn76aUuBZ968ecrKyipx3MqVK3Xo0CGz3bFjRw0ZMsShc9asWVP9+vUz29u2bXPovmPDhw+3FGYXLFigvXv3Siq6Wq0ipKSkaM+ePWa74PdU0HfffVdiTGl8/PHHuvfee50ulAEAAKB8UCwDAAAAABsyMzM1e/ZsdejQQRs3bjT7b7zxRm3evFkdOnQodnzfvn1Vs2ZNs3369GnNnTu32DHnzp3TzJkznc61WbNmlqJJwRVw+Q4cOGA+bteunfn4zjvvtMQtW7ZM27dvL/Z8P/74o7mFHtync+fOmjp1qtlOSkpSdHR0sWMuXLigxx9/3GwHBgZq/vz5Tp23cHHr0qVLCg4O1uDBg+2OCQ4O1m233Wa2L168KOn3e68VLthWhLVr11pWYPbv379IzIEDB3T8+HGz7api2cKFCxUVFaXc3FyFhIRQKAMAAKgEKJYBAAAA8HiZmZlKTk7Wzp079eGHHyoqKkrh4eGaMmWKTp06JUkKCAjQ9OnTlZCQoBYtWpR4zICAAL3wwguWvieffFJvvfWWzRVm+/fvV79+/WwWukoSGhqqTp06me24uDilp6eb7StXrmjOnDlmu+D2fV27drUUP3JzczV48OAi92rK99VXX2nw4ME2t6xDxXvxxRct9wl7+eWXNW3aNLurC/v376/9+/dLknx9ffX++++rY8eOTp3zjjvukJ+fn6Vv2LBhRbb0LMzWCrLiVqOVp4JbMLZo0ULh4eFFYgq+Bry9vR2+r1txFixYoPvuu095eXmSpLS0NHXr1k1eXl4Of3344YdlzgMAAABWXoatzeyBKmrv3r2WmzLv2bNHERERbswIAAC4Wk5OjmX7MEm67rrrLPfQAfr06aP4+HiXHKtevXp68MEH9dBDD6lu3bpOj582bZpee+01S1/jxo3Vr18/NWzYUBkZGUpMTFR8fLwCAwO1ZMmSYrfEO3LkiJo2bVqkf8mSJZZiRLNmzcyi1po1a8wCyejRoxUbG2sZe+nSJQ0dOlTr1q2z9Hfs2FE9evRQWFiYzp07p4SEBO3evVstWrTQ9OnTNWnSJJs5hoeH6+jRo8X8VEoWExOjGTNmOBw/f/58jR8/3myPHz/eoaJC7969Ld+3o0XAgudztnBY8N+wadOmSkpKcmicvbfvubm5evLJJzVnzhwzJiwsTLfddpuaNGmijIwM7d69W/Hx8WaRpmbNmvrkk080cOBAp3LPN3jwYMtWnF988YVuv/32YsdcvHhRdevWVUZGhtl3+PBhh4rPrtaqVSvz/5IHHnhA8+bNKxJzxx13aNmyZZKkLl26aMuWLWU+rzP/3iUp/LtbWvy/CgCA5+Dzc/uY+QAAAADweD4+PgoNDVVYWJjCwsLUsmVL9ejRQzfffLMiIyPl4+NT6mO/+uqr6t27t2JiYrR161ZJ0vHjx7VgwQIzxs/PT2PGjNHMmTPVvHnzUp1n9OjRmjt3rp555hmlpqbqyJEjlm0ffX19NWHCBM2aNavI2GuuuUZr1qzRW2+9pTfeeMPcei4xMVGJiYlmXEhIiJ5++mn99a9/LXGrRlQcHx8fvfnmm4qKilJMTIxWrVql8+fP65NPPikSW69ePU2YMEHTpk1TjRo1Sn3OsWPHmsWy0NBQDRo0qMQx1atX15AhQ7R06VJJvxeg3FEoS05OthSHbG2vmJeXZylE3XrrrRWRGgAAANyElWW4qlAZBwDg6sdfwKMq++WXX7R582adPHlSmZmZCgsLU3h4uHr27Kng4GCXnOPy5cvasGGD9u/fr7S0NAUEBCg8PFy9evVSvXr1Shyfm5urXbt2aceOHUpJSZFhGKpVq5batGmjbt268VqrAi5fvqyEhAQdO3ZMKSkpCggIUJ06ddS+fXtFRkayhSYs+H8VAADPwefn9jHzAQAAAIAK0rx581KvHHNUUFCQBgwYoAEDBpRqvI+Pjzp16mS5BxqqlqCgoFJvrwgAAAB4Im93JwAAAAAAAAAAAAC4C8UyAAAAAAAAAAAAeCyKZQAAAAAAAAAAAPBYFMsAAAAAAAAAAADgsSiWAQAAAAAAAAAAwGNRLAMAAAAAAAAAAIDHolgGAAAAAAAAAAAAj0WxDAAAAAAAAAAAAB6LYhkAAAAAAAAAAAA8FsUyAAAAAAAAAAAAeCyKZQAAAAAAAAAAAPBYFMsAAAAAAAAAAADgsSiWAQAAAAAAAAAAwGNRLAMAAAAAAAAAAIDHolgGAAAAAAAAAAAAj0WxDAAAAFWKl5dXkT7DMNyQCQAAVV9eXl6RPlv/1wIAAFzNKJYBAACgSvH2LjqFzc7OdkMmAABUfTk5OUX6bP1fCwAAcDVj9gMAAIAqxcvLS/7+/pa+ixcvuikbAACqtsL/h/r7+7OyDAAAeByKZQAAAKhygoODLe20tDS2YgQAwEmGYSgtLc3SV/j/WAAAAE9AsQwAAABVTuEP8rKzs5WcnEzBDAAABxmGoeTk5CJbGYeEhLgpIwAAAPfxdXcCAAAAgLMCAwPl5+dn+YAvPT1dP//8s0JCQlS9enX5+vpyzxUAAArIy8tTTk6OLl68qLS0tCKFMj8/PwUEBLgpOwAAAPehWAYAAIAqx8vLSw0bNtSxY8csq8mys7P122+/6bfffnNjdgAAVD35/7dyvzIAAOCJ+FNbAAAAVElBQUFq0qQJH+oBAFBGXl5eatKkiYKCgtydCgAAgFtQLAMAAECVlV8w8/Pzc3cqAABUSX5+fhTKAACAx2MbRgAAAFRpQUFBatGiha5cuaK0tDSlp6crKyvL3WkBAFBp+fv7Kzg4WCEhIQoICGCVNgAA8HgUywAAAFDleXl5KTAwUIGBgapbt64Mw1BeXp7lfmYAAHg6Ly8veXt7UxwDAAAohGIZAAAArjpeXl7y8fFxdxoAAAAAAKAK4J5lAAAAAAAAAAAA8FisLKsEjh07pk2bNikpKUlZWVmqWbOmIiIi1K1bN/n7+7str7y8PG3ZskW7du3S2bNn5ePjo0aNGqlr165q3bq12/ICAAAAAAAAAABwFYplbrR27VpFR0crISHB5vOhoaG6//779eyzzyokJKTC8srKytKsWbM0e/ZsnTx50mbM9ddfr2effVZjxoypsLwAAAAAAAAAAABcjWKZG+Tl5empp57SrFmzzL7WrVvrlltuUVhYmA4ePKhvvvlGFy5c0GuvvaZFixZp+fLl6tSpU7nnlpSUpOHDh2vnzp2SJG9vb/Xv318RERHKyMjQ5s2btWPHDu3evVtjx47V0qVL9eGHH6patWrlnhsAAAAAAAAAAICrUSxzgz//+c969913JUk+Pj6aO3euJk+eLG/v/91C7tixYxozZow2b96s48eP69Zbb9X333+v66+/vtzyOnnypPr06aOjR49Kkq677jp9/vnnioiIsMR9/vnnuvvuu3X58mUtWbJEaWlpWrFihXx9+XUCAAAAAAAAAABVi3fJIXCl+fPnm4UySZo3b54eeOABS6FMkpo0aaJvv/1WrVq1kiSlpqZq5MiRysjIKLfc/vjHP5qFsjp16ig+Pr5IoUyS7rjjDn366adme9WqVYqJiSm3vAAAAAAAAAAAAMoLxbIKdPHiRf3tb38z27fccosmTZpkNz4kJERz5swx24cPH9bs2bPLJbfY2FjFx8eb7ZdeekkNGjSwG3/bbbdp3LhxZvv1119XUlJSueQGAAAAAAAAAABQXiiWVaDXX39dZ86cMdtPPPFEiWMGDRqkdu3ame1XXnlF58+fd2leOTk5euaZZ8x27dq1de+995Y4rmD+V65c0d///neX5gUAAAAAAAAAAFDeKJZVEMMw9N5775ntGjVqaMiQIQ6Nvfvuu83HqampWrx4sUtzW7NmjQ4fPmy2R48eLT8/vxLHde3a1dwmUpIWLVqktLQ0l+YGAAAAAAAAAABQniiWVZANGzboxIkTZrtHjx7y9/d3aGyfPn0s7aVLl7oytSLH69u3r8NjC+aWlZWlL774wlVpAQAAAAAAAAAAlDuKZRWkcBGpa9euDo/t1KmTZaVXfHy8S1dwffnll6XO7cYbb7S0KZYBAAAAAAAAAICqhGJZBdmxY4el3bZtW4fHBgYGqnnz5mY7JydHe/bscUleycnJlvuoVatWTU2bNnV4fEREhKWdmJjokrwAAAAAAAAAAAAqAsWyCrJ3715L+9prr3VqfKNGjYo9XmkVPk7h85SkcPzPP/+szMzMMucFAAAAAAAAAABQESiWVYC0tDSdPHnS0lfWotT+/fvLnJet4zibV4MGDeTt/b9fo7y8PB06dMgluQEAAAAAAAAAAJQ3imUV4Ny5c0X6QkJCnDpG4fjz58+XKad8hXNzNi9fX19Vq1bN0ueq3AAAAAAAAAAAAMqbr7sT8ATp6elF+gICApw6RmBgYInHLI3Cx3E2L+n33C5dumT3mKV15swZnT171qkxP/30k6V9+PBhl+QCAAAAAAAAAEBVVvjz8itXrrgpk8qHYlkFsFU8Klz8KklFFcuczcvWGFfl9q9//UszZswo0zFGjBjhklwAAAAAAAAAALiaHD9+XJ07d3Z3GpUC2zBWUYZhuDsFuypzbgAAAAAAAAAAQEpNTXV3CpUGxbIKEBwcXKQvMzPTqWMUjrd1zNIofBxn87I1xlW5AQAAAAAAAACA8pGWlubuFCoNtmGsANWrVy/Sd+XKFV1zzTUOH6O8ClKFcyvNHqXlldtDDz2k0aNHOzUmMTFRd999t9mOjY1Vu3btXJIPALjC4cOHLVvELlu2TC1btnRfQgBQANcoAJUd1ykAlRnXKACV3U8//aQxY8aY7S5durgxm8qFYlkFqFmzZpG+tLQ0m/32FK7whoWFlTkvqWhuzlaSc3JylJGRYelzVW5169ZV3bp1y3SMdu3aKSIiwiX5AEB5aNmyJdcpAJUW1ygAlR3XKQCVGdcoAJVdSEiIu1OoNNiGsQKEhoaqfv36lr7k5GSnjlE4vk2bNmXOy9ZxnM3r5MmTysvLM9ve3t667rrrXJIbAAAAAAAAAABAeaNYVkHat29vaf/6669OjS9cxCp8vNIqfJyyFvFatGihatWqlTkvAAAAAAAAAACAikCxrIJ06tTJ0v7pp58cHpuZmalffvnFbPv4+LisWNaoUSPVqVPHbGdkZOjIkSMOj9+zZ4+lHRkZ6ZK8AAAAAAAAAAAAKgLFsgpy++23W9pbtmxxeOyOHTuUnZ1ttnv37u3SvUTLklvh2GHDhrkkJwAAAAAAAAAAgIpAsayC3HzzzWrQoIHZ/uGHH5SVleXQ2HXr1lnao0aNcmVqRY5X+HzFKRjr7+9PsQwAAAAAAAAAAFQpFMsqiLe3tyZNmmS2U1NT9dVXXzk09j//+Y/5ODQ0VGPHjnVpbv3791fz5s3N9pIlSywr2ezZsmWLDh48aLbHjBmj0NBQl+YGAAAAAAAAAABQniiWVaCpU6da7g82a9asEsesWrVKe/fuNdvTpk1TzZo1ix3z22+/6d1339XcuXOVnJxc4jn8/Pw0c+ZMs52SkqKFCxeWOO6NN94wH/v7++v5558vcQwAAAAAAAAAAEBlQrGsAgUHB+vFF1802+vXr9cHH3xgNz49PV2PPvqo2W7RooWmTJlS7DmOHz+uiIgIPfDAA/rLX/6idu3aadeuXSXmNnbsWPXs2dNsT58+XSdPnrQbv2rVKi1atMhsP/HEE2rWrFmJ5wEAAAAAAAAAAKhMKJZVsEmTJmnixIlm+4EHHtC7776rvLw8S9yxY8c0YMAAc5vD0NBQffrppwoKCir2+G+//bZOnz5tttPS0vTqq6+WmJeXl5c++eQTNWnSRJJ09uxZ9e7d27KqLd+yZcs0cuRIs92/f3/93//9X4nnAAAAAAAAAAAAqGx83Z2AJ3r33Xd1zTXXaM6cOcrNzdUDDzygN954Q7169VJoaKgOHTqkb775RllZWZKkRo0aafny5YqMjCzx2IZhFOkrXIizp1GjRlq3bp2GDRumPXv26NChQ+rQoYMGDBigiIgIZWRkaNOmTdqxY4c5ZuTIkfroo4/k68uvEgAAAAAAAAAAqHqocLiBt7e3Zs+erdtvv13R0dHauHGjDhw4oAMHDljiQkJCNHnyZD333HMKDQ116NgPPvigPvjgA509e1aSVL16dU2bNs3h3Jo1a6atW7fqjTfe0OzZs3X69GmtWrVKq1atssRFRETo2Wef1bhx4xw+NgAAAAAAAAAAQGVDscyN+vfvr/79+yspKUk//PCDjh07pqysLIWFhSkiIkLdu3dXQECAU8cMDw/XTz/9pE8//VTZ2dkaMWKErr32WqeOERAQoOnTp2vatGnasmWLdu7cqZSUFPn4+Khhw4bq2rWr2rZt69QxK0qdOnUUHR1taQNAZcJ1CkBlxjUKQGXHdQpAZcY1CkBlx3XKPi/D1r59AAAAAAAAAAAAgAfwdncCAAAAAAAAAAAAgLtQLAMAAAAAAAAAAIDHolgGAAAAAAAAAAAAj0WxDAAAAAAAAAAAAB6LYhkAAAAAAAAAAAA8FsUyAAAAAAAAAAAAeCyKZQAAAAAAAAAAAPBYFMsAAAAAAAAAAADgsSiWAQAAAAAAAAAAwGNRLAMAAAAAAAAAAIDHolgGAAAAAAAAAAAAj0WxDAAAAAAAAAAAAB7L190JAK5y7Ngxbdq0SUlJScrKylLNmjUVERGhbt26yd/f393pAQAAOCU5OVnbtm3TiRMndP78efn5+SksLEwtWrRQly5dVL16dZedKzs7Wz/88IP27t2rc+fOyd/fX02aNFG3bt0UHh7usvNIzNmAq8WVK1e0f/9+7du3T2fPnlVaWpoCAwNVo0YNtW7dWh07dnTZdYprFAAAQNkwnyoZxTJUeWvXrlV0dLQSEhJsPh8aGqr7779fzz77rEJCQio4OwBVwfvvv6+nnnpKFy5ckCTFxcWpT58+Ljs+ExIAjtq4caNiY2P1+eef69ixY3bjvL291a9fP/3lL3/RsGHDSn2+9PR0zZw5U++8845SU1NtxvTo0UMzZsxQ//79S30eiTkbcDVITEzU559/rrVr1+rHH39UVlaW3Vg/Pz/94Q9/0OOPP17qeRXXKACuZhiGevbsqQ0bNph9UVFRWrBgQZmOy3s+AI44evSomjVrVurxoaGhdudE9jCfcpyXYRiGu5MASiMvL09PPfWUZs2aZfa1bt1at9xyi8LCwnTw4EF98803ys7OliQ1btxYy5cvV6dOndyVMoBKJikpSZMnT9bq1ast/a4qljEhAeCozz//XC+++KK2bt1q9nl5ealLly7q3LmzatWqpUuXLmnfvn36/vvvlZmZacYNGTJEH3zwgerVq+fUOXfu3Knhw4crKSlJ0v8+2G7VqpXOnz+v9evX6+DBg2b8o48+qlmzZsnb27md3JmzAVeHVq1a6dChQ5a+kJAQ9e7dW9ddd50CAwN17tw5/fjjj9q+fbslbsKECZo3b578/PwcPh/XKADlYd68efrzn/9s6StLsYz3fACcUdHFMuZTTjKAKur+++83JBmSDB8fH2PevHlGbm6uJSYpKcm46aabzLgaNWoYu3btclPGACqLvLw8Y+7cuUb16tXN60PBr7i4uDKfIzEx0QgPDzeP6efnZwwbNsx46qmnjIkTJxqtWrWynPPRRx8tcg1zRG5urvH4449bjtW6dWtj4sSJxlNPPWUMGzbM8PPzM59r3LixsX379jJ/fwBcq169epbXce/evY39+/fbjD1x4oQxevRoS3ybNm2M06dPO3y+PXv2GDVr1jTHd+vWzUhKSrLE5ObmGm+//bbh4+Njxk2cONHp7405G3B1KHjN8fLyMp599lnj4sWLNmM3b95cZK5z5513OnwurlEAysOJEyeM0NDQIu//oqKiSnU83vMBcNaRI0dsfg7l6FdoaKjD52I+5TyKZaiS/v3vf1suFO+9957d2AsXLlgmKC1btjQuX75cgdkCqEwOHTpk9O7d27wmXHvttUZwcLBLi2VMSAA4q2Cx7NZbbzWysrKKjc/LyzPuuusuy7Vr0KBBDp0rIyPDaN26taXQlpaWZjd+3rx5Ds+7CmPOBlw9Cr6WX3nllRLjk5OTjbp161rGLVq0qMRxXKMAlJeRI0fa/PC5NMUy3vMBKI2CxbLyxHyqdCiWocpJT0+3vOm65ZZbShyzcuVKy4v2pZdeqoBMAVQ2b775phEUFGReCyZNmmRcuHDB8teAZS2WMSEBUBr5xTJfX1/j8OHDDo1JTU01QkJCLNeBlStXljjulVdesYxZs2ZNsfF5eXlG9+7dzfg6deoUe13Lx5wNuLrkvy5btWpl5OTkODTm1Vdftbyme/fuXeIYrlEAysOyZcvM127h1WXOFst4zwegtCqqWMZ8qnQolqHKiY6OtrygPvvsM4fGtWvXzvIXNufOnSvnTAFUNvlvipo2bWqsXr3a7HdlsYwJCYDSyC+W9e/f36lxkydPtryux48fX2z8uXPnjBo1apjxHTp0cOg8sbGxlvP8/e9/L3EMczbg6pL/unz22WcdHrN3717LdcDHx6fYQhvXKADlIS0tzbj22msNSUazZs2MqVOnlqlYxns+AKVVEcUy5lOl59yd2gA3MwxD7733ntmuUaOGhgwZ4tDYu+++23ycmpqqxYsXuzw/AJWbt7e3HnroIe3evbvMN1e25fz583rppZfMdocOHdSvX79ix3h5eenxxx8322fPntXrr79e4rlef/11nTlzxmw/8cQTJY4ZNGiQ2rVrZ7ZfeeUVnT9/vsRxACrOLbfc4lR89+7dLW17N3zPt3jxYssNoe+66y6HznP77bdbbhT/3nvvyTAMu/HM2YCrz5AhQzRkyBANHDjQ4TFNmza1tHNzc5WSkmI3nmsUgPIwffp0/frrr5Kkt99+W0FBQaU+Fu/5AFR2zKdKj2IZqpQNGzboxIkTZrtHjx7y9/d3aGyfPn0s7aVLl7oyNQBVwMqVKzV37lxVr169XI7PhARAaX322WeKi4vT/fff79S4Bg0aWNqnTp0qNr7w/Kdv374OnScwMFDdunUz2ydPntSGDRvsxjNnA64+K1as0IoVK9SzZ0+Hx3h5eRXpCwgIsBvPNQqAq23atElvv/22JOlPf/qTBg0aVKbj8Z4PQGXHfKr0KJahSvniiy8s7a5duzo8tlOnTvLz8zPb8fHxSktLc1luACq/G2+8sVyPz4QEQGn16NFDffr0KVL8clZeXp7d59LS0hQfH2+2/f391aFDB4ePXfgaWnheVtxzzNkAz3T8+HFLu379+qpRo4bNWK5RAFwtOztbkydPVl5ensLCwjRr1qwyH5P3fAAqM+ZTZUOxDFXKjh07LO22bds6PDYwMFDNmzc32zk5OdqzZ4/LcgPg2ZiQAHCHs2fPWtrXXXed3djdu3crJyfHbDdv3rzYFR6FRUREWNqJiYl2Y5mzAZCk1atXW9ojR460G8s1CoCrvfLKK+br87XXXlPdunXLdDze8wGo7JhPlQ3FMlQpe/futbSvvfZap8Y3atSo2OMBQGkxIQHgDrt27bK0i9taqCLnUczZAFy8eFGvvfaa2Q4NDdXf/vY3u/FcowC40sGDBzVz5kxJUu/evTVhwoQyH5P3fABcKS8vT19//bUmTpyoyMhIhYWFyc/PT2FhYWrZsqWGDRumN954o8hK/eIwnyobimWoMtLS0nTy5ElLX+EXVUkKx+/fv7/MeQGAxIQEgHusXLnSfOzl5VXsB0GF5z1lnUedOHFC6enpReKYswE4c+aMbr/9diUlJUmSqlWrpsWLF6tx48Z2x3CNAuBKDzzwgDIzMxUQEKB33nnH5j0UncV7PgCu1LlzZw0ZMkT//ve/tWvXLqWmpionJ0epqan6+eef9eWXX+rJJ59UixYtNHHiRJ07d67EYzKfKhuKZagybF0QCt4c1RGF48+fP1+mnAAgHxMSABVt27Ztlr8SHjdunFq3bm03vvBcqqzzKMn2XIo5G+B5MjMzdfLkSX377bd6/PHH1aZNG61bt07S7x8EbdiwodiVrxLXKACu88EHH5jXoOnTpxc7P3IG7/kAuNLOnTsVFhamp59+Wps3b9bZs2d15coV/frrr4qNjTXnTtnZ2fr3v/+tzp07F7siVWI+VVa+7k4AcJStCYQzy92l35eil3RMACiN8pqQBAcHF3seV5yrMkxIADjvxRdfNB+HhITo1VdfLTa+8LynrPMoW8e018ecDbg6HT582Oa9EkNCQjRhwgSNGzdO/fv3d2hFB9coAK5w+vRpTZ06VZLUpk0bTZ8+3WXH5j0fAFfq37+/Pv74Y9WrV8/S36hRI40ePVqjR4/WBx98oPvvv195eXlKSkrSbbfdph9//FFNmjSxeUzmU2VDsQxVhq0XjK0XcHEq44sQwNWBCQmAirRmzRp99tlnZnv27Nklbs9T+LVe1nmUrWPa62POBniWtLQ0ffHFF0pNTdXFixc1fPhweXsXv7EN1ygArvDYY4/p/Pnz8vLy0rvvvit/f3+XHZv3fADKKigoSMOHD1fdunU1e/ZsVatWrdj4iRMn6tSpU3r22Wcl/f4HAX/605+UkJBgM575VNmwDSM8mmEY7k4BwFWCCQmAinLu3Dndd999Zvu+++7T+PHjy/28tlaGVNRcijkbUDm1bNlShmHIMAylp6fr559/1qJFizRixAidO3dOn332mUaOHKnOnTtr69at5ZoL1ygAX3/9tRYvXizp9w+Ye/bs6dLj854PQFnVrVtXy5Yt07vvvltioSzftGnTLPd93bBhg7755ptyyc/T51MUy1BlFF6WLv2+N74zCsfbOiYAuIOnT0gAOCYnJ0fjxo3Tr7/+Kknq1auX5s2b59DYwvMeZ+dRGRkZJR7TXh9zNuDqV716dTVv3lxjx47V559/rvXr16thw4aSfr8nR69evbRy5Uq747lGASiLS5cu6aGHHpIk1atXr8Ttqd2B93wASsPPz0/33nuvpe+DDz6wGct8qmwolqHKqF69epG+K1euOHWMyvgiBHB1YEICoCI89NBDWr16tSSpQ4cOWrZsmcPbCxWeS5V1HiXZvn4wZwMgST169NDXX39trm7IyMjQ2LFj9csvv9iM5xoFoCyeffZZJSUlSZLefPNNhYWFufwcvOcD4C6FV8rGxcUpLy+vSBzzqbKhWIYqo2bNmkX60tLSnDpG4fjymDwB8ExMSACUt6eeekrvvfeeJKlt27ZavXq1U3OZwnOpss6jJNtzKeZsAPJFRkbq/vvvN9tpaWmKjo62Gcs1CkBpbd26VW+99ZYk6Q9/+IPGjRtXLufhPR8Ad4mIiLC0z507pxMnThSJYz5VNhTLUGWEhoaqfv36lr7k5GSnjlE4vk2bNmXOCwAkJiQAytdf//pX/eMf/5AkXX/99YqPj1fdunWdOkbheU9Z51ENGjRQSEhIkTjmbAAKuuuuuyztJUuW2FxdwTUKQGnk5ORo8uTJys3NVVBQkP71r3+V27l4zwfAXWy9hlNSUor0MZ8qG4plqFLat29vaeffr8NRhV+EhY8HAKXFhARAeZk6dap5343rr79e3333nerUqeP0cSpyHsWcDUC+G264Qb6+vmb7ypUr2rp1a5E4rlEASuONN95QYmKiJGnGjBlq2rRpuZ2L93wA3MXW1vu2/viI+VTZUCxDldKpUydL+6effnJ4bGZmpmV/fB8fn0rxIgRwdWBCAqA8PPHEE3r99dclla1Qlj/ex8fHbP/8889ObemzZ88eSzsyMtJuLHM2APl8fHyKrJI4depUkTiuUQBK4+uvvzYfT506VV5eXiV+zZgxw3KMDz/80GbcggULLHG85wPgLrZWl9aqVatIH/OpsqFYhirl9ttvt7S3bNni8NgdO3YoOzvbbPfu3dvmX/AAQGkwIQHgalOmTNGsWbMklb1QJkkhISHq3bu32c7OztbOnTsdHl943jVs2DC7sczZgKvL1q1blZCQoJMnT5ZqfOEb0Ht7F/0ogmsUgMqO93wAymLTpk2KiYnRP//5T6fHFi6Ye3l5FVmBKjGfKiuKZahSbr75ZjVo0MBs//DDD8rKynJo7Lp16yztUaNGuTI1AB6OCQkAV3rkkUc0e/ZsSY4XysaNG6c+ffoU+SvoggrPfwrPj+zJzMzUpk2bzHb9+vV18803241nzgZcXUaNGqWePXuW6l5AGRkZOn/+vKXP1oc7+ecpiGsUgJKsW7dOhmE49RUdHW05RlRUlM248ePHW+J4zwegLDZt2qQZM2bo6aefdnps4S2sIyMj7b6umU+VHsUyVCne3t6aNGmS2U5NTdVXX33l0Nj//Oc/5uPQ0FCNHTvW5fkB8GxMSACUlWEYevjhh82/NnRmRdmmTZsUHx+vo0eP2o0ZO3asQkNDzXbB+VFxvvzyS8vWH5MmTbK5MiQfczbg6rRhwwanx8THxys3N9dsBwYG2l1NwTUKQGXHez4AZZWenm7ea9FRS5cutbQHDx5sN5b5VOlRLEOVM3XqVMsHRvnbExVn1apV2rt3r9meNm1akX3zAaCsmJAAKAvDMPTnP//ZXLnhiq0XC6tZs6b+9re/me1du3bpu+++KzGvgvOtWrVqaerUqSWeizkbcPWJj4+3vEYdkX/fxXyDBw9W9erVbcZyjQJQ2fGeD4ArvP322w7H7tixQ99++63ZDgoK0qOPPmo3nvlUGRhAFfTee+8Zksyv999/325sWlqa0apVKzO2RYsWxqVLlyowWwCVXXh4uOWaEhcXV+pjvfTSS5ZjrVmzptj4vLw8o3v37mZ8rVq1jAsXLpR4nrS0NKNOnTrmuJ49e5Y4ZuXKlZbcZs6c6fD3BaB85eXlGZMnTzZfn+3btzfOnDnj1DHyr2XR0dHFxl2+fNm47rrrzHO1bdvWSE9Ptxs/b948y7Vj3rx5DufEnA24OhScK91www0OzVUMwzBmzpxpuQb4+/sb+/fvL3YM1ygA5S06Otry2o+KinJqPO/5AJTGrFmzzNemj4+PsXLlyhLHnDt3zrj++ustr+vXXnutxHHMp0qHYhmqrIkTJ1ouMO+8846Rm5triUlKSjJuuukmMy40NNRITEx0U8YAKitXFsuYkABwVl5enmVeU9avkoplhmEYu3btMmrUqGGO6d69u5GUlGSJyc3NNebNm2f4+PiYcePHj3f6+2POBlR9hedKbdq0MVatWmXk5eXZjP/111+N8ePHW8b4+PgYH330kUPn4xoFoDyVtVjGez4ApVGwWCbJCAgIMP7xj38YGRkZNuMTEhKMdu3aWcZMmDDB4fMxn3IexTJUWbm5ucajjz5quWC0bt3amDx5svHUU08Zw4cPN/z9/c3nGjVqZGzdutXdaQOohFxZLDMMJiQAnHPkyBGXFcocLZYZhmFs377daNy4sTnO39/fGD58uDF16lRj0qRJRuvWrS3Hffjhh42cnBynvz/mbEDV98QTTxjXXHNNketN48aNjTFjxhhPPvmk8cwzzxgPP/ywccsttxh+fn6WuCZNmhhfffWVU+fkGgWgvJS1WGYYvOcD4Lz169cbERERReZTYWFhxvDhw40nnnjCePrpp41JkyYVKZL5+voar776qt0/VLKH+ZRzKJahylu9erXRo0cPux8YhYSEGE8++aSRmprq7lQBuFlZPpB29MPnfExIADjKXcUywzCM1NRUY9q0aUZoaKjd43Xr1s1YtWpVmb9P5mxA1XbhwgXjvffeM0aMGGGEhISUeC3y8vIybrrpJuOtt94q9coGrlEAymr+/PnlNp/iPR+A0tiwYYPx+OOPF7lG2PqqXbu28cgjjxi//PJLqc/HfMpxXoZhGAKuAklJSfrhhx907NgxZWVlKSwsTBEREerevbsCAgLcnR6ASuDo0aNq1qxZqcZGR0crJibGqTEXLlzQiy++qHfeeUcXLlywGdOtWzfNmDFDAwcOLFVe+dasWaPo6Ght3LjR5vMhISGaPHmynnvuOcsNqQFAkrKysrRx40bt3btX58+fl7+/vxo3bqzu3buradOmLj0Xczag6svNzdUvv/yiffv26cSJE0pLS1NWVpaqV6+uGjVqqGXLlurQoYNCQkJccj6uUQBKa8GCBbrvvvucHufo+z/e8wEoi5SUFO3evVu//PKLzp8/rytXrig0NFS1a9dWhw4d1LZtW3l5ebnkXMynSkaxDACAcsaEBAAAAACuXrznA4Cqj2IZAAAAAAAAAAAAPJa3uxMAAAAAAAAAAAAA3IViGQAAAAAAAAAAADwWxTIAAAAAAAAAAAB4LIplAAAAAAAAAAAA8FgUywAAAAAAAAAAAOCxKJYBAAAAAAAAAADAY1EsAwAAAAAAAAAAgMeiWAYAAAAAAAAAAACPRbEMAAAAAAAAAAAAHotiGQAAAAAAAAAAADwWxTIAAAAAAAAAAAB4LIplAAAAAAAAAAAA8FgUywAAAAAAAAAAAOCxKJYBAAAAAAAAAADAY1EsAwAAAAAAAAAAgMeiWAYAAAAAAAAAAACPRbEMAAAAAAAAAAAAHotiGQAAAAAAAAAAADwWxTIAAAAAAAAAAAB4LIplAAAAAAAAAAAA8FgUywAAAAAAAAAAAOCxKJYBAAAAAAAAAADAY1EsAwAAAAAAAAAAgMfydXcCAAAAAIDKIzs7W5988okuX76su+++W9WrV3d3SgAAAABQrlhZBgAAAACVzPjx4+Xl5VUhXwsWLLCce8SIEYqKitKf//xn9e7dW9nZ2e75IQAAAABABaFYBgAAAACQJO3fv19ff/212d6+fbvWrl3rxowAAAAAoPxRLAMAAACASio8PFyGYRT7FRcX5/SYI0eO2DyfYRhF+vLy8srlewMAAACAyoJiGQAAAABAktS2bVsNGjTIbF9//fXq16+fGzMCAAAAgPLn6+4EAAAAAACVxxdffKFPPvlEly9f1l133SV/f393pwQAAAAA5YpiGQAAAADA5O/vr6ioKHenAQAAAAAVhmIZAAAAAFQyLVq00E033aQGDRqUy/EDAgJ00003SZLq1KlTLucAAAAAgKrCy7B1B2cAAAAAQJWwbt069e3b12yHh4fr6NGj7ksIAAAAAKoYVpYBAAAAAMqVYRjasGGDtm3bpkuXLql27dq68cYb1bFjx2LHbNy4Udu3b1d6erpq1qypDh066KabbpKPj0+Z8snLy9OWLVt04MABnTlzRpJUu3ZtNWvWTN27d+c+bQAAAICHoVgGAAAAAB6uT58+io+Pt/lcVFSUFixYUKR/2bJluuOOO+weM38Tk/j4eD344IPav39/kZiOHTtq7ty56tGjh6V/5cqVeuSRR3T48OEiY5o0aaLZs2drxIgRxXxHtp07d04zZ87UwoULlZKSYjMmKChIw4cP14wZM3Tdddc5fQ4AAAAAVY+3uxMAAAAAAFydYmNj1b9/f5uFMklKTExU3759tWLFCrPvX//6lwYPHmyzUCZJx44d08iRI7Vw4UKncvnmm2/UokULvfHGG0pJSZGfn58GDhyoJ554Qk899ZSGDx+ua665RpcvX9Ynn3yidu3aafbs2U6dAwAAAEDVxD3LAAAAAKAKc/U9y44ePapmzZqZbXsry5KTk7V+/Xqz/fzzz2vfvn1me/fu3erSpYt8fX01duxYdenSRdWqVdPhw4f18ccfKykpyYwNDQ3Vzz//rJ07d2rAgAHy9fXV6NGj1aNHD11zzTU6fPiwPvroI8uY4OBgHTx4UPXr1y/xe/rPf/6j8ePHKycnR5J044036j//+Y9atmxpiTt37pwefvhhLVq0yPJ9PffccyWeAwAAAEDVRbEMAAAAAKowdxXLCiu8lWOvXr106tQprVq1Sk2bNrXEXr58WYMGDVJCQoLZFxMTo48//liXLl3St99+q/bt2xcZM2DAAG3cuNHsmzlzpp5++uli80pMTFT37t2VmZkpSWrVqpW2bNmikJAQm/F5eXkaOXKkli9fLkny9vbWunXr1LNnzxJ/BgAAAACqJrZhBAAAAAC43A8//KAvvviiSKFM+v2+YP/85z8tfS+++KIOHz6sRYsWFSmU5Y+ZM2eOpa/g9o32jB8/3iyUSdJbb71lt1Am/V4c++c//ylf399v8Z2Xl6e//OUvJZ4HAAAAQNVFsQwAAAAA4HLjxo1T69at7T4fGRmp8PBws52VlaXevXurV69edsfccMMNuvbaa832rl27VNxmKV999ZV27txptlu3bq2BAweWmPu1116rAQMGWM5TcBUcAAAAgKsLxTIAAAAAgMuNGDGixJg2bdpY2sOHDy9xTNu2bc3Hly5dUnp6ut3YhQsXWtpDhw4t8fj5br75Zkv7008/dXgsAAAAgKqFYhkAAAAAwOUiIyNLjAkLC3N6TM2aNS3ttLQ0u7Hr1q2ztLt161bi8fO1atXK0t68ebPDYwEAAABULRTLAAAAAAAuV69evRJjAgICnB4TGBhoaefk5NiMO3nypM6cOWPpa9GiRYnHz1f4vmYFt3MEAAAAcHXxdXcCAAAAAICrzzXXXOP0mKCgIJedPyUlpUhf586dS328y5cvKzMzs0ixDgAAAEDVx8oyAAAAAIDLeXl5VcgYe4rbnrG0UlNTXX5MAAAAAO7HyjIAAAAAwFWn8DaKknTo0CG1bNnSDdkAAAAAqMxYWQYAAAAAuOrUrl27SF96erobMgEAAABQ2VEsAwAAAABcdRo0aKC6deta+pKTk92UDQAAAIDKjGIZAAAAAOCq1KdPH0s7MTHRqfHnzp3TokWLtGjRIn333XeuSwwAAABApUKxDAAAAABwVbrnnnss7S+++MKp8R9++KH++Mc/6o9//KNWrVrlytQAAAAAVCIUywAAAAAAV6WhQ4cqMjLSbG/ZskUbN250aOyVK1c0Z84cSZK3t7fuu+++cskRAAAAgPtRLAMAAAAAXLXmz5+vwMBAsz158mSdP3++xHGPPfaYjh49KkkaP3682rZtW14pAgAAAHAzimUAAAAAgKtWp06d9P7778vX11eS9NNPP6lPnz7asmWLzfhTp05p3LhxeueddyRJERERmj17doXlCwAAAKDieRmGYbg7CQAAAACAY44ePapmzZo5HN+7d2+tW7eu2Jg+ffooPj7eoeMdOXJETZs2dSqPuLg49enTR5LUtGlTJSUllThm/vz5Gj9+vFNjoqOjFRMTY/O51atXa9y4cTp37pzZFxkZqW7duqlWrVq6fPmy9uzZo/j4eGVnZ0uSevbsqc8++0y1a9cu8dwAAAAAqi5fdycAAAAAAEB5GzBggH755Re9/vrr+uCDD3Ty5Ent3LlTO3fuLBLbuXNnPfLII4qKipKXl5cbsgUAAABQkVhZBgAAAADwODt37tTu3bt19uxZXb58WcHBwWrSpIluuOEGNW7c2N3pAQAAAKhAFMsAAAAAAAAAAADgsbzdnQAAAAAAAAAAAADgLhTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI9FsQwAAAAAAAAAAAAei2IZAAAAAAAAAAAAPBbFMgAAAAAAAAAAAHgsimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI9FsQwAAAAAAAAAAAAei2IZAAAAAAAAAAAAPBbFMgAAAAAAAAAAAHgsimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI9FsQwAAAAAAAAAAAAei2IZAAAAAAAAAAAAPBbFMgAAAAAAAAAAAHgsimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI9FsQwAAAAAAAAAAAAei2IZAAAAAAAAAAAAPBbFMgAAAAAAAAAAAHgsimUAAAAAAAAAAADwWBTLAAAAAAAAAAAA4LEolgEAAAAAAAAAAMBjUSwDAAAAAAAAAACAx6JYBgAAAAAAAAAAAI/1/wBqAYP1zSz/1QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "process_and_plot(fx_dae)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "nm14", + "language": "python", + "name": "nm14" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/ODEs/Part_7_DAE.py b/examples/ODEs/Part_7_DAE.py new file mode 100644 index 00000000..0c46d2a4 --- /dev/null +++ b/examples/ODEs/Part_7_DAE.py @@ -0,0 +1,337 @@ +# %% +import numpy as np +import matplotlib.pyplot as plt +import torch +import torch.nn as nn +from torch.utils.data import DataLoader +import os + +import neuromancer.slim as slim +from neuromancer.modules import blocks, activations +from neuromancer.dynamics import integrators, ode, physics +from neuromancer.trainer import Trainer +from neuromancer.problem import Problem +from neuromancer.dataset import DictDataset +from neuromancer.loss import PenaltyLoss +from neuromancer.constraint import variable, Objective +from neuromancer.system import Node, System +from neuromancer.loggers import BasicLogger + +from collections import OrderedDict +from abc import ABC, abstractmethod + +torch.manual_seed(0) +device = 'cpu' + +plt.rcParams["font.family"] = "serif" +#plt.rcParams["font.serif"] = ["Times"] +plt.rcParams['figure.dpi'] = 300 +plt.rcParams.update({'font.size': 10}) + +params = {'legend.fontsize': 10, + 'axes.labelsize': 10, + 'axes.titlesize': 10, + 'xtick.labelsize': 10, + 'ytick.labelsize': 10} +plt.rcParams.update(params) + +data = np.float32(np.loadtxt('data/tanks.dat')) +data=data[1:497,] +area_data = np.loadtxt('data/area.dat') +time = np.float32(np.linspace(0.0,len(data[:,0])-1,len(data[:,0])).reshape(-1, 1)) +U = time*0.0 + 0.5 + +train_data = {'Y': data[1:], 'X': data[1:], 'Time': time[1:], 'U': U[1:] } +dev_data = train_data +test_data = train_data + +nsim = data.shape[0] +nx = data.shape[1] +nstep = 15 + +for d in [train_data, dev_data]: + d['X'] = d['X'].reshape(nsim//nstep, nstep, nx) + d['Y'] = d['Y'].reshape(nsim//nstep, nstep, nx) + d['xn'] = d['X'][:, 0:1, :] # Add an initial condition to start the system loop + d['Time'] = d['Time'].reshape(nsim//nstep, nstep, 1) + d['U'] = d['U'].reshape(nsim//nstep, nstep, 1) + +train_dataset, dev_dataset, = [DictDataset(d, name=n) for d, n in zip([train_data, dev_data], ['train', 'dev'])] +train_loader, dev_loader, test_loader = [DataLoader(d, batch_size=nsim//nstep, collate_fn=d.collate_fn, shuffle=True) for d in [train_dataset, dev_dataset, dev_dataset]] + +nx = 4 # set the state dimension +nu = 1 # set the exogenous input dimension + +# State names if we need them (we do) +states = {} +states['h_1'] = 0 +states['h_2'] = 1 +states['m_1'] = 2 +states['m_2'] = 3 +states['m'] = 4 + +plt.plot(time,data[:,0]) +plt.xlim([0,500]) +plt.ylim([0,40]) +plt.xlabel("Time") +plt.ylabel("Height") +plt.show() + +plt.plot(time,data[:,[2,3]]) +plt.plot(time,data[:,2]+data[:,3]) +plt.xlim([0,500]) +plt.ylim([0,0.6]) +plt.xlabel("Time") +plt.ylabel("Volumetric Flow") +plt.show() + +############### Black-box Neural ODE Model ############### +# define neural network of the NODE +fx = blocks.MLP(nx+nu, nx, bias=True, + linear_map=torch.nn.Linear, + nonlin=torch.nn.ReLU, + hsizes=[10, 10]) + +fxRK4 = integrators.RK4(fx, h=1.0) + +dynamics_model = System([Node(fxRK4,['xn','U'],['xn'])]) + +x = variable("X") +xhat = variable("xn")[:, :-1, :] +reference_loss = ((xhat[:,:,[2,3]] == x[:,:,[2,3]])^2) +reference_loss.name = "ref_loss" + +height_loss = (1.0e0*(xhat[:,:,0] == xhat[:,:,1])^2) +height_loss.name = "height_loss" + +objectives = [reference_loss, height_loss] +constraints = [] +# create constrained optimization loss +loss = PenaltyLoss(objectives, constraints) +# construct constrained optimization problem +problem = Problem([dynamics_model], loss) + +optimizer = torch.optim.Adam(problem.parameters(), lr=0.01) + +trainer = Trainer( + problem, + train_loader, + dev_loader, + test_loader, + optimizer, + epochs=10000, + patience=20, + warmup=50, + eval_metric="dev_loss", + train_metric="train_loss", + dev_metric="dev_loss", + test_metric="dev_loss", + logger=None, +) + +best_model = trainer.train() + +def process_and_plot(integrator): + + # Roll out the model: + end_step = len(data[:,0]) + sol = torch.zeros((end_step,5)) + sol[:,-1] = 0.5 + x0 = np.concatenate((data[0,:],U[0])) + ic = torch.unsqueeze(torch.tensor(x0),0).float() + t = 0 + for j in range(sol.shape[0]-1): + if j==0: + sol[[0],:] = ic + sol[[j+1],:4] = integrator(sol[[0],:4],sol[[0],-1:]) + else: + sol[[j+1],:4] = integrator(sol[[j],:4],sol[[j],-1:]) + t += time[1]-time[0] + + # plot the results + plt.plot(time,sol.detach().numpy()[:,0],label="Tank #1") + plt.plot(time,sol.detach().numpy()[:,1],label="Tank #2") + plt.plot(time,data[:,0],label="Data",linestyle="--") + plt.xlabel("Time") + plt.ylabel("Height") + plt.legend() + plt.show() + + plt.plot(time,sol.detach().numpy()[:,2],label="Inflow #1") + plt.plot(time,sol.detach().numpy()[:,3],label="Inflow #1") + plt.plot(time,np.sum(sol.detach().numpy()[:,[2,3]],-1),label="In_1 + In_2") + plt.plot(time,data[:,2],label="Data Inflow #1",linestyle="--") + plt.plot(time,data[:,3],label="Data Inflow #2",linestyle="--") + + plt.xlim([0,500]) + plt.ylim([0,0.6]) + plt.xlabel("Time") + plt.ylabel("Volumetric Flow") + plt.legend() + plt.show() + +process_and_plot(fxRK4) + +############### Black-box Neural DAE Model ############### + +# Class for 'black-box' differential state evolution +class BBNodeDiff(physics.Agent): + def __init__(self, state_keys = None, in_keys = None, solver = None, profile = None): + super().__init__(state_keys=state_keys) + self.solver = solver + self.in_keys = in_keys + self.profile = profile + + def intrinsic(self, x, y): + return self.profile(x) + + def algebra(self, x): + return x[:,:len(self.state_keys)] + +# Class for 'black-box' algebraic state evolution +class BBNodeAlgebra(physics.Agent): + def __init__(self, state_keys = None, in_keys = None, solver = None, profile = None): + super().__init__(state_keys=state_keys) + self.solver = solver + self.in_keys = in_keys + self.profile = profile + + def intrinsic(self, x, y): + return torch.zeros_like(x[:,:len(self.state_keys)]) + + def algebra(self, x): + # Learning the convex combination of stream outputs that equal the input + param = torch.abs(self.solver(x[:,1:])) + return torch.cat((x[:,[0]]*param,x[:,[0]]*(1.0 - param)),-1) + +ode_rhs = blocks.MLP(insize=4, outsize=2, hsizes=[5], + linear_map=slim.maps['linear'], + nonlin=nn.LeakyReLU) + +algebra_solver_bb = blocks.MLP(insize=4, outsize=1, hsizes=[5], + linear_map=slim.maps['linear'], + nonlin=nn.LeakyReLU) + +# Define differential agent: +diff = BBNodeDiff(in_keys=["h_1","h_2","m_1","m_2"], state_keys=["h_1","h_2"], profile=ode_rhs) + +# Define algebraic agent: +alg = BBNodeAlgebra(in_keys = ["m","h_1","h_2","m_1","m_2"], state_keys=["m_1","m_2"], solver=algebra_solver_bb) + +agents = [diff, alg] + +couplings = [] + +model_ode = ode.GeneralNetworkedODE( + states=states, + agents=agents, + couplings=couplings, + insize=nx+nu, + outsize=nx, +) + +model_algebra = ode.GeneralNetworkedAE( + states=states, + agents=agents, + insize=nx+nu, + outsize=nx , +) + +fx_int = integrators.EulerDAE(model_ode,algebra=model_algebra,h=1.0) +dynamics_model = System([Node(fx_int,['xn','U'],['xn'])]) + +# construct constrained optimization problem +problem = Problem([dynamics_model], loss) +optimizer = torch.optim.Adam(problem.parameters(), lr=0.005) + +trainer = Trainer( + problem, + train_loader, + dev_loader, + test_loader, + optimizer, + epochs=10000, + patience=50, + warmup=50, + eval_metric="dev_loss", + train_metric="train_loss", + dev_metric="dev_loss", + test_metric="dev_loss", + logger=None, +) + +best_model = trainer.train() +process_and_plot(fx_int) + +############### Gray-box DAE Model ############### + +# Tank area - height profiles: These should map height to area. R^1 -> R^1. +tank_profile = blocks.MLP(insize=1, outsize=1, hsizes=[3], + linear_map=slim.maps['linear'], + nonlin=nn.Sigmoid) + +# Surrogate for algebra solver: This should map 'algebraic state indices' to len(state names). +algebra_solver = blocks.MLP(insize=4, outsize=1, hsizes=[3], + linear_map=slim.maps['linear'], + nonlin=nn.Sigmoid) + +# Individual components: +tank_1 = physics.MIMOTank(state_keys=["h_1"], in_keys=["h_1"], profile= lambda x: 3.0) # assume known area-height profile +tank_2 = physics.MIMOTank(state_keys=["h_2"], in_keys=["h_2"], profile=tank_profile) +pump = physics.SourceSink(state_keys=["m"], in_keys=["m"]) + +# Define algebraic agent: +manifold = physics.SIMOConservationNode(in_keys = ["m","h_1","h_2","m_1","m_2"], state_keys=["m_1","m_2"], solver=algebra_solver) + +# Accumulate agents in list: +# index: 0 1 2 3 +agents = [pump, tank_1, tank_2, manifold] + +couplings = [] +# Couple w/ pipes: +couplings.append(physics.Pipe(in_keys = ["m"], pins = [[0,3]])) # Pump -> Manifold +couplings.append(physics.Pipe(in_keys = ["m_1"], pins = [[3,1]])) # Manifold -> tank_1 +couplings.append(physics.Pipe(in_keys = ["m_2"], pins = [[3,2]])) # Manifold -> tank_2 + +model_ode = ode.GeneralNetworkedODE( + states=states, + agents=agents, + couplings=couplings, + insize=nx+nu, + outsize=nx, +) + +model_algebra = ode.GeneralNetworkedAE( + states=states, + agents=agents, + insize=nx+nu, + outsize=nx, +) + +fx_dae = integrators.EulerDAE(model_ode,algebra=model_algebra,h=1.0) +dynamics_model = System([Node(fx_dae,['xn','U'],['xn'])]) + +# construct constrained optimization problem +problem = Problem([dynamics_model], loss) +optimizer = torch.optim.Adam(problem.parameters(), lr=0.005) + +trainer = Trainer( + problem, + train_loader, + dev_loader, + test_loader, + optimizer, + epochs=10000, + patience=50, + warmup=50, + eval_metric="dev_loss", + train_metric="train_loss", + dev_metric="dev_loss", + test_metric="dev_loss", + logger=None, +) + +best_model = trainer.train() +process_and_plot(fx_dae) + +# %% diff --git a/examples/ODEs/data/area.dat b/examples/ODEs/data/area.dat new file mode 100644 index 00000000..6e39e86c --- /dev/null +++ b/examples/ODEs/data/area.dat @@ -0,0 +1,401 @@ +0.1 +0.416227766016838 +0.547213595499958 +0.647722557505166 +0.7324555320336759 +0.8071067811865476 +0.8745966692414834 +0.9366600265340755 +0.9944271909999158 +1.0486832980505139 +1.1 +1.1488088481701517 +1.1954451150103322 +1.2401754250991381 +1.2832159566199233 +1.3247448713915893 +1.3649110640673519 +1.4038404810405298 +1.441640786499874 +1.4784048752090222 +1.5142135623730952 +1.549137674618944 +1.5832396974191327 +1.61657508881031 +1.649193338482967 +1.6811388300841899 +1.7124515496597101 +1.7431676725154985 +1.7733200530681512 +1.80293863659264 +1.8320508075688773 +1.860681686165901 +1.8888543819998318 +1.916590212458495 +1.9439088914585776 +1.9708286933869708 +1.9973665961010276 +2.0235384061671344 +2.0493588689617925 +2.07484176581315 +2.1 +2.1248456731316585 +2.14939015319192 +2.173644135332772 +2.1976176963403034 +2.2213203435596425 +2.244761058952722 +2.26794833886788 +2.2908902300206644 +2.3135943621178656 +2.33606797749979 +2.358317958127243 +2.380350850198276 +2.4021728866442675 +2.4237900077244503 +2.445207879911715 +2.4664319132398465 +2.4874672772626645 +2.5083189157584593 +2.528991560298224 +2.5494897427831784 +2.569817807045694 +2.5899799195977464 +2.6099800796022268 +2.6298221281347036 +2.6495097567963923 +2.669046515733026 +2.688435821108957 +2.7076809620810596 +2.7267851073127396 +2.745751311064591 +2.7645825188948456 +2.7832815729997478 +2.8018512172212593 +2.8202941017470886 +2.8386127875258307 +2.8568097504180443 +2.874887385102322 +2.8928480087537882 +2.9106938645110394 +2.9284271247461904 +2.9460498941515416 +2.9635642126552706 +2.9809720581775867 +2.998275349237888 +3.0154759474226505 +3.032575659723036 +3.049576240750525 +3.0664793948382654 +3.0832867780352595 +3.1 +3.1166206257996714 +3.13315017762062 +3.1495901363953815 +3.1659419433511786 +3.182207001484488 +3.1983866769659337 +3.2144823004794874 +3.2304951684997056 +3.246426544510455 +3.2622776601683796 +3.2780497164141407 +3.2937438845342624 +3.3093613071762427 +3.32490309931942 +3.3403703492039303 +3.355764119219941 +3.371085446759225 +3.386335345030997 +3.4015148038438356 +3.4166247903554 +3.4316662497915362 +3.4466401061363023 +3.4615472627943222 +3.4763886032268267 +3.491164991562634 +3.50587727318528 +3.520526275297414 +3.535112807463534 +3.549637662132068 +3.5641016151377545 +3.578505426185217 +3.5928498393145962 +3.6071355833500367 +3.621363372331802 +3.635533905932738 +3.64964786985977 +3.6637059362410924 +3.6777087639996635 +3.691656999213594 +3.705551275463989 +3.7193922141707714 +3.73318042491699 +3.746916505762094 +3.7606010435446255 +3.7742346141747674 +3.787817782917155 +3.8013511046643496 +3.814835124201342 +3.82827037646145 +3.8416573867739414 +3.8549966711037174 +3.8682887362833545 +3.8815340802378078 +3.894733192202055 +3.9078865529319544 +3.9209946349085603 +3.934057902536163 +3.947076812334269 +3.9600518131237568 +3.972983346207417 +3.9858718455450894 +3.9987177379235854 +4.011521443121589 +4.024283374069717 +4.037003937005905 +4.049683531626299 +4.06232255123179 +4.074921382870358 +4.087480407475377 +4.1 +4.112480529547776 +4.124922359499621 +4.137325847637269 +4.1496913462633165 +4.16201920231798 +4.174309757492672 +4.18656334834051 +4.198780306383839 +4.210960958218893 +4.22310562561766 +4.235214625627067 +4.2472882706655435 +4.259326868617084 +4.271330722922841 +4.2833001326703775 +4.295235392680606 +4.307136793592526 +4.319004621945797 +4.3308391602612355 +4.342640687119284 +4.354409477236529 +4.366145801540308 +4.3778499272414875 +4.389522117905443 +4.401162633521313 +4.412771730569565 +4.424349662087931 +4.43589667773576 +4.447413023856831 +4.458898943540674 +4.470354676682431 +4.481780460041328 +4.493176527297759 +4.504543109109048 +4.5158804331639235 +4.527188724235731 +4.538468204234429 +4.549719092257398 +4.560941604639092 +4.572135954999579 +4.583302354291979 +4.594441010848846 +4.605552130427523 +4.616635916254485 +4.627692569068708 +4.638722287164087 +4.64972526643093 +4.660701700396552 +4.671651780264984 +4.6825756949558395 +4.69347363114234 +4.7043457732885345 +4.71519230368573 +4.72601340248815 +4.736809247747852 +4.7475800154489 +4.758325879540846 +4.769047011971501 +4.7797435827190355 +4.790415759823429 +4.801063709417263 +4.811687595755898 +4.822287581247037 +4.832863826479692 +4.843416490252569 +4.853945729601885 +4.864451699828638 +4.874934554525328 +4.885394445602159 +4.895831523312719 +4.906245936279166 +4.916637831516918 +4.927007354458868 +4.937354648979129 +4.947679857416329 +4.957983120596447 +4.9682645778552335 +4.978524367060187 +4.988762624632126 +4.998979485566356 +5.009175083453431 +5.019349550499537 +5.029503017546495 +5.039635614091387 +5.049747468305832 +5.059838707054897 +5.0699094559156705 +5.079959839195492 +5.089989979949859 +5.1 +5.109990019950139 +5.119960159204453 +5.129910535983717 +5.1398412673416605 +5.149752469181038 +5.159644256269407 +5.16951674225463 +5.179370039680117 +5.189204259999788 +5.199019513592784 +5.20881590977792 +5.218593556827891 +5.228352561983233 +5.238093031466051 +5.2478150704935 +5.257518783291051 +5.267204273105524 +5.276871642217913 +5.2865209919559755 +5.296152422706632 +5.305766033928148 +5.315361924162119 +5.324940191045252 +5.33450093132096 +5.344044240850757 +5.353570214625479 +5.363078946776307 +5.372570530585627 +5.382045058497702 +5.391502622129181 +5.400943312279429 +5.410367218940701 +5.419774431308154 +5.429165037789691 +5.438539126015655 +5.447896782848375 +5.457238094391549 +5.466563145999495 +5.475872022286245 +5.485164807134503 +5.494441583704471 +5.503702434442518 +5.512947441089743 +5.5221766846903835 +5.531390245600107 +5.540588203494177 +5.5497706373754845 +5.558937625582472 +5.5680892457969255 +5.577225575051661 +5.586346689738081 +5.595452665613634 +5.604543577809154 +5.613619500836088 +5.62268050859363 +5.631726674375733 +5.640758070878027 +5.649774770204643 +5.658776843874918 +5.667764362830021 +5.676737397439474 +5.685696017507576 +5.694640292279746 +5.703570290448759 +5.712486080160912 +5.721387729022078 +5.7302753041036985 +5.739148871948673 +5.748008498577175 +5.75685424949238 +5.765686189686117 +5.774504383644443 +5.783308895353128 +5.792099788303083 +5.800877125495689 +5.809640969448079 +5.818391382198318 +5.827128425310541 +5.835852159879995 +5.844562646538028 +5.85325994545701 +5.861944116355173 +5.870615218501403 +5.879273310719955 +5.887918451395112 +5.896550698475775 +5.905170109479997 +5.913776741499452 +5.922370651203854 +5.9309518948453 +5.939520528262573 +5.948076606885378 +5.956620185738529 +5.965151319446072 +5.973670062235365 +5.9821764679410965 +5.990670590009256 +5.999152481501049 +6.007622195096771 +6.016079783099616 +6.02452529743945 +6.03295878967653 +6.041380311005178 +6.049789912257406 +6.058187643906492 +6.0665735560705185 +6.074947698515862 +6.083310120660636 +6.091660871578096 +6.1 +6.108327554319921 +6.116643582596529 +6.124948132556827 +6.133241251599342 +6.141522986797286 +6.1497933849016695 +6.158052492344384 +6.16630035524124 +6.174537019394975 +6.182762530298219 +6.190976933136424 +6.199180272790763 +6.207372593840987 +6.215553940568261 +6.223724356957945 +6.231883886702357 +6.2400325732035 +6.248170459575759 +6.256297588648554 +6.264414002968976 +6.272519744804385 +6.280614856144977 +6.28869937870632 +6.296773353931867 +6.304836822995428 +6.312889826803627 +6.320932405998316 +6.328964600958974 +6.336986451805069 +6.344997998398398 +6.352999280345393 +6.360990336999411 +6.368971207462991 +6.376941930590086 +6.384902544988267 +6.392853089020909 +6.400793600809346 +6.408724118235001 +6.416644678941502 +6.424555320336759 diff --git a/examples/ODEs/data/tanks.dat b/examples/ODEs/data/tanks.dat new file mode 100644 index 00000000..56ccdde5 --- /dev/null +++ b/examples/ODEs/data/tanks.dat @@ -0,0 +1,501 @@ +0.01 0.01 0.25 0.25 +0.15799928310276834 0.15799928310276834 0.4288788300275624 0.07112116997243766 +0.2978397526700571 0.2978397526700564 0.4114383130013188 0.08856168699868085 +0.4328446218867091 0.432844621886709 0.3991580992570664 0.10084190074293348 +0.5642313383497309 0.5642313383497314 0.3894937238043173 0.1105062761956827 +0.6926865142054504 0.6926865142054504 0.38145825853287646 0.11854174146712332 +0.8186614599703085 0.8186614599703086 0.3745505818880434 0.12544941811195667 +0.9424791944938915 0.9424791944938916 0.36847671706868707 0.13152328293131296 +1.064384028877385 1.0643840288773854 0.36304761755069004 0.13695238244931002 +1.184568042709531 1.1845680427095309 0.35813378949775165 0.1418662105022483 +1.3031867492466667 1.3031867492466664 0.3536425649845047 0.1463574350154953 +1.4203688694284717 1.4203688694284715 0.3495042838332651 0.1504957161667349 +1.5362229488827486 1.5362229488827486 0.3456664483563352 0.1543335516436649 +1.6508417862408244 1.6508417862408244 0.3420868072784657 0.15791319272153412 +1.764305849572667 1.764305849572667 0.33873252774943047 0.16126747225056956 +1.87668551982297 1.8766855198229697 0.33557647625136927 0.16442352374863056 +1.9880429104640693 1.9880429104640693 0.33259560547081407 0.16740439452918643 +2.098433404971781 2.098433404971781 0.3297719399526986 0.1702280600473014 +2.2079066043442563 2.207906604344256 0.3270894914377367 0.17291050856226342 +2.3165071524589997 2.3165071524589993 0.32453428671288415 0.17546571328711574 +2.424275662076912 2.424275662076912 0.3220951249095335 0.17790487509046643 +2.531249036816909 2.53124903681691 0.31976192246120894 0.1802380775387911 +2.6374610778607144 2.6374610778607153 0.3175258955849744 0.1824741044150257 +2.7429427864240155 2.742942786424012 0.3153789025071024 0.18462109749289746 +2.8477228474596856 2.847722847459683 0.31331453166940415 0.18668546833059566 +2.95182770065071 2.95182770065071 0.31132674324144577 0.18867325675855426 +3.05528195548842 3.055281955488421 0.3094101098781627 0.19058989012183744 +3.158108395288196 3.1581083952881954 0.3075594931467688 0.19244050685323114 +3.2603283857565186 3.260328385756514 0.3057705103419194 0.19422948965808023 +3.3619619003453987 3.361961900345398 0.30403972572223803 0.1959602742777619 +3.4630275896746965 3.4630275896746965 0.3023631529982352 0.19763684700176484 +3.5635430644799677 3.5635430644799677 0.3007378177501434 0.19926218224985667 +3.6635247695828115 3.6635247695828115 0.29916047767058085 0.2008395223294192 +3.762988300760456 3.762988300760456 0.2976283408305094 0.20237165916949054 +3.8619484097117103 3.8619484097117103 0.2961391117759416 0.20386088822405826 +3.960418990975759 3.960418990975759 0.29469079650971797 0.205309203490282 +4.058413250931764 4.058413250931764 0.29328087600240216 0.20671912399759787 +4.155943705589262 4.155943705589262 0.2919076535731557 0.2080923464268446 +4.253022183538284 4.253022183538284 0.290569122014419 0.20943087798558127 +4.349660000305843 4.349660000305843 0.28926353519245873 0.21073646480754119 +4.445867958355942 4.445867958355942 0.28798940804736756 0.21201059195263186 +4.541656347089569 4.541656347089569 0.28674551659306446 0.21325448340693504 +4.637034924636324 4.637034924636324 0.2855305249196527 0.21446947508034736 +4.732013126461919 4.732013126461919 0.284342953726621 0.21565704627337895 +4.8265998981479985 4.8265998981479985 0.28318178987817183 0.21681821012182803 +4.920803778095677 4.920803778095677 0.28204579227080523 0.2179542077291947 +5.014632992832847 5.014632992832847 0.28093385706429125 0.2190661429357088 +5.108095457014178 5.108095457014178 0.27984501768167014 0.22015498231833022 +5.20119877342112 5.20119877342112 0.27877844480925196 0.22122155519074857 +5.293950232961897 5.293950232961897 0.277733446396617 0.22226655360338338 +5.386356791474384 5.386356791474384 0.27670918040645204 0.22329081959354802 +5.478425247214586 5.478425247214586 0.27570463943976053 0.22429536056023944 +5.570162100256859 5.570162100256859 0.27471932120153036 0.2252806787984696 +5.661573557435642 5.661573557435642 0.2737524372187967 0.22624756278120328 +5.752665636498007 5.752665636498007 0.2728032709406219 0.22719672905937813 +5.843444166103655 5.843444166103655 0.2718711777380954 0.2281288222619046 +5.93391478582492 5.93391478582492 0.2709555849043341 0.22904441509566598 +6.024082946146767 6.024082946146767 0.27005599165448174 0.22994400834551829 +6.113953908466792 6.113953908466792 0.26917196912570956 0.2308280308742905 +6.203532745095219 6.203532745095219 0.26830316037721574 0.23169683962278428 +6.292824310650726 6.292824310650726 0.26744871051202473 0.2325512894879753 +6.381833481981079 6.381833481981079 0.2666083515139921 0.23339164848600796 +6.470564834270974 6.470564834270974 0.2657816851265918 0.2342183148734082 +6.5590228018243195 6.5590228018243195 0.2649682317849907 0.23503176821500918 +6.647211704937928 6.647211704937928 0.264167549343979 0.23583245065602082 +6.73513574990151 6.73513574990151 0.26337923307797023 0.23662076692202963 +6.822799028997681 6.822799028997681 0.2626029156810012 0.23739708431899872 +6.910205520501958 6.910205520501958 0.26183826726673204 0.23816173273326804 +6.99735908868276 6.99735908868276 0.2610849953684462 0.238915004631554 +7.084263483801406 7.084263483801406 0.2603428449390505 0.23965715506094973 +7.17092234211212 7.17092234211212 0.25961159835107506 0.2403884016489251 +7.257339160519138 7.257339160519138 0.2588909291496722 0.2411090708503278 +7.343517399804017 7.343517399804017 0.2581802380630545 0.24181976193694557 +7.429460488230181 7.429460488230181 0.25747956722006227 0.2425204327799378 +7.515171644705856 7.515171644705856 0.25678860692898814 0.24321139307101175 +7.600654020031712 7.600654020031712 0.2561070667440147 0.24389293325598507 +7.685910696900859 7.685910696900859 0.2554346754652143 0.24456532453478547 +7.77094468989885 7.77094468989885 0.2547711811385491 0.24522881886145076 +7.855758945503682 7.855758945503682 0.25411635105587094 0.245883648944129 +7.940356342085792 7.940356342085792 0.25346997175492175 0.24653002824507836 +8.024739689908062 8.024739689908062 0.25283184901933314 0.24716815098066722 +8.10891173112581 8.10891173112581 0.25220180787862645 0.2477981921213741 +8.192875139786803 8.192875139786803 0.251579692608213 0.2484203073917877 +8.276632521831253 8.276632521831253 0.25096536672939385 0.24903463327060688 +8.360186415091803 8.360186415091803 0.25035871300935975 0.2496412869906407 +8.443539257510729 8.443539257510729 0.2497594899132354 0.2502405100867646 +8.5266934904968 8.5266934904968 0.24916724575570134 0.25083275424429874 +8.609651582034244 8.609651582034244 0.24858212589743756 0.2514178741025625 +8.6924158140706 8.6924158140706 0.2480039408532913 0.2519960591467087 +8.774988428436242 8.774988428436242 0.24743251086617873 0.2525674891338212 +8.8573716268444 8.8573716268444 0.2468676659070852 0.25313233409291475 +8.939567570891152 8.939567570891152 0.24630924567506488 0.253690754324935 +9.021578382055418 9.021578382055418 0.2457570995972411 0.25424290040275876 +9.103406141698974 9.103406141698974 0.24521108682880627 0.2547889131711936 +9.185052891066439 9.185052891066439 0.2446710762530217 0.2553289237469783 +9.266520631285278 9.266520631285278 0.2441369464812178 0.2558630535187823 +9.347811323365807 9.347811323365807 0.243608585852794 0.25639141414720623 +9.428926888201191 9.428926888201191 0.24308589243521872 0.2569141075647816 +9.509869206567439 9.509869206567439 0.2425687740240295 0.257431225975971 +9.59064011912341 9.59064011912341 0.24205714814283275 0.25794285185716775 +9.67124142641081 9.67124142641081 0.2415509420433041 0.25844905795669637 +9.751674888854197 9.751674888854197 0.24105009270518804 0.25894990729481226 +9.831942212037598 9.831942212037598 0.24055450102217293 0.25944549897782704 +9.912045024569286 9.912045024569286 0.2400636472940919 0.25993635270590804 +9.991985165537221 9.991985165537221 0.23957782084988422 0.26042217915011573 +10.071764235805338 10.071764235805338 0.23909690675253303 0.2609030932474669 +10.151383813077107 10.151383813077107 0.238620794862028 0.261379205137972 +10.230845451895533 10.230845451895533 0.23814937983536505 0.26185062016463506 +10.310150683643148 10.310150683643148 0.23768256112654643 0.26231743887345366 +10.389301016542026 10.389301016542026 0.237220242986581 0.2627797570134192 +10.468297935653771 10.468297935653771 0.23676233446348374 0.26323766553651645 +10.54714290287952 10.54714290287952 0.23630874940227614 0.2636912505977241 +10.625837356959943 10.625837356959943 0.23585940644498601 0.2641405935550141 +10.704382713475246 10.704382713475246 0.23541422903064763 0.26458577096935254 +10.782780364845165 10.782780364845165 0.2349731453953015 0.26502685460469855 +10.861031680328976 10.861031680328976 0.23453608857199462 0.26546391142800535 +10.93913800602548 10.93913800602548 0.23410299639078033 0.26589700360921953 +11.01710066487302 11.01710066487302 0.23367381147871832 0.2663261885212814 +11.094920956649466 11.094920956649466 0.23324848125987474 0.266751518740125 +11.172600157972223 11.172600157972223 0.232826957955322 0.2671730420446777 +11.250139522298234 11.250139522298234 0.23240919858313888 0.26759080141686076 +11.32754027992397 11.32754027992397 0.23199516495841072 0.26800483504158895 +11.40480363798544 11.40480363798544 0.23158482369322902 0.26841517630677075 +11.48193078045818 11.48193078045818 0.23117814619669175 0.26882185380330814 +11.558922774884893 11.558922774884893 0.23077477867122995 0.26922522132877 +11.635780907275954 11.635780907275954 0.23037476062020124 0.26962523937979876 +11.712506353948058 11.712506353948058 0.2299781745059761 0.2700218254940239 +11.789100209090655 11.789100209090655 0.22958495440689392 0.2704150455931061 +11.865563553747156 11.865563553747156 0.2291950367100445 0.2708049632899555 +11.941897455814933 11.941897455814933 0.22880836011126782 0.27119163988873224 +12.018102970045309 12.018102970045309 0.2284248656151541 0.27157513438484593 +12.094181138043568 12.094181138043568 0.228044496535044 0.271955503464956 +12.170132988268952 12.170132988268952 0.2276671984930284 0.27233280150697164 +12.245959536034656 12.245959536034656 0.22729291941994836 0.27270708058005166 +12.321661783507839 12.321661783507839 0.2269216095553955 0.2730783904446046 +12.397240719709615 12.397240719709615 0.22655322144771137 0.27344677855228866 +12.472697320515051 12.472697320515051 0.22618770995398804 0.273812290046012 +12.548032548653179 12.548032548653179 0.22582503224006786 0.27417496775993216 +12.623247353706985 12.623247353706985 0.2254651477805434 0.2745348522194566 +12.69834267211341 12.69834267211341 0.22510801835875754 0.2748919816412425 +12.773319427163358 12.773319427163358 0.22475360806680345 0.27524639193319655 +12.848178529001684 12.848178529001684 0.22440188330552455 0.2755981166944755 +12.922920874627206 12.922920874627206 0.22405281278451464 0.2759471872154854 +12.997547347892697 12.997547347892697 0.2237063675221177 0.27629363247788236 +13.072058819504889 13.072058819504889 0.22336252084542804 0.27663747915457193 +13.146456147024468 13.146456147024468 0.2230212483902903 0.2769787516097097 +13.220740174866084 13.220740174866084 0.22268252810129935 0.27731747189870065 +13.294911734298335 13.294911734298335 0.2223463402318004 0.27765365976819967 +13.368971643443787 13.368971643443787 0.22201266734388883 0.2779873326561112 +13.442920707278954 13.442920707278954 0.22168149430841047 0.2783185056915896 +13.516759680417342 13.516759680417342 0.22135270341256896 0.2786472965874311 +13.590489330335213 13.590489330335213 0.22102603016710187 0.2789739698328982 +13.664110561740953 13.664110561740953 0.22070171553505355 0.27929828446494653 +13.73762412586433 13.73762412586433 0.22037972137873316 0.27962027862126687 +13.811030766408948 13.811030766408948 0.22006001067334283 0.2799399893266572 +13.884331219552216 13.884331219552216 0.2197425475069775 0.2802574524930225 +13.95752621394539 13.95752621394539 0.21942729708062503 0.2805727029193749 +14.030616470713532 14.030616470713532 0.21911422570816616 0.2808857742918338 +14.103602703455532 14.103602703455532 0.2188033008163744 0.2811966991836255 +14.176485618244108 14.176485618244108 0.21849449094491624 0.2815055090550837 +14.249265913625795 14.249265913625795 0.21818776574635096 0.28181223425364893 +14.321944280620956 14.321944280620956 0.21788309598613076 0.28211690401386913 +14.394521402723774 14.394521402723774 0.2175804535426007 0.28241954645739925 +14.466997955902258 14.466997955902258 0.21727981140699867 0.28272018859300124 +14.539374608598235 14.539374608598235 0.2169811436834555 0.28301885631654444 +14.611652021727368 14.611652021727368 0.21668442558899487 0.28331557441100513 +14.68383084867913 14.68383084867913 0.21638963345353324 0.28361036654646676 +14.755911735316818 14.755911735316818 0.21609674471988002 0.28390325528012 +14.827895319977566 14.827895319977566 0.21580573794373753 0.2841942620562625 +14.899782233472315 14.899782233472315 0.21551659279370086 0.2844834072062993 +14.971573099085841 14.971573099085841 0.21522929005125804 0.2847707099487421 +15.043268532576738 15.043268532576738 0.21494381161078993 0.28505618838921026 +15.11486914217742 15.11486914217742 0.2146601404795703 0.28533985952042995 +15.186375528594136 15.186375528594136 0.2143782607777657 0.28562173922223455 +15.257788285006946 15.257788285006946 0.2140981577384357 0.28590184226156456 +15.32910799706974 15.32910799706974 0.2138198177075326 0.28618018229246767 +15.400335242910229 15.400335242910229 0.21354322814390164 0.28645677185609864 +15.47147059312995 15.47147059312995 0.21326837761928089 0.2867316223807193 +15.54251461080426 15.54251461080426 0.21299525581830134 0.28700474418169886 +15.61346785148234 15.61346785148234 0.2127238535384868 0.28727614646151334 +15.684330863187201 15.684330863187201 0.21245416269025397 0.2875458373097461 +15.755104101768692 15.755104101768692 0.21218593177742093 0.28781406822257916 +15.82578822024094 15.82578822024094 0.2119192716078549 0.2880807283921452 +15.896383775228518 15.896383775228518 0.21165422932597158 0.2883457706740285 +15.966891284268723 15.966891284268723 0.2113907830171038 0.2886092169828963 +16.03731126050781 16.03731126050781 0.21112891131667308 0.288871088683327 +16.107644212701008 16.107644212701008 0.21086859341018988 0.28913140658981007 +16.17789064521252 16.17789064521252 0.21060980903325355 0.28939019096674634 +16.24805105801551 16.24805105801551 0.210352538471552 0.28964746152844784 +16.31812594669212 16.31812594669212 0.21009676256086224 0.28990323743913754 +16.388115802433457 16.388115802433457 0.2098424626870499 0.2901575373129498 +16.458021112039603 16.458021112039603 0.20958962078606957 0.29041037921393004 +16.527842357919603 16.527842357919603 0.20933821934396454 0.29066178065603504 +16.597580018091477 16.597580018091477 0.20908824139686702 0.2909117586031325 +16.667234566182213 16.667234566182213 0.20883967053099803 0.29116032946900156 +16.73680647142777 16.73680647142777 0.2085924908826673 0.29140750911733226 +16.80629619867307 16.80629619867307 0.20834668713827348 0.29165331286172613 +16.87570420837202 16.87570420837202 0.20810224453430406 0.29189775546569563 +16.945030956587484 16.945030956587484 0.2078591488573353 0.29214085114266447 +17.0142768949913 17.0142768949913 0.20761738644403224 0.2923826135559676 +17.083442470864277 17.083442470864277 0.20737694418114883 0.2926230558188512 +17.15252812709619 17.15252812709619 0.20713780950552782 0.2928621904944723 +17.22153430218579 17.22153430218579 0.20689997040410069 0.2931000295958996 +17.290461430240793 17.290461430240793 0.20666341541388786 0.2933365845861126 +17.359309940977884 17.359309940977884 0.2064281336219985 0.29357186637800214 +17.42808025972272 17.42808025972272 0.20619411466563065 0.29380588533437013 +17.49677280740993 17.49677280740993 0.2059613487320711 0.2940386512679299 +17.565388000583113 17.565388000583113 0.20572982655869548 0.29427017344130557 +17.633926251394833 17.633926251394833 0.20549953943296834 0.29450046056703283 +17.702387967606622 17.702387967606622 0.20527047919244287 0.2947295208075583 +17.770773552589 17.770773552589 0.20504263822476126 0.29495736177523996 +17.839083405321432 17.839083405321432 0.2048160094676544 0.2951839905323468 +17.90731792039237 17.90731792039237 0.20459058640894207 0.295409413591059 +17.975477487999225 17.975477487999225 0.2043663630865328 0.2956336369134681 +18.04356249394839 18.04356249394839 0.204143334088424 0.2958566659115766 +18.111573319655214 18.111573319655214 0.20392149455270184 0.29607850544729836 +18.179510281197167 18.179510281197167 0.20370070285577335 0.29629929714422665 +18.247373808816153 18.247373808816153 0.20348096137760555 0.2965190386223944 +18.315164325065894 18.315164325065894 0.20326235275929164 0.2967376472407084 +18.38288219241996 18.38288219241996 0.20304486397112745 0.29695513602887247 +18.45052777074848 18.45052777074848 0.20282848226106429 0.29717151773893563 +18.518101417318107 18.518101417318107 0.2026131951547085 0.29738680484529145 +18.585603486792053 18.585603486792053 0.20239899045532184 0.2976010095446781 +18.653034331230067 18.653034331230067 0.20218585624382124 0.29781414375617876 +18.720394300088433 18.720394300088433 0.20197378087877893 0.298026219121221 +18.787683740219997 18.787683740219997 0.20176275299642243 0.29823724700357757 +18.854902995874124 18.854902995874124 0.20155276151063448 0.29844723848936555 +18.922052408696743 18.922052408696743 0.2013437956129531 0.29865620438704693 +18.989132317730313 18.989132317730313 0.20113584477257151 0.2988641552274285 +19.056143059413845 19.056143059413845 0.20092889873633835 0.2990711012636617 +19.123084967582887 19.123084967582887 0.2007229475287573 0.2992770524712427 +19.189958373469533 19.189958373469533 0.20051798145198754 0.2994820185480125 +19.25676360570242 19.25676360570242 0.20031399108584336 0.2996860089141567 +19.32350099030673 19.32350099030673 0.2001109672877943 0.2998890327122058 +19.390170850704177 19.390170850704177 0.19990890119296525 0.30009109880703483 +19.456773507713038 19.456773507713038 0.19970778421413635 0.30029221578586374 +19.523309279548112 19.523309279548112 0.1995076080417429 0.30049239195825717 +19.589778481820755 19.589778481820755 0.19930836464387558 0.3006916353561245 +19.656181427538865 19.656181427538865 0.19911004626628026 0.3008899537337197 +19.72251842710688 19.72251842710688 0.19891264543235818 0.3010873545676418 +19.788789788325776 19.788789788325776 0.19871615494316566 0.30128384505683425 +19.85499581639308 19.85499581639308 0.19852056787741448 0.30147943212258543 +19.921136813902862 19.921136813902862 0.19832587759147152 0.30167412240852837 +19.98721308084573 19.98721308084573 0.198132077719359 0.3018679222806408 +20.053224914608844 20.053224914608844 0.19793916217275442 0.30206083782724535 +20.11917260997589 20.11917260997589 0.19774712514099052 0.3022528748590092 +20.18505645912712 20.18505645912712 0.19755596109105528 0.30244403890894445 +20.25087675163931 20.25087675163931 0.19736566476759193 0.30263433523240774 +20.31663377448579 20.31663377448579 0.19717623119289904 0.30282376880710066 +20.382327812036426 20.382327812036426 0.19698765566693036 0.3030123443330693 +20.447959146057634 20.447959146057634 0.19679993376729493 0.3032000662327047 +20.513528055712367 20.513528055712367 0.19661306134925713 0.3033869386507425 +20.579034817560125 20.579034817560125 0.19642703454573646 0.30357296545426327 +20.644479705556954 20.644479705556954 0.19624184976730774 0.303758150232692 +20.709862991055434 20.709862991055434 0.19605750370220112 0.3039424962977987 +20.775184942804696 20.775184942804696 0.1958739933163019 0.304126006683698 +20.840445815593938 20.840445815593938 0.19569129686228035 0.3043087031377196 +20.905645811580143 20.905645811580143 0.19550925789015677 0.3044907421098432 +20.97078530500235 20.97078530500235 0.19532802115830142 0.30467197884169855 +21.035864552341764 21.035864552341764 0.1951475787785457 0.3048524212214543 +21.10088380851495 21.10088380851495 0.19496792300542296 0.30503207699457696 +21.165843326873883 21.165843326873883 0.19478904623616855 0.3052109537638314 +21.23074335920591 21.23074335920591 0.1946109410107198 0.3053890589892802 +21.295584155733767 21.295584155733767 0.19443360001171608 0.30556639998828394 +21.360365965115584 21.360365965115584 0.19425701606449872 0.3057429839355013 +21.42508903444486 21.42508903444486 0.194081182137111 0.30591881786288905 +21.489753609250503 21.489753609250503 0.1939060913402983 0.3060939086597018 +21.55435993349679 21.55435993349679 0.19373173692750786 0.3062682630724923 +21.618908249583384 21.618908249583384 0.193558112294889 0.30644188770511116 +21.68339879834535 21.68339879834535 0.193385210981293 0.3066147890187072 +21.747831819053125 21.747831819053125 0.19321302666827314 0.3067869733317271 +21.812207549412538 21.812207549412538 0.19304155318008467 0.3069584468199156 +21.8765262255648 21.8765262255648 0.1928707844836849 0.3071292155163154 +21.940788082086513 21.940788082086513 0.19270071468873304 0.3072992853112672 +22.00499335198966 22.00499335198966 0.19253133804759037 0.3074686619524099 +22.069142266721617 22.069142266721617 0.19236264895532007 0.30763735104468015 +22.13323505616514 22.13323505616514 0.19219464194968744 0.3078053580503128 +22.19727194863838 22.19727194863838 0.19202731171115967 0.30797268828884056 +22.261253170894868 22.261253170894868 0.19186065306290595 0.30813934693709427 +22.325178948123508 22.325178948123508 0.1916946609707975 0.30830533902920265 +22.38904950394862 22.38904950394862 0.1915293305434075 0.30847066945659257 +22.452865060429886 22.452865060429886 0.19136465703201117 0.3086353429679889 +22.51662583806238 22.51662583806238 0.19120063583058566 0.30879936416941434 +22.580332055776577 22.580332055776577 0.19103726247581013 0.3089627375241898 +22.643983930938315 22.643983930938315 0.1908745326470658 0.30912546735293406 +22.707581679348827 22.707581679348827 0.19071244216643574 0.30928755783356404 +22.771125515244744 22.771125515244744 0.19055098699870515 0.30944901300129457 +22.834615651298066 22.834615651298066 0.19039016325136118 0.30960983674863846 +22.89805229861619 22.89805229861619 0.1902299671745929 0.30977003282540666 +22.961435666741895 22.961435666741895 0.19007039516129146 0.309929604838708 +23.02476596365335 23.02476596365335 0.18991144374705 0.31008855625294945 +23.088043395764107 23.088043395764107 0.18975310961016353 0.3102468903898358 +23.1512681679231 23.1512681679231 0.18959538957162927 0.3104046104283701 +23.21444048341466 23.21444048341466 0.18943828059514622 0.31056171940485305 +23.277560543958494 23.277560543958494 0.18928177978711547 0.3107182202128838 +23.340628549709706 23.340628549709706 0.1891258843966401 0.3108741156033592 +23.403644699258773 23.403644699258773 0.18897059181552517 0.3110294081844741 +23.46660918963157 23.46660918963157 0.18881589957827774 0.31118410042172157 +23.52952221628935 23.52952221628935 0.18866180536210686 0.3113381946378926 +23.59238397312876 23.59238397312876 0.18850830698692353 0.311491693013076 +23.655194652481825 23.655194652481825 0.1883554024153408 0.3116445975846588 +23.71795444511596 23.71795444511596 0.1882030897526737 0.3117969102473261 +23.78066354023397 23.78066354023397 0.18805136724693922 0.31194863275306073 +23.843322073658186 23.843322073658186 0.1879001497717451 0.3120998502282549 +23.905930271015247 23.905930271015247 0.1877494457658942 0.31225055423410586 +23.968488360212426 23.968488360212426 0.18759930879524986 0.31240069120475017 +24.03099652301326 24.03099652301326 0.18744973411161472 0.31255026588838525 +24.09345494023028 24.09345494023028 0.18730071704123655 0.3126992829587634 +24.155863791724983 24.155863791724983 0.1871522529848077 0.3128477470151923 +24.218223256407857 24.218223256407857 0.18700433741746564 0.3129956625825343 +24.280533512238353 24.280533512238353 0.18685696588879264 0.3131430341112073 +24.342794736224924 24.342794736224924 0.18671013402281583 0.31328986597718406 +24.40500710442499 24.40500710442499 0.18656383751800737 0.3134361624819926 +24.46717079194495 24.46717079194495 0.1864180721472841 0.3135819278527158 +24.52928597294018 24.52928597294018 0.18627283375800782 0.31372716624199204 +24.591352820615047 24.591352820615047 0.18612811827198536 0.3138718817280145 +24.65337150722289 24.65337150722289 0.1859839216854683 0.3140160783145316 +24.715342204066022 24.715342204066022 0.18584024006915303 0.3141597599308468 +24.777265081495745 24.777265081495745 0.18569706956818108 0.31430293043181884 +24.839140308912338 24.839140308912338 0.1855544064021386 0.31444559359786123 +24.90096805476506 24.90096805476506 0.1854122468650568 0.314587753134943 +24.962748486552144 24.962748486552144 0.18527058732541174 0.31472941267458815 +25.02448177082081 25.02448177082081 0.1851294242261243 0.3148705757738755 +25.086168073167258 25.086168073167258 0.18498875408456036 0.3150112459154395 +25.147807558236657 25.147807558236657 0.1848485734925306 0.3151514265074693 +25.209400389723164 25.209400389723164 0.18470887911629055 0.3152911208837093 +25.270946730369918 25.270946730369918 0.18456966769654082 0.3154303323034591 +25.332446741969033 25.332446741969033 0.18443093604842667 0.31556906395157325 +25.393900585361596 25.393900585361596 0.18429268106153843 0.3157073189384615 +25.455308420437696 25.455308420437696 0.18415489969991122 0.3158451003000887 +25.51667040613637 25.51667040613637 0.18401758900202503 0.3159824109979749 +25.577986700445663 25.577986700445663 0.18388074608080485 0.3161192539191951 +25.63925746040258 25.63925746040258 0.18374436812362047 0.3162556318763795 +25.700482842093113 25.700482842093113 0.18360845239228657 0.31639154760771343 +25.76166300065224 25.76166300065224 0.18347299622306276 0.31652700377693727 +25.82279809026391 25.82279809026391 0.1833379970266535 0.31666200297334657 +25.883888264161055 25.883888264161055 0.1832034522882081 0.316796547711792 +25.944933674625577 25.944933674625577 0.1830693595673209 0.3169306404326792 +26.005934472988375 26.005934472988375 0.18293571649803098 0.3170642835019692 +26.066890809629317 26.066890809629317 0.18280252078882236 0.3171974792111778 +26.127802833977253 26.127802833977253 0.18266977022262396 0.3173302297773762 +26.188670694510005 26.188670694510005 0.18253746265680962 0.31746253734319063 +26.249494538754387 26.249494538754387 0.18240559602319795 0.3175944039768023 +26.31027451328619 26.31027451328619 0.18227416832805257 0.3177258316719477 +26.37101076373017 26.37101076373017 0.18214317765208196 0.3178568223479183 +26.43170343476008 26.43170343476008 0.18201262215043942 0.3179873778495608 +26.492352670098654 26.492352670098654 0.18188250005272324 0.31811749994727706 +26.55295861251759 26.55295861251759 0.18175280966297647 0.3182471903370238 +26.61352140383757 26.61352140383757 0.18162354935968722 0.31837645064031306 +26.674041184928267 26.674041184928267 0.1814947175957883 0.31850528240421194 +26.734518095708324 26.734518095708324 0.18136631289865757 0.3186336871013427 +26.794952275145363 26.794952275145363 0.18123833387011765 0.3187616661298826 +26.855343861255992 26.855343861255992 0.18111077918643614 0.3188892208135641 +26.91569299110579 26.91569299110579 0.1809836475983255 0.3190163524016747 +26.97599980080932 26.97599980080932 0.180856937930943 0.31914306206905707 +27.036264425530128 27.036264425530128 0.18073064908389094 0.3192693509161091 +27.09648698502321 27.09648698502321 0.1806047617236408 0.31939523827635924 +27.15666756784172 27.15666756784172 0.18047919309950483 0.3195208069004952 +27.216806390788314 27.216806390788314 0.18035403095993288 0.3196459690400672 +27.276903584103362 27.276903584103362 0.18022927237700131 0.31977072762299874 +27.33695927744359 27.33695927744359 0.18010491446212243 0.31989508553787765 +27.396973599882102 27.396973599882102 0.17998095436604422 0.3200190456339558 +27.45694667990835 27.45694667990835 0.17985738927885084 0.3201426107211492 +27.516878645428157 27.516878645428157 0.17973421642996212 0.32026578357003793 +27.576769623763703 27.576769623763703 0.17961143308813385 0.32038856691186623 +27.636619741653547 27.636619741653547 0.17948903656145768 0.3205109634385424 +27.69642912525259 27.69642912525259 0.1793670241973611 0.3206329758026389 +27.75619790013212 27.75619790013212 0.17924539338260767 0.32075460661739236 +27.815926191279765 27.815926191279765 0.17912414154329664 0.3208758584567034 +27.875614123099528 27.875614123099528 0.17900326614486317 0.32099673385513683 +27.935261819411785 27.935261819411785 0.17888276469207837 0.32111723530792163 +27.994869403453258 27.994869403453258 0.1787626347290492 0.3212373652709507 +28.05443699787704 28.05443699787704 0.17864287383921854 0.32135712616078144 +28.11396472475259 28.11396472475259 0.17852347964536502 0.32147652035463486 +28.17345270556573 28.17345270556573 0.17840444980960338 0.3215955501903965 +28.232901061218644 28.232901061218644 0.17828578203338408 0.3217142179666158 +28.292309912029868 28.292309912029868 0.17816747405749342 0.32183252594250644 +28.351679377734328 28.351679377734328 0.17804952366205376 0.3219504763379461 +28.411009577483288 28.411009577483288 0.17793192866652321 0.32206807133347665 +28.470300629844388 28.470300629844388 0.17781468692969582 0.322185313070304 +28.52955265280163 28.52955265280163 0.17769779634970145 0.3223022036502984 +28.588765763755383 28.588765763755383 0.177581254864006 0.3224187451359939 +28.647940079522368 28.647940079522368 0.17746506044941104 0.3225349395505888 +28.70707571633568 28.70707571633568 0.1773492111220542 0.3226507888779456 +28.766172789844774 28.766172789844774 0.17723370493740895 0.3227662950625909 +28.82523141511547 28.82523141511547 0.17711853999028457 0.3228814600097153 +28.88425170662994 28.88425170662994 0.17700371441482626 0.32299628558517357 +28.943233778286746 28.943233778286746 0.1768892263845152 0.3231107736154847 +29.002177743400786 29.002177743400786 0.17677507411216833 0.3232249258878316 +29.06108371470334 29.06108371470334 0.1766612558499385 0.3233387441500614 +29.119951804342037 29.119951804342037 0.1765477698893145 0.32345223011068547 +29.178782123880882 29.178782123880882 0.17643461456112092 0.3235653854388791 +29.237574784300236 29.237574784300236 0.1763217882355183 0.3236782117644817 +29.296329895996823 29.296329895996823 0.17620928932200305 0.323790710677997 +29.355047568783736 29.355047568783736 0.17609711626940744 0.3239028837305926 +29.413727911890433 29.413727911890433 0.17598526756589966 0.32401473243410045 +29.472371033962723 29.472371033962723 0.1758737417389837 0.3241262582610164 +29.53097704306279 29.53097704306279 0.17576253735549957 0.32423746264450054 +29.589546046669177 29.589546046669177 0.17565165302162308 0.3243483469783771 +29.6480781516768 29.6480781516768 0.1755410873828659 0.3244589126171343 +29.706573464396918 29.706573464396918 0.17543083912407562 0.3245691608759246 +29.765032090557174 29.765032090557174 0.17532090696943572 0.3246790930305645 +29.823454135301564 29.823454135301564 0.17521128968246555 0.3247887103175347 +29.881839703190444 29.881839703190444 0.17510198606602037 0.32489801393397993 +29.94018889820055 29.94018889820055 0.17499299496229123 0.3250070050377091 +29.99850182372496 29.99850182372496 0.17488431525280523 0.3251156847471951 +30.056778582573138 30.056778582573138 0.17477594585842518 0.3252240541415751 +30.115019276970887 30.115019276970887 0.1746678857393499 0.32533211426065045 +30.173224008560396 30.173224008560396 0.17456013389511402 0.3254398661048863 +30.2313928784002 30.2313928784002 0.17445268936458808 0.32554731063541226 +30.289525986965213 30.289525986965213 0.17434555122597853 0.3256544487740218 +30.3476234341467 30.3476234341467 0.1742387185968276 0.32576128140317273 +30.405685319252296 30.405685319252296 0.17413219063401356 0.32586780936598675 +30.463711741005994 30.463711741005994 0.1740259665337504 0.3259740334662498 +30.52170279754816 30.52170279754816 0.17392004553158819 0.32607995446841204 +30.57965858643551 30.57965858643551 0.1738144269024127 0.32618557309758744 +30.63757920464114 30.63757920464114 0.1737091099604456 0.3262908900395544 +30.695464748554496 30.695464748554496 0.17360409405924462 0.32639590594075535 +30.753315248435612 30.753315248435612 0.1734992972706294 0.3265007027293706 +30.811130875179064 30.811130875179064 0.17339478194491637 0.32660521805508363 +30.86891173301919 30.86891173301919 0.17329055728036988 0.3267094427196302 +30.92665791531268 30.92665791531268 0.1731866214830038 0.32681337851699627 +30.984369515055153 30.984369515055153 0.17308297277984155 0.3269170272201585 +31.042046624881124 31.042046624881124 0.1729796094189164 0.3270203905810837 +31.099689337063996 31.099689337063996 0.17287652966927106 0.327123470330729 +31.1572977435161 31.1572977435161 0.17277373182095782 0.3272262681790422 +31.21487193578865 31.21487193578865 0.17267121418503883 0.3273287858149613 +31.272412005071764 31.272412005071764 0.17256897509358565 0.32743102490641446 +31.329918042194475 31.329918042194475 0.17246701289967953 0.3275329871003205 +31.3873901376247 31.3873901376247 0.17236532597741142 0.3276346740225886 +31.44482838146928 31.44482838146928 0.17226391272188182 0.3277360872781182 +31.502232863473942 31.502232863473942 0.1721627715492009 0.3278372284507991 +31.559603673023314 31.559603673023314 0.17206190089648846 0.32793809910351157 +31.61694089914095 31.61694089914095 0.17196129922187386 0.32803870077812614 +31.67424463048928 31.67424463048928 0.17186096500449619 0.3281390349955038 +31.73151495536964 31.73151495536964 0.17176089674450412 0.3282391032554958 +31.788751961722287 31.788751961722287 0.17166109296305598 0.328338907036944 +31.84595573712636 31.84595573712636 0.1715615522023196 0.3284384477976804 +31.903126368799917 31.903126368799917 0.17146227302547262 0.3285377269745273 +31.960263943599898 31.960263943599898 0.1713632540167022 0.3286367459832978 +32.01736854802217 32.01736854802217 0.17126449378120515 0.3287355062187948 +32.074440268201485 32.074440268201485 0.17116599094518795 0.328834009054812 +32.1314791899115 32.1314791899115 0.17106774415586662 0.3289322558441333 +32.18848539856478 32.18848539856478 0.17096975208146686 0.329030247918533 +32.24545897921279 32.24545897921279 0.17087201341122407 0.32912798658877584 +32.3024000165459 32.3024000165459 0.17077452685538316 0.32922547314461675 +32.35930859489337 32.35930859489337 0.17067729114519872 0.32932270885480114 +32.41618479822339 32.41618479822339 0.17058030503293498 0.32941969496706486 +32.47302871014301 32.47302871014301 0.17048356729186578 0.3295164327081341 +32.52984041389824 32.52984041389824 0.17038707671627462 0.32961292328372527 +32.58661999237393 32.58661999237393 0.17029083212145457 0.3297091678785453 +32.64336752809388 32.64336752809388 0.17019483234370836 0.32980516765629153 +32.70008310322076 32.70008310322076 0.17009907624034837 0.3299009237596515 +32.756766799556175 32.756766799556175 0.17000356268969657 0.32999643731030337 +32.8134186985406 32.8134186985406 0.16990829059108462 0.3300917094089153 +32.870038881253436 32.870038881253436 0.1698132588648537 0.3301867411351462 +32.92662742841298 32.92662742841298 0.16971846645235475 0.3302815335476452 +32.98318442037641 32.98318442037641 0.16962391231594828 0.3303760876840517 +33.03970993713985 33.03970993713985 0.16952959543900437 0.3304704045609956 +33.09620405833829 33.09620405833829 0.16943551482590283 0.3305644851740972 +33.152666863245635 33.152666863245635 0.169341669502033 0.330658330497967 +33.209098430774695 33.209098430774695 0.16924805851379393 0.33075194148620607 +33.265498839477175 33.265498839477175 0.16915468092859431 0.33084531907140574 +33.3218681675437 33.3218681675437 0.16906153583485237 0.3309384641651477 +33.37820649280377 33.37820649280377 0.168968622341996 0.33103137765800406 +33.43451389272581 33.43451389272581 0.1688759395804628 0.33112406041953735 +33.490790444417144 33.490790444417144 0.16878348670169988 0.33121651329830026 +33.54703622462399 33.54703622462399 0.16869126287816405 0.3313087371218361 +33.603251309731455 33.603251309731455 0.16859926730332173 0.3314007326966784 +33.65943577576359 33.65943577576359 0.16850749919164898 0.3314925008083512 +33.71558969838332 33.71558969838332 0.16841595777863147 0.3315840422213687 +33.77171315289248 33.77171315289248 0.16832464232076452 0.33167535767923567 +33.82780621423179 33.82780621423179 0.16823355209555307 0.33176644790444715 +33.8838689569809 33.8838689569809 0.16814268640151167 0.3318573135984886 +33.93990145535835 33.93990145535835 0.16805204455816453 0.33194795544183575 +33.99590378322158 33.99590378322158 0.16796162590604546 0.3320383740939548 +34.05187601406692 34.05187601406692 0.16787142980669795 0.33212857019330233 +34.107818221029646 34.107818221029646 0.16778145564267502 0.3322185443573253 +34.163730476883885 34.163730476883885 0.1676917028175394 0.33230829718246085 +34.2196128540427 34.2196128540427 0.16760217075586348 0.3323978292441368 +34.275465424558035 34.275465424558035 0.16751285890322917 0.3324871410967711 +34.331288260120765 34.331288260120765 0.1674237667262281 0.3325762332737721 +34.38708143206064 34.38708143206064 0.16733489371246146 0.33266510628753876 +34.442845011346314 34.442845011346314 0.16724623937054015 0.33275376062946005 +34.498579068585364 34.498579068585364 0.1671578032300846 0.33284219676991555 +34.554283674024255 34.554283674024255 0.167069584841725 0.33293041515827515 +34.60995889754835 34.60995889754835 0.166981583777101 0.3330184162228991 +34.665604808681934 34.665604808681934 0.16689379962886203 0.333106200371138 +34.72122147431745 34.72122147431745 0.16680619822923493 0.333193801770765 +34.776808965658866 34.776808965658866 0.1667187845819106 0.33328121541808936 +34.83236735351367 34.83236735351367 0.16663157745653545 0.3333684225434646 +34.887896706691464 34.887896706691464 0.16654457616437604 0.33345542383562404 +34.943397093715404 34.943397093715404 0.16645777997819933 0.33354222002180084 +34.99886858282214 34.99886858282214 0.16637118813227225 0.33362881186772786 +35.05431124196186 35.05431124196186 0.16628479982236202 0.33371520017763806 +35.109725138798275 35.109725138798275 0.16619861420573598 0.333801385794264 +35.16511034070862 35.16511034070862 0.16611263040116164 0.33388736959883825 +35.22046691478366 35.22046691478366 0.16602684748890675 0.33397315251109305 +35.275794927827654 35.275794927827654 0.1659412645107391 0.3340587354892606 +35.33109444635844 35.33109444635844 0.16585588046992675 0.334144119530073 +35.38636553660734 35.38636553660734 0.1657706943312379 0.3342293056687621 From b5e570b657161b28c0314299b83c7bab2c509265 Mon Sep 17 00:00:00 2001 From: "Koch, James V" Date: Tue, 7 Nov 2023 11:53:35 -0800 Subject: [PATCH 4/5] merged with master and some minor adjustmentsin prep of paper --- examples/ODEs/figs/manifold.png | Bin 0 -> 45286 bytes examples/tutorials/part_3_node.ipynb | 180 +++++++++++++++------------ 2 files changed, 101 insertions(+), 79 deletions(-) create mode 100644 examples/ODEs/figs/manifold.png diff --git a/examples/ODEs/figs/manifold.png b/examples/ODEs/figs/manifold.png new file mode 100644 index 0000000000000000000000000000000000000000..7e15299e32f17b507d123e6d0e8957fb02dfcf0c GIT binary patch literal 45286 zcmeFac{tSH|38e#mZgMBmKIdDN+`0lubSS;mSspNW0!px5-OoxvbIPJhBS6F8ljRc z#xRyKWF5@NHjJ6M&!G3`^ZtB(-|u~2_h0vYU0jz;uQ{*tI_LR(p7Y!u&-1!}`O+B? zp>0B3TwEgO&Yrx&#l?%^;#wyzupV65Ym&2_i;LU()`=6B&z(4-aM|0#>6WV_7uTN0 zzK<#|RA1g)13_oFWZWLsKM)T+ zt+QVI^yVF>(3Yp44DGo??X{h?;tjxV9V(QYGw8=tl&23CJ;mI67|UuXHii6EXgWrH z_wKtYzrgN$8EVm9y^3*GpEge!IQI;kXyl8BBqc6bzo0)j{QkwWom2W=Z<_llYS!A? zc$6%CuJYC1;f3v23=e)ip(JP##=BAC5&K(a(t@gXRlbNYrTMQrCp0vF?cdUT&)NQX zjliZaJDQ;H97+)J_w;k|TQfjAs|VqoUEbYDg7<_im@F6nZg2v^?J zJr)wz_3R;>QaCDb$R&?q=G9ZXu>rfTaV%|*`VHwa)H%(^oPM~D2Izv1ZjQI@6$0E`-FjyO>h0iv`a5sl zzU`^2q2cfEukNp@?&0mMap1_2BO3b;Y8*VM23n~31iIh04^VUW*|pNipMFj{`Z##s z^1OY^!(D;Xul;oo-`n~-cXA%|_s_~W9RqIt>q+iDtJ4A#)Zl!haX@{)#@~H|TaR+C z>R!GT;OJ_3@|GK*8F+?)&f!Bxm)rl>H~)I#zujr^uR9MMJn)ZO|Lv>)yw%jl(ffpl z8+hhzgMaaB^|}B4@AT)YLoC)~2{nkmyRqz)` z8Rv)l9{6X^%3scBXG7QIPexo^MqKAk9=jUAJ>DZ+5rQw-&uX!GeSGxvv-5DQI_s^%pxVU+E1;iDM{{E1@KRjbI zMyURS=RYnlfB&9$Gp1tWe_wyF`7(Xq!Q4AL|JBWEf0yaM<^HYn)vJ517?F`*KM6hf zucsT4>x2Iu%HJQ-&vHkicDC-@^B-dc4I(wD|2cy&uJE0Fn=ubABGdnSs9*y8|9$oU zgA0N*>E5UT~FHxf1!>Fq`wY?{S3-3LLUb+6y;U*r9$d z%xEi*@p{5R-jl~xsQ1YRka}Y4PeUHwD=Y0XzJ|fX6)wLsdioiCR{Yq;753yxT&BDH zTYp;W@DOSjDb?sK=#(qGW@7*ju~c`v8gxDy6Yz)6FVl?>C9XM(OI0T-@H%O#RVk!i?(pu88ExI&U^u z;o_rnMr0Lim)0T;Squk{<^Z8SD=mWN^Zku z%vj!>fcQv>QTAu_z(bt!$}W9Fp@UV%@R3iv+a(3aWQ75Uq9 z2GA(k`oUeU@G_%pbRy2Y2QSCXBP$JN;FtUtef612KnO23zuIA>P`=V?uI<(%u5fMP zciXJHw!g)!QgTpW5B&Ml3y%SfrO%?ZP3YO>#9c<|1DqMeX$qySJoD@BblP*lYnr?Q zH&$AGPt_IKq|odXel-G?sm=i%b&I)An+oo0GT{nYU=BO3)g@gf;H z=@QQs9>iu~DJfi!+0|t&xxw0lcy4GW|Pm?p7Y&k1MSlAt~zx#cvjJSk-V~ zOlF1gm*c=gkCbi}%^L{tuTH~*w%z? zdH-A6+17TpH8pBNUsI!NYIMzJyGUNM+14C{H3wnM8(nh{)*OU22Z2{$E%dP#XIqZO ztvLv54#Jv)u;w7FWf0af2y5voZk{yrl{*OSfyW9C=JN?!B&pqNICr0S zdBU3%zc~IBgfBf!+fWCmMHH&jKg4Pa$sZx#wQLH$V|1RA$NX+kDz%cJG_rdch9m6X z+LS3ivPc~FAVB5aOBaUniDSrU#}~G`d|9v`Czg|{Fu9SZx--+xX|n32zn;8HKq*xX zyH)zqi|dXmjr#gnk2|E%PtyAe>Ka{K-dfOgy*3I#i+e(Y1K2HRqDeM>mL*!DJZ`0f z31X0drGaX7jlgrc@ubDM;_6Z7Nj$r|yk8T1}pC16JeP^9q(LDL2;~9hFdv?#rIC zI#={fXgT$3tPOFn2|-$ry$NG-LMTx)mLIkP0zrQXd|9s%krCq|B88#Ht2wtd% zX;X3vFC89eGl4Z#UZ3x&jt^ZLAo@@bkLS~7GWB!ky3eI&7aAEp#g)8CZMONTLU_QBG#imSh;?TT`f%XmFh# zj?Kif{YUJDpeJrU!Gg54aqj`?-K$864dR#S+rmCpW#-g7RX@jQm;d^Cp_($^rP1wK zEm9aEKagmw({pIM@0X1Z+eaTo3M>;f3dm)W18!e~n<~3~NA8FhlJMU3GQ8YT7%@1YuOIL?bebR_Nl_^&4m0Iw= zmkzjFnP~X_Tn|JreL$Yw z5$w{46@vQw-W_rP2<;~m^*=bJEj!a`TD(r&5UYfS(<&iuMO`Y;t)cX{@(rSJxu%>= z)LGy5MCT|;s#knq@?f*q%0jPgNu?dAlk@Lx6Pbz9nl7Z9mK^J0+`F$?(#Rt$L8dO{_1zRa`blr+9#F1T6-H(lK2zF2wzL9eELH?MRF!UkO)9BSJ! zKN$2`7`i2t9c|bamj*jShN-7~LS<~TZk_v%{{u0K06?Vm<*L6dDIYssGEfbEF|ZQ( zT6Fi1+ik`0!_jlC>d>X%3DuuHLMSt#vwdFi!PbZ8*2#a+ zCv?O;PS$wrme{n%k4C$ApChLv^+O+u7kp;~(!MfUDXVNwgQ%%?4kfr=DqD=@^ zeu6&MXhk;oloW<^s6Z4+NttYi<(3 zW<;NH%|F&bdmNuEcQUB1ajE>#XLR-#_7T>$IZ%Sj584ZYtzA&C-@hQhrLEB8vf4!x&oncVPZ09?RhBab8-*1@Qg8pfYL8sJ{B6=p->fIksdI7GX3)p@L|JP@k# z^@Z8WrsQU;h$yq}|ZIun=;x53Wn} z$UDER?61?MPa&f0du~^CT-p5zm_swWUdO|~?80rFGT%V3aEK*p1?f%8T8qUJ7MCoY zXD_9(7=8Tud*JG3!^7n%5)4-Rm$Y|!`+I4g6pW0Vy9}EYR*?J)up8Z+N4Q0KGq*B;#0klef{q9to5isfc-R(|KZ4*qHlQ?3| z1D`g(PAWp)?;fSdzDszZ_>*mMlR>rZ+!D_UI7{kfSaPP?jj+neMM^bn01;3@(=h>I^$S&70Pig4XSVJhQ{MwPYq47=U&$RfZwu> zpzO^|-4+KYlsnnH4SKULCq>rd;9=6lONV$7dG;6OpQEtJL1!p=Gdw16Tleru6&NHW1T1T|O=J*>G8HA-%JQcrsN2yNX!n()2AntaN8}l%4g1|ch0=GJg0%rbJ%95z zDs!8)GRZ{k58CrM0A|grTYLqK>Ur1hRNZcz)$V9Yibl6YqAev69*kp4gLORv8b+dB zqM`LxxEE6fjYXeU@MX8A4?ac$Ug?k1s;d*HRN{<_#wh;5*deV#^#iW7B;UR*knNkX zJoIi1ipwl>LwP8>@0w&e3mcG@JGLt`qR9E^z*h33tvX5ax4YAaSxt%w7elVO=Osyt z>Uwne;0;g50n;J>TdjzHG8*bn<`q5S z_G?DG6bt-%0wKWaCoG)JhF=|(VRNCMI}w_B=0J;Xguv+vWt6(n}$fA$#i z!iQ>YBuP@Wv|VM|YV#@cVtM?v4;BN5Q*>w_<3oVi)j|y>-Ens%mD~ANf77E@XjT~Z zcCgx7FH!XMXXh8XJmhT)3AU|GJ@DxUa^h6)P0ixzMt%P=2_JmJ9FpN5Teue<`}R<$ z12A=-PGlfgfquNKG>!oJAWnF`VpyNQ@+fs!^j_LohRc%g zch&@Y%EVJ6E-i}UhJ64n?JlLVZ1B_bmDG^xgn@XjAO0rvS160c0TYqD(cqy6t4QVW zPJjX|G*+7Z!Jz_lg$iReq}w)THqI6@HWo><+s`oH3_Pa7ojY8g8V5x)l2){;iv1NO z-z>1J8nV7Y-W&92jqOS>w+(dc2UD(6v_snE{I2H?|v%{W%T2ELfc35G&j4?^BmGKzIF0~D45v+Z(M|{}~5~3X@ z9CDq|<0t&wfjt*jEh-E_5L@4;WrrT|!3LPHSrhhR!4`*aaqE0Fr;nLiC)WW*QZrg< zwhDF314iv&J^eVr(Ns*ifWzo);)McrWS(YDta?sEHXRY%=}68fAKw(!vwrv+B-A^A z`bgdi*;uS4u^j1kc@eGZth3dwZlX^K65>*#7<$)dXfDg5A}~O;f5xMFJ$B5*%oH8$ z)PmG4-Zp~V`7?b&Q#oaGI~2hjO^C8#L;IE6-D9A~mL{m7Iw7vq&m31P?mqNFawnme zBFtn|OcV(N#gqoiMD#nz3(G9kV=o%ck2b-TDs)289}!)Ldz&cwXJqm0Hj8*kOzrho zBgeob@B96%`J*lUg~2R?Rek|o+48WQGt2X6b>!l~l`h}8i^}#cK?gK6%&-^>CN-+u@W^Z<-M6mG0~=z7HQXu; zWgm1RBj>#cmeThjR}IPKHJWKhMlxuh9pbVi>!U>S)eAFSQ^~|saVqqMcloZ~ z0a&Yrc+LYiX4enMXOYE5mfw`bZ3eX%%D&~GZ${r1bL$O1u=bRR=cHHR#sb}H0Mtv( zedG1I2y5XUQ`;`FA=!ppvgz{-1pAF_G~6p zHUm&E2a_A9t`r)nw9eIc7e?btuyM$=6-mgDISQ%vCD`boSnv12O=CqF2=%yyDt_F6 z{Cvr1XoJ6}jYF&!ZZtEMIN~(d8e7M2ZZk^=aA4@+Oc6|2z=Dcx3;XBQ#}hMKu|rdF zbbMnBhB-m>()*GmkNH)jAv$m2Rg-_dBEGXE2}dZo@>EY9-=|wDS9WmK`|V2uYmWWt z<;+_p%ExSvECNSg_()>1Lm!r_BjaS-PtOw5bDyC*cTA=Jbgl`$Al6kBI_Xm#4m?tz zi}6bM5v{3eb+1R$y2VyF9sJhe?q(K zVJjSXsQVEU>(QaZf^B9($>Vt-1GwtfU!G)<+ zr)%1_?d_0WRVe$(1)N;)EelUE)k(yy_5&ZCLwUGLct28l-J(q<>=CIxym z!Ol#rUIeUpjuYC@qkd{lPpA!=+%*NeUnh%LvZ#v-ZvK%p-{hN$BUtMO+FsBq85+$s zTg9X2EpH|KKl}mjU7x@TYt-S-KWXc+kx&s21A1S$A>C}yi{o#|FZS_QhnU%*iD<`7 zD@nm;`AQ8x{KJ^b_S1lJnv;9{gS3~rtdarT!6^w_O%C6EuRo+DYlQ5rn050=+KOvq zRrV`)7;MGHS2hx1V(^f*r^PkUqKc6>F~?_BXQ;ZFLpQD>!3-DHYOV}*( z3wpI@L=k^(x%=U{4u@(NpgGeM^mUG{EH*)n#nZ8 zU&<1Sj$a@kQbH#mHX#fu258lp^GJS3P`^YqgT&}1`V35hP@9TY=>W%Up}bc4+icmJ zPMd|qoHKmInMxCwirXHz=>hd`utMn4m^m3gWpyH=9cSt)cCVP2H95*rpjf~jsTKAl zmqZ@YA#u+=0$S8LC1ft=efu?7u4nD7O#EcH?}DWH-4I*gvv)csH0WZ2-sDE23~fRK z1HP%3-<9#G@Up{_HY2Xh1x_hDCAlUshY?Xp9+*f7a7rT~^-+Q9tkqEx&)OqV~#*+MGZ8+E$}eJ$S|my_(5+~oQ7@XbG^BHaB#(+C{o0y2Vj6;U0iI>&qU(oW zINRkJUVDjXFXXJ2$u^Vfzou+0B8rSte?O!Ba5m7)!4O@@!BY|@rs1wbgoVW>7>tY@ z8#psyzAZl1P)qM-c~i)wgaI=P63I}b4SX<%`WOey`J|eZ&v49Mj2Af)jkBNCr)i`G zyHAvuPhx^QW*s$<`Z_+tRXW%s$@9-qKj1;OjC!?VYkCz3LL!1^-VXbwMhtUmcp7^i znE%n%w?N6q&%<#(&lmFQvtgIK-P&K^%q54PlxQP`Y)#23_@Wa_wat|I9v%FkwepIY zt;X$<2{tanh0Z2i{eZ~0iL0AB+%)YKQBmq;D3bye+c2AzR`k9c8#g7As6mqe=wV z&iMy^yD${|YG7ELGwhbT34fw6-@ve+{1sQx3@13^`IJkwVJ2kQIqRfl)ylxIW_L{+ zOmb(rmuk8P+Zv6!jJw{b#{ z&VYeHy<~sZ0=X(eG&^N}g#ImC!U>LZz3d(rqhqiHV!rSFCV!+1yOq1qr=OcQ!h?Dl zjLAYsK#Qo}55`gD4V)q)QIF3me{9>^KuL_Mp0T;rjAbHyQVVLN$d7gyVoWOyve1@E zLQvD>3q)d0nTDUQSkYCh*@25I%I%3hl7KpHYHC+n%f;tzf(EBAHA#>=p zNSRnir*rDob`UsVnK$hkVH<{ecokdrmOxT(5m-vN~4OwocZ_SM;px8dweYqg&9 zRSJJd*;uEQn`9nlacq>5TRBH0&x};gT)ALus5A1JJVnf`(|+ZO5AM55S9u!WVHcs4 z;5E4cBoinP>xqi1@!*RmL7Ze~&N_{l0>glxsSGP7w;fJ%I9#Nq3C@Y)t zgV(f)IolYYex6r}9dFHFw~vY?d7k)i-U6BP@w~-C?|iE7O?*?fMF3->I9l@h4i_}A zSnwJ_9WOu(IfC*;C4G2BZmOPe3gUFEjDbf7F+nv*eRR)WJisA`-wrp6BvbFA_bY~( zu_hVRsXgH2c%&kCZdompLj$49HI9t~^=E&_Pm?c&8Ci0w?mk{UxtjI(WC|+%auZuL zcz9o}>`qz@cc%r#_nZgWk!zbD*sYop?I2@>*4ENJ9cFZ5MVCh1_tfR)aTElVa`jg> zimX`0&1RrFugK{%RzUpbzGaUDe@LQH*(iMvCwKJMo;y2M*nLeUorWj2jcnoO5m||K zZBxRH0#KSF2x+KYICW@+21ZsOT1J!_@Ju=V2MG_LSBoHcgpwLsKL5b9=fRxRltOvj9L9_1Y3%+yDMo<&p8@=AyKaP7zTV+8Oz3MJ7k(GG6-qg=EISWD6&Ogi( zS7^3a2}pVEvj#^1JmDxI#l&aZF0hZkZrf6G3WPNxQNKy+nA4zQeqljsN4UD+a^Bi^ z)Ml3%5ASIqpe)a5{|Y-LoqyS4X7dQpUJ{%3Cm0J9Wh7{&p${D>I~8W+5Pp?&|G?D} z@UMI$QVS z4t~|Lut?mSOe1iv!^=lurLM>G)hcrqax(6>sPXV_6MpxqX)|V9CXP=)e9t+KntyUG ztH5HPBHk=QyN&a`Aj@4WQ7E2QggSK9xK&52dzHwmhFDzVqiia z`&oWEhgaa?W?;d@xqju2QMY@YKeD$Om=sF8?bMURT`y?B3}Cme-v)ZSmM3cn6tUE1 zd4jLcbBvxBH?Fv-N(p5+nOXA+ysR&qmD``@t3rCC*sQoh$%J05>xxEp?|?1fd*g(t z#cgik$WxGTQE`R+JGgy1@7h@fSx#GCka%ka%m?7$rR{}lU5XS2#}xqben#(pdc~pO z@*b_i{+&iu*6q3TVGB7{3sPzv=5i=mHj}qeg_~y==P-a>GTv2hge~@{1_|8;5+W%0 zvL49L&-zzQ*IsSu0ai@G3d8}(z#9%FGyG#M z1jV=P1(uO)=c9E}HdV*%TTIf|@d{i#TV<`iqvM5bJG}kpml1%=iRD{nSgZ*d$o?}x zUQe}e@7gR>H=l3FDG?CgpWsW;w=8 zr1F3@V0RphNAPpe%*Ua^7fPp#flUXFPXG*aNfwe;FiPLevFXk!Wz=4Oec8nch<{jV zjun-A+Oqh!+BF^DrJ#5gC zr(81@Tl^PZx+B`ky;M=P@W(;>=cZs&!J=RVo`P04wja zmRGU0I}b3XB#eB&74WHJ`yY6AkfWoaOpx6HN0$k6k_#5WxoF&E`Gi!_%eOauPpR&g zh0{Kh`9Tc7xhQ)lF%Y_VrG!v9sWtQRs>Z+JvgiMW%Wj5-1RkIs%l++elkh`ZFg$2P1#~Ww_kcF!Ur%cS=7D4LnToo;j59ya6N7TvbA@yWxaD@AULQtLF z0EYnLqvL&l!t9oA!8>_56XE-RG!YaBp2~(#C;7;g^afEP2l~x>%xnS&kHpK&^lwdL z!w)ar+vRc!omgiYnQme*U&?2L7(x?2VFzNM+e4?jNTTCEvkvt74wy?hyJyxNhYV^p z`VEa{LPGAiCOaf;e@nxk^za^jRj=gSRjZQJM0_b3veQT*a@nc}uxaZEuJG#|w=lv8 zBvDY1kW-_usaCb38sPA~)Z^D-56F`(t=zY|$IY8=L+djD64fK5-s-fhSunGVf)eX; zEw=e!(4y%QJpb33$V}IYsSnjJJ`jq7KMUj1K*ljV#9-i4D^3@N(x;$@>mb3*9lfov zy}&0vonLfqXp!?h{-i939p|__`$$Q%vvOGrszO6+(2$`pWNPU1EN}c}Q z+^HvxB0p6-m1HoRwJx4y7a@X!%@b8}JmZ7!QbVZ0d>i|4`?}%c9p(O zV&Am=)0g!Jqc30e(HqY{aad96t-N?l3;%Xcqq8<#nrV`=ejCA2b|EW{jKNhgkd*^2 zPwsAKsfwU7A*lZS8YT>ko(&g*;-AmOKx5#cOT2`Vt~fm^;C2$}p>M$bNK_$)7U?-+ zAKkF{YFIOM>Y?XXE0S*gpnrmmlx@jCTwy9I^{cNT>R7A_T;z)7((si=#~AsBC!`2l zGE(~77|+Xv9A%0IH&4cjKX^Xa`Cc?v_-UTK>k0OJDBHTtn4nED48n1HclLr5Mvggh zCR(Du5>wk5x;UK{olvry0QtUN-xx|~w3s3k+L^d-U>{e3xpSVn`3!;plzb)X}?9?II}j%Ci}_digH ziq64?mYg9OXK@mPo-97;yQEsEQx36=&7{i9ZKR^njSgv zc*g@SeT+0X*DO0{CNf4}))#>T}J!JrW8){$Z zGXI7y_z|FL;>l%nIwx~f0zDMyx%9>IdDp&nFDjw^6K%HeC6Zdpcmj%8OvzC)?gEs$ zA|yo2EUsRoxVtT0{;1n@L*@Vl;pwNEnpaS}jR^^a7grr0IvDU&Vv8w#3|-N@EQTZh z2Qi%9YCUX48}kKmBISY-gxcnzxilorRIP@7Vs`MBXVvN^cx=pNgt2e0|^ zHIjWU1$6C*Zc}fK$u0Y~#2V8q?5&*(R$Mz9L(2v z;e4v2?0_9gBg@^tLSr*dJ4}TRbRC*k>*Tjkr4$>TclE*=_#Y zMJOCdPG!-M71%pwe=R8*r5{?^0dG+^Oo8a$S-a%VzOVmd$%4se!siOfd>U|am2ff` zMs%!pw`U&={}gq<<{1?}UtVa7XeuYk_9A9lruV^Z{F$?4^b|oDF;|$@P}ciFdAY2k z<8^ct2ij67Dtq-u)?~))YYSRXHH!fWx#H4(PBYa4K(^l-WNDA5+C&gPs28-HmWh;r z9JU{G;pF4VNuJcor63Q@;#QAO8=r9MHLOeUL9WeLh!8g8v00f4pu~0!2w0)>eRv# zn}V*hHYr?wwGyEE129?fE6Z9{xJf|A_cV+=YFRZMfJKHMPG%`KCDA$}S>`;5V2i)Z&# z-8|IAHlASVoZ|WWoH8DRv#_zVIFPxh+lN08b@6c09>G4oa{6~d$?>;T_faH$267&Yu_>Or3LY` zaY`4Ugl`!a?1hV%kEhi~$qznPG`6$g25^mY_3r>b_vab0K@d?Z@6`av7+=tKJFXvPM(g!sVM`k0qBI0rU) zmZ*ChC{T?$$cf4$q5HBIPkqUBFR~1{wREUuy%-_@QP>(EfB5%TPa?1(sq=E(!v^z$ z!=Y0#l|5P5>IX+EBPJygA-_*e$vIo;4XRuybrUxeS$MD zu>qbGK}PD*i!3a1@)#L_8ry?9>|2NDGKrjMwm8IqtEP$& zQ@49uW5)$lN)Dim=8DFUAA%>*gepjnY2DQ{Yox*Fc5JN78Q(@ZRH!eV#a=LEW@u0I~kDQudYxWo=wsJE4}MKdN%7}IKSQ)N>=w9Ax#TEO%|X%QgDL04I- zq4rHZL#gIPk6weEmnJDzl9jz%4O`}@@gc4gSNO5a33804(9Ozq>HtPp{e$5k0&@UZ zXa87@FEFfH(E*>}%S*F0V|DAD-0_u_sdF=#(Ovzd#I9=jxqR9b9o=dhp2MCkHBfAa zz8g=`bl;B8EMfV?s0C%>S!URm3oRCh#}U}8{8x2;A)10oR(eH^$>L8lSolTj z<(_|njQfi|mXK{YnN~lB>QFhBZcZZtm0T^Pk|Pes7u?Nx5Y82TjE9o~BPi@>0wr~J z++ZUm^j2avS4nY|-A#T&)6)BEU^6DW&=#n1vL1;!nIpXHUDuI9OlCD|QKPa;?Zu6{ zPSqkh$&2qG)X1xmoT}BmSD{_V(C~sql88?4Vf+`p0fH=l&(raz1+-ZWhs~HM$&Bn6 zsB}!2)zRt1%F8YY!+;+L3LiKQNIeXaennNrV1hpLk;Aq^FXZH*t(P8*5w1^VFJ_PB z=PnM`5NhOQwtPzQY41cc;IT4weA2dC<_!D7EE94TeHx`P;%2c>LD^3|TYTm}fpEgi z6CAJ)myk9DUjDUd{pD>Xa1Y=7~`PS~Q!h=;p1&fND^u zalcLto+29~bmonV3%B3k93Ul68;MZZrXkz7(0iy&kUHJ?Ja7?5e)k? zOE8{|N61M9cGInCtlJ|E-N6$-mXhAkOl^ERl)tYa-v{(_7K^=vPgnYYy*hjH@$Bn? zcxs9P(?3?L{pG$b#)b#_K6?zrPC_>$CcK;dTvhw^^Qf@Yf!YJ(Ppx36O25OJp^knX zKwVsPnjB^fe=Lok8GE9zKc^2*DaV;Za8QtPlNd<@Nw4$udB8rfI27)+p75S8Unyel z&F9S>`H{HpbF#%W(~vTkdQfjLM*ZPdY+kX`Ro3Gki&Gl`^qcd<;Mh|G=)HMv3RZ`3 zTnK8oI2E61(0Ln_vEf0HRtjLYTIy_0_^INWJ#dlo;f{Q0;`sb4N-OM44Wz+s@mc0Y zc>{MctXad;Ogiw!l2%iE4fOT)BA^4GCNdU)WmAgk!$0F$b{QROHJammn1Au1dbNOW zBKXHQ85)|)sMP!dj?LZ`zOW%rSPke0t@D3~bV0TRXsBeN{zu*W6`2f4ah+1aJ zzGq%SP{PS3XHdOvRJ}{o@aR!B)*UAgnPQsOxU|xlS+I2|>tnIgiSHlDlQP~{XPP6KbzhQPhmVq-Hqs78Yqq2Ic>%G;AK*B-`%1W90kQWUJ>^_d~#V)OpVnU1!=a6x&n+xR* zCDuFH{E&#{J1vQkx&|DnAMp04v;?m3pDWq%zvXCi1my$IOPu-J&5C-Rz}x@605&-l z5r#`ox>?aZ>`(uZE|LKy16(!OP8IfD5>)TME5`r7sxd4IrZ&Q(dCy(-arV2 z0c13v#9}msw3I_b{zRj49EQR1{lsiya;Yg_O7^3JK1lZt3{%)vJTD&M?5-HvPk8{2 zqUdrhpZIYZK;{`PA%}q)TA;66r&$bTEfSW?v)0F&L`>FegEgE7eULNBH{TKJlr}b7{XY;Lq@WSXPEu9t)%Gyr=MTpNr}_EFG`prEi*n$vGc0%oPxn?<7)J2+$)@9N;h2#O|OZ#ph3bGa#N0R!Dr=kaG z5p~-oSj>X>6wK*aI}0zDxAbr263+0Q9(B^#fSZWaEr{_xG%&FOMo!3Y%PSj0kw+X1 z#4+&6Qgo3MC=h7ayfDn#J@gS_+w*ooXhsN{1sE3kKQm0W?Y=E{&LYeT4xkLBKKn^H zb6<1>X|9M?6TtpZS~SrwGCGf_mRT=%Fbzi-?l+%|3nG-Sw{?D+c~lW7$EFQPRM9nh zZ;doW@+%lmc6gl`^y9$$h;W-Wxdp$m*7JFkG9 z)Vo=|r0f(&Ef2?$QeQXnl$x8@lkeXY`s?AA&tW^S z-CNvztaLqhtc0k-o4eBMPKuZ+DM7B>{QX4u&Eq|q-;V}B=d+3-JwA;F#pTpqBw-94 zn)zU?l`(D$3&DDrqs9ywsf8`X&*m>_Fi_h43Q^;qSL(zHCIM`%T{~ZDU|;yOqH9&x zz!EIvDK@Oqm8rkj30RcsKhu({973V8)Q`Hf8e1XeCg&@Zt>NDka}5~-36-i9lP?{v zA+(Ru4cUESI1!!h{9nVFmD4HY;<&@tzfA>GD|ITy2Q|cWSR-dHgci}O-bc)0W)w99 z(+;zjY7B+aDrmU;dE4Lyc|!zkY22qV5zz}TbirqP_Kx8jS{385vwBzwPWW4~&d|Hv zlDriXOuRGjv~dcL3QtEH z>Lq*s{zkqJf%k*=3S6u6Oh?)JSsrFqQbok{XPQ3_h$8Z@*E|5nVN~oqI*|ntsjHau zz0g=W(;ri<4j}ozO4jY@s2?j68h7@cwLd6#CY>7jF6G*@*DW4|E z`4mt@7LOQru;-Ktc*1*>mDx4WyY=iv6hVJ;QI~r;?X_6w{&7tKdm<)^vh)iq5A{Wy z^tBV2#@d~`$BziO_j=<5?MWf?B4`?9I8FybjLo><|H82o~}L0sL%;m^?Y8XU(X490BjdSHtFk(Pj%F(A2t}>UhNgH z$D(^S>CdZf8Ez&mHF(x4oZL1HyBQ3^u0LjHKrF&~PO*CbXlYa6r2srQz(gBVkvKNV zu%oe(t$m`qL(Yyar}p~QReJ1rwdT?i!f9H%$M zQv^Ed+dqHkvtn5C8Jq14KhL*FY~qDJw>A2%WRz}`j?y8_wa7M{tKyHGD)VB<`rj?* zx3Awn5;XHxUbaY<_tXGfgnDpW?_;ec;`PD?Y2FKzU?xq=Uv%QZ zK62~viVAOLGv^U$GPj86(zDkJE1$=d2Da9g-b>g)JCW)zr_x!7Ze8=QqGLC8 ztQoZtMlL1qK{ZyHuPjCH@b+O)qv>T)=ww`CFMd^Y9cH4a$4~uTmw#Fa?rG}GyV*+k zw$WUEfW%AJN`$#C!tFF3W6~wclc4utcl&VG_MEQ%*;D3$On$ ze!ns&FRH6)Y^>Ntux)oUAykQ;J(~U3GPZ3o$Vc|bV~Hoi^z=s+d{SVK+|3OSX0YcO(b5+H3pJ3GZTV?l$e ztSZ#Z9BXo^6HeV}xNX6(d>>n&3f>4LJcCXX#OM~|xHyVnWZK=UMac z?gRGNbCN5=azWp02RF}-+nvDM$Ws9I7pl9O2OE47cgQxL1-9YCSN3~>^(FzVx3>*W zb_`4H+Thqq1HyDygm+jB_;*q)*Brr?#6 zcl0pne~yq4c&NOL#H$w7bDjLfNfxpgQ??VpBwQ`pRp*hpU1y#kSos22wVaEWpH`8h z<>fdLpVB8B$8~`UJ9rsPZ21m_=V5&+&np5~k6Y^JYp?7=?rpb$#@;=%+NTkm`?ERR zL36d9_PJ0_aIyJ`zC6@v+^#>pU_dXJf~~7#5aJ_F&be&qp2eRH_;dE>7fEq=&8!wE zA6_0*mQh!atw>}!W}9IApP`rV+(DIKPOqLNv2U{l2{eiRN0R{1B%tWD(n>|~KFQ@K z_y4yho3{+RqoQj5F`?~XLfg&Xt{$BFTn9#sKCKLxI6o>q4l`KMhN~K*$vKPU8 z7y0ojU7N9CeMp4KuD^S^=nZ=L_3yo;Bfx{$?@zDNVBhABN9C29@qHp%@tOoAyS zfLWY9wCxXFs-n6l@Rv&|$j7v^t4HRHm>bdXsLYnXsapn`c>c2q1T;y@c)Z%=JRhgY zqyMdm5Z_`+7t-G6A5)44Q<6XP_HRzlc!4Pm|6@w>U`mE@r&nvb_iY}T2IOt}2YLNL z6aN#t{?$t$=w;*|y_AComA_tniE_9Q-*qtD{bm1{w2}gSY-kw2A{<5;JO_YC?dkb< zk-9A*4)>j&cKIWx$g0yaZf!voM@sxAh(lI?XA$*!HiG6)!M&utC5{6_h&-K)k}XS@lZp7zK!%f@z1C& zz^E-g)~=r6kS!$+H|+_n`SS{10RhaxTX!8-splvtfcZX_>9Q)8otwqs4Njz-S1aTA zY7K@J7@-=!I;`VhSf`RC!JC#jL%C>WMALHfn*MV@>kF_@Uc5Sde3d*Ssz5$2-UQC| za_2_QKUWM4GKjG8FCzw zA{22lJIRpo;Nl#^Iq%xfc}_q2yr1{|=l$#bbpN`Kvs-(uwbxpE?X|yqZ!KJzH$a)G zLCHL2ZUe6WT&2oWrVViIH7SXY;_F2a=B{b2=P46nCylwk^1Cv@_GIJAF7TA;2+DMP zA&AE_Cs1Z>Q(z{p%p6dr$G5XyxJ=tYnHQasj^N6afq+`!*sdCfD-+Ze?L$hvj4N|1 zu(dP6lBY}Sf78>(ojjH&VuiFiLS#OQTucG+6LXlZ^Phvm* zPWKP4xe_E^NtNZzWEx}`L_XCdykGt|pn(XL4t<^p=z|I9+pfa3Ckcb9>{?Kbvvmq& zsDDwk1!wCTd@6ZasBs6PFclPVBGa?ZlxtnbV3^8s4WxE*KliPKh;jd889s^+Rlq); zX4i8`!SQq$L~Y4Z-sdt^jlDg!}yASOqOr6dXohNYG z%E&T598Fkmo58b_n z5Xqd5yI=0v3yZMTcvV(>b} ztU^r*ePWOZm8Ku&hK46`FIew`2rCr9oq+G!Ac02-#yKF5hkwcjq^p}So?1D#tdJoY z&xIfOVjuDI@!Np8JyD&HWQ18VByE>m+9_!MX+7BNw1~M8*#jDMjO{;;bfl33`ts0B zL#|Bb10N9B_}4r*2LR@8b3h)c4Ql65IM=qThvtvK(Jdz>6NC6Vpg~#xlQP7qy$4vz z*AsS_>;f+O$pGrGX`H7np-yb9tU?$^akDZTLn+dyAH0WoSm(Vtd#r?IE{+) z6F}Ntq6j}EUf2bVEx}^Sz9^!QP`5 zYjj3Lkb>74!w<%bqoHvMFdbd;JNoOReele#$PLhACSh*RTJxvSps6Jpv)VN< zT&Av_l1Rbk!SF-y8f5@P?FXh+E`?%$eGGrChQlLZ)tS(v6NT^7p2UODAm^2(4B~V* z3|DN^dlk$S=D-hgP51H5<$D55@0Sun*8kH$ej3P61Nj+2enya=Q%sx6;F=b6XL@z{ zdQqc^kC8VHbzhWJDe8=KTb@;aB98GA(A<5mXm*ET1ODJxfRUp4C76M3n59Iayy^|C zG$ZbPmB%JMGqi3nA+VFJ!T?a<`ei!?JlHAkz75W95|(Dk@gFG={sf6<^0Qtiv``^; zK;BUPP8Z8yx1*fOWpJ5KiwwIoBcb^uInwVvysrY6j$3DP*mvFx9pRgmwa#21VQF@@ zfzc#fiaB!GFn5Gcr}0zuJinP=Yh7$RgB zwDnTNgUHhv06S$ciY3kg#9?!44twG%MYL~wXzRFF5g>d>^b?9#F2I^UYKJwJbN)Ap zU%(WrPCDR@J~QdkPB>jEDwxMUXCzkoYAAx91UFWPv{yt$t5}7X3z1e-OOw&cEAzC? z9h4SmKuYc`uhfNQbnZwZTfLJY(XonHEqXLM`7++(Z!4PjWw^Z98}J-$4m#o?&u!gu zl=PV&wjPc$)t%J+&}igK2UNJ?rwt zqL?@Z7ry!p47^Yi>N5ED=N^&BhSN2yk%9c)rwj_G)2%2%r)6mn++=>PKfBei55O~Y zo%x%N)q9EcPQGbn_cz^f&2A0yU&>y@nI3D_NwvvT?$Z!vzG3Blqp($)^dI^A(hfG} z4&-sz#12cVFgZc57LVR1p4ywm+3&jHs1Q7B(4ClmbagIsFfkSVs}s)u2I z?tDQ2OAR-IhHA`P(l=?ZX3AFn+jI2tJOq!lSv%cb?{F@O-H=wn>02y)a6u)!8_|`Z z(>g^rA;`86`<_+Q2t*ct==Gya=Fu;29oI1=+Lvx}MrC zD+m}W@mx`VO(VObmRUr_(HHyB;M|?|8R$8f8 zNRGvxO-k~N>q#%BKR??I;@#R z-M_$NN4m_yU%E(REt-|WgsJM7P9$|*o4Rql_R^&O-gxREyL0Lz(ks=M@$UuXQTbGP zC52H$9NX0O-bf)RquIML3~u>Vxy^7ONwG)P8XaI{WUY;CJQ|rk(d1b?9ZKwDE;bY9 z3@LCvdN+g|-6Mb2*`Z)C@bGxEw=FT>uR7}~J-14h-`&lx*S2e5*s1c+fIIUXUyFh8 zX#8j|rJ(88%WJ{Slw5o z*$wKUUB8B;(Tl<6ES%$hjf`q)vP*YKv84L#_LY? z#$?ZDA83C`h;zw0pxgdxP%@R}l+XVwLW9quy zf5HOGiVIo+dC+3?k<1NjFQ|D&L8k;+=+5bb-?FJv#&l#jRV%lH7c^`c`Hn7>qXzvTKYgrmsymN>6X$oM^iz z)GXX7F8Kq(cvT9iRRZqm-LD6;*xb-4xVs)6XtH0#dr@&e&A5QX5baLLcdDI=4JZ9J+%27N zU*DRcHFd`(Nj&K8l-qKTw^PpHt@*wTt97*00~u|f8GnvQua@T62U2O3oBNj->NAzb z(c^K_`F)!KPwESA%!Fk+(*U0qQ0=YLd@V|TX2F*HHv}XZoziN|G2+hm_0e%J?c!ENHMAVH=as}o!VPYh;2GuV_KXiNIE&p*eY>o zIJP4sm43(8>P3@yRuc zTmEeH=0pIISX%ofZM4~PG~4QsWQ!itA^s9&`6xUt<#s4=^ht89?DdC z`b4_|VM7a}P%?D$K$cunNv8@b@Eg8LUxY%^A5i<<)%uGHRxaSyR*st0?__ut&J{YF z4e$JX_N+3nb*T7_Da($k@VV_#c5U>jI&;E^W+!Ji(m-49XWB}o={(KfaGRNxt#-@7 zx2KI%Ohh8IzAIL)C5mu>7H|4cCulV?g)WfWBBW=$AR^evH{D;Ho zQy1c#_G~76YCUr;)B=hZrqPYZupj|77nKpg1Itl(dJU;piF^OiPon~awdma1+b+ZG zk&Wd71j=vBlnV~?gWd%+(hSC%7NfHYSqfn$>IJ$G(bta{*$%|KO;fioV_i<`V9Ru- zx1|xh4}3n{QO0TrjIsmu6$tGIf#&kDK-A%HVbLh9C|m+oZSgvun0%6-;BedT#LI3` zg7x#~N&2jJ^!Bd!ysu1#aRrs;VOMMFn1J6^^S2hqsoq$>NgBeE2`ZNtUFL)5qS&L#M`SdmI5nKZLnX6228^R#C%aw zn&2i&rDdn(tjQl@w%bZ)!g1nr?U9?;%b))6J6(Z2q)=QEb8u0?WbIg)L_46s`U4$it-qezHgw;JGs4JU6?u^OKI&iS^I#&Lhs74vlgbSn7JJ{Y>Piq#zPn%wn~`3%pI#SnO6|oqYbGtqb*b-JTo+} z`Nrg#_igGgBOjB0*dv?TaDl#HYQ(o_vY z{`hb$NE<(TU(-|tIO;7AZEYQ8O9UwDGYWs{J=DoKvAkxK_&9a#T(nILD%yb7RU2K~XY zM%Ot1rejg2MOlEGPI;1L`~$WIcQwta!Qz)JSiY=J#zV=aYni+9wq%S$<-TX@$EC>8%`d{D__|p#ww1RA z!j9?dj;~u_8V=j&u}vl?6pP5+Q)Y_PsN-uKnmjwOSUqUkL^F zzrluOtKI>67UQ669-?x^L8zwc8m~4-C{Fqh&uH!IaRn0red2p6HvS!b#vN= zXx*F(k{PX_!hmGLL8wXCHJz%mv z@aZ>Jl8l7~h!-jw(&_US`~lndyLPx8!B|9D@?i_r3&_{M0E=Jb;-EhMlgLk<{Irvw zzVkB_{0xu(kEV>mT&mUA$6|m7A|K;(rad*)&c1*WhhXFRFl)-^+KZzULBk8C+E4FH z0p7_684BNN3v2^_KQu{gIQ$#dL=Bp}xL*PH73_j0y8=D2gk~lcAo`5YiV)}puf`X5 z_T<6iqg@pBEc-B&L7>@o16oUc5;MW!dS#1s;Q&}Mx+&8N?xtF<#|iX{PCk!X0#8>G zVD_fOTQB5(nx8Ms_3_tInuQ`f4;6unZl?sXe*k;ZWUs+7C*j#hPsk`rbhLlLsoceo zo}sfanm-^tB^~n`Q|=OHLJ=3hCcPw$){XcADZ}`Bp$UC<6G)mQtLon3O&(xPR?Na^ zE|}dUjISMVhUqV7;tbD25#nOI)4uNlxdYD7akfC%nq5noCs5&PP>cS+gwtw$99hCY zGmAo7_2fT+%K2GT{sqnTw0=7OT_QQaix$tuixOa*De*gS434rSh8I=-pYWo0jbi{( zx_)*ONLME^HZH>XeT+5P@IN)VYpehwotiBYNIlx_xa7NH3_+ys*&>1NdP+a8`z}&o zOMfk6mc4WXuA#@(5pXJKAVD#P$X;f{IKf`LbT$Io0ktu|Yy3Azv||>#&5$QIPvzqn zvPb(A-vBcB!7P(<1N~_@k0CHZ{jv3b@LE`GkpxDR8&dzkx%LD$JH?;ls6u;f zAe~XKlY%R=43rsNyQdac=FA!r2w@3qCc9F;;9Sp!$_oF8qkq1sn z9~Hy@r7Gi}Ke*{?puF0;m=}H5fajS8ci=HRxDZV*?hkI`=*4iSQ;7q-h5rULwCv)tle|Gb4~(3D8IJeV1GR+O zM*nDBC>Hd@D?Nkl37|oBdbk%K#apQGaH?08hav?~aW=`WZfTNK%Y!UK zMAWi$jpC&;GjNWmeJ+sBW%=P4ZR11

90CH+XavRs}y*;~TopC9QY`pncJEny=%^ zWPuFB{;9a3DxzZ=Y=h_cr@bI3Q}gpi6JGoTWlGZaVw=-IZWD;;(H)|NEAu;?56icN zw}CRZAJ$rjkGcIyQ0BISW;m%?RU+_C@=ajmX6_sO=VZ{2W#gGJT$wT;;s&Si2Y62% z&~e$f2fJ`(&Z^=-LDd>0boW%{DRT!X(=ObRc{OZ+vi> zU_9Q=tPaiU>qi(mZh^qb2H3zk{&|TB+Q6B~*#EgWWR6gCN%XvRCg1kXf&c#8Zno{| I7WpF literal 0 HcmV?d00001 diff --git a/examples/tutorials/part_3_node.ipynb b/examples/tutorials/part_3_node.ipynb index 2d9cbc2b..8baa8166 100644 --- a/examples/tutorials/part_3_node.ipynb +++ b/examples/tutorials/part_3_node.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "5e418a0c", "metadata": {}, "outputs": [], @@ -40,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "26f20c73", "metadata": {}, "outputs": [], @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "32bde295", "metadata": {}, "outputs": [ @@ -76,7 +76,7 @@ "text": [ "['x1']\n", "['y1']\n", - "{'y1': tensor([-0.6689], grad_fn=)}\n" + "{'y1': tensor([1.1393], grad_fn=)}\n" ] } ], @@ -93,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "41bf103b", "metadata": {}, "outputs": [ @@ -101,7 +101,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'y2': tensor([-0.3779], grad_fn=)}\n" + "{'y2': tensor([0.3815], grad_fn=)}\n" ] } ], @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "f5390740", "metadata": {}, "outputs": [ @@ -127,7 +127,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'y3': tensor([0.1539, 0.3889])}\n" + "{'y3': tensor([0.5863, 1.0293])}\n" ] } ], @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "7c9667a1", "metadata": {}, "outputs": [ @@ -149,7 +149,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'x1^2': tensor([0.0555, 0.5139]), 'x2^2': tensor([0.2789, 0.3003])}\n" + "{'x1^2': tensor([0.5003, 0.0016]), 'x2^2': tensor([0.4650, 0.5566])}\n" ] } ], @@ -184,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "9bbaee06", "metadata": {}, "outputs": [], @@ -196,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "0817c98f", "metadata": {}, "outputs": [ @@ -218,7 +218,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "06e573e6", "metadata": {}, "outputs": [ @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "274fef37", "metadata": {}, "outputs": [ @@ -290,7 +290,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "13555800", "metadata": {}, "outputs": [ @@ -298,39 +298,39 @@ "name": "stdout", "output_type": "stream", "text": [ - "['x1', 'x2']\n", - "['y1', 'y2', 'y3']\n", - "{'x1': tensor([[[0.8118],\n", - " [0.9097],\n", - " [0.7591]],\n", + "['x2', 'x1']\n", + "['y2', 'y3', 'y1']\n", + "{'x1': tensor([[[0.9775],\n", + " [0.1540],\n", + " [0.1930]],\n", "\n", - " [[0.1526],\n", - " [0.8383],\n", - " [0.1637]]]), 'x2': tensor([[[0.3108, 0.3442],\n", - " [0.8555, 0.9287],\n", - " [0.4466, 0.6320]],\n", + " [[0.7350],\n", + " [0.2193],\n", + " [0.9826]]]), 'x2': tensor([[[0.9946, 0.0532],\n", + " [0.7876, 0.0134],\n", + " [0.4387, 0.1852]],\n", "\n", - " [[0.7797, 0.3811],\n", - " [0.1139, 0.8550],\n", - " [0.7192, 0.5203]]]), 'y1': tensor([[[-0.9818],\n", - " [-1.0222],\n", - " [-0.9601]],\n", + " [[0.7090, 0.1308],\n", + " [0.2429, 0.6598],\n", + " [0.3901, 0.7855]]]), 'y1': tensor([[[1.7805],\n", + " [1.1182],\n", + " [1.1496]],\n", "\n", - " [[-0.7099],\n", - " [-0.9928],\n", - " [-0.7145]]], grad_fn=), 'y2': tensor([[[-0.3476],\n", - " [-0.4056],\n", - " [-0.3570]],\n", + " [[1.5855],\n", + " [1.1707],\n", + " [1.7845]]], grad_fn=), 'y2': tensor([[[0.3939],\n", + " [0.3844],\n", + " [0.3815]],\n", "\n", - " [[-0.3911],\n", - " [-0.3232],\n", - " [-0.3838]]], grad_fn=), 'y3': tensor([[[-2.0845],\n", - " [-2.2089],\n", - " [-2.0476]],\n", + " [[0.3815],\n", + " [0.3815],\n", + " [0.3815]]], grad_fn=), 'y3': tensor([[[3.4058],\n", + " [2.0887],\n", + " [2.1537]],\n", "\n", - " [[-1.5727],\n", - " [-2.0900],\n", - " [-1.5762]]], grad_fn=)}\n" + " [[3.0255],\n", + " [2.1960],\n", + " [3.4236]]], grad_fn=)}\n" ] } ], @@ -353,10 +353,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "208a9928", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAD4CAYAAABxEeWkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHiElEQVR4nO2dd3xVRfbAv/fV9N57SCMh9N5BQcSCXVHXvnZdy+pa1rb2srZddW2rYl2Vn2JDFClK7zVAILQ0QhLSk5eXV+7vj5BHynvJq8kLzPfzgSTvzT1z7ty5M2dmzpyRZFmWEQgEAoFAcMqi6GsFBAKBQCAQ9C3CGBAIBAKB4BRHGAMCgUAgEJziCGNAIBAIBIJTHGEMCAQCgUBwiiOMAYFAIBAITnGEMSAQCAQCwSmOMAYEAoFAIDjFUdmTyGw2U1paSmBgIJIkeVongUAgEAgEbkCWZerr64mLi0OhsD3+t8sYKC0tJTEx0W3KCQQCgUAg6D2KiopISEiw+b1dxkBgYKBFWFBQkHs0EwgEAoFA4FHq6upITEy09OO2sMsYaFsaCAoKEsaAQCAQCAT9jJ6W+IUDoUAgEAgEpzjCGBAIBAKB4BRHGAMCgUAgEJziCGNAIBAIBIJTHGEMCAQCgUBwiiOMAYFAIBAITnGEMSAQCAQCwSmOMAYEAoFAIDjFEcaAQCAQCASnOMIYEAgEAoHgFMeucMSCUxhzC5ib+loLgUDgKqqQvtZA4MUIY0DQAwYw1fS1EgKBwCUkYQwIukUYA4IekAGTa5fbPB+j2y8FfYEnHokjMt2Rvysy+jp/j+F1Cgm8DOEzIPAs3bZBVr6UPaWIt+DBG3SHaE/0GRIg26mcO/J3RUZf5y8Q9BHCGBC4F7nTT0fpjw2pQ/dqxw06WnZt6V0ZDXv6oh6OT3U4yz4xGvsgU2frgkDgIMIYELgXqdNPj7VOsntEu6ODad/P9cXo3NV+1qnrXZjVcUc5e9rwsZrOwUz7Y10QnLIIY0DgYZxsnXpsSCX3Tum6a53XXY2xrfuXu/nO1XxclWvr3jvL7csOq6e8XZ1laS+nfd1yF909fzErIHABYQwIvBNrjfFJ09jZcSPddUbOzrr0lNwTjoMWuV7+8NxlBLThdoNH7lmumBUQuIAwBgTuwcvb+l6ni+9E+wJyxLW+u4J1sPW3OrMvI9vr3OcSLvRUom7R/bKMu6eLBKciwhgQeAbZ8p87BbqX9p2gu0dVXXwnnMlA6nqdm/U0mUwYjcZOBoGXPze34+H77ZW6JaYFBK4hjAGBe+jsROf2tskDzlvu8HB3B870RW4YDMqyzNp1W1n06x+uCeoWN5Sxxx+Tl9SD7nD2efcHW0zgFYigQwL30GYAdDAEJOtpnMWRa/tB+27BDl3NZjNGowmzbEZCQqVSIcsyZrPZkkatViFJEiaTCZOp9XOVSoUktc0AmJAkCYVCQqlSUVlRxcJfliNJEmfMmIxKrUKpUCDLYDQaMJpMKCQFarUaSQJJkjCbzbS0GNBqNZjNZgwGIwqFArW6tSkxmUwYTSaUCiUqlRKpy805UAk616nOTnlOG6BWErutvnio4jkrtj+9B4I+RRgDAgex0ep2mbq0gmiYnMJgNFJSUsbqtZspLz+GQqFgxmkTaWhsYteufTQ36wkNDea8c2fg46OlYH8hq1ZvxMdHy5mzpqJQSGzctIONm3cQHBRISEgQZ86cwseff8t7H3zFhHHD+e6HxYwaOYTkpHgqj1WxYtVGdu7Mx8fXhwvnnEFaWhIGg5Fdu/fxxVc/8vDfbuXgoSIW/PAbMdERnH/uTHz9fFm3fisbNm5nYNYAZp4+iZCQoE53010l6FS3Otep7rYWdhHbnXUgKqJA0BmxTCBwEA83pFanNd0UU8Du/LxHvizL7NyZzyefLWBg5gBmnDaRdeu3smtPAYkJMSz85Xfuvv9pQkKCUKmUAKSnJfH5lz9gMpsJ8Pfj0SdeRdfUzE3Xz0WSJP731Y8oFAriYqNIT0vC39+P6KgI/Hx92H/gMK/+6wMALrrwTNat38qsc69j775D/LZ0FVdddx+vvP4Bi5es4rMvvudoeSVPPfcmDz36T379bQU///o7Gzbt4NF/vMqC7xc76JzozrrlgJPmKVq3BIL2CGNA4BiuRhjsCattuD0xBZxUyNODRBflyzIUFh1h6/bdqFQqMtJTuPpPF5KVOYDYmCjuufNakpPi2LV7HwaDEYCamjokSeKKy87FYDDy/Q+/4efvi0aj4cLzZ3HR+WcSHBzI4EFZhIeFkpwUx5TJY4iMDOOjT/6PkOAgBg/KJCI8jGuvuojGpiY+/GQ+s2dN5fLLzkUCIiPDePnFh3nxmQeYfcYUVqzeSGxMFK//81GeevxuBqQmsTt/P836Fgdu1rWyck6Wh+qWp854aI+Y4BC4EWEMCBzDnuWAnvDIVraTsGWUQaGQCA0N5vDhEv7++Cv8/MvvZKQnkz4gCYCxY4YxacIo/vfVT5RXHEOWZb6cv5BLLz6rdS1foyJ1QBI33/4o8z79hsrKKs6aPc1qdlXVtWzdvpvColKWLFvDdz8s5sDBIi6YcwbxcdGAhJ+fL0gSw4fmAKBSKRkwIAk/Xx8y0lMACAzwJzwshMbGJpqadLZvrjMenxjoxRjZnjrjwRZilkDgIsIYELifHoPbeLDj7s+Noo2RX+6gDG6+8XKOVVXzt4df4PU3PuLgoSKMRhMKhYJrr76YoxWV/Lzod2pr6/n1txVccN4ZAKiUSp567G6yMlP556vvc9tfHmftui3odM1dsq+pqUOn0zNu7HCuv+ZibrnxCu75y3W88+bT3H7zVSgUrc6H0OpMePwX1Kp2rkcySAoFSqUSs9mM3M7B0erN9VgIzmBLhgOOi/2Nk9AWFvQuwhgQOE5PI/tuGyYPB7Dvz42itbgysoxKqeLsM6fx5mtPMOec0/np5+V88vl3VFXXADB+7HAmTxjFB/O+5rsfFjMoJ4Ow0GAATCYz8fExfPzfl7j/3j9jMpl47MnX2LW7oF0erT/9/XzRatSsXrOZY1U1lvV+vb6F/L0HnL4H6/TUYbuyj85FQ6M/1yGBwEmEMSBwHJdG9vaOztx0poGzwY+syvEwVvIwmczs3LWPX39bydAh2Tz8wK2cPn0ChUWl1NbVA61T9X++/jKKS8r4z3tfMPfScywj98bGJv715jxCQoK48fq5PPLQHej1LRTsP4xSqUStVtHUpKPsaCU+PloyM1JZsmw1X81fSN6ufezdd5Aff15GSWkZsixb/BKMRpNFR7Pc6oRnMrV91hrV0GQ2t35nlZ6er7NBmtwtsxvcFVirP85ECE46xNZCgXfirn3VkpPCOu9rd2c/YmsA2yVOQyvFxUf4/MsfCAsLJjo6krCwEAYPyiIsNMSSZvzY4YwfOxyFUklWxgAkSUKWZYwmE1/NX8jQIdkMyc2isbGJUSMGMygng5CQIJKT4tm0ZSfffPcLs8+YymWXnM2hw8X8+815/LFiHQGB/kRHRfDoQ3dQWHSEbTv2IMsyf6xcz5TJoykpOcqu3ftoaGxk85adqFRK9u47RFHxkePbHA8THBSIVquxXRb9dSTubN0Cz9UtgcBJhDEgOLlwZ+dio3N2i1xrWMlLoZDIHpjGjNMmUF1dh1qtZsqk0eTmZFqWAgA0GjUJCbGcM3u6ZYshgJ+vD7ff8id0umZKjxwlMMCfm26YS052OkajicsuOZv4uGjiYqIIDgogKTGOB++7hd9XrONIWQVRkeGcd+4MAgP9qaquYeqk0eQMTMfPzxdZbg1qNGXSGIYPzSEoMABZlgkJDuSiC85EpVLi7+fb/fZCF2IS2aQ/GBieqlsCgZNIsh0bgevq6ggODqa2tpagoM5BRAQnNeYGMBztay1OWWT5+JS7yURzc+s2PT8/X5TKjit8hUWlPPvCf3juqfsICQmyzAxA65S+2WymoaGRoKBAS7TANvlms/l4ZMITMvX6FhoaGgkM9D8egVD0Wm6jT4wACbQDejtTgRdgb/8tZgYEvUOXBrDTB942SrKmj2V63wVlZceulyTJ0lGr1eoO3x0pK+e7H35DQqJg/2HLCL6t42772db5W5uqlyQJpVLZ5XOtVmN7at/b6Kk4va1ueZMuAsFxhDEg6B26NICeig1vDSu9QU8dhLXvbJ254AiurDN3or6uge9/XILRaOL8c2cwccJIqx27BW/rFK3hjI49LTX0dt0SCPohwhgQnLxY2mkbZyk42o73tHOtl0lIiOXZJ/+KLMskJ8UT4O/X/XR+dzMz3oI7VOrV23K0AnlhmQsECGNA4A66O02uL3F0p5kzswWdcdv99yzIz8+XYccjATqsgGxPGF4vwFbd8qZ6Zi92l7mzN9cfC0XgLYg4AwLXceeUbF/uue6VUam9N+iEMrID1/V2n+FsCGpbdas/9nl26+yufbUCgf0IY0DgXXgySm13dOmsevUkJus4qoJTg0kP3WfnA628eTeCpw/f8lQZd8jD81kITm6EMSDwIG5soTzSl7TTr0tn5a4MXTgi15XIvHbn4YmofPSvgDqddXV3eXvMEJK7lrdA4CTCGBB4EA91NG4baVk7DMAFcVavdcPavETHe/bmUWB7Xb1Zz86019WbO9YOZdpP/D4E/QJhDAg8jAudmK3z250ZaXlwqb77a93UI7a/597sAJxR33KioYuyHEnvrrrlDL1p9HTZESIQuAdhDAg8jJ2dmLV2zdXOxKas3lzD9dDsSG/hzk7S1fgBzqbt1brVC3iqbglOaYQxIHCBXvYJcNuabi80ojazcFL5/rQ2bE1Xb98l0h/KtY3+pKug3yCMAYEL9FGr5M5s3dJJ2RBiy4fAGbq9zA1HNLuTbqM3nkK4ZYOKI3VLIHAeYQwIvB9Pbs1ySydlQ0ivdYBOZHQqds7W6M265VSZ93XdEpwqCGNA4P3Ychj0+P7wPrq2v2HPc/DW8uiPdUsg8ADCGBB4GDe1et05gXlqlNRFrmxDESuf9erIrY97lu6eQ3/wdfCKumULYTUIegdhDAg8jLMx1t0gxu1IOLcg7mCD3iV5T9dLdqRxQg934LbwzB7EK+qWLRysW15QnIL+iTAGBF6IJ1vnvmgtHdwG0eX2nXSH75KdN/Z63qhTH+B0tZS6/VMgsBdxaqHALcgyyLJCDEy6QZJkJGQ3R6ft5qQ6Vw++c/sheHLXk/ts5eFM3vZeIwOSm2/O1XLrcbeI6OUFnkUYAwL7keXjbVLXhsksK9G1+GE2KXtdrf6CVqNDo9If/8tNvaClc3VTh+HRkwGthM+1dKCd6pYzeXcOLCVj3UHQRh3ugiNF6sly6y/HTQv6NcIYENiPJNlsIM1mBc16PwwmrROCuxtWOdrJ9cYoyrlhoEJhRq1qQer2GttlbCt5h1/6ahDp0Kjcyufd1C3n9OnGSLI3H49XI9m6sdJZP2+r/oKTEuEzIHAMt0UBtCa08+/W/nZElrvoLq6uB/JzRWR3Hv3OYs/1zoygnZFha0OHTVm2Zga8gDYDqMvnrsh04VrBKY0wBgT24c6DXfodHW/W/jg1LoYedheuPqvemGixF1sbOvorbl9ScLM8wSmDMAYE9uG2Rqu1tfJk4DdbeboL+x0AnSw0b+3srI3K3XFcsbfebxudK6uM/TMUvY23l6XAaxHGgKCXaW2t3OtRb50TbbjU6W+7rqZja3/id7cYMrZkeFK2q8KsjcptHVdsh7hewc4YUd3SubJKdCoLN96UNxoYglMCYQwITlo6tuGObuk70dq3dv4nLnaLIWN1bV92z8hOcmeP0tmZ043iegMJDy1xtRfqxpty67MTCOxHGAMCL8HTjaDzDXZb598aS8FN6nSXkavI9nriOUo/nYP2iNrOBnHoKYkj20qdUEEgsIEwBgReQk+NYN+3fJJkYyeYXaq5qL+jTnY9Xm9jS5s78Mijcsd8v5tx+GAmOzp6R2yMfmqbCbwTYQwIvBrZ0tO6o+XzTOdh34Deyl53a9j63C07Anq4f3d1Lr02Eu/jOuHqNkmBwIsQxoCgD+m5IXZ05rz7UXrvtNB2zRR0E3PIgZwcSeyocPfm3fcTOzZwNKKP55L3ojCBoAvCGBB4DMuuM5vtmONh4HrqaHtjl0JPuF0Hl8rPU9jI21MzG72Ju8rbrfdsY+1H2AgCNyGMAYFz2GyEun7hzs7RNVnWtwraTuOKfDdi657d7c3ojiKx+Xw8VDYui7UiwJ2rD27zw7ARqrA/GVkCr0YYAwLnsNkIebJ1crWF9XAY4d7G3VMQblm6cFR4X4v1sF5u88Po7HMipgQE7kUYAwKP4f4pe3e3sNbzcL6d7Y1ISp7Pwm14i6726OEtutqDjHeshwlOKoQxIPAY7h+89DwzIMsyJpMJo9HodB7dtbNmsxmz2dyDfh6kP/UB3qKr464p3o2EmBkQuB1hDAg8hidmBlq3GtoWXFxcyIsvPsGECQMdkNtzNDmTyYRer+e33xaydOkim/q5h5PRMeyku6G+xdbRx6KcBU4ijAFBr+CegYyM1IOFUVZWwsaNaykrK3VAblvMWttKbtiwittu+xPXXXcRO3du7VbHjj+dwQ7HsPYNvxNZmc1mDAYDJpPJ8Yudoj8Nvb0Iud0vPT1nyfKfQOAwwhgQ9AquzBJ0PnCoO0aPnsDIkWMckNlettTl+7afw4eP4cknX+lRbu/4NdCx4XcgK7PZTFOTjn0Fh/n2u8XsyNvb+oXXDyi9MAKhQzhpJErtfhH9vMCDqPpaAcGpi8FgoL6+jtDQMAwGA01NDahUKvz9Ay0zAK0+AEZ0Oh0mkwmtVotW64NCccKOlWWZpqYm9PpmfHx8UCo7Vus2P4KmpgaMRiNarQ++vn5Ikm1b2HIY3/GfWq0PUVEx7rt5W6sd3a+CuJypTqfn51+X89bbn1FRWcXzT9/PsCHZ/aCj8WQEwt64+V4yEgUCJxHGgKBPqKmpZsuWDSxc+C1///uz5OVt448/fiMgIIhLL72a6OgYZFmmoaGe/fvzOXhwP1VVxwgLi2Do0BEkJqagVqsxmUwUFR1m69YNVFQcJTl5AOXlRy35yLJMc7OOvXv3kJe3laNHjxASEsr06bNISkrtYFT0hK20smzPzEenEaGj2/hc7bOOe6D7+vpw5syp6HR6Xnz5Xffm4W45PQp1R0auTFl1c3lv2RgCgZsQywQnKbIsU11dTXV1dV+rYpXt2zfz3HOP8Nln/2X9+pWsXLmU5mYd77//bz7++B0AmpoaWbp0Ed999zU5OYMZP34Sy5Yt4vXXn+PAgb2YzWYOHdrPSy89QU1NFRdddAVarQ9LlvxsycdsNvHHH7/xzTefkZs7jDFjJvDjj9/wwguPUV5+xCGd22YrOvstOHU2gaP0cHl1TS3lFccs/2RZRpZlGhubKK84RuWxKoxGIwqFhL+/L6EhQW5X0e1yehTax72tw2cT2HNqoQP596dVEoHXI4yBk5DKykrWr1/PW2+9xW+//dbX6lhlypTTOf30s5AkifDwKB544En+9rcnGTx4OKtX/44syxw8WMCCBV+SmzuMrKxB5OQM5eyzLyQvbztLliyipqaaefPeQaPRcMEFcwkLi2Dq1NOZPHk6wPGZhQbeeOOfDB06Cj8/fwIDgxk9ejwHDhSwefOGvi0EVxvzdtfv2l3AO+99wcuvvs+GDdstnx8tP8a8T77ht6WraW7WWz7vyRHT43R77x6KAtnnnacdXqHdzTQ4Iq7P71XQ3xDGwElISUkJ3333HU888QQHDhxwr3A3NjI+PloAhgwZAbROw8fFJVJdXYXBYODgwQKKig4RGRltuSY3dxhxcQls2LCaPXt2sGrVctLSMlGrtcdTSCQmpljSFxUdYvfuHRiNBnbu3Mb+/XuJiYlnzpyLiY6OdVp3uZ0HotM7Jdw4w52elsyu3QW88q8PiIgMs3weGxvJr7+tJDo6An9/vxOXSlLfjqslK4XmgKNoN4I7yeohT6+im/t2tEjEEoXAQYTPwElITk4Od955Jy+99JL7hbvcyLQupraus3e0RSUJNBoNZrOZlhY9JSVFNDc309BQZ0kTEhKKv38A9fW1lJYWo9M1oVSqOkzVt3c+rKqqRKVSMXr0BFJT0y1pug8e1DPtR9Z9PcgGiI6K4P6/3sgfK9ezZOlqRo8cjCRJHDxYTFxsFFMnj3F9NsDaadJtDhPdrJGbzApajFrMZqVr+Qu6oFa2oFYZkLze0BF4O8IY6CfU1NRQXl6OwWAAIC4uDoPBQFVVFSaTieTkZPz9/ZEkCZVKRWhoqHsVcJtDVNu6e/eplEoVwcEh1NbWUFCw98TVkoQkSSQnpxEeHoVCoWDv3t0YDAZ8fdupK8vHlyAiMRgMLFr0HTfffDcKhRKTyURlZTk6nY6UlAEO34H9MwFOFpqTlw0bks05Z53GvE++4eorzycuLprP//c9l192jkOOkjaxumzf8/ZGk1lFoy4Ig0lrO1G/w90ego7Ka03v71OHUlmHss0YEI6LAicRywT9BKPRyJYtW3jllVd49913KSsro7Gxkddff53Nmzd3Cb/rlsa/PdYcuV2kuVkH0EH31hG7CZVKRVbWIOLiEsjPz6OqqhKAkpIitFofxoyZQG7uMNLTs1i3biVbtmzAaDRiMhk5evQIZrNMfX0dcXEJZGfn8sUXH/Hllx+zc+dWVq/+g5UrlzlwE63pTKZWPQ2GFjuvc7JVdvIyhULBrTdfSVV1DZ98voCKyip25+9n8sTRzglswyODzs5C5Xb/3CHbmix33ogbo01a5LnheEhhCAicRBgD/YSQkBCGDh2KyWRi8eLFFBYWsm3bNvz9/Rk2bBiBgYEd0tvyfHeezlvjZJtf2cOePTvZtGktsizz888LOHasgm3bNrNr13bq6+tYuXIZCQlJXHfdbdTX1/Hf/77JggVfsnDht4waNY7x46cQERHJtdfeSlhYOK+99iwvvfQP5s17h/r6OjQaDT/99C2yLHPXXQ/h7+/PK688zVNPPcjnn3+ARqMlISG557uWASQKCw/y/ffzkWWZrVs3sH79ql6M3mc/gwdlcf6cmbz3wZe8+/7/mHHahFZfgU7PSJZl+x+b1SloVzvutnrZORS0O+qrLTnOy7Y2G+RqVM22unUCD72rAoEdiGWCfkLrSDmLW265hUOHDvHee++RnJzM1VdfTXZ2Nkqlp9dj2zlmdQ576kQbFhISxg033MHcudeSlpaFVutLTEwct9xyD0ajkYSEJEJCwjjrrPNISkqhqqqSgIBAYmMnk5qaTmRkNJIkMWHCFB577EV27tyKRqMhNTWd+PgkZsyYTVbWIHx9/Zky5XQCA4PYsyeP5mYdGRkDGTFiDCpVz9W/zZYKCAgkPT2LN9/8mICAQKKiYtr5JvS87NG21c/T07hKpYK/3H4NX3/zM9//uIQfF7x3/EbghL+GjMnU6jNh34FOntzW58lgPO6T2f75tj1vx+3sjg+/4/XWK4Z9MSw6I6YHBI4jjIF+hCRJjBgxgiuuuIJXXnmFtLQ0EhMT7erU3KeEe8TExMQRExPX4bOAgACSk1M7fKbRaBg/fgotLXpkWUar1XZwPNRotIwZM4HBg4cjy2Z8ff1obtahVqtRqdSWdGPHTmL48NEYjUZ8ff0cXkYJC4s4HvBoJN036tYpKSnkg/f/iSQ1kpwYS0pyAslJ8WRkJBMWGuLcDI4NwyJ7YDrnzJ5OVFQE0VER7b6RaNbr2bp1F4t+/Z3yimMsWbaGzIwBZGUOQKHwfCfSuXPr6W935OHo9z3h/LUOByZwPi/hOyBwEGEM9DPUajVms5nY2FgWL17MxRdfTHBwcC/MDPQdkiSh1fp0m8a3nfegr69flyncNhlat/iwtZ/itq/F1Wi0JCUlUFCwgz9WbuDLr39Cr2/BP8CP6KgI0gYkkTYgiQEDkkgfkExSYiy+vt3fs62sVSolBqORm264rMt3apWKjIxUbr/lKq664nxCQoKJj4vutR0RnfPp6W935OHo957CMSPFxd5cGAICBxHGQD/jjz/+wNfXl8cff5xHHnmE559/nrfffpuIiIgOo8u2ffCygwubBw4c4JFHHuHYsWOEhYURHh5EeLCWsLAQQkODCQ0NIjQ4iNDQIMLCQggJDsbX1/1e4q0No/MNYk+Nql7fzMqVy1i06Ptu5UybNpNZs87tMMvQLhe79QkPj+DqP80F8wz0eh06nZ7q6loKDhymsLCU4pIyvvvhN4qKS5Fl8PPzJT4umoz0FLIyU8kemE5GegrRUeE2ZoJO3Of2HXsIDPAnPS2lSxqlUkl4WAjhYSF26y6whf31s6f63NVQcLI3FzMCAicRxkA/4sCBA2zdupVx48YxfPhwbrnlFv7+97/z3//+l7vuuqvD6LhtC6JOp3Moj9jYWA4dOsTGjRtRKBQolQo0GjUajbp1av14o6VUKlEqlahUSnx8tAQHhxARkcCUqbM455yLCAoKdulepc5+CR2wt8WznU6t1jBq1HgyM7O7lRAYGNzl4CNnUCpVBAYE4+ejQCG17U4wMXJELi0GAy0tBvTNLTTr9ZSUHmVfwSEK9h9i775D/LFyPZWV1a0deXgIA1KTyM3JIDs7nayMVDLSUzh0uIR/vvoe0VER7M7fz0vPPohS2XkppA96iZPal83+8uy+PrtxtkIYAgInEcZAP6GgoIDnn3+e4uJixo8fj1qtxs/Pj5aWFp577jkaGxu5//77CQwMZNOmTXz99deYTCZ+/PFHsrOzueiii+zyLfDx8WH48OHs2LGDhoYGAJqaejYoQkJCuOiiUUydOpOAgMAe0zuC86Om7hpfiaCgYJeNFldQKpX4+io7LAfIskxKSgJjRw/FaDTSYjBiMBioqannwMFCdu7ax578ApYsX827H3yJvlmPj4+WsLBgCouOEBMdyZVz56DoYgi0p81IamcsOTCiNJvNvP/hV0yfOo6M9JTuE9uQ6fy6vbXIR3ZeaSVPd/goOEtf5i0QdEaS7ZhHrqurIzg4mNraWoKCgjDLMnUtZsp19ngin1qEapVE+rrfxjKZTOh0OmRZxtfXF6VSefzY3yaLY13bzIDJZKKlpQW9Xo9SqUSr1aLRaOx2Uvv000+5//77KSsr6zGtSqUkIT6Ghx64lzPP+hNKVbBV5zz3NHyenAN1vpPpKqdTR3ucQN8a/HzqLTMDdks8vg3QbDJhMpkxmkytz1jfQlFxGdt27Gb3nv3k7dpH/t4DlJYeRaVWERYaTHZWOtkD0xg4MI1B2enk5GQQEmzlkCIHMBqNDBxyBvX1jdz057ncfed13S47tBg11DWGuhh0yPaphf2jbnlGtr9PXWvgIUVP0TQl0DoeYEvQ/+ncf9vCqV7LLMP+uhaWlDQ6reDJyuhIX6bHu98YUCqVBAQEdPhMo9Gg0Wi6pFWpVKhUKvz8/Lp8Zw/p6el2OSRqtVrOOH0i/3zhIZKS0mho9sNgam8InGgE3TMCst7Jus4Jma50LK3Xun+rXNs5AgqVCpUK2rpUOUAmLCyEIYOzMJtlzLIZ2SxTXV3Lrj0F7M7fz549+9m6fTeffvEdNbV1aDRqkhLjyc3JYNCgDHJzMhk6ZCBJifGo1T3X29bDn5o4cLAIWZb556vv8/n/fuDvD97GlXPnoNV2rY9uKgWbn7mvbrkT20ahQOCNON1ryXKrUWDjWzz2ArhDdBcZ7tPX7Gokkl6i/YRQU1MTW7du5ddff2Xx4sVs27bN4nNgDZVSib+/H0//415uumEuarUKo8ma8eC+OnCik/Zsw9o3W87swEoVbQvNDNDedouJiSQmJpLpU8cdj28AJrOJouIy8vL2sn3HHjZvzePTL76jqPAIJrOJsLAQsjIGMDg3k9xBmYwYnktuTobVHQ279hRY6k9zs56Dhwq54+4n+O+HX/H4I3cy47SJHXTzdizHK7ht2l4YAIL+h4d8Bjz4IrhDdBcZJ/eL23klyGg0UlxczLJly1i0aBErVqygsrKS1NRUpk+fzn333ceiRYv44osvLH4DbSiVSsaMGcaH7z5vWS/ujUbfs1l0FO6Va7kO7Ga0Fn1SKStIS00kLTWROeecDoDZLFNbV8++fYfYvDWPrdt2sXlrHp98voCGhiZUKiWpKQkMyskgJyeTUcNzGZSTwbYde1AoFJaDnmQZdLpm1qzbwqVX/IWLL5rN3+69sWd/Ai/BcryC25651GvGq0DgLvqZA6E7pt5Ojem79lsLzWYzjY2NbNiwgV9//ZXffvuNXbt24e/vz+jRo/nb3/7GrFmzSE9PR61WW66bP3++RZ5K1bp74P57b+Sxh+9EpVL2aAS4v1PtjWcnu2Dc9EKdclK8tXtSKiVCQ4IYM3oIY0YPsXyu17dQsP8w23fuYWfeXrbvyOeTT77l+RffRpbNBAYGoFQqupz6KMsydfX1fDjva3759Q/uuPUqrr36IkJCnD8quveQkWXJbTMEnjAmvdJIFZw0uMcY6LV+1R3rse5f0/UW2o7lNR13MCsoKGDp0qUsW7aMlStXYjAYSEtLY9q0aTz77LOMGzeOkJAQq7ImTJiA9niEHq1Ww5DBA/nw3RcYlJPRmqAvlohcfnbtdTsJjEE39A4djITjReLjoyV3UOtyQfvPq6pr2LFzL7fe8Si78/fbVEmWZUqPHOXvj7/Mgu8Xc989dzJizFlotGoXlw88+fwkF2cIPF+3hCEg8CTuMQZcCA4jcJ622PJGY+v2s4MHD7J27Vo2btzIsmXLqKysJDY2lrFjx/Lcc88xdepUsrKy7JIdGxtLeno6LS16/nrXdfz17j+j0bQLvGPzcXf9wp0jGtdkSTZ+t5XGFfluxNbr5e7eoYciCQsNYdKEURwpK+9RlNncepDR2vVbueKaWznvvEu47bb7SE/PQqGwPqvU87Pt+vxsXeNoPZFlMwaDkZYWPVqtj2WGzH5s1y1ZltHpdMejYGo9uNtGIHAeNy0TeLoWC2MDWhsVo9GIXq+nubmZiooKNmzYwOrVq1mzZg2lpaUEBQUxevRo/vrXvzJ58mQGDRrk9HHGt956K4OyUxk8MNKpuPXuX4s9xRrMtmrvUcdEx3qhsqMV1NTW2/xeqVSg1WjQ+mgtQasC/AOoqDjKL7/8QHh4JOHhkVavbVXDsXfduuqOL/XU1tayePFPfPbZf7n77oeYNu0Mh67vkPvxJbo2HZqbdTz//KMEBYVw7bU3ExER1eUal+u1aCIFLtJPfAZOzVrett6v0+lobGyktraW/Px81q9fz4YNG9i7dy9KpZKBAwcyd+5cJk2axOjRo48f5uN6mV1xxRVgbgDDUTfcTV/Rt62kLLvgg+DoZc7cqoO67diZD4BCoUCr1eDv54NGo0GpUuLn60NMdCTZA9PIHphOZmYqWRkDiIxKoNkQbWecAY94CPeITtfIwYMFFBYeRK9vtvMq26Gu9fpmgoJCkCQJhUJJYmIyAQFBqNXu23rZwTH41GwiBW7Eg8ZAD0FcOrxHtlqx3mzI7cir2ySubylsO+a2qamJhoYG6urqKC0tZfv27WzevJm8vDwaGhqIjY1l5MiR3HzzzUycOJGIiAinR/9uwat3UzpWf1yPM9Ap9950RnRkZO3kq1VecYzBuVmEh4WQkZ5CZmYqGWnJpKWlkJIcT4B/19gWLUYNzbZ3qrr15EJnr42NTWDYsFH88ssPDlzVNSOTycT27VvYv38vl112tWVp4MYb/+K4Uj3l3uVGxfSAwHk8aAz0tP/Jxh8d6nNvVmxbOlhP4uCXNpFlmebmZqqrq6mqqqKiooK8vDz27NnDwYMHKSsrIywsjOzsbG699VbGjh1Lenq6xbnPK+j21vtXA+WK85h7o+A5K8xOg9ZJP5/ZZ0zlvHNnEhwU0HNih+lYjiaTkerqanS6JksUTYWidVeLTteEJEkEBgaj0WioqanGaDSgUCgIDQ237ApobtZRU1ONyWQiMDCI4OCQE7nJMnp9MzU11UiShMFg6NDB6vV6jh2rICoqhoaGOpqaGomJiUeSJKtyTSYjRUWF/PTTt9TWVjNjxln4+wfg4+NDQ0Pd8bTBlrDgZrOZqqpKmpoaCQgIIiQkBIWic7wOR55T/3nPBN5HHywTyCBLnvHfchfdzVi4oW/T6/WWjr+iooIDBw6wY8cODh06RFlZGQEBAaSlpXHWWWcxcuRIcnJyug0j6d14wwMFVx6cY45tLuA2u6kbQS4Z2jKRkWHOqdQNUied2hzudu3aRnFxIXV1tRgMLTQ01JOePpBBg4ayZs3vlJYWc8EFlzNgQDr79+9l3boV6PUt3H77X9FotOzdm8e+ffnIspmyslJaWlo477xLSUhIOt4RH2Pbto0cPXoEX18/CgryaWho9Yc4dqyC9etXs3jxT9x4419Yvfp38vK28tBDT3PsWCUFBSfkGo1G5sy5mODgUFavXs7PPy8gJWUA69atJC0tE41GzdKlv+Dn58/s2ecRFhZBc3MzO3Zs5tChA+h0Tej1ejIyspg8+fRO0T+95f0RnOz0gTHQjSEAeMdIshvPLSdUMxpbRzhlZWWUlpZy8OBB8vPzKS4upry8HLVaTVJSEpMnT2bw4MHk5uYSHx/fbyK4eSsdO3FHY9ifWObq7NjWJsdkMlFeXkZ0dKzjyzTWqrkkuSnCZk/vmEPCcH22wrG8jEYDq1YtY8mSn7nwwssZO3YSixZ9z7x573LppVdxxhnn0NjYwPz5nzFmzAQGDEgnMzObd999nQ0b1nDTTX9Bo9Hw7LOP4Ofnz0svvcWePbv4858vRa9v5t57H6G+vo5ff/2BvLztXHrpVQQFBbNmzQqqqioBKC8v47vvvuKXX35g4MBcamqqqKqqora2mmef/TsBAYG88MKb7N69g5tvvgK9vplbbrmH+PgkBgzIwN/fn9TUNHx9fcnL286XX85jyJARnHbamQCsXLmML7+cx5VXXs+QISN5+eWnePPNl/j++99JSkr1cDkLBF3pQwdCp+bi3ZyXLWyltU+O2WympqaGkpISS+e/f/9+jh49Sk1NDS0tLSQnJzNy5EgGDhxIdnY2aWlpdp0q6K0oFGZ8NE2ozS19rUqvIMsyR8rKefedtznn7LOYOGFkjwaBWtWC1GZkeHJmrDsZDhsbvbtUJ8syVVXH+PDDtzjvvEsZM2YiACNHjiUtrTXugVqtJiIiGj8/f8uVgYFBJCensnnzeousoKBgzjnnQvz9A4mIiCIkJJS8vG2YzWb279/Lr7/+wDnnXMzQoSMBGD9+MqtWLQMgO3swEydO448/lpCcnML1199GTU0V4eGRBAUFM2fOxQQEtMoNDg5h164d+Pj4kpIygODgYAIDg8nJGYIkSURERPHNN19YdG1oqOedd15j7NiJTJgwFY1Gy1VX3Uhzs65LxE+BoLfoo96nt0f/7spLojvdW5oa2bx+K7tL91BQUEB5eTkmkwmA6OhoRo4cSUpKCikpKWRlZbnN698bUCpMBPja3nLWa7i7atmQJ8syddpKGhsO8+9/P41G+WdOnz7ergOeHM3LrXhddet402azmQMH9rFr1w4efvgZy+cqlRqt9sQ5CZLUs7PmAw88SU1NFb/++iNmsxl//0BLLIF9+3Zz5Ehph1F4UFBwh8O9VCoVkiSRkzMEpVJJREQksgwPPvgkNTXV/Prrj5hMxuNyuznLQ6VG2e5I6cLCQxQU7OGaa26y+AhkZeXw5JMv4+/vCV8MgaBn+sgY8LoWyQFs697SrKNgyyaa8zcRHR3NmDFjGDBggMUACAgI6Fuv/77Cnk7OXR2hu6tWm7xO+kmSRHxcNA/edzP/evNj/vna+xgMBmbNnIJK5aRB4AkjxhtW3bqlYwHLskxpaTHu2KKSn5/Hhg1rGD58FHFxCYSGhgEyLS0tlJeXYTabu5zb0UGzLoZ6a4Hm5+86Lnc0cXGJhISEdqtH5zMKGhrqMJvNlJYWI8tmy2mXfn7+NDU1dpjxEAh6i17umdqdlFdbRd6yhfz65rO9q4Lb6NqIaP0DmDR9Bg888ACPPvood9xxB3PmzGHIkCEEBQWdHIaAM210j52R7L0dlmx7Wl+pVDIwK417/nIdWRmpvPqvD/lx4VIMBqOLebrh2t5a5u+cr9O0KipJEBAQiF6vZ+fOrTZTt0UINLc7OrU1FHLreQklJYU8//xjhIaGMWPGWWRkDLS8f0qlioCAIGprazh8+EDH25BPPHJrlJQU8fzzjxEWFs6MGbNJT886PhvU8aK2bcLWiIqKQa1Ws2zZL7S0tNB6LoJ83DFxT3spthWxhVdv8xV4M73cO51omaqKD7P5h/+x9qsP7b7abDIhdzgcxZ6aL3f6aR8mo7H1ZW5/WQcRXVtZtdaHtMwsRo4cSVRUVL/2AbCKLB/fkuZurO2XtpNuk7pB1x6WcZRKJelpKdx2858YlJPBv9/62E6DwJZuDhpGcqdf+sqocnpLZkcUCiUDBw4iNDScr7/+hLVrV1BeXsbu3TsoKyuxpAsKCkGpVHH48AGamhrJy9tGQcEe6uvr0emaqK2tZdeu7TQ365Bl2LMnjyNHimloqKO+vpbY2Hh8fHxZunQRBw8WYDabqa4+RmNjPQ0N9ej1+uNLfDKNjY2Wjr2hod4i12yWyc/Po7S0mIaGesrLy2hsbMDHx4+GhnoOHCigsrKclpYWzGYTBoMRWTYTGxvP6NHj2b59C++//wa7d+/k999/44svPiQ6Os658m/DW41qgdfTZ0PVsIQU/EPDMTTrsLfRLty+gWNFB9tZ3PbU/M5DJPvy2v7rAoz6ZuT26U/1F02yscOiM24aJTqVtAeDzROoVEoy0lO4/ZY/MXxoDm+89Qk//bysB4PAmiOCjc+7w8Gtgkajkb37DvLJ5wv49IvvyNu9r/X0QVefmVM294l3sv0gOiYmnttvv4/CwsP8/e938+STD1BaWkxQULAlzcCBuWRn5zJv3jvcccc1bNy41rKHf8GCLwkJCWXSpOl89tl/+ctfrmPv3l3k5AyhsPAQq1f/zogRY7jqqj+Tn7+LBx+8g3/84342blyLUqlizZo/WLjwW/74Ywk6nY4vvviAAwdayykxMZmJE6fx6afvc/fdN7Bv3x5ycnI5fPgAq1f/TlRULNnZuezcuZVPP32PoqJDrFnzB4WFh9i9ezubN6/HbJa5446/MWTICD788C3uvfcm3njjRVJT04mKirFSPgKB55Hk7hbNjlNXV0dwcDC1tbUEBQVhNMtsrWzmt5JGlzL/5d9PsfLTd3hqXXGPaZtqq1n63sukjpxAzrTZHnW8qykr4fMHbuDa1z/HNzjUobxGR/pwesJJ5ATkiXDEJ+mpLCaTiYOHivnPu5+xafNO7rrzWs4+c3rHA54cwZ3r/bKMwWhi7botPPjIi9Q3NFFX30BSQiy33fwnLrrgTNRqz8xktRg11DWG2hmOuHWKvaGhnt27d1BaWkx8fBIGg4G33nqZ3NyhPPjgk5jNZoqKDpOXt42AgADS0wdSUlKIyWQiNjaBuLgEiooOcfDgPkJCwkhMTKG5WUdR0SHS0rKIioqhrq6WvXt3UVFxlIiIKDQaLY2NDURERBIcHEpNTTWNjfUEBYUQF5eAv38AkiRx4MA+Dh4sOC43GZ1OR3HxYdLTs4iMjKayspxDhw4QFBREfHwizc3NHDlSgizLxMbGW85mOHz4APv376WmpooBAzIZOHCQww6E/j51+PvUoZTMPQdF0w5wSLbg5KBz/20LF99+x1ork8nIwc1rKC/YQ1z2kC6DCLPJSGXhQYp3bm510Bo0nKjUDBqqKtjwzafsWPw9CpUKtdaHxNwR+AaFUFt+hMNb16OrqyZqQBYpw8dZOm+zyUTx7q2U7tqKX2gEAaHhDBg1qVUXo4HyA3sp2rEJSSExYNREQuOSOVZ0iF/fepYje/PYt/Z3fINDyBg7FelkWO93B+5wTPOIIdD3nnJKpZLUlARuv+VPvP7GR7z82n9RqVTMmjHZOYPAnVsEJYnGxibWrNvC3+67maTEOFat3sS7//0f8z79hrS0ZEaPGGxdZo9huB0v9+5PG5QICAhk1KjxGAwG1Go1e/bkdUinUChISkohNjYepVKBQqEkIiIKlUqJJCmQJInU1HSSklJRKltPSZRlmfj4JMuOj5CQUEaOHIfJZOwQ+a8tfWxsvFXdrclNSDghNzIymoiIKMtxzYGBwURGRneRM2BABklJKRiNxg47JZzi5LOtBb2Miz2c/TWwRdfIj/98hMKt68mYcBo1R4rYuOBzy/eGZh2/vf0iq794l4RBw6g7dpTvX3iAAxtXYTIaUahVqLQaZLPZ4jewbv5HLHz1caIGZBAcHc9Xj9zKuv/7qPWAH5ORFZ/+h7ryMjLGn0ZtWQlrvvwAAH1TI7uWL2LfmmWEJaZQtn8P85+4i8Jt62nRNeAT2Go9mc2dfRQETjumucMprlu8ozVUKpUkJyVw7103MHxoDs88/xaLl6ykpaWb4PzO4ODtms1mmpv1DMrOYPYZUxg6OJu5l5zNObOns3ffIQ4dKnYy9kGnL+18zrbswRMnXUrHD0NqPf3QZDLR0qLHaDRY1vIlSWo9JEmpsvze/nhkSZIs2wPb/u649VNGqVSi0WhRqVSWfz0Vbk9y23S3Z0ZRpVLj4+NrMRwEgr7Cs8Pddg3D2vkfUV95lNEXXkV4YiqDpp9NbGau5Xtji55tv3xLVGomEcnpJOaOpLG6iqKdmwkMjyIuczC+QaFEp2eTNmYyPgFBbP/1OwLDIwmJTSR97FS0/oFs/2UBAIYWPRsXfEb0gExC45PJmX4WibnDASjds53inZtJHzuF1OHjGHbmRZhNJjb/9BX+oeHEpGWjVKkZMGoiaaMn2TeS9SIv3qKiIl5//XUef/xxvvnmm273QPcarrRz3cWAav/T3TgpV6lUkJgQy9/+ehODB2Xy+FOv8/uK9R59Dn+s3MCC7xfz7Xe/suD7xRZv9t179vPtd7+ycNFyNFoNM06feLzTlAgLD2XQoExSUxIICOh6wJDdtH8OHujPKivLWbJkIfv27WbTpnUsX76YpqYmN0i2rqx7zpgQCPoXbl4k7LwZu/WHrq6WLT98Re7MOfgEBKNQKFD4+BKfPZhDm9cAoPH158JHXiU6fSDGFj01pUXIJiOG5iYUSiWK45a4UqVCqdYgSRJn3P4QQZGxaHz9KNu3C0lS0FxfC7RuHzK2NPPVI7dz9n1PkThoBCPOnYuxRc/R/Xs4sHElKo2G3b//gqFZh9bP3zILoDi+C0Cp1ljy6hEvMerz8/OZPn06vr6+HD16FIVCwYwZM/j00087BFTpV9iaU/b09jkX5CoUCuLjYvjHY3fz8GMv89cHnuWVFx9m6uQxlm1x7iQ2JpJ77n+G/L0HWL38K8vnyUlxPPD3Fzh/zhmEBAd22N4qAU1NTYSHh5CSnOB85h5+DmFhEdxyyz1cf/3tx2cLfLx8p46XNAYCgQO4eWbAuod0ZeF+dPU1BEZEolCcSCO1W6dTqFQkDh7BvrXL+PWNZ2ioqcQvNLzbPb9Jg0dRWbSf759/kCN78wiOibPsNFCoVMy641Eqiw7w0R1zmf/EXzC2tNCia6K+8ihRadlMvvp2pt1wNzNvf4irX/+M8x/+J8HR1tcJu8WLBgIfffQRX3zxBXl5eWzcuJHp06ezZMkS3n333d5TovN2N1dpMwQcEecFz0ShkIiNieSfzz/I8KHZ3Hz7oyxdvrbrDIEzusodr0sbkMwDf72x1bGuuOxEMhnq6hr40+Vzuhi1JaVHKS4uY/LEUWRlprb7xk2F5yYxCoUCHx9fgoKCCQgIRK1Wd7iXnl2g+zvdbEN19lKBoBOe94qTWv0FZLOZxqpjNgNxGPQ6Fv/neQ5tWcesvzxK+pipKFW2R1CyLLPqf++x7ut5nHbjXxlx9qWofU6MfCVJwZBZ53Hn50sZdPo57Fz6I189eiu15UeQFAp0tVU0VlWiUKpQqtQoVWpMJqNzPgK9MBBom/bt7l9NTQ1jxoxh8uTJaLVaMjMz+cc//oFer2fz5s0eVrDd7xIeaIQcFGjPM+mFXkSSJMLDQvjXq48zacJIbrz1YX5fsR6j0dQukTOCO16nUEhceP4ssjJTef2NjyzBeH76eRlnnTmtSwdqNpvZsTOfFoORSy862+71anvqoeUfHQPvdBeIx3lkh6f1O6vQ+rc395pOOXPYnUQgALcuE1jZ+3981SA0LgmlWsP+DSuZMPdGlGrNiSSyGbPZRNGOTWz58Suu/OeHqDTa4we4tQ5/OjQoZjPIMpWFB1j75X+Zdv3d+AWHths9tqbVNzaQt/RHRpw7l/Mffon0MZP59c3nKNm1leDIWNb/38fsW7ucMfFJoFCib6inYMMfpAwb2y4v03GRrTK7bTA97Mx++PBhtm3bRmNj63bOMWPGoNPpyM/Px2AwMG3aNGJiYjj//PM76JmamkpOTg7JycmeU84anUKwukmge5G61lW30W7XhSRJBAUG8J9/P8Xtdz3Oldfey8f/fYkZp03swdHM9jtlDaVSyT1/uZ4/3/wQ6zdsZczoYcz79Bs+ePf5TiNpmd17Cti8NY8r584hMjKskw62C+K9D76kqqoGJIkAfz/UahVajQY/P1+USiX+Ab6oVSp8fXxQq9X4+fmgVPnTbGxErQkmKCjY4vDnHhyX0/VMg45yPLHz1fO7aft+N42gf+NGY8BK9JfjtT8sPpmMcdPY/NNXbPzuC8ZcdBXIMmX78pBlmdqyEpRqDYYWPfvWLCcyNYODm9dwrOggobFJHCs6hNlkRO3jS1XxIQ5vW49K64OkULBvzTIGTp7J0f17KCvIo6WpiYrDBRh0TSz772sMnnkeKq0P8TnDCEtIxj80gsCIKCJT0ln2wWtUFh4kJiOHw9vWMXLO5fgFh+EXHIpCqaR0z3Y0vv4kDBqOStPDHmnp+D17iJiYGFatWsXTTz9NREQEubm5REVFcdVVV3HvvfcSFtZ6znznRtZgMFBRUcGUKVM8pltrxra+aNdIOdpedU7vSlvXU97ubkct6+itGbfGnvfhnTef5o57nuDyq+/mo/de5OzZ07sxCLrxk7CWWpKYe8k5PPXMv3n2xf/w3FP3ExYWTHRUhCWNLMuUlB5l+R/rmTxxNLmDMjuM2Lvo0ancCgtLeOaF/6DRqC3BisyyuUNYYGtotT7ccMPt3HbbXwkLi+g2bV/jiU7b8xsF+s4QaKs7bfWobWeE2B3Rv/DcMoHcsSLMuuPvZE89k8VvPcubf5rJV4/dgX9oBH4hoaz9eh6B4VFkT5nF6i/f45N7r0ahUjNg5ETK9uVxrGg/CTnDicsazMbvPid/1RJCouMZOutCDmxazZtXnUH5wX2MPu9P6Bvr2fLT14TEJtJcX8OHd1zG2q8+YPsvC8iceDqZE08jLiuXadfdRUh0POv+7yMWvvoYwVFxRCano1AqSR0+jvCkVL556l4qDxWgsteJUPZc5ffx8WHu3LnccMMNFBYWsnXrVj788EMeeOABLr744i4nIMqyjMlk4ueff2b06NHMmDHDY7p1T1eHUmcuBdp5rTthdNmbt9u3QHbMWKNR88arT3DpRWdx1fX38dX8hZaTLbuX3U54NzpqNGruvfsGfv7lD+578DluumFuOxEyFZVV/LhwKfFx0YwfN/z4KX4Gjhwpp6a2rif1OX/OGUgStLQYMBpNGE2mbg0BhUJBbEw0zz77Gvfc83evNwTchzcvO7gPWZaPB4Aq4v333+fRRx9l8eLFGI0uns8h6HV6PQJh9ZFizEYDofHJ1B0txTcoBO3xqFtms5nmhjq0/gEolSpMBgMmowGNb6svgNlkwmwyolCpLEFCdHU1qH39UKpa10R19bX4BAS1doYteowGA/UVRwiNS0Lt49tBF0Ozjvpj5ah9fPEPCUfRbq+wyWjAbDIdX7KwvxfzdATCY8eOceedd7Jx40ZOP/10nnjiCaKjuwY0kWWZiooKrr32Wt58801SU1OtSLMDlyMQemr6Um41vlwV3V49d6hqpwyTycQDD7/I+x99xasvPcIVl52LVqvp+UI7aGrSMXDIGYSHh7Jl3fetaskylZXV/OuteWzeksfsWVMBGYPByN6CQ6SlJnHVled3mEWwhtlsJiVrKkVFR3rUQ61WMWJ4Lo88dB8jx5wNkjiNz91YIhAqevJ1kjwSgdBsNrNjxw5uvfVWIiIi2LBhA1qtlkceeYQbbrhBzA54Ab0UgdBxQmNPbGEKie24nUmhUOAXFGL5W6lWo2y3DUuhVHbosAF826UH8A1sjV8uSRIKH1/UPr74BlovALWPL2Hx1tfS25wKvY2wsDAuv/xytm/fjp+fHwqFwjI114Ysy9TV1fHCCy/w4IMPOm8IOEOXCIUe3PfnDtHuWIZobwDYKUOpVPLS8w8SFBzIvX97hpraWm68fi4B/n4uL6f4+flyyUVnddghoNe38H8LFvHhx/8HwLYdJ07HCwr0Z+K4EURFhnebjdFoQqdrZvasqXw4b77NsxcUCgUB/n7MnjWVhx+4lYEDB1PXpMJgxwTIyY17DWOrw7hedh0wGAysWrWKxYsX4+vry6ZNm7juuutYvnw5f/rTn/DxcTGyoqDX8ObNutis2a5449i81lZe1j+2Lvq4y2OnztmdNDQ0cPDgQUaOHMk333zDuHHjmDNnDhrNiaWM2tpa5s2bx5QpU5gyZYplLc9kMnlkj3sHPL3331F6o3G0a+cCnYykVoP1sYfvwN/Plxf++S6NjTpuvelKwsNCul7nQP46XTMHDhby2MN3WD7z8dFyy41XcMuNV9ih7AlaWgw0NDRS39DIwUNFLFm2hu3b93TcDdEOlUpFXFw0V11xHnfcehUx0ZG0GL2lMvQ17i0He91MnKWpqanDdH9gYCCSJKHX69Hr9QD4+fnx5z//GY2mdVYrNjbW4p/k3bEgBJ3pn0/LlY7W0WsdSG5s0VN8uIy8GomgoCCCg4Px9/e3xDB3lebmZhYtWkR8fDznn38+DzzwAC+88AJZWVnk5uYiSRIVFRV8+OGHBAQEMGnSJCorKzGZTNTW1qJQKEhPT3dZj6704CTYl47OjvgKeFLH446E1vK4967rCQoK4IV/vkNlZTX33f1n4uOjW+uMZEUxKx816ZopLTmKWqNiw6YdjBg2iKAgO5arrMjS61uoraunqqqWPXv3s2LlBtZv3M6RI+XExUUzfdo4ikuPUlzccalAq9UwZPBAbrv5SuZecg4+PvYdTGRLGUds/q5pnX2gfVVZHc/XbDbT2NiEVmVEoXa/w96OHTtYv3499fX1DBw4kHPPPRe1Wk1xcTELFy4kLCyMc845h+DgYIs+dXV1hIaGMnXqVGEM9DP6/ml1+w44MIJ3OVPXtw3q6mqY/8083tuxhtTUVHJzcxk2bBhxcXGEhYURGhqKn5+fUy9tU1MTf/zxB5s3b+aSSy4hMTGRyy+/nFtuuYUXXniBhx56iLCwMF555RUWLVrEOeecw0svvYTZbKa+vp5jx47xzDPPOJyvffTgJNhXhkBPz83R6X0rO/3sx/ZFkiRxw7WXEBMdweNPvk55+TEeffgOsjJTO0QM7E7Uvn0HufuvTxMXH41apeJfrz7Wgz4njBNZlmlu1lNVXUtFxTH2FRxi7fptbN2WR1VVLXFx0Zxx+iSmTxvP2NFDUCiUtOgNvPbGh5hMZhQKieCgQKZOGcs9d17H5EmjneyYOl7jiIiuaZ2tdN5stXas0DU1Vaz4YyHJ8VoG5aQRG9N2UJN77iElJYV//etffPPNN/z888+WupiSksI333zD3XffTVBQq3+WXq9n9+7dLFy4kOrqagYPHuzRGVKB++l7Y8DhuuLuhWL3JfcLDuXsiy5FOyaHLVu28Mcff/Dzzz8THh5OfHw82dnZpKenExERQVhYGNHR0fj4+Nj1wlRVVbF9+/bjJ7q1jvgiIiKYOXMmNTU1rFmzhoSEBAoKCkhNTSUv78Qpb0qlkkGDBnloVqAVWQazrMB71geO05N7rLPR/5xAksxINoLkKBQKzjpzOgEB/jz13Bs8/Ng/+fsDtzFsaA4qlbLrBZ0ICgpg4MABhIWFcPWVFxAY4N/tNkFZhpYWPeUVVRQXl7Fn7362btvNnvz9NDQ2kZwYx5xzZjB+7HCGDslGozkRtEiWZeacO4NX//0hCoWC1OQEzpszg7vvvI7EhNgedXW+k3Dd27N/dVDd762tra1h0+YtfP75FrIHDmDWjMnkDsokJTkBtdr1WA7R0dHcfffdrFu3jvXr1zN+/HiUSiUlJSUEBgZyzjnnWE5trKur45dffuGHH36goqKC6Oho7rjjDsLDu/dDEXgPvb6boOs77G53bnfhnF5tuwlkWaa6upqCggJ27tzJ1q1bOXz4MHq9noCAAIKDgxk8eDDJycnExsYSFxdHTEyMZe3Na7BzN4HJrESn98Nk7nv70lvx0ejQqJq7GfHKmExmtm3fw7Mv/gedrpl7/3I9kyaOcstOg9YRXAvFJWUcPFRMwf5D5O3ax8FDxRiNJpISYxk6ZCBjxwwjNycTHx/rO2lkWaahoYmxky8kPCyUa666kCsuOxc/P18ruUKLUUNdYygGk7adjN7Ye98Rx/K0/5139l7cUQZGfTGbNi7hp4WL2bf/MAlx0Zw2fTzDh+aQPTAdrbbNl8i53QRms5nbbruNNWvW8P3335OUlMTzzz9PWloal156abt7kWlpaWHLli38+9//Jj8/n2eeeYZZs2a5doMCl7F3N0HvGwPd4q3GgP3Y2lpoNpspKysjPz+f3bt3s2vXLoqLi9HpdPj5+REREUF2djbJyckkJSWRlJREREREpyNX+wA7jQGDUU1tY1iHBr8n+qJDsKIFvVXnAn1r8POpRyHJ3WZtMpnYk7+fl1/7L8UlZdx28584Y8Ykm51td7QtARQWlbL/QCG7dhewa08B5UcrQZJITUlg6JBsRo0cTGZ6it15GI1GPv/yBwakJDJxwkikbnZ3WDMGrGiK+59DX7cnns+/bWthQ0Mtq1ZvYvGSVezIyycwwJ9JE0YxetQQRgwbRECAv9NbCzds2MCFF17IPffcw9VXX80NN9zAJ598YrVjMZlMLF++nMcff5xrrrmGG2+80dVbFLiI124t7IoT+7J6hfa6uP5SKxQK4uLiiIuLY/r06bS0tFBUVERBQQH79+9n3759rF69mqVLl6JWq4mJiSEjI4MBAwaQlpZGcnKyxZu3z3FTGydZnOM8GIvAUVf83sTGxJNSqWRgVhoP3n8Lb73zGW+98yl1dfXMOXcmIcGBtuW1k9PUpKNg/2HydheQl7eXggOFNDY0otGqGZiVxozpExiUk0F6WjL+/nacZtnpUSmVSq6cex5KZc9xyxSSGY1aj1Jxyu8tdDsqpQEJmeCgQM46cxrTpo5jw8bt/L5iPb+vWMevv61gxPBcJowbyYSpwU5N248YMYIzzjiDDz74AIVCwYQJEwgMtF4PlUolQUFBxMXFERIS4uLdCXoTL5sZ6P84E3RIlmUaGxspLCzk0KFDHDx4kMLCQo4cOWI5tz0mJoaUlBTS09PJysoiNTW1d/bwenBmoL9h1xkV3WCZGWhzOujBP9ZsNlNYdIT3P/iSNeu2cMlFs7nkwtmEh4dalV9TW8euXQXk7d7Hzrx8Dh0uwWyWCQkJJGdga8efPTCNtAFJ+Pr23v5vWQazWYnsVcb+yYEkmVFI5i4zbC0tBnbm5bN67RZWr91MWVklmQOHMGXKFKZNm0ZcXJxD+WzcuJGzzz6bpKQkvv76a8tZJ0ajkd27d5OSkkJQUBA6nY6FCxeyZMkS/va3v5GSkuKmOxU4Sz9dJuj/uCMCYdsWndLSUoqKijh06BAFBQUUFRVRVVWFWq0mOTmZzMxMBg0axODBg4mKirLuee4qbjYG7F8acG22oC0fdy5FtL0pzsrrskzQJQO63LLZLFN65Ciffr6AJctWc9r0CVx95fnEx8UAUFlZxc68vWzZtpstW/M4UlaBr68PkZFhjBoxmLQBiQxITSIpMQ6NxvuCaPVrZKxv/XRKjhv0sYLJZGL/gUI2bc5jxdrWJcro6GimTZvGzJkzSUtLs0uO0Wjk6quvxt/fn3feeccS7Ozo0aPcdNNNREVFMXz4cGRZRqFQMGzYMMaNG+eZNkngEP3XGOjrZb4uOjimkCfCERsMBqqqqigrK+PIkSPs37+fPXv2UFRUREVFBUFBQaSmpjJ48GCGDh3KkCFD8Pe34k3uRL4qhR7J2JszA65WAG+oQNbp0RiwQduZAt/98BsLvv+VxIQ4xo4ZSlHREbZs20VlZTVhocFkZKQweuQQEhNjiYuNIj4uBrXaxkqg9xaT9+DuMuqjMm8NOgYllVp27NjBihUr2LhxIxqNhtNPP52zzjqLzMzMHjvuG264gVtuuYVRo0ZZdhE0Njbyyy+/UFFRQWJiImFhYURGRjJgwABhCHgJ3uczYO+L4PaXxYk3ULL5h8uinUGtVhMdHU10dDRDhgxBp9NRVVVFZWUlZWVl5OXlsWvXLubPn8+7775LeHg4AwcOZOTIkYwYMYLs7Gyndim88cYbhIX6M/fCyR22lnkWV/PoDR17v1VXKZWEBAei0+mZ/83PLF6ykqzMAYwYPogxo4aSlBhLTEwkkRFhPRyLfBxn1T8Z/fxsYUsnZ/W19xo3l0fbCYKJiYnEx8czatQo8vPz+f3331m0aBE//vgj06dP58ILL2TgwIFWnZbz8/MtW5Tby/X39+eCCy6gubkZpVKJVnvyLhOe7Lg2M1Dc6J0vcR/i6YOKOmM2m2loaKCmpoaamhoqKiosxsHevXspLy8nPDycnJwcxo0bx5gxY8jMzOxxl4LZbGbs2LGUlR1h0vjhPPn43aSnJdvsZFydGfDczoLuWtbe7YUcmRmQZZnauno2bNzO0uVrWbN2MzU1dURHR5A2IJlNW3bS1KTj8Ufu5Kwzp+NrYxtg7+Ktvboz9MK9OBIUy1Z6u9XsuLWwLSrpgQMHLPFQGhoamD59OldccQUDBw6kuLiY999/Hx8fHwoKCrj99tsZOXKkGPH3M3pnZqCnSujCdHuftCsO59lDGN5eQKFQEBQURFBQEElJSZhMJsaOHUtDQwP19fUcPnyYTZs2sXnzZl588UUMBgPJycmMHj2aSZMmMWrUKCIjI7t0JG0+CkePHuX7n46xeWset950BbffcpXtqWcX6Lkf88RwzLs6rrb9+6vWbGLRL7+zYvVGGhoaSU1JZNYZU5g0YSSJCbH4+fly5EgFr/7rA559/i0aG3RcctFsK9sCe7tSuss5wwVRbrvlXig3m/FWbKhgTSUn1VQqlYSFhRESEkJmZiazZs3i999/Z/78+fz888+cddZZjB8/nqVLl+Ln58dNN93EkCFDvMDgFHgKN/oMeKDh6TZAkZuFu0l0b88MdEfb4UQ6nQ6dTkdtbS27d+9m1apVrF+/ngMHDuDr60tubi6TJ09m2rRpDBw4EK1Wy7x587j33nupqqqyyAsLC2HMqCG89tIjZGV13LNs38yAtwaYasNToa5bsTUzUFNTy5Jla/ht2WqW/76WpqZmBmVnMOP0CUydMpa42CgC/P3x9fNBdXxGx2QyU1FxjH//52O+/HohF194Jg/dfwtBQQHe1WB742PugIxbjsK2Idqj9+6Q/O6DDpnNZnQ6HUeOHOHnn3/m888/5+jRo4wePZpbbrmFMWPGOB1KXdC39F8Hwn6ONxkDnZFlGaPRaDl1rKSkhLVr17JixQo2bNjAsWPHiI+PZ8KECezatYu1a9daTidrQ6vVEhUZxmMP38F111xsWW44ubYWemZhPNC31mIMVFXXsOz3tXz3wxKWLF2FwWhk5LBcpk8bxzlnTSc2JgofHy1arcbmtKwsyzQ16fjmu1946tk3SU1J4M3X/0HagKR+2mh70Ng/5bEvAqHZbEav11NdXc2PP/7I+++/T0lJCWeddRZ33XUXOTk5Ypmgn9H3xoAz76LVa/rKBdeJbGUYHeW9xkB72o41NhqNGI1GWlpaOHjwICtWrGDZsmUsXbqUuro6m9cHBgYw87QJvPLS30lOiu+HxoAn65V12U31e1m5YhHfLljEytUbMcsy48eOYM45p3HWmdMICw1GpVahVqk6Nbjd62owGNm9p4Db736CoqIjvPHa45w9e3rfGASenvxpa6086cTokN59bXQ44JntQATCtrahsbGRH3/8kX/961/s3buXmTNnct999zFmzJh+anCeevS+MWCzTvb1y9IbnLhHb54Z6I4248BsNrNx40YuvvhiSkpKur1Gq1ETFxfNU4/fw8UXX0R9UzgtRq1bHAE9faBMb4dC3rJlPffeexPHKo9w2rTxnH/eGZwxYxKBAf4olYqedwDYMpSPT3GbzTINDQ089OjLfPjxfG658XJeeOYBj/h39Mip8Mr3Jm6JZ+CYMWDJ+nib0NLSwq+//spLL73Ehg0bmDRpEvfddx9nnnmmMAq8HI8aA22XOLZb+tRAwvkIdd7CW2+9xZNPPsnRoz3HFwAIDgrkwgvm8Nf7/kFoWCLQX8rAk+GQOw5hdbomDuxbzYghsQQH+yFJCosxYndZWdS0rm+bQffpF99x5z1PkDsoi8/nvUpSYlw/eR494e0+J72BC460Tp5NACeib5rNZlatWsWLL77IL7/8wqhRo7j33nu58MILLbNZJ0ddO3mw1xhwavGnbd+qQvzr8q+/vwiyLLNq1SpqamrsvqauvoGPP/0f111/FWvW/NFe2nGZbtPOXYKOI3X66W7ZJ+T6+PgybuwoQkKDUCgUKBSS5T1ySGTHXzp+LUkoFAquuuJ81q34hvr6RsZNvohfFq+wGAp245WWvmTjdy+hV8qsb+67ra4qlUomT57MDz/8wJo1a0hNTeWqq65i9OjRfPLJJ+j1esfrmsArcGpmQHDy0tjYyNSpU9mxYwcKhQKTyYTZ3Bb7XEKSwMfHh9CQQKKjI4mJjiA6KoKw8EgCgxJJS89l+PAxBAcH46mGq7sp/rZpTbPZjFrtWPjd7pYm2uTCiYbR1vG+1mW0dyA043TZ2Lldt9W5sJm773uKz//3PXfefg2PP/IXfCxH2vYownVc2Vrc23SjXufn7k7ZTglxSp5rMwO2MJvN7N69m1dffZWvv/6aAQMGcMcdd3DJJZfg7+9vXwAsgUfx6DKB4OTl0KFDfPzxxxiNRiIjIwkPCyAiREFkRBiRkWGEh4VYPeTGmgNhx067d3qdoqLDfPrp+3z77ResX1/gFulms5kDB/bx/fdfU1lZTk7OUM4771ICAtq28dl3bw6FI7Yl0kEHOpPJxLxPv+GhR//JyBGD+fcrj5KSnHAi6FRvzLx7uR3QgXa6mkwmDAYjv69Yj16v5+zZ0+0/UtxT5drd8+82H88YA22YTCb27dvHG2+8wfz584mPj+fmm2/m/PPPJywsDKVSKYyCPkIYAwL30M9OLdywYQ0vvPAY69evorCwqcN33TsN2m5J8/K2c+21FxAYGERFRTn19XUMHjyMefO+JSwswm7dnD2bwFVMJjMbNm3njrufQDbLPPf0fUyZNAZt51mCftVru4Pu73fT5p28+c6nfPHlD9x1+zU89cQ9Dsw22VOWvVnenjUG2jAajezfv5933nmHb775hpiYGG666SbOPPNMwsPD0Wg617mOyLJMc3MzGo3GfsNL0C0e9RkQCLqn79YLR48ez4gRY6x+1/3AxPqXZrOZRYu+4733vmLJks389ttGLrroCrZv38IHH7zlusJOY08Zt6ZRKhWMHT2UBV+9zeDcLO6850lef2MeFZVVmEymdunt6bxOJrq/38G5WTz9xD0EBwda+banspDsKK7OhlhPeH/5q1QqsrKyeOmll/j5558ZN24czz//PJdffjmffPIJhw4doqmpybL00p627YwvvPAC27dvx2g09sEdnLoIY0DgAewb7RgMLRw7Voksy7S0tFBdfYz6+roOzkeyLGMwGKirq6W6uoqmpsYuDUnr6WkNHDtWSWNjA0qlqsv3RqOR2tpqjh2roKGh3mpj1PGa1p86XSNjx05iyJDhSJJEVFQMd931EGq1iv3799p1ny5hs/23c29522+SREJCDP9+9XHu+cv1fP7l99z7t2fZum03umZ9NzJs5GlLrx77q77t0MxmM/X1jdTVNVBX14BO1wyA0WiisbGJuroG9PoWZFlGo1ETFRmO0mqQHTs6e4cG/Y49zw54oY2gVCrJzs7m5ZdfZv78+YwcOZLXXnuNq6++mg8++IC9e/dSV1eH2Wzu8L7v3buX559/nksuuYQNGzZgMBj68C5OLfpgE7JAANXVVWzevI6FCxfwyCPPkZe3lT/+WIq/fwCXXXY1MTFxx2P117FvXz6HDx+guvoYISFhDBkyguTkVNRqDSaTicLCg2zduoljxypISkrh6NEjlnxkWUana2Lv3t3s2rWd8vIygoKCmTbtDFJS0mxGU2ubRfD3D2TSpOkdvouOjiUhIZmMjIEeK58TirhXXGCgP9ddfREZ6cm89Mp7PPzYP7n+2ks4bdp4wkJDWjs+F/qlnteyexDu2YjQ6HR6flu6ir37DuLn68PEiaMYMWwQdfUNrFq9ifLySiZOGEV6WhIqS/AnG8Js6dlPj4TwBEqlkiFDhvDyyy+ze/duPv/8cz766CO++OILzj77bGbPnk1CQgLh4eGYzWZeeeUVjEYjhw8f5tprr+Wdd95hwoQJXU5dNZhl6lvM6Hsw6k9FIn1UqBSOVwphDAj6hJ07t/Lii/9gx47NzJp1Dtu2bcZgaOHDD99Cr9fxt7/9g6amRpYsWcT27ZuZO/cajEYj77zzOsuX/8ptt/2VzMwcDh4s4NVXn2HMmIlceOHl7Ny5lWXLfrXkYzab+P33xaxbt4qLLrqCurpaXnvtGdavX8Xjj79IbGyCw7ofO1aBTtfE1KkznS+A7hwEnW3c7bxWq9Uwfep4EuJj+c+7n/H6G/PYvmMPF50/i4FZafj6+rjX2csRUU5l2+nGu5Gh0agJDw/hs6e+Jyw0mPPPOwOAkOBADh0upr6+gaAgf8t6tSS1BnVybguooA1JksjJyeHpp5/m2muvZf78+SxcuJDvv/+eKVOmcO6556LRaPjiiy8sS1cHDx7ktttu4+WXX2batGn4+p44iKtGb2JZSSMH6ruZOTjVXGCOc0tOKCFax/0txDKBwEHkDj+ckiDD5MmncfrprdHLIiNjuP/+x7nvvsfJzR3G6tV/IMsyBw7sY8GCL8nNHUZmZg45OUM4++wL2L17B7/99jPV1VXMm/c2Wq2W88+/jLCwcKZMOZ3Jk6cfz0emvr6eN9/8J4MHD0ej0eLn58+IEeM4dOgAW7ZsdFDv1u2F3377BbNnn8+IEWOcj6HQ08jaGbkONHwKhURWZiqPP/IXbr3pCrZs3cU/nnmDbxb8QtnRio6+BE4vCTiKEwJl6H7bRUfUahXDhw3ixusvo7FJR/7egwDU1TdiMBoZM3oosTFR3uH57mhxyJ1+einp6ek8+OCDfPLJJ1x++eXs3LmT+++/n/vuu6/DWSgGg4GCggL++te/smjRIpqamrqRagWr1ULG6QLyaOyEvn9owhgQOIjU4YdTEo5fq9W27jzIzR0GtB7HHBeXSE1NNQaDgUOHCiguPkxERJTl2kGDhhIXl8imTWvZs2cHq1f/wYABmajVJ6YRExKSLb8XFx9mz548ZNnM3r27KSw8RGJiMueffxmxsfEO675p01qKig5z++330RZ3wSO4Xa71xiY0JIgrLjuXZ/5xL2kDEvlg3nxe+9eHLP9jHXV19a3ruY4sCdiftQsC7bnEtqwAfz+mThlDaEgQCxctp6Ghie079uDv50vagOQThkBPenu6/Xa0ODwZQ8sDJCcnc9ddd/HRRx8xffp01q9f38WXx2AwsG/fPh577DF++uknGhvtPBzP1rOROgYDc4jO9cIl46DztVZGAU6Jd14nsUwgsBP3z7lJkqLT36DRaI7HQtdTUlJMc7OO+voTByaFhITi5+dPfX0dR46UoNM1Hd/D3F5O6x+yLFNVdQyVSsXIkWNJTc2wpGkLTOQIu3ZtZ9Wq5Vx//e1ERkY7cccepPPj6bLPXbL5CJVKJcOHDSIpKZ5Fv/zOTz8v45XXP2DCuBFMmzqWUSMGo9GorY+W7Vnu6LHa2NiU70iVcyDAkSRJJCfGc8bMyXz/wxLWrNtMcXEZISFBxMe3e65tISRsCrJTt+70FRGWiYiIoLq62ubuAaPRyJ49e3jmmWcwGAyce+65oPK1mtaCJ+ObWOq1K3LtsLCdEu+8TmJmQGAn7m6lurdgVSoVISGh1NbWsH9//gktjkeBS0kZQEREFEqlkvz8XV28jtsiAUZERGIwGFi48DvL1LfJZKK8vIzi4sN2a5uXt521a1cwc+bZZGZmI8syJpOJmppqB+7ZBu4YYXZ+PJKV33t4hOFhIVwxdw5PPn4PZ54xhXUbtvLUc2/wrzfnsWnzToxGY9cws67OGthU1kEZks0/rBIUFMCUiaPRaNS8998vqa6pJS01CU2nOAKWc1jkTiM2F2abO6ho49bdRt/PPvfI7t27+b//+79ujXOj0cjOnTt54YUX+Pbbb6mvr7dT+iloXTmJmBkQOE+3Rnf3FrksSzQ3t64BGo1GSzCX1hG7CaVSRVbWIOLjk8jPz+PYsQrCwyMpKSnEx8eHMWMmkps7jPT0LNatW8nmzeuZNGk6kgRlZaWYzTJ1dbXExiYwaNAQ/ve/jwgODmHIkJHU1FRx9OgRxoyZYNdtbtmygS+/nMegQUMxGo1s3bqB5uZmCgsPMnjwCEJCQu0vs64FcXzU3m1EpF5DkiTS05K5+c+XM27MMH5dspLlf6xj2e9rGT1yMNOnjWfcmOH4+Gh6FmYPfTQaliSJ9PQUpkwew/sffMmY0UPJykztks5kMoEs09Le2Oz7x2RnTCPvqlvWkGWZ//znP1RVVaFUKrtsNWyPyWQiLy+PV155hWq9maAxMwFHgpx5eKtKP0cYAwL7sNagdPtOdP6y40u0e/cONm5ciyzL/PTTN0ybdgYFBXvIy9tKfX0dK1YsITd3GNdffzs//vh/vP/+v8nIyObw4QOMGjWe8eOnEB4eyXXX3cZLLz3Bq68+w8qVS4mOjqWxsR6NRsNPP33DrFlzuOuuh3j55ad49dVnGTAgnfDwSM455yLi45N6vO0tWzbw7LN/Jz9/F/n5u/jmmy+A1rVMX19fTjtttl3FZ7uYpI4/PYWDbZhGo2b0qCFkZ6czfeo4Nmzczh8r1rN8xXoGZWdwxsxJTJowiohwBwwhazpI9E1nJbfuIJg4bgR79uwnKzOVwMCOR48Xl5Sxes1mmnTNbNqSx7Lf13HatPEolV4Qb7/b7I8XdG/VLRcwGo2EhoZyySWXUFNTQ3V1NZWVlVRVVVFfX9/BkbX1gC8Fu3bt4q3XXmbiVc0kTzoTrb+9R8a7oxw8WZZ9a2iIcMSC7vFQOOKjR8vYtWsbjY2NpKamk5IygKqqY+zduwuj0Uh6ehaJiSk0N+vYs2cnx45V4u8fgL+/P0lJqUREtHp8t7To2blzK3l521Gr1aSmplNXV0dDQx2ZmdmkpWUiSQq2b9/M3r270OmayMgYyNChIwkJCetRz5KSIrZv39QpUl/ryDI4OISJE6fb3TH0Wjhia22Kix2uTtfMvv2H2LEjn0WLV7B//2HCw0OZMG44p582keFDsx0+GKrPkeGPVRtYv2EbV14+h9iYqA5f19bWU1hUSsGBw/hotaSnJZM2IMn5A4vs1Mkz/YHUK+GIHcVkMlFaWopOp7P8a2pqQqfT0dzcTE1NDVVVVRw7dozq6mqqqqqoqKigvKISgiIYfuHVZE44Ha2f/wmh1vwxPI6jmXpOyc5bC8XZBAL3YDEGuq+0njyboC1CIchoNFqrDXFzsw6zWcbX1xe9vhmVSo1Kpeoiw2g04uvrazPYUA+aHP/p3MvbV2cTuBODwUBh0REOHipm5aoNrN+4nYrKKjIzUpk1czLTp44jIT7Gwc7S0622dfn19Q38/OsfNDfruXLunJM8Fr53GgPd0RZ9tLm5Gb1e3+FnWW0ja0vrqPePICgyBqVKhVdM33vBKoIwBgSewdbMQKdK7y0HFTlG7765ThkDXtC4dNah7bz66po6jh6tpGD/IZYsW8O6DdswmUxkZ6Uxbeo4Tps6jqSkuI6GVx/fj76lhTVrt/Dtd78S4O9HQIAf1/zpQuLivGx3iCPYVab9zxjojgqdsVPQIXujeFmdNrNxrS1Z3vBStqejPs4aA8JnQOAcff4uuPZCNjc3s2LFUn7++btu002ffgazZ89BpeqjKXBHb9ET7VRnV5Hj0+ThYSGEhQaTnp7M+LEjKD1ylE2bd7Ji1UbeeOtjXnn9A0YMy+H06RM4ffoEYmOjUCr7dgOTbJYpK6vgl8UrOG3aeC6+8ExiYiL7VKcuOPoM+/xd9Abs3dZiLZ29BWjntpxe94FxT15iZkDQPQ77DGjoD62T2WymoaGeurrabtMFBgYRFBTsljVizy0TOGsBOHhdD8nNZjN6fQtNTTrKjlaydt0Wfl2yks1b8pBlmeHDBjFtylimTx1LZsYAVKren5ZvPdRKR3VNLX6+PgQFBaJWqXrB6OqlZ2STk31mwAn6bIDv2YzFMoHAM3jIgbAzvW1M21HtO+CIMWDrXrzGZ6AXCttsNmMwGNHr9ZRXVLFqzSaWLV/LqjWbqK6pJSE+lmlTxnLatPFMnTyGoKCAvvfQlwHJwz1En23zE8aA/TgT+Kq3jT0r1x3/SCwTCPo1vd0+erLjsS7ai5wGe6GwFQoFWq0GrUZDYGAAyUnxXHrRWej1LWzbsZuly9eydPkaPpg3H6VSwZiRQzht+ngmTxzNiOGD8PGxYVS65sNpW6bUJtPDZePWsve2tev+iK39rl1/7R5nn4O7rnPdyBQzA4LucXKZwHvjnNjuTVp1dqWBlZFl2+cVuHdmwFs7gu6drNqcD1uDS8kcq6pm2fK1/LZ0Fb+vWE9RcRkB/r6MHT2MKVPGMGXSaIYPzcHPr4fws72ge9/jil5iZqD3seK8KEser1pimUDgGXoyBo7X997ZTdA7jbSnDBmvWSawhqeKtge5siy3mmeyjNksc7iwhOV/rOOPFetZtWYThw4XExIcxJgxQ5k2eSxTJo1mUE4mAQF+XWQ5PdvjrX2/WzlVjIG+fJhdtt10bEh6aYQklgkEfYOVuu25Ou8OoT03Fq7q3nuzIk40fLYukexJ5ITsHsRIknR8dl5CkmQGpCYyIDWR66+5GKPJxOHDJSz/Yy3Llq/lP+9+xsOPvUyAvx+DcjIYN3YY48YMZ9yYYcTERFqNDNizgWDjYTndp9hxoVOyXdkSdyrRl+XRZdsNrbOFbX9697MSxoDA7bivzjvW2NnXCVtP4PoSgUVSL770TuTT05ZrZ+VaLnPG+er45Z3KTa1SkZ6WTHpaMn++7jJaWgwcLixl/cZtrF23hT9WbuC9D76kuVlPUmI8I4cPYtSowQwfmsOQ3IGEhAQhKSQUx7dCtsnvmI81XV2x5mxc116+Uw5prmyJEziPC22CDEgSZqMBJAmFUummtsEzRqAwBgRejD0V/sQ6ryse/9Jx5zFXznZpvaYfNdCenr3pbBy4iEajJiM9mYz0ZK6cOweA6ppaduzIZ/3G7WzYuJ3/vPs5FeXHMJpMJCbEkpOdzqCcDHJzMhmcm0VSUhwqpRKFsjXOvVKhQJIUSBJInXtr99iG7ZwTHaEf1aOTjQ67Slx4DlLrMti+dctRa30ZMGqimxT0DMIYEDiOtaBe7hJtVydsbZjl2EvbNY8Tzn/OTvNbu7bVJce2U2EnFby3D3A0SJsFV9dcsF7Xjn8WGhLMlMljmDJ5jCVJ6ZFydubtJW/XPnbuyue3pat574MvMRiMBAT4kZUxgMyMFNIGJJOVmUp6WjIREWGoVSqUSiVKlRKVUoFSqUTCxXMIPPo8vbnC2E97tzWvMKYly3+tzq4mIyajAUlSoFSpkY5H1DQZWo6nl1Cp1cjyic8khQKFQkltRRm7ly8iMiWd5CGjUajVnUKhO/MMPePkKowBgeM4uC7skGi7fBA80WCc6LBdavs7rb071Lh5QTtoE3t1c/c9OFHX4mKjiIuN4owZk4C2QENN5O89wI68fezevY+9+w6xavUmjlXVYDabCQ4OJDkpnpTkeFJTEklLTSIlJYGIiFDUajVqtar1p0qJSqVCpVK2Ggt92nl5c4WxH7PZzJEjR/Dz88PPzw+t1vr5I72NLMs0VFVSfiCfI/nbUajVxGbkEp89FLWPL3tXL6XhWAVKtYaRc+Zi0DWyd80ymmqqCEtIJiYjh43ffsqO335g4OSZ7Pp9ESnDxhIUFdMuFzcvR7mAMAYEXk/ndkGW7etkHR/hu3NeGNdk9aSK25zQnMHacN2NU+tuRpIkAgL8GTliMCNHDLZ8bjabqamt58CBQvbuO8jegoMcOFjE9z8uoaKyCr2+9XCs4KBAEhPjSElJICY6gvi4aBIT4oiLjcJHq0HVZiyoVKjVKlTHf1epVSi7OxDL0bLySJ3oexobGxk7dixTpkxh5syZjBs3jpCQEAIDA/H397fvUDEP+Fc2VFXw29svkDJsHMPPvpQDG1fx1aO3MenKWxh3yfUMGDWJT+69imNFhxg5Zy4qrQ9BUTEsefcl4rIGc9a9TxISm0BIbDxa/wACI6JQaTR25NyN4h58xsIYEPQ77B01dJ/MCdd3uyLeuOlN7UmMU9m4o8PuvH2KTs4XzsrtfRQKBWGhwYSNHMyokSeMBJPJTOWxaopLyigqLqW4uIzikjKKS46wa9c+amrr0OtbMJvMBAUFEh4WQmhYMKGhwYSFBhMVGU50dATRUREEBQag1qjQqNXtZhja/lZZPrPrWGSP1Im+x8fHh4qKCr766iv+97//4e/vz7Rp0zjttNMYN24cUVFRhIaGEhwc3OEk0g5051/pzKYbs5nVX7yH2WQibewU/EMjGDzzPA5v38Av/36alOHjic0aRGRKJseKDgGgUCoJiowhPCEFAP+QMKIGZOETEEx4Qiopw8fZ2XZ1k8aDz1gYA4I+w/6RuyfMYWfkuVEHW7fkWswj+6516Takbv/sG9xbP5RKBdFR4URHhTNy+KCOOckytXUNHCk9SmlZOeXlxzhaXsnR8krKy6vYVrib6to69M16WgxG1CoVgYH+BAT4ExjoT2CAHwEB/gQFBRIaGkRkeBihocH4+GhtGgqWGQeVyrJE0fbTuaO4vQuNRoNCocBgaI0Z0NjYyKJFi1i4cCG+vr6MHDmSqVOnMn78eBISEoiOjsbka0e8Gxd8AJsb6ijasYnYgYNRqU+M5ofOupA1//svOxZ/R2zWICRrxW/1Q+9HGAMC17HbgbBjo23/Vj6v6HHci617d2V740lYTHYfz9tLSJJESHAgIcGBZGend/nebDbT1NRMRWUVlZVVVB6r5lhVDdU1tVRX1VJdU0tFZRX7DxSi0zXT3KxHr29BoVSgUavRajX4+Gjx8dGi1WhaQzprNfhoNfj5++Lv54d/u59ardZiOKiUylYD4bjzo0rZaiy0zjwoUPsbkSQJVZujpFLZ4fe2f+1RKq0bHAqFwvYo/TiyLGMymTCbzV3KyGQydfhMrVaj1+stf7d939TUxKpVq1i5ciW+vr7k5OQwefJkMoeO5FhgHI0BkfiHhqPscKro8UpjxUnYXue7mqMlNDfU0dLYgNxO/9C4JJCgub622+udpvMWV4enNJzPWhgDAtexu77aOy3v6kjP9ZGiPbMWsixTX1/H9u2bycrKITIy2oEcbG1bcEPH5um1Y4+vTbfLoM/8IpwTr1AoCAjwIyDAj9SUBJvpDAYjdfUN1NTUUVffQENDIw0NTTQ0NFJf30hD4/Hfj392rKqG0iPltBgMtLSc+NfaubfugFAqlCiVx7dLKqTWjlxSoFS1OjqqNCFIktSh49doNGg0GrRaLRqNBrW641HdGo0GlUrVZXpbqVSi1XYfbVSWZQwGA0ajsdO9GzAYDHbvImgzJpqamti0aRObNm3Czz+A1JETGDz7YjLGTcMnsP3JorZk2e+Fr/H1R6nWcGTvTlqam/AnHJBRqtWARGzWYEBCqVIjy+ZOV8tdDkKT7e2lXXWUdqHqC2NAYB89NoJmfLRNqE1624lOMmQZKo8WMu+j18nMHMLcyy4iKzPVZnq1qgWpfaPgKY9pTw+U3SnfqhuGKxl4+ObdJF6tVhEeFkJ4WIhd6c1mM83NLeiam2lubkan06PTNdPUpEOna0bXrKelxYBer8dgNGFoMaBvacFkMqFr1mM2y+hafDGZTK1pjnfIOp2O+vp6S6fdecTe0tJi9YRPg8HQJa012mYe2nf2bbMK7T/raZYBWg0GjUZDSkoKGTm5BGQMIyQ2EaW6J6c8x516gyJjiMvKJW/5z1SXFhEcFYtCqaJs3y7CE1IYMHoSEuAfGoFBr6O2/Aj+oeEcKzpEQ3UlQUoVJqMBhVKJUqVC31hPfUUZPoHBqH18e/Ad6BtPUGEMCBzDRj1VKkwE+NQ7L8vd9b8XRscyMikJSi6YM5mv5v/Ef6r2ccuNVzBqRG6X6dZudewvXuD2+E86Stv9t8l3l2xP1y3cLLMHFAoFfn4++Pn52HdBl7oldTmboPWY6VajoKWlBaPR2GUUr9fru0zzg2PGQOeOXqlUolarO3SI69ato7q6usv1bWlCQ0MZMWIEo0aNYuTIkaQMGsY+RSiHm+wZcTv+oNRaH0aedwUN1cfY/MP/0DfUIcsyhds2cNqN9xKRmAqSRMrwcaz56gMW/+d5YtKzUShVyCYTDccqOLJ3Jz4BwQTHxHNw8xoCwiLJnjILtU9Ph271TWMgjAGBfbhht5xNmd7iH9gT7TsBCSQkgoICuPyyc4mJjuTjz77lhX++w003zGX61HFotT2MWDxRpp7EU3qKuuV+7CjT1mOmtT1O9/cG/v7+Hf5WKFojRGZnZzN27FhGjx7NsGHDGDhwIEFBQVTojBwoaQQ8d2phfPZQpl1/FyW7tqJvbEAbEEjK8HFkjJ9umdVLHDSCM257iMrD+9H6BxCbmYvWPxBkM2ofP4Iiohl57lyO7N1JeGIqWv/AbmYF+nZUIIwBQd/jbq96T2FDHz9fH2acNoHIiFA+mDefl197n8rKKuacM4OgoADb8jx1otHJ5DPg6rXu1rO/lK33niFuFV/fE6PlsLAwZsyYwYQJE8jNzSUjI4P4+Hj7Ztt6xP4CliSJ+IFDiM0YhL6xHo1fQJfzBZQaDSPPnUtzYz1av9Z3PTIlA7WPDwpFq74pw8eRPHQMkkJC6nanQd8+L2EMCHoHRxs5Z96LXjUgOs5Da7Uahg8bxN1BgXz86Te8/+FXHKuq4Yq5c4iMCLMuwm2NtQc6wO7K0pOj7g4Z2EkHPTxUAezZpuaO8rDpAe8AnWM/9ANCQ0OZMGECM2fOZPTo0aSnp5OUlNTBSHAPjpRLa9krlEp8g0KsS5MkkCR8A4Mtn2n9/LukkdxiyHgWYQwI7MeVxq432qYOeXjaMpC6/K5Wq8jMSOGOW68iLCyE+d8uorz8GLfceAUJCTEnRhRdVHNVVw/cpz0ivcXHozdmXXu7PFwR2qvvgXt49tln0Wg0xMfHExoa6hXhiHsuNy8sW7G1UCDojJWXtBfeXYVCQWxsFNdfewlRUeF88NHXHC4s4cH7byF7YDpKpcKKDj0MN2Wpb9ocL2zrvJa+KisZuo9N0T8e4PDhw+2LwuhVeJOutmIr2E//DJUk6Bu8qe47Qy/pL0kSYaHBXHTBmTz+yF+oqa3ntr88zrLla2hpcdThyckX3IURQvusew1P5NXf9HfmmUmW//o1CoXCiwwBex+EO14yR7GVp+tlJ4wBgRvpi5fDe/H382XShJG88uLfSU1J4M57n+STzxag0zV7PnN7Zjj7FdYU7mc30ZO63tIX9mfcUiXsfRCd0tmVt6sKeq6SCGNA4EZ6qzXzZCdgQ7aTL7parSY9LYnXX3mMa6++iCeeeZ177n+a2tp6q8FcHNbL0ct6ZY+8J56PNYX7We/Z3vGyPf3MpvFq3F4lHHg49uTdk7g+rAvCZ0DQAypQ+IsGy5W1OCUEhwRyz113kJaWyX0PPMG+/UV88O5rJCXFI3myU+ssup/1nyclffFMvGYK3lvozs/C8YiFduPqyZQeRBgDgu6RtKByJOa+wBoSoFHDBRdfS2b2aK655hqmzbyETz75mIkTJ4k+WiDoVfrqjXODp6mHnFXFMoGge47voxX/3PNPqVQyePBgli1bxrhx45gxYyZPPvkkJrO5dfLFC3QU/07SfwI78WRZuUG2h9QTxoBA0MtIkkRwcDCfffYZL730Es8//zxnnnkmpaWlDvoRCASC/oE73mvPtg3CGBAI+gBJklAoFNx5552sXLmS0tJSxo0bx8KFCzEajcIoEAj6DE86wLoiW3JdRDcIY0Ag6GNGjBjB6tWrmTlzJn/605945JFHqKurs3panEAgcAd9ZWyLZQKBQGCDtmWDd999l7feeouvv/6ayy+/nJ07d6LX6/taPYHgJKS7HrX9d242Gnqa8evDCUFhDAgEXoJKpeLSSy9lwYIFmM1mrrjiCj7++GMxSyAQeJTuemA3D8N7cuR0Kjv3WBDCGBAIvAilUklubi7z5s1j1qxZvP766zz33HMcOHBAzBIIBJ0wGY2YTSYXfWzc2OHLXX7xAJ1lu0d/EWdAIPAyJEkiOjqaf/zjH4wYMYK3336bPXv2cO211zJx4kTCwsJQKIQdLzh1kGUZo9FIU1MTjY2NFFfVcehgBUUVdYQnphIQFmFl1N0r4TY7InX5xZOZuBVhDAgEXkpAQACXXXYZQ4YM4e233+aFF15gxowZXHrppaSnp+Pj49PXKgoEbqet46+vr6e+vp66ujpqa2spLy+noKCAffv2sXPXbg4XFjFowjTSbryHMD91X6vtNSidtBUk2Y75lbq6OoKDg6mtrSUoKMi5nAQCgdNUVlayYMEC5s+fT1hYGBdeeCFTp04lPDxczBII+jUGg4GqqipqamqoqamhqqqKiooKDh48yMGDBy0GQEVFBbIso1QqUavVTD3tdO59+DFyhgwTQZXaEeOnQqU4UR729t9iZkAg6AdERERwzTXXMGTIEObNm8ebb75JXl4eF1xwAQMHDkSj0fS1igKBUzQ0NPD6669TUFDA4cOH2b9/P8eOHQNafWhkWe7gQCtJEiNHjuS+e+5m2tgRqFSiG3MHohQFgn6CWq1mzJgxJCYm8v333/Pjjz+Sn5/POeecw+zZswkJCcF7zoQXCOxDpVKxadMmfvvtN2RZ7uAMaDKZOqSVJIns7GzuvPNOJk2aJAwBNyLmFwWCfkZsbCzXXXcdDz/8MGFhYbz55pu88MILrF+/vkvjKRB4O4GBgTz66KOEhob2mDY1NZVbb72V2bNnC58ZNyOMAYGgH6LRaBg/fjwPPPAA1113HTt27ODRRx/lnXfesaytCgT9hfHjx3Pdddd1myY2Npbrr7+eSy65RPiueQAxxyIQ9GMSExO56qqrGDp0KAsXLuTzzz9nxYoVXHLJJcyZM0dMowr6BTqdjtjYWJRKJWazuUuQrdDQUC6++GKuvfZaIiIi+kjLkxuxm0AgOEmoqqpi48aNfPbZZ2zdupVp06Zx4403kpub29eq9Uuqq6tZvXo15eXlJCYmMmXKFNRqtfDLcCNNTU38+OOPzJ8/n8OHD5Oamsr8+fM7LHf5+/sza9YsnnvuOTIzM/tQ2/6J2E0gEJxihIWFMWPGDDIzM1m1ahUffvgh1157LRdddBF//vOfiYyM7GsV+w1lZWX8/e9/Z9euXZSXl6PRaJg4cSKvvfYa/v7+wiBwEb1ez6JFi/j444/Zv38/Y8eO5aabbiIlJQWDwWAJya3VahkxYgSPPvoo6enpfa32SY2YGRAITkKam5s5fPgwixYt4pNPPsHf35/rr7+eyy67TDhe2cHnn39OY2MjQ4YMobq6mjfffJPly5fz1FNPcddddwljwElMJhMrVqzgnXfeYdu2bYwaNYprrrmG7OxsoqOjUSgUllmthoYGMjMz+e9//8vYsWNRKpV9rX6/xN7+WxgDAsFJiizLNDY2cvDgQd577z1++uknRowYwV133cWECRNEsCIbNDU1sWLFCgYPHkxMTAxms5nt27czceJEpk2bxsKFC4Ux4CBms5n169fz9ttvs2bNGkaMGMH1119Pbm4ukZGRKJVKJElClmVaWlp4+umnef/99/nggw+YMWMGarWIMOgswhgQCASWfdu1tbVs3bqV119/ne3bt3P22Wdzxx13kJWV1dcq9iqNjY2sWLHCcuhTYmIiI0aM4NixY+zatYuqqiqys7OJi4vDz8/PYjAZjUZGjhzJiBEj+OCDD4QxYCdms5mdO3fy7rvv8ssvv5CZmcktt9zCmDFjCAsLQ6VSdSlLWZapqqpizZo1nHHGGSKglosInwGBQIAkSUiSREhICJMnTyY3N5fffvuN119/nfPPP58bbriBq6++mqioqL5WtVdQqVQYDAb+8pe/MGjQIN5//30AQkJCyMvLo7CwkNzc3C5+AQqFgrKyMmbMmNFXqvcrTCYTu3fv5u233+ann34iISGBf/zjH5x22mmEh4dbNQLaExYWxqxZs8SMQC8i5gkFglMASZJQqVRERERwySWXMH/+fK6++mrefvttZs+ezbx586itre1rNT2ORqNh3LhxzJ07l+rqaqqqqizfNTQ0MHr0aFJSUrpct3jxYtLS0rjwwgt7Udv+h8lkIj8/n3vvvZczzzyTNWvW8NBDD/H1119z6aWXEh0d3eOOjDYDVhgCvYswBgSCU4g2oyA+Pp7777+f77//nrFjx/Lggw9y/vnn8/PPP6PT6fpaTY8hSRIRERHMmTOHpqYmFi1aBEB+fj6+vr4MGDAAhULRobMyGAy88sorvPnmm8L50gZGo5Ft27Zx0003MWnSJFauXMnTTz/N4sWLueGGG4iOju5xNkDQtwhjQCA4BZEkCaVSSXZ2Nv/+97/57rvviIyM5Morr2Tu3LmsXr2alpaWLrHiTxZSU1OZPHkyy5Yt4/Dhw2zevJmAgAAyMjI6dFiyLPPEE09wyy23MHjwYADRoXHCF8VoNLJixQouvfRSJkyYwLZt23j55ZdZtmwZ11xzDaGhoRbnQIF3I4wBgeAUpW06VqFQMHr0aL744gu+/vprGhsbmTVrFpdccgmrV6/GYDCcVEaBJEnExMRw9tlnU1xczP/+9z8aGhqIjIzE19fXkk6WZT7++GPS09M566yzLFvbTpZycIa2EwSbm5v58ssvmTZtGjNmzKCmpoYvvviCNWvWcNVVVxEYGGipX4L+gTAGBIJTnLZGW6lUcvrpp7No0SK++uori1Fw3nnnsWTJElpaWjCZTCdFZ6hQKBg4cCBDhgzhP//5D5WVlQwZMsTSeZlMJr799lvq6uq48MILUalUmEwmWlpa2LNnTx9r37u0GQAGg4H9+/fz6KOPkpGRwQ033EBCQgJLly5l6dKlzJkzx+IPIIyA/ocwBgQCQQdUKhWzZ8/m119/ZcGCBSgUCi644AJmzJjBZ599Rm1tLXq9vt8bBYmJiZx55pkoFArCwsJISEgAWte/v/nmG959910aGxv5/PPPeeedd3j11Vc5//zzqa6u7mPNewez2Yxer6euro4ffviByy67jBEjRvDVV19x8803s2fPHv73v/8xceLEvlZV4AZEnAGBQNAja9as4Z133mHhwoWEhIRw5ZVXcsUVVxATE4OPj0+/9fzeuHEjCxcuZPbs2YwePRqAFStW8OCDD7Jv374u6ZOSkli/fv1JG7CpbQZAp9NRUFDAggULWLBgAUePHmXChAlce+21nH322eKMhn6ECDokEAjcTmFhIfPmzePLL7+koaGBmTNncsEFFzB8+HACAwM7BOrxdkwmE0uWLGHv3r38+c9/PmV3CpjNZlpaWmhsbKSiooIVK1bw3XffsXPnTqKiojj33HO59NJLycjI6DfPVnACYQwIBAKPIMsyDQ0NLFiwgC+//JL8/HwSEhKYPXs2p59+OvHx8QQHB+Pj4+N1o0ez2UxDQwPV1dU0NDSwdu1aYmNjOeuss/patV6lzQmwrq6OiooKtmzZwtKlS9myZQuyLDNhwgQuvPBCJk6ciJ+fn9c9R4H9CGNAIBB4HIPBwLZt2/juu+9Yvnw5Op2OoUOHMmXKFIYMGUJ0dDRhYWFotVqv6FCam5v56aefeP3110lJSWHMmDHceOONaLXavlbNo8iyjMlkora2lurqaiorK9m5cydr1qxh165dGAwGBg8ezOmnn860adOIjY0VBwOdJIhwxAKBwOOo1WpGjRrFiBEjqKysZOnSpSxevJh3330XrVZLTk4OY8eOJSsri5iYGCIjI/t0xqDNWTAlJYWxY8dy0UUXnbSGgNlspq6ujqqqKqqqqigpKWHz5s3s2bOHoqIiFAoFWVlZ3HrrrUyaNInk5GRhAJzCiJkBgUDgVlpaWjhw4AArV65kzZo1HDhwAF9fX1JSUhg6dCjp6enEx8cTFxdn2Y8ucB2TyURNTQ0VFRWUl5dz9OhR8vPzOXDgAEePHqW2tpaoqCgGDRrEyJEjGTZsGElJScIP4CRHLBMIBII+R6fTkZ+fz/r169m6dSsHDhywjM4HDhxIVlYWycnJJCQkEB0dLUamDtDW+R85coQjR45QUlLCvn37KCoqoqamhsbGRsLCwkhOTiY7O5vc3FxycnIIDAzsa9UFvYgwBgQCgVeh1+vZv38/O3fuJC8vj71791JbW4uPjw/R0dFkZWWRkpJCamoqycnJhISE9LXKXoXZbKa2tpbi4mIKCwspLCxk//79HDlyhMbGRkwmExEREaSkpJCenk56ejppaWmEh4eL2ZdTGGEMCAQCr8VsNlNSUkJ+fj75+fkUFBRQWFiI0WhEpVKRmJhIeno6GRkZpKWlER8f3yFU8MlOm8NfRUUFRUVFls7/8OHDlJWV0dLSglKpJDIyktTUVFJSUhgwYAApKSmEhYWJqX+BBWEMCASCfoEsy9TX13P48GHLv/z8fI4cOYJOp0OtVpOQkGAxDjIzM0lISDip4gLIskxjYyOHDh3q8K+kpIS6ujo0Gg2+vr5ERUWRlpZGUlISiYmJJCYmEhoaikolfMEF1hHGgEAg6He0xcEvLy+npKSE4uJiDh8+TEFBgcUJTqVSERcXR1pammUqfMCAAQQGBvabEbHBYKC0tJT9+/dTUFDA/v37OXz4MJWVlSiVSoKDgwkJCSE5OZmUlBSio6OJioqybNXsrxEfBb2PMAYEAkG/R5ZlmpubqayspLKykvLycg4dOkR+fj6lpaVUVFSg1+sJDAwkKSmJjIwMUlNTSUpKsjgl9qWB0ObkV1RUZBntHzx4kOLiYqqqqmhubiYiIoLIyEji4+PJzMwkNjaWsLAwwsLCCA0N7VdGjsD7EMaAQCA46ZBlGZ1OR21tLTU1NdTV1VFWVsbevXst0+rl5eU0NDTg7+9PUFAQycnJJCcnExsbS1RUFFFRUcTExBAREYGfn5/L+jQ2NlJZWUlVVRUVFRWUlpZSXFxMcXExJSUlVFdX09TUhFartYzuY2JiLGv8oaGhBAUFERwcTFBQkBj1C9yKMAYEAsEpgcFgoKmpicbGRhobG2lqaqK6utoyEj9y5AhlZWVUVVVRU1ODXq9Hq9Wi1WoJCAggICCAwMBAAgMDO3TGKpXKEiCppaWF5uZm6uvraW5utpzmV1VVRVNTEy0tLRiNRsu2ycjISEvHHx8fT0pKCpGRkQQEBODn54evry9+fn4Wvwfh7S/wFMIYEAgEpywmk4mWlhZaWlrQ6/W0tLRgMBgwGAzU1tZSWlpqMRAaGxtpaGiwGBNGoxFoDV3c9rtKpbIYD+0NiZCQEMLCwoiOjiYiIoLQ0FA0Gg0ajQa1Wm35XaPRoFQqRacv6HVEOGKBQHDKolQq8fX17bIdUZZlZFlm6NChmEwmTCaTxWmx7V/b+KgtLbSO3CVJQqFQdPhdqVRa/ikUCsv3AkF/QxgDAoHglKGtI9doNH2tikDgVQgXVYFAIBAITnGEMSAQCAQCwSmOXcsEbetmdXV1HlVGIBAIBAKB+2jrt3vaK2CXMVBfXw9AYmKii2oJBAKBQCDoberr6wkODrb5vV1bC81mM6WlpeLscYFAIBAI+hFtZ3/ExcV1G8nSLmNAIBAIBALByYtwIBQIBAKB4BRHGAMCgUAgEJziCGNAIBAIBIJTHGEMCAQCgUBwiiOMAYFAIBAITnGEMSAQCAQCwSmOMAYEAoFAIDjF+X+Gk1ZFkqJrwwAAAABJRU5ErkJggg==", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# visualize symbolic computational graph\n", "system_1.show()" @@ -364,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "id": "2dbe87c4", "metadata": {}, "outputs": [ @@ -372,39 +383,39 @@ "name": "stdout", "output_type": "stream", "text": [ - "['y1', 'x1', 'x2']\n", - "['y1', 'y2']\n", - "{'x1': tensor([[[0.1347],\n", - " [0.8139],\n", - " [0.4466]],\n", + "['x2', 'x1', 'y1']\n", + "['y2', 'y1']\n", + "{'x1': tensor([[[0.2723],\n", + " [0.1818],\n", + " [0.4174]],\n", "\n", - " [[0.9357],\n", - " [0.6498],\n", - " [0.0123]]]), 'x2': tensor([[[0.2463, 0.3173],\n", - " [0.0356, 0.2024],\n", - " [0.6412, 0.8192]],\n", + " [[0.2056],\n", + " [0.5259],\n", + " [0.7163]]]), 'x2': tensor([[[0.6242, 0.3582],\n", + " [0.9334, 0.0073],\n", + " [0.6697, 0.0809]],\n", "\n", - " [[0.8419, 0.6462],\n", - " [0.4614, 0.4508],\n", - " [0.6196, 0.5821]]]), 'y1': tensor([[[-0.7025],\n", - " [-1.5219],\n", - " [-0.9827],\n", - " [-3.1484],\n", - " [-0.8312],\n", - " [-2.1093]],\n", + " [[0.7018, 0.6212],\n", + " [0.6515, 0.9655],\n", + " [0.5936, 0.8272]]]), 'y1': tensor([[[1.2134],\n", + " [2.2812],\n", + " [1.1406],\n", + " [4.4091],\n", + " [1.3301],\n", + " [2.1358]],\n", "\n", - " [[-1.0330],\n", - " [-2.2253],\n", - " [-0.9150],\n", - " [-4.5804],\n", - " [-0.6520],\n", - " [-1.9697]]], grad_fn=), 'y2': tensor([[[-0.3419],\n", - " [-0.3235],\n", - " [-0.3794]],\n", + " [[1.1598],\n", + " [2.1752],\n", + " [1.4173],\n", + " [4.2057],\n", + " [1.5705],\n", + " [2.6902]]], grad_fn=), 'y2': tensor([[[0.3815],\n", + " [0.3916],\n", + " [0.3815]],\n", "\n", - " [[-0.3992],\n", - " [-0.3605],\n", - " [-0.3737]]], grad_fn=)}\n" + " [[0.3799],\n", + " [0.3805],\n", + " [0.3800]]], grad_fn=)}\n" ] } ], @@ -423,10 +434,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "f87c70a3", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAADWCAYAAABMt4HiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5RUlEQVR4nO2deXxU1fm4nztbJjOTmez7ShISkkAIO6KggCLihmhd61q12lqtWtfuWm1rv7/aVttqLe62inUXxQ1FEBBk38IaCATIviez3t8fWcgyk8xyJ5nAeT6fQDJz7nvee+6557znnPe8R5JlWUYgEAgEAsEpi2q4FRAIBAKBQDC8CGNAIBAIBIJTHGEMCAQCgUBwiiOMAYFAIBAITnGEMSAQCAQCwSmOMAYEAoFAIDjFEcaAQCAQCASnOBpvErlcLioqKoiIiECSpGDrJBAIBAKBQAFkWaapqYnk5GRUKs/jf6+MgYqKCtLS0hRTTiAQCAQCwdBRXl5Oamqqx++9MgYiIiK6hZnNZmU0EwgEAoFAEFQaGxtJS0vr7sc94ZUx0LU0YDabhTEgEAgEAsEIY7AlfuFAKBAIBALBKY4wBgQCgUAgOMURxoBAIBAIBKc4whgQCAQCgeAURxgDAoFAIBCc4ghjQCAQCASCUxxhDAgEAoFAcIojjAGBQCAQCE5xhDEgEAgEAsEpjjAGBAKBQCA4xRHGgEAgEAgEpzhenU0gOIVx2cDVMtxaCASCQNFEDbcGghBGGAOCQbCDswGQh1sRgUDgN5IwBgQDIowBwSDIgHO4lRgEGRj4RK5QFB1Qvn7ppdTN9JXT4+/hKi8l6XUPA9yrovkokH7A70f6QxEEG+EzIDgJ8LGhkz38roBoxRgsX8mbmZq+aQK9mS55feVIbn8dsUge/+jxtxfl71Pd8kLeYM/8ZCh7wbAhjAFBkAnW8oLsv2hPjaYSqg7Zaoo3Lb/SvcMg8ry99+FccVJMxyEu26DkKRCcQBgDgiDjZwPmTWOsRNvYc6CnpLxA8XT/8gDfBZpPoHK9NbKGs08bLG9Pkx++0rM+Kf28BqobAoGfCGNAEGRkt78OiuRjeh/U8JhfUPDzJjzpIw3wXaD5uJOrxDPwt1P0Jb1Ssv0pW3eyBitXf+n1/OX+3wkEfiKMAUGQ8XI9ebAG1VMaP9QYkiFUdxYKt9BDPfoLRP1AZwR8SR8ydWsICFbdEpzSCGNAEBoM6ZLpEDSiEiAHoedW2raQZeRg6Amh01edbMvxwapbglMaYQwI/COYU7j9Lgxywxcs8VKQexgFOgS7w4HNZu8wCIK6Fh2kQg5YbJD1Ukp832cd7LolOOUQxoDAP7xqi2Qf0g6USbAavkD18zKPQDsEj+vbgSnucsmsXrORjz9Z0SnPUz4+CPV4r0Eq5IDFuhGgpJ+EUrft9lkrULcEgk5E0CFBEFGwAwhKMJseAmW5T4Or4PYCf8V0qSCB0+nEarXhdLpQqSTCwnS4XC4cTlf3qDE8XI8kSdjtDux2OwB6fRiSJGGz2bBa7ajVKlQqFWFhOo4eq+KDpV+g0aiZO2cGYTotGo0Gl0vGarVis9tRq1SEh4ejUklIkoTD4aS1rQ2T0YjT5aStrR2NWt0jHzs2mx2tVkNYmA5JqV0fwaSrnHuUt7Ly+9YtpehRtidDsCfBsCKMAcHIINAOdVD5AwTSUYK+HY43dKa32mwcPHSEjZu2U1Vdi9Vm55w5p2O12tiwcTvNLS2kpSZxwYI56PVhHDx0hM++WIXJZGTB/LOwWq1s3VbKtu27CQvTYTCEc9H5c3l9yQe8/Oo7TJsyng+XLmfypLGkpSZxpKKSdes3U7p7Py5Z5rxzz2JcUR5t7e1s2ryDJW99zC8e+BF79x/kw4+WEx1lYeGF52CKMLJm7SbWf7eF7OwMzps3i7i4GA8FMZz00aHvKN6Tiv4GIwz6cpGXeggEAyCWCQTBZcBpzCGY4wyVRtLPaWMZma3bS3ntv++RN3oUc2fPYNu23ezdd5C0tCRWrv6On//6z5hMRtQaNQBZmaks+d9H6LRajAY9v/rtX7DbHdxw7SLC9Xo+WPoFarWa1JREskelExFhJDUlEYPBwM5d+3jmudfQ6bRccvE8duzcy6LLb2P7jt2sWbORu+55lL//8xW++vpbPl62grY2K395+iV+/ps/89WKb1m7bhO795bxhz89w3sffI7L5erzmBUKXBSQjAF0GKhj9dZeHEk7PgSCToQxIAgunvZEd33Z9+NTZQ3UB2e9iopKNmzaTnu7lfT0FL5/9ULy80aREB/LT26/lsyMFDZt2Ynd1rE0UFlZg14fxqKF83A4nHz8yVdYrTZk4IIFc7jskvMwm02Myc8hKspCamoi06eVEBNt4eVX3yE8XE96Wgo6nY5LLpqHzWbntdffZ87s01i08FwkCZIS4/jtr+7iVw/fwby5p7N23WZSkhP43W/u4aH7bmNUVhqlew5gtdqU2yLoEQX324dS4CmBYAgRxoAgcLzq2Dy0kEGenQ9ZPMWZ7/O5JEnExUZTU1vPL3/7JK8v+YDEhBgy0lMAmFBSyFmzpvHmWx9TcbQSl0vmP2+8z5XfOx+VSoVWq2FcUT733P84f3/mVfbsLWP2WdPdZl1TW8/W7aXU1jawZesuvlmzgYbGJq695hLy80aBJBEergckigpHA6DRqMnMSCVcH0ZWVhoAJpOBqKhIWlraaG1rD6ycvDIOT5VKIxAED2EMCAJHCS/0vpz0MwSSh62B/QttzJhs7rjtWrRaLX/407M88efn2LFzL3a7A5VKxfXfX0RDQyPvvv8ZtbV1rFy1ngXzzwJArVbzy4fvYObpk3n1P+/x0589ysefrKC5pbVfPo1NLVitNsYW5XHZovl8/6qL+cEN3+P3j/6M71+1EJUkoVJ16Cd1rYNLEprO5YnuO5BUqFUqZNmF7HL5UTY9ysXnOjRCt6EqLV/EIRD4iHAgFAw93jg8uYsQN1iUOW/izgfiiNiFpJDHlheOZS6XC5fTxbSp4xk3Np+33l3Gf15/n+goC6kpiSQmxjGhpJA5Z53Gy6+9jU6nYeLEsVgsEQA4HE4MhnD+/KeHWfrRl/x3yQf86c//6vAVMBk7bk3u+IkwGdDrw/hyxVrmzj6NtNQkJEmira2dHTv3UjK+MPB79oohnuf3pW4N5CeghJNrULciCgSeETMDAu9QMoiKu1j1gZ4d4E142UD7mO5tZ258HfzBizJ1uWS2bd/DR8u+Im/0KO64/VrOmjWNqura7tG9Wq3mBzd8j+rqel569R0uu2R+98i9pbWN//vLv4kwGbn8sgXcfedNgMThI8fQaNSE6bQ0NbdQfvgoGrWaosLRfLP6O55b/DrfrtvMps07ePW/79HS2grI2Dr9Eux2Rw8dXcgyOB3OzvvpiGrodLpwejMzEIzYUsGuW0oevhSMfnuI4nUJTh7EzIDAO7pGw4FO/fe83tPv/oyyBpLtLwNtB1TS0WwQWUePV/Hqf95Dr9eTlpqI0WhgwvhC4mKju9OMLy7grFlT0Wg0ZGWmIiEhI+N0Ovlw6XL+7y+LmTq5mCNHjjFtyngmjC8kIsJIdnYGy79cw3+XfMClC8/lqssv5PDhY7z4ytusWLkOk8nIhPGFXH7ZAvbsLWPNt5uQZZkPP17OvLPP4OChCtZv2EZjYxMrVn7L6TMmsXnrLvbtP0iYPoztO/ZgjjB1+hp4KoeedatHYftSD3ql7bOv3y8ZA3werLql5BZBpWcaBCc9kuxFYPLGxkYsFgsNDQ2Yzeah0EsQKriawX48iBn0bPyVCM6iZIvqhSxF93j3F+ZyuThwoJxv1m4kwmQkKtKMTqdj1Kh04uOiT6zdA7f/5FdcfcWFTJ9WgkqlQpZlrFYb/33jA4wmAxZzBBaziXBDOEUFuTidLkp372fzll2kpiYyvngMJqOBHTv3sn7DNiqOHicpIY5ZM6eSlZnK8ePVrNuwlYb6RvJGjyJv9Cjq6hvYuq2U1tZ2Rudmkp6WzPHKanaVHkCtUVE4Jpf0tGR0Om3/+wxaMB43dOcVKpvyh7puSRA2SilhghGEt/23MAYEAxN0Y6APfs0K9OxUQqWx94f+uncdJORyydjsdpBl9PowVKreK3z79h/i/578N48/ci9mswlJkroPIHI6Xciyi7Y2KwZDeC+Hvy7ZkkQvmXa7nbY2K+HhejQadafR0dWJ09tvYig79aGmb92S3cxgjAiEMXCq4m3/LZYJBKGFP+1rr46ox+9KOB32Td8nC2XpL1iSOsIAq1T089ovP3yUl199B0mC/QcOc901CzGZDN2zBV3/d1ynRqvtPzqXJAm1un++Wq22T/oe+kk9fu/IyKe7HFH0rVtSj999ZqQZEIJTCWEMCAInWOuegaL0jgVv7kux+x9cUFtrG199vRaHw8n137+EkpLCfjMGnsUH6P8xVHiqW6FUz7zF6zL39+ZGYqEIQgVhDAgCR2nnqn4MUSOnpFPgYAzqrDa4oMzMNP79zO+RZZno6EgMnQcVeZXpSOkzvHE4DYgh7EC9zsZffUbKQxWEIsIYEChIzzVlJeUOYSOn1H7xwfCUzoe8dTotqSmJ3l/Qb1jtp+f+sOBOQSWUHqqbHmhrikAw/Ig4AwIFCdKocyijqQWi+4hp493sOwt53d0pqIDSQ1a3xF4/QWgjjAFB6BNMBzVF+gIPQobMhvEjIxGMpoOhrFt+lflw1y3BqYIwBgTK4LbhUziknNINoCwrNFDzIGTIBoF+ZNTzkn7lqlBBK1UHgt7xKVm3egjq+1j8qg/DXbcEpwrCGBAog9uGT1JwGlZB7/fuLYKiRQXclKukYNhpBco46I9Jobold8oSCEYgwhgQKIuSMdsHk+2vEG+3CCqTKID0QWYgdfx+brLbXxXBl/MGApHtr/DBNnL4RIjVFcFJjzAGBMribpTpd8PWc/rWQyfus2g3QtzJ8Koz9LXHDLFRY1DU6euUqGCn5nZrYQDyPdYtqc/3AeB3oKoQqyuCkx5hDAh8x2vHqEBD9nkR8c3dbjM/sulHMNaQFUw65HirW790AXZq7upar88CkO+pbikZaTKofXooVxjBSEMYAwLf8doxahhGN0plqdga8hDnGSx66TbAjSl9D+7qWrDLaUD5IdIBh4gagpMHYQwIBMFCKQc6fwhqZxHKVkuwCZFtrsNZtwQnJcIYEPiHNw1XMDukkTYyCsBtwi+G3HHTS0VD4bmFgg7uCCTypUAQIMIYEHiHP7sEgjlwGWmDoqEKNx+MjmHAmATuEnkpa1CZQSLQuhNsfU+m5SXBiEEYAwLvCNUGR4yKeuPtcwqFGYdgylQCT2UU7BF8qJaH4KRGGAOC0MTfhlOpSIiKhJINMM9gyhQdzuAMVka+1i1P8oRBKwgBxKmFAkWQZXC61IhexjMqyYUkuTwHPlR6nT+UH4VS+nkjJ1gHBirtxBfqz0xwUiOMAYF3DNJQOV1qWq0ROJ2iSnlCH9aCXtvOoENBJU/mDdXOpa8fQjB9KkZKWQyVcSQQuEG03ALvkPq2Mj3+lkGWVdjsYdidYcOgXKcaPc+IkU58FsgRBIFe3xOtxoasbR+8rQ5GYx5QJ+HuYgUj8/SrW4Nk7TNKCFEyElEQ6Y76GOJ6CkIO4TMg8JKuQ4fcNIqKtDv9Qsu5+XtgJOnET8/PAmHw65XeM+ijPLnfL+4JqBzcXaxk9J++dWuQrL1C7mEd+imk8/Idu/aycdMOXK5hWtxXIuS2QDAIYmZA4D1BPeXPU4cz9LibDej4zF3n4u9itEKOA92jaoXKquetKD7AlEGWesvsVt9NSGB/tlX2DDE8kMPeQLMRnZTu2c/b737Chx99yfnnnUVRYR4qlYfxUzDLzQtdBYJAETMDAkEf3Nk8Urez2BAaLV6NCL3M29ujpPvaOYrSs4OWB87Dn7y9ncXx0vEvLjaaGadNZGfpPurqGhjwgQS73AZD7EgQBIgwBgQjhFOwtVNkrbxLVqiNLAfQJ5BHPeC1vpVBZKSFSRPGotNpA1DIWwKs36H2eAUjDrFMIFCYYE1pitbOM57K3Ns9dwFm4/M1gwgK5FEPcm1raxtfr1qP1WoFJNJSkygpLqCmto6du/ZRW1dPwZhcMtJT0Go16HQ69yJ9LovBLhhwTcOXjAQCvxAzAwKF8a/h8nYWeyQw9PfiY5n761jnS/JeWfgTyzo4qNVqbDYbP7n7EZ557j8kJMSABJGRZrbt2MOabzcjSRIajRoAlarDI1XqO7Pi8y302N7iz3UCQZARxoAgJAi5WewAcH8vIWTtDEVh93SmUzowTwBFqdNpmTalhMsvPY/a2npq6xq7dWxubmHyxLFkZqQopKwbFC37EKpTghGPMAYEijNyR/lKKD5C4/8G2Mm6lQf+3fZAegy2cWKwHZaSRExMFBeeP4fW1jY+XvYVSFC6ez/h+jBGZaWhUqn6zwT4ypC8AyFepwQjCmEMCBRG7hz8yL0+U0LuYJ/5b4R09ISyHPgSxwkZA/Wuw2ktechbybABXfJC9FpJgqysdM44fQrLv1rNwYNH2LBxGyaTgdzczMANgUH1GLHWsuAkRhgDgsDo165Jff7v+7u/dO3nd5dX519+Z9PRE/aMWujT1W6DHA3Uuw7niM5D3sHqn0Kw35MkicSEWBbMP5PDh4/xnyXv09zSSlxcDOF6/VBoMAR5CAS+IYwBQWC4Cc6jBLJbQco1ogPpGYwl9YDLxe31snKdbbCWskO031OpVOTnjaJ43Bj++ex/qK6uY9zY/H6zArLcEcnQNZxrX3L3PwJB0BDGgEBRlOpIFZmqHVB+UMUrn5/b6weIsjecKDVFLnv4350Yn/rKjsRpqcnMO3smarWK6OhIUlMSe6VyOp00NbUgyzKNjc1YrXZkWfZgqAYRL4MkCQSBIIwBgY+cCiOUYNzjqVBu3uCD91/fFaeBVp7cxjIYWAeNRk3e6Cyu+/4iJk8c2y9V6Z4DPPWPl9Drw/hu4zb+88YH2O2OAeQKBCMXEXRI4CO+BrIJNGiKb9c7HA6amhppaWkmNTXdzzzd5yfLMu3tbQCEhxu8ltZxrsEpMrIL6HH7eaHbPAeX5XQ6qa2rJzrKwtiivH7yCvJzKHggh4cf+JF/egkEIwhhDAgUZtAhm1ecOBjIt+vLyw/ywgv/4P3332TDhjKUiuDW0tJMdXUVX331KTExcSxYsNDra322A/qp7M09KJUmQHwWr4BOPlzucrloamqhpqaOltY2DpUfJXtUOnp9j6O3R5Td1qf8RMBCgZ+IZQJBiNB7WvfEwUC+0dLSzP79e6iuruySFLBmAHv37uKZZ57kwQfvYM+enYrI9Igfo9x+HcKggkNl2WJoey6bzc6nn6/i+pvv409/fg6b1cbsM6cPUe5elLkvj8VdQCdhCAj8RBgDghBBmVasqKiYgoL+67+BdH6yDAUF47jrrgf9V8zbjJRA8kaO0tGAQpgeaqtUKuLiohmdm8Vp0yawaOG5hIXpsNntNDQ0UVlVw/Hj1dTU1tPc0orL5RpcqNd4EwTBB7mi4xcoiFgmEAwbzc1NHDp0gDFjxtLc3MSRI+UYDAZSUzO6z42XZZm2tlYqK49jtbYTFRVNVFQMWu2Jk+RcLhfHjh2lrq6GmJhYVCp157UdMwyyLGO1tnPkSDltbW1ERUWTmJiMWq0eQLsTIfQkCbRaLVFRMcrdvLvpXElSZppXVnKXQU+FFBA61NPYffLT6bTMOn0KM0+fTEtrW0fAoc3bqag4zrFj1TQ0NuF0ujAY9FgsEaSmJJKYEEdmRgppqcmoVF3nFCjpF9NTVIjuEBGc9AhjQDDkyDLs37+HTz55n5Url/PYY39h7dqVbNq0HpvNxnXX3crYsSXIssyxY0fYuHE9kiTR2NhAXV0NhYXFTJw4FYPBiN1uZ9WqLzl8+BAREREcOqRj69ZNwAlDoLa2htWrV2CzWamurqSy8hgzZ87htNNmodF4Op62v+9Db+MhwA4gmPGIBnPY9ykPhXumoe7o+sXBkLFabWzZuouvV65j4+Yd1NY1oFarMZtNGA3hSJJEbV09pbsP8MUXq9FoNcTHRTNj+kROmz6R0f2iFPp4UwM9A2EICIYJYQycpMiyzP79+wHIzs5WWDiB9YMSWK1trFy5nOXLl1FaugOtVkdhYTF///uf0Ol0jB1bQm1tNR988BaNjQ1cccX1uFxOnn/+73zzzVfodPcyceI01q37htdff5GLL76cGTNmcfBgGYcPH+xW1OFw8NZb/8FqbeOCCy6lsbGBp59+gmeeeZL4+CTy8wv90F/h2L1KDSy9keNvPl2yR7CDmizL1NTU8b93lvHRsq8AmFBSyPhxY8jOziAhPpYIkxGVSoXVaqWxqYXy8qPs3V/GuvVbee319/ho2Vd879LzOP+82b2dDn1hGGdGBAJPCGPgJGT37t0sX76czz//nPnz5ytvDHQ1LgM2NAO3QmPGjKOkZDJffvkJOTl5jBqVS2trC8uXf8LmzRuQZRdlZfv57LOlXHvtLaSkpAFw9tnn8+23D/H55x+RmprOK688R3R0LNOnz8RkMlNYOI6pU09n//7dyDLU1dXy0kvPcOONP2Lv3lLa29uJj0+iouII+/bt9ssYUJQTaxmBRyYKZqOv4EpBL4aos5JlmeOV1fzlby/wzZoNnDVrGgvOm01R4WjC3XTqWq0Gk8lIclI8U6cUc/782az7bitvvbOM3//pGQ6UHeZHP7wGgyE8+Mq7w6vNIwrWLcFJjzAGTkLCwsIIDw/n7bffZuLEiUHKRR4kMtrAjY8kgU6nAyAtLROQUalUxMbGs2fPLqxWK3v37qK6ugqz2dJ9XXb2aOLjE9m+fQs7dmxlx44tXHHFDb18CGJiYrt/P3RoP8ePHyUvrwCj0YQsy8yffzFz5pxLVlaOf7fuE4O02l2NtL+NtVedqYKxHnqJGtptgf7SFUHw8Sf+ybfrtvCTH13LvLPPIDoq0msZFouJubNPo3BMDkve+oh//us1WtvaeOi+29Fq/WhGu4vOizJ061/ixQWB1i3BKYUwBk5CUlNTOf/884Oci9KL211R4TTIcsf0fl1dDS0tTVRWHu9OZTZbugP+NDTUYbPZsNmsvULEdq3ndjgftiFJEhZLJIWFxd1pnE4nLpcz4DsYfNA1FPv6B+tQ/NChl8ge1/fymwsRZ7dBbt/pdPLPf73Gp5+t5LHf3sO558zyfYq/816TkuK58brLMBoNPPr406SnJnPDdZd6pUcv3JWt+4x978xD5bkIRhTCGBghHDt2jP3799Pe3g5AXl4eNpuN8vJyHA4H48ePJyoqCkmSUKlUGI1G5ZUYwvVHnU5HYmIKjY0N7NtX2v253W7H6XSSnT2a9PQsNBotmzd3OB4aDCfuWZZlJEkiJSUNu93Gf/7zPL/+9Z/QaDQ4HHYOHSqjpaWFsWPH+6xbb8PDj5vzK6jQQPh+bUNDE7v3HCA2NoqszDT/RCpZFwIpAk/XySAjs37DNv75r9e4+86b/DME+uRhNIZz+aXncfDQEZ74f/9iypRiCsfkBund8EOoonVLcKog4gyMEAwGA2VlZTz66KP8/e9/p76+Hp1Ox2OPPUZ5eTlhYb0buK6teYqGwe0ehSpDc3MjADabtfszp9OJ0+lAkiTGjCmiqGg8O3du48iRcqBjF4LFYuH008+iqGg8JSWTWbfuGz799EPsdhsOh539+/fgcrmorq4iLi6BM888h3ffXcJvf3sfy5cv43//+w+ffbaU5OQUn/S12+0AWK3tgd24X0GFlKG1tY0PP1rObXf8gl8/8hf27js4+EWB4nXYAyXjGMjIyDidLh59/GnG5Odw7dULBzcEvFBBkiSMRgM/vPlKoqIt/PWpF4f+8CKvEYaAwDuEMTBCMJlMzJ8/nylTprBhwwZ2797N+++/z/z585k3bx7h4UPlyKRM47J69QqWL/8EWZZ57rmnOHKknC+++JhvvvmS+vo63nzzVeLiErjzzoeQZZlHHnmAP//5d7z++ouceeY5TJ58GuHhBn7yk/spLp7E44//gmuuuYiHH74LSZIIDzfw0kvP0tbWxv33/5axY8fz2mvPc++9P+Ttt/9DQcE4N3EDPDfoO3Zs4emnn0CWZZYv/4T33/8fDoe7Q2uUOsM5wO89XKQL0zG+uIDJk8Zx6PBRbDa7AsrJnr8CH6qMkh1Xh6yvvl7L1yvX8cDPbsViifDusl734P5eJUkiPj6We+68iY8/WcF3G7f7rqKvzzAodUIg6ECSvTBpGxsbsVgsNDQ0YDabh0IvgRtkWebgwYPccccdHDt2jClTpnDfffeRlpbWPRPQlc7hcGAwGPjd737Hfffd53+mrmawHx80md2hpaElGrszDG+mJtvb22hoqMfpdGA0RmA0mrDZrDQ1NeJyuYiIMGMwGHE6ndTX11JdXYlarSY6OpaICDM6XRiSJOFyOamvr+fAgb24XC4yM7OprDyGTqcjPj4Bk6mjvtbV1VBRUU5TUxNZWTnExsZ3OzB6g81mpbW1ldbWZtRqLSaTCYPB6NPMS0R4PQZ9Eypfosx5xL+zCGRZxuVy8cHS5fz81/+P3z/6MxbMP0vBPEMHWZa58tq7qK2t58N3nuvlZKqAdGQZamrquPiy2zjj9Ek8/sjPAHA4nLS1taPRqAkP13stz5/n6T0ShI3y81rBSMbb/lv4DIwgJEkiPT2dm266iQcffJCoqCjMZnMvQyA0GLzB0uvD0et7z2ZoNJpe6/5A9w6DmJg4QEaSVL06YJVKTXR0DBZLZHf66OiYzkhxJ8olJiaO6OhYZLlj10KHDO8bV50uDJ0ujMjIKK/SB5/een+5Yi21tfXdvhILLzoHgJ279rJz1160Wi0zz5hCpCUClUqFRjNQ9EXv8uyHt8U5RDZFfX0jSz/6kr/8v1+eMAQC1LGhoYkHHv4jrW3t1NY10NTUwsFDR9j17338d8mHWK1WrO02YqIjufenP+CWH1zppbZD7aQhEPRGGAMjkIMHD5KRkcHLL7/MOeecw2mnnYZGE3qPsrenvf89gCRJg4zA5V7RAd2FGXYvQ6nGNQi9myeRJ6Ik9yI1JYGf3vs7du3ex7cr3+r+PCszlfse+gOXXDwPc8QJQ0uSpP7ig+XH2FfuEPVpX65Yi9Vm46Lz53ifd5euHtKZzSbWb9zKxk07O/0EZGS5c5agtr47XVZmGpldjplKVg8Pz1/xfASnHKHXgwgG5KOPPiImJoYnn3yS22+/nYcffpglS5aQkJDQq7PrWv3x1bFp586d3HjjjVRWVhIbG0tiQizxsRHEx0cTFxtNbGwUsTHRxMZEER8fQ2xMlMfAK737Xl9aKc+tmvutfL63gG1trXz88fu88cZLA6a74IJFXHbZ9weZYu5Z7l36DW244uxRGTx0/21c94OfcbC8gqLC0QC4XDLNzS18/6qLBl/SCFYH03W9r7J8Se8m7Vdfr6V43BiioixepQfv8rvlpiu49Ue/GPDdSk9Ppqgg12uZXjPQTgFhCAgCQBgDIwRZltm9ezc7duxg7ty55OXl8dOf/pQf/vCHPPnkk/zyl7/s5URotXZ46Le0tHQ3Wt6sb+fm5qJSqThw4EB3OGONRo1are70RXDicrm6jxiWJNCH6YmOjiIpOZ358xdyxRXXBzid7llPpTZH6PXhXHDBIs4776IB06nVmkEONOrNCf36r9X3/N3vXR4eOrGOpYGzefyPo/jL315g/jkzUalUfLD0CxbMPwuNRuNfnoGUd6AzAr6kd5N246adTJk0DjdzIP3T+2B4XHX5hdz9s8dobml1+71eH0ZWVhpJSfHeCfSVbl1F7y9QDr8WmzumxcSPp59gsHv3bn7zm9+wbNmy7i1uDocDlUrFk08+yc9//nMaGzu26q1du5YHH3wQSZJ47733ePnll3E6vQuwo1armTJlChERJzyvHQ4nVqsNm83efaSrLHc5o8m0trXR0trG5MnT+d73ru1ev1e+KOQ+//uPJHUcPNTlC+DpR61W+9CJetarvb2NNWvXUVtb3xnwyOVffRlAFbVazU/vvJGvvl7LmrWbcLlcvPTqW1x7zUJlt5h6yzD2VbIss6t0H3m5WYoux0uShMEQzvevvtht5EFJkshIT2FSSZFvCvuCRDBeLsEpjl8zAzJQZ3VxtMWfbUknN7F6NYlGJb2WO8jLy+O1117r9dnChQtZuHBhv7TTpk1j2rRpPPXUUz7nI0kSU6dO5fXXX+82LgZCH6Zj1Kh0fv7Qz5h79pU4XGEErxeQ+vzvKz2Hf55G58FZeN29ewd3330/lZWHOf20SZw370zmnXMG8XExqDVqNGq1746gfdZMJEni8ksX8OhjT/HYH//BY4/cQ2xsNAnxsQMI6SmPIK5FB2lB24PY9nYr1TW1ZGSkBkWvm2+8nH/+6z/9pckyCfExFI8b01G/FDuEqs/6mAgxLFAYv4wBlwwHGm18dqSl8xPhudLF5Dh9UIyBYNK1FdFut+NwOIiNjR10JClJEpGRZs6bdyaPP3oviYnpNLS497xS8pyUwGR5M2cdDA86KC6exPvv/Jfv1n3JR8uW88jjT3Hfw39gdG4Ws8+azsXnzyU/PwedVoNWq0Wj6TEj4XF9u/+HOp2We+66iR/d9WscDie/fOjHbvWRZRmZPj4lShSJx6YgSO2DB7FdznyxsYMtV7kRMOhxEhJFhXlMnlTMuvWbe5WhWq0mPS2Z0bmZA+rnM54MVxF6WKAQCvkMBLs2CmNDSWRZxul0dmyDslqpq6tjy5YtrFq1itWrV7N///7umP7uprEN4XqSkxP5xYO3c/WVF6FWq7G7ib8TjHNSRvKAKCE+nksXzed7l55LW1s736zZyKeffc2yZStY/MISkhLimHnGFM6aNY0pk4oxmsIJ1+vR6bSoJO9nDa65aiGPP/EMNbX1zDit90FVLpdMe3s7DY1NWK02GhqasNps6LRaZZYS+joLDtOr29zcAjKYjIbBE/fV1Qt91WoVt91yBeu/29LrHUmIj2HSxLG9d/cE7dRAqX95CwR+EuIOhB7ezkBeLo/XenibToKXrGttur29nZaWFhobGzl48CDffvst69atY+fOnVitVkaNGsWcOXP49a9/zYcffsjixYtpamrqJSsuNprZZ03n94/+jMxBp2BHLkFrvzsJD9cz56zpzDlrOo89ci/bd+zh8y9Xs/zL1fzswd9jMIQzoaSQ00+bxLQp44mJiSLCZCA8PHzQGAEGg56FF51NUWFev++sViur125kxdffYjIZWPPtZgrG5FI8Lt83Y2CwJQWPKzpD80JJUldH6cW73ldXL5ZLJEniwgVziY//P44dq+pOEh8fw9TJxX2V8f0GfOEkaKMEw0+IGwMeanggL5fHaz3l5X9Ww4ksy1itVhobG2lsbKSqqoqtW7fy3XffsWPHDqqqqoiNjWXcuHEsXLiQ0047jbS0tO4tdE6nk5dffrlbnslkICszjVt/cCW3/uCKkIxroCRDOQOhUqkYW5TH2KI8fnL7tRw8VME3q7/jyxVr+cezr/H0P14mJzuDqVPGM2niWNJSk4iMNGMxm9zuEmhuaaXs4BF+/fOf9Murwwg5jTlnneZeGW87Fl9eo14yBxGuRMcmg66zHttsNjcJBshgoPx7LdlLmExGrr3qYv7fXxfjcDhRqVQkJsRR2Lmtc8gYoW2UILQYuS26P43GSW5Bt7W10dDQQENDA9XV1Rw4cIDNmzeze/duysrKMJlM5OTkcOmllzJ16lQKCwt77RroyaRJkzCZTNTV1ZGZkcKZM6fxiwd/RFaWmxPu/MT70fdJ+OA83JJKUpGVmUpWZipXXn4BNTX1rF67keVfrWHpsi95439LSUqIY+zYPCZPHEdGRgpxsdEYwvWUHz5KWJiO9Ru2MX1qCRERJt/1CtJsdnDz7z/Sj4yyABJ1dQ2+ifIhf41GzeWXLeDpZ17F4WjFYo5gQkkhEaYgnBgqEASZEDYGBvPi8UPkoNeMrE7HZrNRW1tLZWUlx48fZ//+/ZSWllJZWcmhQ4fQaDRkZGQwY8YMbrnlFoqLi0lN9W5qPzY2lmnTppGbO4obv38hly06z/P0tNe7nHqXryQFOgwdwXi69x6fq1Qq4uKiufD8OVywYDY1tfVs2ryDNd9uYvOWnaxctR6TyUhGRgrxsdG8/+EXpKYmEhVp4W9P/mpIbydoeFVF+icwRxgJ14dx7Hh1MLQCOp5Pbk4WZ86cytKPvyQ2NopZp08JWn4CQTAJAWPAk0esjx2Au0bD577dU+LQMBKcTicNDQ0cPXqUw4cPc/DgQXbt2sXhw4epqalBo9GQlpZGcXExV111FYWFhf0OMfKF22+/nfTUWDJSwlANNIT3umj6JgxWeQf+vILtMwCSh0zcZypJErExUcydPYO5s2fQ2NjMzl172bBxOxs3b+ebNRtobWtn46YdnH/eWXz8yQrSU5NIS0smMSFW2fMrfCxeWQaXrEKWh/IdUpOWlsK+A4dxOP05h8E7tDoDV1+5iE8+/ZqY6GiKi4uDml9fVJILSZL7V6PgV2DBSUYIGAMKbY1xu/VKAbnKCvKJLqe/iooKysrK2L9/P3v37qW8vJzGxkZkWSYlJYWJEyeSl5dHfn4+2dnZ/keb68OsWbO8PrVQWQLtyKVe7eDg7WL/3m1I2tEAMjGbTUydMp6pU8bT1tbO/gPlbNu+my3bdrF330H+/fwb6PVhJCcnMK4wj+zsdLJHZZCakohO5+XWV29C9g5mGMjgdKlpsxlxOoe2uVl06fdJSUujuc1NOGIFGTf+TIrGjie/oJgwQybNbUHNrhdh2nbCdG1IfafnhCEg8JEQMAYEXXTt9+/Z+e/Zs4cjR47Q3NyMy+UiNjaWsWPHkp2dTU5ODjk5OURERAQ/wtwwbxXzhb7LD4MXzTDdkEJlGh6up7Agl8KCXC5bNJ8jFcco3V3GrtJ97Nlbxqefr2TZZzJGQzh5o0eRlzeKMfnZZGelezxXAtzo1OOQnI7tqa7BTz+UwCWrsdrCO4+3dsdAp+/4z/e/fzt6vZ42m6d8lSEsPJlrrrmZiAgzbTY//DS68b0iqFQudHJ75/KSG1Ej4H0VhAYhZAyMpFqrnK6yLFNdXc2uXbu6f8rLy2lra8NoNBIVFcW4cePIzMwkJSWFjIwM4uLiht6bv6uDHbJHFEgZj5B65HH7nR90FpdKpSItNZm0lGTmnDWdhoYm9h8oZ/+Bcnbt3sf+/eV8t3EbLpdMZkYKBWNyGDc2nzH52URazAMblT2+cjic/PNfrzJj+iQmlBR61Mcr1fvM5CiF2az8jIC7WSa9Ppyzzz4fl8u7kN8KrWkOjJJ1S3BKMPTGQL8633NjcigZBL1D1/bWKzAdGxsbKS0tZdu2bWzZsoWysjLq6uowmUzEx8czceJERo8eTVJSEikpKcTFxaHX6wPKM3CG+rl4k5/39cXfJdShXXoNoP67cT2Q6IgSOaGkkJLxBbS2tVNRcZxD5RXs3XeQXaX7+OSzlbz1zifExUZRVDiaCSVFTBhfSExMpEc/A1mWqa6p4/dPPMOY/M+5/vuXcOkl89Hrw3rlP+Cd9ijXoSpf356l+2fh7nqVSk1MjJchnzukuNEnVNo9wanK0BsD/fr8zl9kAmgVgmFEeOj8/ZjRtFqtHDhwgE2bNrFx40a2bdtGTU0NRqOR5ORkJkyYQHFxMfHx8cTHxxMXF4fJZBqew2VGFJ7Lx7dQ7p7rz4h6BAO8BpIkYTSEk5uTSU52BqfPmER1dR1Hj1ay78AhtmzZxbrvtvLBR8uxmCMoGJPLlEnjmHHaRJIS4zoNg44MZFnm65XrOHa8muOV1Rw+cpTNW3fx49u+T0Z6ileqDsu5SYo4E3uS67szbG99QmkgJDgVGZ5lAncOSAFZ7L6+RL66Q/dI7sVlDoeD8vJyNm/ezObNm1m/fj1Hjx7FbDZ3O/xNnTqVhIQEoqOjiYqKwmKxKOvxPcSo1Q4sxlpc8si9h2CjUTn6O3r1IsDOwMvLJUkiTKclJTmBlOQExo3LZ/asaVRV13Gk4jgbN29n0+ad/PH/PYvmr2pyszM5bfoETps+gbGF+ciyzNvvfQKA0+liz94ynnv+DXbvOcBPfnQds8+cLgzZbrwtB2VnwgQCX5FkL85QbWxsxGKx0NDQgNlsxuGS2VTd3uOgIncMMoTuVa+9iP8ZdLzIa8AkMi31dVR/+xmHV37EgQMH0Ol05ObmMnbsWCZNmkRaWhpmsxmj0djd+Yd8o+nNboKBVlRGEgpFv1Pm/v0V5OV1HpI5nU6aW1ppaGiiqqqWdd9tYc3aTWzcvIO2tnayR6Uzdcp4/vbUi9TWN/S6VqfTUTAmh5tvvJxrr16IydRxLoDNoaOxJcqjA2HfWZygRBs/STHqGzHqG1GrXAwaPjFs1BBqJggV+vbfngjizMAgb6Tk8Q/vZSiKF3kNmEQCWcZmtTJ69Giuu+46CgoKiIqKwmAwYDAYFNvyF3Io507hgSGyMJTIwlsZg9q/wXCe7Blc330KtVqNxRyBxRxBakoSY/KzueTieTQ3t7J1Wylffb2WN9/+qJ8hAB1BsLZtK+XRx5+mdPd+fnrHDWRmDh7k6sQr0aGfMtHGB68zstz3GOtA6tmJa4fPIDkJ2xbBkBHkZQLPL1fD8Qo2Ll3Cjq8+5vYXPnKfflgnBnzNXCbcEsXCK69hVqKesLAwtEqdBDdi6CwzxZ/bEJahMv3B4AyL/dt3+qaHwm50V6kkDIZwDIZw4mKjSUtNZPaZ0zheWUNp6QEcjv5HVTqcTo4dr+Jfi//LrtL9/PzBHzF50rR+6dx3mN5OlXuTtv/3/f1IJAWd+E5c6+0rf6rNYghCG4UXePuuOHiu6bWHy9i96jOOlW73nL7Pn06HA5fLFZCGHumTl8PucHt870ACVCoV4eHhREREoNPpTjFDAAYbdfqNT88hQJTpD0IcNw4wg03kSRJarRaDIZzPv/jGrSHQhSzLtLVZWf7Vam669QFefu1tWlp7R+Lx/9XwycFo0DyH8xU95ZoHQUgzbN5eGSVTSSksQfahcy9d+SlHS7f52En7x8pX/o6trWVI8hIMQjBbTUUerwchQ1Z1/MjIT902bNzO8Urv4v3b7Q727jvIT+95mCf+9EeqqoY6kuVwIvf5XyAIbRQ2BgZfo+v6kSQVGq1uwDRdHbEsyzTVVLF9+YdUH9o3aHpvvu/7ec+f6kP7WPf2KzisVn8K4dSkb9HL7j4MMAOl21VZVmg072k/nxKyA8jf20v6lavngv7go+VAxxHBGrXaq9kvp8vFm2++wp///DuOHz+qsIHtu6y+2cuK11XwafuRQBACBO4z4K3zsizjdNjZtfJTKnZsJqNkaq9ZAVmWcTkcHNu7k/3rVyFJElkTTyM5fyxNVcdY8eJTbPv8Q3R6I5IkkT35DAyR0dRVHGL36uW01FaTnD+O/NPnIqlUHfKcDg5sWEPZhm+IiE0gIjaBgjPPRZbBabdRsWsL+75diaSSyD/jHOKzRnN8fynv/O5e6irK2fbFBxjMURTNOR9pBG/7GxLc7vaUFFwYlZRrV7u3s4qGGnBTrp79PtJSk/jlw3dgNOixWCIIDw/HaDBgNpsID9cTYTJgMhkxGMI7Tg4M1+NwhtHQGo3d0d/4956efg50/+5P9MK+6fs6HYb2Wv5I3q4jCGUCNwa8rJftzY28/eg9xGfmctoVN7Nn7Veseu3Z7u/t7W18+H8/x9rawrk/+QVblr3Dm7/6MfPu+AVJeUVEJqdhjktAGx6OPsKCSq3hy8VPsn/9Ki5++Anqjx7hhTsuZ/bN93LmjXfhcjr55OnHSSuawPQrfsCGD95gzZLnKTjzXKwtTWz7/AMaK4+SM3UWm5e9xav33cgF9/4OY3QsKQXFHN2zHb3JjD7C81aMUEWWZVwuV7e39JBuYVQ2WOPAsv0V4k1ZeJWX706mIdWQD7ITzR0/uOF73gvt+tUlddpePR0YfcWdQv7sPPB00z0dAPunCZ3tjiFUfwQnFUEe7p6Y5v/65b8jI3PGdT/GFBNHyXmXkjv9rO6UTruNfetWkT3lDCwJKaQXTwFJxdHSrVjiE0kaXYTeZCZpdCG5084k3Gxh79oVpBaWEBGTQNaE6cRljmbnV8sAcNisbFn2NnEZOYRHRFJ87iXdswKHt2/kaOk2xsw6l+T8sUy84EpM0bFs/OhNTNFxxGWNRqXWkD1lJjlTZ3k5KxAaa4NOp5OdO3fyyCOPcNddd/Hiiy/S1NQ0dL4Pbj3E/c2759KAhyl9n0W7EeJOhldtrq8Nc4g15EFRp69Tot+FGyS8ybuv0eLmiGBfcgyxxy4QuGNIIhC21Ney9dP3mHjhFah7HLCTkJ3Hnm861yANJq58/Fksicm01FVTVbYH2eXC6bDj6QW+4GePEW624HI6ObxjEwAOWzsAaq0WncHAq/fdyLl3/pKskmkUz7sEh81K5YHdHNyyDoMlCkmlwmGzERGTgMESFXLtta9s2bKF888/n5iYGI4dO8bixYt55ZVXWLJkCTExMcpk0nfg5HGE6XN4yT70XBrwcl3en8G3JyNDkbrgg6AQmzjohbe69Uun9A0Fp4BcLhd2ux2rtZ3w8HC0Wl2PvALLU5ZlWltbkCQVer1esUijwrlZoCRBNgY6XqLa8gPY2loIN0eeMJPlE98DqNQqIuIS2PHlR9QfO4IpJg5jVPSAu8oik1PZu+ZLDm1ZT1rRBCyJydQfPdwpT8P8O3/N0id/xZu/+gkZxZM5+7b7Mccn01xbQ0J2PjOu+SF6Y0S3PFl2MeCLP2CDOPytuMvl4q233uL999+npKSEw4cP88tf/pIlS5bw7LPP8uCDDyqTkVv/AG8SDgFKZamEHF879+GvQp7ppdsANxb0e/A2zoBvNDY28MknH/Daa//mzjsf4qyzzvFbVlcn3bUs0t7exh/+8CvM5kiuv/5WYmPjA5B9ogk99bYuC4KJgssEnnttl7NjT3L90cMnnAZ71GNZlmltqOeTpx+jpvwAc265l6yS6ajUmv5yO/902GysePEpdnz5MbOu/wlFcy9EE6bvlTCjeDI/eOZtpl56Hcf37eKdx39GXcUhtGE6GiuPUnv4YPeL63I5aamr7ZyJ8HBPw/ju2Ww2GhsbaWhooKGhAZvNRnt7e/dndrudlpYWzjzzTEpKSpAkidTUVO677z7UajV79+4dPuVPVaTuf4aeoA4ag3VPMoMr7s1MkzdyetPW1srBg/s5dKgMW+fsYrc0H8uyvb2Nhoa67rZFrVaTkZFFWlpG54yDb/TMX/T/gmChgDHQ9eJ5rqXRKRkYI6PZu3YFTdXHO7bwuVzY29uQZRcOm5Vje3ew46uPySqZDkhYW5qwW9tx2u3Yre3d2xHt1nasLc3UHD7AlmVvk5w/Fl24oSN9WysuhwOHzUprfR1rljxPRHQcc279GQvu+S1tDfVUHdxLVFI6NeUH2Pbpe9RVHKKlrobKfaWUb12PrbUFlVoNEthaW7C2Nnc74/W/76GjqqqKzz77jGeeeYbFixdTVlZGWVkZixcv5oMPPqC+vh6TycScOXN6jRiSk5NJT08nPz9fWYW8uf1gFtFImyENwG3CL5R23FQm0SAEsqQUmJykpBTGj59EVFT/pTRfOmCn08nmzRtYuvSd7jZDpwvjppt+zOWXX4vFEumTXr7mLxD4iwLLBIPXVHN8EsXnLuKb//6Lla/8k6K5F6AN01NXcQgkiSM7NqHTGwgzGNny6TuodTqqyvZgbW2m9shBqg/uQ6c3YIiMonzreoyR0cSkj8IUE0/pys+ISc0EwNbWSkt9DYe2rMcUHce3/3uRrAnTsSSmoDdZSMgpICYtC4M5iqwJp7Hp4/9RdXAv0WlZWJubmHzJNegjzEQmpqLTh7Pt8/dJyM4ne/IZqPtZ9J63XwWDuLg4zGYzH330Ec3NzUybNg29Xs8XX3zB7bffTmRkpNvrjh8/jsPhYPbs2YEp4M8ugWCWzUhrIANwm/CJQeqky+WiqbmFqqpaAGJiooi0RAw85eyVf4jyD8ThcFBbW01LSwt6fUeIb5VKjUajobW145C0yMgodLowamtrcDjsSJKK2NhYJEnVGQmxldraapxOJ2ZzJFFR0SduRZZpb2+jtrYGSZKwWq29yqG9vZ2qqmMkJqbQ1NRAS0szKSnpSJLkVq7D4eDQoQN88MH/aGpqZM6c+ZhMZsLDw2lsrMfhcBIZGYlGowU6ZiOrq6tobm7CbLYQFRWDWq1WvBwFAm8YsiOMp112A5IkcWDjGja8/19iM3JIK5qIVh9OzeGDjJ5+JtMv/wGHtqxnz5ovyZ58BhMvuIL6o4dxOh0k5uRTcNZ5HNy0FmtrM5aEZKZ970Z2fvUx25cvpWjuhZx25S1sWrqExqqjpIwpJqN4Cju+/IjkMcXITifjz1tEWtEEAGZcdQuGyCgqD+ym5tB+iuacT0xqJiqVmrTCCRSfewnH9u4kKbcQtcbDGQND2CHpdDpmz55NTU0Njz32GEuXLkWSJO644w5mzpyJVqvtlV6WZex2O0uWLGHRokVMmDAhMAVCtfMNZae74WAQQ+DwkWMs+d9SNm7aid1hZ+KEIi5cMIfRuVneObYpUNaDbbXrcrjbvPk7KiuP0dLSQmtrC/X1teTnF1JcPJGVK5dz6FAZl112DdnZozl4cD9ff/0F7e1t3HXXg+h0YWzfvpk9e3YRFqbn6NHDNDY2cMklV5KRMQqXy0V1dSUbNqyjrq4ag8HIrl3baWpqAKCy8jirV6/g88+Xcsstd7Jq1Zds376Jhx9+nMrK4+zdu4uwsDAqKo7Q0tLEwoVXEB0dy9q1K/nssw9JT89i/frVjBqVi0ql4rPPPiIiwsz5519CdHQsbW1tbNiwloqKw9hsNpqaGsjKymbu3AXCIBAMC0NmDIQZTcy87sdMvOhKXE4npug4Wutr0RmMaDvX+s+45jbs7W1o9HpUKjW502bhcrrQ6DpG5ZMuupqJF1yBSqVGUqkYf+4lFMw6F7VWh6ozGtro6Weh1YcDcOlvn8LlcNDWVI8pKrbX6D45fyzx2Xm0NzWg0YYRZjR1byE0REYx/85fI7tcqELopEGVSsV5553Hli1beOONN5g/fz4lJSWEhbk/GnbVqlVUV1fz4IMPhsw9eI23nfxguwlkwM2+cZ/zHwqjIxh59JDZ1mbl8+XfsGnLTmJiItm95wD/eOY1ysuPct89t5KWmqhw5u7pXRX737TdbmfFis/5+uvPWbToalJT01m27H1ef/0lLr30aubPv4i2tjbee28JM2bMIjt7NLm5+Tz77F/49ttV/OhH96LThfH73/+SyMgofv/7p9izZyc33ngZTqeDe+/9FY2NDSxb9j67d+/k8suvJSLCzJo1K6mvrwOgrq6GTz55n48+epeiohLa29uw2ey0tDTx+9//gujoGB5//G+Ulm7n5puvwOl0cvvt95KamkFWVi5Go5Hs7NEYDEZ27tzGO++8ztix4zn77AUAfPnlJ7z99n/5/vdvpqhoPE8++Rj/+Mf/8c47X5GVlT0kz0Eg6MmQGQNdGCNPrMkZ+6zPSSoVOoOx+2+VWoOqh5GsUqmgz+hFF27w+LdGqwOtrl+ant+bouPcfqdSqyEELXSTydR9NHJZWRm1tbVER0f3GtXJssz69etZvXo1t912G/Hx/nsvK4I3nZxSwYrc7nTwQ9hw2E5Kr/P3ddJtbcXldPHE4w8SExPJjp17+f0T/+SrFd9y7jmzhswY6E3PPf0SsixTW1vFCy/8g8suu4aJE6cCMH78ZEaNygFAo9ESExNHeI/32mSKIC0tg/Xr13R/lpiYzPz5F2E0mrBYorBYItm5cxsul4t9+0r59NMPuPjiKygqGg/A1Kkz+PrrzwHIyytg2rQz+PLLTxg1KoczzzyHhoZ6oqNjSEpK5rzzFmIwGLFYojCbLezatQ29Xk96eiZms5mICAt5eYVIkkRMTBxLlrzcrVdTUyPPPfc3Tj/9LKZOnYFWG8Y11/wAp9OJzSZCoAuGBxFjV0G6Iv8F7WRFYNeuXbS0tHDttddSVlbG888/3y+o0Hfffcfq1au58MILGT16NLIs43A4qKur8z/jQPzDhtu/QAmGUj8/ynrvvoNs3rKz82cXMh3nbByrrGLzlp1s274bJIk5s08jMSEWrUbDmPxsZp0xhbAwHY5eu2iGg44Cdrlc7N+/h927dzBmzNjubzUaDTrdid1CktR/qaHv7Nc99/yc2Nh4Pvjgf+zatY2ICHNnLAEru3fv5PjxY6SlZXSnj4joWN/vmSdI5OUVoFariYmJBeDuu39BTEwcH374Frt2bcdkMmO3ez7FUa3WoOoxqjl06AD79+8hN3dMxyynBDk5eTz00KPk5RV4WV7DfTiW4GRjyGcGOhjJC72edW9tqOO9L5azsqmCMWPGUFBQQE5ODuHh4YpM0x8/fpxVq1aRk5PDxIkTqa+v58UXX6SoqIjLLrsMnU7H119/zQsvvMDUqVNpbGxk1apVtLS0cOjQIaZPn05UVJR/mfebancTdtZb3Kb3UYgSMkIVP26hqbmFP/9lMUePVfKLh+44IUqS+PcLS5gyaRy5uZnExZ5woNNqNOj1YaSlJpKSMtCsgLtyVWq/f88zBzpmBo4ePYLLJQdsVG/cuJ7vvlvDzJlziItLwGLpqPt2u42qqspBDXdP7+ymTevYsOFbzjhjNjEx8R6dd0/I6f13S0vHDqVDhw505y9JEuHhBlpamjD2iH0ygNQBPj5J3gPBkDJMxoBSnvi+zD/7mWHPy2QG9HySJAmXLLNnzx5WrlwJdGztKywsZNy4cYwbN47k5GS/IpBVVFSwePFidu7cSXFxMWazmYKCApqamnjsscewWq2kp6fz8MMPs2/fPrZt29Z9rcPhIDExkUsuucTnfHvcHSdO+euzdcvXYh3UG92LZ9V7dtmD4CFsFH3OytMF/hlFudkZZI9K5403l+J0Oru/jjCZ2LZjNz/50XWE6XrviKmtrefYsSqKx41hdE7WAJm400fpqEwd/0uShNkcidVqZfPm7xg7tsTtlV379V2uE0NhWaa7cz106AB/+MOvuP76Wzn99NlYre3d751Go8FstlBfX8eBA3uZOvX0XjIGiitQXl7WKfc2Tj99Nm1trZ2j/t4XnTidtX85JSYmo9VqWb78E6677tZu59+qqkqOHDlESclkN+XjC8IQEPjOMBkDKFRffRHiZ4Y+rGPrTWZmn7uAgvNnUV1dzaFDh9i9ezc7duzgww8/RKVSkZGRQWFhIUVFRUydOpWYmBivZg3MZjMLFizg7LPPJjc3F4Bp06bxyiuvYLVaycjIwGQy8Zvf/KZfTARJkoiKivJ/VuCEII9fuWQJp1ODLIuVJ0+oVQ5UKmdnMXoqSx/raeeMjclk5OabLufV/77Hq/99j1lnTEGSJNZ8u4lJJWPJHpXeq565XDI7du2lqamFK753PhERnb46/Yxf39TxUfl+n6hUKsaMKSI2No7XX3+RjIxR5Obms23bRioqyikqKgbAYolErdZw4MAeJk2axt69pezatY2mpkZaW1toaWlm795d1NZW43K52L59M4cPH8RiiaS+vo6kpFSMRiOffbaUSZOmM2pUDjU11TQ3N9LU1IjV2o7D4QBkmpubuzv2trZW9u4t7Sc3OjqGY8cqaG5uIjzcQFNTA3v37iIyMhq9Phyn04ndbsflcpGYmML06TP5/POPeOqpP3LeeQs5erSCLVs2cMMNP+xTPmKULxgahs8YGDKG7kVSqdVERkUxJjUNWZY7tww1UV9fT01NDbt372bLli2sXLmSF154AZPJRFZWFpMnT2bKlClMnDgRk8nkVrbJZKKkpPcoKTExkcTE3tO76enpQbu/gXC51DS3mwM8pvbkxqRvRB/WiuTtwq5X/cCJBEmJ8dx43aX86c/PcdePrqOgIJeXXn2Le+66qZ+YsoOH+W7DNubOmUF+3qgThoISTpwBEh+fyF13Pcgf//hrHnzwjs7thJOIjj7hcFxQMJbCwmIWL/47H3/8HvPmXUhsbBw6nY4lS15h4cIrOPPMc3jllX+zdetm5s07n5KSySxf/gkrVy5nzpxzueGG23n++X9w9923kJ9fiCy70Gi0rFr1JbIss3z5MlpbW3nppWe44YbbyMnJJz09i1mzzuaVV55j27ZNnH32+RQXT+Lrrz9n1arlnHXWuRQUFLN48dO88MIzLFp0FcePH+XgwX04nU7Wr1/NOeeczx133E99fR0vv/wcH330LmZzJD/+8c+Ijo7tUxpePgRhMwgCRJK9OO2isbERi8VCQ0MDZrMZh0tmU3U7nx1pGfjCXhVUiTXhIBPIVG/nr5Pj9MxJ7d+hy7KM1WqlubmZ5uZmqqur2bRpE+vXr2fbtm0cPnyYyMhIxo0bx4wZMzjttNPIz8/vFz9gyHE1g/34oMnsDi0NLdHYne63OQbOyG/tIsLrMeibUEnB8/KqrKpl4rQLOWfu6Tz8wO089Mv/45Xn/6/TGa4rTQ1LP/6ShPgYzpo1Hb3e+2dWXVOLyWj06RqbQ0djS5TXdaMrWNCBA3upqCgnJSWd5uZm/vrXP1BUVMwDD/wWWXZRWXm804HPREbGKI4cKUelUhEfn0hMTByVlcc4dOgAkZHRJCQkYbNZOXr0MOnpWURFRdPS0kJZ2T6qqiqJiYlFq9XS1tZGdHQsERERNDc30dbWhtFoIjY2Dr2+w/enouJwL7lWazvHjlWQnp5FZGQU9fV1HDt2BIPBRHx8AjablZqaamRZJiYmDovFAsCxY0cpK9tHXV0N2dl5ZGSM6uXA6A1GfSNGfSNq1WD+FRKEjfJJtq+0tLSwadMmzGYzY8eOHfwCwZDQt//2RHBnBno5s/g6/dl1bfcfHSjRJ3hyPvPZya/HfOog10qShF6vR6/XExsbS3p6OoWFhVxyySW0tbVx5MgRVq9ezZo1a3jyySd55JFHSElJ4bTTTmPWrFlMnTqVxMTEERAvIFiddqjf93ByoszjYqP44c1X8vs/PYPVauPqKy/qZQg0NDTxyWcriYgwdRsCsixTU1uPTqvBbB7AeU2G1/77AX/+62Li46PJGZVBbm4Wo7LSyBmVTlZWOvFxMajVql7X+EqXM92YMWMZPbrDk3/Xru390nR0+h3RBlUqFZGRUZ3e+RKSJJGUlEJCQhIqlQpJ6nBOjItL6PYdMJkiKCgYh9Pp7OXH05U+JqbvtuOOm3EnNz4+sVtGVFR0d6RDSZIwGIxERkbTl+TkVBISEnE6XcNv9AeAzWbj888/51//+hdlZWU88MADwhgYgQR5mSDQjsHNtUr0CYM6sPkj0Ld7ValUhIeHEx4ejizLJCYmMm7cOG644QZaW1vZv38/q1ev5quvvuLNN9/E4XCQk5PDGWecwezZs5k6dSoREd54HQ81/pXjYFHpRhJDfy8nMpMkiR/efDV/eeoFNm3ZxeJn/9D9XVNzC8+/9Car127kvHPP5O33PsFud7B7TxkJ8TFctmj+wMaABJkZKZQdPMyh8iNs3LSTsDAdGo0KWe5wzIswGcnMTGVMfjZ5uVnk5mSSkZGLJcaIWuP9bEJXh97VwXbswW/H4bDjdDpRqzu25HWF9oXev3fJUKvV3Q6BXTJ7olKp+jn0ep4rPeHk2DNKYF+5vhjsarUmFMOZ+IRGo2Hq1Km0trZy9913Y7cP9zZVgT8MyRHGihK0mYFA8V9gV+OiVqvR6/VEREQQFxfHpEmTuO2226irq2PDhg188cUXfPjhhzz99NNYLBYmTZrE7NmzmTdvHqNGjRrRYUxPFkMAPN3L0G0Aj4628P2rF5IQH4dO19FBtrdbWfzCEh74+RM4nU7e++Dz7vQmk4FHfvlT4uP6H9LTl5LxHfvgO7b+2fs1/DU1dRwqr2DNmo1oNOoOZ1ZJQq83cNFF3+PHP76PhIQknzrMqqrjfPJJR7RAq7Wdzz//mBkzzsRoNA5+Mb7XrVCsi6FsLEuSRGRkJJmZmcOtiiAARp4DoeIzA6G3Ft3TONDpdISHh5OUlMT8+fNxOBwcOHCAr776ik8//ZTf/OY33HPPPWRkZHDWWWcxd+5c5s6dS2RkZMBLClarFZ3G99IJ5YZrYIJpaQ5dgUiSxJ69ZTz4sxOe6WFhOn70w+/zw5uvcnuNRqP2qr6kJCcQHWWhtq7BYxqXy0W71QqdwfTi4+O45Za7uPzy6904yA1ObGw8d975IHfccV/3uyFJI2/XSiDvxXC8T6tWraKiogKXy4UkSSxcuBCtVsuOHTvYunUrKpWKOXPmEB3dsQQykgcjgpA3Boaiow5wH9UQqNhzylStVpOfn09+fj633HILbW1trF+/nk8//ZRPP/2UxYsXI0kSJSUlzJ07l7PPPpupU6ei1+v7yRwIWZa58847SYiP4v6fXkN4eJiXxkXX3mql96h5Cnxz4jP/G1u583rJr+t75ntCxkBBeZSvND39gNeu20RKcgIxMSe2kkqShEajRqNReZW3O79iu93Bth27SU9PHdAYAFCpJMLCdMyfdyb33XMXmdmn4ZT1fhqoUqffg5redarr/9CvW+Db8oG7fHvrEPyGJzU1lQceeIA1a9awYsWK7uWUvLw87rzzThYtWtQr4FLX/YW+X5PAHQoaA4O/UL6JGuoRe2cHJkt+hi8YGn37rk0aDAZmzpzJzJkzeeSRR2hubmbt2rV89tlnLFu2jD/+8Y/odDomTpzIOeecw9lnn8348eO7HZY8vcBOp5MvvviCPXv28Oabb/Ly4j8xvrig/7prv9uW+vzf93e/79xNZr3l+t8GdZVBx1++Nvw90574fSAByteTLVt38cDDT5CSksDevQd5a8k/vM67q+Pv+E/uPMegnZ279rJh03Y2bNzOxk3b2bZjDzabnQiTEa1W63ZtuGvknpebxQP3/ZBLLj4HjdZCY4sKl9O/++5dpn2NrJFRt/y+2m3dClyuN6Snp/PQQw9x/fXXU1ZWxqRJk1Cr1TgcDpqamrj55ptFx38SoZwx4LYT9d2xrvuyYZm699EQ6Gb4lhr6vowRERHdSwWyLHPkyBFWrFjBp59+yr/+9S8ee+wxEhISOP3005k7dy4zZ84kOTkZtVrd7R0tSRLbt2/vPsugdPd+Js+4hLvvvJFf/fwnGML1J5yu+ty2UksE7qO3KVfGA+kZjPZt8A28gwnAze2fMF4lSeJIxXFkWeaPj99PVKTZbUPdERkPZNmFyyV3buNrp+zQYTZu2sF3G7bx3YZtbN+5l/b2diIijBTk53L6jEn85MfXUzgml52l+7nm+p/2k61Wq4mLjea6ay7hJz++luSkBABsnsP2e3/7PZwAe/8duOxOSUoJCgru6mtXlMNgIUkS55xzDuPGjePZZ5/l/PPPR6PR8Pbbb7Nw4UKxLHCSoZwx4PFdCu2XTBlC8x4lSSI1NZWrrrqKq666CqvVyo4dO/j888/57LPPuP/++3E6neTl5TFz5kzmzp1LUVERJpOJFStWdIe1dTo79jD/+a/P89Gyr/jX33/HhJIidDptvw5HqcY52COOoR7QBJyf2+tPGK/jxuaz5bsPu7/p6ig6HP2cOJ0uHE4nVquNsrLDbNi4nS3bdlG6ez+luw9QW9dAVKSZnOxMJk4o4qYbLmNCSRGFY3LRajU9OmH5RLTCTlSShNliYvKkYn7+wI84Y8YkxZ9f/0OJFBUf8ri7X5vNSvXxQyTEypgj9Gi1WtRqlaJlr1arue2227jppptYuXIlc+fO5aWXXuL5559XLA9BaBDiPgMCJQkLC6OkpISSkhLuvvtuqqqqWL16NcuXL2fZsmX8+9//JioqigkTJlBaWkpzc3Ov651OJ7tK9zN3/nU8dP8PufXmq4iKNJ+EI4RgzPQEdzeBLMudIW8d2B0OHHYH7VYrh8qPsqt0P9u272bb9t3s3LWX5uYWDIZwRmWlUzK+gKuvvJgJJYXkjEonPFw/aF6ZGSmYzSYaG5uJiDCSkZbMfffcwvcuXUBY2MiOQBnYzNbQzhDu27eHRx+9n2NH9zPrjKlcdMFcSooLMBrDCQvTodX2N9b94YILLmDMmDH8+c9/JioqioSEhAGPRQ/mbIUgeAhj4BRFpVKRkJDAxRdfzMUXX4zT6aS8vJzVq1fzySefsHfvXrdrwk6nk9a2Nn7zu7/xyWer+N1v76Z47Bj04ZGdKfo2iIE2kMOxBKO0c5+yMx0ul4zDYafdasNms2Oz2WhpaaPs4GG2bd/DztJ97Nl9gH0HDuJ0yZiMBnKyMygZP4Zrr7mYMXnZ5OZkYTIZfM5bkiQklYopk4vZt6+MK753AXfdccOJbYlBfVzBd0qVpEAMgqGtp/n5hfy/J37PqpVL+WDpp9x2xy+Ijo5kyuRiZp4+mdOmTcBkNGA0GdHr9X5rp9Vq+fGPf8ytt97KQw89xKOPPuo2XddslDAGRiZ+hyPeXW9l9fG2odBxRFEUHcbUBN8b2VDiq6++4uqrr+bIkSMDptOo1URHR3LXHdfzvcsuxWjOR5a82/s9GB0NcsgGlfALr8MR94xyLcvY7Q7a2tppbWujtbWdhoYmyg4eZueuvZQdPMKRI8fZX1aOLMuYTAbS05IoyM+loCCHwjG5jMnPJiwsDKXKwuVy8fZ7n5KbncG4sfmDpvc1HPHIwfvyHKw++2uAdIUjlnCwq3QfX329jk8+XcGu3fsJ1+sZX1zArJlTmDyxGHNsARaLBZPJ5LNx2tbWxowZM9Dr9Xz99de9ZgNlWaapqYmVK1dy0003ce+993LLLbf4lY9AeYIajlijkiiI1lMQPfiUomDksXr1atrb2wdN53A6qayq4dHf/50VqzZz8y13UVg4lYgI985rA9O7oRz4ZD9fUNbpEIK3Xi3LMlabjeamVpqam2lqaqGhsZljxyrZd6CcsrLDlB8+SsXRSmSXi5iYKDIzUjhz1lRuu/Uq8vOyycxIHSBmgDIzNiqVikUXz/Pr2uFh+ENkD1afA61TKpWKgjG5FIzJ5bZbrqLs4BGWf7WGz5d/w1+ffhGNWkPemHGUlJQwbdo04uPjiY2NxWz27l0NDw9n9uzZjB8/3u3Oo9LSUr799lsKCws5cuQIO3fuZNIk5X1HBMHDr5kBwcmLw+Fg0aJFfPzxx9jtdrdTfiqVCq1WQ1iYjrAwHfqwMMLCwsjLL+a6625n6tQZ3efNhw7+dwhK7ZDoOTPgcsm0tLbS0NBEU1MLTc0t1NU1UHG0kr17yyg/cozKyhrq6hvQqNXExkaRkZ5C9qh0MjNSyR6VzqisNMLD3e3dD1bn55/ck3dmoAvl6pavdW2wg4pkWebgoQq+XrWebzccYNu2bTgcDjIyMhg/fjzjx48nOTmZpKQkLBZLv9DMXdTX1/PjH/+Yv/3tb4oENBMMHaFxUJFgxNHQ0IDL5SIvLw+9Xo9Wq0anBX2YDr0+jLAwHeF6PUZjOBZzBJGRZiyWCAxGCxpdMtHRMdjt9mEzBlpbWzhwYB/l5WXMm3dhrz3qvjW0J/azS1KH3PLyMtrbrURGRpGWluGx4XSH1Wqlrqqc5qZy6urqqKmt5/Dhoxwsr6C5uZXW1jZqa+vQarVERVlIiI9l8sSxZI9KJ3tUBulpSV4593Wo7u8WWbfCUHZPv7d5hZIsN9J7bX31tW5Bl35dAaq6glUp3cdKkkRmRgqZGalcfV0mR48eZd26daxevZovv/ySjz/+mLi4OMaMGUNxcTGZmZlkZGRgNptpampiy5YtaDQatm7dyumnn+71TIJg5CFmBgS9qK6uZvXq1bhcLkwmEyajGlOYlYgIAxEmI0ajoTvefU98OcLYc1S1wNm1azvPPPMkn376Idu2VfTNGX86iIaGOl59dTHbtm2iurqSpKQUzj57AfPmXej1aXMVFeW88tJfOFy+h9a2Vlrb2om0mElOiic9LZm0tCTSUpNIS00mOSnebRkrwjC4UJz8MwMwXL4p/h5h7HA4qKioYOPGjWzatImdO3fS1NREREQEeXl5jBkzBoBnn32WyMhIcnJyeOihh7BYLMIYGGGImQGBX8TGxnLBBRec+MDVDPbjvRMF2O71DKnaP3RxYBgMRqzWdhob693I9S+PFSs+5+DBAxQVFXP8+DG+/PITvv32G6KiYpgx40yvZGi1OtLT08jNjiUxIYaE+FhSUhJISU5Ao9Eo08B6U4z+ZtMlO3T8Mb1kqBQOUUdXD2I1Gg3p6emkp6ezYMECjh07xvbt29m8eTM7duxg48aNtLS0sG3bNrKzs1m0aFFI7RKwOmWq2hy02Aczgk49Rpl1aNW+1yVhDAh8x6vdXQM3bkpvt+siPT2T9PSszr8Cd5hrb2+jvr6OO+98kKSkZFpamsnPL+KBB37E++//z2tjIDY2nh/ceC1GfTMqVY9GtWtqRIkpkmD2eUO1UjAiCVELycu6pdFoSE1NJTU1ldmzZ3P06FH27NnDrl27yM/Pp6KigldffZUVK1aQl5dHYWEhEyZMIC4ubghvpjctdhdba9opb1EgvOVJRpJRg9aP2C/CGBD4iTxI2OiBG0dJgurqStatW828eRdQXX2cLVs2EBkZTUnJ5O6tSy6Xi4aGOvbs2UVTUyNpaR2dfc+Dl5xOJzt3buPQoQNkZWX311SWaWpqZMuW72hoqCctLZMxY8Z6NcWvVquZPftckpKSkSQJo9HEuedeyJ///Ciy7M2opGttuPNMh77F0tVI+2sIeNUPKRjroZeoEO0EexHYdIb7sNju8ggUf2R4Gql33q8fdUur1XbPGJx55plUVlZy4MAB9uzZw+bNm/nmm2949913iYuLo6CggClTpjBp0iQSExP90N9/nLJMk91FrdU5pPmOBFx+TuAIY0DgJ4E1gGvWrOSll55h27ZNJCYm8+mnH3Lw4AGOHDnE7bffwznnnI/L5WL37p2sWPEZeXkF2GxWXn75WfLzi1iwYCGRkdG0t7fx8svP4XDYmThxKnv2lPLJJx905yPLLsrLD/Huu2+Qm5tHY2MDf/vbH5kxYxZXXXUjOt3A69harY6UlLRen4WHG3C5XEyYMNWLAX2QO8tOB7SB8/FDh14ie1zfa7LFO0dFjcpBhKEelzzyjh0OdTQqByqpj1GqkAOpWq0mKSmJpKQkpk6dyrx58zh69CiHDx9m8+bNbNu2jc8//xyz2czYsWOZOnUqEydOJCMj4yTxKxgJxq5yCGNA4D0KvhujRuWg04Wxd+9uqqqOc/75l9DS0sLDD9/J22//l3POOZ+KisO8+earxMbGU1IyBVl2sX//Xv773xeJjY1n9ux5LF36DuvXr+bHP/4Zo0cXkJlZh9ls6c7Hbrfz3HN/o7CwmGnTzqCxsYEdO7bwv//9hzFjxjJ16uk+675hw1oSEpKYO/c8/wb0/cox0IINQoPljUgvs1WpXISprAMnClYE6FOnLT+BonWrA7VaTWJiIomJiYwfP57TTz+d48ePU1FRwYYNG9iyZQt/+tOf0Gg0FBcXM2vWLE477TSSk5O9NgxkWeaPf/wjN95447AuQZxgML1DsIIF4NYhjAGB93g1CvWO+PhE0tOzkCSYNGka0dGxtLW1Mnp0Abt378DlclFeXsbatV/zk5880N3Bz5w5hy+++JgvvviY7Oxc3njjJcaOLSErK4ewsDDi4xMpKZnChg1rkWWZqqrjvPPO60RHx/L22693hPFtb0ev11NVdXwQLXvTEQ3QzuLFT3P//b8hOjrGv5vvV3wh1qAojdeOjQpvLfTHUgvB9j0wlL8ZSZKIiooiMjKS0aNHM3HiROrq6qisrGTTpk18/fXXPP744+h0OkpKSpg5cyazZs0iMTFxwO24paWlPPHEEyxbtow//OEPTJ48OUBN+x53rTQhWFECUEkYAwIfUe4F0Gg6/AIiIjo6ekmSMJstWK3ttLe3sWvXdlpbW9Drw7uvSUlJJzo6hgMH9rJjx1aOHCln7twFqNUnqnJ4eFc4aJmysv3YbFYuuuhSIiIigY4DfZxOR3e+Jxi8J3jqqT8yf/7FTJs208OIR6HeZDAxfmWjVE83wPkT7rLwOkslG1c/ZfVzMVD6rI0ARAWlTvhPlx+MxWLBYrGQnp5OUVERF154IUePHmX9+vXdhsFjjz3G5MmTmT9/PnPmzCEqKqrf+/Puu+/S0NDA119/zdVXX819993HDTfc4N1BaO7uXdF4G0PJAA8yiM9YGAOCIOBtje2fRqVSIcvgcjlpb2+joaGB8vKy7u9NJhN6fTgqlQqbzYrD4aCxsb6XM1/PGAZdx/jW1FSTlZXbncbhcOB09vVEHljn119/kfj4JBYsWIhO5ymokkJv6qAjaW/KWJmtlf3lDdDbj8jGtw+Sxz96/O1F+fvkyuGFvMGe+TCXvUqlwmAwYDAYiI+PJz8/n0WLFnHs2DG++eYbli1bxn333YdWq2X69OmcffbZLFiwoDui4auvvorD0fFO7t27l5///OesX7+e3/3ud8TEeJqF63KWHOyzkcTwPGPh0SMIAoHX2LCwcDIzs2lubmTfvt3dn7e1tWGz2cjNHUNubgFhYWF8++03WK2916RdLheSJJGVlY3dbuW5557C4eg4hdFut7Fnz042b/7Oa33eeed1Wlqaueyya9Drw5HljpMDexoqQ4uCi/pK5enteuVwbldXTMchLtug5Bk8VCoV4eHhREdHk5+fz7XXXsvixYv5+OOPueuuu6iqquKuu+5i7NixXH/99Tz11FPs2LGj+3pZlqmsrOSVV15h0aJFbNq0yUNO7spEoZm54bx+GBDGgCBo9I5R0v/taGioB8BqPXEoktPp6Oy0ZfLzC5k27Qx27tzGgQP7ACgt3UFMTCyzZp1NUVEx06fP4rvv1vDWW//BZrNit9vYuXMbsixz7FgFkZHRXHTR9/jkkw+49darePfdN/j3v59m6dJ3KSws9uo+lix5mZdf/hcGg4n33/8fb775Cs8//3d++tObqa2tdntvATPQrjEls5M9/O4PntrgvnKHs0/zZjLFm3SD0XMQr/TzGqhuhCAqlQqdTkdERAS5ubncfPPN/O9//2PTpk08+uijNDQ0cP/99/e7TpZlWlpaWLVqFVdddRVLlizB5Qo0yJCbQnJXbm6fvw8F3GuZSUm81N8PRDhiwcC4i0DoBl/CEQN88cXH/OIXd3PgwF5uvfUurr/+h3z77Tc88cSvaWpq5K67HuLyy6+louIwf/rTb2lqaiI/v4D6+joWLbqK00+fjVqtpqammoce+gmfffYhKSnp5OTkYTSaWLbsfa666kZuu+0eVCqJBx+8g48/fg+NRktx8UR+/esnKCmZ3Gvd0t02wffeW8Ldd99CW1srknTCdlapJIqKxvPBByt7OUWdkNF/StfrI4xDieE8LsCX9MGUPZSygpax1CsccSggy3LnMp6L8ePHs337do9pJUkiPj6e2267jbvvvpt2TTjLj7Swv8lGyM2YeIrWOUT15IcFUUSGnfCz8Lb/FsaAYGCCZAx0NQRAnw65/2dOp4OqqkpcLhcJCYndzoKSJHWnLy8/iN1uIyNjFEeOlBMZGdVri6HL5aSqqpKGhnoyM0eh04V53PLU++yEE3r2petYWm+3TiliDIwkb/dQ0dUf94pQxi9dQ88Y6OLgwYPk5OR0+wt4oiPol5HLL7+c23/2EHvVMexrtJ0kMQ2Uw19jQDgQCoLGQAF5uiPyufm8LxqNlsTE5B7fn2gNu9KnpWV0p09Pz+wnS63WkJCQREJCksd8OrXu9Z0nPT1dG/QeZSS1e6Gi68m1HN856lQgfHWI8NZbb6FWqwc1BrqWDZ5//nm27NrDnNsfJCJvAjDQ++wFbnci9PnM21db6SZgCA1ZYQwI/MNjBQxOh9j7ZffOiOif5sS1snxii+FAqNUa1Gp1aI4+lO4QPD06RR5pkAylgMUGWS/FdnP2edahWB/9QJZl3n33XZxOJxqNBo2mo0tSqVT9jPKeywqb1q2h4pH7mXvb/eROOxN1IEeme1jW65/GW1mDi/OaQXecKNcGCGNA4B8e61//L5TsswKTdeJCq7WdTz9dyltv/WfAK+bPv4iFC6/w8qjiIDXQnhoWpTsET+IUWYsPUtkELNaNACUacqnP/4HiKabFiN1L30Frayu5ublkZWUBEBkZCXSckWA0GpEkCYPBgFarRaPRYDAYUKvV2FRaSptlmsMisVutgRkDQL9CVOr5K0qQdk50SRI+A4IBCZLPwHDTNcLwZmag7yjFX3z2GRiKdexgTTcrPTIOJh50dTqdtLVZO0etagyGjuBXPteFoZjSH7ScQ9dnwB+q2hydDoT24VYl5BA+AwKBD0iShFqt9hjdLCSWZIeiM1X6tMS+cYn6pQkF66CPDn11lcHusLNpy06WfvQlBw8dYdSodC67ZD452ZmoVJ0GgdextYbbEBD4RUiVqy9OC/4hjAGBwA1Kt982m5WyykNERtiIijRhMIR7N8Ic6sbI/+CRnj/vJXMQ4Uo0wN6Mkge5dseufTzy+NNY263U1jXw3odf8Mpr7/DOkmfIG501sJih7kRCpsM6yVBsabP/DqngKeN/HsIYEAwb3o++Q8pE94vKyuP87a9PEqa1MWF8IUVFo4mLjSE2NoqoSPOJGYpAblXJtW4l8UWmX/l7GOn7g9SxPLBp0w7uv+cWJk0cS0tzK0/982Ueeexp/vLUC/z9r78ZVIYgBAiRZqO1vhZJpSLcHBmajsidCGNAEDhez0z1fjslr+Lr42Wa0CY83MDMM2awft1K3nn/U15/cynJSfGMykqjeNwYkpPiSUyMIzkpnvBwvX+ZjPxi6o9XVcT7G3c4HFRW1uDsjGRnNIQTHR2J1WqjoaEJq82GPiyMkvEFjBqVTphOR1i0jttvuZqn//kK5YeP+n0rgqHC09kESjiyDHZt7+8ddhulqz4jPMJC/sx5Por3Q88AQpgIY0AQOF7X174JgzXPGviQQGmfgZiYWK743iJuvPYcKo9XsnnrTjZu2sGWbaWs/nYj+rAw4uNjGFeUR2ZGKunpyaSnJhETEzXgsa/ulSe4hkHQR1w9MvA5n4GVs9nsfLt+C8u/XEN0tIVFC8/tNga+XrWOo8eqOHvO6RQU5KLp4U8SExNFVKSFSROKfFVISfV9kBMKTi/DxUBrWL4VsMvlorWuhqbq46i1WszxSYQZIwCoqzgEMqg0aiITU3E67DRWHkWWZcLCjeiMJg5v38iWZe+QUjCehOwxmGLi0HWfqjqY6n48vwAeuTAGBCFIoB251KsdHLxd7N9ABLMdTUyMIzExjnlnz6S5uZWdpXvZvn0P23bsZsXKdSz9+EtMJiNZmWkUFY4mNzuDrKw04uNj0HmzxbGn7oEMhjxuafQijbffuyV4a6s6nY601CS2bCvF6XRy7TWXgAwmk4HDR44BEBMTibqnASbDgbJyXC4nF54/171gpQabQd2KeBLic7n7Ygg42bf2a+ztrciyi6aaSlrqaxl3zsXEpmfTXFPF9uUf4rTbOf/eR3E5nVTuK2XPmi+JH5VHwVnzObh5HUf37MAYHcvR3dtJHzdxYGNgGBHGgMA7RtBWsb7LD4O3i8N0Q52d0OQJ45g0YSwOh4MDZYcp3b2f0t0H2L2njPfe/wxJJREVaSY7O4PcnExyczIZlZlGRIQJlWoQ3QPpZPpeI7v5fDC53jpAK123esrq8btGo6ZgTA43XHsJf3n6RTZu2kFWZipVlbXIMkwoKSAmuvfartPlYvGLb3LjdZdRPC6/v3wC1DsY1W8Eva8BEcR7K9u4li2fvsP4+ZeSWjie6oP7ePf391N1YA8XPfhHkkYX8tWLf+PIjs2cf++jaLQ6LIkpHNm5mbamBsaft4i4zBzM8YmY4xJJyMknzGgKnsIBIowBgXd0dbBD1rAE0oqNkNavR0ctIaHVahmdm8Xo3CzOO9dJZVUt+w8cYv/+cvbsK6N0936+XbcZWZZJiI8lb3QWY/JzKMjPITU1CY2mR6REd51hoB3DoDsFvPjcrdyedavHhb7I6LvW2itaX++ken0YU6eMJ+P9z/jok684c+YUNm3egckYTm52Zj8nrw+WfoFOp+Wm6y9TLOaE22eiZMet9EzDiMW/QnU5HGz84A00YWEkZOcTZjCRMqaYkgXf48P/+wWFZy2gcM75RMQmdF8jqVToI8wYo2IB0IUbiYhNQBsWjjEyhpi0LOFAKDgZGOpK7MuQ0ouUfi6hDu3S64n7UavVJCXGkZQYx/SpJTQ3t1Jx9DhHKo5zqLyCffvL2bFzL18sX4NKLZGSnEhOdgZ5o7MoKhxNZkYaEp3bmYLZMQy0POuRzvvsLlwPQ2xf9B1srbU7r46zJ1JTk5g/bxb/fmEJn32xisamFqKjI4mLi+l12cpV6yk7eJhrrryYmNho5Rpzd8a1u5mY0O07FOPw4cPs2LGDnJwcMjIyPMb+8InusvOvABuqjlJVtof0cZNR9dAne/LpyC4X+9evpHDOAvdtg89BqfxWU1GEMSAYwXh+g3wL5e75bQwFQ16lUmE2mzCbTeTnZWO3O2hobKKqqoajR6vYVbqPnaX7+HrVet5480MMhnAyM1IZNzafsUV5jC3KIykxTgFNujpxTnRm4IfF1OUcOISFK/W2iAzheqZOLub9Dz7n78++xnnzZjF9agkazYmGf+26TWzdvpv582aRkZGCSurYM36k4hipKYkE1oJ7cW0I1L2hoKqqivvuuw+LxUJcXBx5eXmMGzeOgoICcnJyCA8P911ogGXX3tSI3dZO/dFynHZb9+fmuESQJHQGY2AZ9CREnrMwBgQnJb71M0PxNnqz58c7PbRaDbExUcTGRJGfl83UKcXUNzRRV9dAbV09paUH2LV7H2vXbeLV/76LTqcjPTWJMWNyKB6bz7ixHTsWug6F8R6px39eW1ohiSRJZI9KZ85Zp/GnJ59Dq9WSnZ3e/f2q1d/x4stvUViQy569Zezbf4i2tna+Xb+Fiy+cS2pKkh+5hsgQMMSIiopi+/btOByOTsPXTGxsLEajkZiYGEaPHs3EiRMpLi4mLy9PmZD4gxiwpph49MYIju7Zjq29rftzu7UdkEkfOwmQ0OoNuJx2ej5bWXYhy64+2blw//xDp04IY0AQOAHsbQ01AlkWGPhapVz5+0iVJIxGA0ajgZTkBGRZZtKEsTS3tNLS0kpNTT2btuxk67ZS1n67mTfe/BBJUpGaksCEkiImlhRSMr6Q9LRkdDpvDmMaYjytqSvQhhoM4UyaNJaFF53DuLF56MM6ztX4dv1mfvnbJ1n/3VYiTMbuaWuXy4XJZOCh+2/zL0OvDxXy9+ZCp2PxhcTExO4jjF0uF/X19dTX1wMd9Xvt2rW89957GAwGIiMjGT16NGPGT8KeVgDJOehNZg/LNwOUxyAvuTEymtEz5rLqtX9SsXMzlvhkNDod+779muzJp5M95QwkwBKfhK2tjSM7txCbmcO+dSupPriP2Ixs7NY21Fot2rAwmmurOLp7O5aEZAzmKKTu3So+PK8gP15hDAgCJ4gVVJZlBZ1uBn+bAsnKp2sHdbzzT5GOU97CMRjCkWOjycxIpbAgl9a2dtrb2mlqbmH3njI2bNzGlm2lfLD0C5qaW4iLjWZs4WhKxhcybmw+xWPzsVjMg+9WCDae1tQVUEuSJGw2O5kZqUwsORE/oKhgNIv/+Xts9v6H4Gg0GiJMfk4Re63zSe4424ewsDCioqI4duxYv+9kWaalpYWWlhag45lt3boV/dKlaI1mcs84hxlX3Up0SoabdsJDeXjRqarUaqZc8n3sba2seOlpju8rxWGz0lxdycUPPtEda6DwrAWsfmMxL99zHfGjRjNm5jyiktJoOH6E0pWfk1ZUQkJ2Pls/fQ+A6d+7CSzRvhTPoLejFOLUQsHAhMCphcFw4htMZtf3Subt86mFQUCWZRwOBzabHavNTmNjE7tK97N+w1Y2b9nFtu2l1NTUE6bXMSYvm5LxhUwsKWR8cQGjstJQq9UKGmc+aY7SU6z19Y0s/fhLkCSu/N75Qb6v4d7rJw3rqYUul4uGhgaqqqo4fvw4lZWVHD9+nOPHj1NdXc3SpUspKysbVI4kSeh0OsZPnsrEy24ismAyBksUKk/1ctDi9pxAlmXs7a20NjbQVHkMS2Iy2jA9+gjziWtkmabaKqoP7ScmOR2dwUhD5VEMlijCIyyodTqsLc1YW5rQhRvRm8y9HBJ9Z/DtO/6eWiiMAcHAeGkMyDLIXc5lArdIUteBJcOsSA9kWcbpdOFwOnA6nNgdDg6VH2XTpu1s2LSdjZt2sH3HHmx2Oyajgfz8bMYV5VNUOJqiwtEU5OdgNofu3um+tLdb+fTzlTz/4v+IirKQnpbET39y44i6B/8IjjEgyzJ1dXUcO3aMyspKKioqqKys5NixY71+KisraW1txeVy4XK50Ol0xMTEEB8fT2xsLMeOHWPdunV46o4kqWPr7fjx47nrrruYMHMOG5rUlLW6gm6cyrKM7HJ1T+33zK9L357fd81mSp27RXre01AY0uIIY8Gw0rGDTR55M5WKDNQ8CBmyQaCfMcyljsZJo1F3eNGHdTRcRQURFI7J4crLL8Dlkmlvt7Jj1162bN3F9h172LJ1F6+9/j4NDY0djnej0hlXlEfBmBzy8kaRn5dNRnoKRoMfXuBDQHNzK5u37uK8c2dx9ZUXERGhoGd4T/o+Fr/qw9DWLYfDQUNDAzU1NVRXV1NTU0NVVRXV1dXU1tZSU1PT/VNRUUFVVRVWq7W7wwsLCyM+Pp6EhAQSExPJzs5mxowZJCQkkJSUREJCAsnJyURFRfWaZXrwwQfZtGkTNputlz49jYB7772Xc889F4PBQK1NRt3WgiT1X8rxGi/LUJIkJA+j+S79e37ft8NX1AAIYpsijAGBMrht+BQOKee1A5a3IpVaA/DkpKSA6EDy9/aSnkcBSFLnDIa623FOp9Mybcp4pk4upqPNl3G5ZA6VV7B5y042bdnJlq27ePGVtzh4qAK73Y5eryc9LYmC/Fzy80eRP3oUo7LSSE9PITEhDrV64PMWejWgClajsDAdl1+2gMsWnYckSahUUlf4AYXy6FmYfb7yxVes1wjZw3Sbh49bWlppaGiivqGJhsYmGhubaWhopr5FR11dXbeDXt+furo6GhsbsXf6SnTpYLFYiI2NJSYmpvsnMzOTBQsWdHf6XR19dHR0Zx06cbPe/J6amtrrHlQqFSqViokTJ/Lggw8yf/58NBpND9kOL0pxELx+Hn5Wjr7ti9/tzQB1SkGEMSBQBrcNn5KL7goaAl3vVijN1w8n/YpB6mcg9PwfQKWSGZWVxqisNBZedE73562tbezbf4hdpfvZWbqPHTv38v6HX/CXv71Aa1s7siyj14eRmpJIelpy508SmZmppKUmkZ6WTGpKImFhuhPaSJ6Xn3wddXV1Jv3OflKiKsj0qlODrcB2GVb9P5dpbGyhtq6OmpqO7aI1tfXU1tZTV9dAfUMjDQ1NnR1+Iw2NHb/X1TdRX9+I0+k8cUud6qjVGiIjI4mMjCQqKqr794yMDIqLi7v/jo6OJjY2ttePTqfrp+NA+DMSTk1NxW63dxugU6dO5Re/+AXnnHOO2/rXj6DOwvkpuK++fhu4Q9NOCWNAoCxKxmwfTLa/QrxprLzKy1eFQmzr10DqDKKmp4bZaAxn3Nh8xo3N7yXfbrdz7Hg1hw5VcOhwBQcOHOZQeQXlh4+y7rstHCqvoK2tvdN2lEhOiictLYn01CRSkhOIi4slPj6auNjojhgLsdHExUUTptN1Pk6ph70ouWmH3el7Ip2njrkvPdOd6Ot7/y0jg9wx5d7U3EJtXQN1dQ3UdHbmdXUN1NU3dsSFqK0/8XtdA/X1jdTVN3R26FJ3h67VaomKshAdZcZiMWMxRxBpiSAvYRSRkWbMZhORFjNRkRYslgjMZhMWcwQWSwQWcwQmk3FYHQgHIy0tDY1Gw8yZM3n44Yc566yzfBMQtNcqgHd2oGWigPQNTjsijAGBsrgbZQayb7p7acBDJ+6zaC9leCXT13sKIUMAgqSO1OfXjsLVarWkpSaRlprEDCb2u0qWZaqqazl8+CiHyo9yqLyi8+coq9dupLKqhpraBtrbO9anu5y0zBFGoqMjiYmOJCY6iri4aMxmExEmIyq1CnOECZVKRUSECY2683+NGpPRgE6nw2gMx+5w0NbWjsvV2xhobm7G4ewIHuNyumhqaqGpuYXWtjZaW9pobGqmpaWV1tZ2mltaaWxs7p6ir2topKmpBafDcWJqW5IIC9NiMZuJijITHWkhMspMSnICRYW5REVaOjt8S/fvUVEWYqIjiYgwhnRc+0DJy8tj5cqVTJ48efjvs9cSZwC6BLBMNBwIY0DgO147RgX6QvVcGvByXd4fu8Nd+mCsISuYdMjxVrd+6by7IUmSiI+LIT4uhgk99vz3lOd0OmlubqWmto6q6jqqqmqoqemYQq+uqaWmpp6q6lr2l5XT3NTSMTJvasHpctHY1IzL1WFEIMudu186jQo3MwldOvX8QpIkTCYDBr0egzGcSIsZg0GP0WggOtpCVkYqRpOBSEsEkZHmzg7dTGSkhahIM1GRZoxGA6p+axT+EsoVxjeio6OZMmXKcKvRQc/1Fa9x8yy8aif9bbCUf/bCGBD4jtcW7zA0VEplqdga8hDnGSx66TZQZLfg5atWqzumvS0RjMpK93yNB1yujtG90+mkuaUNu91Oa2sbarUavT4MTR+PcX14GDqttmOnjKTqHJ33UWq4OHnsgBBAicJ0Z00OniSggVI3ylQGYQwIBMFiODuOUHSoGmZUKhUWS0fkuOjoyOFVxh2+PLNQMUpOCvydXhwOi8zvNc1BEcaAYBAkQI2IJjTCEP3EyCOoz0yppYlQZfDIfJ7Teev13DeK5HC8ZMFb0xTGgGAQtKC2DLcSAoEgIE5269DbbTHud5X4lkeolaWYGRAMBSpdx49AIBCMCJSevh9AXteEaSDZBXB+gpKc7HNHAoFAIDilGGiaP1B5cm85SqwWeNyJ5SlBcJZshTEgEAgEglMAJUbXQ+Ur0OWb4Ok75RHGgEAgEAgEIcfQ+iYIY0AgEAgEglMcYQwIBAKBQOAWuc//Q5DV4B8GBbGbQCAQCAQjCq1KIjZcg80l4p/0RaPyb3lBGAMCgUAgGFGYtComxemxx+iHW5WQI1wjjAGBQCAQnAJoVBJmnXrwhAKvET4DAoFAIBCc4ghjQCAQCASCUxxhDAgEAoFAcIojjAGBQCAQCE5xvHIglOWO7RuNjY1BVUYgEAgEAoFydPXbXf24J7wyBpqamgBIS0sLUC2BQCAQCARDTVNTExaL5+PoJXkwcwFwuVxUVFQQERGBJIXaWc4CgUAgEAjcIcsyTU1NJCcno1J59gzwyhgQCAQCgUBw8iIcCAUCgUAgOMURxoBAIBAIBKc4whgQCAQCgeAURxgDAoFAIBCc4ghjQCAQCASCUxxhDAgEAoFAcIojjAGBQCAQCE5x/j+bsofHAQ5ivwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# visualize symbolic computational graph\n", "system_2.show()" @@ -451,9 +473,9 @@ ], "metadata": { "kernelspec": { - "display_name": "neuromancer", + "display_name": "nm14", "language": "python", - "name": "neuromancer" + "name": "nm14" }, "language_info": { "codemirror_mode": { From f5385e2ac38137f500571b772b4ef2725ce37395 Mon Sep 17 00:00:00 2001 From: "Koch, James V" Date: Mon, 20 Nov 2023 19:40:46 -0800 Subject: [PATCH 5/5] merged with master --- src/neuromancer/modules/blocks.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/src/neuromancer/modules/blocks.py b/src/neuromancer/modules/blocks.py index 081e09bc..d2cc5972 100644 --- a/src/neuromancer/modules/blocks.py +++ b/src/neuromancer/modules/blocks.py @@ -37,6 +37,16 @@ def forward(self, *inputs): x = inputs[0] return self.block_eval(x) +class Drain(nn.Module, ABC): + """ + Canonical abstract class of the block function approximator + """ + def __init__(self): + super().__init__() + self.coeff = torch.nn.Parameter(torch.tensor(1.0), requires_grad=True) + + def forward(self, x): + return torch.abs(self.coeff)*torch.sqrt(torch.abs(x)) class Linear(Block): """