

Pocket V2N Protocol

An adaption of the Rain Tree Gossip Protocol for
the Pocket Network Consensus Module

Rain Tree Gossip is:

● Binary Tree distribution with 3 branches*

● ACK/Adjust/Resend at top level to insure against loss of
trunk or major branches.

● Optional redundancy layer to insure against non-
participation and incomplete lists without the ACK/Resend
overhead.

● Double Dasisy Chain clean-up layer to insure 100%
message propagation in all cases.

* For clarity of presentation, the discussion and diagrams in the first part of this
document all reflect 2 branch trees. Three branch begins at slide 13.

Binary Tree...

● For any set of sorted, randomly distributed data, Binary
Tree is the fastest possible lookup method.

● Rain Tree requires that all participant nodes have a sorted
list (partial or complete), of target nodes.

ACK/Adjust/Resend

● Rain Tree messages are sent with logical level numbers.

● Origin level number is determined by the message source
node. (= highest position bit in size of list)

● Level number is decremented by one when passed down.

4 Layer Network
ACKs being passed back
To layer 4 sender from layer
3 recipient

ACK/Adjust/Resend (pg 2)

● Failure to receive an ACK within time-out causes sender to
select next 2 nodes (+1 & -1) in list and resend with
decremented level number.

● Due to the “tricky” nature of time-outs, Adjust/Resend only
happens once per target. Replacement nodes do not ACK.

4 Layer Network

Department of Redundancy Department

● IF… Every node had the exact same list AND…

● IF… Every node was 100% reliable AND…

● IF… 100% of communications were successful

● THEN… Redundancy would not be desirable.
I’m Perfect!

Me Too!!!

Me Too!!!Me Too!!!

Me Too!!!
Me Too!!!

Me Too!!!

Me Too!!!

Me Too!!!

Me Too!!!

Me Too!!!

Me Too!!!
Me Too!!!

Me Too!!!

No me olvides. Perfecto tambien!

Meanwhile… in the real world..

● Communications fail! Networks don’t actually work the way
that simulations often assume they will.

I talk, but I don’t listen
I listen, but I don’t talk

My list is empty :-(

Peers? We don’t need no stinking peers!

How come nobody
Talks to me?

I’m perfect!…
But I’m busy

right now.
Call back later.

A short pause to reorganize the
drawing (smoke ‘em if you got ‘em)
● We will flatten the drawing to make it look more like a list. Because that’s what

it really is. Then redraw it to show the same information in a more useful format

Now then… Let’s get redundant.. again

● This sample shows one additional redundancy layer of 1
comm per node.

● Initial distribution required: 14 comms + 2 acks and took 3
ticks to complete.

● Redundancy layer required 15 comms and took 1 tick.

Dasie Chain Clean-up & list
maintenance layer.

● When a message reaches layer one, the receiving node sends a layer zero
IGYW (I got. You want?) message to its right hand and left hand peers.

● When a node receives an IGYW, it checks the message hash vs. its
recently received messages and responds with a yes/no message.

● Latency and/or lack of response are applied to peer and list management if
appropriate for the application. If the answer is: “Yes. I want it”, the
message is passed on.

● This Bi-Directional Dasiy Chain counts as two additional redundancy layers
and insures eventual 100% delivery to all functional nodes.

I got Message 55
You want it?

No thanks.
Already have it.

I got Message 55
You want it?

YES! Send it please.

I got Message 55
You want it?

Yes! Send it please.

This node
got a level
one
message

Let’s Review: Rain Tree is...

● Binary Tree distribution with 3 branches*

● ACK/Adjust/Resend at top level to insure against loss of
trunk or major branches.

● Optional redundancy layer to insure against non-
participation and incomplete lists without the ACK/Resend
overhead.

● Dasiy Chain clean-up layer to insure 100% message
propogation in all cases.

* For clarity of presentation, the discussion and diagrams in the first part of this
document all reflect 2 branch trees. Three branch reasoning is discussed next.

The Third Man. Structural
Redundancy durring distribution

● A close look at our binary chart reveals an interesting fact.

● The Green Node (message originator) is divorced from the
distribution process as soon as his two messages have been
sent and ACKed.

● But, what if we leverage the fact that he is by definition:

● Available, informed, capable and cooperative?

The Third Man. Continued

● After completing his duties at level 4, he demotes himself
to level 3 acts as he should, then self-demotes again to
level 2, etc, etc.

● In fact, all nodes follow this self-demoting behavior.

Demote

Demote Demote
Demote

This drawing shows the concept of demote and
continue. The actual connections made are not
displayed correctly.

Side Note: Unneeded rules in V2N

● In networks with highly variant sizes of peer lists Rain Tree
has two cases of behavior modification which serve to
mitigate the effects of a message source node
miscalculating the network size and launching messages
with an insufficient or excessive level number. Namely,
increment/non-decrement and MaxLevelAdjustment.

● Nodes on Pocket V2N have access to the blockchain
source of truth, so these mitigators are not needed in this
application.

Node 10 handles these
Node 10

handles these

Node 1 Node 1’s distribution zone is these 18 nodes

Node 19’s distribution zone is these 18 nodes
23222120 2726252419181716 4321 8765 1211109 141315

Why we ACK and adjust on the first layer but nowhere else

Rain Tree splits the target universe into 3 overlapping sets, such that each of the
first 3 participants (1, 10 and 19 in the diagram below) is responsible for 2/3rds of
the remaining nodes.

Although we would still have full coverage with the loss of any one zone..
We would not have the full structural redundancy factor of 2 within that subsection.

The clean-up layer and any included redundancy layer would (of course) take care of
potential issues.

Ready for some real fun?

23222120 2726252419181716 4321 8765 1211109 141315

Real Rain Tree levels are multiples of 3..
27 = max size of 4 layer network.

Let’s work through 3 layers of a 4 layer network. Can you think of anything more fun?

23222120 2726252419181716 4321 8765 1211109 141315

23222120 2726252419181716 4321 8765 1211109 141315

Scaling it up.

● The 4 layer, 27 node network that we have just drawn has the
following characteristics:

● Layer 4: Anodes = 1, Comms = 2, ACKs = 2, Ticks = 3

● Layer 3: Anodes = 3, Comms = 6, ACKs = 0, Ticks = 2

● Layer 2: Anodes = 9, Comms = 18, ACKs =0, Ticks = 2

● Redundacy layer 1: Anodes = 27, Comms =27, ACKS =0, Ticks =1

● Clean-up Layer 0: Anodes = 27, IGYWs = 54, ACKS = 54, Ticks =3

● TOTAL(n=27): Comms+IGUWs = 107, ACKs = 61, Ticks = 11

● Redundancy: (Comms+IGUWs) / nodes = 3.96
● TOTAL(n=9): Comms+IGUWs = 53, ACKs = 25, Ticks = 10

● Redundancy: (Comms+IGUWs) / nodes = 5.88

From perfect to worst case

3 x 3 x 3=27 Best Case
Largest prime number in range = 23, Worst Case

2322212019181716 4321 8765 1211109 141315

2322212019181716 4321 8765 1211109 141315

2322212019181716 4321 8765 1211109 141315

Fire Away!!
● Let’s knock down 8 of these bad boys. = 35%

2322212019181716 4321 8765 1211109 141315

2322212019181716 4321 8765 1211109 141315

2322212019181716 4321 8765 1211109 141315

15 of 23 nodes on line.
12 of them got the message. (3 got it twice)
Clean up layer fixes it all in 2 ticks.

Notice: We’re knocking down a
key player and not even
applying the ACK/adjust

Simple Math makes life easy.

● How do you determine the nuber of layers in the network?

● topLayer = count factors of 3 then add 1

● ==

● How to determine targetListSize at spesfic layer?

● targetListSize = (topLayer – currentLayer) x 0.666 x fullListSize

● ==

● How do nodes determine which 2 nodes to send to?

● Target 1 = Node postion + targetListSize/3 (roll over if needed)

● Target 2 = Node position + targetListSize/1.5 (roll over if needed)

This will scale.

Nodes Comms ACKs Ticks

27 107 56 11

81 323 164 13

243 971 488 15

729 2,915 1,460 17

2,187 8,747 4,376 19

6,561 26,243 13,124 21

19,683 78,731 39,368 23

59,049 236,195 118,100 25

177,147 708,587 354,296 27

Tripple the nodes… Ticks = +2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

