
Security Audit Report

Pocket Network Foundation:
POKT Network Sparse Merkle Trie (SMT)

Final Audit Report: April 4, 2024

defense@thesis.co

mailto:defense@thesis.co

Table of Contents

About Thesis Defense...3
Scope... 3

Overview..3
Project Team... 3
Schedule..3
Code...4
Project Documentation.. 4
Bibliography.. 4

Findings...4
Threat Model...5
Security by Design.. 5
Secure Implementation... 5
Use of Dependencies... 7
Tests.. 7
Project Documentation.. 7

Issues and Suggestions... 8
Issues..8

Issue A: Insufficiently Secure Hash Function Can Be Initialized....................................8
Issue B: Writeable KV Store Could Prove Non-Existent Nodes.......................................9

Suggestions.. 10
Suggestion 1: Improve Calling Convention of VerifyClosestProof and
verifyProofWithUpdates...10
Suggestion 2: Test the Implementation On a Shadow Fork of Mainnet.......................10
Suggestion 3: Refactor the Insertion of an Extension Node...11

Thesis Defense Security Audit Report 2

About Thesis Defense
Thesis Defense serves as the auditing services arm within Thesis, Inc., the venture studio
behind tBTC, Fold, Taho, Etcher, and Embody. Our team of senior security and cryptography
auditors has extensive security experience in the decentralized technology space. In addition,
the Thesis Defense team has a demonstrated track record in a variety of languages and
technologies, including, but not limited to, smart contracts, cryptographic protocols including
zk-cryptography, dApps including wallets and browser extensions, and bridges. Thesis Defense
has extensive experience conducting security audits across a number of ecosystems, including,
but not limited to, Ethereum, Zcash, Stacks, Mina, Polygon, Filecoin, and Bitcoin.

Thesis Defense will employ the Thesis Defense Audit Approach and Audit Process to the above
in-scope service. In the event that certain processes and methodologies are not applicable to
the aforementioned in-scope services, we will indicate as such in individual audit or design
review SOWs. In addition, Thesis Defense provides clear guidance on successful Security Audit
Preparation.

Scope
Overview

Thesis Defense conducted a manual code review of POKT Network’s Sparse Merkle Trie (Trie)
implementation, an authenticated key-value data structure.

Project Team

● Jehad Baeth, Senior Security Auditor
● Justin Regele, Senior Security Auditor
● Bashir Abu-Amr, Senior Technical Writer

Schedule

● Code Review: February 7 - 20, 2024
● Audit Report Delivery: February 20, 2024
● Final Audit Report Delivery: April 4, 2024

Thesis Defense Security Audit Report 3

https://thesis.co/defense
https://thesis.co/defense#team
https://thesis.co/blog/thesis-defense-security-audit-approach/
https://thesis.co/blog/security-audit-process:-what-to-expect-when-you%E2%80%99re-getting-a-thesis-defense-security-audit/
https://thesis.co/blog/maximizing-security-audit-success:-a-comprehensive-guide-to-audit-project-preparation/
https://thesis.co/blog/maximizing-security-audit-success:-a-comprehensive-guide-to-audit-project-preparation/

Code

● Repository: https://github.com/pokt-network/smt
● Hash: 868237978c0b3c0e2added161b36eeb7a3dc93b0

Verification
● Repository: https://github.com/pokt-network/smt
● Hash: 3981639bd08cf52a7668c3681cbe2243d957e4ee

Project Documentation

● Technical Documentation: https://github.com/pokt-network/smt/tree/main/docs

Bibliography

● M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud proofs: Maximising light client security
and scaling blockchains with dishonest majorities,” arXiv preprint arXiv:1809.09044,
vol. 160, 2018.

● M. Al-Bassam, “Lazyledger: A distributed data availability ledger with client-side smart
contracts,” arXiv preprint arXiv:1905.09274, 2019.

● R. Dahlberg, T. Pulls, and R. Peeters, “Efficient Sparse Merkle Trees: Caching strategies
and secure (non-) membership proofs,” in Secure IT Systems: 21st Nordic Conference,
NordSec 2016, Oulu, Finland, November 2-4, 2016. Proceedings 21, 2016, pp.
199–215.

● Z. Gao, Y. Hu, and Q. Wu, “Jellyfish Merkle tree,” 2021.
● Z. Amsden et al., “The Libra Blockchain - White Paper,” Whitepaper, 2019.
● D. Olshansky and R. R. Colmeiro, “Relay Mining: Verifiable Multi-Tenant Distributed Rate

Limiting,” arXiv preprint arXiv:2305.10672, 2023.
● J. Kalidhindi, A. Kazorian, A. Khera, and C. Pari, “Angela: A sparse, distributed, and

highly concurrent merkle tree,” UC Berkeley, Berkeley, 2018.

Findings
The POKT Network team has adapted a Sparse Merkle Tree for POKT Network’s use case. POKT
Network nodes provide applications with RPC relay services. Upon claiming rewards, the node
must prove that it provided the work of the service by generating a valid inclusion “closest
proof” of a randomly selected branch within the agreed upon root trie.

The SMT algorithm is well tested and mature. The scope of this audit included changes that
have been made to improve the efficiency of the algorithm.

Thesis Defense Security Audit Report 4

https://github.com/pokt-network/smt
https://github.com/pokt-network/smt
https://github.com/pokt-network/smt/tree/main/docs

Threat Model

For this audit, our team considered a threat model whereby a malicious node is able to
generate a valid proof of inclusion to earn illegitimate rewards. We also considered an honest
node whose valid proof of inclusion is rejected.

Security by Design

The POKT SMT is designed to efficiently handle sparse data where most of the tree’s leaves are
empty, and is particularly useful for key value stores, allowing for an efficient proof of
non-inclusion. Each leaf corresponds to a key value pair, with that leaf’s position
predetermined by the hash of that leaf's key.

In a SHA256 trie, any update would take 256 steps, while generating a proof could use up to
256 steps.

ProveClosest

We investigated the ProveClosest algorithm and found that it is a more efficient version of a
non-inclusion proof. ProveClosest is a more efficient and specific proof that shows the
non-inclusion of a key by demonstrating the emptiness of the closest leaf node, while a normal
non-inclusion proof is a more general proof that demonstrates the non-inclusion of a key by
showing that no path in the tree leads to that key. Closest proof makes use of the fact that in a
SMT, the vast majority of nodes are empty or hold nil values.

Secure Implementation

We found the code to be well organized and correctly implemented, in accordance with
security best practices. We investigated the security of the implementation of the POKT SMT in
several key areas.

False Sum Proof Protection

We investigated whether a Sum Proof could be forged by manipulating the weight appended to
the end of the leaf digest. We concluded that even if an attacker forged a leaf where a weight
was hashed into the leaf digest, but a different weight was appended, the proof would fail in
the validateBasic validation checks.

Here, proof.SiblingData is the sibling leaf node of the node being proven. An attacker can
add arbitrary data to this value in the Proof, but this verification check will hash the entire data,

Thesis Defense Security Audit Report 5

and in the case of a Sum Proof, will append the weight at the end of the hash, even though the
weight has been included in the preimage.

This essentially is enforcement for the weights inside the proof. This is effective because we
can provide arbitrary SiblingData in the proof and we can have the hash of weight A in the
SiblingData with weight B appended, but when SiblingData is hashed with weight B, then
it will not equal the SideNode hash. If we leave weight as is in SiblingData, the hashes
match, but not the weights, resulting in the following error:

invalid sibling data hash: got
ba36043b00bccd6730e474139979b2954573b5e3520581e5cb542
010163f81d3000000000000000a

but want
ba36043b00bccd6730e474139979b2954573b5e3520581e5cb542
010163f81d30000000000000005"}

Note that the hashes themselves are identical, but the weights differ after being manipulated
in proof construction.

Path Representation

Representing the path in a Merkle tree can be done either as a series of bits indicating the
node's location based on its position in the tree or as an index value. This method is
straightforward and can be implemented efficiently, especially for binary Merkle trees. The
binary representation of the index directly corresponds to the path from the root to the leaf
node. Currently Paths in the SMT implementation are represented as a series of bits.

It also can be represented with N(level,depth) since depth of all leaf nodes is the same
given a specific hash function a path can be represented with depth only. Using an index value
to represent the path can be more intuitive and easier to understand, as it directly maps to the
position of the leaf node in the tree. An index value is also more compact than a series of bits,
as it does not require storing the entire path.

That being said, we think further exploration of the design decision trade-offs between
efficiency, compactness, and ease of implementation could have positive impacts for future
iterations.

Parallelism in SMT

The current implementation of SMT does not account for parallelism. Literature concerning
other implementations of an SMT utilized a variety of techniques such as parallel processing,
atomic update operations, and batch processing for further optimizations. We did not find any
indication that the code anticipates handling parallel processing.

Thesis Defense Security Audit Report 6

We investigated the access patterns of existing byte arrays that hold different data used by the
code. Optimally, access to such resources should be synchronized when there are multiple
writers interacting with it at the same time. We have only been able to identify cases where a
single writer interacts with those variables at a time. However, we believe that the SMT
implementation can be encapsulated with goroutines for protection against unexpected
concurrency edge cases.

Edit: During the verification phase of this security audit, the POKT Network team
acknowledged this optimization as a feature that can be implemented during a future phase.

Protection Against Second Preimage Attacks and Shortened Proof Attacks

A second preimage attack on a SMT occurs when an attacker can find two different inputs that
produce the same hash output. In the context of Merkle trees, this could mean finding two
different sets of data that, when hashed into the tree, result in the same root hash. Currently,
the SMT uses node-type specific prefixes (0 for leaf nodes, 1 for inner nodes, and 2 for
extension nodes) to protect against second preimage attacks, which is a valid strategy
commonly utilized in SMT implementations.

Alternatively, shortened proof attacks are a type of security vulnerability that can occur in
Merkle trees when a proof is not constructed correctly or when there is a lack of domain
separation between leaf nodes and internal nodes. This type of attack is similar to a second
preimage attack, where an attacker can create a valid proof for a data element that is not
actually in the original key-value store. Using a different hash function for hashing leaves than
for hashing internal nodes helps mitigate the risk of both attacks. We recommend the POKT
Network team explore utilizing such a strategy to further enforce domain separation, which
provides protection against both second preimage and shortened proof attacks.

Use of Dependencies

We ran dependency analysis tools and did not identify any issues in the use of dependencies.

Tests

There are tests implemented in the repository with benchmark and stress testing documented.
These tests are helpful in understanding the intended functionality, and are generally
sufficient, but narrow in scope. We recommend running a shadow fork of mainnet for testing
(Suggestion 2).

Project Documentation

There is comprehensive documentation available for the currently deployed POKT Network
“Morse”. In addition, there is sufficient documentation detailing the research, reasoning, and

Thesis Defense Security Audit Report 7

rationale for the design choices made regarding POKT Network’s protocol “Shannon” upgrade.
The code is well commented and the documentation available in the code repository is
accurate and helpful.

In addition, we received updates to the technical documentation during the audit. Although we
were not able to review the updated documentation thoroughly due to time constraints, the
work on this documentation should continue and we recommend a thorough review of the
updated documentation during the verification phase.

Issues and Suggestions

Issues Status

Issue A: Insufficiently Secure Hash Function Can Be Initialized Fixed

Issue B: Writeable KV Store Could Prove Non-Existent Nodes Fixed

Suggestions Status

Suggestion 1: Improve Calling Convention of VerifyClosestProof and
verifyProofWithUpdates

Fixed

Suggestion 2: Test the Implementation On Shadow Fork of Mainnet Reported

Suggestion 3: Refactor the Insertion of an Extension Node Fixed

Issues
Issue A: Insufficiently Secure Hash Function Can Be Initialized [Fixed]

Location

smt.go#L74C9-L74C18

Thesis Defense Security Audit Report 8

https://github.com/pokt-network/smt/blob/868237978c0b3c0e2added161b36eeb7a3dc93b0/smt.go#L74C9-L74C18

Description

In Go, the hash package provides a standard interface for hash functions and checksum
algorithms. The hash.Hash interface is implemented by all hash functions in the standard
library. A hash function suitable for the Merkle tree implementation must satisfy some criteria
such as:

● Collision Resistance: For a Merkle tree, a hash function that is collision-resistant is
required. This means that it is computationally infeasible to find two different inputs
that hash to the same output.

● Preimage Resistance: A hash function that is preimage-resistant means that it is
difficult to find the original input given only the hash output. This property is crucial for
the security of a Merkle tree, as it prevents an attacker from modifying the data without
being detected.

● Efficiency: The hash function should be efficient, as it will be used to compute the hash
of many nodes in the Merkle tree.

SMT poses no hardcoded restriction on the type of hash functions that can be used other than
that it should implement golang hash interface. Nor the documentation provides guidance on
which hash functions can be used.

Impact

The implementation of an insufficiently collision or preimage resistant hash function could
undermine the security assumptions of the SMT.

Remediation

We recommend implementing a code level hard restriction on what hash functions are allowed
to initialize the SMT based on collision, preimage attack, and time and space efficiency.

Verification Status

Fixed. The Pokt SMT documentation has been updated to explicitly explain the criteria of a
hash function selection.

Issue B: Writeable KV Store Could Prove Non-Existent Nodes [Fixed]

Location

kvstore/interfaces.go#L12

Description

A Malicious Prover with write access to the Key Value (KV) store of a Verifier could write
arbitrary data over a Leaf Node in order to convince the SMT that the node is an Internal Node,
with the intention of writing Proofs for nodes that do not exist. This attack would only work if

Thesis Defense Security Audit Report 9

https://github.com/pokt-network/smt/blob/868237978c0b3c0e2added161b36eeb7a3dc93b0/kvstore/interfaces.go#L12

the Verifier updated the sibling leaf node of the corrupted data, which would update the Merkle
Root to reflect the presence of the malicious internal node, allowing the attacker to prove the
existence of child nodes of the internal node, without them existing in the SMT.

Impact

The integrity of the SMT’s Proving mechanism can be compromised.

Remediation

We recommend ensuring that the KV store is not writeable externally. The POKT Network team
confirmed that the KV store is not replicated.

Verification Status

Fixed. The Pokt SMT documentation explicitly warns users to ensure usage of an externally
writable key-value store in production environments.

Suggestions
Suggestion 1: Improve Calling Convention of VerifyClosestProof and
verifyProofWithUpdates [Fixed]

Location

proofs.go#L320
proofs.go#L323

Description

The way the verifyProofWithUpdates looks up Paths by hashing the Key creates an
awkward programming interface with the VerifyClosestProof algorithm, because a
ClosestProof provides a Path as a Key. If a new Spec of a nilPathHasher is not provided
during Proof Verification, double hashing of the Path will occur and the Proof will fail.

Remediation

We recommend revising the calling conventions around VerifyClosestProof and
verifyProofWithUpdates such that the API is not implemented as a workaround.

Verification Status

Fixed. The updated code encapsulates the creation of the nilPathHasher so that the calling
convention remains standard across the application.

Thesis Defense Security Audit Report 10

https://github.com/pokt-network/smt/blob/868237978c0b3c0e2added161b36eeb7a3dc93b0/proofs.go#L320
https://github.com/pokt-network/smt/blob/868237978c0b3c0e2added161b36eeb7a3dc93b0/proofs.go#L323

Suggestion 2: Test the Implementation On a Shadow Fork of Mainnet

Description

Before deploying the new SMT implementation onto mainnet, we recommend running a
shadow fork where developers can test the new implementation in a controlled, safe, and
isolated environment. This will reduce the risk of disrupting the mainnet or causing unintended
consequences, in addition to identifying any issues or bugs that may arise. Furthermore,
running a shadow fork would allow conducting a more thorough performance evaluation under
different conditions and loads. Lastly, shadow forks can help identify compatibility issues
between the new SMT implementation and other system components.

Verification Status

Reported and acknowledged.

Suggestion 3: Refactor the Insertion of an Extension Node [Fixed]

Location

smt.go#L179-L189

Description

The insertion of Extension Nodes uses the same pointer to assign values to Extension Nodes as
well as its children. We found this coding pattern confusing.

Remediation

We recommend updating the Extension Node’s child with an explicit variable as in the example
below, leaving the pointer variable to only dereference the Node at the current depth.

Thesis Defense Security Audit Report 11

https://github.com/pokt-network/smt/blob/868237978c0b3c0e2added161b36eeb7a3dc93b0/smt.go#L179-L189

Verification Status

Fixed. The POKT Network team has altered the mentioned coding pattern and currently
employs separate pointers, specifically for the Child nodes.

Thesis Defense Security Audit Report 12

