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Abstract

Simulation is a key tool in population genetics for both methods development and empirical research, but
producing simulations that recapitulate even the main features of genomic datasets remains a major obstacle.
Today, more realistic simulations are possible thanks to large increases in the quantity of available data and
the sophistication of inference and simulation software, but .

:::::::::
However,

:
implementing these simulations can

require substantial time and specialized knowledge. These challenges are especially pronounced for simulating
less well-studied species, since it is not always clear what level of realism is sufficient to confidently answer a
given question, or what information is required to produce simulations of that desired realism. Stdpopsim is
a community-developed tool

:::::::::
framework

:
that seeks to lower this barrier by making it easy to simulate complex

population genetic models using up-to-date information. The initial version of the stdpopsim
:
,
:::
the

:::::::
species

catalog contained information for 6
:::
six species, most of which are well-characterized model organisms. Here,

we report on
:::::::
updates

::::::
made

::
in

::::
the

::::
new

:::::::
release

::
of

:
stdpopsim

:::::::
(version

:::::
0.2).

:::
In

::::::::::
particular,

:::
we

::::::::
describe

::::
the

community-driven efforts to expand the catalog more broadly across the tree of life, which now contains 21
species, with 25 demographic models and 37 genetic maps. The process of expanding the catalog to include
more speciesthrough community engagement yielded many insights, and we report on lessons learned

:::
Our

:::::::::
experience

::::::::
through

::::
the

::::::::::
community

:::::::::::
engagement

::::::::
involved

:::
in

::::
this

:::::::
process

::::
was

:::::
that

::::::
people

::::
are

::::::
indeed

:::::
keen

::
to

::::
put

::
in

::::
the

::::
time

::::
and

::::::
effort

::
to

:::::::
include

:::::
their

::::::
study

:::::::
species,

::::
but

::::
that

:::::::
simple,

:::::
clear

:::::::::
guidance

::
is

:::::
vital.

:::::
Our

::::::::
intention

::::
with

::::
this

::::::
paper

::
is
:::
in

::::
part

:::
to

:::::::
provide

::::::::
another

:::::::
learning

:::::::::
modality

::
to

:::::
meet

:::::
that

:::::
need,

:::
by

:::::::::
reporting

::
on

::::
the

:::::
main

::::::
lessons

::::::::
learned

:::::::
through

::::
this

:::::::
process

:
for best practices in population genomic simulation. We

discuss the elements of a population genomic simulationmodel, including the required input data,
:::::::
describe

:::
the

:::::
input

::::
data

::::::::
required

:::
for

::::::::::
generating

:
a
::::::::
realistic

::::::::::
simulation,

:::::::
suggest

::::
good

:::::::::
practices

::
for

:::::::::
obtaining

::::
the

:::::::
relevant

:::::::::::
information,

::::
and

:::::::
discuss common pitfalls and major considerations, and describe how new species models

can be integrated into . We also introduce several major advances to the realism of stdpopsim’s simulation
ability, including gene conversion and provision of species-specific genomic annotations. Together, these
advances to stdpopsim will strengthen efforts to use and develop simulation-based population genomic
inference methods, with particular advances for non-model organisms, making them available, transparent,
and accessible to everyone.

Introduction

Dramatic reductions in sequencing costs are enabling the generation of unprecedented amounts of genomic
data for a huge variety of species (Ellegren, 2014). Ongoing efforts to systematically sequence life on Earth
by initiatives such as the Earth Biogenome (Lewin et al., 2022) and its affiliated project networks (for
example, Vertebrate Genomes (Rhie et al., 2021), 10,000 Plants (Cheng et al., 2018) and others (Darwin
Tree of Life Project Consortium, 2022)) are providing the backbone for enormous increases in the amount
of population-level genomic data available for model and non-model species. These data are being used to
answer questions across scales from deep evolutionary time to ongoing ecological dynamics. Methods that
use these data, for example to infer demographic history and natural selection, are also flourishing (Beichman
et al., 2018). While past methods development focused on humans and a few key model systems such as
Drosophila, more recent efforts are generalizing these methods to include important population dynamics
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Expanding stdpopsim

not initially accounted for, such as inbreeding or selfing (Blischak et al., 2020), skewed offspring distributions
(Montano, 2016), and intense artificial selection (MacLeod et al., 2013, 2014).

Simulations can be useful at all stages of this work – for planning studies, analyzing data, testing inference
methods, and validating findings from empirical and theoretical research. For instance, simulations provide
training data for inference methods based on machine learning (Schrider and Kern, 2018) and Approxi-
mate Bayesian Computation (Csilléry et al., 2010). They can also serve as baselines for further analyses:
for example, simulations incorporating demographic history serve as null models when detecting selection
(Hsieh et al., 2016) or seed downstream breeding program simulations (Gaynor et al., 2020). More recently,
population genomic simulations have begun to be used to help guide conservation decisions for threatened
species (Teixeira and Huber, 2021; Kyriazis et al., 2022).

Increasing amounts of data and sophistication of inference methods have enabled researchers to ask ever
more specific and precise questions. Consequently, simulations must incorporate more and more detailed
elements of a species’ biology. Important elements include genomic features such as mutation and recom-
bination rates that strongly affect genetic variation and haplotype structure (Nachman, 2002). These have
particularly strong ramifications when linked selection is important in the patterns of genomic diversity
being studied (Cutter and Payseur, 2013). Furthermore, the demographic history of a species, encompassing
population sizes and distributions, divergences, and gene flow, can dramatically affect patterns of genomic
variation (Teshima et al., 2006). Thus species-specific estimates of these and other ecological and evolution-
ary parameters (e.g., those governing the process of natural selection) are fundamentally important when
developing simulations. This presents challenges, especially to new researchers, as it takes a great deal of
specialized knowledge not only to code the simulations themselves but also to find and choose appropriate
estimates of the parameters underlying the simulation model.

Stdpopsim is a community resource recently developed to provide easy access to detailed population
genomic simulations (Adrion et al., 2020). It lowers the technical barriers to performing these simulations
and reduces the possibility of erroneous implementation of simulations for species with published demographic
models. The initial release of stdpopsim was restricted to only six well-characterized model species, such as
Drosophila melanogaster and Homo sapiens, but feedback from workshops

::
we

:::::::
received

:::::
from

::::
the

::::::::::
community

identified a widespread desire to simulate a wider range of non-model species, and ideally to incorporate these
into the stdpopsim catalog for future use. That

::::
This feedback, and subsequent efforts to expand the catalog,

also uncovered the need for a better understanding of when it is practical to create a realistic simulation
of a species of interest, and indeed what “realistic” means in this context. In addition to ’s framework for
standardizing simulations of some species, our experience has led us to develop guidance that may be of use
to the broader population genetics community.

This paper is intended to announce and describe the additions to the
::::::
reports

:::
on

:::
the

::::::::
updates

:::::
made

:::
in

:::
the

:::::::
current

::::::
release

:::
of stdpopsim catalog, and

:::::::
(version

::::
0.2),

::::
and

::
is
::::
also

:::::::::
intended as a resource for methods

developers and empirical researchers who wish to develop simulations of
:::
any

:::::::::
researcher

:::::
who

::::::
wishes

::
to

:::::::
develop

::::::::::::
whole-genome

:::::::::::
simulations

:::
for

:
their own species of interestor add .

::::
We

:::::
start

:::
by

::::::::::
describing

:::
the

::::::
main

::::
idea

::::::
behind

:::
the

::::::::::::
standardized

::::::::::
simulation

::::::::::
framework

:::
of stdpopsim,

::::
and

:::::
then

:::::::
outline

:::
the

:::::
main

::::::::
updates

:::::
made

:
to

the stdpopsim catalog . In the section , we discuss the elements of a population genomic simulation model
that characterizes a species, including

:::
and

::::::::::
simulation

::::::::::
framework

:::
in

:::
the

:::::
past

:::
two

::::::
years.

::::
We

:::::
then

::::::
devote

::
a

:::::
major

:::::::
section

::
of

::::
the

::::::
paper

::
to

:::::::
provide

::::::::::
guidelines

:::
for

::::::::::
generating

::::::::::
population

::::::::
genomic

:::::::::::
simulations,

::::::
either

:::
for

:::
the

:::::::
purpose

::
of

::::::
using

:::::
them

::
in

:::
one

:::::::
specific

::::::
study,

::
or

:::::
with

:::
the

::::::
intent

::
of

:::::::
adding

:::::
these

::::::::::
simulations

::
to

:
stdpopsim

:
.

::::::
Among

::::::
other

::::::
things,

:::
we

:::::::
discuss

:
when a whole-genome simulation is more useful than simulations based on

either individual loci or generic (non-species specific) loci. We discuss
::::::
specify

:
the required input data(genome

assembly, mutation and recombination rates, and demographic model),
:
,
::::::::
mention common pitfalls in choosing

appropriate parameters, and considerations
:::::::::
suggested

::::::
courses

::
of
::::::
action

:
for species that are missing estimates

of some necessary inputs. This paper is not intended as a tutorial for implementing simulationsin any
particular simulator, rather to provide guidance for what information is sufficient for a realistic genome

:::
We

::::::::
conclude

::::
with

:::::::::
examples

:::::
from

:
a
:::::::
couple

::
of

:::::::
species

:::::::
recently

::::::
added

:::
to stdpopsim,

::::::
which

::::::::::::
demonstrate

:::::
some

::
of

:::
the

:::::
main

:::::::::::::
considerations

::::::::
involved

::
in

::::
the

:::::::
process

::
of

:::::::::
designing

:::::::
realistic

:::::::::::::
whole-genome

:::::::::::
simulations.

::::::
While

::::
the

:::::::::
guidelines

::::::::
provided

::
in

::::
this

::::::
paper

::::
are

::::::::
intended

:::
for

::::
any

::::::::::
researcher

:::::::::
interested

::
in

:::::::::::::
implementing

::
a

::::::::::
population

:::::::
genomic

:
simulation using any simulator. We pay particular attention to

::::::::
software,

::
we

:::
do

:::::::::
highlight the ways

in which
:::
the

:::::::::
framework

:::
set

:::
up

:::
by stdpopsim eases this burden , and describe how new users might add their

own species information to . The latter is discussed in the section, where we lay out in detail the simple
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processof incorporating the information discussed in the section into
:::
the

:::::::
burden

::::::::
involved

::
in

::::
this

:::::::
process.

The utility of stdpopsim for genome-wide simulations

We begin with an
:::
We

::::::
begin

:::
by

:::::::::
providing

::
a

::::
brief

:
overview of the goals and

::::::::::
importance

:::
of

::::::::::::
genome-wide

::::::::::
simulations

::::
and

:::
the

:::::
main rationale behind stdpopsim and complete chromosome simulation; see Adrion et al.

(2020) for more on the topic. The main objective of population genomic simulations is to recreate patterns
of sequence variation along the genome under known conditions that model a given species (or population)
of interest. Stdpopsim is built on top of the msprime (Kelleher et al., 2016; Nelson et al., 2020; Baumdicker
et al., 2021) and SLiM (Haller and Messer, 2019) simulation engines, that are capable of producing fairly
realistic patterns of sequence variation if provided with accurate descriptions of the genome architecture and
evolutionary history of the simulated species. The required parameters include the number of chromosomes
and their lengths, mutation and recombination rates, the demographic history of the simulated population,
and, potentially, the landscape of natural selection along the genome. A key challenge when setting up a
population genomic simulation is to obtain estimates of all of these quantities from the literature and then
correctly implement them in an appropriate simulation engine. Detailed estimates of all of these quantities are
increasingly available due to the growing availability of population genomic data coupled with methodological
advances. Incorporating this data into a population genomic simulation often involves integrating this data
between different literature sources, which can require specialized knowledge of population genetics theory.
As a result, while the simulations themselves may require considerable computational resources, the most
time-consuming and

:::::
Thus,

:::
the

:::::::
process

::
of

:::::::
coding

:
a
:::::::
realistic

::::::::::
simulation

::::
can

::
be

:::::
quite

:::::
time

:::::::::
consuming

::::
and

:::::
often

error-pronepart of population genomic simulation is often the task of correctly parameterizing simulation
software.

The main objective of stdpopsim is to streamline this process, making it less time consuming, less
error prone,

:::
and

:::
to

:::::
make

::
it
::::::
more

::::::
robust

:
and more reproducible. Contributors use a template to build

the model
:::::
collect

::::::::::
parameter

::::::
values

:
for their species of interest , including the required parameter values.

::::
from

::::
the

:::::::::
literature,

::::
and

:::::
then

:::::::
specify

:::::
these

:::::::::::
parameters

::
in

::
a
::::::::
template

::::
file

:::
for

::::
the

::::
new

:::::::
model.

:
This model

then goes through a vital peer-review process, including validating the choices of parameter values. Any
discrepancies are resolved

:::::
which

::::::::
involves

::::::::::
recreating

:::
the

::::::
model

::::::
based

:::
on

:::
the

:::::::::
provided

::::::::::::::
documentation,

::::
and

::::::::
executing

::::::::::
automated

:::::::
scripts

:::
to

::::::::
compare

:::
the

::::
two

::::::::
models.

::
If
:::::::::::::
discrepancies

:::
are

::::::
found

::
in
:::::
this

:::::::
process,

:::::
they

:::
are

:::::::
resolved

:::
by

::::::::::
discussion between the contributor and reviewer,

:::
and

:
if necessary with input of additional

members of the community. This quality control process quite often finds subtle bugs (e.g., as in Rags-
dale et al., 2020) or highlights parts of the model that are ambiguously defined by the literature sources.
This considerably

:::::::::::
Importantly,

::::
this

:
increases the reliability of the resulting simulations in any downstream

analysis.
The goal of complete chromosome simulation is important for a number of reasons. The

:::::::
Another

:::::::
central

::::
goal

::
of stdpopsim

:
is

::
to

::::::::
promote

:::::::::::::
whole-genome

:::::::::::
simulations,

::
as

::::::::
opposed

::
to

::::
the

::::::::
common

:::::::
practice

::
of

::::::::::
simulating

:::::
many

:::::
short

:::::::::
segments

::::::::::::::::::::::::::::::::
(see, e.g., Harris and Nielsen, 2016).

:::::::::::
Simulation

:::
of

::::
long

::::::::::
sequences,

:::
on

::::
the

:::::
order

:::
of

:::
107

::::::
bases,

:::
has

:::::
until

::::::::
recently

:::::
been

::::::::::::::
computationally

:::::::::::
prohibitive,

::::
but

::::
this

:::
has

::::::::
changed

:::::
with

:::
the

::::::::::::
development

::
of

:::::::
modern

::::::::::
simulation

::::::::
engines,

::::
such

:::
as

::::::::
msprime

:::
and

:::::
SLiM

:
.
:::::::::::
Generating

::::::::::::::::
chromosome-scale

:::::::::::
simulations

::::
has

::::::
several

:::::::::
important

:::::::::
benefits.

::::::
First,

:::
the

:
organization of genes on chromosomes is a key feature of a species’

genome , and one that has largely been ignored in population genomic simulation
::::
that

::
is

:::::::
clearly

:::::::
ignored

::
in

::::::::::
traditional

::::::::::
population

:::::::
genomic

:::::::::::
simulations

:
(see Schrider (2020) for a notable exception). This is largely

because simulation of chromosome-scale sequences, on the order of > 107 bp, has until recently been largely
out of reach computationally, so population geneticists have resorted to separate simulations of many short
segments of the genome (e.g., Harris and Nielsen, 2016).

However, physical linkage of chromosomes induces correlations along a chromosome that generally
:::::::
Second,

::::::::
modeling

:::::::
physical

:::::::
linkage

::::::
allows

::::::::::
simulations

::
to

:::::::
capture

::::::::::
important

::::::::::
correlations

::::::::
between

::::::
genetic

::::::::
variants

:::::
along

:::
the

:::::
same

::::::::::::
chromosomes.

::::::
These

:::::::::::
correlations

:
reduce variance relative to independent simulations of equivalent

genetic material. This has a particularly striking effect in long stretches of low recombination rates, as
observed for instance on the long arm of human chromosome 22 (Dawson et al., 2002).

:
In

:::::::::
bacteria,

::
a

::::::
similar

:::::
effect

::::::
occurs

::::
due

:::
to

::::::::::::
genome-wide

:::::::
linkage

::::
that

::
is

:::::::
broken

::::
only

:::
by

:::::
gene

:::::::::
conversion

:::
of

:::::
short

:::::::::
segments.

When conducting simulations with natural selection, linkage has an even stronger effect. Selection acting
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on a small number of sites can indirectly influence levels and patterns of genetic variation at linked neutral
sites, which has been shown to have a widespread effect on patterns of genome variation in myriad species
(e.g., McVicker et al., 2009; Charlesworth, 2012). In addition, the lengths of chromosome-scale shared
haplotypes within and between populations provides valuable information . Methods

::
on

:::::
their

::::::::::::
demographic

::::::
history.

:::::::::::::
Demography

:::::::::
inference

::::::::
methods

:
that use such information, such as MSMC (Schiffels and Wang,

2020), or IBDNe (Browning and Browning, 2015),
:
perform best on long genomic segments , with realistic

recombination rates. Chromosome-scale simulations are clearly required to test (or, train) such methods, or
to conduct power analyses for design of empirical studies that use them.

Additions to

::::::::::::::
Additions

::::
to

:
stdpopsim

Since its initial publication in Adrion et al. (2020), we have increased the number of species in the cat-
alog nearly fourfold, added multiple demographic models and genetic maps, and improved the simulation
framework of stdpopsim in several ways.

When first published, the stdpopsim catalog included six species: Homo sapiens, Pongo abelii, Canis
familiaris, Drosophila melanogaster, Arabidopsis thaliana, and Escherichia coli (Figure 1). One way the
catalog has expanded is through introduction of additional demographic models for Homo sapiens, Pongo
abelii, Drosophila melanogaster, and Arabidopsis thaliana, enabling a wider variety of simulations for these
mostly model species.

However, these species represent a small slice of the tree of life. This is a concern not only because of
the

:::::
there

::
is

:
a
:
large community of researchers studying other organismsthat might benefit from these efforts,

but also because methods developed for application to humans (for instance
::::::
model

::::::
species

:::::
(such

:::
as

:::::::
humans)

may not perform well when applied to other species with very different biology. It should thus be made easy
to test

::::::
Adding

:::::::
species

::
to

::::
the stdpopsim

::::::
catalog

::::
will

:::::
allow

::::::::::
developers

:::
to

:::::
easily

::::
test

:::::
their

:
methods across a

wide
::::
wider

:
variety of organisms. To begin to address this, we

:::
We

::::
thus

:
made a concerted effort to recruit members of the population and evolutionary genetics com-

munity to add new species
::::
their

:::::::
species

:::
of

:::::::
interest

:
to the stdpopsim catalog, culminating in

:
.
:::::
This

:::::
effort

:::::::
involved

::
a
::::::
series

::
of

::::::::::
workshops

::
to

:::::::::
introduce

:::::::::
potential

::::::::::::
contributors

::
to

:
stdpopsim

:
,
::::::::
followed

:::
by

:
a “Growing

the Zoo” hackathon organized alongside the 2021 ProbGen conference. To introduce people to using and to
prepare people for the hackathon, we organized a series of seven workshops in the preceeding months. These

:::
The

::::::
seven

::::::::::
workshops allowed us to reach a broad community of more than 150 researchers, many of whom

expressed interest in adding non-model species to stdpopsim. The hackathon was then structured based
on feedback from these participants. One month before the hackathon, we organized a final workshop to
prepare interested participants for the hackathon, by introducing them to the process of developing a new
species model and adding it to the stdpopsim code base.

Roughly 20 scientists participated in the hackathon, which resulted in the addition of 15 species to the
stdpopsim catalog (Figure 1).

Phylogenetic tree of species available in the catalog. In blue are species we published in the original
release (Adrion et al., 2020), in orange are those species that have since been added. Columns show which
species have one (light grey) or more (dark grey) demographic models and genetic maps.

The catalog now includes a teleost fish (Gasterosteus aculeatus), a bird (Anas platyrhynchos), a reptile
(Anolis carolinensis), a livestock species (Bos taurus), six insects including two vectors of human disease
(Aedes aegypti and Anopheles gambiae), a nematode (Caenorhabditis elegans), two flowering plants including
a crop (Helianthus annuus), an algae (Chlamydomonas reinhardtii), and two bacteria, in addition to four
primates and a common mammalian associate of primates (Canis familiaris). Not all of these have genetic
maps or demographic models

::::
(see

::::::
Figure

::
1), but this lays the framework for future contributions.

A key feature added to that expands the diversity of species that can be realistically modeled is the
inclusion of recombination by gene conversion, which is essential for organisms such as E. coli that lack
crossing over. In addition, the update to msprime

:::::::::
Expanding

::::
the

:::::::
species

:::::::
catalog

::::::::
required

::::::
adding

:::::::
several

::::::::::::
functionalities

:::
to

:::
the

::::::::::
simulation

::::::::::
framework.

:::
We

:::::
thus

::::::::
upgraded

::::
the

:::::::
neutral

:::::::::
simulation

:::::::
engine,

::::::::
msprime,

:::::
from

::::::
version

:::::
0.7.4

:::
to version 1.0 (Baumdicker et al., 2021).

::::::::::::::::::::::::
(Baumdicker et al., 2021).

:::::
This

::::::::
upgrade

:
provides a

number of additional benefits such as a discrete site model of mutation, so that simulated data will now ,
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Figure 1:
:::::::::::
Phylogenetic

::::
tree

:::
of

:::::::
species

:::::::::
available

::
in

::::
the

:
stdpopsim

::::::
catalog,

:::::::::
including

::::
the

::::
six

:::::::
species

:::
we

::::::::
published

:::
in

:::
the

:::::::
original

:::::::
release

:::::::::::::::::::::::::
(Adrion et al., 2020, in blue)

:
,
::::
and

::
15

:::::::
species

::::
that

:::::
have

::::
since

:::::
been

::::::
added

:::
(in

:::::::
orange).

::::::
Solid

::::::
circles

:::::::
indicate

:::::::
species

:::::
that

::::
have

::::
one

::::::
(light

:::::
grey)

::
or

:::::
more

::::::
(dark

:::::
grey)

::::::::::::
demographic

:::::::
models

:::
and

:::::::
genetic

::::::
maps.

:
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as in real data, have a small proportion of sites with multiple mutations and
:::::::
possibly

:
more than two alle-

les.
:::::::
Another

::::
key

::::::
feature

::::::::
enabled

:::
by

::::
this

:::::::
upgrade

::::
was

:::::::::::::
recombination

:::
by

:::::
gene

::::::::::
conversion,

::::::
which

::
is

::::::::
essential

::
for

:::::::::
modeling

:::::::::
genomes

::
of

::::::::
bacteria

::::
and

:::::::
archea.

:::::::
Gene

::::::::::
conversion

::::::
affects

:::::::
shorter

:::::::::
segments

:::::
than

:::::::::
crossover

::::::::::::
recombination

::::
and

:::::::
creates

:::::::
distinct

::::::::
patterns

::
of

:::::::
genetic

::::::::
diversity

:::::
along

:::
the

:::::::
genome

::::::::::::::::::::::::
(Korunes and Noor, 2017)

:
.
:::
In

::::::::
bacteria

::::
and

:::::::::
archaea,

:::::::::::
homologous

:::::::::::::
recombination

:::::::
occurs

:::::::::
primarily

::::::::
through

:::::
gene

::::::::::
conversion

::::::
rather

::::
than

::::::
single

:::::::::
crossover

:::::::::::::::
recombinations.

::::
As

::
a
:::::::
result,

:::::
such

:::::::
species

::::::
cannot

::::
be

:::::::::::
realistically

:::::::::
simulated

:::::
with

:
a
:::::::::::::
recombination

:::::::
model

::::
that

:::::::::
considers

:::::
only

::::::::::
crossovers.

::::::
Gene

::::::::::
conversion

:::
in

:::::
such

:::::::
species

::
is

::::::::::::
implemented

::
in

:
stdpopsim

::
by

:::::::
setting

::::
the

:::::::::::::::::::::::::
bacterial recombination

:::
flag

:::
to

:::::
True

:::
(as

::
a

:::::::
feature

:::
of

:::
the

:::::::::
genome)

::::
and

:::
the

:::::::::::::::::::::::
gene conversion length

:::::::::
parameter

:::
to

:::
the

::::::::
average

::::
gene

::::::::::
conversion

:::::
tract

:::::::
length.

::::::
This

::::
will

:::::
result

:::
in

::
all

::::::::::::::
recombinations

::::::
being

::::::::::
simulated

:::
via

:::::
gene

::::::::::
conversion

::::
(no

:::::::::
crossover

::::::::::::::::
recombinations),

::::::
where

::::
the

:::::
tract

:::::
length

:::
is

::::::::
sampled

:::::
from

::
a
:::::::::
geometric

:::::::::::
distribution

:::::::
whose

:::::
mean

:::
is

:::
the

:::::::::
specified

:::::::
length.

::::
For

:::::::::
example,

::::
the

:::::
model

::::
for

:::::::::::
Escherichia

:::
coli

:::
has

:::::
been

::::::::
updated

:::
in

:::
the

:
stdpopsim

::::::
catalog

:::
to

::::
have

::
a
:::::
gene

::::::::::
conversion

::::
rate

:::
of

::::::::::
8.9× 10−11

:::::
with

:::
an

:::::::
average

:::::
tract

:::::::
length

::
of

::::
345

::::::
bases

::::::::::::::::::::::::::::::::::::::
(Wielgoss et al., 2011; Didelot et al., 2012)

:
.
::::::
Some

::::::
species

:::::::
undergo

:::::::::::::
recombination

:::
by

::::
gene

::::::::::
conversion

::
as

::::
well

::
as

::::::::
crossover

::::::::::::::
recombination.

:::
To

::::::::::::
accommodate

::::
this

::
in

stdpopsim
:::::::::::
simulations,

:::
one

::::::
needs

::
to

:::
set

:::
two

:::::::::
additional

:::::::::::
parameters

::
in

::::
each

::::::::::::
chromosome:

:::::::::::::::::::::::::
gene conversion fraction

:
,

:::::
which

::::::::
specifies

:::
the

:::::::
fraction

::
of

::::::::::::::
recombinations

::::
that

:::::
occur

:::
due

:::
to

::::
gene

::::::::::
conversion;

::::
and

:::::::::::::::::::::::
gene conversion length,

:::::
which

::
is

:::
the

:::::::
average

:::::
tract

:::::::
length,

::
as

:::::::
defined

::::::
above.

::::
For

::::::::
example,

::::
the

::::::
model

:::
for

:::::::::
Drosophila

::::::::::::
melanogaster

:::
has

::::
been

::::::::
updated

::
in

::::
the

:
stdpopsim

::::::
catalog

:::
to

:::::
have

::
a

:::::::
fraction

::
of
:::::
gene

:::::::::::
conversions

::
of

:::::
0.83

:::
(in

:::
all

::::::::::::
chromosomes

::::
with

::::::::::::::
recombination)

::::
and

::
an

::::::::
average

::::
tract

:::::::
length

::
of

::::
518

:::::
bases

::::::::::::::::::::
(Comeron et al., 2012)

:
.
:

Moreover, we have extended
:::::
Lastly,

:::
we

:::::::::
extended stdpopsim so that genome annotations can be associated

with
::
to

:::::
allow

:::::::::::
augmenting

:
a genome assembly . These

::
by

:::::::
genome

::::::::::::
annotations,

:::::
such

:::
as

::::::
coding

::::::::
regions,

:::::::::
promoters,

::::::::::
conserved

:::::::::
elements,

::::
etc.

:::::::
These

:::::::::::
annotations

:
can be used to simulate selection at a subset of

sites (e.g., the annotated coding regions) using parametric distribution(s) of fitness effects. This step is
transformative—standardized

:::::::::::
Standardized, easily accessible simulations that include the reality of pervasive

linked selection in a species-specific manner has long been identified as a goal for evolutionary genetics (e.g.,
McVicker et al., 2009; Comeron, 2014), and through .

::::::
Thus,

:::
we

:::::::
expect

::::
this

::::::::
extension

:::
of

:
stdpopsim this is

now achievable. However, this is not the focus of the current paper, since these
::
to

:::
be

:::::::::::::
transformative

::
in
::::
the

:::
way

:::::::::::
simulations

:::
are

:::::::
carried

:::
out

:::
in

::::::::::
population

::::::::
genetics.

::::::
These

:
significant new capabilities of the stdpopsim

library will be detailed in a forthcoming publication,
::::
and

:::
are

::::
not

:::
the

:::::
focus

:::
of

::::
this

:::::
paper.

Guidelines for implementing a population genomic simulation

The concentrated effort to add species to the stdpopsim catalog has lead to a series of important insights
about this process, which we summarize in the following section as a set of guidelines for implementing
realistic simulations of any species. We stress that such an implementation could be done using any software
or engine

::::
Our

::::::::
intention

::
is
:::
to

:::::::
provide

:::::::
general

:::::::::
guidance

::::
that

:::::::
applies

:::
to

::::
any

::::::::::
population

::::::::
genomic

::::::::::
simulation

:::::::
software, but we here pay special attention to the ease with which this can be accomplished

:::
also

::::::::
mention

::::::
specific

::::::::::::
requirements

:::::
that

:::::
apply

::
to

:::::::::::
simulations

:::::
done in the framework of stdpopsim.

::::::
Basic

:::::::
setup

:::::
for

:::::::::::::::::::::
chromosome-level

:::::::::::::::
simulations

Implementing a realistic population genomic simulation for a species of interest requires integrating information
from several publications to choose appropriate parameter values. In this section, we outline these pieces of
information and provide guidelines for how to use them to set the simulation parameters.

Basic setup for chromosome-level simulations

To run a simulation requires a
:
a

:::::
fairly

:::::::
detailed

:
description of the organism’s demography and mechanisms of

genetic inheritance. Although in practice many parameters describing these processes might be only roughly
guessed at,

:::::
While

:
simulation software requires unforgivingly precise values. We start by describing how

and where to find appropriate values, and some possible alternatives when values for the ideal parameters
are not known.

:
,
::
in

:::::::::
practice,

:::
we

::::
may

::::
only

:::::
have

::::::
rough

:::::::
guesses

:::
for

:::::
most

::
of

::::
the

::::::::::
parameters

::::::::::
describing

:::::
these

:::::::::
processes.

:::
In

::::
this

:::::::
section,

:::
we

::::
list

:::::
these

:::::::::::
parameters

::::
and

:::::::
provide

::::::::::
guidelines

:::
for

::::
how

:::
to

:::
set

:::::
them

::::::
based

:::
on

::::::
current

:::::::::::
knowledge.
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1. A chromosome-level genome assembly, which consists of a list of chromosomes or scaffolds and
their lengths. Having a good quality assembly with complete chromosomes, or at least very long
scaffolds, is necessary if chromosome-level population genomic simulations are to reflect the genomic
architecture of the species. Currently, the number of species with complete chromosome-level assemblies
is small, but we expect this number to dramatically increase in the near future due to genome initiatives
such as the Earth Biogenome (Lewin et al., 2022) and its affiliated project networks (e.g., Vertebrate
Genomes (Rhie et al., 2021), 10,000 Plants (Cheng et al., 2018)). Furthermore, the development of
new long-read sequencing technologies (Amarasinghe et al., 2020, 2021) and concomitant advances in
assembly pipelines (Chakraborty et al., 2016) are likely to boost these initiatives. When expanding
the stdpopsim catalog, we decided to focus on species with near-complete chromosome-level genome
assemblies (i.e., close to one contig per chromosome). This restriction was set mainly because species
with less complete genome builds typically do not have good estimates of recombination rate or genetic
maps, making chromosome-level simulation much less useful. Therefore, the utility of adding such
species to the catalog does not justify the maintenance and storage burden incurred by the large
number of contigs in these partial assemblies

:::
(see

::::
also

::::::::::
discussion

::::::
below).

2. An average mutation rate for each chromosome (per generation per bp). This rate estimate can
be based on sequence data from pedigrees, mutation accumulation studies, or comparative genomic
analysis calibrated by fossil data (i.e., phylogenetic estimates). Although mutation rates Benzer1961

::
At

::::::
present, Ellegren2003and processes Supek2019are not uniform along the genome or through time, at
presentmutations are simulated stdpopsim

::::::::
simulates

::::::::::
mutations

:
at a constant rate under the Jukes-

Cantor model of nucleotide mutations (CITE). We antcipate future efforts
::::::::::::::::::::::
(Jukes and Cantor, 1969)

:
.

::::::::
However,

:::
we

:::::::::
anticipate

::::::
future

:::::::::::
development will provide support for more complex, heterogeneous muta-

tional processes, as these are easily specified in both the SLiM and msprime
::::
SLiM

:::
and

::::::::
msprime simula-

tion engines.
::::
Such

::::::::
progress

:::
will

:::::::
further

:::::::
improve

::::
the

::::::
realism

:::
of

::::::::
simulated

:::::::::
genomes,

:::::
since

::::::::
mutation

:::::
rates

:::
and

:::::::::
processes

:::
are

::::::
known

::
to

::::
vary

:::::
along

::::
the

:::::::
genome

:::
and

::::::::
through

::::
time

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Benzer, 1961; Ellegren et al., 2003; Supek and Lehner, 2019)

:
.

3. Recombination rates (per generation per bp). Ideally, a population genomic simulation should
make use of a chromosome-level recombination map, since the recombination rate is known to vary
widely across chromosomes Nachman2002

:::::::::::::::
(Nachman, 2002), and this can strongly affect the patterns

of linkage disequilibrium and shared haplotype lengths. When this information is not available, we
suggest specifying an average recombination rate for each chromosome. At minimum, an average
genome-wide recombination rate needs to be specified, which is typically available for well assembled
genomes.

:::::
Recall

:::::
that

:::
for

::::::::
bacteria

::::
and

:::::::
archea,

:::::::
which

:::::::::
primarily

::::::::::
experience

:::::::::::::
recombination

:::
by

:::::
gene

::::::::::
conversion,

:::
the

:::::::::::::
recombination

:::::
rate

:::::::::::
corresponds

::
to

::::
the

::::
rate

::
of

:::::
gene

::::::::::
conversion,

::::
and

::::
the

:::::::
average

:::::
tract

:::::
length

:::::::
should

::::
also

::
be

::::::::
specified

::::
(see

:::::::
details

::
in

::::::::
previous

::::::::
section).

::
If

:::
one

:::::::
wishes

::
to

::::::
model

::::
gene

::::::::::
conversion

:::::::
together

:::::
with

:::::::::
crossover

:::::::::::::
recombination,

:::::
then

:::::
they

::::::
should

:::::::
specify

:::
the

::::::::
fraction

::
of

::::::::::::::
recombinations

:::::
done

::
by

:::::
gene

:::::::::
conversion

:::
as

::::
well

::
as

::::
the

:::::::
average

:::::
tract

::::::
length

::::
(per

:::::::::::::
chromosome).

:

4. A demographic model describing the history of the population, e. g., by specifying historical

:::::::::
describing

:::::::::
ancestral

:
population sizes, split times and migration rates.

::::::::
Selection

:::
of

::
a

::::::::::
reasonable

:::::::::::
demographic

::::::
model

::
is

:::::
often

::::::
crucial,

:::::
since

::::::::::::::
misspecification

::
of
::::
the

:::::
model

::::
can

::::::::
generate

:::::::::
unrealistic

::::::::
patterns

::
of

::::::
genetic

:::::::::
variation

::::
that

:::
will

::::::
affect

:::::::::::
downstream

:::::::
analyses

:::::::::::::::::::::::::::::::::
(e.g., Navascués and Emerson, 2009)

:
. A given

species might have more than one demographic model, fit from different data or by different methods.
Since misspecification of the demographic modelcan generate unrealistic patterns of genetic variation
that will affect downstream analyses (e.g., Navascués and Emerson, 2009).

:::::
Thus,

::::::
when

::::::::
selecting

::
a

:::::::::::
demographic

:::::::
model,

::::
one

::::::
should

::::::::
examine

::::
the

:::::
data

:::::::
sources

::::
and

::::::::
methods

:::::
used

::
to

:::::::
obtain

::
it

:::
to

::::::
ensure

::::
that

::::
they

:::
are

::::::::
relevant

::
to

:::::
their

::::::
study.

:
At a minimum, simulation requires a single estimate of effective

population size. This estimate, which may correspond to some sort of historical average effective
population size, should reproduce in simulation the average observed genetic diversity in that species.
Note, however, that this average effective population size will not capture features of genetic varia-
tion that are caused by recent changes in population size and the presence of population structure
(MacLeod et al., 2013).

::::::::::::::::::::::::::::::::::::
(MacLeod et al., 2013; Eldon et al., 2015)

:
.
:
For example, a recent population

expansion will produce an excess of low frequency alleles that no simulation of a constant-sized popu-
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lation will reproduce
::::::::::::::::::::
(Tennessen et al., 2012).

5. An average generation time for the species. This parameter is an important part of the species’
natural history. This value does not directly affect the simulation, since stdpopsim uses either the
Wright-Fisher model (in SLiM

:::::
SLiM) or the Moran model (in msprime

:::::::
msprime), both of which operate

in time units of generations. Thus, the average generation time is only currently used to convert time
units to years, which is useful when comparing among different demographic models.

These five categories of parameters are sufficient for generating simulations under neutral evolution. Such
simulations are useful for a number of purposes, but they cannot be used to model the influence of natural
selection on patterns of genetic variation. As mentioned above, the

::
it

::
is

::
a

:
widely appreciated fact that

linked selection modulates patterns of variation within genomesnecessitates its inclusion .
:::::::::::
Therefore,

:::
its

::::::::::::
incorporation

::::
into

:::::::::::
simulations

::
is

:::::::
crucial for many purposes. For

::
To

:::::::
achieve

:
this, the simulator needs to

know which regions along the genome are subject to selection, and the nature and strength of this selection.
This release

::::
The

::::::
current

:::::::
version

:
of stdpopsim includes a way to describe these features, and the ability to

simulate selection on these regions
::::::
enables

::::::::::
simulation

:::::
with

::::::::
selection

:
(using the SLiM engine)

::::
SLiM

::::::
engine)

::
by

:::::::::
specifying

::::::::
genome

:::::::::::
annotations

::::
and

:::::::::::
distributions

:::
of

::::::
fitness

:::::::
effects,

::
as

::::::::
specified

:::::::
below.

::::
We

::::
note

::::
that

::::
the

::::::
ability

::
to

::::::::
simulate

:::::::::::::
chromosomes

:::::
with

:::::::
realistic

:::::::
models

:::
of

::::::::
selection

::
is
::::
still

::::::
under

::::::::::::
development

::::
and

:
will be

finalized in the next release
:
of

:
stdpopsim .

6. Genome annotations, specifying regions subject to selection (e.g., as GFF3/GTF file). For instance,
annotations can contain information on the location of coding regions, the position of specific genes, or
conserved non-coding regions. Regions not covered by the annotation file are assumed to be neutrally
evolving.

7. Distributions of fitness effects (DFEs) for each annotation. Each annotation is associated with a
DFE describing the probability distribution of selection coefficients (deleterious, neutral, and beneficial)
for mutations occurring in the region covered by the annotation. DFEs can be inferred from population
genomic data (reviewed in Eyre-Walker and Keightley, 2007), and are available for several species (e.g.,
Ma et al., 2013; Huber et al., 2018).

Extracting parameters from the literature

Simulations cannot of course precisely match reality, but in setting up simulations it is desireable to choose
parameters that best reflect our current understanding. In practice a researcher may choose each parameter
to match a fairly precise estimate or a wild guess, which may be obtained from a peer-reviewed publication or
from word of mouth. However, values in stdpopsim are always chosen to match published estimates, so that
the underlying data and methods are documented . Another key practice within is quality control:

:::
and

::::
can

::
be

:::::::::
validated.

::::::::
Because

:::
the

:::::::
process

::
of
::::::::::
converting

:::::::::::
information

::::::::
reported

::
in

:::
the

:::::::::
literature

::
to

:::::::::::
parameters

::::
used

:::
by

:
a
::::::::::
simulation

::::::
engine

:
is
:::::
quite

:::::::::::
error-prone,

:::::
some

::::
kind

:::
of

:::::::::::
independent

:::::::::
validation

::
of

:::
the

::::::::::
simulation

::::
code

::
is

:::::::
crucial.

:::
We

::::::
highly

::::::::::
recommend

:::::::::
following

::
a

::::::
quality

:::::::
control

:::::::::
procedure

:::::::
similar

::
to

::::
the

:::
one

:::::
used

::
in

:
stdpopsim

:
,
::
in

::::::
which

each species or model added to the catalog is independently recreated or thoroughly reviewed by a separate
researcher. This practice often finds subtle bugs and helps increase the reliability and reproducibility of the
catalog. We highly recommend the similar practice of code review for simulations generated outside of .

Obtaining reliable and citeable estimates for all model parameters is not a trivial task. Oftentimes, values
for different parameters must be gleaned from multiple publications and combined. For example, it is not
uncommon to find an estimate of a mutation rate in one paper, a recombination map in a separate paper, and
a suitable demographic model in a third paper. Integrating information from different publications requires
some care, because some of these parameter estimates are entangled in non-trivial ways. For instance,
consider simulating a demographic model estimated in a specific paper that assumes a certain mutation
rate. Naively using the demographic model, as published, with a new estimate of mutation rate will lead to
levels of genetic diversity that do not fit the genomic data. This is addressed in stdpopsim by allowing a
demographic model to have

::
be

:::::::::
simulated

::::::
using a mutation rate that differs from the default rate specified

for the species, which will be used when the model is simulated.
This .

:::::
See,

:::
for

::::::::
example,

::::
the

::::::
model

::::::::::::
implemented

:::
for

::::
Bos

::::::
taurus,

::::::
which

::
is
:::::::::
described

:::
in

:::
the

:::::
next

:::::::
section.

::::
This

::::::::::
important

:::::::
feature does not necessarily fix all inconsistencies, due to other

:::::::
potential

::::::::::::::
inconsistencies
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::::::
caused

::
by

:
assumptions made by the demographic inference method that are not captured by the simulation,

such as assuming a recombination rate different than the one we use for the species model
:::::
(such

::
as

:::::::::::
assumptions

::
on

:::::::::::::
recombination

::::::
rates). It is therefore simpler

::::::::::::
recommended, when possible, to take the demographic model,

mutation rates, and recombination rates from the same study, and to proceed carefully when mixing sources.
An additional tricky source of inconsistiences

::
for

::::::::::::
inconsistency

:
is coordinate drift between current reference

genomes assembliesand previously constructed annotations or genetic maps. Following
:::::::::
subsequent

::::::::
versions

::
of

:::::::
genome

::::::::::
assemblies.

:::
In

:
stdpopsim

:
,
:::
we

:::::
follow

:
the approach from the UCSC Genome Browser , in we

:::
and

use liftover to align
::::::
convert

:
the coordinates of the genetic maps

::::::
genetic

::::::
maps

::::
and

:::::::
genome

:::::::::::
annotations that

we curate to the coordinates of the reference genome assemblies
::::::
genome

:::::::::
assembly

:::
we

:::
use

:::
for

:::::
that

::::::
species.

Filling out the missing pieces

For many species it is difficult to obtain estimates of the
::
all

:
necessary model parameters. We provide several

suggestions for dealing with this scenario (see Table 1).
:::::
Table

::
1

:::::::
provide

::::::::::
suggestions

::::
for

:::::
ways

::
to

::::
deal

:::::
with

::::::
missing

::::::
values

:::
of

::::::
various

:::::::
central

::::::
model

:::::::::::
parameters.

::::
The

:::::
table

::::
also

::::::::
mentions

:::
the

:::::
main

::::::::::::
discrepancies

::::::::
between

:::
the

:::::::::
simulated

::::
data

::::
and

::::
real

::::::::
genomic

:::::
data,

::::::
which

:::
can

:::
be

:::::::
caused

::
by

:::::::::::::::
mis-specification

:::
of

::::
each

::::::::::
parameter.

:

Several researchers who participated in our hackathon in 2020
:::
the

:::::::::
“Growing

:::
the

:::::
Zoo”

:::::::::
hackathon

:
wished

to add species whose genome assemblies are composed of many relatively small contigs, unanchored to
chromosome-level scaffolds. Although previously we did not plan to have restrictions on which species might
be added, we decided that we would

:::
we

::::
wish

::
to

:::::
keep stdpopsim

::
as

::::::::
inclusive

::
as

::::::::
possible,

:::
we

:::::
made

:
a
::::::::::
conscience

:::::::
decision

::
to

:
only add species with chromosome-level assemblies. One consideration behind this decision is

load time for the library: species with tens of thousands of contigs require these lists of contig lengths (and
associated information) to be loaded at runtime. However, the same issue exists for genetic maps, which
is why these do not come pre-loaded but are downloaded from cloud storage upon first use. The second
consideration is that the purpose of is to make complex simulations easy, i.e., to streamline the loading in of
complex information that will make the simulation more realistic, such as genetic maps

:::
The

:::::
main

:::::::::::
justification

::
for

::::
this

::::::::::
restriction

::
is

::::
that

:::::::
species

::::
with

::::
less

:::::::::
complete

:::::::
genome

::::::
builds

::::::::
typically

:::
do

:::
not

:::::
have

:::::
good

:::::::::
estimates

::
of

::::::::::::
recombination

:::::
rate,

:::::::
genetic

::::::
maps, and demographic models. However, species with fragmentary assemblies

generally do not have estimates of complex demographic models, nor genetic maps. Finally, although we
could crowd-source addition of many species, still each one required substantial attention by a core group
of maintainers

::::::
making

::::::::::::::::
chromosome-level

::::::::::
simulation

:::::
much

::::
less

::::::
useful

:::
in

::::
such

:::::::
species.

:::::::
Another

:::::
issue

::
is
::::
the

::::::
storage

:::::::
burden

::::
and

:::::
long

:::::
load

:::::
times

::::::::
involved

:::
in

:::::::
dealing

:::::
with

:::::::::
hundreds

::
of
::::::::
contigs.

::::::::
Finally,

:::::
each

:::::::
species

:::::::
requires

:::::::::
validation

::
of

:::
its

:::::
code

::::::
before

::
it

::
is

::::::
added

::
to

:::
the

:
stdpopsim

::::::
catalog,

:::
as

::::
well

::
as

:::::::::
long-term

::::::::::::
maintenance

::
to

::::
keep

:::
it

::::::::::
up-to-date

::::
after

::::::::
changes

::
to

::::
the

:
stdpopsim

::::::::::
framework.

:
So, the benefit of including such species

::::::
species

::::
with

:::::
very

::::::
partial

:::::::
genome

::::::
builds

:
in stdpopsim would be outweighed by the substantial extra burden

Table 1: Guidelines for dealing with missing parameters. For each parameter, we provide a suggested
course of action, and mention the main discrepancies between the simulated data and real genomic data,
which can be caused by mis-specification of that parameter.

::::::::
Missing

:::::::::::
parameter

::::::::::
Suggested

:::::::
action

::::::::
Possible

::::::::::::::
discrepancies

::::::::
Mutation

::::
rate

: ::::::
Borrow

:::::
from

:::::::
closest

:::::::
relative

:::::
with

::
a

:::::::
citeable

::::::::
mutation

::::
rate

:

:::::::
Number

::
of

::::::::::::
polymorphic

::::
sites

:

:::::::::::::
Recombination

::::
rate

: ::::::
Borrow

:::::
from

:::::::
closest

:::::::
relative

:::::
with

::
a

:::::::
citeable

:::::::::::::
recombination

::::
rate

:

:::::::
Patterns

:::
of

::::::
linkage

::::::::::::::
disequilibrium

::::
Gene

::::::::::
conversion

::::
rate

::::
and

::::
tract

::::::
length

:

:::
Set

::::
rate

::
to

::
0
:::
or

:::::::
borrow

::::
from

:::::::
closest

::::::
relative

:::::
with

::
a

:::::::
citeable

::::
rate

:

:::::::
Lengths

::
of

:::::::
shared

::::::::::
haplotypes

::::::
across

::::::::::
individuals

::::::::::::
Demographic

:::::
model

: :::
Set

:::
the

::::::::
effective

::::::::::
population

:::
size

:::::
(Ne)

::
to

::
a

:::::
value

:::::
that

:::::::
reflects

:::
the

::::::::
average

::::::::
observed

:::::::
genetic

:::::::::
diversity

:::
in
:::::

the

::::::::
simulated

::::::::::
population

:

:::::::
Features

:::
of

::::::::
genetic

:::::::::
diversity

:::::
that

:::
are

::::::::
captured

::::
by

:::
the

::::
site

::::::::::
frequency

:::::::::
spectrum,

::::
such

:::
as

::::
the

:::::::::
prevalence

:::
of

::::::::::::
low-frequency

::::::
alleles

10
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on downstream users and stdpopsim maintainers
::
as

::::
well

::
as

:::::::::::
downstream

:::::
users

:::
of

:::::
these

::::::
models.

However
:::::
That

:::::
being

:::::
said, simulation is still useful in such species

:::::::
possible

::::
and

:::::::::::
potentially

::::::
useful

:::
for

::::::
species

::::
with

:::::::
partial

:::::::
genome

::::::
builds. One way to deal with this situation is to include only the longer contigs

or scaffolds, treating them as separate chromosomes in the simulation. Some of these contigs will map to
the same chromosome, so simulating them separately will not capture the genetic linkage between them.
However, this provides a reasonable approximation for many purposes, at least for genomic regions far from
the contig edges. Short contigs can either be omitted from simulation, or lumped together into one (or several)
longer pseudo-chromosome(s). We caution that this has the potential to result in false precision when these
effects are present in the real genome but missing from the diversity generated by the simulation. Finally,
although whole-chromosome simulations are crucial for many purposes, for

::::::::
Creating

:::::::::::::::::::
pseudo-chromosomes

:::::
allows

::::
the

::::::::::
simulation

::
to

:::
fit

:::
the

::::::::
amount

::
of

:::::
data

::
of

::::
real

:::::::::
genomes,

:::
but

::
it
::::::::::
artificially

::::::::
increases

::::
the

::::::::::
correlation

:::::::
between

::::::::
variants.

:::::::
Finally,

:::
we

:::::
note

::::
that

:::
for some situations it may be sufficient to rely on simulation of many

:
a
:::::
large

:::::::
number

:::
of

:
unlinked sites (Gutenkunst et al., 2009; Excoffier et al., 2013), which can be generated

without any sort of genome assembly. However, we caution that in general the influence of linkage on the
uncertainty of such inferences is not well understood. An alternative is to instead simulate an anonymous
chromosome from which patterns of genetic variation can be extracted (if important, in chunks of size similar
to the contigs). The latter is usually more realistic, since this includes linkage between sites that share a
chromosome but may be on different real contigs. Precise locations in the simulated genomes cannot then
be matched to particular contigs, but general statistical patterns can be compared.

:::::::
However,

::::
this

:::::::::
approach

:::::
would

::::
not

::::
have

::::
the

:::::
many

::::::::
benefits

::
of

:::::::::::::::::
whole-chromosome

:::::::::::
simulations,

::::::
which

:::
we

::::::::
discussed

:::
in

:::::
detail

:::::::
earlier.

:

Missing parameter Options Considerations Mutation rate borrow from closest relative with a citeable
mutation rate will affect levels of polymorphism Recombination rate borrow from closest relative with a
citeable rate will affect the impact of selection, linkage, and linked selection Demographic model at least Ne
is required and is estimable from mutation rate and genetic data the demographic history (e.g. bottlenecks,
expansions, and population splits and migration) affects patterns of variation substantially CITE, a constant
Ne is not ideal

Examples of added species

In this section, we provide examples of two species recently added to the stdpopsim catalog, Anopheles
gambiae and Bos taurus, to demonstrate the key considerations of the process.

Anopheles gambiae (mosquito)

Anopheles gambiae, the African malaria mosquito, is a non-model organism whose population history has
direct implications for human health. Several large-scale studies in recent years have provided information
about the population history of this species on which population genomic simulations can be based (e.g.,
Miles et al., 2017; Clarkson et al., 2020). The genome assembly structure used in the simulation are

::::::
species

:::::
model

::
is
:
based on the AgamP4 genome assembly (Sharakhova et al., 2007), which was downloaded from

Ensembl (Howe et al., 2020) via stdpopsim’s utilities that interact with Ensembl. These utilities make it
easy to accurately retrieve basic genome information and construct the appropriate Python data structures.

:::::::::
Estimates

::
of

:::::::
average

:::::::::::::::
recombination

::::::
rates

::
for

:::::
each

::
of

::::
the

::::::::::::
chromosomes

::::::::::
(excluding

:::
the

:::::::::::::
mitochondrial

:::::::
genome)

:::::
were

:::::
taken

::::
from

::
a
:::::::::::::
recombination

::::
map

:::::::
inferred

:::
by

::::::::::::::::::
Pombi et al. (2006)

:::::
which

::::
itself

::::::::
included

:::::::::::
information

::::
from

::::::::::::::::::
Zheng et al. (1996)

:::::::
(Figure

::::
2A).

:
As direct estimates of mutation rate (e.g., via mutation accumu-

lation) do not
::::::::
currently

:
exist for Anopheles gambiae, we used the genome-wide average mutation rate of

[FIG TBA]

Figure 2:
::::
The

:::::::
species

::::::::::::
parameters

::::
and

:::::::::::::
demographic

:::::::
model

:::::
used

::::
for

:::::::::::
Anopheles

::::::::
gambiae

::
in

::::
the

stdpopsim
:::::::
catalog.

::::
(A)

::::
The

::::::::::
parameters

::::::::::
associated

::::
with

:::
the

:::::::
genome

:::::
build

::::
and

:::::::
species,

:::::::::
including

:::::::::::
chromosome

:::::::
lengths,

:::::::
average

:::::::::::::
recombination

:::::
rates

:::::
(per

::::
base

::::
per

:::::::::::
generation),

::::
and

::::::::
average

::::::::
mutation

:::::
rates

:::::
(per

::::
base

::::
per

::::::::::
generation).

:::::
(B)

::
A
:::::::::
graphical

:::::::::
depiction

:::
of

:::
the

::::::::::::
demographic

:::::::
model,

::::::
which

::::::::
consists

::
of

::
a
::::::
single

::::::::::
population

:::::
whose

::::
size

:::::::
changes

:::::::::::
throughout

:::
the

:::::
past

::::::
11,260

::::::::::
generations

:::
in

::
67

:::::
time

:::::::::
intervals.
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µ = 3.5× 10−9 mutations per generation per site, estimated for D. melanogaster by Keightley et al. (2009)
and used for analysis of A. gambiae data in Miles et al. (2017). To obtain an estimate for the default
effective population size (Ne), we used this mutation rate , the

:::
the

:::::::
formula

::::::::::
θ = 4µNe,:::::

with
:::
the

::::::
above

::::::::
mutation

::::
rate

::::::::::::::::
(µ = 3.5× 10−9),

::::
and

::
a
:
mean nucleotide diversity of the samples from Gabon reported in

Miles et al. (2017) , and the relation θ = 4µNe, This results:::::::::
θ ≈ 0.015,

:::
as

::::::::
reported

::
by

::::::::::::::::::
Miles et al. (2017)

::
for

:::
the

::::::
Gabon

:::::::::::
population.

:::::
This

::::::::
resulted in an estimate of Ne close to 106

::::::::::::::
Ne = 1.07× 106,

::::::
which

:::
we

::::::::
rounded

:::::
down

::
to

::::
one

:::::::
million. These steps were documented in the code for the stdpopsim species model. In doing

this we made some arbitrary choices: which sampling location to use data from, and how to round the
resulting estimate. However, these choices were not worrisome, since a single

:
,
::
to

:::::::::
facilitate

:::::::::
validation

::::
and

:::::
future

::::::::
updates.

::::
We

::::::::::::
acknowledge

::::
that

:::::
some

:::
of

:::::
these

:::::
steps

:::::::
involve

:::::::::
somewhat

:::::::::
arbitrary

:::::::
choices,

:::::
such

::
as

::::
the

:::::
choice

:::
of

:::
the

::::::
Gabon

::::::::::
population

::::
and

:::::::::
rounding

:::::
down

::
of

:::
the

:::::
final

:::::
value.

:::::::::
However,

::::
this

::::::
should

::::
not

:::
be

::::
seen

::
as

::
a

:::::::::::
considerable

::::::
source

::
of

:::::::::::::::
misspecification,

:::::
since

::::
this

:
value of Ne provides only a very rough approximiation to

the demographic history of samples from any region. Estimates of average recombination rates for each
of the chromosomes (excluding the mitochondrial genome) were taken from a recombination map inferred by
Pombi et al. (2006) which itself included information from Zheng et al. (1996).

:
is

::::::
meant

:::
to

:::::::
provide

::::
only

::
a

:::::
rough

:::::::::::::
approximation

:::
to

:::::::
historic

::::::::::
population

:::::
sizes,

:::::
which

::
is
:::
to

::
be

:::::::::::
overwritten

::
by

::
a
:::::
more

:::::::
detailed

::::::::::::
demographic

::::::
model.

:

Miles et al. (2017) inferred demographic models from Anopheles samples from 9 locations
:::
nine

::::::::
different

::::::::::
populations

::::::::::
(locations)

:::::
using

:::
the

::::::::
stairway

::::
plot

:::::::
method

:::::::::::::::::
(Liu and Fu, 2015). We chose to include

::
in

:
stdpopsim

the model inferred from the Gabon sample, a model
:::::
which

:::::::
consists of a single population whose size changes

throughout the past 11,260 generations in 67 time intervals .
::::::
(Figure

::::
2B)

:
During this time period, the

population size was inferred to have fluctuated from below 80,000 (an ancient bottleneck roughly 10,000
generations ago) to the present-day estimate of over 4 million individuals. To convert the timescale from
generations to years, we used an average generation time of 1/11 years, as in Miles et al. (2017).

All of these parameters were set in the appropriate source files in the stdpopsim catalog, accompanied by
the relevant citation infromation. The species

:::::::::::
information,

::::
and

:::
the

:
model underwent the standard quality

control processbefore it was added to the catalog. It
:
.
:::::
The

::::::
model may be refined in the future by adding

more demographic modelsor updating the mutation rate estimate or
:
,
::::::::
updating

:::
or

:::::::
refining the recombination

map,
:::
or

::::::::
updating

::::
the

::::::::
mutation

::::
rate

:::::::::
estimates

:::::
based

:::
on

:::::
ones

:::::::
directly

:::::::::
estimated

:::
for

::::
this

::::::
species. Note that if

in the future we obtain a direct estimate of mutation rate for Anopheles gambiae, then
::::
even

::
if

:
the

::::::::
mutation

:::
rate

:::
is

::::
ever

::::::::
updated,

::::
the

:
demographic model mentioned above should be appropriately rescaled to match

the new mutation rate
:::
still

:::
be

:::::::::
associated

:::::
with

:::
the

:::::::
current

::::::::
mutation

::::
rate

::::::::::::::::
(µ = 3.5× 10−9),

:::::
since

::::
this

::::
was

:::
the

:::
rate

:::::
used

::
in

:::
its

:::::::::
inference.

Bos taurus (cattle)

Bos taurus (cattle) was added to the stdpopsim catalog during the 2020 hackathon because of its agricultural
importance. Agricultural species experience strong selection due to domestication and selective breeding,
leading to a reduction in effective population size. These processes, as well as admixture and introgression,
produce patterns of genetic variation that can be very different from typical model species (Larson and
Burger, 2013). These processes have occurred over a relatively short period of time, since the advent of
agriculture roughly 10,000 years ago, and they have increasingly intensified over the years to improve food
production (Gaut et al., 2018; MacLeod et al., 2013). High quality genome assemblies are now available
for several breeds of cattle (e.g., Rosen et al., 2020; Heaton et al., 2021; Talenti et al., 2022) and the
use of genomic data has become ubiquitous in selective breeding (Meuwissen et al., 2001; MacLeod et al.,
2014; Obšteter et al., 2021; Cesarani et al., 2022). Modern cattle have extremely low and declining genetic
diversity, with estimates of effective population size around 90 in the early 1980s (MacLeod et al., 2013;
VanRaden, 2020; Makanjuola et al., 2020). Ancestral

:::
On

:::
the

::::::
other

:::::
hand,

::::
the

::::::::
ancestral

:
effective population

size is estimated to be
::::::
roughly

:
Ne = 62, 000 (MacLeod et al., 2013). This change in effective population

size presents a challenge for demographic inference, selection scans, genome-wide association, and genomic
prediction (MacLeod et al., 2013, 2014; Hartfield et al., 2022). For these reasons, it was useful to develop a
detailed simulation model for cattle to be added to the stdpopsim catalog.

We used the most recent genome assembly, ARS-UCD1.2 (Rosen et al., 2020), a constant mutation
rate µ = 1.2 × 10−8 for all chromosomes (Harland et al., 2017), and a constant recombination rate
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r = 9.26× 10−9 for all chromosomes other than the mitochondrial genome (Ma et al., 2015). With respect
to the effective population size, it is clear that simulating with either the ancestral or current effective
population size will not generate realistic genome structure and diversity (MacLeod et al., 2013; Rosen et al.,
2020). However, the software

:::::
Since stdpopsim does not allow for a missing value of Ne(and we chose not to

change this requirement), so ,
:
we chose to set the species default Ne to the ancestral estimate of 6.2×104, but

:
.
::::::::
However,

:::
we

:
strongly caution that simulating the cattle genome with any fixed value for Ne will generate

unrealistic patterns of genetic variation, and recommend using a reasonably detailed demographic model.
We implemented the demographic model of the Holstein breed, which was inferred by MacLeod et al.
(2013) from runs of homozygosity in the whole-genome sequence of two iconic bulls. This demographic model
specifies the reduction from the ancestral effective population size (Ne = 62, 000) beginning around 33,000
generations ago, consisting of a series of 13 instantaneous population size changes, ultimately reaching the
current effective population size (Ne = 90) in the 1980s (taken from Supplementary Table S1 in MacLeod
et al., 2013). To convert the timescale from generations to years, we used an average generation time of
5 years (MacLeod et al., 2013). Note that this demographic model does not capture the intense selective
breeding since the 1980s that has even further reduced the effective population size of cattle (MacLeod et al.,
2013; VanRaden, 2020; Makanjuola et al., 2020). These effects can be modeled with downstream breeding
simulations (e.g., Gaynor et al., 2020).

When setting up the parameters of the demographic model, we noticed that the inference by MacLeod
et al. (2013) assumed a genome-wide fixed recombination rate of r = 10−8, and a fixed mutation rate
µ = 9.4× 10−9 (considering also sequence errors). The more recently updated mutation rate assumed in the
species model (1.2×10−8 from Harland et al., 2017, as used above) is thus 28% higher than the rate used for
inference. As a result, if one were to simulate the demographic model with the species’ default mutation rate,
they would produce synthetic genomes with considerably higher sequence diversity than actually observed in
real genomic data. To address this, we specified a mutation rate of µ = 9.4×10−9 in the demographic model,
which then overrides the species’ mutation rate when this demographic model is applied in simulation. The
issue of fitting the rates used in simulation with those assumed during inference was discussed during the
independent review of this demographic model, and it raised an important question about recombination
rates. Since MacLeod et al. (2013) use runs of homozygosity to infer the demographic model, their results
depends on the assumed recombination rate. The recombination rate assumed in inference (r = 10−8) is 8%
higher than the one used in the species model (r = 9.26× 10−9). In its current version, stdpopsim does not
allow specification of a separate recombination rate for each demographic model, so we had no simple way
to adjust for this. Future versions of stdpopsim will enable such flexibility. Thus, we note that simulated
genomes might have slightly higher linkage disequilibrium than observed in real cattle genomes. However,
we anticipate that this would affect patterns less than selection due to domestication and selective breeding,
which are not modeled here.

Conclusion

As our ability to sequence genomes continues to advance, the need for population genomic simulation of new
model and non-model organism genomes is becoming acute. So too is the concomitant need for an expandable
framework for implementing such simulations for species of interest and the resources for understanding when
and how to do so.

Simulating species of interest, both model and non-model, presents significant challenges in coding and the
choice of parameter values on which to base the simulation. Stdpopsim is a resource that is uniquely poised to
address these challenges as it provides easy access to simulations incorporating species-specific information,
easy inclusion of new species genomes, and the choices of new species to include are driven by the needs
of the population genomics community. In this manuscript we describe the expansion of stdpopsim in two
ways: the expansion of its underlying framework to incorporate new evolutionary processes such as gene
conversion, which broadens the diversity of species that can be realistically modeled; and the considerable
expansion of the catalog itself to include more species and demographic models.

We also present basic considerations for implementing population genomic simulations, agnostic to sim-
ulation software, based on insights from the community-driven process of expanding the stdpopsim catalog.
We describe the steps of determining if a species-specific population genomic simulation is appropriate for
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the species and question, what data is necessary and why, special considerations for finding and using that
data, how to proceed when some of that data is not available, and why we encourage everyone implementing
simulations to have their parameter choices and implementation reviewed by at least one other researcher.
These steps can be followed independently, or, as we encourage, through the stdpopsim framework for qual-
ity control and to make the species model available for future standardized research. Currently, large-scale
efforts such as the Earth Biogenome and its affiliated project networks are generating tens of thousands of
genome assemblies. Each of these assemblies, with some prior knowledge of mutation and recombination
rates, will become a candidate for inclusion into the stdpopsim catalog following the steps we have outlined
above. As annotations of those genome assemblies improve over time this information too can easily be
added to the stdpopsim catalog.

Moreover, one of the goals of stdpopsim is to leverage stdpopsim itself as a springboard for education
and inclusion of new communities into computational biology and software development. We are keen to
use outreach, for instance in the form of workshops and hackathons described here, as a way to democratize
development of population genomic simulation as well as grow the stdpopsim catalog and library generally.
By enabling researchers of non-model species with simulation platforms that traditionally have been quite
narrowly focused with respect to organism, we hope to improve the ease and reproducibility of research
across a large number of systems, while simultaneously expanding the community of software developers at
work in the population and evolutionary genetics world. Our experience with such outreach over the past
two years is that people are indeed keen to put in the time and effort to include their study species, but that
simple, clear guidance is vital. Our intention with this paper is in part to provide another learning modality
to meet that need.
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