Skip to content
Permalink
c410af098c
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
4831 lines (4312 sloc) 120 KB
/*-------------------------------------------------------------------------
*
* datetime.c
* Support functions for date/time types.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/adt/datetime.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "access/htup_details.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "common/string.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/datetime.h"
#include "utils/memutils.h"
#include "utils/tzparser.h"
static int DecodeNumber(int flen, char *field, bool haveTextMonth,
int fmask, int *tmask,
struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
static int DecodeNumberField(int len, char *str,
int fmask, int *tmask,
struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
static int DecodeTime(char *str, int fmask, int range,
int *tmask, struct pg_tm *tm, fsec_t *fsec);
static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
struct pg_tm *tm);
static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
int precision, bool fillzeros);
static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec,
int scale);
static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec,
int scale);
static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
pg_time_t *tp);
static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t,
const char *abbr, pg_tz *tzp,
int *offset, int *isdst);
static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp);
const int day_tab[2][13] =
{
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
};
const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", NULL};
/*****************************************************************************
* PRIVATE ROUTINES *
*****************************************************************************/
/*
* datetktbl holds date/time keywords.
*
* Note that this table must be strictly alphabetically ordered to allow an
* O(ln(N)) search algorithm to be used.
*
* The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
* characters to fit.
*
* The static table contains no TZ, DTZ, or DYNTZ entries; rather those
* are loaded from configuration files and stored in zoneabbrevtbl, whose
* abbrevs[] field has the same format as the static datetktbl.
*/
static const datetkn datetktbl[] = {
/* token, type, value */
{EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
{DA_D, ADBC, AD}, /* "ad" for years > 0 */
{"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
{"am", AMPM, AM},
{"apr", MONTH, 4},
{"april", MONTH, 4},
{"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
{"aug", MONTH, 8},
{"august", MONTH, 8},
{DB_C, ADBC, BC}, /* "bc" for years <= 0 */
{"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
{"dec", MONTH, 12},
{"december", MONTH, 12},
{"dow", UNITS, DTK_DOW}, /* day of week */
{"doy", UNITS, DTK_DOY}, /* day of year */
{"dst", DTZMOD, SECS_PER_HOUR},
{EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
{"feb", MONTH, 2},
{"february", MONTH, 2},
{"fri", DOW, 5},
{"friday", DOW, 5},
{"h", UNITS, DTK_HOUR}, /* "hour" */
{LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
{"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
{"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
{"j", UNITS, DTK_JULIAN},
{"jan", MONTH, 1},
{"january", MONTH, 1},
{"jd", UNITS, DTK_JULIAN},
{"jul", MONTH, 7},
{"julian", UNITS, DTK_JULIAN},
{"july", MONTH, 7},
{"jun", MONTH, 6},
{"june", MONTH, 6},
{"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
{"mar", MONTH, 3},
{"march", MONTH, 3},
{"may", MONTH, 5},
{"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
{"mon", DOW, 1},
{"monday", DOW, 1},
{"nov", MONTH, 11},
{"november", MONTH, 11},
{NOW, RESERV, DTK_NOW}, /* current transaction time */
{"oct", MONTH, 10},
{"october", MONTH, 10},
{"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
{"pm", AMPM, PM},
{"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
{"sat", DOW, 6},
{"saturday", DOW, 6},
{"sep", MONTH, 9},
{"sept", MONTH, 9},
{"september", MONTH, 9},
{"sun", DOW, 0},
{"sunday", DOW, 0},
{"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
{"thu", DOW, 4},
{"thur", DOW, 4},
{"thurs", DOW, 4},
{"thursday", DOW, 4},
{TODAY, RESERV, DTK_TODAY}, /* midnight */
{TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
{"tue", DOW, 2},
{"tues", DOW, 2},
{"tuesday", DOW, 2},
{"wed", DOW, 3},
{"wednesday", DOW, 3},
{"weds", DOW, 3},
{"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
{YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
};
static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
/*
* deltatktbl: same format as datetktbl, but holds keywords used to represent
* time units (eg, for intervals, and for EXTRACT).
*/
static const datetkn deltatktbl[] = {
/* token, type, value */
{"@", IGNORE_DTF, 0}, /* postgres relative prefix */
{DAGO, AGO, 0}, /* "ago" indicates negative time offset */
{"c", UNITS, DTK_CENTURY}, /* "century" relative */
{"cent", UNITS, DTK_CENTURY}, /* "century" relative */
{"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
{DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
{"d", UNITS, DTK_DAY}, /* "day" relative */
{DDAY, UNITS, DTK_DAY}, /* "day" relative */
{"days", UNITS, DTK_DAY}, /* "days" relative */
{"dec", UNITS, DTK_DECADE}, /* "decade" relative */
{DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
{"decades", UNITS, DTK_DECADE}, /* "decades" relative */
{"decs", UNITS, DTK_DECADE}, /* "decades" relative */
{"h", UNITS, DTK_HOUR}, /* "hour" relative */
{DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
{"hours", UNITS, DTK_HOUR}, /* "hours" relative */
{"hr", UNITS, DTK_HOUR}, /* "hour" relative */
{"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
{"m", UNITS, DTK_MINUTE}, /* "minute" relative */
{"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
{"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
{DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
{"millisecon", UNITS, DTK_MILLISEC}, /* relative */
{"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
{"min", UNITS, DTK_MINUTE}, /* "minute" relative */
{"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
{DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
{"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
{"mon", UNITS, DTK_MONTH}, /* "months" relative */
{"mons", UNITS, DTK_MONTH}, /* "months" relative */
{DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
{"months", UNITS, DTK_MONTH},
{"ms", UNITS, DTK_MILLISEC},
{"msec", UNITS, DTK_MILLISEC},
{DMILLISEC, UNITS, DTK_MILLISEC},
{"mseconds", UNITS, DTK_MILLISEC},
{"msecs", UNITS, DTK_MILLISEC},
{"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
{DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
{"s", UNITS, DTK_SECOND},
{"sec", UNITS, DTK_SECOND},
{DSECOND, UNITS, DTK_SECOND},
{"seconds", UNITS, DTK_SECOND},
{"secs", UNITS, DTK_SECOND},
{DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
{"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
{"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
{"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
{"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
{"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
{"w", UNITS, DTK_WEEK}, /* "week" relative */
{DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
{"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
{"y", UNITS, DTK_YEAR}, /* "year" relative */
{DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
{"years", UNITS, DTK_YEAR}, /* "years" relative */
{"yr", UNITS, DTK_YEAR}, /* "year" relative */
{"yrs", UNITS, DTK_YEAR} /* "years" relative */
};
static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
static TimeZoneAbbrevTable *zoneabbrevtbl = NULL;
/* Caches of recent lookup results in the above tables */
static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL};
/*
* Calendar time to Julian date conversions.
* Julian date is commonly used in astronomical applications,
* since it is numerically accurate and computationally simple.
* The algorithms here will accurately convert between Julian day
* and calendar date for all non-negative Julian days
* (i.e. from Nov 24, -4713 on).
*
* Rewritten to eliminate overflow problems. This now allows the
* routines to work correctly for all Julian day counts from
* 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
* a 32-bit integer. Longer types should also work to the limits
* of their precision.
*
* Actually, date2j() will work sanely, in the sense of producing
* valid negative Julian dates, significantly before Nov 24, -4713.
* We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
* and associated commentary in timestamp.h.
*/
int
date2j(int y, int m, int d)
{
int julian;
int century;
if (m > 2)
{
m += 1;
y += 4800;
}
else
{
m += 13;
y += 4799;
}
century = y / 100;
julian = y * 365 - 32167;
julian += y / 4 - century + century / 4;
julian += 7834 * m / 256 + d;
return julian;
} /* date2j() */
void
j2date(int jd, int *year, int *month, int *day)
{
unsigned int julian;
unsigned int quad;
unsigned int extra;
int y;
julian = jd;
julian += 32044;
quad = julian / 146097;
extra = (julian - quad * 146097) * 4 + 3;
julian += 60 + quad * 3 + extra / 146097;
quad = julian / 1461;
julian -= quad * 1461;
y = julian * 4 / 1461;
julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
+ 123;
y += quad * 4;
*year = y - 4800;
quad = julian * 2141 / 65536;
*day = julian - 7834 * quad / 256;
*month = (quad + 10) % MONTHS_PER_YEAR + 1;
} /* j2date() */
/*
* j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
*
* Note: various places use the locution j2day(date - 1) to produce a
* result according to the convention 0..6 = Mon..Sun. This is a bit of
* a crock, but will work as long as the computation here is just a modulo.
*/
int
j2day(int date)
{
date += 1;
date %= 7;
/* Cope if division truncates towards zero, as it probably does */
if (date < 0)
date += 7;
return date;
} /* j2day() */
/*
* GetCurrentDateTime()
*
* Get the transaction start time ("now()") broken down as a struct pg_tm.
*/
void
GetCurrentDateTime(struct pg_tm *tm)
{
int tz;
fsec_t fsec;
timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, &fsec,
NULL, NULL);
/* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
}
/*
* GetCurrentTimeUsec()
*
* Get the transaction start time ("now()") broken down as a struct pg_tm,
* including fractional seconds and timezone offset.
*/
void
GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
{
int tz;
timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, fsec,
NULL, NULL);
/* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
if (tzp != NULL)
*tzp = tz;
}
/*
* Append seconds and fractional seconds (if any) at *cp.
*
* precision is the max number of fraction digits, fillzeros says to
* pad to two integral-seconds digits.
*
* Returns a pointer to the new end of string. No NUL terminator is put
* there; callers are responsible for NUL terminating str themselves.
*
* Note that any sign is stripped from the input seconds values.
*/
static char *
AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
{
Assert(precision >= 0);
if (fillzeros)
cp = pg_ultostr_zeropad(cp, Abs(sec), 2);
else
cp = pg_ultostr(cp, Abs(sec));
/* fsec_t is just an int32 */
if (fsec != 0)
{
int32 value = Abs(fsec);
char *end = &cp[precision + 1];
bool gotnonzero = false;
*cp++ = '.';
/*
* Append the fractional seconds part. Note that we don't want any
* trailing zeros here, so since we're building the number in reverse
* we'll skip appending zeros until we've output a non-zero digit.
*/
while (precision--)
{
int32 oldval = value;
int32 remainder;
value /= 10;
remainder = oldval - value * 10;
/* check if we got a non-zero */
if (remainder)
gotnonzero = true;
if (gotnonzero)
cp[precision] = '0' + remainder;
else
end = &cp[precision];
}
/*
* If we still have a non-zero value then precision must have not been
* enough to print the number. We punt the problem to pg_ltostr(),
* which will generate a correct answer in the minimum valid width.
*/
if (value)
return pg_ultostr(cp, Abs(fsec));
return end;
}
else
return cp;
}
/*
* Variant of above that's specialized to timestamp case.
*
* Returns a pointer to the new end of string. No NUL terminator is put
* there; callers are responsible for NUL terminating str themselves.
*/
static char *
AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
{
return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
}
/*
* Multiply frac by scale (to produce seconds) and add to *tm & *fsec.
* We assume the input frac is less than 1 so overflow is not an issue.
*/
static void
AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
{
int sec;
if (frac == 0)
return;
frac *= scale;
sec = (int) frac;
tm->tm_sec += sec;
frac -= sec;
*fsec += rint(frac * 1000000);
}
/* As above, but initial scale produces days */
static void
AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
{
int extra_days;
if (frac == 0)
return;
frac *= scale;
extra_days = (int) frac;
tm->tm_mday += extra_days;
frac -= extra_days;
AdjustFractSeconds(frac, tm, fsec, SECS_PER_DAY);
}
/* Fetch a fractional-second value with suitable error checking */
static int
ParseFractionalSecond(char *cp, fsec_t *fsec)
{
double frac;
/* Caller should always pass the start of the fraction part */
Assert(*cp == '.');
errno = 0;
frac = strtod(cp, &cp);
/* check for parse failure */
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
*fsec = rint(frac * 1000000);
return 0;
}
/* ParseDateTime()
* Break string into tokens based on a date/time context.
* Returns 0 if successful, DTERR code if bogus input detected.
*
* timestr - the input string
* workbuf - workspace for field string storage. This must be
* larger than the largest legal input for this datetime type --
* some additional space will be needed to NUL terminate fields.
* buflen - the size of workbuf
* field[] - pointers to field strings are returned in this array
* ftype[] - field type indicators are returned in this array
* maxfields - dimensions of the above two arrays
* *numfields - set to the actual number of fields detected
*
* The fields extracted from the input are stored as separate,
* null-terminated strings in the workspace at workbuf. Any text is
* converted to lower case.
*
* Several field types are assigned:
* DTK_NUMBER - digits and (possibly) a decimal point
* DTK_DATE - digits and two delimiters, or digits and text
* DTK_TIME - digits, colon delimiters, and possibly a decimal point
* DTK_STRING - text (no digits or punctuation)
* DTK_SPECIAL - leading "+" or "-" followed by text
* DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
*
* Note that some field types can hold unexpected items:
* DTK_NUMBER can hold date fields (yy.ddd)
* DTK_STRING can hold months (January) and time zones (PST)
* DTK_DATE can hold time zone names (America/New_York, GMT-8)
*/
int
ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
char **field, int *ftype, int maxfields, int *numfields)
{
int nf = 0;
const char *cp = timestr;
char *bufp = workbuf;
const char *bufend = workbuf + buflen;
/*
* Set the character pointed-to by "bufptr" to "newchar", and increment
* "bufptr". "end" gives the end of the buffer -- we return an error if
* there is no space left to append a character to the buffer. Note that
* "bufptr" is evaluated twice.
*/
#define APPEND_CHAR(bufptr, end, newchar) \
do \
{ \
if (((bufptr) + 1) >= (end)) \
return DTERR_BAD_FORMAT; \
*(bufptr)++ = newchar; \
} while (0)
/* outer loop through fields */
while (*cp != '\0')
{
/* Ignore spaces between fields */
if (isspace((unsigned char) *cp))
{
cp++;
continue;
}
/* Record start of current field */
if (nf >= maxfields)
return DTERR_BAD_FORMAT;
field[nf] = bufp;
/* leading digit? then date or time */
if (isdigit((unsigned char) *cp))
{
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, *cp++);
/* time field? */
if (*cp == ':')
{
ftype[nf] = DTK_TIME;
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp) ||
(*cp == ':') || (*cp == '.'))
APPEND_CHAR(bufp, bufend, *cp++);
}
/* date field? allow embedded text month */
else if (*cp == '-' || *cp == '/' || *cp == '.')
{
/* save delimiting character to use later */
char delim = *cp;
APPEND_CHAR(bufp, bufend, *cp++);
/* second field is all digits? then no embedded text month */
if (isdigit((unsigned char) *cp))
{
ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
while (isdigit((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, *cp++);
/*
* insist that the delimiters match to get a three-field
* date.
*/
if (*cp == delim)
{
ftype[nf] = DTK_DATE;
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp) || *cp == delim)
APPEND_CHAR(bufp, bufend, *cp++);
}
}
else
{
ftype[nf] = DTK_DATE;
while (isalnum((unsigned char) *cp) || *cp == delim)
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
}
}
/*
* otherwise, number only and will determine year, month, day, or
* concatenated fields later...
*/
else
ftype[nf] = DTK_NUMBER;
}
/* Leading decimal point? Then fractional seconds... */
else if (*cp == '.')
{
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, *cp++);
ftype[nf] = DTK_NUMBER;
}
/*
* text? then date string, month, day of week, special, or timezone
*/
else if (isalpha((unsigned char) *cp))
{
bool is_date;
ftype[nf] = DTK_STRING;
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
while (isalpha((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
/*
* Dates can have embedded '-', '/', or '.' separators. It could
* also be a timezone name containing embedded '/', '+', '-', '_',
* or ':' (but '_' or ':' can't be the first punctuation). If the
* next character is a digit or '+', we need to check whether what
* we have so far is a recognized non-timezone keyword --- if so,
* don't believe that this is the start of a timezone.
*/
is_date = false;
if (*cp == '-' || *cp == '/' || *cp == '.')
is_date = true;
else if (*cp == '+' || isdigit((unsigned char) *cp))
{
*bufp = '\0'; /* null-terminate current field value */
/* we need search only the core token table, not TZ names */
if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
is_date = true;
}
if (is_date)
{
ftype[nf] = DTK_DATE;
do
{
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
} while (*cp == '+' || *cp == '-' ||
*cp == '/' || *cp == '_' ||
*cp == '.' || *cp == ':' ||
isalnum((unsigned char) *cp));
}
}
/* sign? then special or numeric timezone */
else if (*cp == '+' || *cp == '-')
{
APPEND_CHAR(bufp, bufend, *cp++);
/* soak up leading whitespace */
while (isspace((unsigned char) *cp))
cp++;
/* numeric timezone? */
/* note that "DTK_TZ" could also be a signed float or yyyy-mm */
if (isdigit((unsigned char) *cp))
{
ftype[nf] = DTK_TZ;
APPEND_CHAR(bufp, bufend, *cp++);
while (isdigit((unsigned char) *cp) ||
*cp == ':' || *cp == '.' || *cp == '-')
APPEND_CHAR(bufp, bufend, *cp++);
}
/* special? */
else if (isalpha((unsigned char) *cp))
{
ftype[nf] = DTK_SPECIAL;
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
while (isalpha((unsigned char) *cp))
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
}
/* otherwise something wrong... */
else
return DTERR_BAD_FORMAT;
}
/* ignore other punctuation but use as delimiter */
else if (ispunct((unsigned char) *cp))
{
cp++;
continue;
}
/* otherwise, something is not right... */
else
return DTERR_BAD_FORMAT;
/* force in a delimiter after each field */
*bufp++ = '\0';
nf++;
}
*numfields = nf;
return 0;
}
/* DecodeDateTime()
* Interpret previously parsed fields for general date and time.
* Return 0 if full date, 1 if only time, and negative DTERR code if problems.
* (Currently, all callers treat 1 as an error return too.)
*
* External format(s):
* "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
* "Fri Feb-7-1997 15:23:27"
* "Feb-7-1997 15:23:27"
* "2-7-1997 15:23:27"
* "1997-2-7 15:23:27"
* "1997.038 15:23:27" (day of year 1-366)
* Also supports input in compact time:
* "970207 152327"
* "97038 152327"
* "20011225T040506.789-07"
*
* Use the system-provided functions to get the current time zone
* if not specified in the input string.
*
* If the date is outside the range of pg_time_t (in practice that could only
* happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
* 1997-05-27
*/
int
DecodeDateTime(char **field, int *ftype, int nf,
int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
{
int fmask = 0,
tmask,
type;
int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */
int i;
int val;
int dterr;
int mer = HR24;
bool haveTextMonth = false;
bool isjulian = false;
bool is2digits = false;
bool bc = false;
pg_tz *namedTz = NULL;
pg_tz *abbrevTz = NULL;
pg_tz *valtz;
char *abbrev = NULL;
struct pg_tm cur_tm;
/*
* We'll insist on at least all of the date fields, but initialize the
* remaining fields in case they are not set later...
*/
*dtype = DTK_DATE;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
*fsec = 0;
/* don't know daylight savings time status apriori */
tm->tm_isdst = -1;
if (tzp != NULL)
*tzp = 0;
for (i = 0; i < nf; i++)
{
switch (ftype[i])
{
case DTK_DATE:
/*
* Integral julian day with attached time zone? All other
* forms with JD will be separated into distinct fields, so we
* handle just this case here.
*/
if (ptype == DTK_JULIAN)
{
char *cp;
int val;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
errno = 0;
val = strtoint(field[i], &cp, 10);
if (errno == ERANGE || val < 0)
return DTERR_FIELD_OVERFLOW;
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
isjulian = true;
/* Get the time zone from the end of the string */
dterr = DecodeTimezone(cp, tzp);
if (dterr)
return dterr;
tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
ptype = 0;
break;
}
/*
* Already have a date? Then this might be a time zone name
* with embedded punctuation (e.g. "America/New_York") or a
* run-together time with trailing time zone (e.g. hhmmss-zz).
* - thomas 2001-12-25
*
* We consider it a time zone if we already have month & day.
* This is to allow the form "mmm dd hhmmss tz year", which
* we've historically accepted.
*/
else if (ptype != 0 ||
((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
(DTK_M(MONTH) | DTK_M(DAY))))
{
/* No time zone accepted? Then quit... */
if (tzp == NULL)
return DTERR_BAD_FORMAT;
if (isdigit((unsigned char) *field[i]) || ptype != 0)
{
char *cp;
if (ptype != 0)
{
/* Sanity check; should not fail this test */
if (ptype != DTK_TIME)
return DTERR_BAD_FORMAT;
ptype = 0;
}
/*
* Starts with a digit but we already have a time
* field? Then we are in trouble with a date and time
* already...
*/
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
return DTERR_BAD_FORMAT;
if ((cp = strchr(field[i], '-')) == NULL)
return DTERR_BAD_FORMAT;
/* Get the time zone from the end of the string */
dterr = DecodeTimezone(cp, tzp);
if (dterr)
return dterr;
*cp = '\0';
/*
* Then read the rest of the field as a concatenated
* time
*/
dterr = DecodeNumberField(strlen(field[i]), field[i],
fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
/*
* modify tmask after returning from
* DecodeNumberField()
*/
tmask |= DTK_M(TZ);
}
else
{
namedTz = pg_tzset(field[i]);
if (!namedTz)
{
/*
* We should return an error code instead of
* ereport'ing directly, but then there is no way
* to report the bad time zone name.
*/
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized",
field[i])));
}
/* we'll apply the zone setting below */
tmask = DTK_M(TZ);
}
}
else
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
break;
case DTK_TIME:
/*
* This might be an ISO time following a "t" field.
*/
if (ptype != 0)
{
/* Sanity check; should not fail this test */
if (ptype != DTK_TIME)
return DTERR_BAD_FORMAT;
ptype = 0;
}
dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
&tmask, tm, fsec);
if (dterr)
return dterr;
/* check for time overflow */
if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec,
*fsec))
return DTERR_FIELD_OVERFLOW;
break;
case DTK_TZ:
{
int tz;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
dterr = DecodeTimezone(field[i], &tz);
if (dterr)
return dterr;
*tzp = tz;
tmask = DTK_M(TZ);
}
break;
case DTK_NUMBER:
/*
* Was this an "ISO date" with embedded field labels? An
* example is "y2001m02d04" - thomas 2001-02-04
*/
if (ptype != 0)
{
char *cp;
int val;
errno = 0;
val = strtoint(field[i], &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
/*
* only a few kinds are allowed to have an embedded
* decimal
*/
if (*cp == '.')
switch (ptype)
{
case DTK_JULIAN:
case DTK_TIME:
case DTK_SECOND:
break;
default:
return DTERR_BAD_FORMAT;
break;
}
else if (*cp != '\0')
return DTERR_BAD_FORMAT;
switch (ptype)
{
case DTK_YEAR:
tm->tm_year = val;
tmask = DTK_M(YEAR);
break;
case DTK_MONTH:
/*
* already have a month and hour? then assume
* minutes
*/
if ((fmask & DTK_M(MONTH)) != 0 &&
(fmask & DTK_M(HOUR)) != 0)
{
tm->tm_min = val;
tmask = DTK_M(MINUTE);
}
else
{
tm->tm_mon = val;
tmask = DTK_M(MONTH);
}
break;
case DTK_DAY:
tm->tm_mday = val;
tmask = DTK_M(DAY);
break;
case DTK_HOUR:
tm->tm_hour = val;
tmask = DTK_M(HOUR);
break;
case DTK_MINUTE:
tm->tm_min = val;
tmask = DTK_M(MINUTE);
break;
case DTK_SECOND:
tm->tm_sec = val;
tmask = DTK_M(SECOND);
if (*cp == '.')
{
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
tmask = DTK_ALL_SECS_M;
}
break;
case DTK_TZ:
tmask = DTK_M(TZ);
dterr = DecodeTimezone(field[i], tzp);
if (dterr)
return dterr;
break;
case DTK_JULIAN:
/* previous field was a label for "julian date" */
if (val < 0)
return DTERR_FIELD_OVERFLOW;
tmask = DTK_DATE_M;
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
isjulian = true;
/* fractional Julian Day? */
if (*cp == '.')
{
double time;
errno = 0;
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
time *= USECS_PER_DAY;
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
tmask |= DTK_TIME_M;
}
break;
case DTK_TIME:
/* previous field was "t" for ISO time */
dterr = DecodeNumberField(strlen(field[i]), field[i],
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
if (tmask != DTK_TIME_M)
return DTERR_BAD_FORMAT;
break;
default:
return DTERR_BAD_FORMAT;
break;
}
ptype = 0;
*dtype = DTK_DATE;
}
else
{
char *cp;
int flen;
flen = strlen(field[i]);
cp = strchr(field[i], '.');
/* Embedded decimal and no date yet? */
if (cp != NULL && !(fmask & DTK_DATE_M))
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
/* embedded decimal and several digits before? */
else if (cp != NULL && flen - strlen(cp) > 2)
{
/*
* Interpret as a concatenated date or time Set the
* type field to allow decoding other fields later.
* Example: 20011223 or 040506
*/
dterr = DecodeNumberField(flen, field[i], fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
}
/*
* Is this a YMD or HMS specification, or a year number?
* YMD and HMS are required to be six digits or more, so
* if it is 5 digits, it is a year. If it is six or more
* digits, we assume it is YMD or HMS unless no date and
* no time values have been specified. This forces 6+
* digit years to be at the end of the string, or to use
* the ISO date specification.
*/
else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
!(fmask & DTK_TIME_M)))
{
dterr = DecodeNumberField(flen, field[i], fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
}
/* otherwise it is a single date/time field... */
else
{
dterr = DecodeNumber(flen, field[i],
haveTextMonth, fmask,
&tmask, tm,
fsec, &is2digits);
if (dterr)
return dterr;
}
}
break;
case DTK_STRING:
case DTK_SPECIAL:
/* timezone abbrevs take precedence over built-in tokens */
type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(i, field[i], &val);
if (type == IGNORE_DTF)
continue;
tmask = DTK_M(type);
switch (type)
{
case RESERV:
switch (val)
{
case DTK_NOW:
tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
*dtype = DTK_DATE;
GetCurrentTimeUsec(tm, fsec, tzp);
break;
case DTK_YESTERDAY:
tmask = DTK_DATE_M;
*dtype = DTK_DATE;
GetCurrentDateTime(&cur_tm);
j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
break;
case DTK_TODAY:
tmask = DTK_DATE_M;
*dtype = DTK_DATE;
GetCurrentDateTime(&cur_tm);
tm->tm_year = cur_tm.tm_year;
tm->tm_mon = cur_tm.tm_mon;
tm->tm_mday = cur_tm.tm_mday;
break;
case DTK_TOMORROW:
tmask = DTK_DATE_M;
*dtype = DTK_DATE;
GetCurrentDateTime(&cur_tm);
j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
break;
case DTK_ZULU:
tmask = (DTK_TIME_M | DTK_M(TZ));
*dtype = DTK_DATE;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
if (tzp != NULL)
*tzp = 0;
break;
default:
*dtype = val;
}
break;
case MONTH:
/*
* already have a (numeric) month? then see if we can
* substitute...
*/
if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
!(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
tm->tm_mon <= 31)
{
tm->tm_mday = tm->tm_mon;
tmask = DTK_M(DAY);
}
haveTextMonth = true;
tm->tm_mon = val;
break;
case DTZMOD:
/*
* daylight savings time modifier (solves "MET DST"
* syntax)
*/
tmask |= DTK_M(DTZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp -= val;
break;
case DTZ:
/*
* set mask for TZ here _or_ check for DTZ later when
* getting default timezone
*/
tmask |= DTK_M(TZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = -val;
break;
case TZ:
tm->tm_isdst = 0;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = -val;
break;
case DYNTZ:
tmask |= DTK_M(TZ);
if (tzp == NULL)
return DTERR_BAD_FORMAT;
/* we'll determine the actual offset later */
abbrevTz = valtz;
abbrev = field[i];
break;
case AMPM:
mer = val;
break;
case ADBC:
bc = (val == BC);
break;
case DOW:
tm->tm_wday = val;
break;
case UNITS:
tmask = 0;
ptype = val;
break;
case ISOTIME:
/*
* This is a filler field "t" indicating that the next
* field is time. Try to verify that this is sensible.
*/
tmask = 0;
/* No preceding date? Then quit... */
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
/***
* We will need one of the following fields:
* DTK_NUMBER should be hhmmss.fff
* DTK_TIME should be hh:mm:ss.fff
* DTK_DATE should be hhmmss-zz
***/
if (i >= nf - 1 ||
(ftype[i + 1] != DTK_NUMBER &&
ftype[i + 1] != DTK_TIME &&
ftype[i + 1] != DTK_DATE))
return DTERR_BAD_FORMAT;
ptype = val;
break;
case UNKNOWN_FIELD:
/*
* Before giving up and declaring error, check to see
* if it is an all-alpha timezone name.
*/
namedTz = pg_tzset(field[i]);
if (!namedTz)
return DTERR_BAD_FORMAT;
/* we'll apply the zone setting below */
tmask = DTK_M(TZ);
break;
default:
return DTERR_BAD_FORMAT;
}
break;
default:
return DTERR_BAD_FORMAT;
}
if (tmask & fmask)
return DTERR_BAD_FORMAT;
fmask |= tmask;
} /* end loop over fields */
/* do final checking/adjustment of Y/M/D fields */
dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
if (dterr)
return dterr;
/* handle AM/PM */
if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
return DTERR_FIELD_OVERFLOW;
if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
tm->tm_hour = 0;
else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
tm->tm_hour += HOURS_PER_DAY / 2;
/* do additional checking for full date specs... */
if (*dtype == DTK_DATE)
{
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
{
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
return 1;
return DTERR_BAD_FORMAT;
}
/*
* If we had a full timezone spec, compute the offset (we could not do
* it before, because we need the date to resolve DST status).
*/
if (namedTz != NULL)
{
/* daylight savings time modifier disallowed with full TZ */
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
*tzp = DetermineTimeZoneOffset(tm, namedTz);
}
/*
* Likewise, if we had a dynamic timezone abbreviation, resolve it
* now.
*/
if (abbrevTz != NULL)
{
/* daylight savings time modifier disallowed with dynamic TZ */
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
*tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
}
/* timezone not specified? then use session timezone */
if (tzp != NULL && !(fmask & DTK_M(TZ)))
{
/*
* daylight savings time modifier but no standard timezone? then
* error
*/
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
*tzp = DetermineTimeZoneOffset(tm, session_timezone);
}
}
return 0;
}
/* DetermineTimeZoneOffset()
*
* Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
* and tm_sec fields are set, and a zic-style time zone definition, determine
* the applicable GMT offset and daylight-savings status at that time.
* Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
* offset as the function result.
*
* Note: if the date is out of the range we can deal with, we return zero
* as the GMT offset and set tm_isdst = 0. We don't throw an error here,
* though probably some higher-level code will.
*/
int
DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp)
{
pg_time_t t;
return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
}
/* DetermineTimeZoneOffsetInternal()
*
* As above, but also return the actual UTC time imputed to the date/time
* into *tp.
*
* In event of an out-of-range date, we punt by returning zero into *tp.
* This is okay for the immediate callers but is a good reason for not
* exposing this worker function globally.
*
* Note: it might seem that we should use mktime() for this, but bitter
* experience teaches otherwise. This code is much faster than most versions
* of mktime(), anyway.
*/
static int
DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp)
{
int date,
sec;
pg_time_t day,
mytime,
prevtime,
boundary,
beforetime,
aftertime;
long int before_gmtoff,
after_gmtoff;
int before_isdst,
after_isdst;
int res;
/*
* First, generate the pg_time_t value corresponding to the given
* y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
* timezone is GMT. (For a valid Julian date, integer overflow should be
* impossible with 64-bit pg_time_t, but let's check for safety.)
*/
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
goto overflow;
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE;
day = ((pg_time_t) date) * SECS_PER_DAY;
if (day / SECS_PER_DAY != date)
goto overflow;
sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE;
mytime = day + sec;
/* since sec >= 0, overflow could only be from +day to -mytime */
if (mytime < 0 && day > 0)
goto overflow;
/*
* Find the DST time boundary just before or following the target time. We
* assume that all zones have GMT offsets less than 24 hours, and that DST
* boundaries can't be closer together than 48 hours, so backing up 24
* hours and finding the "next" boundary will work.
*/
prevtime = mytime - SECS_PER_DAY;
if (mytime < 0 && prevtime > 0)
goto overflow;
res = pg_next_dst_boundary(&prevtime,
&before_gmtoff, &before_isdst,
&boundary,
&after_gmtoff, &after_isdst,
tzp);
if (res < 0)
goto overflow; /* failure? */
if (res == 0)
{
/* Non-DST zone, life is simple */
tm->tm_isdst = before_isdst;
*tp = mytime - before_gmtoff;
return -(int) before_gmtoff;
}
/*
* Form the candidate pg_time_t values with local-time adjustment
*/
beforetime = mytime - before_gmtoff;
if ((before_gmtoff > 0 &&
mytime < 0 && beforetime > 0) ||
(before_gmtoff <= 0 &&
mytime > 0 && beforetime < 0))
goto overflow;
aftertime = mytime - after_gmtoff;
if ((after_gmtoff > 0 &&
mytime < 0 && aftertime > 0) ||
(after_gmtoff <= 0 &&
mytime > 0 && aftertime < 0))
goto overflow;
/*
* If both before or both after the boundary time, we know what to do. The
* boundary time itself is considered to be after the transition, which
* means we can accept aftertime == boundary in the second case.
*/
if (beforetime < boundary && aftertime < boundary)
{
tm->tm_isdst = before_isdst;
*tp = beforetime;
return -(int) before_gmtoff;
}
if (beforetime > boundary && aftertime >= boundary)
{
tm->tm_isdst = after_isdst;
*tp = aftertime;
return -(int) after_gmtoff;
}
/*
* It's an invalid or ambiguous time due to timezone transition. In a
* spring-forward transition, prefer the "before" interpretation; in a
* fall-back transition, prefer "after". (We used to define and implement
* this test as "prefer the standard-time interpretation", but that rule
* does not help to resolve the behavior when both times are reported as
* standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
* in some zones such as Europe/Dublin, there is widespread confusion
* about which time offset is "standard" time, so it's fortunate that our
* behavior doesn't depend on that.)
*/
if (beforetime > aftertime)
{
tm->tm_isdst = before_isdst;
*tp = beforetime;
return -(int) before_gmtoff;
}
tm->tm_isdst = after_isdst;
*tp = aftertime;
return -(int) after_gmtoff;
overflow:
/* Given date is out of range, so assume UTC */
tm->tm_isdst = 0;
*tp = 0;
return 0;
}
/* DetermineTimeZoneAbbrevOffset()
*
* Determine the GMT offset and DST flag to be attributed to a dynamic
* time zone abbreviation, that is one whose meaning has changed over time.
* *tm contains the local time at which the meaning should be determined,
* and tm->tm_isdst receives the DST flag.
*
* This differs from the behavior of DetermineTimeZoneOffset() in that a
* standard-time or daylight-time abbreviation forces use of the corresponding
* GMT offset even when the zone was then in DS or standard time respectively.
* (However, that happens only if we can match the given abbreviation to some
* abbreviation that appears in the IANA timezone data. Otherwise, we fall
* back to doing DetermineTimeZoneOffset().)
*/
int
DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
{
pg_time_t t;
int zone_offset;
int abbr_offset;
int abbr_isdst;
/*
* Compute the UTC time we want to probe at. (In event of overflow, we'll
* probe at the epoch, which is a bit random but probably doesn't matter.)
*/
zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
/*
* Try to match the abbreviation to something in the zone definition.
*/
if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
&abbr_offset, &abbr_isdst))
{
/* Success, so use the abbrev-specific answers. */
tm->tm_isdst = abbr_isdst;
return abbr_offset;
}
/*
* No match, so use the answers we already got from
* DetermineTimeZoneOffsetInternal.
*/
return zone_offset;
}
/* DetermineTimeZoneAbbrevOffsetTS()
*
* As above but the probe time is specified as a TimestampTz (hence, UTC time),
* and DST status is returned into *isdst rather than into tm->tm_isdst.
*/
int
DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr,
pg_tz *tzp, int *isdst)
{
pg_time_t t = timestamptz_to_time_t(ts);
int zone_offset;
int abbr_offset;
int tz;
struct pg_tm tm;
fsec_t fsec;
/*
* If the abbrev matches anything in the zone data, this is pretty easy.
*/
if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
&abbr_offset, isdst))
return abbr_offset;
/*
* Else, break down the timestamp so we can use DetermineTimeZoneOffset.
*/
if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
zone_offset = DetermineTimeZoneOffset(&tm, tzp);
*isdst = tm.tm_isdst;
return zone_offset;
}
/* DetermineTimeZoneAbbrevOffsetInternal()
*
* Workhorse for above two functions: work from a pg_time_t probe instant.
* On success, return GMT offset and DST status into *offset and *isdst.
*/
static bool
DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp,
int *offset, int *isdst)
{
char upabbr[TZ_STRLEN_MAX + 1];
unsigned char *p;
long int gmtoff;
/* We need to force the abbrev to upper case */
strlcpy(upabbr, abbr, sizeof(upabbr));
for (p = (unsigned char *) upabbr; *p; p++)
*p = pg_toupper(*p);
/* Look up the abbrev's meaning at this time in this zone */
if (pg_interpret_timezone_abbrev(upabbr,
&t,
&gmtoff,
isdst,
tzp))
{
/* Change sign to agree with DetermineTimeZoneOffset() */
*offset = (int) -gmtoff;
return true;
}
return false;
}
/* DecodeTimeOnly()
* Interpret parsed string as time fields only.
* Returns 0 if successful, DTERR code if bogus input detected.
*
* Note that support for time zone is here for
* SQL TIME WITH TIME ZONE, but it reveals
* bogosity with SQL date/time standards, since
* we must infer a time zone from current time.
* - thomas 2000-03-10
* Allow specifying date to get a better time zone,
* if time zones are allowed. - thomas 2001-12-26
*/
int
DecodeTimeOnly(char **field, int *ftype, int nf,
int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
{
int fmask = 0,
tmask,
type;
int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */
int i;
int val;
int dterr;
bool isjulian = false;
bool is2digits = false;
bool bc = false;
int mer = HR24;
pg_tz *namedTz = NULL;
pg_tz *abbrevTz = NULL;
char *abbrev = NULL;
pg_tz *valtz;
*dtype = DTK_TIME;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
*fsec = 0;
/* don't know daylight savings time status apriori */
tm->tm_isdst = -1;
if (tzp != NULL)
*tzp = 0;
for (i = 0; i < nf; i++)
{
switch (ftype[i])
{
case DTK_DATE:
/*
* Time zone not allowed? Then should not accept dates or time
* zones no matter what else!
*/
if (tzp == NULL)
return DTERR_BAD_FORMAT;
/* Under limited circumstances, we will accept a date... */
if (i == 0 && nf >= 2 &&
(ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
/* otherwise, this is a time and/or time zone */
else
{
if (isdigit((unsigned char) *field[i]))
{
char *cp;
/*
* Starts with a digit but we already have a time
* field? Then we are in trouble with time already...
*/
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
return DTERR_BAD_FORMAT;
/*
* Should not get here and fail. Sanity check only...
*/
if ((cp = strchr(field[i], '-')) == NULL)
return DTERR_BAD_FORMAT;
/* Get the time zone from the end of the string */
dterr = DecodeTimezone(cp, tzp);
if (dterr)
return dterr;
*cp = '\0';
/*
* Then read the rest of the field as a concatenated
* time
*/
dterr = DecodeNumberField(strlen(field[i]), field[i],
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
tmask |= DTK_M(TZ);
}
else
{
namedTz = pg_tzset(field[i]);
if (!namedTz)
{
/*
* We should return an error code instead of
* ereport'ing directly, but then there is no way
* to report the bad time zone name.
*/
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized",
field[i])));
}
/* we'll apply the zone setting below */
ftype[i] = DTK_TZ;
tmask = DTK_M(TZ);
}
}
break;
case DTK_TIME:
dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
INTERVAL_FULL_RANGE,
&tmask, tm, fsec);
if (dterr)
return dterr;
break;
case DTK_TZ:
{
int tz;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
dterr = DecodeTimezone(field[i], &tz);
if (dterr)
return dterr;
*tzp = tz;
tmask = DTK_M(TZ);
}
break;
case DTK_NUMBER:
/*
* Was this an "ISO time" with embedded field labels? An
* example is "h04mm05s06" - thomas 2001-02-04
*/
if (ptype != 0)
{
char *cp;
int val;
/* Only accept a date under limited circumstances */
switch (ptype)
{
case DTK_JULIAN:
case DTK_YEAR:
case DTK_MONTH:
case DTK_DAY:
if (tzp == NULL)
return DTERR_BAD_FORMAT;
default:
break;
}
errno = 0;
val = strtoint(field[i], &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
/*
* only a few kinds are allowed to have an embedded
* decimal
*/
if (*cp == '.')
switch (ptype)
{
case DTK_JULIAN:
case DTK_TIME:
case DTK_SECOND:
break;
default:
return DTERR_BAD_FORMAT;
break;
}
else if (*cp != '\0')
return DTERR_BAD_FORMAT;
switch (ptype)
{
case DTK_YEAR:
tm->tm_year = val;
tmask = DTK_M(YEAR);
break;
case DTK_MONTH:
/*
* already have a month and hour? then assume
* minutes
*/
if ((fmask & DTK_M(MONTH)) != 0 &&
(fmask & DTK_M(HOUR)) != 0)
{
tm->tm_min = val;
tmask = DTK_M(MINUTE);
}
else
{
tm->tm_mon = val;
tmask = DTK_M(MONTH);
}
break;
case DTK_DAY:
tm->tm_mday = val;
tmask = DTK_M(DAY);
break;
case DTK_HOUR:
tm->tm_hour = val;
tmask = DTK_M(HOUR);
break;
case DTK_MINUTE:
tm->tm_min = val;
tmask = DTK_M(MINUTE);
break;
case DTK_SECOND:
tm->tm_sec = val;
tmask = DTK_M(SECOND);
if (*cp == '.')
{
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
tmask = DTK_ALL_SECS_M;
}
break;
case DTK_TZ:
tmask = DTK_M(TZ);
dterr = DecodeTimezone(field[i], tzp);
if (dterr)
return dterr;
break;
case DTK_JULIAN:
/* previous field was a label for "julian date" */
if (val < 0)
return DTERR_FIELD_OVERFLOW;
tmask = DTK_DATE_M;
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
isjulian = true;
if (*cp == '.')
{
double time;
errno = 0;
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
time *= USECS_PER_DAY;
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
tmask |= DTK_TIME_M;
}
break;
case DTK_TIME:
/* previous field was "t" for ISO time */
dterr = DecodeNumberField(strlen(field[i]), field[i],
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
if (tmask != DTK_TIME_M)
return DTERR_BAD_FORMAT;
break;
default:
return DTERR_BAD_FORMAT;
break;
}
ptype = 0;
*dtype = DTK_DATE;
}
else
{
char *cp;
int flen;
flen = strlen(field[i]);
cp = strchr(field[i], '.');
/* Embedded decimal? */
if (cp != NULL)
{
/*
* Under limited circumstances, we will accept a
* date...
*/
if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
{
dterr = DecodeDate(field[i], fmask,
&tmask, &is2digits, tm);
if (dterr)
return dterr;
}
/* embedded decimal and several digits before? */
else if (flen - strlen(cp) > 2)
{
/*
* Interpret as a concatenated date or time Set
* the type field to allow decoding other fields
* later. Example: 20011223 or 040506
*/
dterr = DecodeNumberField(flen, field[i],
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
}
else
return DTERR_BAD_FORMAT;
}
else if (flen > 4)
{
dterr = DecodeNumberField(flen, field[i],
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr < 0)
return dterr;
ftype[i] = dterr;
}
/* otherwise it is a single date/time field... */
else
{
dterr = DecodeNumber(flen, field[i],
false,
(fmask | DTK_DATE_M),
&tmask, tm,
fsec, &is2digits);
if (dterr)
return dterr;
}
}
break;
case DTK_STRING:
case DTK_SPECIAL:
/* timezone abbrevs take precedence over built-in tokens */
type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(i, field[i], &val);
if (type == IGNORE_DTF)
continue;
tmask = DTK_M(type);
switch (type)
{
case RESERV:
switch (val)
{
case DTK_NOW:
tmask = DTK_TIME_M;
*dtype = DTK_TIME;
GetCurrentTimeUsec(tm, fsec, NULL);
break;
case DTK_ZULU:
tmask = (DTK_TIME_M | DTK_M(TZ));
*dtype = DTK_TIME;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
tm->tm_isdst = 0;
break;
default:
return DTERR_BAD_FORMAT;
}
break;
case DTZMOD:
/*
* daylight savings time modifier (solves "MET DST"
* syntax)
*/
tmask |= DTK_M(DTZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp -= val;
break;
case DTZ:
/*
* set mask for TZ here _or_ check for DTZ later when
* getting default timezone
*/
tmask |= DTK_M(TZ);
tm->tm_isdst = 1;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = -val;
ftype[i] = DTK_TZ;
break;
case TZ:
tm->tm_isdst = 0;
if (tzp == NULL)
return DTERR_BAD_FORMAT;
*tzp = -val;
ftype[i] = DTK_TZ;
break;
case DYNTZ:
tmask |= DTK_M(TZ);
if (tzp == NULL)
return DTERR_BAD_FORMAT;
/* we'll determine the actual offset later */
abbrevTz = valtz;
abbrev = field[i];
ftype[i] = DTK_TZ;
break;
case AMPM:
mer = val;
break;
case ADBC:
bc = (val == BC);
break;
case UNITS:
tmask = 0;
ptype = val;
break;
case ISOTIME:
tmask = 0;
/***
* We will need one of the following fields:
* DTK_NUMBER should be hhmmss.fff
* DTK_TIME should be hh:mm:ss.fff
* DTK_DATE should be hhmmss-zz
***/
if (i >= nf - 1 ||
(ftype[i + 1] != DTK_NUMBER &&
ftype[i + 1] != DTK_TIME &&
ftype[i + 1] != DTK_DATE))
return DTERR_BAD_FORMAT;
ptype = val;
break;
case UNKNOWN_FIELD:
/*
* Before giving up and declaring error, check to see
* if it is an all-alpha timezone name.
*/
namedTz = pg_tzset(field[i]);
if (!namedTz)
return DTERR_BAD_FORMAT;
/* we'll apply the zone setting below */
tmask = DTK_M(TZ);
break;
default:
return DTERR_BAD_FORMAT;
}
break;
default:
return DTERR_BAD_FORMAT;
}
if (tmask & fmask)
return DTERR_BAD_FORMAT;
fmask |= tmask;
} /* end loop over fields */
/* do final checking/adjustment of Y/M/D fields */
dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
if (dterr)
return dterr;
/* handle AM/PM */
if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
return DTERR_FIELD_OVERFLOW;
if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
tm->tm_hour = 0;
else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
tm->tm_hour += HOURS_PER_DAY / 2;
/* check for time overflow */
if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec))
return DTERR_FIELD_OVERFLOW;
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
return DTERR_BAD_FORMAT;
/*
* If we had a full timezone spec, compute the offset (we could not do it
* before, because we may need the date to resolve DST status).
*/
if (namedTz != NULL)
{
long int gmtoff;
/* daylight savings time modifier disallowed with full TZ */
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
/* if non-DST zone, we do not need to know the date */
if (pg_get_timezone_offset(namedTz, &gmtoff))
{
*tzp = -(int) gmtoff;
}
else
{
/* a date has to be specified */
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
*tzp = DetermineTimeZoneOffset(tm, namedTz);
}
}
/*
* Likewise, if we had a dynamic timezone abbreviation, resolve it now.
*/
if (abbrevTz != NULL)
{
struct pg_tm tt,
*tmp = &tt;
/*
* daylight savings time modifier but no standard timezone? then error
*/
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
if ((fmask & DTK_DATE_M) == 0)
GetCurrentDateTime(tmp);
else
{
/* a date has to be specified */
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
tmp->tm_year = tm->tm_year;
tmp->tm_mon = tm->tm_mon;
tmp->tm_mday = tm->tm_mday;
}
tmp->tm_hour = tm->tm_hour;
tmp->tm_min = tm->tm_min;
tmp->tm_sec = tm->tm_sec;
*tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
tm->tm_isdst = tmp->tm_isdst;
}
/* timezone not specified? then use session timezone */
if (tzp != NULL && !(fmask & DTK_M(TZ)))
{
struct pg_tm tt,
*tmp = &tt;
/*
* daylight savings time modifier but no standard timezone? then error
*/
if (fmask & DTK_M(DTZMOD))
return DTERR_BAD_FORMAT;
if ((fmask & DTK_DATE_M) == 0)
GetCurrentDateTime(tmp);
else
{
/* a date has to be specified */
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
tmp->tm_year = tm->tm_year;
tmp->tm_mon = tm->tm_mon;
tmp->tm_mday = tm->tm_mday;
}
tmp->tm_hour = tm->tm_hour;
tmp->tm_min = tm->tm_min;
tmp->tm_sec = tm->tm_sec;
*tzp = DetermineTimeZoneOffset(tmp, session_timezone);
tm->tm_isdst = tmp->tm_isdst;
}
return 0;
}
/* DecodeDate()
* Decode date string which includes delimiters.
* Return 0 if okay, a DTERR code if not.
*
* str: field to be parsed
* fmask: bitmask for field types already seen
* *tmask: receives bitmask for fields found here
* *is2digits: set to true if we find 2-digit year
* *tm: field values are stored into appropriate members of this struct
*/
static int
DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
struct pg_tm *tm)
{
fsec_t fsec;
int nf = 0;
int i,
len;
int dterr;
bool haveTextMonth = false;
int type,
val,
dmask = 0;
char *field[MAXDATEFIELDS];
*tmask = 0;
/* parse this string... */
while (*str != '\0' && nf < MAXDATEFIELDS)
{
/* skip field separators */
while (*str != '\0' && !isalnum((unsigned char) *str))
str++;
if (*str == '\0')
return DTERR_BAD_FORMAT; /* end of string after separator */
field[nf] = str;
if (isdigit((unsigned char) *str))
{
while (isdigit((unsigned char) *str))
str++;
}
else if (isalpha((unsigned char) *str))
{
while (isalpha((unsigned char) *str))
str++;
}
/* Just get rid of any non-digit, non-alpha characters... */
if (*str != '\0')
*str++ = '\0';
nf++;
}
/* look first for text fields, since that will be unambiguous month */
for (i = 0; i < nf; i++)
{
if (isalpha((unsigned char) *field[i]))
{
type = DecodeSpecial(i, field[i], &val);
if (type == IGNORE_DTF)
continue;
dmask = DTK_M(type);
switch (type)
{
case MONTH:
tm->tm_mon = val;
haveTextMonth = true;
break;
default:
return DTERR_BAD_FORMAT;
}
if (fmask & dmask)
return DTERR_BAD_FORMAT;
fmask |= dmask;
*tmask |= dmask;
/* mark this field as being completed */
field[i] = NULL;
}
}
/* now pick up remaining numeric fields */
for (i = 0; i < nf; i++)
{
if (field[i] == NULL)
continue;
if ((len = strlen(field[i])) <= 0)
return DTERR_BAD_FORMAT;
dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
&dmask, tm,
&fsec, is2digits);
if (dterr)
return dterr;
if (fmask & dmask)
return DTERR_BAD_FORMAT;
fmask |= dmask;
*tmask |= dmask;
}
if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
return DTERR_BAD_FORMAT;
/* validation of the field values must wait until ValidateDate() */
return 0;
}
/* ValidateDate()
* Check valid year/month/day values, handle BC and DOY cases
* Return 0 if okay, a DTERR code if not.
*/
int
ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
struct pg_tm *tm)
{
if (fmask & DTK_M(YEAR))
{
if (isjulian)
{
/* tm_year is correct and should not be touched */
}
else if (bc)
{
/* there is no year zero in AD/BC notation */
if (tm->tm_year <= 0)
return DTERR_FIELD_OVERFLOW;
/* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
tm->tm_year = -(tm->tm_year - 1);
}
else if (is2digits)
{
/* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
if (tm->tm_year < 0) /* just paranoia */
return DTERR_FIELD_OVERFLOW;
if (tm->tm_year < 70)
tm->tm_year += 2000;
else if (tm->tm_year < 100)
tm->tm_year += 1900;
}
else
{
/* there is no year zero in AD/BC notation */
if (tm->tm_year <= 0)
return DTERR_FIELD_OVERFLOW;
}
}
/* now that we have correct year, decode DOY */
if (fmask & DTK_M(DOY))
{
j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
}
/* check for valid month */
if (fmask & DTK_M(MONTH))
{
if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
return DTERR_MD_FIELD_OVERFLOW;
}
/* minimal check for valid day */
if (fmask & DTK_M(DAY))
{
if (tm->tm_mday < 1 || tm->tm_mday > 31)
return DTERR_MD_FIELD_OVERFLOW;
}
if ((fmask & DTK_DATE_M) == DTK_DATE_M)
{
/*
* Check for valid day of month, now that we know for sure the month
* and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
* unlikely that "Feb 29" is a YMD-order error.
*/
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
return DTERR_FIELD_OVERFLOW;
}
return 0;
}
/* DecodeTime()
* Decode time string which includes delimiters.
* Return 0 if okay, a DTERR code if not.
*
* Only check the lower limit on hours, since this same code can be
* used to represent time spans.
*/
static int
DecodeTime(char *str, int fmask, int range,
int *tmask, struct pg_tm *tm, fsec_t *fsec)
{
char *cp;
int dterr;
*tmask = DTK_TIME_M;
errno = 0;
tm->tm_hour = strtoint(str, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp != ':')
return DTERR_BAD_FORMAT;
errno = 0;
tm->tm_min = strtoint(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp == '\0')
{
tm->tm_sec = 0;
*fsec = 0;
/* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND)))
{
tm->tm_sec = tm->tm_min;
tm->tm_min = tm->tm_hour;
tm->tm_hour = 0;
}
}
else if (*cp == '.')
{
/* always assume mm:ss.sss is MINUTE TO SECOND */
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
tm->tm_sec = tm->tm_min;
tm->tm_min = tm->tm_hour;
tm->tm_hour = 0;
}
else if (*cp == ':')
{
errno = 0;
tm->tm_sec = strtoint(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp == '\0')
*fsec = 0;
else if (*cp == '.')
{
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
}
else
return DTERR_BAD_FORMAT;
}
else
return DTERR_BAD_FORMAT;
/* do a sanity check */
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
*fsec < INT64CONST(0) ||
*fsec > USECS_PER_SEC)
return DTERR_FIELD_OVERFLOW;
return 0;
}
/* DecodeNumber()
* Interpret plain numeric field as a date value in context.
* Return 0 if okay, a DTERR code if not.
*/
static int
DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
{
int val;
char *cp;
int dterr;
*tmask = 0;
errno = 0;
val = strtoint(str, &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (cp == str)
return DTERR_BAD_FORMAT;
if (*cp == '.')
{
/*
* More than two digits before decimal point? Then could be a date or
* a run-together time: 2001.360 20011225 040506.789
*/
if (cp - str > 2)
{
dterr = DecodeNumberField(flen, str,
(fmask | DTK_DATE_M),
tmask, tm,
fsec, is2digits);
if (dterr < 0)
return dterr;
return 0;
}
dterr = ParseFractionalSecond(cp, fsec);
if (dterr)
return dterr;
}
else if (*cp != '\0')
return DTERR_BAD_FORMAT;
/* Special case for day of year */
if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
val <= 366)
{
*tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
tm->tm_yday = val;
/* tm_mon and tm_mday can't actually be set yet ... */
return 0;
}
/* Switch based on what we have so far */
switch (fmask & DTK_DATE_M)
{
case 0:
/*
* Nothing so far; make a decision about what we think the input
* is. There used to be lots of heuristics here, but the
* consensus now is to be paranoid. It *must* be either
* YYYY-MM-DD (with a more-than-two-digit year field), or the
* field order defined by DateOrder.
*/
if (flen >= 3 || DateOrder == DATEORDER_YMD)
{
*tmask = DTK_M(YEAR);
tm->tm_year = val;
}
else if (DateOrder == DATEORDER_DMY)
{
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
else
{
*tmask = DTK_M(MONTH);
tm->tm_mon = val;
}
break;
case (DTK_M(YEAR)):
/* Must be at second field of YY-MM-DD */
*tmask = DTK_M(MONTH);
tm->tm_mon = val;
break;
case (DTK_M(MONTH)):
if (haveTextMonth)
{
/*
* We are at the first numeric field of a date that included a
* textual month name. We want to support the variants
* MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
* inputs. We will also accept MON-DD-YY or DD-MON-YY in
* either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
*/
if (flen >= 3 || DateOrder == DATEORDER_YMD)
{
*tmask = DTK_M(YEAR);
tm->tm_year = val;
}
else
{
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
}
else
{
/* Must be at second field of MM-DD-YY */
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
break;
case (DTK_M(YEAR) | DTK_M(MONTH)):
if (haveTextMonth)
{
/* Need to accept DD-MON-YYYY even in YMD mode */
if (flen >= 3 && *is2digits)
{
/* Guess that first numeric field is day was wrong */
*tmask = DTK_M(DAY); /* YEAR is already set */
tm->tm_mday = tm->tm_year;
tm->tm_year = val;
*is2digits = false;
}
else
{
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
}
else
{
/* Must be at third field of YY-MM-DD */
*tmask = DTK_M(DAY);
tm->tm_mday = val;
}
break;
case (DTK_M(DAY)):
/* Must be at second field of DD-MM-YY */
*tmask = DTK_M(MONTH);
tm->tm_mon = val;
break;
case (DTK_M(MONTH) | DTK_M(DAY)):
/* Must be at third field of DD-MM-YY or MM-DD-YY */
*tmask = DTK_M(YEAR);
tm->tm_year = val;
break;
case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
/* we have all the date, so it must be a time field */
dterr = DecodeNumberField(flen, str, fmask,
tmask, tm,
fsec, is2digits);
if (dterr < 0)
return dterr;
return 0;
default:
/* Anything else is bogus input */
return DTERR_BAD_FORMAT;
}
/*
* When processing a year field, mark it for adjustment if it's only one
* or two digits.
*/
if (*tmask == DTK_M(YEAR))
*is2digits = (flen <= 2);
return 0;
}
/* DecodeNumberField()
* Interpret numeric string as a concatenated date or time field.
* Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
*
* Use the context of previously decoded fields to help with
* the interpretation.
*/
static int
DecodeNumberField(int len, char *str, int fmask,
int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
{
char *cp;
/*
* Have a decimal point? Then this is a date or something with a seconds
* field...
*/
if ((cp = strchr(str, '.')) != NULL)
{
/*
* Can we use ParseFractionalSecond here? Not clear whether trailing
* junk should be rejected ...
*/
double frac;
errno = 0;
frac = strtod(cp, NULL);
if (errno != 0)
return DTERR_BAD_FORMAT;
*fsec = rint(frac * 1000000);
/* Now truncate off the fraction for further processing */
*cp = '\0';
len = strlen(str);
}
/* No decimal point and no complete date yet? */
else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
{
if (len >= 6)
{
*tmask = DTK_DATE_M;
/*
* Start from end and consider first 2 as Day, next 2 as Month,
* and the rest as Year.
*/
tm->tm_mday = atoi(str + (len - 2));
*(str + (len - 2)) = '\0';
tm->tm_mon = atoi(str + (len - 4));
*(str + (len - 4)) = '\0';
tm->tm_year = atoi(str);
if ((len - 4) == 2)
*is2digits = true;
return DTK_DATE;
}
}
/* not all time fields are specified? */
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
{
/* hhmmss */
if (len == 6)
{
*tmask = DTK_TIME_M;
tm->tm_sec = atoi(str + 4);
*(str + 4) = '\0';
tm->tm_min = atoi(str + 2);
*(str + 2) = '\0';
tm->tm_hour = atoi(str);
return DTK_TIME;
}
/* hhmm? */
else if (len == 4)
{
*tmask = DTK_TIME_M;
tm->tm_sec = 0;
tm->tm_min = atoi(str + 2);
*(str + 2) = '\0';
tm->tm_hour = atoi(str);
return DTK_TIME;
}
}
return DTERR_BAD_FORMAT;
}
/* DecodeTimezone()
* Interpret string as a numeric timezone.
*
* Return 0 if okay (and set *tzp), a DTERR code if not okay.
*/
int
DecodeTimezone(char *str, int *tzp)
{
int tz;
int hr,
min,
sec = 0;
char *cp;
/* leading character must be "+" or "-" */
if (*str != '+' && *str != '-')
return DTERR_BAD_FORMAT;
errno = 0;
hr = strtoint(str + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_TZDISP_OVERFLOW;
/* explicit delimiter? */
if (*cp == ':')
{
errno = 0;
min = strtoint(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_TZDISP_OVERFLOW;
if (*cp == ':')
{
errno = 0;
sec = strtoint(cp + 1, &cp, 10);
if (errno == ERANGE)
return DTERR_TZDISP_OVERFLOW;
}
}
/* otherwise, might have run things together... */
else if (*cp == '\0' && strlen(str) > 3)
{
min = hr % 100;
hr = hr / 100;
/* we could, but don't, support a run-together hhmmss format */
}
else
min = 0;
/* Range-check the values; see notes in datatype/timestamp.h */
if (hr < 0 || hr > MAX_TZDISP_HOUR)
return DTERR_TZDISP_OVERFLOW;
if (min < 0 || min >= MINS_PER_HOUR)
return DTERR_TZDISP_OVERFLOW;
if (sec < 0 || sec >= SECS_PER_MINUTE)
return DTERR_TZDISP_OVERFLOW;
tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
if (*str == '-')
tz = -tz;
*tzp = -tz;
if (*cp != '\0')
return DTERR_BAD_FORMAT;
return 0;
}
/* DecodeTimezoneAbbrev()
* Interpret string as a timezone abbreviation, if possible.
*
* Returns an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
* string is not any known abbreviation. On success, set *offset and *tz to
* represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
* Note that full timezone names (such as America/New_York) are not handled
* here, mostly for historical reasons.
*
* Given string must be lowercased already.
*
* Implement a cache lookup since it is likely that dates
* will be related in format.
*/
int
DecodeTimezoneAbbrev(int field, char *lowtoken,
int *offset, pg_tz **tz)
{
int type;
const datetkn *tp;
tp = abbrevcache[field];
/* use strncmp so that we match truncated tokens */
if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
{
if (zoneabbrevtbl)
tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
zoneabbrevtbl->numabbrevs);
else
tp = NULL;
}
if (tp == NULL)
{
type = UNKNOWN_FIELD;
*offset = 0;
*tz = NULL;
}
else
{
abbrevcache[field] = tp;
type = tp->type;
if (type == DYNTZ)
{
*offset = 0;
*tz = FetchDynamicTimeZone(zoneabbrevtbl, tp);
}
else
{
*offset = tp->value;
*tz = NULL;
}
}
return type;
}
/* DecodeSpecial()
* Decode text string using lookup table.
*
* Recognizes the keywords listed in datetktbl.
* Note: at one time this would also recognize timezone abbreviations,
* but no more; use DecodeTimezoneAbbrev for that.
*
* Given string must be lowercased already.
*
* Implement a cache lookup since it is likely that dates
* will be related in format.
*/
int
DecodeSpecial(int field, char *lowtoken, int *val)
{
int type;
const datetkn *tp;
tp = datecache[field];
/* use strncmp so that we match truncated tokens */
if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
{
tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
}
if (tp == NULL)
{
type = UNKNOWN_FIELD;
*val = 0;
}
else
{
datecache[field] = tp;
type = tp->type;
*val = tp->value;
}
return type;
}
/* ClearPgTm
*
* Zero out a pg_tm and associated fsec_t
*/
static inline void
ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
{
tm->tm_year = 0;
tm->tm_mon = 0;
tm->tm_mday = 0;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
*fsec = 0;
}
/* DecodeInterval()
* Interpret previously parsed fields for general time interval.
* Returns 0 if successful, DTERR code if bogus input detected.
* dtype, tm, fsec are output parameters.
*
* Allow "date" field DTK_DATE since this could be just
* an unsigned floating point number. - thomas 1997-11-16
*
* Allow ISO-style time span, with implicit units on number of days
* preceding an hh:mm:ss field. - thomas 1998-04-30
*/
int
DecodeInterval(char **field, int *ftype, int nf, int range,
int *dtype, struct pg_tm *tm, fsec_t *fsec)
{
bool is_before = false;
char *cp;
int fmask = 0,
tmask,
type;
int i;
int dterr;
int val;
double fval;
*dtype = DTK_DELTA;
type = IGNORE_DTF;
ClearPgTm(tm, fsec);
/* read through list backwards to pick up units before values */
for (i = nf - 1; i >= 0; i--)
{
switch (ftype[i])
{
case DTK_TIME:
dterr = DecodeTime(field[i], fmask, range,
&tmask, tm, fsec);
if (dterr)
return dterr;
type = DTK_DAY;
break;
case DTK_TZ:
/*
* Timezone means a token with a leading sign character and at
* least one digit; there could be ':', '.', '-' embedded in
* it as well.
*/
Assert(*field[i] == '-' || *field[i] == '+');
/*
* Check for signed hh:mm or hh:mm:ss. If so, process exactly
* like DTK_TIME case above, plus handling the sign.
*/
if (strchr(field[i] + 1, ':') != NULL &&
DecodeTime(field[i] + 1, fmask, range,
&tmask, tm, fsec) == 0)
{
if (*field[i] == '-')
{
/* flip the sign on all fields */
tm->tm_hour = -tm->tm_hour;
tm->tm_min = -tm->tm_min;
tm->tm_sec = -tm->tm_sec;
*fsec = -(*fsec);
}
/*
* Set the next type to be a day, if units are not
* specified. This handles the case of '1 +02:03' since we
* are reading right to left.
*/
type = DTK_DAY;
break;
}
/*
* Otherwise, fall through to DTK_NUMBER case, which can
* handle signed float numbers and signed year-month values.
*/
/* FALLTHROUGH */
case DTK_DATE:
case DTK_NUMBER:
if (type == IGNORE_DTF)
{
/* use typmod to decide what rightmost field is */
switch (range)
{
case INTERVAL_MASK(YEAR):
type = DTK_YEAR;
break;
case INTERVAL_MASK(MONTH):
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
type = DTK_MONTH;
break;
case INTERVAL_MASK(DAY):
type = DTK_DAY;
break;
case INTERVAL_MASK(HOUR):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
type = DTK_HOUR;
break;
case INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
type = DTK_MINUTE;
break;
case INTERVAL_MASK(SECOND):
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
type = DTK_SECOND;
break;
default:
type = DTK_SECOND;
break;
}
}
errno = 0;
val = strtoint(field[i], &cp, 10);
if (errno == ERANGE)
return DTERR_FIELD_OVERFLOW;
if (*cp == '-')
{
/* SQL "years-months" syntax */
int val2;
val2 = strtoint(cp + 1, &cp, 10);
if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
return DTERR_FIELD_OVERFLOW;
if (*cp != '\0')
return DTERR_BAD_FORMAT;
type = DTK_MONTH;
if (*field[i] == '-')
val2 = -val2;
if (((double) val * MONTHS_PER_YEAR + val2) > INT_MAX ||
((double) val * MONTHS_PER_YEAR + val2) < INT_MIN)
return DTERR_FIELD_OVERFLOW;
val = val * MONTHS_PER_YEAR + val2;
fval = 0;
}
else if (*cp == '.')
{
errno = 0;
fval = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;