
Testing Post Quantum Cryptographic
Implementations for Constant-Time Execution

Joshua Koyeerath
Volgenau School of Engineering

George Mason University
Fairfax, Virginia 22032

Email: jkoyeera@gmu.edu

Omkar Kanore
Volgenau School of Engineering

George Mason University
Fairfax, Virginia 22032

Email: okanore@masonlive.gmu.edu

Abstract—Post Quantum Cryptography (PQC) is aimed to
replace existing cryptosystems due to the threat of quantum
computers. Researchers and organizations have come together to
build libraries on open-source platforms which have implemented
PQC algorithms. Our project aims to detect whether PQC
implementations have timing leakages. In this paper we describe
a method to test whether PQC implementations execute in
constant time or not. We use a tool called as dudect to do the
same. We run our test files written in C on Linux systems. Also, as
part of our extended work, we have tested these implementations
against open source static code analysis tools to find bugs and
vulnerabilities.

Index Terms—Post Quantum Cryptography, t-Testing, Timing
attack, KEM, Signature, liboqs, libpqcrypto, dudect

I. INTRODUCTION

With the development of quantum technology, a big change
will inevitably occur in the field of encryption algorithms.
Quantum computers take advantage of quantum physics and
can perform calculations that ordinary computers are incapable
of. This means that quantum computers can easily break
through classic encryption algorithms such as RSA and ECC.
Therefore, the emergence of post quantum cryptography is
necessary.

The competition of NIST (National Institution of Standards
and Technology) for PQC standards was officially launched in
2016. NIST focuses on the collection of the following three
types of post-quantum cryptographic systems: encryption, key
exchange, and digital signature [2]. Currently in Round 2
of the competition, these candidates can be divided into the
following families:

• Multivariate-based
• Hash-based
• Isogeny-based
• Lattice-based
• Code-based

In order to test the implementations of PQC, we chose liboqs
and libpqcrypto libraries. Figure 1 shows in detail which
algorithms are implemented in the above mentioned libraries.

So, now we need to consider whether or not these PQC
implementations are secure against timing attacks. Timing
Attack is a type of Side Channel Attack about which we
will discuss more in Section 2. Research has shown that

Fig. 1. Round 2 Candidates in liboqs and libpqcrypto

timing attacks are effective in revealing secret/hidden data
and they have broken several algorithms with variable-time
implementations, such as SHA, TLS, RSA, and Diffie-Hellman
[4].

The following sections are organized as follows: Section
II gives a short description about Side Channel Attacks and
hence will define the scope of our project. In Section III we
will describe the PQC libraries that were under consideration
for testing. Then in section IV we will discuss about our
testing methodology and give an overview of dudect with
it’s mathematical and software background. Section V will
be devoted to the results that we obtained after testing and
the inferences we can draw from these results. In section VI,
we will discuss our findings after testing against open source
static code analysis tools. Then finally, in Section VII, we will
conclude with future work.

II. SIDE CHANNEL ATTACKS

A side-channel attack is any attack based on information
gained from the implementation of a computer system, rather
than weaknesses in the implemented algorithm itself. Hence
these attacks are independent of the theoretical/mathematical
strengths that an algorithm may have but depends on the way
in which the algorithm is implemented.

Below we list and describe some types of side-channel
attacks [3]:



Fig. 2. Side Channel Attack

• Timing Attack
• Cache Attack
• Power-Monitoring Attack
• Electromagnetic Attack
• Acoustic Cryptanalysis
• Differential Fault Analysis
• Software-Initiated Fault Attacks

A. Cache Attacks

In this type of attack, the attacker monitors all cache
accesses done by the victim program. This can lead to leakage
of sensitive data that the program would load in the cache.
There are many types of cache attacks like: Flush + Reload
attack, Evict + Reload attack and Prime + Probe attack. In
all the types, a fast-cache-access will tell the attacker that
there was cache access in a particular location and slow-cache-
access indicates otherwise.

B. Power and Electromagnetic Attacks

Power Attacks also called as Power-Monitoring Attacks
happen when an attacker monitors the power consumption of
a microprocessor while certain instructions are performed. It
has two types: Simple Power Analysis (SPA) and Differential
Power Analysis (DPA). In SPA, the attacker tries to find a
simple correlation between power consumption and sections
of code. In DPA, the attacker uses statistical and data analysis
methods rather than sheer observational analysis. DPA is
much harder to prevent than SPA. In case of Electromagnetic
Attacks, the attacker captures the electromagnetic radiations
emitting from a device and performs signal analysis. It also is
divided into Simple and Differential Electromagnetic Attacks,
SEMA and DEMA respectively. DEMA attacks are more
complex and also but effective compared to SEMA.

C. Timing Attacks

In Timing Attacks, the attacker measures the time it takes
to compute a piece of code. If a code is vulnerable to timing
attacks, it may have variable execution time depending on the
input that the code is dealing with. These measurements can be
fed into a statistical model to infer the secret/hidden data that a
program might use especially if it is a cryptographic algorithm.

Article [3] provides an good example about how to exploit
key based on the input of the microprocessor. As mentioned
before, our project focuses only on testing resistance to timing
attacks.

III. PQC LIBRARIES

A. liboqs

liboqs is part of the Open Quantum Safe (OQS) project[6]
led by Douglas Stebila and Michele Mosca. It aims to develop
and integrate into applications quantum-safe cryptography to
facilitate deployment and testing in real world contexts. In
particular, OQS provides prototype integrations of liboqs into
TLS and SSH, through OpenSSL and OpenSSH[7].

B. libpqcrypto

libpqcrypto[8] is a cryptographic software library produced
by the PQCRYPTO project. libpqcrypto includes software for
77 cryptographic systems from 19 to 22 PQCRYPTO sub-
missions. libpqcrypto collects this software into an integrated
library, with a unified compilation framework, an automatic
testing framework and command-line benchmarking tools.

IV. TESTING PQC LIBRARIES

A. Introduction to dudect

dudect (pronounced “dude”,“ct”) is a tool that is used test
whether a program runs in constant-time or not[9]. Their
approach is based on leakage detection tests. The tool relies on
statistical analysis of execution time measurements. This al-
lows the results to be somewhat independent of the underlying
hardware infrastructure.

B. Math behind dudect

dudect uses Welch’s t-test to calculate timing variations. A t-
test is a statistical hypothesis testing technique. For dudect, the
hypothesis is that two populations/classes have equal means.
If the hypothesis fails, then we say that there may be timing
leakage. In order to test if this hypothesis holds true, we first
calculate the value of t given by:

t =
X1 −X2√

s21
N1

+
s22
N2

If the value of t goes beyond a certain threshold
(t threshold), then the hypothesis fails. In the paper which
describes dudect[1], t threshold was set to 4.5 and in the
code available on github, the value was set to 10. Here are
two graphs mentioned in [1] showing two implementations of
AES: one non-constant-time in figure 3 and one constant-time
in figure 4.

There are many ways to select the two populations for
testing, but dudect uses the fixed vs random class type. The
random class by definition has random inputs and the fixed
class has it’s inputs all set to zero. Once these two classes are
prepared, the tests are conducted and appropriate t values are
calculated to ensure if the hypothesis is true.



Fig. 3. Non Constant-time implementation of AES

Fig. 4. Constant-time implementation of AES

C. Software behind dudect

The flowchart in Figure 5 describes the control flow of
dudect.

Fig. 5. dudect control flow

From the flowchart, fixture.c in the first column, is
where all the main functions are called. The second column
dut_AES.c is the test file that we have to create for
each implementation (in this case, it is AES). The record-
ing of measurements begin with calling of the main() in
fixture.c. This function then calls init_dut() which
is an initialization function written in the test file for any
initialization needed, for example, creating public and private

keypair. After that it calls the t_init() which initializes
values for the t-test. Once all the values are set, main.c calls
the doit() which is in an infinite loop. The doit() calls
the prepare_inputs() in order to create and initialize the
two populations as shown.

Fig. 6. dudect: prepare inputs function

prepare_inputs() creates a huge array called as
input_data[] of the size of (number measurements
* chunk size) taken from figure 7 and then fills it with
random data. Then it selects certain chunks in the array and
then fills it with zeros. Once the array is ready with both
the populations, doit() calls measure(). measure()
records the start and end time using cpucycles()
and in between calls the do_one_computation().
do_one_computation() is the function in which we
write a call to the encryption/decryption functions specified by
an algorithm in the PQC library. The code snippet is shown
in Figure 7

Fig. 7. dudect: do one computation function

Another important point to note is that dudect uses
TSC(Time Stamp Counter) register to record time. Figure 8
is the screenshot of cpucycles() where the assembly -
language instruction rdtsc is called. Figure ?? is the screen-
shot of measure() where cpucycles() is used.



Fig. 8. dudect: cpucycles function

In order to test the behaviour of the algorithms in different
scenarios and in-turn bring more authenticity to the data, each
algorithm has to undergo two types of tests.

• One-Key-Different-Inputs (OKDI)
• One-Input-Different-Keys (OIDK)

For OIDK, we do not use the input_data[] array but we
call the respective algorithm’s keypair() function repeat-
edly to ensure valid keys. Also, for both types of tests, we only
call the decaps() for KEMs and sign() for signatures
since these functions use the secret key.

V. RESULTS

Figure 9 and figure 10 display the results for some PQC
implementations having undergone the OKDI and OIDK tests.
The graphs are plotted as measurements (in millions) vs the
maximum t value. For the understanding of the reader, to
generate the figure 9, it took 3 laptops running simultaneously
for 5 days. In Figure 9, we see no algorithm has their max
t value greater than 10 and hence we can say that these
implementations may be constant-time. Similar can be said
of the OIDK test.

However, one algorithm implementation has stood out of
the lot as shown in Fig 11.

It is interesting to note that Dilithium (a signature PQC
algorithm) turned out to be constant-time for OIDK test
but displayed non-constant-time behaviour by a huge margin
(t ≈ 500) in OKDI test. To further confirm, we reduced the
chunk size (which indicates the message size) from 2044
bytes (length of signature) to 16 bytes and the results still
stay the same.

VI. EXTENDED WORK: STATIC CODE ANALYSIS

Since the aim of our project is to secure implementations,
we tested the libraries against open source static code analysis
tools. The C language is infamous for bringing in many bugs
and vulnerabilites in the code. We used two tools for testing
and following is their description.

A. Flawfinder

Flawfinder is a tool that searches through C/C++ source
code looking for potential security flaws. It produces a list
of hits (potential security flaws, also called findings), sorted
by risk; the riskiest hits are shown first. The risk level is
shown inside square brackets and varies from 0, very little
risk, to 5, great risk. Flawfinder tool supports the CWE and is
officially CWE-Compatible. Hit descriptions typically include
a relevant Common Weakness Enumeration (CWE) identifier

in parentheses where there is known to be a relevant CWE
for each line of code where the vulnerability is found. Our
primary aim was to bring the medium and high severity hits
to a lesser number.

B. CCPcheck

CCPcheck is a tool for static analysis of C/C++
code. It checks for memory leaks, mismatching allocation-
deallocation, buffer overrun, and many more. It provides
unique code analysis to detect bugs and focuses on detecting
undefined behavior and dangerous coding constructs.

C. Testing and Results

When flawfinder was used on liboqs library, we found a
total of 6137 hits, where none of them were severe alerts. 5
lines of code had a high security risk of level 4 whereas 6128
lines of code had a medium security risk of level 2. When ran
on libpqcrypto library, we found 4 lines of code had a high
security risk of level 4 whereas 1317 lines of code has medium
security risk of level 2. We analyzed these errors, visited the
CWE website and conducted some research on these bugs
and added a fix for it. This activity led to the reduction in
the number of hits for High severity bug to almost half and
medium severity bug by 30%. The result for this activity is
depicted on the pie chart diagram for liboqs in Figure 12 and
libpqcrypto library in Figure 13.

Fig. 12. Flawfinder: liboqs

Fig. 13. Flawfinder: libpqcrypto

When ccpcheck tool was used on liboqs library, we found a
total of 50 hits for vulnerabilities, where only 1 of them was
of high-level risk. The pie chart in Figure 14 diagram provides
a list of vulnerabilities, the number of instances in the project
along with the percentage of each.



Fig. 9. Results for OKDI Test

Fig. 10. Results for OIDK Test

Fig. 14. CCPCheck: liboqs Fig. 15. CCPCheck: libpqcrypto



Fig. 11. Non constant results for OIDK Test

When ccpcheck tool was used on libpqcrypto library, we
found a total of 84 hits for vulnerabilities, where only 5 of
them was of high-level risk. The pie chart diagram in Figure
15 provides a list of vulnerabilities, the number of instances
in the project along with the percentage of each. CCPcheck
provides a report with line number, the path of the file and a
note of potential vulnerability. This helped us identify the exact
issue and find a fix for it. Iterating on various fixes we were
able to bring down the syntax error issue for liboqs library to
0% and signed integer overflow error to 60%. For libpqcrypto
library, we were able to bring the Memory leakage, Signed
integer overflow errors down to 60%.

VII. CONCLUSIONS AND FUTURE WORK

Since we have observed non-constant-time behaviour from
Dilithium, work needs to be undertaken so that Dilithium
becomes resistant to timing attacks and there is reduction in
timing leakage. However, since only one tool was used to
conduct leakage detection, we cannot say with certainty that
other algorithms have constant-time implementations. Hence
more work needs to be done using testing tools having differ-
ent approaches in order to confirm our findings. The results
that we see are tests done for the liboqs library. However test
files have been created for libpqcrypto which just need to
be executed to get results. In our extended work, we were
able to find an fix most of the high-risk and medium-risk
vulnerabilities. There are many more tools that can be used
to perform an indepth analysis of code either statically or
dynamically to lower the number of known vulnerabilites even
more.
liboqs and libpqcrypto were created so that re-

searchers/enthusiasts and even people in the industry who
would like to experiment with the upcoming PQC algorithms
could do so freely and incorporate these functions in their

projects. Maintaining security in implementation hence also
is of utmost importance. We believe that our work will help
identifying any areas related to constant-time execution that
the developers might have missed, hence securing the libraries
from future potential attacks.

REFERENCES

[1] O. Reparaz, J. Balasch and I. Verbauwhede, ”Dude, is my code
constant time?,” Design, Automation& Test in Europe Conference
Exhibition (DATE), 2017, Lausanne, 2017, pp. 1697-1702. doi:
10.23919/DATE.2017.7927267

[2] PQC Archive - Post-Quantum Cryptography, CSRC. [Online]. Available:
https://csrc.nist.gov/Projects/post-quantum-cryptography/PQC-Archive.
[Accessed: 10-Dec-2019].

[3] J. Iriarte, Side Channel Attacks: What They Are and How to
Prevent Them, Jungle Disk Blog, 11-Jul-2019. [Online]. Available:
https://www.jungledisk.com/blog/2017/12/28/be-aware-of-side-channel-
attacks/. [Accessed: 10-Dec-2019].

[4] P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems, Advances in Cryptology CRYPTO 96
Lecture Notes in Computer Science, pp. 104113, 1996.

[5] k0resh, Timing attacks part 1, The Latest News from
Research at Kudelski Security, 13-Dec-2013. [Online]. Available:
https://research.kudelskisecurity.com/2013/12/13/timing-attacks-part-1/.
[Accessed: 10-Dec-2019]

[6] D. Stebila, M. Mosca, ”Post-quantum Key Exchange for the Internet
and the Open Quantum Safe Project,” Selected Areas in Cryptog-
raphy, 2017, Springer International Publishing. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-69453-5 2

[7] ’Open Quantum Safe’, 2019. [Online]. Available:
https://openquantumsafe.org/. [Accessed: 10- Dec- 2019].

[8] ’libpqcrypto’, 2019. [Online]. Available: https://libpqcrypto.org/. [Ac-
cessed: 10- Dec- 2019].

[9] ’GitHub Repository: dudect’, 2019. [Online]. Available:
https://github.com/oreparaz/dudect. [Accessed: 9- Dec- 2019].


