## PRAGMA 39 @ Universitas Yarsi Research Update Lightning Talk

**Department of Computer Science** 

Faculty of Science & Technology, Thammasat University

Presented by Prapaporn (Nan) Rattanatamrong

June 21-24th, 2023, Jakarta, Indonesia



## **Ongoing Projects**

- GAN-based Data Augmentation Framework for Federated Learning
- Decision Support Systems for Disaster Management
- Digital Twins over Edge-Cloud Continuum

## **GAN-based Data Augmentation Framework for Federated Learning**

Thiti Chuenbubpha, Prapaporn Rattanatamrong, Thapana Boonchoo, Jason Haga





## **Federated Learning (FL)**



### **Federated Learning Performance for Non-IID data**



 Non-independently and identically distributed (non-IID) data

AIST

- Decreased accuracy in FL is inevitable when dealing with non-IID data.
  - Weight divergence in local models

Ref : https://www.researchgate.net/publication/344017123\_Wireless\_for\_Machine\_Learning

## **Solving Non-IID using data augmentation**







Rotation





#### Data augmentation can help with Non-IID data by create diverse synthetic samples.

The augmented data can be used during local training, promoting a more balanced and representative dataset



#### Using Generative Adversarial Networks (GANs) can help addressing the non-IID issue in FL

GANs can be trained on local data from individual devices to generate synthetic data. By sharing these generated samples instead of raw data, GANs enable the creation of more balanced and representative datasets for model training across devices

## **Conditional GANs Training in FL nodes**







# Issue with GANs Training in Distributed FL Nodes





# Issue with GANs Training in Distributed FL Nodes





# Issue with GANs Training in Distributed FL Nodes





## Main issues to address:

- 1. The global model in federated learning has its **performance decreases** when dealing with non-IID data (considering only label distribution skew).
- 2. GANs training on a distributed system can result in bias of the model particularly on the last seen classes.
- 3. When data is shared among clients to correct Non-IID, the **privacy of training data in FL** is leaked.



## **Configuration Variables for FL of CNNs**

| Independent Variables                                              | Possible Values    |
|--------------------------------------------------------------------|--------------------|
| DATASET                                                            | MNIST, FMNIST      |
| All possible classes in the DATASET                                | 10                 |
| Number of nodes in FL (N)                                          | 10, 50             |
| Number of available classes in each node (L_n)                     | 2, 5               |
| % of local data used for each round of GANs training (SUBSET SIZE) | 1, 25, 50, 75, 100 |



## DATASETS

#### **MNIST**



#### **FMNIST**



70,000 of grayscale image with 28x28 pixel Training dataset = 60,000 Test dataset = 10,000

Ref : https://arxiv.org/abs/2102.02079



## **Non-IID Settings**

FL with N Client





## **Baseline Experiment**

The FL global model's performance decreases when data is non-IID, especially for complex tasks

| No. of FL<br>Nodes (N) | DATASET | Data Distribution | No. of classes in each node (L_n) | FL Global Model's<br>Accuracy |  |
|------------------------|---------|-------------------|-----------------------------------|-------------------------------|--|
|                        |         | IID               | 10                                | 98.41                         |  |
|                        | MNIST   | Non-IID           | 5                                 | 96.35                         |  |
| 5                      |         | Non-IID           | 2                                 | 83.41                         |  |
|                        |         | IID               | 10                                | 85.35                         |  |
|                        | FMNIST  | Non-IID           | 5                                 | 67.91                         |  |
|                        |         | Non-IID           | 2                                 | 58.48                         |  |
|                        |         | IID               | 10                                | 96.95                         |  |
|                        | MNIST   | Non-IID           | 5                                 | 96.55                         |  |
| 10                     |         | Non-IID           | 2                                 | 63.58                         |  |
|                        |         | IID               | 10                                | 82.07                         |  |
|                        | FMNIST  | Non-IID           | 5                                 | 67.77                         |  |
|                        |         | Non-IID           | 2                                 | 53.82                         |  |



## Proposed GANs Augmented IID - Federated Learning (GAIID-FL) Framework





## **Subsetting Local Data in GANs Training Process**



#### Training size X = SUBSET SIZE \* Number of Local Data



## **Optimal SUBSET SIZE for GANs Training**

#### The smaller subset size for training can create images with lower FID score (i.e., more realistic)

| SUBSET SIZE | No. of FL Rounds<br>in GANs Training | Communicated Data<br>(MB) | FID Score of<br>Resulting GANs |
|-------------|--------------------------------------|---------------------------|--------------------------------|
| 100%        | 10                                   | 832                       | N/A                            |
| 75%         | 20                                   | 1,665                     | 79.5                           |
| 50%         | 20                                   | 1,665                     | 28.5                           |
| 25%         | 40                                   | 3,330                     | 26.3                           |
| 1%          | 1,870                                | 155,677                   | 25.2                           |

## **Optimal SUBSET SIZE**



The optimal subset size for GANs training is at around 50% of local data size, while still keeping communication overhead acceptable FID Score (MNIST) SUBSET SIZE = 1% **SUBSET SIZE = 50\%** SUBSET SIZE = 100%174.25 180 160 148.51 140 125.37 118,735 120 99.03 100 80 61.1 51.9 60 38.4 41.9 31.2 33.9 40 27.3 30.2 25.2 28.5 N = 10 **L** n = 220 0 epoch 1 epoch 2 epoch 3 epoch 4 epoch 5

27 SOLVING NON-IID IN FEDERATED LEARNING FOR IMAGE CLASSIFICATION USING GANS

## **Optimal Number of Synthetic Image Data**



N = 50

Generally, 1,000 images per class is recommended but we found that augment each class in each node with 100 images is sufficient to achieve good accuracy

| DATASET  | Data<br>Distribution | L_n | No. of synthetic<br>data to augment<br>in each FL node | FL Global Model's<br>Accuracy | Minutes spent<br>for FL |
|----------|----------------------|-----|--------------------------------------------------------|-------------------------------|-------------------------|
|          | IID                  | 10  | 0                                                      | 79.59                         | 30                      |
|          | Non-IID              | 5   | 0                                                      | 62.14                         | 32                      |
| MANUCT   | Non-IID              | 5   | 100                                                    | 92.74                         | 43                      |
| IVINIS I | Non-IID              | 5   | 1,000                                                  | 97.12                         | 147                     |
|          | Non-IID              | 2   | 0                                                      | 43.16                         | 33                      |
|          | Non-IID              | 2   | 100                                                    | 91.68                         | 47                      |
|          | Non-IID              | 2   | 1,000                                                  | 96.91                         | 151                     |
|          | IID                  | 10  | 0                                                      | 63.81                         | 32                      |
|          | Non-IID              | 5   | 0                                                      | 50.77                         | 33                      |
| EMNICT   | Non-IID              | 5   | 100                                                    | 73.01                         | 45                      |
| FIVINIST | Non-IID              | 5   | 1,000                                                  | 80.73                         | 153                     |
|          | Non-IID              | 2   | 0                                                      | 34.69                         | 35                      |
|          | Non-IID              | 2   | 100                                                    | 72.40                         | 44                      |
|          | Non-IID              | 2   | 1,000                                                  | 80.20                         | 159                     |

SULVING INDIN-IN FEDERALED LEARINING FOR INING GLASSIFICATION USING GAINS

## Addressing Non-IID in FL with Difference SUBSET SIZE



Global Model Accuracy (MNIST)

Non-IID can unstabilize the model's accuracy and we can fix that using augmented data from the GANs trained using our GAIID-FL framework's approach



## Addressing Non-IID in FL with Difference SUBSET SIZE (2)



For more complicated tasks, the global model might converge more slowly but it presents the same trend that the non-IID issue can be fixed using GAIID-FL



### Addressing Non-IID in FL with Difference Number of Synthetic Image

The GAIID-FL framework can solve non-IID data issue (achieve comparably good or superior than the IID case)

N = 50

| DATASET       | Data Dist. | L_n | Augmente<br>d synthetic<br>data | FL Global<br>Model's<br>Accuracy | DATASET | Data Dist. | L_n | Augmented<br>synthetic<br>data | FL Global<br>Model's<br>Accuracy |
|---------------|------------|-----|---------------------------------|----------------------------------|---------|------------|-----|--------------------------------|----------------------------------|
|               | IID        | 10  | 0                               | 96.95                            |         | IID        | 10  | 0                              | 79.59                            |
|               |            | 5   | 0                               | 96.55                            |         | Non-IID    | 5   | 0                              | 62.14                            |
| MNIST Non-IID | Non-IID    | 5   | 100                             | 97.51                            | MNIST   |            | 5   | 100                            | 92.43                            |
|               |            | 2   | 0                               | 63.58                            |         |            | 2   | 0                              | 43.16                            |
|               |            | 2   | 100                             | 96.06                            |         |            | 2   | 100                            | 91.25                            |
|               | IID        | 10  | 0                               | 82.07                            |         | IID        | 10  | 0                              | 63.81                            |
| FMNIST        | Non-IID    | 5   | 0                               | 67.77                            |         | Non-IID    | 5   | 0                              | 50.77                            |
|               |            | 5   | 100                             | 78.11                            | FMNIST  |            | 5   | 100                            | 72.68                            |
|               |            | 2   | 0                               | 53.82                            |         |            | 2   | 0                              | 34.69                            |
|               |            | 2   | 100                             | 79.83                            |         |            | 2   | 100                            | 72.11                            |







## Conclusions

- 1. Correcting Non-IID with synthetic images can improve global model accuracy when compared to global models trained with Non-IID data.
- 2. Images with lower FID score, which indicates greater similarity of synthetic images to real images, yields better quality of FL when used for augmentation.
- 3. GAIID-FL can be used to improve FL performance regardless of whether or not the data distribution is non-IID.
- 4. Using 100 images per class per client is sufficient to solve Non-IID in FL.
- 5. Local data has never left from the FL nodes, so no privacy risk.

Other Projects Computing over Edge-Cloud Continuum

## **Digital Twins: SCI-TU-LC2**





## **Digital Twins: CIVIL-CU**









## **Digital Twins - Poultry Farmhouse**









## **Urban Noise Mapping**







Image credit: https://noise-map.com/home/



#### 4 Tweet

Soundgood Project m @SoundgoodP

I measure 59.4 dB(A) using #NoiseCapture #Animals #Industrial **#TONKIT via @Noise Planet** 

21:34 ± 🔺 🏟 🔸

≡ History

74.2 dB(A) 61 s - Tue, 14 Mar 2023 14:39 GMT+07:00

61 s - Mon, 13 Mar 2023 10:39 GMT+07:00

51 s - Sat, 11 Mar 2023 22:30 GMT+07:00

64 s - Sat, 11 Mar 2023 21:24 GMT+07:00

64 s - Sat. 11 Mar 2023 12:25 GMT+07:00

67 s - Sat, 11 Mar 2023 09:40 GMT+07:00

51 s - Sat, 11 Mar 2023 09:14 GMT+07:00

s - Sat, 11 Mar 2023 08:45 GMT+07:00

5 s - Sat, 11 Mar 2023 08:36 GMT+07:00

57.2 00(A) 51 s - Sat, 11 Mar 2023 07:47 GMT+07:00

389 s - Sat, 11 Mar 2023 06:24 GMT+07:00

#### Fan noise and Bird songs





...

23:51 al 🕤 < 99+ 💿 น้องทดสอบ QEE บระเภทของสถานท อ่านแล้ว **บ้าน** 23:51 **บ้าน** ระดับความดังของเสียง จะเรียงจากไม่รบกวนไปรบกวนอย่างมากที่สุด รบกวนอย่างมากที่สด  $\equiv$ + @ ~ (i) Q

## Algorithm for Calculation of the Measured Single Fly-over Aircraft Noise

#### Data processing workflow



Results from the steps 2, 3, 4 of



Noise Measurement Positions around BIA Sources: Krittika Lertsawat, 2015

N1: E100.750455 N13.73619

N2: E100.744318 N13.636976

N3: E100.746777 N13.634359

N4: E100.728737 N13.64730

N5: E100.750544 N13.726082

N6: E100.745187 N13.60041

N7: E100.747722 N13.72050



The calculated aircraft noise exposure levels in different indicators

|                   | Leg,24hr | L <sub>dn</sub> | Lden    |
|-------------------|----------|-----------------|---------|
|                   | dBA      | dBA             | dBA     |
| Departure flights | 93-114   | 100-118         | 110-119 |
| Arrival flights   | 82-109   | 87-117          | 89-117  |

Sample histogram results of Time duration The red dotted lines indicate outlier bour



Sample histogram results of calculated single fly-over aircraft noise events.



# QUESTION ?

34 SOLVING NON-IID IN FEDERATED LEARNING FOR IMAGE CLASSIFICATION USING GANS

# THANK YOU



33 SOLVING NON-IID IN FEDERATED LEARNING FOR IMAGE CLASSIFICATION USING GANS