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u U::M‘ AERSI A,B(m Challenges of Harmful Algal Bloom (HAB) Prediction

MALAYSIA

- Water resources have been reported to be polluted by Harmful algal
bloom (HAB) that can cause harm.

- Since algae communities comprise of
» Various species
» Differ in nonlinear ways
» Complex
» Dynamic growth

- Hard to analyse and are not well understood, resulting in unreliable
predictive models

- The dynamic growth of algae, which can vary on short timescales (e.g.,
hours to days) has made identifying the condition that favours HABs a
major research effort.
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HHM SHlls M Challenges of Harmful Algal Bloom (HAB)
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- Existing ecological studies, especially those on the algae population are lacking in several aspects.

- To achieve robust predictive modelling of algal growth, several issues must be highlighted and
addressed, for example,

- (i) the features must be mapped to the dynamic issues of algae ecology and

- (ii) a suitable algal growth predictive modelling must be found, particularly to tackle dynamic
algae for coastal studies. Because prediction has been mostly done in rivers and lakes

- Addressing the problems through the features (water parameter) level and algorithm level might help
to achieve the main aim of this research of solving the dynamic issues
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- With the current advancement of the Internet of Things (loT), the process of monitoring and profiling water
qguality and eutrophication mitigation can be facilitated using sensors

- We have came up with the end-to-end solution including:
- assembly and integration of sensors,
- data acquisition

- and predictive modelling
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5 LEM s A’ﬂ ALGAL BLOOM PREDICTIVE MODELING

Data Acquisition

Development
Installation

- As a revision to our previous work, current work presents an
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& . Water Quality Data i

] ‘ [ Management ] i

: Dashboard ;
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enhanced and more detailed predictive modelling

T - This work presents proof that selecting the right features and
mpgrore ] j utilising time series with deep learning are much better for

i ‘ tackling the issues of highly non-linear and dynamic algae
Se"d“e“ | ecological data.

SMS Alert

- Overall steps in conducting this research

I. Identifying important factors for algal growth

Algorithm Il. Review monitoring and profiling past work

Predictive Modeling .
. Benchmarking M

_ » Or0cess . Review data-driven predictive model past work
Correlation

Predictive Analytic
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PROPOSED PREDICTIVE MODELING
FRAMEWORK
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|

Best Model Data from :
Selected WOMS :

| M

Abbreviation Variable Factor Category
Chl-a Chlorophyll-a Biological Factor
BC Bloom Cascs (Incident) (BF)
SGR Specific Growth Rate
WT Watcr Tempseratur:
Salin Salinity
[N Dhissolved Oxygen
Turh Turhidity
H H .
ED Epic-:'c hi Diisk Depth Physical _Fal.:lur
55 Suspended Solid FF)
[ Depth Code
FI Freshweater Inflow
EW Estuaring Velocity
SRT Salinity Recovery Time
TIM Trwtal Inorganic Nitrogen
Py Orthoghosphate
" Todal Phospharus
= Tital Mitrogen
AN Ammania Mitrogen Chemical Factor
MM Mitrite Mitrogen {CF)
MO-M Mitrate Mitrogen
o Chemcal Oxygen Demand
5i Silica
Hg Mercury
Pl Lead
Zn Zing
Al Aludminium
R Rainfall
T Minimum Temperature
Ty Average Temperature Meteorological
Tiree Maximum Temperature Factor
Hum Humidity {MF)
R Draily Solar Radiation
Ws Daily Average Wind Speed

Commonly used parameters
to measure water quality

Water Quality Parameter Abbreviation Uit
Chlorophyll-a Chl-a mg/L
Secchi Disk Depth SDD m
Temperature T [
Coloured Dissolved Organic Matters ~ CDOM mg/L
Total Organic Carbon TOC mg/L
Dissolved Organic Carbon DOC mg/L
Total Suspended Matters TsSM mg/L
Turbidity TUR NTU
Sea Surface Salinity 588 PSU
Total Phosphorus ™ mg/L
Total Nitrogen ™ mg/L
Orthophosphate POy mg/L
Chemical Oxygen Demand CoD mg/L
Biochemical Oxygen Demand BOD mg/L
Electrical Conductivity EC Ms/em
Ammonia Nitrogen NH:.N mg/L
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Additional dataset design and description

YWanable Category

Chl-n Chlorophyll-a Biological
(BF)

Salin Salinity
0 Dissolved Oxygen
Turh Turbidity Physical
pH pH {PF}
sSD Secchi Disk Depth
55 Suspended Solid
Wiemp Water Temperature
TIM Total Inorganic Nitrogen
PO Omthophosphate
TP Total Phosphorus Chemical
™ Total Nitrogen (CF)
AN Amimonia Mitrogen
MO Nitrite Nitrogen
MO Mitrate Nitrogen
i Silica
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IDENTIFYING IMPORTANT FACTORS
OF ALGAL GROWTH

Biologacal Chemacal

Problem Identification Parameters Physical
from Past Work (LR) ——p ldentification for Algal

Growth from LR
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Data Data ’
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L Pre-processing that include:

L Min Max Normalisation is a rescaling of data from
the original range so that all the values are within
the range of 0 and 1.

U Linear interpolation method - impute missing data

O time-series data was framed as a supervised
learning problem

L Make data stationary using Augmented Dickey
Fuller (ADF) for smooth forecasting

O Feature Selection using Correlation Analysis
technique - investigating the relationship and
measuring the strength between two quantitative,
continuous  variables to represent their
interdependencies.
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Comparison model performance evaluation for testing data

Method MAE RMSE MSE
SVM 04772 0.5923 0.3508
DT 0.4840 0.5940 0.3528
RF 0.4453 0.5686 0.3233 10
MLR 0.4477 (.5632 0.3171 v
ANN 0.5607 0.6359 0.4044 Training
TSP 0.4772 0.5923 0.3508 05 ‘ .
RNN 0.0594 0.0696 0.0048
DNN 0.0319 0.0440 0.0019 06 1 Not captured
LSTM 0.0256 0.0360 0.0013 by LSIM
\
Comparison model performance of our approach and LR “ “
Author(s) Method Source MAE RMSE MSE 02 1 h
(23]  LSTM River NP 0.0486 NP S
[28] LSTM River NP 7.67 NP O | e T N e e
[EEJ ]"-'I::rgu-LSTM River NP 0.0459 NP 0 200 400 e00 800 1000 1200 1400 1600
[67] DA-RNN Coastal 0,790 1269 NP o
[12] SVM Coastal 0926 1583 NP Model fitting of LSTM
Ours SVM Coastal 0477  0.592  0.351
Ours RMNN Coastal 0,091  0.083 0.008
Ours DNN Coastal  0.032  0.044 0.002
Ours LSTM Coastal  0.026 0.036  0.001

*NP=Not provided
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FINDINGS

FUTURE
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EVALUATION OF A REAL CASE STUDY
USING THE PREDICTIVE MODEL
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Development & - I Water Quality Data i
[ ] [ Management ] i

Installation
Dashboard

N o

Real-time

= % momnitoring !
o I

3 Mobile App i
Send Alert :

SMS Alert

==y
' Predictive Modeling
r
:, Predictive Analytic
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Successfully predicted the next ten days potential
readings for turbidity sensor
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Algae issues that are highly nonlinear and uncertain, robust BUNBLUSIUN
predictive modelling that tackles from the end-to-end process is

necessary.

Selecting the right features are crucial in tackling the dynamic
issues, and from the results, the algae ecology is dependent on the
number and types of the features.

LSTM with the right features outperformed the other methods

and grasped the temporal behaviour and tackled the dynamic
issues.

Besides, even though during this study excluded meteorological
factor, and more chemical and physical factor were included, this
study outperformed the other studies.
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WATERDASH

Welcome Abdul Aziz

Notifications

System i1sh / Home

Turbidity Value is reaching the threshold.

December 2, 2021, 9:57 pm

System
pH Value is reaching the threshold.

December 2, 2021, 9:57 pm

admin
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Our setup at fish plant

(sea water)
Our setup at CEMACS USM - sea cucumber
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