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Presentation Outline

Artificial Intelligence



Definition of Al

® .... making a machine behave in ways that would be called intelligent if a
human were so behaving. McCarthy, Minsky, Rochester & Shannon, 1956.

Computing Intelligence Perceptual Intelligence Cognitive Intelligence
Capable of storing and Capable of listening and Capable of understanding
computing: seeing: and thinking:

Machine can compute and Machine can listen and see, Machine can understand, think,
transfer information as human make judgement, and take and make decision like human
beings do simple action beings

Example: Neural Network Example: Face Recognition Example: Autonomous Driving
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A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955, Al Magazine, Vol. 27(4), 2006
Adapted from Slide “Pattern Recognition: Statistics to Deep Networks” Anil K. Jain, Michigan State University, ICACSIS-IWBIS 2020

https://medium.com/@amitpaka/three-stages-of-ai-9d2df56dbd08- 2020 Huawei Technologies, Co,Ltd



Temporal progression in automated quantification in
echocardiography. (Adapted from Nolan et al.)
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Problem Identification: Intelligent Healthcare

Assistance for Medical
Research

Medicine Mining Health Management Hospital Management

o E

Castvbilling
Appointment &
Scheduling Center

Hospital Biotechnology Lk

Industry Industry o el

Administration

& Monitoring Laborstoy

Healthcare i
Management Hospital Management 4

Print Reciept System Pharmacy &

Pharmaceutical emerks Medicine

Industry /Bills/Reports

Diagnostics Nursing Homes

Account

Assistance for Diagnosis Disease Risk Forecast
And Treatment

Influenza cases per week

https://techvidvan.com/tutorials/top-8-applications-of-artificial-intelligence-in-
healthcare/https://hbr.org/2018/05/10-promising-ai-applications-in-health-care
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Data Requirement Design: Glossary

Dataset : a collection of data used by our method

- Sample : every data record
Feature : Attribute that reflects the condition of a sample

- Training set: data used in the training process. The process of
forming a model from data is called training / learning

- Test Set: The model that has been created needs to be tested using
a data set called a test set.



Data Requirement Design:

Signals Dataset
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Krupa, Niranjana et.al . (2011). Antepartum fetal heart rate
feature extraction and classification using empirical mode
decomposition and support vector machine. Biomedical
engineering online. 10. 6. 10.1186/1475-925X-10-6.

Example of Dataset

Image Dataset

Chahar, Vijay & Jaiswal, Aayush & Gianchandani, Neha &
Singh, Dilbag & Kaur, Manijit. (2020). Classification of the
COVID-19 infected patients using DenseNet201 based
deep transfer learning. Journal of biomolecular Structure &
Dynamics. 10.1080/07391102.2020.1788642.

Echo

https://erp.bioscientifica.com/view/journals/echo/2/4/G29.xml

USG

Sivanesan, Umaseh & Braga, Luis & Sonnadara, Ranil &
Dhindsa, Kiret. (2019). Unsupervised Medical Image
Segmentation with Adversarial Networks: From Edge
Diagrams to Segmentation Maps.

https://www.cs.sfu.ca/~stella/papers/blairthesis/main/node48.html

Type of Data:

Tabular: Medical records, Demographic, Clinical
Signals: ECG Signals, CTG Signals, EEG Signals, etc.
Images: CT Scan, USG, 3D CT Scan, etc.

Videos: Echocardiography video, USG video, etc.
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Data Preprocessing:

Good Al is built on Good Data

Data Dimension

Data Cleansing Data Normalization

Reduction

Fill in missing values, Normalize data to Simplify data

and detect and reduce noise and attributes/features

eliminate cause of improve model to avoid dimension

dataset exceptions accuracy explosion

Missing value imputation illustration Data normalization illustration Dimension reduction illustration
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Example for Data Preprocessing

Data Preprocessing

Data acquisition and
processing

Feature detection

Training
dataset

Trained

Dictionary

Feature
reduction

Test
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T Diagnosis
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Alsharqi, M., Woodward, W. J., Mumith, J. A., Markham, D. C., Upton, R., & Leeson, P. (2018). Artificial intelligence and echocardiography, Echo
Research and Practice, 5(4), R115-R125. Retrieved Jun 4, 2021, from https://erp.bioscientifica.com/view/journals/echo/5/4/ERP-18-0056.xml|



https://erp.bioscientifica.com/view/journals/echo/5/4/ERP-18-0056.xml

Data Analytics:

“Al and machine learning high level overview” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0

General Artificial Intelligence
Narrow Artificial Intelligence

Machine Learning

Supervised Semi Supervised Unsupervised Reinforcement ~
Cognitive System |
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Neural Networks-{Deep Learning)

Abbreviations: SVM - Support Vector Machine, CNN - Convolutional Neural Network, RNN — Recurrent Neural Network, LSTM — Long Short-Term Memory, GRU — Gated Recurrent Units, MLP — Multilayer Perceptron, RNTN — Recursive Neural Tensor Network
GAN - General Adversarial Network, PCA — Principal Component Analysis, SOM — Self-Organizing Map, RBM — Restricted Boltzmann Machine, SARSA — State-Action-Reward-State-Action, DON — Deep Q Network, A3C — Asynchronous Advantage Actor Critic



https://creativecommons.org/licenses/by-nd/4.0/

Example for Echocardiography Classification

using Deep Learning Algorithm

Process: Analytics

Convolution Neural Network

Fully Connected

Classified |

[—

Pooling

Pooling

Convolution Pooling

Convolution )
Convolution

Alsharqi, M., Woodward, W. J., Mumith, J. A., Markham, D. C., Upton, R., & Leeson, P. (2018). Artificial inte |gnce and
echocardiography, Echo Research and Practice, 5(4), R115-R125. Retrieved Jun 4, 2021,
from https://erp.bioscientifica.com/view/journals/echo/5/4/ERP-18-0056.xml
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https://erp.bioscientifica.com/view/journals/echo/5/4/ERP-18-0056.xml

Example for Echocardiography Segmentation using Deep

Lea rning AlgO rithm : EchoNet-Dynamic Algorithm
Input Model
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The model first predicts the ejection fraction for each cardiac cycle using spatiotemporal convolutions with residual
connections generates frame level semantic segmentations of the left ventricle using weak supervision from expert human

tracings. These outputs are combined to create beat-to-beat predictions of the ejection fraction and to predict the presence of

heart failure with reduced ejection fraction. AUC, area under the curve.

David Ouyang, Bryan He, Amirata Ghorbani, Neal Yuan, Joseph Ebinger, Curt P. Langlotz, Paul A. Heidenreich, Robert A. Harrington, David H. Liang,

Euan A. Ashley, and James Y. Zou. Nature, March 25, 2020.




Visualization and Evaluation

Classification/Prediction Problem:

»

Classification accuracy
Confusion Matrix
Precision and Recall
F1 Score

Sensitivity and Specificity
ROC and AUC

Etc.

>

\

Accuracy =

Number of correct predictions

Number of all predictions

Confusion matrix for binary classification

\

A TP FN
Actual
value
B FP TN
A B
Predicted value

Actual Prediction

~ Specificity
TN - TN
N TN+FP



Barriers to Al implementation

Large-scale, labeled datasets with high quality CT image
data are required for training and testing new algorithms

(
()

4 % Bias can arise in Al algorithms over time, through learning
c‘: from disparities In patient demographics or healthcare

systems

“°, Al algorithms can often be viewed as “black boxes” which
v autonomously learn and make decisions

% Thereisthe legal consideration of clinical clearance for Al
#1r & powered software applications.

Lin, A., Kolossvary, M., Motwani, M., 1ISgum, |., Maurovich-Horvat, P., Slomka, P. J., & Dey, D. (2021). Artificial intelligence in
cardiovascular CT: Current status and future implications. Journal of Cardiovascular Computed Tomography, January.
httos://doi.ora/10.1016/i.icct.2021.03.006



Future Implications

Al will be integrated Into “the system” and
Improve the efficiency of clinical workflow.

Al can be used to predict diseases that will occur
In the future.

Al can be able to qguide patient therapy
considering clinical factors and other supporting
data to form an accurate decision support

Lin, A., Kolossvary, M., Motwani, M., 1ISgum, |., Maurovich-Horvat, P., Slomka, P. J., & Dey, D. (2021). Artificial intelligence in

cardiovascular CT: Current status and future implications. Journal of Cardiovascular Computed Tomography, January.
httos://doi.ora/10.1016/i.icct.2021.03.006






Infrastructures
With a special algorithm, the server process
clinical data into information. Managed with

Patient in house or everywhere
Takes vital signs and ECG surveys
tailored to the Self Monitoring

I Heart beat Classification

Device two directional data communication with

electronic health records,

ECardio

E-Cardio is an integrated system that helps people to examine their cardiovascular
health, without having to meet a doctor. This is especially useful in a situation like
Indonesia.

Sensors

The system utilizes sensors to measure a person’s heartbeat and
will visualize and store the heartbeat data in an Android
smartphone

Classification

The system could also provide an automatic classification of the
person’s cardiovascular health. In addition to that, the system
also sends the person’s data to a doctor.

Transmission
Developed a method for ECG signal compression to be transmitted
via cellular signal

Doctor

Where ever and When Ever can

annotate, discusston and givea
handling

Clinical software allows for
earlier intervention patients




Al- Based Heart Beat Classification

onginal ECG and baseline cubic spline estimation
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Heart Beat Classification - System
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Classifier
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Setting server name in your system




I Tele-ECG Demo (Video)



Implement Al Application in Big Data
Framework

Patient Tele ECG Server

Web File System
- ECG Database
9 ‘ Sensor » H Server H (Old)
Server

Tele ECG Additional Web Server

Classification Module File System
(Training & Testing) Module

& 3

Hadoop Framework

Spark ML library HDFS Others

Heartbeat
Verification

Cardiologist

Cluster infrastructure

Node1 Node2 Node3

Node0




Biionc I howon or evey e ooy EEEE—————
Takes vital signs and ECG surveys With a special algerithm, the server process clinical
tallored to the USG Self data into information. Managed with two directional
Moni (ghvlce data communication with electronic health records.

'

I Ultrasonography Fetal Monitoring

USG System

In our Tele-USG, a complete system have been developed. The main feature of
our system is detecting body parts of the fetus to reduce the risk of death in
pregnancy by monitoring the growth rate of the fetus.

Fetal Organ
Segmentation

&

Nurse
Clinical software allows for
earlier intervention patients.

Fetal Organ
Approximation

Doctor

Where aver and When Everean
annotate, discussion and givea
handling

Fetal Biometric
Measurement

Product Video




Al-Based Fetal Detection
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Fetal Detection - System
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Telehealth Consortium
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