[EXTERNAL EXPORT] View Exposure Measurement

This doc gives an overview of the algorithm dedicated to measuring the changes in View Exposure respectively to the requirements of MRAID 3 (
7.5 exposureChange p 55).

Look at the code of ViewExposureChecker for the details.

Member variables

w @property (nonatomic, nonnull, strong, readonly) UlView *testedView;
Holds the view, for which the exposure is measured.

= @property (nonatomic, assign, readwrite) CGRect clippedRect;
Holds the part of the tested view, which is still visible after all clipping applied by the chain of parent views

Coordinate system: testedView.bounds

w @property (nonatomic, nonnull, strong) NSMutableArray<NSValue *> *obstructions;
Rectangles of all obstructing views, projected onto testedView and clipped by clippedRect.

Coordinate system: testedView.bounds

Initialization

w - (instancetype)initWithView:(UlView *)view
testedView — assigned from the view argument.

obstructions — assigned a new empty mutable array.

clippedRect — ignored.

Methods

- (OXMViewExposure *)exposure

The primary method for evaluating the exposure.


https://www.iab.com/wp-content/uploads/2016/11/MRAID-V3_Draft_for_Public_Comment.pdf
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- (BOOL)visitParent: (UIView *)parentView fromChild:(UlView *)childView

A recursive method called for each parent in the chain of superviews.
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- (void)collectObstructionsFrom: (UlView *)view

1. Check if view itself causes obstruction
2. Check if children might cause obstruction (recursively).

coflectObsctructionsFrom view: UlView
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- (BOOL)collapseBoundingBox




Subtracts obstructions from clippedRect, then joins remains, and clips obstructions:
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- (void)removeRect:(CGRect)rect from:(NSArray<NSValue *> *)srcArray into:(NSMutableArray<NSValue *> *)dstArray startingWith:
(NSUiInteger)firstindex

Convenience method for subtracting rectangle from all rectangles in array:

remove rect: CGRect
from srcArray: [CGRect]
into dstArray: [CGRect]
startingWith firstindex: Int

FOR i
Loop FROM firstindex xit
TO srcArray.count - 1

[self fragmentize:srcArray(i] aroundRect:rect into:dstArray]

- (void)testForObstructing: (UIView *)view



1. Calculate projection of view onto testedView
2. Intersect with clippedRect
3. Ifthe result is not empty, add to obstructions array

testForObstructing view: UlView

testRect = [testedView
convertRect: view . bounds
fromView: view]
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- (NSArray<NSValue *> *)buildObstructionRects

Calculates an array of non-intersecting obstruction rectangles, sorted from largest to lowest:
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- (void)fragmentize:(NSValue *)value aroundRect:(CGRect)rect into:(NSMutableArray<NSValue *> *)array

Calculates the difference between two rectangles — results in 0-4 new rectangles — and add them into array:
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1. If B does not intersect A

- add B into output array, and exit

return nil
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. If B contains A:

— exit

. Project B onto A

. If the projection is not empty:

- Create an array of 4 rectangles (C, D, E, F)

- Add all non-empty rectangles into output array
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