[EXTERNAL EXPORT] View Exposure Measurement

This doc gives an overview of the algorithm dedicated to measuring the changes in View Exposure respectively to the requirements of MRAID 3 (
7.5 exposureChange p 55).

Look at the code of ViewExposureChecker for the details.

Member variables

w @property (nonatomic, nonnull, strong, readonly) UlView *testedView;
Holds the view, for which the exposure is measured.

= @property (nonatomic, assign, readwrite) CGRect clippedRect;
Holds the part of the tested view, which is still visible after all clipping applied by the chain of parent views

Coordinate system: testedView.bounds

w @property (nonatomic, nonnull, strong) NSMutableArray<NSValue *> *obstructions;
Rectangles of all obstructing views, projected onto testedView and clipped by clippedRect.

Coordinate system: testedView.bounds

Initialization

w - (instancetype)initWithView:(UlView *)view
testedView — assigned from the view argument.

obstructions — assigned a new empty mutable array.

clippedRect — ignored.

Methods

- (OXMViewExposure *)exposure

The primary method for evaluating the exposure.

https://www.iab.com/wp-content/uploads/2016/11/MRAID-V3_Draft_for_Public_Comment.pdf

W

clippedRect = testedView.bounds;
obstructions.removeAllObjects();

isHidden 7 Yes

testedView.superview
== nil

Yes

h

return Expc@

v

evaluates

clippedRect
obstructions

s [self collapseBoundingBox] } Mo

Y

collects

--------------------------------- localObsiructions = [self buildObstructions] | -------p(” 10CalObstructions:

[CGRect]

evaluate:
- full area (from testView.bounds)
- visible rect area (from clippedRect) L EREEEEEEEE !
- obstructed area (from localObstructions, sum)
- exposed area = (visible - obstructed) / full

:
!
:
v i
!
1
1
!

populate Exposure instance

result:
OXMViewExposure

return result

h 4

END

- (BOOL)visitParent: (UIView *)parentView fromChild:(UlView *)childView

A recursive method called for each parent in the chain of superviews.

visit parentView: UlView
from childView: UlView

parentView.isHidden 7

parentView.clipsToBounds
OR

parentView == testedView.window

h 4

No convertRect: parentView.bounds

projection = [testedView

fromView: parentView]

clippedAect = intersection (clippedRect, projection)

clippedRect is empty 7

parent.superview != nil 7

Yes

testedView
clippedRect

Yes

No

[self visitParent:parentView.su,

perview fromChild:parentView]

h 4

FOR

subviews = parentView.subViews,
Ye i = subviews.index{of: childView);

i < subviews.count 7

i=i+1

No—

h

returrm

END

|

[self collectObstructionsFrom: subviews(i] |

- (void)collectObstructionsFrom: (UlView *)view

1. Check if view itself causes obstruction
2. Check if children might cause obstruction (recursively).

coflectObsctructionsFrom view: UlView

view.isHidden 7 Mo

Mo

v

[self testForObstructing: view]

view.clipsToBounds ?

Yes

No

¥

FOREACH
Loop Xit
subview: UlView in view.subviews

[self collectObstructionsFrom: subview]

- (BOOL)collapseBoundingBox

Subtracts obstructions from clippedRect, then joins remains, and clips obstructions:

clippedRect
obstructions

clippedRect is empty 7

currentRect = [clippedRect]
nextRects =[]

Looj

FOREACH
obstruction: CGRect
in obstructions

[self remaveRect:obstruction from:currentRects into:nextRects startingWith:0]

swap array pointers
currentRects <-> nextRects

clear nexiRecls

currentRects is empty ?

Yes

currentRects: [CGRect]
nextRects: [CGRect]
oldRect: CGRect

l

clippedRect =
currentRects first

FOREACH
nextFragment: CGRect
in currentRects

clippedRect = Union (clippedRect , nextFragment)

ﬂn NO

clippedRect = .zero

END

fextObstruction intersects with
clippedRect ?

nextObstruction: CGRect

FOREACH

in obstructions

nextRecls

rﬂurn@

END
Yes
nexiRects.add (intersection { nextObstruction , clippedRect)) }7
Collapse Bounding Box Build Obstructions
Obstructionl & & & A N
Obstructiond FOE;-E;n;&.;r&T'—\‘
1
| |
| |
| |
,,,,,,,,,, J
Obstruction2 B |Obs-Candidatez ™
1
1
1
1
_______ .
Obstruction3 i Obs-Candidate. A
1 1
i 1 1
i 1 1
| | |

{_Phase 1 -- Subtract Obstructions "

largest, subtract, r

epeat

Obstructionl Nv v
{ Obs-Candidate4™
1
| |
| |
| |
,,,,,,,,,, J
Obstructionl
v N
Obs-Candidate3 ™
1
1
1
1
v Nv B v
Obstruction3
Obstruction2 N Obstructionl L
Obstruction2
v Nv Nv B
Obstruction3 S
v Nv Nv Hvhv &
Obstructiond
v Nv
v Nv Nv Hvhv &
v Ny
< “Phase 2 — Unite Resulls”:' M
v

O ; 7Phase 3 --Clip ohs[ru([innsr_r:f

v AN

- (void)removeRect:(CGRect)rect from:(NSArray<NSValue *> *)srcArray into:(NSMutableArray<NSValue *> *)dstArray startingWith:
(NSUiInteger)firstindex

Convenience method for subtracting rectangle from all rectangles in array:

remove rect: CGRect
from srcArray: [CGRect]
into dstArray: [CGRect]
startingWith firstindex: Int

FOR i
Loop FROM firstindex xit
TO srcArray.count - 1

[self fragmentize:srcArray(i] aroundRect:rect into:dstArray]

- (void)testForObstructing: (UIView *)view

1. Calculate projection of view onto testedView
2. Intersect with clippedRect
3. Ifthe result is not empty, add to obstructions array

testForObstructing view: UlView

testRect = [testedView
convertRect: view . bounds
fromView: view]

i

obstruction = intersection (clippedRect , testRect)

obstruction is empty 7

Yes

obstructions.add [obstruction) [___ % obstructions

- (NSArray<NSValue *> *)buildObstructionRects

Calculates an array of non-intersecting obstruction rectangles, sorted from largest to lowest:

¥

currentObstructions: [CGRect]
remainingObstructions: [CGRect]
pickedObstructions: [CGRect]

ry

cleanup
before

+---add largest obstruction --- {

k.

r

remainingObstructions: []
pickedObstructions: []

currentObstructions = [obstructions mutableCopy]

h 4

WHILE

currentObstructions
is not empty 7

Y

SOAT currentObstructions

from largest area to lowest

k.

r

nextPicked = currentObstructions.first

pickedObstructions.add { nextPicked)

k.

¥

‘-subtract picked from remains -

[self removeRect:nextPicked from:currentObstructions
into:remainingObstructions startingWith:1]

k.

r

next
iteration

swap array pointers
currentObstructions <= remainingObstructions

clear remainingObstructions

pickedObstructions is empty 7.

return pickedObstructions

END

- (void)fragmentize:(NSValue *)value aroundRect:(CGRect)rect into:(NSMutableArray<NSValue *> *)array

Calculates the difference between two rectangles — results in 0-4 new rectangles — and add them into array:

A

AN

1. If B does not intersect A

- add B into output array, and exit

return nil

END

C

AN

D

. If B contains A:

— exit

. Project B onto A

. If the projection is not empty:

- Create an array of 4 rectangles (C, D, E, F)

- Add all non-empty rectangles into output array

	[EXTERNAL EXPORT] View Exposure Measurement

