
[EXTERNAL EXPORT] AdViewManager

Motivation

Vertical Architecture

Classes and responsibilities
AdViewManagerDelegate

CreativeDelegate

AdViewManager

TransactionManager

TransactionManagerDelegate

ModalManager
ModalState

InterstitialDisplayProperties

Motivation

The current flow of managing ads contains one crucial lack - a lot of objects without strictly defined responsibilities and as a result a high coupling
between these objects.
In result, the code does not reflect the Domain properly. To avoid this we have to develop a transparent architecture corresponded to SOLID
principles. In general, we already have all need objects, but we need to rearrange their responsibilities and decouple dependencies.

All text below describes the purpose of the ad manager and its usage that should be implemented in the same way on both platforms iOS and
Android.

Vertical Architecture

To achieve robust architecture we have to apply the responsibilities of each entity to one of three domain layers. No one entity should act on
several layers directly. it could delegate some responsibilities.

Ad View Layer contains objects for displaying ads f.e BannerView, VideoAdView, InterstitialController (ModalController as a display part). The
Ad View layer is for supporting Application flow.responsible

Ad Manager Layer contains objects that responsible for the transition of the ads from one state to another or from one view to another. The
responsibility of these actions lies on AdViewManager. Also, ModalManager and TransactionsManager are a part of this layer. The Manager
layer is for supporting SDK features and flows (display layout, AdChoices button, Close Button, Learn More button, Clickthrough responsible
browser).

Ad Behaviour Layer contains objects responsible for ad behavior despite the presentation style. In fact, we are talking about Creatives here:
VideoCreative HTMLCreative. The Ad Behavior layer is for supporting features and flows defined by creatives content provided by responsible
publishers.

The AdViewManager takes the central part in this process. Only it knows how to show, load, and transfer particular Creative in particular View.
However, the AdViewManager is rather about the concept, not about implementation details because there are a lot of crucial differences
between Creatives and its Views. And in a result, we have critical differences in the kind of how AdViewManager should work in a particular
situation.

To understand what kind of control we need from AdViewManager for supported kinds of ads let's take a look at the chart with the relations
between Views and Creative. In other words, let's take a look at how exactly certain creatives could be displayed.

Banner Interstitial Banner and Interstitial Non Modal Interstitial

Display Ad
HTMLCreative

+
rRegular Banne

+
Regular Interstitial

+
MRAID Expand, MRAID Video Interstitial

+
MRAID Resize

Video Ad
VideoCreative
+ HTMLCreative

- +
Regular Video

+
Video 300x250

-

Now we can see that there are a lot of behavior kinds but not all of them are needed for a certain kind of ad. On the other hand, there is a pitfall
thing that is not obvious at the first glance. In the case of HTML ad, we do not actually know whether it is an MRAID ad. So that we should be
prepared for the fact that Banner ad could be displayed in the Interstitial or Non Modal mode on demand. However, it is not a reason to mix all
logic together "just in case". Since we have on-demand behavior the implementation and architecture should be built with on-demand principles
as well. Each specific behavior should be implemented by a specific class.

Classes and responsibilities

The important point is that and does not have references to each other. Only AdView Manager knows how to display Creative AdView Creative
in the AdView.

AdView uses via public methods and properties. updates the through (AdViewManager AdViewManager AdView AdViewManagerDelegate A
). dViewManagerListener

AdViewManager uses via public methods and properties. triggers actions through (Creative Creative AdViewManager's CreativeDelegate Cre
).ativeListener

AdViewManagerDelegate

This protocol serves as a bridge between changes in the AdViewManger and AdView. Need to keep in mind that AdView should not know
anything about the Creative or Creatives kind, so methods of this protocol should just inform about the kind of change without any specifics.

Method or Property Description

viewControllerForModalPresentation: UIViewController [iOS] The View controller that should be used for show modal content of the add

displayView: UIView [iOS] The actual top layer view that displays the ad

adLoaded(adDetails: AdDetails) void Is called when AdViewManager prepared the ad for displaying

failedToLoad(error: Error) void Is called when AdViewManager is failed to load the ad

adDidComplete() void Is called when ad is finished displaying

adDidDisplay() void Is called when ad appeared in the display view

adDidClose() void Is called when an ad was closed

adWasClicked() void Is called when user tapped on the creative to see open the content

adViewWasClicked() void Is called when user tapped on the creative's view

adDidLeaveApp() void Is called when click on the ad leads to opening content in the external browser

adClickthroughDidClose() void Is called when a user closes the ad's clickthrough.

adDidExpand() void Is called when an MRAID ad is expanded

adDidCollapse() void Is called when an MRAID ad is collapsed

All these methods and properties are common for all kinds of ads. If you need to add some specific behavior for a certain ad kind need to create
a new protocol inherit from this one and use it respectively.

CreativeDelegate

CreativeDelegate is a protocol responsible for informing about events in the that require some actions.AdViewManager Creative

Method Description

creativeDidComplete(creative: OXMAbstractCreative) void Is called when a creative finishes its lifecycle.

creativeDidDisplay(creative: OXMAbstractCreative *) void Is called when a creative finishes its lifecycle.

creativeWasClicked(creative: OXMAbstractCreative *) void Is called when ad's content is rendered in the displayed view.

creativeViewWasClicked(creative: AbstractCreative *) void Is called when the user triggers the showing the ad content (clickthrough or
Learn More)

creativeClickthroughDidClose(creative: AbstractCreative *)
void

Is called when clickthrough is closed

creativeInterstitialDidClose(creative: AbstractCreative *)
void

Is called when the user closes the creatives clickthrough.

creativeInterstitialDidLeaveApp(creative: AbstractCreative
*) void

Is called when click on the ad leads to opening content in the external browser

creativeFullScreenDidFinish(creative: AbstractCreative)
void

Is called when creatives back to the normal state from the fullscreen mode
(VideoAdView)

creativeShouldDisplayModalState(state: ModalState,
completion: ((void) void))

Is called when Creative due to its internal implementation should show
content in the new Modal View

AdViewManager

Since each ad Is unique, it is hard to split the responsibilities of AdViewManger into certain parts depending on the ad kind. Hence
AdViewManager will manage all of them at once but still as a high-level defined algorithm but not a special defined approach. The main criteria is

that AdViewManager should not be aware of the ad type (Video, Display) that it manages, only about ad kind (banner, interstitial). In other
words, AdViewManager should rely only on Ad Configuration properties but not Creative types.

The AdViewManager responsibilities:

Managing transactions by delegating this process to the Transaction Manager.

Showing creatives into their respective views while serving as a middle-man between their own calls (is a)CreativeViewListener

Method Description

load() void creates the AdLoader and performs the loading

show() void displays the Ad (first creative)
banner - in the AdView

interstitial - In the modal view

pause() void stops the creative execution (video ad)

resume() void resumes the creative execution (video ad)

TransactionManager

The aims of TransactionManager are:

Take transaction from the cache (video)

Load the transaction

Manage the transactions cache

Inform the AdViewManager about transaction readiness

Manage and provide current transaction

Note: the transaction cache was removed.

Method Description

fetchTransaction(adConfiguration:
AdConfiguration) void

Initiates the process of receiving the transaction. May include the stage of retrieving transaction
from the transactions cache or direct loading from the web.

getCurrentTransaction() Transaction Returns the transaction that should be displayed right now.

() dismissCurrentTransaction
Transaction

Removes the current transaction from internal cache. Returns the next transactions in the list.

TransactionManagerDelegate

This interface is intended to inform the about the result of the transaction fetching. AdViewManager

Method Description

onFetchingCompleted(transaction:
Transaction. error: Error) void

Is called when has finished the fetching process.TransactionManager
In case of failure, the should be not null and contains the description of the issue.error
In case of success, the error should be null and the represents the loaded transaction
transaction.

ModalManager

Modal Manger is a class dedicated to displaying the modal views with:

Interstitial Ads (HTML Interstitial, Video Interstitial, Opt-InVideo, End Card, FullScreen Mode for 300x250 Video)

MRAID Ads (Resize, Expand, Video);

Browsers (Clickthrough, Ad Choices Legal page)

It might look like a god-class that should manage a huge amount of ad kinds, but it does not.

The purposes of the Modal Manager is pretty straightforward:

to display the content view (ad or browser) in the interstitial view

to manage content views related to the single source (f.e. MRAID Ad, interstitial ad with opened clickthrough)

to dismiss the interstitial view

to notify listeners about changing the state of interstitial presentation

So, the Modal Manager has nothing in common with the displayed content. It is just dedicated to managing the ad views in a particular manner.
Modal Manager has a deal with States that should be represented in a particular order the FILO order.

The Modal State describes what needs to display and how exactly. Basically Modal state it is a structure that contains:

view - that should be displayed

InterstitialDisplayProperties - the additional properties for a particular ad view

Modal Manager puts each new state into the internal stack and shows the topmost. On dismissing the topmost state the next one should be
displayed.

Methods for managing states:

Method Description

push(modalState: ModalState) void Adds the state to the stack and displays it as topmost one.

reset(modalState: ModalState) void Replaces the topmost state with a provided one and displays it.

popState() void Removes the topmost state and shows the new one if any. If the stack is empty closes interstitial.

clearStates() void Removes all states closes interstitial.

ModalState

ModalState is a structure that contained all assets needed for displaying interstitial.

Property Type Description

displayView View / UIView The view that should be displayed in the interstitial.

viewControllerForModalP
resentation

UIViewController The view controller which should be used for presenting the interstitial

interstitialDisplayProperti
es

InterstitialDisplayProperties Properties that applied exclusively to displaying the interstitial views.

modalManagerDelegate ModalManagerDelegate Creative represented via a protocol which should process the events
from modal manager

InterstitialDisplayProperties

Property Type Description

contentFrame CGFrame Custom frame size for the interstitial ad. Used for MRAID Resize

interstitialLayout InterstitialLayout The orientation that should be applied to the particular ad

closeDelayLeft Double The amount of time left before the close button should become visible.

	[EXTERNAL EXPORT] AdViewManager

