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Abstract

Previous studies developed by the authors proposed VF
detection algorithms, including VT discrimination, based
on time-frequency distributions. However, due to the large
number of parameters extracted from the distributions,
efficient schemes for parameter selection and significance
estimation are needed. This study proposes a combined
strategy of classical and modern techniques for the selection
of parameters to develop improved VF detection algorithms.
We show how exhaustive exploration of the input space
using data mining techniques simplifies and improves the
solution and reduces the computational cost of detection
algorithms. Jointly with classical selection techniques
(correlation, Wilks’ Lambda, statistical significance), other
approaches are used (PCA, SOM-Ward and CART). We
show that better results are achieved using less number of
parameters than previous VF detection algorithms.

1. Introduction

Detection of VF at an early stage is a crucial point
in order to lower the risk of sudden death and allow the
specialist to have greater reaction time to give the patient
a good recovering therapy. Previous studies developed
by the authors proposed Ventricular Fibrillation (VF)
detection algorithms, including Ventricular Tachycardia (VT)
discrimination, based on time-frequency (t-f) distributions [1,
2]. Time-frequency distributions provide information in both
time and frequency domains, they show spectral changes
along time, which is useful in non-stationary signals as in
ventricular arrhythmias. Fig. 1 illustrates a time-frequency
representation of a VF segment. Once the distribution is
obtained, different parameters are calculated. They take
advantage of simultaneous time and frequency measures,
giving indication of power in time and frequency.

Detection algorithms are based on a reduced set of t-f
parameters. However, as new parameters are extracted from
a t-f distribution, efficient schemes for parameter selection
and significance estimation are needed in order to avoid
redundancy. In this sense, a principled statistical framework
for data analysis with high input space has become necessary.
This need is covered by fields such as data mining (DM) and

Figure 1. Time–frequency representation of a VF signal.

Knowledge Discovery in Databases (KDD). They are new
frameworks for the extraction of knowledge from data and
have recently captured the interest of scientists in many areas.
These approaches combine classical statistical tools with
state-of-the-art signal processing techniques such as neural
networks, genetic algorithms, kernel-based methods, fuzzy
logic and advanced visualization tools like Self-Organizing
Maps and clustering algorithms. A full detailed overview of
all the steps comprising the KDD process can be retrieved
from [3].

We propose a combined strategy of some classical and
modern techniques for the selection of time-frequency
extracted parameters to accomplish effective discrimination
of VF pathologies. This communication is outlined as
follows. In Section II, data collection and the scope of our
study are presented. In Section III methods are detailed.
Results in Section IV will precede some concluding remarks
and a proposal for further work.

2. Data collection and feature extraction

Data from 29 patient recordings were analyzed, each
containing an average of 30 minutes of continuous ECG,
of which 100 minutes contained VF. Data were processed
to obtain 25 time-frequency parameters from the Pseudo
Wigner-Ville (PWV) distribution calculated over 128 point



segments at a 125Hz sampling frequency. Some basic
statistics of the extracted parameters are shown in Table 1. A
full detailed description of parameters can be found in [1, 2].

Table 1. Some basic statistics of the calculated parameters.
Variable Normal Other VT VF-Flutter

MINIMFREC 0.73� 0.49 0.63� 0.38 0.64� 0.35 0.64� 0.34
MAXIMFREC 21.9� 7.7 20.1� 7.3 15.4� 7.8 14.1� 5.6
PMXFRQ 5.51� 3.16 4.01� 2.47 2.80� 2.00 2.56� 1.24
AREA (50%) 133� 107 126� 96 186� 136 173� 110
LFREC (50%) 9.47� 5.01 7.81� 3.68 5.49� 3.89 4.66� 2.17
LTMP (50%) 13.83� 11.65 15.43� 12.65 33.81� 20.73 34.97� 21.80
MINFREC (50%) 3.28� 3.35 3.07� 3.85 2.44� 1.75 2.36� 1.55
MAXFREC (50%) 12.76� 6.04 10.88� 4.65 7.94� 4.32 7.03� 2.13
NAREAS (50%) 1.46� 0.81 1.55� 1.59 1.76� 0.93 1.64� 0.86
DIFFTMP (50%) 5.72� 6.04 5.96� 6.57 8.80� 7.88 9.89� 7.93
TMY (50%) 158.6� 72.2 158.3� 62.6 292� 124 251� 113
TE 6.5E+08�1.0E+09 1.9E+09�5.1E+10 1.2E+10�2.0E+11 9.9E+08�1.7E+09
TEH 5.8E+07�1.0E+08 3.7E+08�1.7E+10 2.9E+09�7.2E+10 1.9E+07�1.0E+08
TEL 5.0E+08�7.2E+08 1.3E+09�2.9E+10 7.4E+09�1.0E+11 8.7E+08�1.4E+09
QTEL 75.4� 10.6 76.7� 11.6 84.8� 9.5 86.0� 10.1
QTEH 12.1� 9.9 7.9� 7.2 4.0� 6.0 2.8� 4.4
CT8 3.6� 1.6 3.8� 1.5 6.3� 1.3 6.0� 1.3
TSNZ 1048� 635 1104� 638 1596� 477 1496� 492
TSNZL 686� 338 723� 332 1250� 345 1197� 346
TSNZH 172� 232 161� 226 125� 177 104� 182
QTL 68.53� 9.70 68.86� 10.17 79.25� 10.01 81.21� 10.66
QTH 15.02� 10.04 12.30� 8.69 6.43� 7.61 5.35� 7.02
MDL8 93.4� 44.3 86.7� 39.5 69.2� 36.8 64.0� 25.4
VDL8 99.2� 43.8 87.9� 38.6 50.3� 29.9 46.7� 21.2
CURVE 0.112� 0.123 0.134� 0.117 0.038� 0.202 -0.008� 0.208

Four classes are labeled with different prior probabilities:
‘NORMAL SINUS RHYTHM’ (p1=40.25%), ‘VF-
FLUTTER’ (p2=10.66%), ‘OTHER RHYTHMS’
(p3=40.25%) and ‘VT’ (p4=8.84%).

3. Methods

Previous parameter reduction techniques were based
on Wilks’ lambda, correlation analysis and discriminant
analysis. In this work, three approaches were used for feature
selection: Principal Component Analysis (PCA), which
provides a preliminary insight in data distribution, Self-
Organizing Maps (SOM-Ward) to get qualitative information
about the structure of data, and Classification and Regression
Trees (CART) to determine the parameter importance
analyzing the surrogate and main splits.

3.1. PCA

This classical linear method is extensively used in variable
selection. Normalization of data to zero mean and unit
variance was strictly necessary to obtain significant results.
PCA considerably improved the significance analysis of
parameters.

3.2. Self-Organizing Maps (SOM-Ward)

Clustering data is a useful technique to identify
homogeneous groups of variables or cases. The usual
methods are based on calculating geometric distances
between patterns such as K-means, hierarchical clustering
and discriminant analysis. This processing pursues that

similar input patterns self–organize in the output space.
This technique, rather than offering a ranking of relevance
variables, yields qualitative information about the structure
itself of the data. A useful technique for assessing clusters
confidence is to inspect the quantization error of a Self-
Organizing Map (SOM) [4] with the classical hierarchical
cluster algorithm of Ward (SOM-Ward-clustering) [5].

3.3. CART

CART, Classification and Regression Tree, is a binary
decision tree algorithm [6], which has two branches at each
internal node. Based on a decade of machine learning
and statistical research, CART provides stable performance
and reliable results [5, 7]. Its proven methodology is
characterized by:
� A pruning strategy. Training the trees does not follow any
stopping rule but an over-growing and then pruning back
methodology.
� A Binary-Split Search Approach. CART’s binary decision
trees are sparing with data and detect efficiently structure in
small data sets.
� Automatic Self-Validation Procedures. In the search for
patterns in databases it is essential to avoid “overfitting,”.
CART’s embedded test disciplines ensure that the patterns
found will hold up when applied to new data.
� Splitting Criteria CART includes five single-variable
splitting criteria - Gini, Symgini, Twoing, Ordered Twoing
and Class Probability for classification trees. The default
Gini method typically performs best, but, given specific
circumstances, other methods can generate more accurate
models. CART’s unique “Twoing” procedure, for example,
is tuned for classification problems with many classes. To
deal more effectively with select data patterns, CART also
offers splits on linear combinations of continuous predictor
variables.

4. Feature selection

4.1. PCA

The analysis of the first three principal components (67%
of explained variance) suggests that variables TE, TEL,
TEH, and CURVE are very poor representations of the data
(Fig. 2a). Accordingly, variables TSNZL, CT8, QTL,
LFREC, MAXFREC and LTMP contain relevant information
in the first principal component.

However, when working with high inter- and intra-subjects
variability, it becomes necessary to assess global PCA results
performing individual PCA. Individual PCA is illustrated in
Fig. 2b. In this case, we make estimations on individual
PCA and extract “mean” information over the population.
Therefore, we can conclude that it is necessary to use, as
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Figure 2. Left: Eigenvector components of the highest
eigenvalue (34% of explained variance). Right: Number
of necessary principal components to explain a given % of
variance.

a mean, six principal components to explain the 90% of
variance and 9 for the 95%. Additionally, we inspected the
correlation matrix between eigenvectors as a function of the
patient and found that most of them were highly correlated.
This procedure helped us to identify three patients with
significantly different features from the rest of the population.
Consequently, results on these patients are undertaken in a
cautious way.

4.2. SOM-Ward Maps

Visualization of SOM-Ward clustering determined
relevant features and data distributions. The optimal
partition was constituted by five clusters. We visualized the
SOM clustering for every feature, as illustrated in Fig. 3.
Some conclusions can be drawn:
� Variables TE, TEL and TEH scatter uniformly in all
clusters out of VT, which indicates that does not contain
discriminant information except for VT separation.
� Variable TSNZ and QTL trace smooth border lines for a
cluster mainly formed with VT and VF. This suggests that
these variables contain high discrimination power of those
pathologies.
� Variable TEL reveals excellent prognosis capabilities since
itself determines cluster ]5, which contains the highest
number of VT samples. This issue was not captured by any
previous statistical method.
� Variables AREA and MAXFREC define specific clusters
which are highly correlated with tachycardia episodes (figure
not shown).

We additionally analyzed the quantization error to assess
the identified clusters. The quantization error is a measure
of how good the data vectors from the source data set are
matched by a specific node. It is computed by the average
of the squared distance of all data records associated with
a node. Averaging over the quantization errors of all nodes
yields the quantization error of the map. The map is well
adapted if the quantization errors are very small and equally
distributed over the map. Table 2 shows results on this test.

Figure 3. SOM-Ward clustering for top: pathology (left)
and TSNZ (right); bottom: TEL (left) and CURVE (right).

We can observe that clusters ]1-]4 contain similar and lower
variability w.r.t. cluster ]5. This may be due to the presence
of badly-fitted VT samples which are mainly associated with
]5. However, despite of being a weak border in terms of SOM
theory, it helped us to identify features associated with VT
patterns.

Table 2. Analysis of the quantization error for each cluster.
Cluster Mean STD Max

DEVIATION

]1 0.073 0.051 0.338
]2 0.050 0.044 0.268
]3 0.138 0.067 0.437
]4 0.106 0.051 0.307
]5 0.374 1.139 5.607

4.3. CART analysis

Analysis of surrogate and main splits in CART yields
valuable information on the relevance of input features.
Table 3 shows ranking of variables according to these
measurements and the classical Wilks’ lambda statistical
analysis. Similar results are obtained in the parameter
relevance list. Confidence on this analysis can be ensured
since classification rates of the best CART achieved
recognition rates higher than 83% in all classes, suggesting
that the underlying differences between classes has been
captured.



Table 3. Analysis of surrogate and main splits in CART and
statistical analysis through Wilks’ lambday.

Variable Main Splits Variable Surrogate Splits Variable Wilks’
Score Score lambda

TSNZL* 100.00 TSNZL* 100.00 TSNZL* .671
LTMP* 89.29 LFREC* 63.52 CT8* .710
CT8 79.93 TE* 43.75 TMY* .724
MAXFREC 79.80 TEL 32.03 QTL* .747
TEL 78.18 CURVE* 31.03 VDL8* .805
TE* 77.69 QTEL 30.21 QTEL* .807
LFREC* 72.78 MAXIMFRE* 17.47 LTMP* .807
TMY* 62.33 MAXFREC 17.34 LFREC* .819
TSNZ 61.63 TEH 16.45 QTEH* .822
MAXIMFRE* 54.83 QTL* 13.37 MAXFREC* .834
QTEH 54.25 TMY* 6.53 QTH .842
QTEL 49.38 PMXFREC* 4.58 CURVE* .849
QTL* 46.43 MDL8 4.38 PMXFREC .863
PMXFREC* 39.40 QTEH 4.10 MAXIMFRE .875
QTH* 36.15 AREA 2.96 TSNZ .911
TEH 33.80 TSNZ 2.59 DISPERSI .924
CURVE* 32.49 LTMP* 2.47 MDL8 .937
TSNZH 23.58 QTH* 1.90 NAREAS .947
MDL8 21.44 VDL8 1.44 MINFREC .964
MINFREC 21.03 TSNZH 1.37 AREA .966
NAREAS 18.72 DISPERSI 0.81 TSNZH .986
VDL8 18.11 MINIMFRE 0.78 MINIMFRE .988
AREA 7.44 MINFREC 0.71 TEL .997
MINIMFRE 3.79 NAREAS 0.25 TE* .998
DISPERSI 1.65 CT8 0.00 TEH .999

y *: Selected Parameters.

5. Results

5.1. Parameter selection

Finally, a pool of all methods considered 10 parameters
to be significant, readily: TSNZL, LTMP, TE, LFREC,
TMY, MAXIMFRE, QTL, PMXFREC, QTH, CURVE. The
decision on parameters kept is taken based on CART, PCA,
SOM, Wilks’ lambda and correlation analysis, which leads
to eliminate some parameters which seem to have a good
behaviour if only one analysis is taken.

5.2. Pathology discrimination

We performed discrimination with all features and
with the ones selected in the previous process using a
detection tree, previously presented in [1]. Patterns were
randomly assigned to two sets; two thirds were used
for training (38605 patterns) and the rest for validating
(19302 patterns) the discrimination tool. The criterion
used to choose the best model was the sum of sensitivity
and specificity applied to the validation set in order to
obtain well-balanced models. All discrimination models
and PCA were developed in MATLABr environment
(Mathworks, Inc). SOM-Ward and CART processing
were carried out using shareware implementations from
http://www.eudaptics.com/ and http://www.
salford-systems.com/, respectively. Statistical
analysis was carried out with SPSS.

Detection based on a detection tree using the reduced set
of parameters (Sensitivity "VF-Flutter": 88.8%, Specificity
"Normal -Other": 94.9%, Spec. "VT": 76.3%) shows better
results compared to a detection tree using classical statistical
parameter selection (Sens. "VF-Flutter": 85.3%, Spec.

"Normal-Other": 95.3%, Spec. "VT": 73.9%). Using this
approach, 10 parameters are used, while previous methods
used 12 parameters and a more complex detection tree. We
can conclude that proposed methods simplify the solution
and improve discrimination scores.

6. Conclusions

This study has proposed the application of data mining
techniques for the selection of parameters to accomplish
effective discrimination of VF pathologies. We showed
that exhaustive inspection of the input space with these
techniques improved results of the posterior discrimination
and reduced the computational cost involved, obtaining
improved detection algorithms due to optimal parameter
selection. Future work will consider to enhance classification
scores by using Support Vector Machines and kernel-based
methods in multi-classification schemes.
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