
Query Acceleration in Presto 
using Sampled Tables - Proposal 

Gurmeet Singh, Uber

1



Goals
- Accelerate queries by using sampled datasets
- Drive adoption by having the engine automatically discover and use the 

sample datasets instead of the user having to know about them.
- Make aggregations like count, sum, approx_distinct return results of the same 

magnitude as the original query
- Explicit opt-in behavior so that the caller knows about it.

Non-Goals

- Creation of sampled datasets. This is just about how to make them known 
and drive adoption.

- Support for all kind of queries. Fail in unsupported cases
- User can’t see the optimized query (except through explain plan) 2



A Connector independent way to declare sample tables
- ConnectorTableMetadata can contain information about sample tables.

- A table can have one or more samples
- Sampling_column means that sampling is done based on a column e.g. keep in 

sample if crc32(xxhash64(to_utf8(column))) % 100 < X where X is the sampling 
percentage

ConnectorTableMetadata
- tablename
- comment
- columns
- properties
- samples

TableSample
- tablename
- sampling_percentage
- sampling_column

3



Declaring sample tables in HMS
In our prototype, for the Hive Connector

- The parent table declares its samples by a property ‘sampled_tables’. This is 
a comma separated list of table names that are its samples

- The sample table declares its sampling percentage and sampling column (if 
any) by properties ‘sampling_pct’ and ‘sampling_column’ respectively defined 
on the sample table.

- The HiveMetadata::getTableMetadata() when loading the parent table 
metadata also populates the samples in the ConnectorTableMetadata based 
on above

4



Table replacement and Auto-scaling Aggregations
- Just replacing the parent tables by the sample tables can make the query 

results wrong when aggregations (sum, count, approx_distinct) are involved
- Aggregations need to be scaled as well
- Whole thing need to work within the optimization framework i.e. 

tablereplaced_and_scaled_plan_root = optimize(plan_root) in order to 
minimize changes to the presto code.

- The optimization is gated by a session flag (so that user can explicitly opt in)

5



Algorithm - TableScanNode

6

TableScanNode
- parentTable

TableScanNode
- sampleTable

- On reaching a table scan node, if the 
table has a sample, then replace the 
node with one for the sample table.

- If replacing, put output variables in a 
map

- The map is between the variable name 
and sampling percentage, sampling 
column (of the sample table)

- The map is passed up the tree

Var1 - <5pc, col1>
Var2 - <5pc, col2>
…
...



Algorithm - Project Node

7

Var7 = abs(Var1)

Var1 - <5pc, col1>
Var2 - <5pc, col1>
…
…
Var7 - <5pc, col1>

- When a project node is assigning a 
new variable based on one that 
exists in the map, then add the 
derived variable to the map too with 
the same pct, column id 



Algorithm - Aggregation Node

8

sum_2 = sum(Var7)

Var1 - <5pc, col1>
Var2 - <5pc, col1>
…
…
Var7 - <5pc, col1>

sum_t = sum(Var7)

sum_2 = sum_t * 20

- An aggregation node that 
is aggregating any of the 
variables in the map, adds 
a project node on top of it 
in order to scale the 
aggregated variable 
(based on the sampling 
pct in the map)

- Only for sum, count, 
approx_distinct kind of 
aggregations

- The name of the scaled 
variable remains the same 
as the original variable so 
as to not impact the 
ancestors in the tree



Fail close 
- The scaling can encounters scenarios when the right behavior is not clear
- Choose to fail the query with an unsupported exception so that the caller 

(outside Presto) can retry the query after removing the session parameter
- This makes the engine behavior very clear

9



Salient features of auto scaling
- All changes in planning (optimizing) stage. Users can see the transformed 

plan using “explain …”.
- The algorithm works only by node local actions and does not require cross 

node interactions. 
- Join nodes can throw exception if both sides of the join are being scaled 

(since joining two sampled sets can be very sparse)
- Filter nodes can prune map if the filtering is happening based on sampling 

column e.g. if a table is sampled on trip_id and query is ‘select …. from table 
where trip_id = xxx’ then there is no point in scaling aggregations in the query

10



Salient features of auto scaling
- count(*) can throw exception since it is an implicit aggregation rather than 

based on certain vars. 
- Some columns can have low cardinality and hence it is not appropriate to 

scale their aggregations. The tablescan node can avoid putting those column 
based variables in the map.

11



Current State
- Prototyped with basic aggregation scaling 

- Need to define rules for join nodes, filter nodes
- Need to handle low cardinality columns

- Need to understand rules for complex nodes like Window etc
- Feedback/comments/suggestions appreciated.

12


