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Goals
- Accelerate queries by using sampled datasets
- Drive adoption by having the engine automatically discover and use the 

sample datasets instead of the user having to know about them.
- Make aggregations like count, sum, approx_distinct return results of the same 

magnitude as the original query
- Explicit opt-in behavior so that the caller knows about it.

Non-Goals

- Creation of sampled datasets. This is just about how to make them known 
and drive adoption.

- Support for all kind of queries. Fail in unsupported cases
- User can’t see the optimized query (except through explain plan) 2



A Connector independent way to declare sample tables
- ConnectorTableMetadata can contain information about sample tables.

- A table can have one or more samples
- Sampling_column means that sampling is done based on a column e.g. keep in 

sample if crc32(xxhash64(to_utf8(column))) % 100 < X where X is the sampling 
percentage

ConnectorTableMetadata
- tablename
- comment
- columns
- properties
- samples

TableSample
- tablename
- sampling_percentage
- sampling_column
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Declaring sample tables in HMS
In our prototype, for the Hive Connector

- The parent table declares its samples by a property ‘sampled_tables’. This is 
a comma separated list of table names that are its samples

- The sample table declares its sampling percentage and sampling column (if 
any) by properties ‘sampling_pct’ and ‘sampling_column’ respectively defined 
on the sample table.

- The HiveMetadata::getTableMetadata() when loading the parent table 
metadata also populates the samples in the ConnectorTableMetadata based 
on above
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Table replacement and Auto-scaling Aggregations
- Just replacing the parent tables by the sample tables can make the query 

results wrong when aggregations (sum, count, approx_distinct) are involved
- Aggregations need to be scaled as well
- Whole thing need to work within the optimization framework i.e. 

tablereplaced_and_scaled_plan_root = optimize(plan_root) in order to 
minimize changes to the presto code.

- The optimization is gated by a session flag (so that user can explicitly opt in)
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Algorithm - TableScanNode
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TableScanNode
- parentTable

TableScanNode
- sampleTable

- On reaching a table scan node, if the 
table has a sample, then replace the 
node with one for the sample table.

- If replacing, put output variables in a 
map

- The map is between the variable name 
and sampling percentage, sampling 
column (of the sample table)

- The map is passed up the tree

Var1 - <5pc, col1>
Var2 - <5pc, col2>
…
...



Algorithm - Project Node
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Var7 = abs(Var1)

Var1 - <5pc, col1>
Var2 - <5pc, col1>
…
…
Var7 - <5pc, col1>

- When a project node is assigning a 
new variable based on one that 
exists in the map, then add the 
derived variable to the map too with 
the same pct, column id 



Algorithm - Aggregation Node
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sum_2 = sum(Var7)

Var1 - <5pc, col1>
Var2 - <5pc, col1>
…
…
Var7 - <5pc, col1>

sum_t = sum(Var7)

sum_2 = sum_t * 20

- An aggregation node that 
is aggregating any of the 
variables in the map, adds 
a project node on top of it 
in order to scale the 
aggregated variable 
(based on the sampling 
pct in the map)

- Only for sum, count, 
approx_distinct kind of 
aggregations

- The name of the scaled 
variable remains the same 
as the original variable so 
as to not impact the 
ancestors in the tree



Fail close 
- The scaling can encounters scenarios when the right behavior is not clear
- Choose to fail the query with an unsupported exception so that the caller 

(outside Presto) can retry the query after removing the session parameter
- This makes the engine behavior very clear
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Salient features of auto scaling
- All changes in planning (optimizing) stage. Users can see the transformed 

plan using “explain …”.
- The algorithm works only by node local actions and does not require cross 

node interactions. 
- Join nodes can throw exception if both sides of the join are being scaled 

(since joining two sampled sets can be very sparse)
- Filter nodes can prune map if the filtering is happening based on sampling 

column e.g. if a table is sampled on trip_id and query is ‘select …. from table 
where trip_id = xxx’ then there is no point in scaling aggregations in the query
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Salient features of auto scaling
- count(*) can throw exception since it is an implicit aggregation rather than 

based on certain vars. 
- Some columns can have low cardinality and hence it is not appropriate to 

scale their aggregations. The tablescan node can avoid putting those column 
based variables in the map.
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Current State
- Prototyped with basic aggregation scaling 

- Need to define rules for join nodes, filter nodes
- Need to handle low cardinality columns

- Need to understand rules for complex nodes like Window etc
- Feedback/comments/suggestions appreciated.
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