
Neutrino
(Super) low latency Presto SQL

Devesh Agrawal, Databricks (formerly Uber)
Bhavani Sudha, Uber

What is Neutrino?
● A federation layer on top of other “online” databases ranging from

Apache-Pinot, AresDB, ElasticSearch, Cassandra, Sharded MySQL etc
● Speaks regular Presto SQL
● A regular microservice: POST SQL Query, Get synchronous answer
● Just another deployment of Presto core: same code, different configs

Neutrino
(query planning, translation, post-processing)

What is Neutrino?

Neutrino
(query planning, translation, post-processing)

Neutrino replicas (stateless)

Client

AresDb Pinot

HTTP on Muttley

Metastore
(schema, capabilities)

Neutrino
(query planning, translation, post-processing)

RTA Connector Schemaless Cassandra

Schemaless Cassandra

Presto Client

Who uses Neutrino at Uber?
● Custom dashboards used by Uber City Operations:

○ Terra: Map of restaurant hotspots in a city
○ Wisdom: Analysis of incoming mobile bug reports
○ uEconomics: Price surge mismatch at city block level granularity

● What do they need ?
○ Fresh real time data
○ Low latencies. Interactive exploration.
○ Usually Geographic visualization

Why Federation/SQL ?
● Futureproofing: Indirection !

○ Easy to evolve backend storage
○ Switch backend engines based based on query shape

● Onboarding:
○ Everybody (should) know SQL already
○ Its googleable.

● Tooling/Dev experience:
○ Easy to iterate on the SQL query vs code
○ Visualization and other “SQL tools” integration
○ Express joins, transformations in SQL instead of code
○ See data bugs quicker
○ Let the optimizer figure out the right join strategy

Neutrino’s key innovations in Presto

● Aggressive and Complete Pushdown
○ Maximally leverage the underlying engine
○ Push down aggregations, group by, even Joins
○ Leverage and enhance Facebook’s connector plan optimizer framework

● Low latency and Microservice
○ Reduce “Presto Overhead” 800 milliseconds to less than 70 milliseconds
○ Neutrino acts as a synchronous REST microservice
○ Neutrino is stateless and trivially scaleable

Innovation 1: Aggressive Pushdown
● Why ?

○ Pulling raw data from underlying engine is too slow (milliseconds instead of a minute)
○ Does not leverage the underlying engine hardware like GPU for AresDB

● Pushdown implemented as optimizer rules:
○ Runs after other optimizers
○ Uses the new “Connector Optimizer” framework that lets connectors optimize the plan

● Result:
○ Can push aggregations, group by, equi joins and spatial joins.
○ Even complex expressions like approx_distinct, approx_percentile
○ Correctly synthesize the underlying engine query using the pushed plan subtree

Innovation 2: Reducing overhead
● Each Neutrino instance is a coordinator+worker combo
● Overhead stemmed from three main sources:

○ HTTP based Task Assignment b/w coordinator to worker (upto 100 ms)
○ HTTP based Result fetching b/w coordinator to worker (upto 100 ms)
○ Superfluous number of stages for a simple “Scan only” query (upto 50 ms)
○ Unnecessary round trips in assigning splits to tasks (upto 50 ms)
○ Remove resource groups to avoid lock contention (upto 25 ms)

Neutrino deployment results at Uber
● Neutrino overheads range from 10ms to 100ms

○ Remaining time is for underlying engine query
○ Query optimization can take upto 70ms

● Same codebase as regular Presto (Hive) with different configs
● Deployed as regular Java microservice on Uber’s uDeploy
● Stateless and Trivially scaleable: HTTP proxy for load balancing
● Integrates with Uber’s monitoring and logging frameworks

Production experience and lessons
● Used by three ops oriented dashboards:

○ Terra: Live Uber Eats restaurant monitoring and map display
○ Wisdom: Live Uber mobile bug reports and exploration
○ uEconomics: Monitoring surge pricing

● Development in progress
○ uGraph: Uber graph engine leveraging the cassandra connector
○ Neutrino for “SQL on microservices”: Querying services using regular SQL

● Lessons
○ Develop with the customer: Close coordination helped prioritize pushdown features
○ Measuring overhead is hard

Output

Project

Aggregate (final)

LocalExchange

Aggregate (partial)

Project

ScanFilterProject

Output

TableScanPipline

(AQL)

{"queries":[{"dimensions":[{"sqlExp

ression":"request_at","timeBucketiz

er":"hour","timeUnit":"second"}],"m

easures":[{"sqlExpression":"count(*

)"}],"table":"eats_trips","timeFilt

er":{"column":"request_at","from":"

1574377013","to":"1574380500","time

Zone":"America/Los_Angeles"}]}

Before AfterQuery

Open Sourcing plan: Push everything upstream !
● All development on prestodb trunk. No forking.
● Connectors:

○ Pinot Connector: Already in PrestoDb trunk
○ AresDB connector: In Progress

● Low latency:
○ Query timeline instrumentation: [PR-13649]
○ Single Stage Plan:
○ Avoid HTTP within local host: In Progress
○ Single shot split assignment:
○ Measuring presto overhead:

● API Changes:
○ Synchronous POST response: [PR-13696]

Outstanding issues and Future directions
● High planning (query optimization) time: Upto 70 milliseconds !

○ Need true query parameterization
○ https://github.com/prestosql/presto/issues/1141

● More connectors:
○ Thrift on Steroids: Seamless and easy SQL over microservices
○ Cassandra, Schemaless, HBase, Elastic Search

● Reducing Latency p99:
○ Making coordinator more push/event based

Thanks to the Presto Community at Facebook !
● Shout out to James, Yi and Saksham
● Your planner refactoring is really what made all this possible
● Great to work with!

○ Very supportive and collaborative
○ Quick review of PR
○ Quick engagement and discussion over IM and in person

Questions ?

