Presto@Twitter Journey to the Cloud and Federation

Maosong Fu, Presto Team@Twitter

Outline

Overview

Presto on Google Cloud Platform (GCP)

Federated Presto

Presto @Twitter

- Clusters on-prem
 - o ad-hoc cluster: ~2000 nodes
 - schedule cluster: ~500 nodes
 - clusters dedicated for heavy Presto customers
 - o and more...
- Clusters on GCP
 - elastic; can scale from 50 to 800 nodes
 - deployed in DataProc

Presto Query @Twitter

- Ad-hoc interactive analysis only
- Data format: Parquet, Izo-thrift
- Daily queries: ~40K
- Daily processed data: ~50PB

Presto on GCP: Performance

Performance: Range Request in GCS connector

- Tested against dataset: ~15PB in parquet format; hourly partitioned with 3000 files each; 500 to 800 MB per file.
- We observed significant read amplification using gcs-connector
 - Presto sees 70 GB/s
 - Google side reports 250 GB/s
 - ~4x read amplification

Performance: Range Request in GCS connector

- The root cause ended up being the streaming range HTTP requests
 - read from the starting point till the end of the file
 - cancel the request when it moves to next range

	Before	After
Parquet Reader	readFully(position, buffer, offset, length)	readFully(position, buffer, offset, length)
GCS Connector	GET https://www.googleapis.com /storage/v1/ RANGE=position-filesize	GET https://www.googleapis.com /storage/v1/ RANGE=position-{position+1 ength}
Read Amplification	~4x	~1x

Presto on GCP: Authentication Authorization Auditing

Authentication & Auditing

- Enabled HTTPS/TLS for client-coordinator communication
 - Internal communication via HTTP
- Integrated Kerberos / LDAP authentication
- Query audit log via Presto Event Listener
 - Audit logs are queryable in Presto

Authorization

- Storage-based security
 - Interrogate the storage (directory) permissions, instead of checking the Metastore for grants
- How it works on-prem with HDFS
 - HDFS Impersonation
- How it works in the Google Cloud
 - No fine-grained impersonation mechanism provided by cloud vendors
 - OAuth token based authorization

Token-based Authorization Made Possible

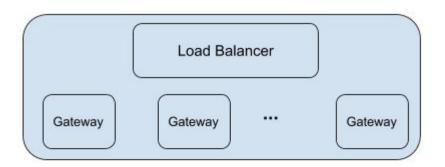
- Client provides its own OAuth token to access GCS buckets
- OAuth token is submitted to Presto coordinator via
 X-Presto-Extra-Credential header
- OAuth token is distributed to Presto worker via X-Presto-Extra-Credential header
- OAuth token is passed to connectors in ConnectorIdentity#extraCredentials

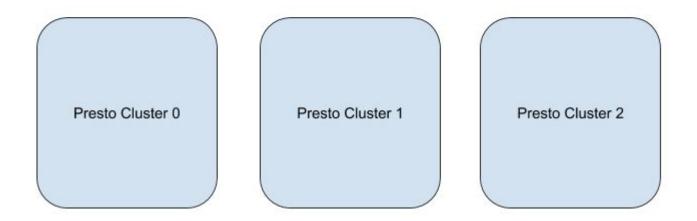
Token-based Authorization Made Possible

- Hive Connector extracts the OAuth token from ConnectorIdentity
- Hive Connector updates the HDFS configuration using
 DynamicConfigurationProvider
- HDFS client reads from GCS with GcsAccessTokenProvider

Even More Possibilities...

- We made the credential pass-through mechanism generic enough that can support lots of different use cases
 - it's implemented as a set of key-value pairs with no namespace
- Enable per-query authorization in JDBC based connector
 - user and password overridden by extra-credentials provided by the client


Federated Presto


Motivation

- Better Scalability
- Better Resource management and isolation
- High Availability and Failure isolation
- Better maintainability: rolling upgrade, auto-scaling, etc.

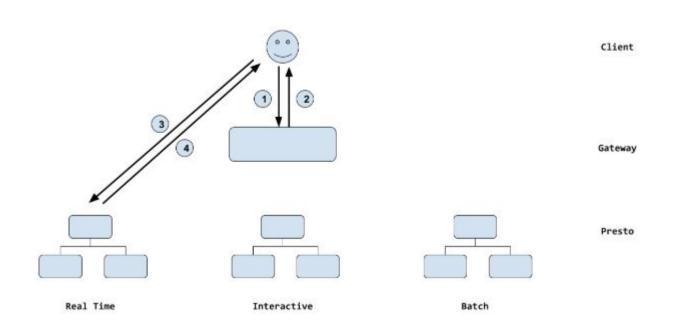
Y Architecture Overview

Federated Presto: Query Dispatching

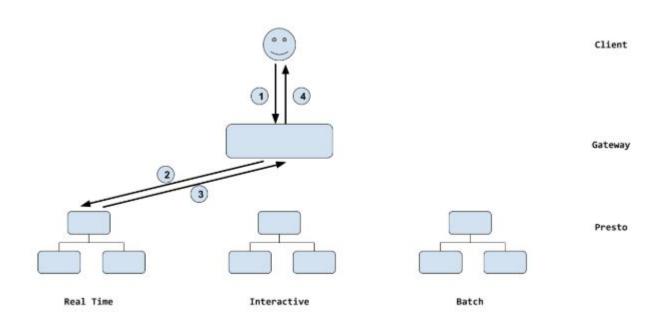
Workload Characterization and Classification

• Real-time

- DATA_DEFINITION
- **DESCRIBE**
- EXPLAIN(analyze=false)


Interactive

- SELECT
- Batch
 - EXPLAIN(analyze=true)
 - **ANALYZE**
 - INSERT
 - DELETE
- Still rooms to improve...


Federated Presto: Protocol

Client Protocol

Alternatives considered: Proxy

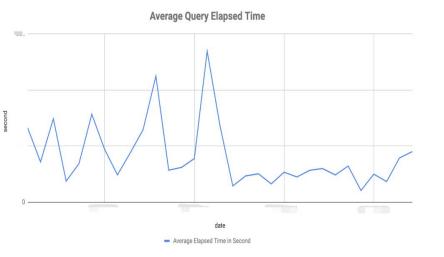
Federated Presto: More

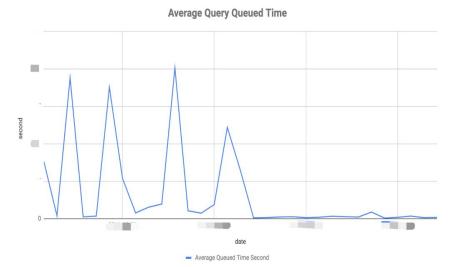
Solling Upgrade/Auto-Scaling

Add a Presto cluster

- a. spin up the Presto cluster completely
- b. add the Presto cluster to the cluster manager in all gateway servers

Remove a Presto cluster


- c. remove the Presto cluster from the cluster manager in all gateway servers
- d. shut down the Presto cluster



Federated Presto: Performance

Performance

- Scaled the Ad-hoc Cluster from ~500 nodes to ~2000 nodes
- Query Elapsed Time: Weekly Average reduced ~3x; Weekly P99 reduced ~4x.
- Query Queued Time: Weekly Average reduced ~10x; Weekly P99 reduced

Thank you.

Q&A

