Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
par/par_bluenoise.h
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
563 lines (509 sloc)
18.5 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// BLUENOISE :: https://github.com/prideout/par | |
// Generator for infinite 2D point sequences using Recursive Wang Tiles. | |
// | |
// In addition to this source code, you'll need to download one of the following | |
// tilesets, the first being 2 MB while the other is 257 KB. The latter cheats | |
// by referencing the point sequence from the first tile for all 8 tiles. This | |
// obviously produces poor results, but in many contexts, it isn't noticeable. | |
// | |
// https://prideout.net/assets/bluenoise.bin | |
// https://prideout.net/assets/bluenoise.trimmed.bin | |
// | |
// The code herein is an implementation of the algorithm described in: | |
// | |
// Recursive Wang Tiles for Real-Time Blue Noise | |
// Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski | |
// ACM Transactions on Graphics 25, 3 (Proc. SIGGRAPH 2006) | |
// | |
// If you use this software for research purposes, please cite the above paper | |
// in any resulting publication. | |
// | |
// EXAMPLE | |
// | |
// Generate point samples whose density is guided by a 512x512 grayscale image: | |
// | |
// int npoints; | |
// float* points; | |
// int maxpoints = 1e6; | |
// float density = 30000; | |
// par_bluenoise_context* ctx; | |
// ctx = par_bluenoise_from_file("bluenoise.bin", maxpoints); | |
// par_bluenoise_density_from_gray(ctx, source_pixels, 512, 512, 1); | |
// points = par_bluenoise_generate(ctx, density, &npoints); | |
// ... Draw points here. Each point is a three-tuple of (X Y RANK). | |
// par_bluenoise_free(ctx); | |
// | |
// Distributed under the MIT License, see bottom of file. | |
#ifndef PAR_BLUENOISE_H | |
#define PAR_BLUENOISE_H | |
#ifdef __cplusplus | |
extern "C" { | |
#endif | |
// ----------------------------------------------------------------------------- | |
// BEGIN PUBLIC API | |
// ----------------------------------------------------------------------------- | |
typedef unsigned char par_byte; | |
// Encapsulates a tile set and an optional density function. | |
typedef struct par_bluenoise_context_s par_bluenoise_context; | |
// Creates a bluenoise context using the given tileset. The first argument is | |
// the file path the bin file. The second argument is the maximum number of | |
// points that you expect to ever be generated. | |
par_bluenoise_context* par_bluenoise_from_file(char const* path, int maxpts); | |
// Creates a bluenoise context using the given tileset. The first and second | |
// arguments describe a memory buffer containing the contents of the bin file. | |
// The third argument is the maximum number of points that you expect to ever | |
// be generated. | |
par_bluenoise_context* par_bluenoise_from_buffer( | |
par_byte const* buffer, int nbytes, int maxpts); | |
// Sets up a scissoring rectangle using the given lower-left and upper-right | |
// coordinates. By default the scissor encompasses [-0.5, -0.5] - [0.5, 0.5], | |
// which is the entire sampling domain for the two "generate" methods. | |
void par_bluenoise_set_viewport( | |
par_bluenoise_context*, float left, float bottom, float right, float top); | |
// Sets up a reference window size. The only purpose of this is to ensure | |
// that apparent density remains constant when the window gets resized. | |
// Clients should call this *before* calling par_bluenoise_set_viewport. | |
void par_bluenoise_set_window(par_bluenoise_context*, int width, int height); | |
// Frees all memory associated with the given bluenoise context. | |
void par_bluenoise_free(par_bluenoise_context* ctx); | |
// Copies a grayscale image into the bluenoise context to guide point density. | |
// Darker regions generate a higher number of points. The given bytes-per-pixel | |
// value is the stride between pixels. | |
void par_bluenoise_density_from_gray(par_bluenoise_context* ctx, | |
const unsigned char* pixels, int width, int height, int bpp); | |
// Creates a binary mask to guide point density. The given bytes-per-pixel | |
// value is the stride between pixels, which must be 4 or less. | |
void par_bluenoise_density_from_color(par_bluenoise_context* ctx, | |
const unsigned char* pixels, int width, int height, int bpp, | |
unsigned int background_color, int invert); | |
// Generates samples using Recursive Wang Tiles. This is really fast! | |
// The returned pointer is a list of three-tuples, where XY are in [-0.5, +0.5] | |
// and Z is a rank value that can be used to create a progressive ordering. | |
// The caller should not free the returned pointer. | |
float* par_bluenoise_generate( | |
par_bluenoise_context* ctx, float density, int* npts); | |
// Generates an ordered sequence of tuples with the specified sequence length. | |
// This is slower than the other "generate" method because it uses a dumb | |
// backtracking method to determine a reasonable density value, and it | |
// automatically sorts the output by rank. The dims argument must be 2 or more; | |
// it represents the desired stride (in floats) between consecutive verts in the | |
// returned data buffer. | |
float* par_bluenoise_generate_exact( | |
par_bluenoise_context* ctx, int npts, int dims); | |
// Performs an in-place sort of 3-tuples, based on the 3rd component, then | |
// replaces the 3rd component with an index. | |
void par_bluenoise_sort_by_rank(float* pts, int npts); | |
#ifndef PAR_PI | |
#define PAR_PI (3.14159265359) | |
#define PAR_MIN(a, b) (a > b ? b : a) | |
#define PAR_MAX(a, b) (a > b ? a : b) | |
#define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v)) | |
#define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; } | |
#define PAR_SQR(a) ((a) * (a)) | |
#endif | |
#ifndef PAR_MALLOC | |
#define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T))) | |
#define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1)) | |
#define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N))) | |
#define PAR_FREE(BUF) free(BUF) | |
#endif | |
#ifdef __cplusplus | |
} | |
#endif | |
// ----------------------------------------------------------------------------- | |
// END PUBLIC API | |
// ----------------------------------------------------------------------------- | |
#ifdef PAR_BLUENOISE_IMPLEMENTATION | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <assert.h> | |
#include <math.h> | |
#include <string.h> | |
#define PAR_MINI(a, b) ((a < b) ? a : b) | |
#define PAR_MAXI(a, b) ((a > b) ? a : b) | |
typedef struct { | |
float x; | |
float y; | |
} par_vec2; | |
typedef struct { | |
float x; | |
float y; | |
float rank; | |
} par_vec3; | |
typedef struct { | |
int n, e, s, w; | |
int nsubtiles, nsubdivs, npoints, nsubpts; | |
int** subdivs; | |
par_vec2* points; | |
par_vec2* subpts; | |
} par_tile; | |
struct par_bluenoise_context_s { | |
par_vec3* points; | |
par_tile* tiles; | |
float global_density; | |
float left, bottom, right, top; | |
int ntiles, nsubtiles, nsubdivs; | |
int npoints; | |
int maxpoints; | |
int density_width; | |
int density_height; | |
unsigned char* density; | |
float mag; | |
int window_width; | |
int window_height; | |
int abridged; | |
}; | |
static float sample_density(par_bluenoise_context* ctx, float x, float y) | |
{ | |
unsigned char* density = ctx->density; | |
if (!density) { | |
return 1; | |
} | |
int width = ctx->density_width; | |
int height = ctx->density_height; | |
y = 1 - y; | |
x -= 0.5; | |
y -= 0.5; | |
float tx = x * PAR_MAXI(width, height); | |
float ty = y * PAR_MAXI(width, height); | |
x += 0.5; | |
y += 0.5; | |
tx += width / 2; | |
ty += height / 2; | |
int ix = PAR_CLAMP((int) tx, 0, width - 2); | |
int iy = PAR_CLAMP((int) ty, 0, height - 2); | |
return density[iy * width + ix] / 255.0f; | |
} | |
static void recurse_tile( | |
par_bluenoise_context* ctx, par_tile* tile, float x, float y, int level) | |
{ | |
float left = ctx->left, right = ctx->right; | |
float top = ctx->top, bottom = ctx->bottom; | |
float mag = ctx->mag; | |
float tileSize = 1.f / powf(ctx->nsubtiles, level); | |
if (x + tileSize < left || x > right || y + tileSize < bottom || y > top) { | |
return; | |
} | |
float depth = powf(ctx->nsubtiles, 2 * level); | |
float threshold = mag / depth * ctx->global_density - tile->npoints; | |
int ntests = PAR_MINI(tile->nsubpts, threshold); | |
float factor = 1.f / mag * depth / ctx->global_density; | |
for (int i = 0; i < ntests; i++) { | |
float px = x + tile->subpts[i].x * tileSize; | |
float py = y + tile->subpts[i].y * tileSize; | |
if (px < left || px > right || py < bottom || py > top) { | |
continue; | |
} | |
if (sample_density(ctx, px, py) < (i + tile->npoints) * factor) { | |
continue; | |
} | |
ctx->points[ctx->npoints].x = px - 0.5; | |
ctx->points[ctx->npoints].y = py - 0.5; | |
ctx->points[ctx->npoints].rank = (level + 1) + i * factor; | |
ctx->npoints++; | |
if (ctx->npoints >= ctx->maxpoints) { | |
return; | |
} | |
} | |
const float scale = tileSize / ctx->nsubtiles; | |
if (threshold <= tile->nsubpts) { | |
return; | |
} | |
level++; | |
for (int ty = 0; ty < ctx->nsubtiles; ty++) { | |
for (int tx = 0; tx < ctx->nsubtiles; tx++) { | |
int tileIndex = tile->subdivs[0][ty * ctx->nsubtiles + tx]; | |
par_tile* subtile = &ctx->tiles[tileIndex]; | |
recurse_tile(ctx, subtile, x + tx * scale, y + ty * scale, level); | |
} | |
} | |
} | |
void par_bluenoise_set_window(par_bluenoise_context* ctx, int width, int height) | |
{ | |
ctx->window_width = width; | |
ctx->window_height = height; | |
} | |
void par_bluenoise_set_viewport(par_bluenoise_context* ctx, float left, | |
float bottom, float right, float top) | |
{ | |
// Transform [-.5, +.5] to [0, 1] | |
left = ctx->left = left + 0.5; | |
right = ctx->right = right + 0.5; | |
bottom = ctx->bottom = bottom + 0.5; | |
top = ctx->top = top + 0.5; | |
// Determine magnification factor BEFORE clamping. | |
float scale = 1000 * (top - bottom) / ctx->window_height; | |
ctx->mag = powf(scale, -2); | |
// The density function is only sampled in [0, +1]. | |
ctx->left = PAR_CLAMP(left, 0, 1); | |
ctx->right = PAR_CLAMP(right, 0, 1); | |
ctx->bottom = PAR_CLAMP(bottom, 0, 1); | |
ctx->top = PAR_CLAMP(top, 0, 1); | |
} | |
float* par_bluenoise_generate( | |
par_bluenoise_context* ctx, float density, int* npts) | |
{ | |
ctx->global_density = density; | |
ctx->npoints = 0; | |
float left = ctx->left; | |
float right = ctx->right; | |
float bottom = ctx->bottom; | |
float top = ctx->top; | |
float mag = ctx->mag; | |
int ntests = PAR_MINI(ctx->tiles[0].npoints, mag * ctx->global_density); | |
float factor = 1.f / mag / ctx->global_density; | |
for (int i = 0; i < ntests; i++) { | |
float px = ctx->tiles[0].points[i].x; | |
float py = ctx->tiles[0].points[i].y; | |
if (px < left || px > right || py < bottom || py > top) { | |
continue; | |
} | |
if (sample_density(ctx, px, py) < (i + 1) * factor) { | |
continue; | |
} | |
ctx->points[ctx->npoints].x = px - 0.5; | |
ctx->points[ctx->npoints].y = py - 0.5; | |
ctx->points[ctx->npoints].rank = i * factor; | |
ctx->npoints++; | |
if (ctx->npoints >= ctx->maxpoints) { | |
break; | |
} | |
} | |
recurse_tile(ctx, &ctx->tiles[0], 0, 0, 0); | |
*npts = ctx->npoints; | |
return &ctx->points->x; | |
} | |
#define freadi() \ | |
*((int*) ptr); \ | |
ptr += sizeof(int) | |
#define freadf() \ | |
*((float*) ptr); \ | |
ptr += sizeof(float) | |
static par_bluenoise_context* par_bluenoise_create( | |
char const* filepath, int nbytes, int maxpts) | |
{ | |
par_bluenoise_context* ctx = PAR_MALLOC(par_bluenoise_context, 1); | |
ctx->maxpoints = maxpts; | |
ctx->points = PAR_MALLOC(par_vec3, maxpts); | |
ctx->density = 0; | |
ctx->abridged = 0; | |
par_bluenoise_set_window(ctx, 1024, 768); | |
par_bluenoise_set_viewport(ctx, -.5, -.5, .5, .5); | |
char* buf = 0; | |
if (nbytes == 0) { | |
FILE* fin = fopen(filepath, "rb"); | |
assert(fin); | |
fseek(fin, 0, SEEK_END); | |
nbytes = (int) ftell(fin); | |
fseek(fin, 0, SEEK_SET); | |
buf = PAR_MALLOC(char, nbytes); | |
int consumed = (int) fread(buf, nbytes, 1, fin); | |
assert(consumed == 1); | |
fclose(fin); | |
} | |
char const* ptr = buf ? buf : filepath; | |
int ntiles = ctx->ntiles = freadi(); | |
int nsubtiles = ctx->nsubtiles = freadi(); | |
int nsubdivs = ctx->nsubdivs = freadi(); | |
par_tile* tiles = ctx->tiles = PAR_MALLOC(par_tile, ntiles); | |
for (int i = 0; i < ntiles; i++) { | |
tiles[i].n = freadi(); | |
tiles[i].e = freadi(); | |
tiles[i].s = freadi(); | |
tiles[i].w = freadi(); | |
tiles[i].subdivs = PAR_MALLOC(int*, nsubdivs); | |
for (int j = 0; j < nsubdivs; j++) { | |
int* subdiv = PAR_MALLOC(int, PAR_SQR(nsubtiles)); | |
for (int k = 0; k < PAR_SQR(nsubtiles); k++) { | |
subdiv[k] = freadi(); | |
} | |
tiles[i].subdivs[j] = subdiv; | |
} | |
tiles[i].npoints = freadi(); | |
tiles[i].points = PAR_MALLOC(par_vec2, tiles[i].npoints); | |
for (int j = 0; j < tiles[i].npoints; j++) { | |
tiles[i].points[j].x = freadf(); | |
tiles[i].points[j].y = freadf(); | |
} | |
tiles[i].nsubpts = freadi(); | |
tiles[i].subpts = PAR_MALLOC(par_vec2, tiles[i].nsubpts); | |
for (int j = 0; j < tiles[i].nsubpts; j++) { | |
tiles[i].subpts[j].x = freadf(); | |
tiles[i].subpts[j].y = freadf(); | |
} | |
// The following hack allows for an optimization whereby | |
// the first tile's point set is re-used for every other tile. | |
// This goes against the entire purpose of Recursive Wang Tiles, | |
// but in many applications the qualatitive loss is not | |
// observable, and the footprint savings are huge (10x). | |
if (tiles[i].npoints == 0) { | |
ctx->abridged = 1; | |
tiles[i].npoints = tiles[0].npoints; | |
tiles[i].points = tiles[0].points; | |
tiles[i].nsubpts = tiles[0].nsubpts; | |
tiles[i].subpts = tiles[0].subpts; | |
} | |
} | |
free(buf); | |
return ctx; | |
} | |
par_bluenoise_context* par_bluenoise_from_file(char const* path, int maxpts) | |
{ | |
return par_bluenoise_create(path, 0, maxpts); | |
} | |
par_bluenoise_context* par_bluenoise_from_buffer( | |
par_byte const* buffer, int nbytes, int maxpts) | |
{ | |
return par_bluenoise_create((char const*) buffer, nbytes, maxpts); | |
} | |
void par_bluenoise_density_from_gray(par_bluenoise_context* ctx, | |
const unsigned char* pixels, int width, int height, int bpp) | |
{ | |
ctx->density_width = width; | |
ctx->density_height = height; | |
ctx->density = PAR_MALLOC(unsigned char, width * height); | |
unsigned char* dst = ctx->density; | |
for (int j = 0; j < height; j++) { | |
for (int i = 0; i < width; i++) { | |
*dst++ = 255 - (*pixels); | |
pixels += bpp; | |
} | |
} | |
} | |
void par_bluenoise_density_from_color(par_bluenoise_context* ctx, | |
const unsigned char* pixels, int width, int height, int bpp, | |
unsigned int background_color, int invert) | |
{ | |
unsigned int bkgd = background_color; | |
ctx->density_width = width; | |
ctx->density_height = height; | |
ctx->density = PAR_MALLOC(unsigned char, width * height); | |
unsigned char* dst = ctx->density; | |
unsigned int mask = 0x000000ffu; | |
if (bpp > 1) { | |
mask |= 0x0000ff00u; | |
} | |
if (bpp > 2) { | |
mask |= 0x00ff0000u; | |
} | |
if (bpp > 3) { | |
mask |= 0xff000000u; | |
} | |
assert(bpp <= 4); | |
for (int j = 0; j < height; j++) { | |
for (int i = 0; i < width; i++) { | |
unsigned int val = (*((unsigned int*) pixels)) & mask; | |
val = invert ? (val == bkgd) : (val != bkgd); | |
*dst++ = val ? 255 : 0; | |
pixels += bpp; | |
} | |
} | |
} | |
void par_bluenoise_free(par_bluenoise_context* ctx) | |
{ | |
free(ctx->points); | |
for (int t = 0; t < ctx->ntiles; t++) { | |
for (int s = 0; s < ctx->nsubdivs; s++) { | |
free(ctx->tiles[t].subdivs[s]); | |
} | |
free(ctx->tiles[t].subdivs); | |
if (t == 0 || !ctx->abridged) { | |
free(ctx->tiles[t].points); | |
free(ctx->tiles[t].subpts); | |
} | |
} | |
free(ctx->tiles); | |
free(ctx->density); | |
} | |
int cmp(const void* a, const void* b) | |
{ | |
const par_vec3* v1 = (const par_vec3*) a; | |
const par_vec3* v2 = (const par_vec3*) b; | |
if (v1->rank < v2->rank) { | |
return -1; | |
} | |
if (v1->rank > v2->rank) { | |
return 1; | |
} | |
return 0; | |
} | |
void par_bluenoise_sort_by_rank(float* floats, int npts) | |
{ | |
par_vec3* vecs = (par_vec3*) floats; | |
qsort(vecs, npts, sizeof(vecs[0]), cmp); | |
for (int i = 0; i < npts; i++) { | |
vecs[i].rank = i; | |
} | |
} | |
float* par_bluenoise_generate_exact( | |
par_bluenoise_context* ctx, int npts, int stride) | |
{ | |
assert(stride >= 2); | |
int maxpoints = npts * 2; | |
if (ctx->maxpoints < maxpoints) { | |
free(ctx->points); | |
ctx->maxpoints = maxpoints; | |
ctx->points = PAR_MALLOC(par_vec3, maxpoints); | |
} | |
int ngenerated = 0; | |
int nprevious = 0; | |
int ndesired = npts; | |
float density = 2048; | |
while (ngenerated < ndesired) { | |
par_bluenoise_generate(ctx, density, &ngenerated); | |
// Might be paranoid, but break if something fishy is going on: | |
if (ngenerated == nprevious) { | |
return 0; | |
} | |
// Perform crazy heuristic to approach a nice density: | |
if (ndesired / ngenerated >= 2) { | |
density *= 2; | |
} else { | |
density += density / 10; | |
} | |
nprevious = ngenerated; | |
} | |
par_bluenoise_sort_by_rank(&ctx->points->x, ngenerated); | |
if (stride != 3) { | |
int nbytes = sizeof(float) * stride * ndesired; | |
float* pts = PAR_MALLOC(float, stride * ndesired); | |
float* dst = pts; | |
const float* src = &ctx->points->x; | |
for (int i = 0; i < ndesired; i++, src++) { | |
*dst++ = *src++; | |
*dst++ = *src++; | |
if (stride > 3) { | |
*dst++ = *src; | |
dst += stride - 3; | |
} | |
} | |
memcpy(ctx->points, pts, nbytes); | |
free(pts); | |
} | |
return &ctx->points->x; | |
} | |
#undef PAR_MINI | |
#undef PAR_MAXI | |
#endif // PAR_BLUENOISE_IMPLEMENTATION | |
#endif // PAR_BLUENOISE_H | |
// par_bluenoise is distributed under the MIT license: | |
// | |
// Copyright (c) 2019 Philip Rideout | |
// | |
// Permission is hereby granted, free of charge, to any person obtaining a copy | |
// of this software and associated documentation files (the "Software"), to deal | |
// in the Software without restriction, including without limitation the rights | |
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
// copies of the Software, and to permit persons to whom the Software is | |
// furnished to do so, subject to the following conditions: | |
// | |
// The above copyright notice and this permission notice shall be included in | |
// all copies or substantial portions of the Software. | |
// | |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
// SOFTWARE. |