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SUPPLEMENTARY MATERIALS 
 
METHODS SUPPLEMENT 
 
GWAS Study design and risk locus discovery 
 
Three primary sources of data were used for discovery analyses, these include three previously 
published studies, 13 new datasets, and proxy-case data from the UK BioBank (UKB). Previous 
studies include summary statistics from the meta-analyses of GWAS published in Nalls et al. 
2014, GWAS summary statistics from the 23andMe Web-Based Study of Parkinson's Disease 
(PDWBS) cohort described in Chang et al. 2017, and the publicly available NeuroX dataset from 
the International Parkinson’s Disease Genomics Consortium (IPDGC) that had been used in the 
two prior publications as a replication sample. These cohorts have been reported in detail 
elsewhere (1,2). We also included 13 new case-control sample series for meta-analyses 
through either publicly available data or collaborations (please see Supplementary Table S1 for 
details regarding these studies). All new samples from the 13 new datasets underwent similar 
standardized quality control for inclusion, mirroring that of the previous studies (3).  
 
For each dataset we attempted to generate summary statistics for GWAS meta-analyses as 
uniformly as possible. We used additive allele dosages from imputation in a logistic regression 
framework adjusting for age at onset in cases (age at most recent examination for controls), 
biological sex and up to the first five principal components from stepwise modeling per cohort to 
account for population substructure. The System Genomics of Parkinson’s Disease (SGPD) 
study did not use logistic regression, instead mixed modeling was used due to sample 
relatedness. UKB data was analyzed slightly differently from standard case-control GWAS 
because of the use of proxy cases. In the UKB, genome-wide association study by proxy 
(GWAX) was carried out as per Liu (4), adjusting for age, sex, the first ten principal components, 
genotyping batch and Townsend index(5). Similar to previous publications, study-level summary 
statistics were filtered for inclusion criteria of imputation quality score > 0.3 and MAF > 1% 
(1,2,6).  We retained 2 variants for study below the MAF minimum of 1%, these include known 
coding risk factors rs34637584 (LRRK2, p.G2019S) and rs76763715 (GBA, p.N370S). Our 
GWAS meta-analyses spanned all three data sources (previously published case-control 
datasets, new case-control datasets and proxy-case data from the UKB) including 37,688 
cases, 18,618 proxy-cases and 1,474,097 controls with data for 7,784,415 SNPs that passed 
inclusion filtering. This analysis utilized fixed-effects meta-analyses as implemented in METAL 
to combine summary statistics across all sources (7). 
 
Samples and quality control 
 
Initial sample inclusion criteria include: age at disease onset or last examination at 18 years of 
age or older, minimum sample call rate of >95%, majority European ancestry confirmed through 
principal-components, no genetically ascertained relation to other samples in the meta-analysis 
(proportional sharing at a maximum of 12.5%) at the cousin level or closer (except in the case of 
the System Genomics of Parkinson's Disease (SGPD) which utilized mixed modeling to account 
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for related samples) and no heterozygosity outliers past +/- 15% (quantified by F estimates in 
PLINK)(8) . Studies from IPDGC collaborators (including previously published series) and those 
in publicly available databases were checked for relatedness and duplicates using identity-by-
descent filtering to remove related samples both within and across datasets contributing to this 
effort (also using PLINK to generate PI_HAT estimates of relatedness and excluding samples 
with > 12.5% PI_HAT). All publicly available datasets and newly genotyped IPDGC datasets 
were clustered to identify cryptically related samples between each other as well as the UKB 
using similar methods in PLINK.  These studies screened for relatedness at the National 
Institute on Aging site include: Baylor College of Medicine / University of Maryland, Finnish 
Parkinson's, Harvard Biomarker Study (HBS), McGill Parkinson's, Oslo Parkinson's Disease 
Study, Parkinson's Disease Biomarker's Program (PDBP), Parkinson's Progression Markers 
Initiative (PPMI), Spanish Parkinson's (from IPDGC), Tubingen Parkinson's Disease cohort 
(CouragePD), Vance (dbGap phs000394), UK PDMED (CouragePD), UK BioBank (UKB), 
IPDGC (Nalls et al. 2014 discovery phase) and NeuroX - dbGaP (phs000918.v1.p1). If a sample 
overlapped in two studies, it was removed from the larger study.  Samples derived from 
23andMe were checked internally for relatedness both among themselves and publicly available 
PD datasets using similar methods as previously described in earlier publications before being 
incorporated into this analysis (studies included in Nalls et al 2014, as well as the NeuroX-
dbGaP, HBS, PPMI, PDBP, UKB) (1,9).  There is a low likelihood for overlap between the 
SGPD and IPDGC samples due to geographic differences in sample collection (Australia versus 
Europe and North America). This is summarized in Supplementary Table S1. 
 
For case diagnosis, all of the new cases, except for the post-Chang et al. dataset from 
23andMe, conformed to the generally used criteria of a clinic visit and standard UK Brain Bank 
criteria with a modification to allow the inclusion of cases that had a family history of PD. In the 
most recent dataset from 23andMe (post-Chang et al.) cases were ascertained via the criteria of 
self-report of diagnosis, similar to previous publications (1,9,10). Status as “post-Chang” is 
denoted by enrollment as a case at a time after the analysis for the PDWBS closed. Post-Chang 
23andMe samples were imputed using a combination of Finch for phasing (an in-house 
developed fork of Beagle) and miniMac2 for imputation with all-ethnicity samples from the 
September 2013 release of 1000 Genomes Phase1 as reference haplotypes(11–13).  Both the 
Finnish Parkinson's study and post-Chang sample series used population controls to some 
degree, with inclusion criteria of no self-report of neurological disease, memory loss, tremor or 
family history of PD when available. UKB proxy-cases were defined as the report of a first 
degree relative with PD and no International Classification of Diseases (ICD-10) or self-report of 
actual PD. UKB cases with self-reported PD were excluded, this includes 727 cases that self-
reported PD without family history to keep the GWAX analysis homogenous and parsimonious. 
UKB controls were free of first degree family history of PD or PD by self-report or ICD-10 
designation. No censoring was made on parent age in the UKB. Additional summary statistics 
were generated for the UKB censoring on those who answered “Do not know” or “Prefer not to 
answer” to any of the possible illnesses.  This reduced control counts down to 369,711. The 
reduced UKB results were highly correlated with the larger set included in all analyses (rG = 
0.9865, SE = 0.0011), so we opted to utilize the results including more samples. All participants 
donated DNA samples and provided informed consent for participation in genetics studies. 
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Prior to imputation, SNPs were filtered using similarly uniform criteria for inclusion, such as: 
minimum genotype call rate of >95%, a minor allele frequency (MAF) of >0.1%, a Hardy-
Weinberg equilibrium P values >1 E-04 in controls (1% MAF and HWE p>1E-06 for SGPD), and 
non-random missingness by phenotype or haplotype at P values of >1E-04. Palindromic SNPs 
were also removed. The Nalls et al. 2014 and Chang et al. 2017 samples were imputed with 
Minimac2 using 1000 Genomes phase 1 haplotypes (13). All additional sample series except for 
the post-Chang et al. 2017 samples from 23andMe were imputed using the Haplotype 
Reference Consortium (HRC) on the University of Michigan imputation server under default 
settings with Eagle v2.3 phasing and minimac4 imputation based on reference panel HRC r1.1 
2016(14,15). UKB genotype data for proxy-cases and controls was downloaded in April 2018 as 
provided by the analysis group at the Wellcome Trust Centre for Human Genetics at the 
University of Oxford and is fully detailed at http://biobank.ctsu.ox.ac.uk(16). 
 
Study-level analyses and meta-analyses  
 
Summary statistics for each study were generated uniformly using additive allele dosages from 
imputation in a logistic regression framework adjusting for age at onset in cases (age at most 
recent examination for controls), biological sex and up to the first five principal components from 
stepwise modeling per cohort. The SGPD study did not use logistic regression, as an inclusion 
of related samples required mixed modeling. The Finnish Parkinson's study was unable to 
include age as a covariate due to collinearity issues as the controls were significantly older than 
the cases. Age at onset or last exam data was not available for the UK PDMED dataset. Age at 
last exam was used for the Oslo Parkinson's Disease Study dataset.  
 
UKB data was analyzed slightly differently from standard case-control GWAS because 
phenotypes were available on relatives of the individuals with genotypes. Genome-wide 
association study by proxy (GWAX) was carried out as per Liu (4), adjusting for age, sex, the 
first ten principal components, genotyping batch and Townsend index(5). GWAX is a analysis 
method shown to carry out reliable and generalizable association analyses on biobank / 
population scale data utilizing at-risk samples instead of true cases.  Summary statistics were 
also filtered at a MAF > 1% for inclusion. Per SNP effect estimates were transformed using the 
method from Lloyd-Jones et al. assuming the lifetime probability of disease (K) at 0.02 and then 
converted to standard case-control scale (with the total proxy cases equivalent to ~4.5K cases) 
(17). 
 
Similar to previous publications, study-level summary statistics were filtered for inclusion criteria 
of reasonable beta estimates imputation quality score > 0.3 and MAF > 1% (1,6,9).  We retained 
2 variants for study below the MAF minimum of 1%, these include known coding risk factors 
include rs34637584 (LRRK2, p.G2019S) and rs76763715 (GBA, p.N370S). Our GWAS meta-
analyses spanned all three data sources (previously published case-control datasets, new case-
control datasets and proxy-case data from the UKB) including 37,688 cases, 18,618 proxy-
cases and 1,474,097 controls with data for 7,784,415 SNPs that passed inclusion filtering. 
Inclusion filtering included variants seen in at least five of the 17 sets of summary statistics and 
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differences in the per variant minimum and maximum MAFs across all studies at less than the 
99th percentile (< 15% frequency differences). Four of the studies involved in our meta-analysis 
were genotyped using the NeuroX array, which is enriched for PD risk loci (see Supplementary 
Table S1) (18). The motivation for choosing five out of 17 studies was to reduce potential bias 
due to targeted genotyping in the four NeuroX array studies.  
 
Overall genomic inflation was minimal with a raw lambda estimate of 1.170 and a lambda scaled 
to 1,000 cases and 1,000 controls at 1.002(18–20).  Well behaved lambda estimates in 
conjunction with an LD score intercept of 0.991 and a number of well replicated risk loci 
spanning larger tracts of the genome (i.e. MAPT and HLA/MHC), led us to not implement 
genomic control on the meta-analysis level. All quality control metrics on a per study basis 
including lambda estimates across strata of minor allele frequencies are summarized in 
Supplementary Table S1. 
 
As previously stated, we did not correct for genomic control. Both the previous datasets and 
new datasets exhibited LD score regression intercepts close to 1, with 0.988 for the previous 
datasets and 0.975 for the new datasets, suggesting that our results are unlikely to be due to 
population stratification (21).  As detailed in Supplementary Table S1, scaled lambdas were 
acceptable across the allele frequency spectrum with minor inflations for studies using 
genotyping arrays with targeted PD-centric content.  
 
We also queried the 17 novel variants of interest from Chang et al., 2017 for their inclusion 
under GWAS peaks from this report(9). We identified proxy variants tagging genome-wide 
significant peaks in this report (Supplementary Tables S2).  Pairwise linkage disequilibrium was 
calculated from the European subset of the 1000 genomes data. Proxies are summarized in 
Supplementary Table S3. Four loci are directly validated using the same SNPs, 6 are tagged by 
a strong proxy (r2 > 0.8), 4 tagged by a weaker proxy (0.2 < r2 < 0.5) and an additional 3 with no 
genome-wide significant proxy within 500kb observed (rs353116, rs143918452 and 
rs78738012).  One missing variant, rs78738012, is tagged under one of our peaks of interest by 
a SNP not passing genome-wide significance near the gene CAMK2D. The two untagged 
variants are likely due to expanding our analysis past genotyped SNPs from the NeuroX array 
and utilizing updated imputation references. 
 
Conditional-joint analysis to nominate variants of interest 
 
To nominate variants of interest, we employed a conditional and joint analysis strategy (GCTA-
COJO, http://cnsgenomics.com/software/gcta/) as a means to algorithmically identify variants 
that best account for the heritable variation within and across nearby loci(22). This is particularly 
useful in scenarios where only basic summary statistics are available for a majority of samples 
in a meta-analysis and additional participant level analyses are logistically prohibitive. For this 
analysis, we used the full meta-analysis summary statistics in conjunction with the largest single 
site collection of HRC-level imputed PD and control data as a reference for linkage 
disequilibrium patterns in the conditional-joint workflow (described below and in the Methods 
Supplement). 
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Using the consensus IPDGC data cleaning and imputation workflow, we assembled a reference 
set of 17,188 cases and 22,875 controls at variants overlapping with the locus discovery 
analysis results that passed quality control on average in 74.3% of samples incorporating soft 
call genotypes at a minimum imputation quality of 0.30. This set includes data from all samples 
described in Supplementary Table S1, except the 23andMe post-Chang et al., SGPD, UK 
PDMED and UKB sample series. This aggregate dataset included previously described samples 
series such as the Dutch GWAS, German, UK and US IPDGC series plus the NeuroX-dbGaP 
and Myers-Faroud datasets from dbGaP(18,23,24). We assembled this large PD-specific LD 
reference to help better ascertain LD patterns at PD loci, particularly the LRRK2 and GBA regions where 
rarer risk variants are located. The COJO analysis was run using default analysis parameters 
including a significance threshold of P < 5E-8 and a window specification of 1 megabase.  
Additional analyses described below were utilized to further scrutinize putative associated 
variants and account for possible differential linkage disequilibrium (LD) signatures in multiple 
ways, including utilizing the massive single site reference data from 23andMe in further 
conditional analyses. If a variant nominated during the COJO phase of analysis was greater 
than 1 megabase from any of the genome-wide significant loci nominated in Chang et al. 2017, 
we considered this to be a novel locus. 
 
Additional filtering of nominated variants 
 
We instituted two additional filters after fixed-effects and COJO analyses. These additional 
filters exclude variants that 1) had a random-effects P value across all datasets > 4.67E-04 and 
2) a conditional analysis P > 4.67E-04 using participant level 23andMe genotype data. This 
Bonferroni multiple testing threshold is based on up to 107 nominated variants at this stage of 
filtering, of which 90 passed these criteria. Random-effects meta-analysis P values were 
generated under the residual maximum likelihood method using the R package metafor(25). 
Forest plots for all loci of interest are available in the Supplemental Appendix. Conditional 
analyses were carried out using 23andMe pooled data analyses including all available 23andMe 
data (from Nalls et al. 2014, PDWBS and the post-Chang et al. 2017 datasets combined). For 
the participant level conditional analyses in 23andMe, all nominated variants per chromosome 
were included in a single logistic regression model with appropriate covariates, then parameter 
estimates per variant were extracted. Conditional analyses on a per chromosome interval 
instead of a locus or megabase interval should adjust for possible longer range LD associations.  
For more information on variant filtering, please see Supplementary Table S2 summarizing all 
variants nominated.  We defined nominated risk variants as sharing a single locus if they are 
within +/- 250kb of each other. 
 
Additional sensitivity analyses 
 
Mirroring our previous workflows used in the initial meta-analysis, we conducted 17 “leave-one-
out” meta-analyses (LOOMA), excluding one dataset’s summary statistics each time. We also 
carried out a similar set of meta-analyses separately for previously published data versus the 
combined set of 14 unpublished case-control and proxy-case datasets. 
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We employed a number of sensitivity analyses to further investigate our data and results as 
opposed to using a two-stage study design in order to maximize discovery power. LD score 
regression was utilized to calculate the genetic correlation between the meta-analysis of 
previously published datasets and the meta-analysis of the 14 unpublished datasets(21).  
Additionally, all datasets described in Supplementary Table S1 were meta-analyzed using fixed-
effects, stratified by diagnostic criteria of either self-reported PD (post-Chang and PDWBS) or 
clinically ascertained PD (all other datasets excluding data from the UKB and Nalls et al. 2014).  
Summary statistics stratified by diagnosis were then used to compare genetic correlations 
across clinically defined, self-reported and proxy-case derived datasets using LD score 
regression. 
 
Due to the relatively small sample sizes of many of the datasets involved in this study, we could 
not run LD score regression on all combinations of LOOMAs. Instead, we opted to calculate 
linear regression models comparing the beta coefficients for the left-out dataset with the beta 
coefficients from a meta-analysis of the remaining (non-left out) datasets, stratified by all, novel 
and known PD risk loci. 
 
Similar to above, we calculated random-effects meta-analysis p-values using the residual 
maximum likelihood method in the R package metafor. We also generated forest plots from this 
analysis that reflect the distributions of effect estimates across studies per SNP, summarized by 
the index of heterogeneity (I2) statistics in Table 1 and Supplementary Table S2.  This statistic 
estimates possible variance accounted for by study heterogeneity.  
 
Final sensitivity analyses included “leave-one-out” meta-analyses (LOOMA) comparisons of 
each dataset to a meta-analysis of the remaining datasets. This analysis focused on comparing 
the log odds ratios (termed beta here) per SNP identified in  the GWAS analyses across all 
cohorts. After adjusting for multiple test correction for 17 tests (P < 0.003 for significance) in 
regressions of up to 90 betas per iteration, we noted only 5 departures from significant 
correlations between the withheld and included datasets. These non-significant results included 
only novel loci in the Baylor / University of Maryland dataset, the Finnish Parkinson’s dataset, 
the Harvard Biomarker Study (HBS), the Parkinson’s Disease Biomarkers Program (PDBP) and 
the Parkinson's Progression Markers Initiative (PPMI).  For these five studies, correlations were 
significant in the known and all loci strata of variants. This is likely be related to statistical power 
for detecting recently identified risk variants in this subset of smaller studies. While there may be 
some caution in utilizing UKB proxy-cases, our data shows that the UKB data was significantly 
representative of other datasets, with high r2 estimates across novel (r2 = 0.714, 38 variants), 
known (r2 = 0.897, 47 variants) and all variants strata (r2 = 0.866, 85 variants) in the LOOMAs. 
We view these LOOMAs as a means of detecting an outlier study and estimating generalizability 
in the context of the 90 nominated variants.  Forest plots included in the Supplemental Appendix 
compare each study on a per variant basis. 
 
Refining heritability estimates and determining extant genetic risk 
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The primary tool for risk profiling used here was the R package PRSice2(26). This package 
carries out polygenic risk score (PRS) profiling in the standard weighted allele dose manner as 
we have previously described (1,2,6,27–30). In addition, PRSice incorporates permutation 
testing where case and control labels are swapped in the withheld samples to generate an 
empirical P. This workflow identifies the best P thresholds for variant inclusion while 
simultaneously carrying out LD pruning. In many cases this best P threshold for PRS 
construction is below what is commonly regarded as genome-wide significant.This workflow 
also uses P value aware LD pruning to facilitate identifying the best P thresholds for variant 
inclusion into the PRS below what is commonly regarded as genome-wide significance levels.  
PRS analyses were conducted in sample series with readily accessible participant level IPDGC 
GWAS data. 
 
A two stage design was also employed, training on the largest single array study (NeuroX-
dbGaP) and then tested on the second largest study (HBS) using the same array.  These two 
targeted array studies were chosen for three reasons: precedent in the previous publications 
where the NeuroX-dbGaP dataset was used in PRS comparisons; direct genotyping of larger 
effect rare variants in GBA and LRRK2; participant level genotypes for these datasets are 
publicly available.  
 
To facilitate risk profiling analyses with less bias, we regenerated the meta-analysis summary 
statistics excluding the NeuroX-dbGaP and HBS datasets.  To select SNPs we ran the PRSice 
workflow, utilizing beta weights from the meta-analyses excluding our studies of interest. LD 
clumping was carried out under recommended default settings (window size = 250kb, r2 > 0.1). 
Next 10,000 permutations were used to generate empirical P estimates for each GWAS derived 
P threshold ranging from 5E-08 to 1E-04, by increments of 5E-08, then again with GWAS 
derived P thresholds from 1E-04 to 0.5 by increments of 1E-04. For each iteration of the 
permutation tests in the training dataset, Nagelkerke’s pseudo r2 estimates between the PRS 
and PD were estimated, after adjustment for an estimated prevalence of 0.5% and study-
specific eigenvectors 1-5, age and sex as covariates; this prevalence was chosen as a 
conservative estimate based on global estimates of disease (31). All variant clumping and P 
thresholding was done using the NeuroX-dbGaP dataset before testing the PRS in the HBS 
dataset. Then the summary statistics for these SNPs of interest (1805 overlapping with the HBS 
dataset after QC) were extracted from the meta-analysis excluding HBS to generate variant 
weights for the validation phase of analysis. Next the PRS was tested in the HBS dataset.  After 
this, we also reduced the PRS SNPs to just 90 variants reported as independent GWAS risk 
variants.  We then repeated this workflow using the 88 SNPs passing QC in HBS as an 
additional test. 
 
Areas under the curve and related metrics for predictive models based on the PRS were 
generated by utilizing the best threshold of the receiver operator curve per study, denoted by 
the top-left most point of the curve, thus maximizing classification accuracy. To calculate 
heritability in clinically defined PD datasets, we also used LD score regression under default 
settings, also employing the LD references for Europeans provided with the software(21). This 
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workflow was also repeated on a per cohort level and is detailed in the Supplementary 
Appendix. 
 
To prevent bias, we estimated the effect size of each SNP contributing to the PRS using a 
meta-analysis of all PD GWAS datasets except NeuroX-dbGAP and HBS. Using permutation 
testing in the NeuroX-dbGAP training cohort, we found that the optimal P threshold for variant 
inclusion was 1.35E-03, which included 1809 variants after LD pruning. Two PRSs were tested 
in HBS, one limited to 88 of the 90 genome-wide significant variants (two variants failed to pass 
quality control in the HBS study), and the other incorporating 1805 variants from the training 
phase (four variants failed to pass quality control in HBS due to low imputation quality). The 88 
variant PRS had an area under the curve (AUC) of 0.651 (95% CI 0.617 - 0.684), while the 1805 
variant PRS had an AUC of 0.692 (95% CI 0.660 - 0.725) in the test data from HBS. The AUCs 
from our 88 variant PRS in both the NeuroX-dbGAP cohort and the HBS cohort were 
significantly larger than the AUCs in those same cohorts using a published PRS (Chang et al. 
2017, AUC = 0.624, P < 0.002 from DeLong’s test). Although the HBS cohort was used to 
discover the 90 PD GWAS risk variants, therefore potentially biasing our 88 variant PRS, all 90 
variants remained genome-wide significant in a meta-analysis of all GWAS datasets excluding 
the HBS study. A possible contributor to the higher AUC in the test set compared to training set 
is the higher frequency of the large effect LRRK2 p.G2019S variant carriers in the HBS dataset 
(0.50%) versus the NeuroX-dbGaP dataset (0.26%). Extended results for all included studies 
can be found in the Supplementary Appendix. 
 
Functional causal inferences via Quantitative Trait Loci (QTL)Mendelian randomization to 
infer functional consequences 
 
We used MR to test whether changes in methylation and RNA expression of genes physically 
proximal to genome-wide significant PD risk loci were causally related to PD risk. To nominate 
genes of interest for MR analyses, we took our putative 90 loci of interest in the large LD 
reference used for the COJO phase of analysis and identified SNPs in LD with our SNPs of 
interest at an r2 > 0.5 within +/- 1MB (Supplementary Table S5). Once these SNPs were 
identified, nearest genes were queried from the European Bioinformatics Institute (EMBL-EBI, 
https://www.ebi.ac.uk) and compiled into a list of 305 possible genes linked to PD risk loci. Note, 
because of slight annotation differences, the MAPT and GBA genes were forced into the list 
(their nearby pseudogenes were automatically added).This process nominates genes for QTL 
analyses that contain variants that are in LD with SNPs of interest and therefore are not only 
spatially proximal but likely associated with disease risk to some degree. 
 
MR was used to make functional inferences by integrating discovery phase summary statistics 
with quantitative trait locus (QTL) association summary statistics across well-curated 
methylation and expression datasets. We utilized the curated versions of Qi et al., 2018 brain 
methylation and expression summary statistics (GTEx derived), as well as a specific focus on 
GTEx substantia nigra data (GTEx), we also made use of the blood expression data from   sa 
et al. 2018 (eQTLGen), all available from the website for summary-data-based Mendelian 
randomization (SMR, http://cnsgenomics.com/software/smr/#Overview) or the eQTLgen 
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consortium (http://www.eqtlgen.org) (32–36). For all QTL analyses, we utilized the multi-SNP 
SMR method under default analysis settings as a framework to carry out MR analyses. In the 
analyses using SMR, the large LD reference set from our COJO phase of analysis was used. 
For each of the four QTL datasets, Bonferroni correctionfalse discovery rate (FDR) was used to 
adjust P values and account for multiple testing within each dataset. All MR effect estimates are 
reported on the scale of a standard deviation increase in the exposure variable relating to a 
similar change in PD risk. In its simplest description, these MR analyses compare the local 
polygenic risk of an exposure (significant changes in methylation or expression) to similar 
polygenic risk in an outcome (Parkinson’s disease) to infer causal associations under the 
assumption that there is no intermediate confounder associated with both parameters and that 
the association is not simply due to LD.  
 
Rare coding variant burden tests 
 
A uniformly quality controlled and imputed dataset from the IPDGC (described above) was used 
to carry out burden tests for all rarer coding variants successfully imputed in an average of  85% 
of the sample series (17,188 cases and 22,875 controls).  These analyses include all variants at 
a hard call threshold of imputation quality > 0.8. After annotation with annovar, we had a total of 
37,503 exonic coding variants (nonsynonymous, stop or splicing) at MAF < 5% and a subset of 
29,016 at MAF < 1%(37). We then extracted proximal genes for SNPs tagging any of our 90 loci 
using same the LD reference as in the COJO analysis (r2 > 0.5 within +/- 1MB, see 
Supplementary Table S5).  For inclusion in this phase of analyses, a gene must have contained 
at least 2 coding variants.  After assembling this subset of 113 testable genes, we used the 
optimized sequence kernel association test to generate summary statistics at maximum MAFs 
of 1% and 5%(38). All burden analyses were adjusted for the first 15 principal components 
(selected by backwards stepwise modeling) based on common unlinked variants, age, sex and 
study site.  Resulting P values were then adjusted via Bonferroni for the numbers of genes 
tested, we treated each MAF strata as a separate set of tests. 
 
Network analyses 
 
Two network-based approaches were utilized to assess connectivity across loci. The first 
focuses on integrating GWAS summary statistics with expression data (Functional Mapping and 
Annotation of Genome-Wide Association Studies, FUMA), the second focuses on protein 
interactions (webgestaltR). 
 
Functional mapping and annotation based on publicly available gene expression and ontology 
resources were made using FUMA version 1.3.1 (39). In brief, summary statistics were 
analyzed using MAGMA gene property tests to compare enrichment of the average gene 
expression per tissue in GTEx v7 (40,41). Bonferroni correction was applied to tissue 
enrichment analyses. In total 10,651 gene sets (Curated gene sets: 4734, GO terms: 5917) 
were tested. Curated gene sets were generated from nine data resources including KEGG, 
Reactome and BioCarta (see MSigDB for details, 
http://software.broadinstitute.org/gsea/msigdb/collections.jsp)(42). GO terms were comprised of 
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the three standard categories, biological processes (bp), cellular components (cc) and 
molecular functions (mf). All parameters were set as default for the competitive test. We 
employed a more conservative version of the FDR correction for multiple testing by applying it to 
all pathways from various sources at once. Single cell RNA sequencing data from DropViz 
(http://dropviz.org) was also queried for enrichment using FUMA in an identical manner, 
spanning 88 possible tissue and cell type combinations (43). 
 
To investigate protein components related to genetic risk loci, we utilized the R package 
webgestaltR to build networks via its network topology analysis and random walk algorithm (44). 
The input data for this analysis was all genes found under the association peaks in our GWAS 
based on the LD structure in reference samples as described in the previous subsection. 
Ontologies were extracted from the Biogrid Protein-Protein Interaction Networks(45). FDR 
adjustment was used to adjust for multiple testing. 
Using webgestaltR (39,44) we found that the genes highlighted by our PD GWAS were enriched 
in six functional ontological networks (FDR-adjusted P < 0.1). The majority of these networks 
were related to chemical signaling pathways or response to some type of stressor. The most 
significant protein-protein interaction was related to response to interferon-gamma (Table S9, 
Figure S3A, Figure S3B). The strength of the results for protein-protein interactions should be 
interpreted with a degree of caution and will benefit from ongoing follow-up studies of high 
throughput proteomics in PD specific datasets to nominate potential mechanisms of interest. 
 
LD score regression and causal inference 
 
 
To investigate shared genetic correlations of PD with multiple traits and diseases, we employed 
bivariate LD score regression (LDSC) (21). These analyses were carried out under the default 
settings as previously discussed, using data from the 757 GWAS available via LD Hub as well 
as biomarker GWAS summary statistics from two additional publications of interest focusing on 
c-reactive protein and cytokine measures; LD Hub was accessed on June 20th, 2018 (version 
1.2.0)(46–48). P values from the bivariate LDSC were adjusted for FDR to account for multiple 
testing. We acknowledge that for some traits of interest there is a minor overlap with samples 
derived from the CHARGE studies utilized in a small portion of discovery data in Nalls et al. 
2014 which may influence results slightly in downstream MR analyses (1). For evaluation of 
genetic correlations between PD and UKB derived GWAS, we utilized PD summary statistics 
with the UKB data excluded to reduce bias. The curated data on LD Hub includes GWAS meta-
analyses of over 5,000 European ancestry samples each, and are well powered to ascertain 
genetic correlations. 
 
Traits showing significant genetic correlations with PD were analyzed using MR methods. We 
excluded the UKB data when a nominated trait was from summary statistics derived from the 
UKB or if the UKB was included as part of a meta-analysis.  
 
When complete GWAS summary statistics were available for traits of interest (relating to 
smoking and education), we utilized the more powerful bi-directional generalized summary-data-
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based Mendelian Randomization (GSMR). This approach utilized bi-directional GSMR under 
default settings with the exception of more stringent HEIDI outlier removal options (global HEIDI 
threshold at 0.05)(49). For all MR results (both here and below), effect estimates where PD is 
the outcome are interpreted as the change in the log odds ratio (beta) of PD for a single 
standard deviation increase in the polygenic risk score for the exposure.  
 
Summary statistics for PD excluded UKB data at this stage. The previously described PD 
reference datasets for estimating LD was used, excluding samples with missing data for SNPs 
of interest. We analyzed GWAS summary statistics for smoking initialization (453,693 records 
from a self-report survey with 208,988 regular smokers and 244,705 never regular smokers) 
and current smoking within the UKB Current smoking (CS) contrasted 47,419 current smokers 
versus 244,705 never regular smokers. The same analysis was carried out incorporating recent 
GWAS data regarding educational attainment (N = 766,345) from self report in the UK and 
cognitive performance (N = 257,828) as measured by the g composite score(50). These 
outcomes were analyzed using methods to mirror that of the UKB PD GWAS dataset. 
Combined left and right putamen volume from a T2 magnetic resonance imaging GWAS 
available from Oxford Brain Imaging Genetics (BIG) Server (accessed December 28th, 2018) 
(51). All MR analyses included GWAS on the scale of tens of thousands of samples and 
overcame the considerable power demands of the methodology. 
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Due to formatting and display issues for large tables as well as facilitating a more 
detailed examination of the supplements, all additional tables, figures and text are 
availible at the following web address … 
https://drive.google.com/file/d/1VUU_-tYl-ew08vupEVRuNEPDpTpWWom_/view?usp=sharing. 
 
Figure S1: The odds ratio of developing PD for each decile of PRS, comparing each decile to 
all others for all samples in this analysis. 
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Figure S2: Results of FUMA analysis for tissue and cell type specific expression enrichment. A. 
Tissue enrichment. B. Cell type-specific enrichment. Red bars indicate levels of significance 
surpassing multiple test correction. 
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Figure S3: Panel A: Gene ontology term connectivity within protein-protein networks. This panel 
shows network of gene ontology (GO) terms from pathway analyses. Most significant GO terms 
are shown in green. Panel B: Gene level connectivity within protein-protein networks. This panel 
shows connectivity between genes across enriched pathways. 
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Figure S4: Comparison of regression coefficients in Mendelian randomization analyses across 
traits. Each cross represents a SNP, with the dashed lines representing the trend across all 
variants. Axes position are regression coefficients from GWAS for significant SNPs from either 
GWAS. Panel A includes results for cognitive performance, panel B includes results for 
educational attainment, panel C includes results for putamen volume, panel D includes results 
for smoking initiation and panel E includes results for current smoking status. 
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Table S1: Descriptive statistics and quality control summaries for meta-analyzed genome-wide 
association studies. ! denotes age at exam for both cases and controls. $ denotes age at death, 
onset not available. * based on 599 PD cases and 715 controls. ^ denotes samples checked for 
overlap across datasets as per Nalls et al. 2014 and Chang et al. 2017, ^^ denotes checked for 
overlap within IPDGC sample series, ^^^denotes a combination of both workflows for identifying 
sample overlap. 
 
Table S2: Summary statistics for all nominated risk variants, known and novel. For binary 
variables, 0 = negative and 1 = positive. Some specific notes include: delineations of all studies, 
new studies and previous studies as discussed in the methods section. Betas and standard 
errors (StdErr) refer to effect estimates per SNP from logistic regression or fixed-effects meta-
analyses.I2 is the index of heterogeneity. QTL Nominated Gene = genes which represent the 
nearest cis-QTL for that locus significant in MR. 
 
Table S3: Comparison with novel results from Chang et al., 2017. This table summarizes 
linkage disequilibrium estimates between Chang et al., 2017 novel loci and variants passing 
quality control in this report. 
 
Table S4: Estimates of genetic liability explained in different scenarios. 
Here we compare how different AUC estimates and prevalence rates change the amount of 
genetic liability (h2) explained by GWAS. 
 
Table S5: SNPs of interest tagging genes for functional inferences and networks analysis. 
Nominated genes and SNPs for follow-up analyses based on minimum r2 > 0.5 within +/- 1MB of 
one of our 90 risk loci. 
 
Table S6: Complete summary statistics for QTL Mendelian randomization. Output from the 
SMR package for all QTLs of interest. Additional columns include QTL reference dataset, 
dataset-level Bonferroni corrected P values and a binary indicator if a candidate association 
passed multiple test correction. All columns prefixed by SMR indicate multi-SNP SMR results. 
 
Table S7: Rare coding variant burden analyses for genes under GWAS peaks. Detailed results 
of burden tests for genes proximal to risk loci. This includes variant counts, test statistics (rho, q, 
P, adjusted P) for each gene of interest. 
 
Table S8: FUMA expression pathway enrichment analysis results. 
Pathway enrichment from collapsed GWAS summary statistics. 
 
Table S9: Protein network analysis for linked genes under association peaks. Gene ontology 
terms passing false discovery rate adjustment. 
 
Table S10: Bivariate LDscores. Default output from LD Hub. Abbreviations defined in main text 
and methods section. 
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Supplemental Appendix: This appendix is split into four sections detailing: first comparisons of 
effect estimates across GWAS cohorts (beta~beta plots), second forest plots for each significant 
variant, thirdly locus plots showing regional GWAS results, and QTL and burden associations 
for each variant, finally the fourth section including extended PRS results. Beta~beta plots 
compare the regression coefficients for up to 90 of the significant variants in one study to a 
meta-analysis of all others via linear regression. Forest plots communicate similar sensitivity 
analyses, for each of the 90 variants of interest. In the forest plots, box size indicates relative 
sample size for that study, and the width of the diamond representing the meta-analysis effect 
estimates indicate the 95% confidence interval. The locus plots are a zoomed-in version of 
Figure 2 for each of the 90 significant variants. These plots are truncated at a -log10 P value of 
50 for display purposes and include the most significant burden test and QTL analysis results 
per gene denoted by label color-coding in each figure. In each locus plot, R2 is measured in our 
in-house LD reference dataset and shows the correlation between the most significant local 
SNP and all other proximal SNPs. Additional detailed PRS results for a subset of cohorts are 
available in the appendix summarizing PRS estimates at varied P thresholds. Each cohort 
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specific PRS in the appendix is based on meta-analyses excluding that cohort when calculating 
SNP weights. A smaller table summarizing PRS associations at the P threshold with the highest 
r2 is also included. Column headers in the PRS section of the appendix mirror that of Table 2. 
 
 


