
5 Optimization algorithms1

5.1 Introduction

We saw in Chapter 4 that the core problem in machine learning is parameter estimation (aka model
fitting). This requires solving an optimization problem, where we try to find the values for a set
of variables θ ∈ Θ, that minimize a scalar-valued loss function or cost function L : Θ→ R:

θ∗ ∈ argmin
θ∈Θ

L(θ) (5.1)

We will assume that the parameter space is given by Θ ⊆ RD, where D is the number of variables
being optimized over. Thus we are focusing on continuous optimization, rather than discrete
optimization.

If we want to maximize a score function or reward function R(θ), we can equivalently minimize
−R. We will use the term objective function to refer generically to a function we want to maximize
or minimize. An algorithm that can find an optimum of an objective function is often called a solver.
In the rest of this chapter, we discuss different kinds of solvers for different kinds of objective

functions, with a focus on methods used in the machine learning community. For more details on
optimization, please consult some of the many excellent textbooks, such as [KW19b; BV04; NW06;
Ber15; Ber16] as well as various review articles, such as [BCN18; Sun+19; PPS18].

5.1.1 Local vs global optimization

A point that satisfies Eq. (5.1) is called a global optimum. Finding such a point is called global
optimization.
In general, finding global optima is computationally intractable [Neu04]. In such cases, we will

just try to find a local optimum. For continuous problems, this is defined to be a point θ∗ which
has lower (or equal) cost than “nearby” points. Formally, we say θ∗ is a local minimum if

∃δ > 0, ∀θ ∈ Θ : ||θ − θ∗|| < δ, L(θ∗) ≤ L(θ) (5.2)

A local minimum could be surrounded by other local minima with the same objective value; this
is known as a flat local minimum. A point is said to be a strict local minimum if its cost is

1. This chapter benefited from contributions from Frederik Kunstner, Si Yi Meng, Aaron Mishkin, Sharan Vaswani,
and Mark Schmidt.

Summary of Comments on pml1.pdf
Page: 107

Author: petercerno Subject: Comment on Text Date: 08.01.21, 12:26:39

Nit: This might look as if the RHS holds for all \theta.
I would change it to sth like this:
\forall \theta \in \Theta s. t. ... : ...

5.2. First-order methods 111

information. All of these algorithms require that the user specify a starting point θ0. Then at each
iteration t, they perform an update of the following form:

θt+1 = θt + ηtdt (5.7)

where ηt is known as the step size or learning rate, and dt is a descent direction, such as the
gradient gt = ∇θL(θ)|θt . These update steps are continued until the method reaches a stationary
point, where the gradient is zero.

5.2.1 Descent direction

We say that a direction d is a descent direction if there is a small enough (but nonzero) amount η
we can move in direction d and be guaranteed to decrease the function value. Formally, we require
that there exists an ηmax > 0 such that

L(θ + ηd) < L(θ) (5.8)

for all 0 < η < ηmax. The gradient at the current iterate,

gt , ∇L(θ)|θt = ∇L(θt) = g(θt) (5.9)

points in the direction of maximal increase in f , so the negative gradient is a descent direction. It
can be shown that any direction d is also a descent direction if the angle θ between d and −gt is less
than 90 degrees and satisfies

d>gt = ||d|| ||gt|| cos(θ) < 0 (5.10)

It seems that the best choice would be to pick dt = −gt. This is known as the direction of steepest
descent. However, this can be quite slow. We consider faster versions later.

5.2.2 Step size (learning rate)

In machine learning, the sequence of step sizes {ηt} is called the learning rate schedule. There
are several widely used methods for picking this, some of which we discuss below. (See also Sec. 5.4.3,
where we discuss schedules for stochastic optimization.)

5.2.2.1 Constant step size

The simplest method is to use a constant step size, ηt = η. However, if it is too large, the method
may fail to converge, and if it is too small, the method will converge but very slowly.

For example, consider the convex function

L(θ) = 0.5(θ2
1 − θ2)2 + 0.5(θ1 − 1)2 (5.11)

Let us pick as our descent direction dt = gt. Fig. 5.4 shows what happens if we use this descent
direction with a fixed step size, starting from (0, 0). In Fig. 5.4(a), we use a small step size of η = 0.1;
we see that the iterates move slowly along the valley. In Fig. 5.4(b), we use a larger step size η = 0.6;

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 111

Author: petercerno Subject: Comment on Text Date: 08.01.21, 12:27:55

Nit: negative gradient -g_t

Author: petercerno Subject: Comment on Text Date: 08.01.21, 12:28:24

-g_t

116 Chapter 5. Optimization algorithms

this case, the momentum term is updated using the gradient at the predicted new location,

mt+1 = βmt − ηt∇L(θt + βmt) (5.29)
θt+1 = θt + mt+1 (5.30)

This explains why the Nesterov accelerated gradient method is sometimes called Nesterov momentum.
It also shows how this method can be faster than standard momentum: the momentum vector
is already roughly pointing in the right direction, so measuring the gradient at the new location,
θt + βmt, rather than the current location, θt, can be more accurate.
The Nesterov accelerated gradient method is provably faster than steepest descent for convex

functions when β and ηt are chosen appropriately. It is called “accelerated” because of this improved
convergence rate, which is optimal for gradient-based methods using only first-order information
when the objective function is convex and has Lipschitz-continuous gradients. In practice, however,
using Nesterov momentum can be slower than steepest descent, and can even unstable if β or ηt are
misspecified.

5.3 Second-order methods

Optimization algorithms that only use the gradient are called first-order methods. They have the
advantage that the gradient is cheap to compute and to store, but they do not model the curvature
of the space, and hence they can be slow to converge, as we have seen in Fig. 5.5. Second-order
optimization methods incorporate curvature in various ways (such via the Hessian) which may yield
faster convergence. We discuss some of these methods below.

5.3.1 Newton’s method

The classic second-order method is Newton’s method. This consists of updates of the form

θt+1 = θt − ηtH−1
t gt (5.31)

where

Ht , ∇2L(θ)|θt = ∇2L(θt) = H(θt) (5.32)

is assumed to be positive-definite to ensure the update is well-defined. The pseudo-code for Newton’s
method is given in Algorithm 1. The intuition for why this is faster than gradient descent is that the
matrix inverse H−1 “undoes” any skew in the local curvature, converting a topology like Fig. 5.5a to
one like Fig. 5.5b.
This algorithm can be derived as follows. Consider making a second-order Taylor series approxi-

mation of L(θ) around θt:

Lquad(θ) = L(θt) + g>t (θ − θt) +
1

2
(θ − θt)>Ht(θ − θt) (5.33)

The minimum of Lquad is at

θ = θt −H−1
t gt (5.34)

Draft of “Probabilistic Machine Learning: An Introduction”. January 6, 2021

Page: 116

Author: petercerno Subject: Comment on Text Date: 08.01.21, 12:28:46

as

5.4. Stochastic gradient descent 123

This method is known as stochastic gradient descent or SGD. As long as the gradient estimate
is unbiased, then this method will converge to a stationary point, providing we decay the step size ηt
at a certain rate, as we discuss in Sec. 5.4.3.

5.4.1 Application to finite sum problems

SGD is very widely used in machine learning. To see why, recall from Sec. 4.3 that many model
fitting procedures are based on empirical risk minimization, which involve minimizing the following
loss:

L(θ) =
1

N

N∑

n=1

`(yn, f(xn;θt)) =
1

N

N∑

n=1

Ln(θt) (5.59)

This is called a finite sum problem. The gradient of this objective has the form

gt =
1

N

N∑

n=1

∇θLn(θt) =
1

N

N∑

n=1

∇θ`(yn, f(xn;θt)) (5.60)

This requires summing over all N training examples, and thus can be slow if N is large. Fortunately
we can approximate this by sampling a minibatch of B � N samples to get

gt ≈
1

|Bt|
∑

n∈Bt
∇θLn(θt) =

1

|Bt|
∑

n∈Bt
∇θ`(yn, f(xn;θt)) (5.61)

where Bt is a set of randomly chosen examples to use at iteration t.3 This is an unbiased approximation
to the empirical average in Eq. (5.60). Hence we can safely use this with SGD.

Although the theoretical rate of convergence of SGD is slower than batch GD (in particular, SGD
has a sublinear convergence rate), in practice SGD is often faster, since the per-step time is much
lower [BB08; BB11]. To see why SGD can make faster progress than full batch GD, suppose we have
a dataset consisting of a single example duplicated K times. Batch training will be (at least) K times
slower than SGD, since it will waste time computing the gradient for the repeated examples. Even if
there are no duplicates, batch training can be wasteful, since early on in training the parameters are
not well estimated, so it is not worth carefully evaluating the gradient.

5.4.2 Example: SGD for fitting linear regression

In this section, we show how to use SGD to fit a linear regression model. Recall from Sec. 4.2.7 that
the objective has the form

L(θ) =
1

2N

N∑

n=1

(x>n θ − yn)2 =
1

2N
||Xθ − y||22 (5.62)

3. In practice we usually sample Bt without replacement. However, once we reach the end of the dataset (i.e., after a
single training epoch), we can perform a random shuffling of the examples, to ensure that each minibatch on the next
epoch is different from the last. This version of SGD is analyzed in [HS19].

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 123

Author: petercerno Subject: Comment on Text Date: 08.01.21, 12:29:31

\theta_t

5.4. Stochastic gradient descent 125

An alternative to using heuristics for estimating the learning rate is to use line search (Sec. 5.2.2.2).
This is tricky when using SGD, because the noisy gradients make the computation of the Armijo
condition difficult [CS20]. However, [Vas+19] show that it can be made to work if the variance of the
gradient noise goes to zero over time. This can happen if the model is sufficient flexible that it can
perfectly interpolate the training set.

5.4.4 Iterate averaging

The parameter estimates produced by SGD can be very unstable over time. To reduce the variance
of the estimate, we can compute the average using

θt =
1

t

t∑

i=1

θi =
1

t
θt +

t− 1

t
θt−1 (5.66)

where θt are the usual SGD iterates. This is called iterate averaging or Polyak-Ruppert
averaging [Rup88].

In [PJ92], they prove that the estimate θt achieves the best possible asymptotic convergence rate
among SGD algorithms, matching that of variants using second-order information, such as Hessians.
This averaging can also have statistical benefits. For example, in [NR18], they prove that, in the

case of linear regression, this method is equivalent to `2 regularization (i.e., ridge regression).
Rather than an exponential moving average of SGD iterates, Stochastic Weight Averaging

(SWA) [Izm+18] uses an equal average in conjunction with a modified learning rate schedule. In
contrast to standard Polyak-Ruppert averaging, which was motivated for faster convergence rates,
SWA exploits the flatness in objectives used to train deep neural networks, to find solutions which
provide better generalization.

5.4.5 Variance reduction

In this section, we discuss various ways to reduce the variance in SGD. In some cases, this can
improve the theoretical convergence rate from sublinear to linear (i.e., the same as full-batch gradient
descent) [SLRB17; JZ13; DBLJ14]. These methods reduces the variance of the gradients, rather than
the parameters themselves and are designed to work for finite sum problems.

5.4.5.1 SVRG

The basic idea of stochastic variance reduced gradient (SVRG) [JZ13] is to use a control
variate, in which we estimate a baseline value of the gradient based on the full batch, which we then
use to compare the stochastic gradients to.
More precisely, ever so often (e.g., once per epoch), we compute the full gradient at a “snapshot”

of the model parameters θ̃; the corresponding “exact” gradient is therefore ∇L(θ̃). At step t, we
compute the usual stochastic gradient at the current parameters, ∇Lt(θt), but also at the snapshot
parameters, ∇Lt(θ̃), which we use as a baseline. We can then use the following improved gradient
estimate

gt = ∇Lt(θt)−∇Lt(θ̃) +∇L(θ̃) (5.67)

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 125

Author: petercerno Subject: Comment on Text Date: 08.01.21, 12:29:56

sufficiently

130 Chapter 5. Optimization algorithms

In the following sections, we briefly describe some of the theory and algorithms underlying
constrained optimization. More details can be found in other books, such as [BV04; NW06; Ber15;
Ber16].

5.5.1 Lagrange multipliers

In this section, we discuss how to solve equality contrained optimization problems. We initially
assume that we have just one equality constraint, h(θ) = 0.

First note that for any point on the constraint surface, ∇h(θ) will be orthogonal to the constraint
surface. To see why, consider another point nearby, θ + ε, that also lies on the surface. If we make a
first-order Taylor expansion around θ we have

h(θ + ε) ≈ h(θ) + ε>∇h(θ) (5.85)

Since both θ and θ + ε are on the constraint surface, we must have h(θ) = h(θ + ε) and hence
ε>∇h(θ) ≈ 0. Since ε is parallel to the constraint surface, ∇h(θ) must be perpendicular to it.

We seek a point θ∗ on the constraint surface such that L(θ) is minimized. We just showed that it
must satisfy the condition that ∇h(θ∗) is orthogonal to the constraint surface. In addition, such a
point must have the property that ∇L(θ) is also orthogonal to the constraint surface, as otherwise
we could decrease L(θ) by moving a short distance along the constraint surface. Since both ∇h(θ)
and ∇L(θ) are orthogonal to the constraint surface at θ∗, they must be parallel (or anti-parallel) to
each other. Hence there must exist a constant λ∗ ∈ R such that

∇L(θ∗) = λ∗∇h(θ∗) (5.86)

(We cannot just equate the gradient vectors, since they may have different magnitudes.) The constant
λ∗ is called a Lagrange multiplier, and can be positive, negative, or zero. This latter case occurs
when ∇f(θ∗) = 0.

We can convert Eq. (5.86) into an objective, known as the Lagrangian, that we should minimize:

L(θ, λ) , L(θ)− λh(θ) (5.87)

At a stationary point of the Lagrangian, we have

∇θ,λL(θ, λ) = 0 ⇐⇒ λ∇θh(θ) = ∇L(θ), h(θ) = 0 (5.88)

This is called a critical point, and satisfies the original constraint h(θ) = 0 and Eq. (5.86).
If we have m > 1 constraints, we can form a new constraint function by addition, as follows:

L(θ, λ) = L(θ)−
m∑

j=1

λjhj(θ) (5.89)

We now haveD+m equations inD+m unknowns and we can use standard unconstrained optimization
methods to find a stationary point. We give some examples below.

Draft of “Probabilistic Machine Learning: An Introduction”. January 6, 2021

Page: 130

Author: petercerno Subject: Comment on Text Date: 11.01.21, 12:53:38

Nit: This should be a vector.

5.5. Constrained optimization 131

5.5.1.1 Example: 2d Quadratic objective with one linear equality constraint

Consider minimizing L(θ) = θ2
1 + θ2

2 − 1 subject to the constraint that θ1 + θ2 = 1.
(This is the problem illustrated in Fig. 5.13(a).) The Lagrangian is

L(θ1, θ2, λ) = θ2
1 + θ2

2 − 1 + λ(θ1 + θ2 − 1) (5.90)

We have the following conditions for a stationary point:

∂

∂θ1
L(θ1, θ2, λ) = 2θ1 + λ = 0 (5.91)

∂

∂θ2
L(θ1, θ2, λ) = 2θ2 + λ = 0 (5.92)

∂

∂λ
L(θ1, θ2, λ) = θ1 + θ2 − 1 = 0 (5.93)

From Equations 5.91 and 5.92 we find 2θ1 = −λ = 2θ2, so θ1 = θ2. Also, from Eq. (5.93), we find
2θ1 = 1. So θ∗ = (0.5, 0.5), as we claimed earlier. Furthermore, this is the global minimum since the
objective is convex and the constraint is affine.

5.5.2 The KKT conditions

In this section, we generalize the concept of Lagrange multipliers to additionally handle inequality
constraints.

First consider the case where we have a single inequality constraint g(θ) ≤ 0. To find the optimum,
one approach would be to consider an unconstrained problem where we add the penalty as an infinite
step function:

L̂(θ) = L(θ) +∞ I (g(θ) > 0) (5.94)

However, this is a discontinuous function that is hard to optimize.
Instead, we create a lower bound of the form µg(θ), where µ ≥ 0. This gives us the following

Lagrangian:

L(θ, µ) = L(θ) + µg(θ) (5.95)

Note that the step function can be recovered using

L̂(θ) = max
µ≥0
L(θ, µ) =

{
∞ if g(θ) > 0,

L(θ) otherwise
(5.96)

Thus our optimization problem becomes

min
θ

max
µ≥0
L(θ, µ) (5.97)

Now consider the general case where we have multiple inequality constraints, g(θ) ≤ 0, and
multiple equality constraints, h(θ) = 0. The generalized Lagrangian becomes

L(θ,µ,λ) = L(θ) +
∑

i

µigi(θ) +
∑

j

λjhj(θ) (5.98)

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 131

Author: petercerno Subject: Comment on Text Date: 11.01.21, 12:56:06

Nit: Although it does not matter, according to (5.87) this should be -.

132 Chapter 5. Optimization algorithms

(We are free to change −λjhj to +λjhj since the sign is arbitrary.) Our optimization problem
becomes

min
θ

max
µ≥0,λ

L(θ,µ,λ) (5.99)

When L, g and h are convex and satisfy a technical property called Slater’s condition (see [BV04,
Sec.5.2.3]) all critical points of this problem must satisfy the following criteria.

• All constraints are satisfied (this is called feasibility):

g(θ) ≤ 0, h(θ) = 0 (5.100)

• The solution is a stationary point:

∇L(θ∗)−
∑

i

µi∇gi(θ∗)−
∑

j

λi∇hj(θ∗) = 0 (5.101)

• The penalty for the inequality constraint points in the right direction (this is called dual feasi-
bility):

µ ≥ 0 (5.102)

• The Lagrange multipliers pick up any slack in the inactive constraints, i.e., either µi = 0 or
gi(θ

∗) = 0, so

µ�g = 0 (5.103)

This is called complementary slackness.

To see why the last condition holds, consider (for simplicity) the case of a single inequality
constraint, g(θ) ≤ 0. Either it is active, meaning g(θ) = 0, or it is inactive, meaning g(θ) < 0.
In the active case, the solution lies on the constraint boundary, and g(θ) = 0 becomes an equality
constraint; then we have ∇L = µ∇g for some constant µ 6= 0, because of Eq. (5.86). In the inactive
case, the solution is not on the constraint boundary; we still have ∇L = µ∇g, but now µ = 0.

These are called called the Karush-Kuhn-Tucker (KKT) conditions. If L is a convex function,
and the constraints define a convex set, the KKT conditions are sufficient for (global) optimality, as
well as necessary.

5.5.3 Linear programming

Consider optimizing a linear function subject to linear constraints. We can write such a problem in
general form as follows.

min
θ

c>θ s.t. Aleθ ≤ ble, Ageθ ≥ bge, Aeqθ = beq, (5.104)

This kind of optimization problem is known as a linear program. Let us now rewrite this in
standard form, as follows:

min
θ

c>θ s.t. Aθ ≤ b, θ ≥ 0 (5.105)

Draft of “Probabilistic Machine Learning: An Introduction”. January 6, 2021

Page: 132

Author: petercerno Subject: Comment on Text Date: 11.01.21, 16:36:10

In (5.98) we were using + sign.

5.6. Proximal gradient method 135

Hence the solution is

θ∗ = (1, 0)>,µ∗ = (0.625, 0.375, 0, 0)> (5.116)

Notice that the optimal value of θ occurs at one of the vertices of the `1 “ball” (the diamond shape).

5.5.4.2 Applications

There are several applications of quadratic programming in ML. In Sec. 11.5, we show how to use
it for sparse linear regression. And in Sec. 17.5, we show how to use it for SVMs (support vector
machines).

5.5.5 Mixed integer linear programming

Integer linear programming or ILP corresponds to minimizing a linear objective, subject to
linear constraints, where the optimization variables are discrete integers instead of reals. In standard
form, the problem is as follows:

min
θ

c>θ s.t. Aθ ≤ b, θ ≥ 0,θ ∈ ZD (5.117)

where Z is the set of integers. If some of the optimization variables are real-valued, it is called a
mixed ILP, often called a MIP for short. (If all of the variables are real-valued, it becomes a
standard LP.)
MIPs have a large number of applications, such as in vehicle routing, scheduling and packing.

They are also useful for some ML applications, such as formally verifying the behavior of certain
kinds of deep neural networks [And+18], and proving robustness properties of DNNs to adversarial
(worst-case) perturbations [TXT19].

5.6 Proximal gradient method

We are often interested in optimizing an objective of the form

L(θ) = Ls(θ) + Lr(θ) (5.118)

where Ls is differentiable (smooth), and Lr is convex but not necessarily differentiable (i.e., it may
be non-smooth or “rough”). For example, Ls might be the NLL, and Lr might be an indicator
function that is infinite if a constraint is violated (see Sec. 5.6.1), or Lr might be the `1 norm of some
parameters (see Sec. 5.6.2), or Lr might measure how far the parameters are from a set of allowed
quantized values (see Sec. 5.6.3).
One way to tackle such problems is to use the proximal gradient method (see e.g., [PB+14;

PSW15]). Roughly speaking, this takes a step in the direction of Ls, and then projects the resulting
update into a space that respects Lr. More precisely, the update is as follows

θt+1 = proxηtLr (θt − ηt∇Ls(θt)) (5.119)

where proxηf (θ) is the proximal operator of Lr (scaled by η) evaluated at θ:

proxηf (θ) , argmin
θ0

(
f(θ0) +

1

2η
||θ0 − θ||22

)
= argmin

z
f(θ0) s.t. ||θ0 − θ||2 ≤ ρ (5.120)

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 135

Author: petercerno Subject: Comment on Text Date: 11.01.21, 17:00:46

Should be vector ?

Author: petercerno Subject: Comment on Text Date: 11.01.21, 17:00:36

\theta_0 ?

5.6. Proximal gradient method 137

This method is known as projected gradient descent. See Fig. 5.15 for an illustration.
For example, consider the box constraints C = {θ : l ≤ θ ≤ u}. The projection operator in this

case can be computed elementwise by simply thresholding at the boundaries:

projC(θ)d =





ld if θk ≤ lk
xd if lk ≤ θk ≤ uk
ud if θk ≥ uk

(5.125)

For example, if we want to ensure all elements are non-negative, we can use

projC(θ) = θ+ = [max(θ1, 0), . . . ,max(θD, 0)] (5.126)

See Sec. 11.5.9.2 for an application of this method to sparse linear regression.

5.6.2 Proximal operator for `1-norm regularizer

Consider a linear predictor of the form f(x;θ) =
∑D
d=1 θdxd. If we have θd = 0 for any dimension

d, we ignore the corresponding feature xd. This is a form of feature selection, which can be
useful both as a way to reduce overfitting as well as way to improve model interpretability. We can
encourage weights to be zero (and not just small) by penalizing the `1 norm,

||θ||1 =

D∑

d=1

|θd| (5.127)

This is called a sparsity inducing regularizer.
To see why this induces sparsity, consider two possible parameter vectors, one which is sparse,

θ = (1, 0), and one which is non-sparse, θ′ = (1/
√

2, 1/
√

2). Both have the same `2 norm

||(1, 0)||22 = ||(1/
√

2, 1/
√

2)||22 = 1 (5.128)

Hence `2 regularization (Sec. 4.4.3) will not favor the sparse solution over the dense solution. However,
when using `1 regularization, the sparse solution is cheaper, since

||(1, 0)||1 = 1 < ||(1/
√

2, 1/
√

2)||1 =
√

2 (5.129)

See Sec. 11.5 for more details on sparse regression.
If we combine this regularizer with our smooth loss, we get

L(θ) = NLL(θ) + λ||θ||1 (5.130)

We can optimize this objective using proximal gradient descent. The key question is how to compute
the prox operator for the function f(θ) = ||θ||1. Since this function decomposes over dimensions d,
the proximal projection can be computed componentwise. We can solve each 1d problem as follows:

proxλf (θ) = argmin
z

λ|z|+ 1

2
(z − θ)2 (5.131)

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 137

Author: petercerno Subject: Comment on Text Date: 11.01.21, 17:06:49

Replace k by d (here and below)

Author: petercerno Subject: Comment on Text Date: 11.01.21, 17:06:19

\theta

Author: petercerno Subject: Comment on Text Date: 11.01.21, 17:17:40

This is slightly different from (5.120), where \mu was in denominator: 1 / 2 \mu and instead of z one used \theta_0

138 Chapter 5. Optimization algorithms

In Sec. 11.5.3, we show that the solution to this is given by

proxλf (θ) =





−λ if θ ≥ λ
0 if |θ| ≤ λ
θ + λ if θ ≤ −λ

(5.132)

This is known as the soft thresholding operator, since values less than λ in absolute value are
set to 0 (thresholded), but in a continuous way. Note that soft thresholding can be written more
compactly as

SoftThreshold(θ, λ) = sign(θ) (|θ| − λ)+ (5.133)

where θ+ = max(θ, 0) is the positive part of θ. In the vector case, we perform this elementwise:

SoftThreshold(θ, λ) = sign(θ)� (|θ| − λ)+ (5.134)

See Sec. 11.5.9.3 for an application of this method to sparse linear regression.

5.6.3 Proximal operator for quantization

In some applications (e.g., when training deep neural networks to run on memory-limited edge
devices, such as mobile phones) we want to ensure that the parameters are quantized. For
example, in the extreme case where each parameter can only be -1 or +1, the state space becomes
C = {−1,+1}D.

Let us define a regularizer that measures distance to the nearest quantized version of the parameter
vector:

Lr(θ) = inf
θ0∈C

||θ − θ0||1 (5.135)

(We could also use the `2 norm.) In the case of C = {−1,+1}D, this becomes

Lr(θ) =
D∑

d=1

inf
[θ0]d∈{±1}

|θd − [θ0]d| =
D∑

d=1

min{|θd − 1|, |θd + 1|} = ||θ − sign(θ)||1 (5.136)

Let us define the corresponding quantization operator to be

q(θ) = projC(θ) = argminLr(θ) = sign(θ) (5.137)

The core difficulty with quantized learning is that quantization is not a differentiable operation. A
popular solution to this is to use the straight-through estimator, which uses the approximation
∂L
∂q(θ) ≈ ∂L

∂θ (see e.g., [Yin+19b]). The corresponding update can be done in two steps: first
compute the gradient vector at the quantized version of the current parameters, and then update the
unconstrained parameters using this approximate gradient:

θ̃t = projC(θt) = q(θt) (5.138)

θt+1 = θt − ηt∇Ls(θ̃t) (5.139)

Draft of “Probabilistic Machine Learning: An Introduction”. January 6, 2021

Page: 138

Author: petercerno Subject: Comment on Text Date: 11.01.21, 17:18:49

\theta - \lambda ?

5.7. Bound optimization 139

When applied to C = {−1,+1}D, this is known as the binary connect method [CBD15].
We can get better results using proximal gradient descent, in which we treat quantization as a

regularizer, rather than a hard constraint; this is known as ProxQuant [BWL19]. The update
becomes

θ̃t = proxηtλLr (θt − ηt∇Ls(θt)) (5.140)

In the case that C = {−1,+1}D, one can show that the proximal operator is a generalization of the
soft thresholding operator in Eq. (5.134):

proxηtλLr (θ) = SoftThreshold(θ, λ, sign(θ)) (5.141)

= sign(θ) + sign(θ − sign(θ))� (|θ − sign(θ)| − λ)+ (5.142)

This can be generalized to other forms of quantization; see [Yin+19b] for details.

5.7 Bound optimization

In this section, we consider a class of algorithms known as bound optimization or MM algorithms.
In the context of minimization, MM stands for majorize-minimize. In the context of maximization,
MM stands for minorize-maximize. We will discuss a special case of MM, known as expectation
maximization or EM, in Sec. 5.7.2.

5.7.1 The general algorithm

In this section, we give a brief outline of MM methods. (More details can be found in e.g., [HL04;
Mai15; SBP17; Nad+19],) To be consistent with the literature, we assume our goal is to maximize
some function L(θ), such as the log likelihood, wrt its parameters θ. The basic approach in MM
algorithms is to construct a surrogate function Q(θ,θt) which is a tight lowerbound to L(θ) such
that Q(θ,θt) ≤ L(θ) and Q(θt,θt) = L(θt). If these conditions are met, we say that Q minorizes L.
We then perform the following update at each step:

θt+1 = argmax
θ

Q(θ,θt) (5.143)

This guarantees us monotonic increases in the original objective:

`(θt+1) ≥ Q(θt+1,θt) ≥ Q(θt,θt) = `(θt) (5.144)

where the first inequality follows since Q(θt,θ′) is a lower bound on `(θt) for any θ′; the second
inequality follows from Eq. (5.143); and the final equality follows the tightness property. As a
consequence of this result, if you do not observe monotonic increase of the objective, you must have
an error in your math and/or code. This is a surprisingly powerful debugging tool.
This process is sketched in Fig. 5.16. The dashed red curve is the original function (e.g., the

log-likelihood of the observed data). The solid blue curve is the lower bound, evaluated at θt; this
touches the objective function at θt. We then set θt+1 to the maximum of the lower bound (blue
curve), and fit a new bound at that point (dotted green curve). The maximum of this new bound
becomes θt+2, etc.

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 139

Author: petercerno Subject: Cross-Out Date: 11.01.21, 17:22:37

Author: petercerno Subject: Cross-Out Date: 11.01.21, 17:22:54

Author: petercerno Subject: Comment on Text Date: 01.02.21, 14:07:37

This implies that in the expression: Q(x, y) the arguments x and y are of the same type (dimension etc.).
However, in Section 5.7.2 on EM algorithm we have Q(\theta, {q_n}), i.e. the arguments are of different types.

Author: petercerno Subject: Comment on Text Date: 25.01.21, 14:08:11

L (here and below)

Author: petercerno Subject: Comment on Text Date: 01.02.21, 13:50:58

t+1

Author: petercerno Subject: Comment on Text Date: 01.02.21, 13:51:07

t+1

142 Chapter 5. Optimization algorithms

5.7.2.2 E step

We see that the lower bound is a sum of N terms, each of which has the following form:

Q(θ, qn) =
∑

zn

qn(zn) log
p(yn, zn|θ)

qn(zn)
(5.150)

=
∑

zn

qn(zn) log
p(zn|yn,θ)p(yn|θ)

qn(zn)
(5.151)

=
∑

zn

qn(zn) log
p(zn|yn,θ)

qn(zn)
+
∑

zn

qn(zn) log p(yn|θ) (5.152)

= −KL (qn(zn)‖p(zn|yn,θ)) + log p(yn|θ) (5.153)

where KL (q‖p) ,∑z q(z) log q(z)
p(z) is the Kullback-Leibler divergence (or KL divergence for short)

between probability distributions q and p. We discuss this in more detail in Sec. 6.2, but the key
property we need here is that KL (q‖p) ≥ 0 and KL (q‖p) = 0 iff q = p. Hence we can maximize the
lower bound Q(θ, {qn}) wrt {qn} by setting each one to q∗n = p(zn|yn,θ). This is called the E step.
This makes the lower bound tight, in the sense that Q(θ, {q∗n}) =

∑
n log p(yn|θ) = `(θ).

5.7.2.3 M step

In the M step, we need to maximize Q(θ, {qtn}) wrt θ, where qtn are the distributions computed in
the E step at iteration t. Since the entropy terms H(qn) are constant wrt θ, so we can drop them in
the M step. We are left with

`t(θ) =
∑

n

Eqtn(zn) [log p(yn, zn|θ)] (5.154)

This is called the expected complete data log likelihood. If the joint probability is in the
exponential family (Sec. 12.2), we can rewrite this as

`t(θ) =
∑

n

E
[
t(yn, zn)>θ −A(θ)

]
=
∑

n

(E [t(yn, zn)]
>
θ −A(θ)) (5.155)

where E [t(yn, zn)] are called the expected sufficient statistics.
In the M step, we maximize the expected complete data log likelihood to get

θt+1 = arg max
θ

∑

n

Eqtn [log p(yn, zn|θ)] (5.156)

In the case of the exponential family, the maximization can be solved in closed-form by matching the
moments of the expected sufficient statistics (Sec. 12.2.4).
We see from the above that the E step does not in fact need to return the full set of posterior

distributions {q(zn) : n = 1 : N}, but can instead just return the sum of the expected sufficient
statistics,

∑
n Eq(zn) [t(yn, zn)]. This will become clearer in the examples below.

Draft of “Probabilistic Machine Learning: An Introduction”. January 6, 2021

Page: 142

Author: petercerno Subject: Comment on Text Date: 27.01.21, 16:32:38

{ q_n }, to be consistent with previous notation

Author: petercerno Subject: Comment on Text Date: 01.02.21, 14:15:26

Nit: { q_n^t }

Author: petercerno Subject: Comment on Text Date: 27.01.21, 16:41:06

q_n

The current expression might give an impression that there are only N possiblities for z: z_1, ..., z_N, which is
misleading, as z might be real-valued vector.

5.7. Bound optimization 143

5.7.3 Example: EM for a GMM

In this section, we show how to use the EM algorithm to compute MLE and MAP estimates of the
parameters for a Gaussian mixture model (GMM).

5.7.3.1 E step

The E step simply computes the responsibility of cluster k for generating data point n, as estimated
using the current parameter estimates θ(t):

r
(t)
nk = p(zn = k|θ(t)) =

π
(t)
k p(yn|θ(t)

k)
∑
k′ π

(t)
k′ p(yn|θ

(t)
k′)

(5.157)

5.7.3.2 M step

The M step maximizes the expected complete data log likelihood, given by

`t(θ) = E

[∑

n

log p(zn|π) + log p(yn|zmθ)

]
(5.158)

= E

[∑

n

log

(∏

k

πznkk

)
+ log

(∏

k

N (yn|µk,Σk)znk

)]
(5.159)

=
∑

n

∑

k

E [znk] log πk +
∑

n

∑

k

E [znk] logN (yn|µk,Σk) (5.160)

=
∑

n

∑

k

r
(t)
nk log(πk)− 1

2

∑

n

∑

k

r
(t)
nk

[
log |Σk|+ (yn − µk)>Σ−1

k (yn − µk)
]

+ const

(5.161)

where znk = I (zn = k) is a one-hot encoding of the categorical value zn. This objective is just a
weighted version of the standard problem of computing the MLEs of an MVN (see Sec. 4.2.6). One
can show that the new parameter estimates are given by

µ
(t+1)
k =

∑
n r

(t)
nkyn

r
(t)
k

(5.162)

Σ
(t+1)
k =

∑
n r

(t)
nk(yn − µ(t+1)

k)(yn − µ(t+1)
k)>

r
(t)
k

=

∑
n r

(t)
nkyny>n

r
(t)
k

− µ(t+1)
k (µ

(t+1)
k)> (5.163)

where r(t)
k ,

∑
n r

(t)
nk is the weighted number of points assigned to cluster k. The mean of cluster k is

just the weighted average of all points assigned to cluster k, and the covariance is proportional to the
weighted empirical scatter matrix.

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 143

Author: petercerno Subject: Comment on Text Date: 27.01.21, 16:51:41

-> "z_n, "

144 Chapter 5. Optimization algorithms

The M step for the mixture weights is simply a weighted form of the usual MLE:

π
(t+1)
k =

1

N

∑

n

r
(t)
nk =

r
(t)
k

N
(5.164)

5.7.3.3 Example

An example of the algorithm in action is shown in Fig. 5.18 where we fit some 2d data with a 2
component GMM. The data set, from [Bis06], is derived from measurements of the Old Faithful
geyser in Yellowstone National Park. In particular, we plot the time to next eruption in minutes
versus the duration of the eruption in minutes. The data was standardized, by removing the mean
and dividing by the standard deviation, before processing; this often helps convergence.
We start with µ1 = (−1, 1), Σ1 = I, µ2 = (1,−1), Σ2 = I. We color code points such that blue

points come from cluster 1 and red points from cluster 2. More precisely, we set the color of the
n’th point to color(n) = rn1blue + rn2red, so ambiguous points appear purple. We see that initially,
the cluster centers move, and their shapes change, quite quickly, and then EM slowly converges to a
local maximum. (For a recent analysis of the convergence rate of EM, see [KKS20].)

For more details on applying GMMs for clustering, see Sec. 21.4.1.

5.7.3.4 MAP estimation

Computing the MLE of a GMM often suffers from numerical problems and overfitting. To see why,
suppose for simplicity that Σk = σ2

kI for all k. It is possible to get an infinite likelihood by assigning
one of the centers, say µk, to a single data point, say yn, since then the likelihood of that data point
is given by

N (yn|µk = yn, σ
2
kI) =

1√
2πσ2

k

e0 (5.165)

Hence we can drive this term to infinity by letting σk → 0, as shown in Fig. 5.19(a). We call this the
“collapsing variance problem”.

An easy solution to this is to perform MAP estimation. Fortunately, we can still use EM to find
this MAP estimate. Our goal is now to maximize the expected complete data log-likelihood plus the
log prior:

Q(θ,θold) =

[∑

n

∑

k

rnk log πnk +
∑

n

∑

k

rnk log p(yn|θk)

]
+ log p(π) +

∑

k

log p(θk) (5.166)

Note that the E step remains unchanged, but the M step needs to be modified, as we now explain.
For the prior on the mixture weights, it is natural to use a Dirichlet prior (Sec. 7.2.2.2), π ∼ Dir(α),

since this is conjugate to the categorical distribution. The MAP estimate is given by

πk =
rk + αk − 1

N +
∑
k αk −K

(5.167)

If we use a uniform prior, αk = 1, this reduces to the MLE.

Draft of “Probabilistic Machine Learning: An Introduction”. January 6, 2021

Page: 144

Author: petercerno Subject: Comment on Text Date: 01.02.21, 15:13:09

l^t (\theta) as in (5.161) ?
Note that \theta^old is not used

5.7. Bound optimization 147

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

(a)

µ
1

µ
2

−15.5 −10.5 −5.5 −0.5 4.5 9.5 14.5 19.5

−15.5

−10.5

−5.5

−0.5

4.5

9.5

14.5

19.5

(b)

Figure 5.20: Left: N = 200 data points sampled from a mixture of 2 Gaussians in 1d, with πk = 0.5, σk = 5,
µ1 = −10 and µ2 = 10. Right: Likelihood surface p(D|µ1, µ2), with all other parameters set to their true
values. We see the two symmetric modes, reflecting the unidentifiability of the parameters. Generated by
mixGaussLikSurfaceDemo.m.

5.7.4 Example: EM for an MVN with missing data

In Sec. 4.2.6, we explained how to compute the MLE for an MVN (multivariate normal) when we
have a fully observed data matrix Y. In this section, we consider the case where we have missing
data or partially observed data. For example, we can think of the entries of Y as being answers
to a survey; some of these answers may be unknown.
To model the missing data, let M be an N × D matrix of binary variables, where Mnd = 1 if

feature d in example n is missing, and Mnd = 0 otherwise. Let yn be the visible entries for case n
(where Mnd = 1) zn be the hidden entries (where Mnd = 0), and yn = (yn, zn) ∼ N (µ,Σ) be all the
entries. If we assume p(M|Y,φ) = p(M|φ), we say the data is missing completely at random or
MCAR. If we assume p(M|Y,φ) = p(M|Y,φ), we say the data is missing at random or MAR.
If neither of these assumptions hold, we say the data is not missing at random or NMAR.
In the MCAR and MAR cases, we can ignore the missingess mechanism, since it tells us nothing

about the hidden data. However, in the NMAR case, we need to model the missing data mecha-
nism, since the lack of information may be informative. For example, the fact that someone did
not fill out an answer to a sensitive question on a survey (e.g., “Do you have COVID?”) could be
informative about the underlying value. See e.g., [LR87; Mar08] for more information on missing
data models.

In this section, we make the MAR assumption, for simplicity. Under the MAR assumption, the log
likelihood of the visible data has the form

log p(Y|θ) =
∑

n

log p(yn|θ) =
∑

n

log

[∫
p(yn, zn|θ)dzn

]
(5.173)

Unfortunately, this objective is hard to maximize. since we cannot push the log inside the expectation.
Fortunately, we can easily apply EM, as we explain below.

Do not distribute without permission from Kevin P. Murphy and MIT Press.

Page: 147

Author: petercerno Subject: Comment on Text Date: 01.02.21, 15:18:49

M_nd = 1 is the missing case.

Author: petercerno Subject: Comment on Text Date: 01.02.21, 15:20:15

LHS and RHS are exactly the same, i.e. this the equality always holds ...

148 Chapter 5. Optimization algorithms

5.7.4.1 E step

Suppose we have θt−1. Then we can compute the expected complete data log likelihood at iteration
t as follows:

Q(θ,θt−1) = E

[
N∑

n=1

logN (yn|µ,Σ)|D,θt−1

]
(5.174)

= −N
2

log |2πΣ| − 1

2

∑

n

E
[
(yn − µ)>Σ−1(yn − µ)

]
(5.175)

= −N
2

log |2πΣ| − 1

2
tr(Σ−1

∑

n

E
[
(yn − µ)(yn − µ)>

]
(5.176)

= −N
2

log |Σ| − ND

2
log(2π)− 1

2
tr(Σ−1E [S(µ)]) (5.177)

where

E [S(µ)] ,
∑

n

(
E
[
yny>n

]
+ µµ> − 2µE [yn]

>
)

(5.178)

(We drop the conditioning of the expectation on D and θt−1 for brevity.) We see that we need to
compute

∑
n E [yn] and

∑
n E
[
yny>n

]
; these are the expected sufficient statistics.

To compute these quantities, we use the results from Sec. 3.5.3. Specifically, consider case n, where
components v are observed and components h are unobserved. We have

p(zn|yn,θ) = N (zn|mn,Vn) (5.179)

mn , µh + ΣhvΣ
−1
vv (yn − µv) (5.180)

Vn , Σhh −ΣhvΣ
−1
vv Σvh (5.181)

Hence the expected sufficient statistics are

E [yn] = (E [zn] ; yn) = (mn; yn) (5.182)

where we have assumed (without loss of generality) that the unobserved variables come before the
observed variables in the node ordering.

To compute E
[
yny>n

]
, we use the result that Cov [y] = E

[
yy>

]
− E [y]E

[
y>
]
. Hence

E
[
yny>n

]
= E

[(
zn
yn

)(
z>n y>n

)]
=

(
E
[
znz>n

]
E [zn] y>n

ynE [zn]
>

yny>n

)
(5.183)

E
[
znz>n

]
= E [zn]E [zn]

>
+ Vn (5.184)

Draft of “Probabilistic Machine Learning: An Introduction”. January 6, 2021

Page: 148

Author: petercerno Subject: Comment on Text Date: 01.02.21, 15:26:37

E [z_n ; y_n]

Author: petercerno Subject: Cross-Out Date: 01.02.21, 15:27:02

