Advanced Interactions

Aachi~sionN

¥ airline, number, heading to, gate, time (decimal hours)

flights = [("Southwest",145,"DCA",1,6.00),("United",31,"IAD",1,7.1),("United",302,"LHR",5,6.5),\
("Aeroflot",34,"SV0",5,9.00), ("Southwest",146,"CDA",1,9.60), ("United",46,"LAX",5,6.5),\
("Southwest",23,"SBA",6,12.5),("United",2,"LAX",10,12.5),("Southwest",59,"LAX",11,14.5),\
("American", 1,"JFK",12,11.3),("USAirways", 8,"MIA",20,13.1),("United",2032,"MIA",21,15.1),\
("SpamAir",1,"AUM",42,14.4)]

>>> help(flights.sort)
L.sort (cmp=None, key=None, reverse=False) -- stable sort *IN PLACE¥*;
cmp(x, Y) -> _lr ol 1

>>> flights.sort(key=lambda x: x[4]) ; flights
[('Southwest', 145, 'DCA', 1, 6.0),
('United', 46, 'LAX', 5, 6.5),
('United', 302, 'LHR', 5, 6.5),
('United', 31, 'IAD', 1, 7.099999999999999%¢6),
('Aeroflot', 34, 'sv0', 5, 9.0),
('Southwest', 146, 'CDA', 1, 9.5999999999999996),
('American', 1, 'JFK', 12, 11.300000000000001),
('Southwest', 23, 'SBA', 6, 12.5),
('United', 2, 'LAX', 10, 12.5),
('USAirways', 8, 'MIA', 20, 13.1),
('SpamAir', 1, 'AUM', 42, 14.4),
('Southwest', 59, 'LAX', 11, 14.5),

Multiple column sorting

operator. itemgetter(item[, args...])ﬂ
Return a callable object that fetches item from its operand using the operand’s _ getitem_ ()
method. If multiple items are specified, returns a tuple of lookup values.

http://docs.python.org/library/operator.html#module-operator

>>> flights.sort(key=operator.itemgetter(4,1,0))
[('Southwest', 145, 'DCA', 1, 6.0),
('United', 46, 'LAX', 5, 6.5),
('United', 302, 'LHR', 5, 6.5),
('United', 31, 'IAD', 1, 7.099999999999999%¢6),
('Aeroflot', 34, 'sv0o', 5, 9.0),
('Southwest', 146, 'CDA', 1, 9.599999999999999¢6),
('American', 1, 'JFK', 12, 11.300000000000001),
('United', 2, 'LAX', 10, 12.5),
('Southwest', 23, 'SBA', 6, 12.5),
('USAirways', 8, 'MIA', 20, 13.1),
('SpamAir', 1, 'AUM', 42, 14.4),
('Southwest', 59, 'LAX', 11, 14.5),
('United', 2032, 'MIA', 21, 15.1)]

http://docs.python.org/library/operator.html#module-operator

Try/Except/Finally

Billy: Let's keep going with "Airplanes”, for $200.

Bobby Wheat: "Airplanes” for $200: "And what is the Deal With the Black Box?" [
Tommy buzzes in] Tommy!

Tommy: It's the only thing that survives the crash - why don't they build the
whole plane out of the Black Box!

http://snltranscripts.jt.org/91/91rstandup.phtml

Wrap volatile code in try/except/finally

>>> tmp = input("Enter a number and I'll square it: ") ; print(float(tmp)**2)
Enter a number and I'll square it: monty
ValueError: invalid literal for float(): monty

instead....

>>> def f():
try:
tmp = input("Enter a number and I'll square it: ")
print(float(tmp)**2)
except:
print("dude. I asked you for a number and %s is not a number." % tmp)
finally:
print("thanks for playing!")

>>> f()

Enter a number and I'll square it: 3
9.0

thanks for playing!

>>> f()

Enter a number and I'll square it: monty
dude. I asked you for a number and monty is not a number.
thanks for playing!

Wrap volatile code in try/except/finally

try:

tmp = raw input("Enter a number “ + \ .

and I'll square it: ") volatile stuff

print(float(tmp)**2)
except:

print ("dude. I asked you for a number and " + \ \ Upon error,

"%s is not a number." % tmp)]Ump here inside

finally:

print ("thanks for playing!") except and

execute that
\ code
regardless of whether you hit an
error, execute everything inside the
finally block

e errors in Python generate what are called
“exceptions”
e exceptions can be handled differently depending on
what kind of exception they are

(we’ll see more of that later)
* except “‘catches” these exceptions
e you do not have to catch exceptions (try/finally) is
allowed. Finally block is executed no matter what!

>>> try:
print("eat at" % joes)
finally:
print("bye.")
bye.
Traceback (most recent call last):
File "<ipython console>", line 2, in <module>
NameError: name 'joes' is not defined

exec & eval

exec is a statement which executes strings as if they were
Python code

>>> a = "print('checkit')"
>>> exec a

checkit

>>> a = "x = 4.56"

>>> exec(a)
>>> print(x)
4.56
>>> exec("del x")
>>> print x
Traceback (most recent call last):
File "<ipython console>", line 1, in <module>
NameError: name 'x' is not defined

» dynamically create Python code (!)
p execute that code w/ implication for current namespace

exec & eval

>>> import math

>>> while True:
bi = input("what built in function would you like me to coopt? ")
nn = input("what new name would you like to give it? ")
exec("%s = %$s" % (nn,bi))

what built in function would you like me to coopt? math.sin
what new name would you like to give it? monty sin

what built in function would you like me to coopt? range
what new name would you like to give it? python range

>>> monty sin (math.pi/2)

1.0

>>> python range(3)

[0, 1, 2]

exec & eval

eval is an expression which evaluates strings as Python

expressions
>>> x = eval('5") # x <= 5
>>> x = eval('%d + 6' % Xx) # x <- 11
>>> x = eval('abs(%d)' % -100) # x <- 100
>>> x = eval('if 1: x = 4") # INVALID; if is a statement, not an expression.

File "<string>", line 1
if 1: x = 4

SyntaxError: invalid syntax

breakout

Write a code which generates python code that
approximates the function x? + x.

hints:
randomly generate lambda functions using a

restricted vocabulary:
VOC =["X","X"," Il,|l+|l,ll_ll,ll*ll,ll/ll,lllll,llzll,ll3"]

evaluate these lambda functions at a fix number of x
values and save the difference between those answers
and x? + x
catch errors!

import random
import numpy

VOC =["X"l"X"l" "l"+"l"—"l"*"l"/"1"1"1"2"1"3"]
nfunc = 1000000

maxchars = 10 # max how many characters to gen
eval places = numpy.arange(-3,3,0.4)

sin val = eval places**2 + eval places
tries = []

for loop...

