
Advanced Interactions

>>> help(flights.sort)
 L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;
 cmp(x, y) -> -1, 0, 1

>>> flights.sort(key=lambda x: x[4]) ; flights
[('Southwest', 145, 'DCA', 1, 6.0),
 ('United', 46, 'LAX', 5, 6.5),
 ('United', 302, 'LHR', 5, 6.5),
 ('United', 31, 'IAD', 1, 7.0999999999999996),
 ('Aeroflot', 34, 'SVO', 5, 9.0),
 ('Southwest', 146, 'CDA', 1, 9.5999999999999996),
 ('American', 1, 'JFK', 12, 11.300000000000001),
 ('Southwest', 23, 'SBA', 6, 12.5),
 ('United', 2, 'LAX', 10, 12.5),
 ('USAirways', 8, 'MIA', 20, 13.1),
 ('SpamAir', 1, 'AUM', 42, 14.4),
 ('Southwest', 59, 'LAX', 11, 14.5),

Multiple column sorting
operator.itemgetter(item[, args...])¶
Return a callable object that fetches item from its operand using the operand’s __getitem__()
method. If multiple items are specified, returns a tuple of lookup values.

http://docs.python.org/library/operator.html#module-operator

>>> flights.sort(key=operator.itemgetter(4,1,0))
[('Southwest', 145, 'DCA', 1, 6.0),
 ('United', 46, 'LAX', 5, 6.5),
 ('United', 302, 'LHR', 5, 6.5),
 ('United', 31, 'IAD', 1, 7.0999999999999996),
 ('Aeroflot', 34, 'SVO', 5, 9.0),
 ('Southwest', 146, 'CDA', 1, 9.5999999999999996),
 ('American', 1, 'JFK', 12, 11.300000000000001),
 ('United', 2, 'LAX', 10, 12.5),
 ('Southwest', 23, 'SBA', 6, 12.5),
 ('USAirways', 8, 'MIA', 20, 13.1),
 ('SpamAir', 1, 'AUM', 42, 14.4),
 ('Southwest', 59, 'LAX', 11, 14.5),
 ('United', 2032, 'MIA', 21, 15.1)]

http://docs.python.org/library/operator.html#module-operator

Try/Except/Finally

Billy: Let's keep going with "Airplanes", for $200. 
 
Bobby Wheat: "Airplanes" for $200: "And what is the Deal With the Black Box?" [
Tommy buzzes in] Tommy! 
 
Tommy: It's the only thing that survives the crash - why don't they build the
whole plane out of the Black Box!

http://snltranscripts.jt.org/91/91rstandup.phtml

http://snltranscripts.jt.org/91/91rstandup.phtml

>>> def f():
try:
 tmp = input("Enter a number and I'll square it: ")
 print(float(tmp)**2)
except:
 print("dude. I asked you for a number and %s is not a number." % tmp)
finally:
 print("thanks for playing!")
>>> f()
Enter a number and I'll square it: 3
9.0
thanks for playing!
>>> f()
Enter a number and I'll square it: monty
dude. I asked you for a number and monty is not a number.
thanks for playing!

Wrap volatile code in try/except/finally

>>> tmp = input("Enter a number and I'll square it: ") ; print(float(tmp)**2)
Enter a number and I'll square it: monty
ValueError: invalid literal for float(): monty

instead....

try:
 tmp = raw_input("Enter a number “ + \
 and I'll square it: ")
 print(float(tmp)**2)
except:
 print("dude. I asked you for a number and " + \

 "%s is not a number." % tmp)
finally:
 print("thanks for playing!")

Wrap volatile code in try/except/finally

volatile stuff

upon error,
jump here inside

except and
execute that

code
regardless of whether you hit an

error, execute everything inside the
finally block

• errors in Python generate what are called
“exceptions”
• exceptions can be handled differently depending on
what kind of exception they are  
 (we’ll see more of that later)
• except “catches” these exceptions
• you do not have to catch exceptions (try/finally) is
allowed. Finally block is executed no matter what!

>>> try:
 print("eat at" % joes)
finally:
 print("bye.")
bye.
--
Traceback (most recent call last):
 File "<ipython console>", line 2, in <module>
NameError: name 'joes' is not defined

exec & eval

exec is a statement which executes strings as if they were
Python code

>>> a = "print('checkit')"
>>> exec a
checkit
>>> a = "x = 4.56"
>>> exec(a)
>>> print(x)
4.56
>>> exec("del x")
>>> print x
--
Traceback (most recent call last):
 File "<ipython console>", line 1, in <module>
NameError: name 'x' is not defined

‣dynamically create Python code (!)
‣execute that code w/ implication for current namespace

>>> import math
>>> while True:
 bi = input("what built in function would you like me to coopt? ")
 nn = input("what new name would you like to give it? ")
 exec("%s = %s" % (nn,bi))
...
what built in function would you like me to coopt? math.sin
what new name would you like to give it? monty_sin
what built in function would you like me to coopt? range
what new name would you like to give it? python_range
>>> monty_sin (math.pi/2)
1.0
>>> python_range(3)
[0, 1, 2]

exec & eval

exec & eval

>>> x = eval('5') # x <- 5
>>> x = eval('%d + 6' % x) # x <- 11
>>> x = eval('abs(%d)' % -100) # x <- 100

>>> x = eval('if 1: x = 4') # INVALID; if is a statement, not an expression.
--
 File "<string>", line 1
 if 1: x = 4
 ^
SyntaxError: invalid syntax

eval is an expression which evaluates strings as Python
expressions

breakout

Write a code which generates python code that
approximates the function x2 + x.

hints:
randomly generate lambda functions using a
restricted vocabulary:
 voc =["x","x"," ","+","-","*","/","1","2","3"]

 evaluate these lambda functions at a fix number of x
values and save the difference between those answers

and x2 + x
catch errors!

import random
import numpy

voc =["x","x"," ","+","-","*","/","1","2","3"]

nfunc = 1000000
maxchars = 10 # max how many characters to gen
eval_places = numpy.arange(-3,3,0.4)
sin_val = eval_places**2 + eval_places
tries = []
for loop...

