Projek Gallus - Malaysia Truely Fungible Cryptocurrency
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
cmake
contrib
external
include
src
translations
utils
.gitattributes
.gitignore
CMakeLists.txt
CONTRIBUTING
Dockerfile
Doxyfile
LICENSE
Makefile
README.i18n
README.md
snapcraft.yaml
version.cmake

README.md

Galluscoin

Development Resources

About this Project

This is the core implementation of Galluscoin. It is open source and completely free to use without restrictions, except for those specified in the license agreement below. There are no restrictions on anyone creating an alternative implementation of Galluscoin that uses the protocol and network in a compatible manner.

As with many development projects, the repository on Github is considered to be the "staging" area for the latest changes. Before changes are merged into that branch on the main repository, they are tested by individual developers in their own branches, submitted as a pull request, and then subsequently tested by contributors who focus on testing and code reviews. That having been said, the repository should be carefully considered before using it in a production environment, unless there is a patch in the repository for a particular show-stopping issue you are experiencing. It is generally a better idea to use a tagged release for stability.

Anyone is welcome to contribute to Galluscoin's codebase! If you have a fix or code change, feel free to submit is as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.

Coin Supply & Emission

  • Total supply: 32,000,000 coins in first 20 years which is followed by a tail emission each year for inflation. About 6.25% (~2 million) was premined to reserve for future development. 30 million coins available for community mining.
  • Coin symbol: GAC
  • Coin Units:
    • 1 Nano-Gallus  = 0.000000001 GAC (10-9 - the smallest coin unit)
    • 1 Micro-Gallus = 0.000001 GAC (10-6)
    • 1 Milli-Gallus = 0.001 GAC (10-3)
  • Hash algorithm: CryptoNight Heavy (Proof-Of-Work)
  • Emission scheme: Galluscoin's block reward changes every 6-months as the following "Camel" distribution* (inspired by real-world mining production like of crude oil, coal etc. that is often slow at first, accelerated in the next few years before declined and depleted).

License

Please view LICENSE

License

Compiling Galluscoin from Source

Dependencies

The following table summarizes the tools and libraries required to build. A few of the libraries are also included in this repository (marked as "Vendored"). By default, the build uses the library installed on the system, and ignores the vendored sources. However, if no library is found installed on the system, then the vendored source will be built and used. The vendored sources are also used for statically-linked builds because distribution packages often include only shared library binaries (.so) but not static library archives (.a).

Dep Min. Version Vendored Debian/Ubuntu Pkg Arch Pkg Optional Purpose
GCC 4.7.3 NO build-essential base-devel NO
CMake 3.0.0 NO cmake cmake NO
pkg-config any NO pkg-config base-devel NO
Boost 1.58 NO libboost-all-dev boost NO
OpenSSL basically any NO libssl-dev openssl NO sha256 sum
BerkeleyDB 4.8 NO libdb{,++}-dev db NO
libevent 2.0 NO libevent-dev libevent NO
libunbound 1.4.16 YES libunbound-dev unbound NO
libminiupnpc 2.0 YES libminiupnpc-dev miniupnpc YES NAT punching
libunwind any NO libunwind8-dev libunwind YES stack traces
ldns 1.6.17 NO libldns-dev ldns YES ?
expat 1.1 NO libexpat1-dev expat YES ?
GTest 1.5 YES libgtest-dev^ gtest YES test suite
Doxygen any NO doxygen doxygen YES documentation
Graphviz any NO graphviz graphviz YES documentation

[^] On Debian/Ubuntu libgtest-dev only includes sources and headers. You must build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make && sudo mv libg* /usr/lib/

Build instructions

Galluscoin uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.

On Linux and OS X

  • Install the dependencies (see the list above)

    - On Ubuntu 16.04, essential dependencies can be installed with the following command:

      sudo apt install build-essential cmake libboost-all-dev libssl-dev pkg-config
    
  • Change to the root of the source code directory and build:

      cd galluscoin
      make
    

    Optional: If your machine has several cores and enough memory, enable parallel build by running make -j<number of threads> instead of make. For this to be worthwhile, the machine should have one core and about 2GB of RAM available per thread.

  • The resulting executables can be found in build/release/bin

  • Add PATH="$PATH:$HOME/galluscoin/build/release/bin" to .profile

  • Run Galluscoin with galluscoind --detach

  • Optional: build and run the test suite to verify the binaries:

      make release-test
    

    NOTE: coretests test may take a few hours to complete.

  • Optional: to build binaries suitable for debugging:

       make debug
    
  • Optional: to build statically-linked binaries:

       make release-static
    
  • Optional: build documentation in doc/html (omit HAVE_DOT=YES if graphviz is not installed):

      HAVE_DOT=YES doxygen Doxyfile
    

On the Raspberry Pi

Tested on a Raspberry Pi 2 with a clean install of minimal Debian Jessie from https://www.raspberrypi.org/downloads/raspbian/

  • apt-get update && apt-get upgrade to install all of the latest software

  • Install the dependencies for Galluscoin except libunwind and libboost-all-dev

  • Increase the system swap size:

	sudo /etc/init.d/dphys-swapfile stop  
	sudo nano /etc/dphys-swapfile  
	CONF_SWAPSIZE=1024  
	sudo /etc/init.d/dphys-swapfile start  
  • Install the latest version of boost (this may first require invoking apt-get remove --purge libboost* to remove a previous version if you're not using a clean install):
	cd  
	wget https://sourceforge.net/projects/boost/files/boost/1.62.0/boost_1_62_0.tar.bz2  
	tar xvfo boost_1_62_0.tar.bz2  
	cd boost_1_62_0  
	./bootstrap.sh  
	sudo ./b2  
  • Wait ~8 hours

    sudo ./bjam install

  • Wait ~4 hours

  • Change to the root of the source code directory and build:

      cd galluscoin
      make release
    
  • Wait ~4 hours

  • The resulting executables can be found in build/release/bin

  • Add PATH="$PATH:$HOME/galluscoin/build/release/bin" to .profile

  • Run Galluscoin with galluscoind --detach

  • You may wish to reduce the size of the swap file after the build has finished, and delete the boost directory from your home directory

On Windows:

Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.

Preparing the Build Environment

  • Download and install the MSYS2 installer, either the 64-bit or the 32-bit package, depending on your system.

  • Open the MSYS shell via the MSYS2 Shell shortcut

  • Update packages using pacman:

      pacman -Syuu  
    
  • Exit the MSYS shell using Alt+F4

  • Edit the properties for the MSYS2 Shell shortcut changing "msys2_shell.bat" to "msys2_shell.cmd -mingw64" for 64-bit builds or "msys2_shell.cmd -mingw32" for 32-bit builds

  • Restart MSYS shell via modified shortcut and update packages again using pacman:

      pacman -Syuu  
    
  • Install dependencies:

    To build for 64-bit Windows:

      pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl
    

    To build for 32-bit Windows:

      pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl
    
  • Open the MingW shell via MinGW-w64-Win64 Shell shortcut on 64-bit Windows or MinGW-w64-Win64 Shell shortcut on 32-bit Windows. Note that if you are running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.

Building

  • Make sure path to MSYS2 installed directory in Makefile is correct.

  • If you are on a 64-bit system, run:

      make release-static-win64
    
  • If you are on a 32-bit system, run:

      make release-static-win32
    
  • The resulting executables can be found in build/mingw64/release/bin or build/mingw32/release/bin accordingly.

On FreeBSD:

  • Update packages and install the dependencies (on FreeBSD 11.0 x64):

      pkg update; pkg install wget git pkgconf gcc49 cmake db6 icu libevent unbound googletest ldns expat bison boost-libs;
    
  • Clone source code, change to the root of the source code directory and build:

      git clone https://github.com/projekgallus/galluscoin; cd galluscoin; make release-static;
    

On OpenBSD:

This has been tested on OpenBSD 5.8.

You will need to add a few packages to your system. pkg_add db cmake gcc gcc-libs g++ miniupnpc gtest.

The doxygen and graphviz packages are optional and require the xbase set.

The Boost package has a bug that will prevent librpc.a from building correctly. In order to fix this, you will have to Build boost yourself from scratch. Follow the directions here (under "Building Boost"): https://github.com/bitcoin/bitcoin/blob/master/doc/build-openbsd.md

You will have to add the serialization, date_time, and regex modules to Boost when building as they are needed by Galluscoin.

To build: env CC=egcc CXX=eg++ CPP=ecpp DEVELOPER_LOCAL_TOOLS=1 BOOST_ROOT=/path/to/the/boost/you/built make release-static-64

Building Portable Statically Linked Binaries

By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:

  • make release-static-64 builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processors
  • make release-static-32 builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processors
  • make release-static-armv8 builds binaries on Linux portable across POSIX systems on armv8 processors
  • make release-static-armv7 builds binaries on Linux portable across POSIX systems on armv7 processors
  • make release-static-armv6 builds binaries on Linux portable across POSIX systems on armv6 processors
  • make release-static-win64 builds binaries on 64-bit Windows portable across 64-bit Windows systems
  • make release-static-win32 builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systems

Running galluscoind

The build places the binary in bin/ sub-directory within the build directory from which cmake was invoked (repository root by default). To run in foreground:

./bin/galluscoind

To list all available options, run ./bin/galluscoind --help. Options can be specified either on the command line or in a configuration file passed by the --config-file argument. To specify an option in the configuration file, add a line with the syntax argumentname=value, where argumentname is the name of the argument without the leading dashes, for example log-level=1.

To run in background:

./bin/galluscoind --log-file galluscoind.log --detach

To run as a systemd service, copy galluscoind.service to /etc/systemd/system/ and galluscoind.conf to /etc/. The example service assumes that the user galluscoin exists and its home is the data directory specified in the example config.

If you're on Mac, you may need to add the --max-concurrency 1 option to gallus-wallet-cli, and possibly galluscoind, if you get crashes refreshing.

Internationalization

Please see README.i18n

Using Tor

While Galluscoin isn't made to integrate with Tor, it can be used wrapped with torsocks, if you add --p2p-bind-ip 127.0.0.1 to the galluscoind command line. You also want to set DNS requests to go over TCP, so they'll be routed through Tor, by setting DNS_PUBLIC=tcp. You may also disable IGD (UPnP port forwarding negotiation), which is pointless with Tor. To allow local connections from the wallet, you might have to add TORSOCKS_ALLOW_INBOUND=1, some OSes need it and some don't. Example:

DNS_PUBLIC=tcp torsocks galluscoind --p2p-bind-ip 127.0.0.1 --no-igd

or:

DNS_PUBLIC=tcp TORSOCKS_ALLOW_INBOUND=1 torsocks galluscoind --p2p-bind-ip 127.0.0.1 --no-igd

TAILS ships with a very restrictive set of firewall rules. Therefore, you need to add a rule to allow this connection too, in addition to telling torsocks to allow inbound connections. Full example:

sudo iptables -I OUTPUT 2 -p tcp -d 127.0.0.1 -m tcp --dport 18081 -j ACCEPT

DNS_PUBLIC=tcp torsocks ./galluscoind --p2p-bind-ip 127.0.0.1 --no-igd --rpc-bind-ip 127.0.0.1 --data-dir /home/your/directory/to/the/blockchain

./gallus-wallet-cli

Using readline

While galluscoind and gallus-wallet-cli do not use readline directly, most of the functionality can be obtained by running them via rlwrap. This allows command recall, edit capabilities, etc. It does not give autocompletion without an extra completion file, however. To use rlwrap, simply prepend rlwrap to the command line, eg:

rlwrap bin/gallus-wallet-cli --wallet-file /path/to/wallet

Note: rlwrap will save things like your seed and private keys, if you supply them on prompt. You may want to not use rlwrap when you use simplewallet to restore from seed, etc.

Debugging

This section contains general instructions for debugging failed installs or problems encountered with Galluscoin. First ensure you are running the latest version built from the github repo.

LMDB

Instructions for debugging suspected blockchain corruption as per @HYC

There is an mdb_stat command in the LMDB source that can print statistics about the database but it's not routinely built. This can be built with the following command:

cd ~/galluscoin/external/db_drivers/liblmdb && make

The output of mdb_stat -ea <path to blockchain dir> will indicate inconsistencies in the blocks, block_heights and block_info table.

The output of mdb_dump -s blocks <path to blockchain dir> and mdb_dump -s block_info <path to blockchain dir> is useful for indicating whether blocks and block_info contain the same keys.

These records are dumped as hex data, where the first line is the key and the second line is the data.