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Abstract

Survival trees are a common machine learning tool designed to handle censored data, where
only partial information about failure events is available. Most survival tree models work by
recursively dividing the feature space using splits defined by single attributes in internal nodes.
However, there is a less common type known as oblique survival trees, which use more attributes
to create splits in the form of hyperplanes. In this paper, we depart from the typical top-down ap-
proach and focus on globally induced oblique survival trees, aiming to optimize both prediction
accuracy and model complexity. We propose using two different loss functions— the integrated
Brier score and a likelihood-based loss— in the process of oblique survival tree induction. We
then compare the resulting models in terms of their predictive performance and complexity.
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1. Introduction
Survival analysis comprises methods designed for a specific type of data, where the time until
a predetermined event occurs is studied. While it may resemble a regression problem, there are
unique considerations when analyzing this type of data. A common scenario involves what are
known as censored observations, where the exact time of the event (often called a failure) is
unknown. There are various types of censoring, with right censoring being the most prevalent.

In this context, given an observation (like a patient), time is measured from a defined starting
event t0 (such as disease diagnosis or surgery) to the earliest of the following (tend): i) the
occurrence of the event (failure), ii) the end of the observation period, or iii) loss to follow-
up. The first option provides the precise failure time (uncensored observations), while the latter
two scenarios indicate that the object has not experienced the event of interest up to that point
(censored cases). Therefore, for uncensored individuals, t = tend − t0 represents the failure
time, while for censored cases, it indicates the follow-up time. Survival data typically includes
two types of observations: uncensored and censored.

When creating tools to analyze survival data, it is crucial to consider the incomplete infor-
mation found in censored cases. Ignoring this can result in biased models. The most common
statistical models for survival analysis include nonparametric methods like the Kaplan-Meier
survival function [16] and the Nelson-Aalen cumulative hazard function [24], [1], as well as
semi-parametric models such as Cox’s proportional hazards model [5]. Additionally, there are
parametric models like the Weibull, log-logistic, or log-normal distribution models [15]. How-
ever, statistical models often rely on certain assumptions, which may not always hold true. As an
alternative, various machine learning tools, including tree-based models, have been developed
over the years to address this issue.

The induction process for most proposed tree models follows a top-down approach. To
achieve a final model with satisfactory generalization ability, two phases are required: induction
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and pruning. Induction aims to minimize a specified impurity measure [6],[28] or employs
a between-node separation measure, often chosen from the Tarone–Ware class of two-sample
statistics for censored data [4], [26]. The subsequent pruning phase utilizes cost-complexity
pruning [3], and for survival trees, split-complexity pruning [23].

Another approach, known as the conditional inference framework, was introduced by Hothorn
et al. [11]. This method makes decisions on split importance during node creation, eliminating
the need for additional pruning steps. The splitting process halts when the test result in a given
node is not statistically significant at a specified value of α. This idea was also utilized in the
solution proposed by Kundu and Ghosh [20]. A non-greedy method of survival tree induction
was introduced in [2], where the optimized function considers both the performance error of the
tree on the training set and its complexity. This algorithm employs mixed-integer optimization
and local search techniques to generate the resulting tree. Wang et al. [29] and Wang and Zhou
[30] proposed using random forests to analyze survival data. Additionally, Wang et al. [31]
provides a survey of machine learning methods applied to survival analysis.

Oblique trees, where tests in internal nodes are in the form of a hyperplane instead of a
single variable, are less common solutions. Kretowska [17] proposed a dipolar survival tree
induced by using convex, piece-wise linear criterion functions based on the idea of a dipole - a
pair of observations. Recently, an oblique random survival forest was introduced by Jaeger et
al. [13, 14].

The presence of censored observations necessitates evaluation measures that consider the
partial information available. Among the most widely used metrics is the integrated Brier score
(IBS) [9], which examines the disparity between the actual and predicted survival functions
for a given observation. Another popular metric is Harrell’s C-index [10], which assesses the
concordance between the actual and predicted times of failure occurrence.

In this paper, we apply the global induction of oblique survival trees introduced in [18] to in-
vestigate the influence of two types of loss functions: the integrated Brier score and a likelihood
loss incorporated into a fitness function used in an evolutionary algorithm. Each of these crite-
ria considers the presence of censored observations, emphasizing certain aspects of the models
while overlooking others. By considering different loss functions, we aim to compare their
effects on the induced tree structures, focusing on both complexity and generalization ability,
assessed by two metrics: the integrated Brier score and Harrell’s C-index. The experiments were
conducted using five medical datasets.

The paper consists of six sections. Section 2 introduces basic information about survival
analysis, including data representation, distribution functions, and oblique survival trees. Sec-
tion 3 describes performance measures and loss functions used in evolutionary induction, as
well as in the evaluation of the obtained survival models. In Section 4, we introduce the ba-
sic concepts of evolutionary induction of survival trees, while Section 5 presents the obtained
results. Section 6 summarizes the results.

2. Survival Analysis
We assume having a learning set, L, which consists of M observations. In survival analysis, the
ith observation is described by a set of three values (xi, ti, δi), where xi is the N -dimensional
feature vector, ti is the observed time, which for uncensored subjects is equal to its failure time,
for censored - it takes values of censoring time, δi is the failure indicator, which takes one of
two values: 0 for censored observations or 1 otherwise.

2.1. Distributions of Survival Time

The distribution of the survival time may be represented by several functions. One of them is a
survival function S(t) = P (T > t), which gives the probability of surviving beyond the time t.
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The other, commonly used function is a hazard function, calculated as:

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t

∆t
, (1)

where λ(t)∆ is the probability of failure in the in infinitesimal interval (t, t+∆t), given survival
at time t. A cumulative hazard function, Λ(t), is directly associated with λ(t):

Λ(t) =

∫ t

0
λ(s)ds (2)

and can be interpret as the cumulative amount of hazard up to time t and is linked with the
survival function: Λ(t) = − logS(t), so S(t) = e−Λ(t).

One of the most common estimators of the survival function is the Kaplan–Meier (KM)
method [16]. If we assume that the events of interest occur at D distinct times t(1) < t(2) <
. . . < t(D), it is calculated as follows:

Ŝ(t) = ŜKM (t) =
∏

j|t(j)≤t

(
mj − dj

mj

)
, (3)

where dj is the number of events at time t(j) and mj is the number of patients at risk at t(j)
(i.e., the number of patients who are alive at t(j) or experience the event of interest at t(j)). The
Nelson–Aalen estimator [24], [1] of the cumulative hazard function is qual to:

Λ̂(t) =
∑

j|t(j)≤t

(
dj
mj

)
(4)

and hence, the Nelson–Aalen estimator of survival function is calculated as:

ŜNA(t) = e−Λ̂(t) = exp

 ∑
j|t(j)≤t

dj
mj

 . (5)

2.2. Oblique Survival Tree

The primary goal of survival trees is to divide the N -dimensional feature space recursively to
create large regions with similar survival patterns. The tree consists of internal and terminal
nodes. Each internal node holds a split, which in univariate trees depends on a single feature
(e.g., xi = c). In oblique trees, this split takes the form of any hyperplane H(w, c) = {x :
wTx = c}, where many features are considered.

In traditional decision trees, terminal nodes are assigned a class number to which observa-
tions reaching the node belong. However, for survival trees, terminal nodes typically represent
not just a single value, but a function. In our proposed method, each terminal node is defined by
the Kaplan–Meier survival function, along with the calculated median survival time (Figure 1).

3. Performance Measures and Loss Function
In survival analysis, traditional performance measures such as mean square error or mean abso-
lute error cannot be used due to censored observations, where the exact time of failure occur-
rence is unknown. The proposed indices are designed to utilize the available information from
censored cases.
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Fig. 1. Oblique survival tree.

3.1. Harrell’s C-index

One of the widely used performance measures in survival analysis is Harrell’s C-index [10],
which is based on the numbers of concordant, discordant, and tied pairs of observations among
all comparable pairs. A pair (xi, xj) is considered comparable if we can order failure times of
both observations. Therefore, we exclude from this set all pairs where: i) δi = δj = 0 or ii)
δi = 0 and δj = 1 with ti < tj .

For a comparable pair of observations, if the predicted order of failure time occurrence, t̂,
matches the actual order, we call this pair concordant. Conversely, if the predicted order differs,
the pair is discordant. Tied pairs occur when the predicted survival times for two observations
are equal.

Hence, we can calculate the number of pairs of these three types as follows: the number
of concordant pairs: #Conc =

∑
i,j 1(ti > tj)1(t̂i > t̂j)δj , the number of discordant pairs:

#Disc =
∑

i,j 1(ti > tj)1(t̂i < t̂j)δj , and the number of tied pairs: #Tied =
∑

i,j 1(ti >

tj)1(t̂i = t̂j)δj where t̂i means the predicted survival time for the ith observation.
Harrell’s C-index is calculated using the formula:

HCI =
#Conc+ 0.5#Tied

#Conc+#Disc+#Tied
. (6)

3.2. Integrated Brier Score

The Integrated Brier Score (IBS) measures the difference between survival functions [9]. For a
fixed time, t, we can look at three types of contributions for a given observation xi:

1. if ti ≤ t and δi = 1: the failure occurred before t, and the event status at t is equal to 0,
so the contribution to the Brier score is (0− Ŝ(t|xi))

2 = Ŝ(t|xi)
2;

2. if ti > t and (δi = 1 or δi = 0): the observations do not experience any event at time
t; hence, the event status at t is equal to 1, and the contribution to the Brier score is
(1− Ŝ(t|xi))

2;

3. if ti ≤ t and δi = 0: the contribution to the Brier score cannot be calculated because the
event status at t is unknown for the observations.

Since the observations from group 3 do not contribute to the Brier score, we need to adjust
by giving weights to the existing contributions. Observations from group 1 have a weight of
Ĝ(ti)

−1, while those from group 2 have a weight of Ĝ(t)−1, where Ĝ(t) is the Kaplan–Meier
estimator of the censoring distribution. It’s calculated based on observations (ti, 1 − δi). The
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Brier score is defined as:

BS(t) = 1
n

∑N
i=1(Ŝ(t|xi)

2I(ti ≤ t ∧ δi = 1)Ĝ(ti)
−1

+(1− Ŝ(t|xi))
2I(ti > t)Ĝ(t)−1), (7)

where I(condition) is equal to 1 if the condition is fulfilled and zero otherwise. The IBS is
calculated as follows:

IBS =
1

maxti

∫ maxti

0
BS(t)dt. (8)

3.3. Likelihood-Based Loss

A loss function proposed by LeBlanc and Crowley in [22] is derived from Cox’s proportional
hazard model [5], where the hazard function is defined as: λ(t|x) = λ0(t)exp(β

T x). Here,
λ0(t) is the baseline hazard and β is an N -dimensional vector of parameters. With a survival
tree T having terminal nodes h ∈ T , the full likelihood of the learning set can be expressed as:

L =
∏
h∈T

∏
xi∈h

(λh(ti))
δie−Λh(ti), (9)

where λh and Λh represent the hazard and cumulative hazard functions for node h. Assuming
λh(t) = θhλ0(t), we get:

L =
∏
h∈T

∏
xi∈h

(θhλ0(ti))
δie−θhΛ0(ti), (10)

where Λ0(t) is the baseline cumulative hazard function and is calculated using the Nelson-Aalen
estimator (4). The maximum likelihood estimator of θh, for h ∈ T is:

θ̂h =

∑
xi∈h δi∑

xi∈h Λ̂0(ti)
. (11)

Assuming a saturated model with only one observation in each terminal node, we find θ̂sati =
δi

Λ̂0(ti)
. The difference in the log-likelihood functions calculated for the fitted (T ) and saturated

models is given by:

LLd =
∑
h∈T

∑
xi∈h

δi log

(
δi

Λ̂0(ti)

)
− δi log θh + δi − Λ̂0(ti)θh. (12)

4. Evolutionary Induction
The evolutionary algorithm described here builds upon the global induction of standard decision
trees [19] and extends the method proposed in [18] by introducing various loss functions. In this
section, we focuses on the essential elements pertinent to survival analysis, excluding more
general aspects. The general schema of evolutionary induction of survival trees in presented in
Figure 2.

4.1. Representation and Initialization

In non-terminal nodes, only oblique tests based on hyperplanes are allowed. This means that if
categorical features are included in the datasets, they must first be converted, usually into binary
features. At each leaf of the survival trees, a Kaplan–Meier (KM) estimator is placed based on
the training data that have reached that leaf. As the tree structure evolves during induction, it is
crucial to keep track of the locations of all training data points. From a computational standpoint,



KRETOWSKA AND KRETOWSKI THE INFLUENCE OF LOSS FUNCTIONS . . .

Fig. 2. Schema of evolutionary induction of survival trees.

it is efficient to store this information in a smartly allocated table. Since modifications are often
local, only the corresponding areas or subtrees need to be updated. Therefore, individuals are
not encoded but are represented as standard binary trees with additional data structures.

Effective population initialization can significantly shorten the evolution process and lead to
better resource utilization. The initial trees should be diverse and ideally similar in size to the
target survival trees, which are typically compact. A straightforward top-down algorithm with
a tree height limit is employed, activated on random small subsets of the training data. Tests in
internal nodes are created using randomly selected pairs of observations, known as "dipoles."
Dipoles can be formed between uncensored observations or between earlier uncensored obser-
vations and later censored ones. When generating tests, longer dipoles are favored, considering
the difference in failure times, as their intersection implies that these observations will be in two
separate subtrees, eventually becoming leaves. The same mechanism of selecting dipoles and
creating tests based on them is also used in the mutation operator.

The evolutionary induction process concludes when, after a specified number of iterations
(default 1000 iterations), no individual with a superior fitness value is discovered, or when the
maximum number of iterations is reached (default 5000).

4.2. Genetic Operators

In the evolutionary algorithm, two genetic operators are employed, following the standard ap-
proach [19]. The first is crossover, which enables the exchange of genetic material between two
individuals. In the typical scenario, two nodes (including their subtrees) are randomly chosen
from two trees, and their entire subtrees are swapped. Alternatively, it’s possible to exchange
the tests themselves or perform a crossover with the best-performing individual so far. However,
since crossover can sometimes harm the structure of the trees [8], it’s used with a relatively low
probability (default 0.2).

Mutation, on the other hand, plays a crucial role in diversifying individuals and is applied
with a higher probability (default 0.8). This operator can directly modify the tree structure by
either pruning a randomly selected subtree down to a leaf or replacing a leaf with an internal
node containing a new test. Indirectly, the structure can change when an existing test is altered,
such as by randomly adjusting or resetting a weight in the hyperplane. A key aspect for efficient
exploration of the search space is the generation of new tests. Here, the dipole mechanism
previously described is utilized, allowing the search to proceed sensibly by avoiding ineffective
tests.

4.3. Fitness Function

The fitness function is a vital part of every evolutionary algorithm. In evolutionary machine
learning, we cannot directly define functions because the goal is to make accurate predictions
on unseen data, not just on the training set. To achieve this, we optimize a measure of how well
our model performs on the training data, along with a factor that considers the size of the model
to avoid overfitting.
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For survival tree, T , we calculate the loss function (Loss) and the tree size (number of
leaves), and then define the fitness function like this:

Fitness(T ) = Loss(T ) + α(Size(T )− 1), (13)

In this study, we explore two types of loss functions: the integrated Brier score (IBS) and the
likelihood-based loss (LLd). Adjusting the α value allows us to control the complexity of the
resulting tree. Since the two loss functions have different value ranges, the α values considered
for each will also differ. In this framework, all tests are treated equally important, irrespective
of the number of features they incorporate. If we prioritize simpler tests, we can make the Size
term dependent on the number of features used.

5. Experimental Validation and Discussion
In this section, we assessed the results of evolutionary induced oblique survival trees (EIOST)
for two different loss functions (see Equation 13): the integrated Brier score and the likelihood-
based loss. We evaluated these using two performance measures: IBS and HCI calculated as the
mean values over 5 runs of 10-fold cross-validation. The experiments were conducted on five
publicly available medical datasets: primary biliary cirrhosis data (pbc418) [7], follicular cell
lymphoma study (follic) [25], data from the National Wilm’s Tumor Study (nwtco) [27], mon-
oclonal gammopathy data (mgus2) [21], and systolic heart failure data (peakv02) [12]. These
datasets had varying percentages of censored cases (ranging from 30.4% to 87.3%), numbers
of observations (ranging from 418 to 2231), and attributes (ranging from 4 to 39). A detailed
description of the datasets is given in Table 1.

The parameters of the evolutionary algorithm were kept constant during all experiments
(population size: 50, maximum number of iterations: 5000, selection pressure: 1.2, minimum
number of objects in a leaf: 5). The differences between KM survival functions were assessed
using the log-rank test. A significance level of 0.05 was applied for all comparisons.

In Figure 3, we observe the relationship between the predictive ability of EIOST, measured
by IBS, and the α parameter ranging from 0.0001 to 0.1. The results are averaged over 5 runs
of a 10-fold cross-validation procedure for five medical datasets. In Figure 3a, the IBS values
are plotted, showing higher values for α closer to the boundary of its range. The lowest values,
indicating better predictive ability, are typically found between 0.001 and 0.1. Figure 3b shows
the evaluation of the same tree models using HCI. Unlike the IBS measure, the best-performing
model tends to have the highest HCI. The best models, based on HCI, are observed for α values
ranging from 0.0002 to 0.001.
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Fig. 3. Dependence of the predictive ability of EIOST with the loss defined as IBS on the α param-
eter; predictive ability calculated with the use of a) IBS, b) HCI multiplied by 100.

Figure 4 illustrates the relationship between the predictive ability of EIOSTs induced with
the LLd loss function and the α parameter. Since the LLd values obtained are considerably
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larger than the IBS values, the α values controlling model complexity should also be larger than
those used for the IBS loss. In our experiments, we consider a range between 0.125 and 32
for α. Similar to the IBS loss, we observe poorer predictive ability for models induced with
both low and high values of the complexity parameter, as measured by both IBS and HCI. The
optimal range of α for the analyzed datasets is between 3 and 8 for IBS (Figure4a) and between
1 and 3 for HCI (Figure4b).
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Fig. 4. Dependence of the predictive ability of EIOST with the loss defined as LLd on the α param-
eter; predictive ability calculated with the use of a) IBS, b) HCI multiplied by 100.

Figure 5 depicts the number of nodes in EIOSTs obtained using the IBS loss (a) and the LLd
loss (b) across successive α values. In both figures, we observe a reduction in the number of
leaves as the α values increase.
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Fig. 5. Dependence of the EIOST size on the α parameter with the loss defined as a) IBS, b) LLd.

In Table 1, we provide a more detailed description of the tree models selected for two loss
functions, IBS and LLd, using two evaluation metrics, IBS and HCI. For the nwtco dataset with
the IBS loss and the peakv02 dataset with the LLd loss, the models selected using both IBS and
HCI metrics are the same. In other cases, the models chosen with IBS tend to be smaller than
those selected with HCI, suggesting that higher HCI values are typically associated with more
complex trees. Comparing the results for the two loss functions, we notice that HCI values are
consistently better for the LLd loss compared to the IBS loss. However, when considering the
IBS metric, in 4 out of 5 datasets, the IBS obtained for the LLd loss is worse than for the IBS.

The models reported here were chosen based on the best metric values, separately for IBS
and HCI. It is worth noting that the curves in Figures 3 and 4 are often relatively flat over certain
ranges of α, indicating that models with similar α values may not differ significantly in the
context of predictive ability. Therefore, incorporating knowledge from both metrics might be
beneficial in selecting the best tree for a given loss function. To achieve this, we introduced
an additional metric called SRank, which is the sum of ranks associated with IBS and HCI
metrics separately. The models with the smallest SRank index were selected, providing the
best possible values for both metrics simultaneously. The results obtained using the SRank
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Table 1. Description of models selected with the use of three metrics: IBS, HCI and SRank for
five datasets inducted with the use of IBS and LLd loss functions. M denotes the number of
observations, N - the number of attributes, Size denotes the mean number of leaves and IBS
(HCI) denotes the mean value IBS (HCI) calculated over 5 runs of 10-fold cross-validation
multiplied by 100.

Loss follic nwtco mgus2 pekav02 pbc418
M 541 668 1384 2231 418
N 4 5 6 39 8
% censored 49.7 87.3 30.4 67.5 61.5

IBS

metrics: IBS 19.86 10.1 13.16 16.46 14.35
α 0.04 0.001 0.001 0.01 0.003
Size 3.1 4.1 4.7 3.2 3.6
metrics: HCI 53.66 61.01 66.45 65.03 76.16
α 0.0005 0.001 0.002 0.0005 0.001
Size 17.2 4.1 18.5 5.4 8.2

LLd

metrics: IBS 22.16 10.2 13.45 16.56 13.65
α 4 4 5 4 7
Size 2.3 2.9 6 4.2 2.1
metrics: HCI 54.84 62.45 66.89 65.63 77.26
α 2 1 3 4 3
Size 5 5.5 10.5 4.2 3.4

IBS metrics: SRank 4 2 3 3 3
α 0.004 0.001 0.0002 0.001 0.001
Size 3.1 4.1 18.5 3.2 8.2

LLd metrics: SRank 3 3 5 2 4
α 2 1 3 4 3
Size 5 5.5 10.5 4.2 3.4

measure are shown in Table 1 under rows labeled as metrics:SRank, where the best sum of
ranks is reported. Interestingly, the results for the LLd loss function using the SRank metrics
are identical to those for HCI.

In Figures 6, 7, and 8, we observe Kaplan-Meier survival functions derived from survival
trees induced with α values chosen based on the SRank measure (Table 1) for the follic, pbc418,
and peakv02 datasets. Graphs labeled (a) depict survival trees generated using the IBS loss
function, while those labeled (b) depict trees generated using the LLd loss function. It is worth
noting, that the survival functions obtained from each solution differ significantly (p-value <
0.05). Despite this, it is visible that the solutions obtained using the LLd loss function appear to
be superior for all three datasets.

For the follic dataset, the survival functions associated with leaf numbers 2 (L2) and 3 (L3)
in Figure 6a are more similar to each other than the survival functions associated with L2 and
L3 in Figure 6b, obtained using the LLd loss.

Analyzing the results for the pbc418 dataset (Figure 7), it is apparent that the use of the IBS
loss leads to a more complex survival tree, and the obtained functions do not exhibit generalizing
abilities compared to the solution obtained using the LLd function (Figure 7b), where only three
leaves with distant median survival times were obtained.

For the peakv02 dataset (Figure 8), similar to the follic dataset, the survival functions for L3
and L4 obtained using the IBS loss are similar, while for the solution obtained using the LLd
loss (Figure 8b), the KM survival functions are characterized by more distant median survival
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Fig. 6. KM survival functions for trees inducted for the follic dataset with (a) IBS loss function (b)
LLd loss function selected by the SRank measure.
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Fig. 7. KM survival functions for trees inducted for the pbc418 dataset with (a) IBS loss function
(b) LLd loss function selected by the SRank measure.

times: 4.05 and 8.85 years for L1 and L2, respectively.
Regarding induction times, for the largest dataset analyzed (peakv02), the time required was

on the order of several minutes for both IBS (up to 3 minutes) and LLd (up to 8 minutes). We
briefly considered incorporating HCI into the fitness function; however, we abandoned this idea
due to significantly prolonged induction times. Computing HCI involves considering all pairs of
observations each time, resulting in quadratic complexity, which is computationally expensive.

6. Conclusions
In the study, we investigated the impact of two loss functions incorporated into fitness functions
of evolutionary algorithm for survival tree induction. We examined the integrated Brier score
(IBS), commonly used for evaluating survival models, and the likelihood-based difference be-
tween the obtained and saturated model (LLd). Our experiments involved five medical datasets
with varying percentages of censored observations.

For each loss function, we generated a set of different models with additional complexity
parameter, α. To select the model with the best generalization ability, we used two metrics: the
integrated Brier score and Harrell’s C-index (HCI). Since the resulting models often differed,
we introduced a new metric called SRank, which summed the ranks separately for each metric
(IBS and HCI). The SRank values and the tree size did not differ significantly between the two
analyzed loss functions. Additionally, the Kaplan–Meier survival functions obtained for each
solution—IBS and LLd loss—showed significant differences, as indicated by the log-rank test.
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Fig. 8. KM survival functions for trees inducted for the peakv02 dataset with (a) IBS loss function
(b) LLd loss function selected by the SRank measure.

Upon analyzing the Kaplan-Meier survival functions associated with the terminal nodes of
survival trees induced by the two loss functions, we observed an interesting pattern. In our
examples, the survival models generated with the LLd loss function appeared to be more inter-
pretable and therefore more practically useful. Even when accounting for an equal number of
leaves, the feature space areas obtained by LLd loss exhibited more varied survival functions,
which was not consistently observed with the IBS metric. This may suggests that LLd loss is
better at splitting the feature space, resulting in areas that differ from each other in terms of
survival experience. Furthermore, it is noteworthy that employing the SRank metric alongside
the LLd loss function yielded outcomes equivalent to those chosen by HCI alone.

In this paper, we analyzed survival data with right censoring and continuous survival time.
We aim to extend our method to accommodate other types of survival data, such as discrete
survival data and data with competing risks.
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