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Abstract

Cloud servers are becoming more widely used due to the growing number of mobile devices
with limited capabilities for complex computing, processing, and storage. Choosing the opti-
mal cloud server is challenging due to the continuous technological development of the growing
number of cloud service providers. The need to evaluate cloud services according to multiple
attributes suggests that multi-criteria decision analysis (MCDA) methods are appropriate. This
paper proposes an approach to multi-criteria assessment of cloud services using the Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS) method employing various
distance metrics with different approaches to prefer sustainable solutions and criteria compen-
sation. A sensitivity analysis that considered changing criteria weights was applied to assess
the robustness of evaluated solutions. The demonstrated approach proved its applicability for
multi-criteria cloud service assessment considering sustainability and robustness.

Keywords: Cloud computing, Cloud services, Cloud servers, Multi-criteria assessment, Sus-
tainability

1. Introduction
Cloud computing is a term for a distributed paradigm running on the Internet. Its resources
ensure computing, data storage, and service solutions [9]. Cloud computing solves challenges
such as limited battery power and processing capabilities encountered by mobile devices [7].
Mobile cloud computing (MCC) specifies a distributed paradigm that includes mobile com-
puting, cloud computing, and networking [19]. MCC enables the transfer of tasks requiring
complex computing to cloud servers with extensive resources [8]. Cloud computing enables
the usage of virtualized resources available on the Internet instead of maintaining one’s own
computing infrastructure [14]. This technology allows users to avoid the administrative and
technical problems associated with IT infrastructure, such as the cost of development, mainte-
nance, and providing security [5, 18]. Cloud computing enables users to pay for computing and
storage services on a pay-per-use model [11].

Selection of the optimal server among those available in the cloud is a challenge and is
considered a research area that needs exploration. This is a problematic task due to the con-
tinuous development of cloud computing technology and the growing number of cloud service
providers [13]. Multi-criteria decision analysis (MCDA) is among the techniques suitable for
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selecting the optimal cloud server [11]. This method makes it possible to consider multiple
conflicting criteria, such as response time, cost, and speed during selection. MCDA methods
show applicability in selecting the optimal cloud from among cloud services providing similar
services [9].

This paper presents a multi-criteria approach to optimal cloud server selection considering
multiple attributes, sustainability, and robustness of alternatives. The proposed approach is
based on the well-known and widely used the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) method applied with various distance metrics representing different
considerations of sustainability and criteria compensation. Additionally, sensitivity analysis
considering changes in decision-makers preferences reflected in criteria weight modification
was performed. The presented approach involving modified parameters of multi-criteria analysis
enables the identification of an optimal alternative considering robustness.

2. Methodology
The aim of this paper is to evaluate four cloud servers located in different regions of the world
concerning six Quality of Service (QoS) [9] attributes using the TOPSIS method applying dif-
ferent distance metrics for one of the steps, which is to determine the distance of the considered
alternatives from the reference solutions. Research was carried out based on a generalized form
of the Minkowski metric [12], in a form adapted to the specifics of determining distances from
reference points. The QoS parameters representing the criteria assessment considered in this
research are given in Table 1.

Table 1. Description of QoS parameters considered for cloud servers multi-criteria assessment.

QoS Attribute Description References
C1 - Speed The time required for the cloud server to perform a

given task.
[3, 19]

C2 - Response Time The time required to receive a response from the
cloud server to the mobile device from the time the
request is sent from the mobile device to the cloud
servers without considering computation time.

[2, 6, 7]

C3 - Proximity The distance specified in kilometers from the user’s
location to the cloud servers.

[1, 10, 13]

C4 - Cost per hour The price of a virtual machine per hour of use. The
cost depends on performance and location.

[8, 15]

C5 - Availability The availability of virtual machine resources. [14, 15]
C6 - Security Security setting dependent on cloud providers. [5, 18]

Table 2. Criteria values assigned for considered alternatives.

Cloud Location Speed Response Time Proximity Cost Availability Security
A1 Mumbai 3.64 19.1 842 0.0496 5 5
A2 Paris 3.74 21.43 7833 0.0528 4 4
A3 Sydney 3.75 22.56 9458 0.0588 4 4
A4 North Virginia 3.85 29.19 14001 0.0464 4 4
Weight 0.27 0.34 0.22 0.02 0.1 0.04
Type -1 -1 -1 -1 1 1

The values of performance regarding the parameters considered in the evaluation of each
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cloud server are presented in Table 2. A set of criteria assessment and performance values were
acquired from the research conducted by Kurup S. and Guruprasad H. S. in 2022 [9]. The data
was determined based on an experiment conducted for four real-time cloud servers located in
different world regions. Criteria weights were determined by the authors of the mentioned paper
using the Analytical Hierarchical Process (AHP) method [16]. Profit criteria type is represented
by 1, and cost criteria are denoted by -1. Each considered device is Amazon EC2 instance
t2.medium model with 2 vCPUs, 2.3 GHz, and 4 GiB. The mobile device used for the performed
experiment is the Sony Xperia M C1904 model with CPU Octa-Core 1.6 GHz and 3 GB of
RAM.

2.1. The TOPSIS Method

The TOPSIS method evaluates alternatives based on the calculation of alternatives’ distances
to ideal and anti-ideal reference solutions. In the original algorithm, Euclidean distance is used
as the distance metric, although there are other metrics whose use in multi-criteria analysis
requires exploration. The following stages of the TOPSIS (Technique for Order of Preference
by Similarity to Ideal Solution) method are provided below, based on [16].
Step 1. Normalize the decision matrix. The Minimum-Maximum normalization method for
profit criteria r+ij and for cost criteria r−ij can be applied using Equation (1). another normaliza-
tion method can be also applied in this aim.

r+ij =
xij −minj(xij)

maxj(xij)−minj(xij)
, r−ij =

maxj(xij)− xij
maxj(xij)−minj(xij)

(1)

Step 2. Calculate weighted normalized decision matrix with Equation (2).

vij = wjrij (2)

Step 3. Determine Positive Ideal Solution (PIS), namely v+j and Negative Ideal Solution (NIS)
v−j using Equation (3).

v+j = {v+1 , v
+
2 , . . . , v

+
n } = {maxj(vij)}, v−j = {v−1 , v

−
2 , . . . , v

−
n } = {minj(vij)} (3)

Step 4. Calculate distance from PIS D+
i and NIS D−

i for each alternative as Equation (4) shows.
The original metric used for distance computation in TOPSIS is Euclidean distance.

D+
i =

√√√√ n∑
j=1

(vij − v+j )
2, D−

i =

√√√√ n∑
j=1

(vij − v−j )
2 (4)

Step 5. Calculate the score for each considered alternative using Equation (5). The Ci value is
in range from 0 to 1, and the alternative with the highest Ci value is the ranking leader.

Ci =
D−

i

D−
i +D+

i

(5)

2.2. Distance metrics

The Euclidean distance measured between two sets of points is received by calculating the
square root of the sum of the squares of the differences between the respective points in com-
pared sets a and b [4]. Equation (6) is applied for computation of the Euclidean distance, where
m represents the size of sets.

d(a, b) =

√√√√ m∑
i=1

(ai − bi)2 (6)
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Manhattan (Taxicab) distance is used for the determination of the distance between two sets a
and b by calculating the sum of absolute differences between corresponding particular points
contained in compared sets, as Equation (7) shows [20].

d(a, b) =
m∑
i=1

|ai − bi| (7)

The Chebyshev distance between two sets of points is computed with Equation (8). This metric
is also called the chessboard distance [17].

d(a, b) = max
i=1,...,m

{|ai − bi|} (8)

The Minkowski distance metric defined by Equation (9) provides a wide range of analytical
possibilities for finding compromise solutions with different degrees of substitution and sustain-
ability. The Minkowski metric allows modification of the degree of substitution in the solutions
under consideration. The form of this function has useful decision-making properties. For p=1,
the function takes the form of a Manhattan-type urban distance. For p=2, the function is a
Euclidean distance, while for higher values of p reaching ∞, it becomes a Chebyshev distance.

d(a, b) = (

m∑
i=1

|ai − bi|p)
1
p

(9)

3. Results
The research involves an experiment of conducting a multi-criteria evaluation of the considered
cloud servers using the TOPSIS method, applying the Minkowski metric to measure the distance
of the alternatives from the reference solutions. During the experiment, the value of the p param-
eter was increased in the range of 1 to 40 with a step equal to 1. The experiment was conducted
to determine the range of values of the p parameter of the Minkowski metric for which there are
changes in TOPSIS results for the considered set of alternatives. The TOPSIS scores obtained in
each step of the experiment were compared with those obtained using the TOPSIS method using
three other metrics: Manhattan, Euclidean, and Chebyshev. The Pearson correlation coefficient
was used to compare results received with different distance metrics. Correlation of compared
results is visualized in Figure 1.
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Fig. 1. Pearson correlation of TOPSIS scores for Minkowski metric and other distance metrics.

It can be noted that the TOPSIS scores obtained with the application of the Minkowski metric
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with increasing the p parameter from p = 5 and more are consistent with TOPSIS scores re-
ceived using the Chebyshev metric. Increasing the p parameter in the Minkowski metric causes
the obtained results to be increasingly less convergent with TOPSIS scores achieved using the
Manhattan metric. The TOPSIS scores obtained using the Minkowski metric with p = 2 are
identical to the TOPSIS scores achieved with the Euclidean metric. Then, an increment of the
p parameter value causes a decrease in correlation with TOPSIS results received with the Eu-
clidean metric. However, this decrease is less significant than observed in the case of Manhattan
distance.

The experiment allowed us to determine the range of values of the p parameter from a value
of 1 to a value of 10 in the Minkowski metric, in which TOPSIS scores and rankings stabilize
for the considered alternatives. Table 3 shows the TOPSIS scores received using the mentioned
range of the p parameter for the Minkowski metric. The calculated TOPSIS scores allowed to
generate final positional ranking presented as A1 ≻ A2 ≻ A3 ≻ A4 for all considered scenarios.

Table 3. Scores of the TOPSIS assessment received for considered distance metrics.

Clouds p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
A1 0.9948 0.9898 0.9877 0.9866 0.9861 0.9857 0.9855 0.9854 0.9853 0.9852
A2 0.5209 0.5895 0.6162 0.6316 0.6417 0.6487 0.6536 0.6571 0.6598 0.6618
A3 0.4323 0.5106 0.5400 0.5571 0.5683 0.5762 0.5818 0.5860 0.5892 0.5917
A4 0.0202 0.0386 0.0461 0.0498 0.0519 0.0531 0.0539 0.0544 0.0548 0.0550

It can be noticed that the TOPSIS rankings of evaluated cloud servers, regardless of the p pa-
rameter, are identical. The leader of these rankings is cloud A1, located in Mumbai. This cloud
server shows the best performance in terms of response time, which is the criterion with the
most significant weight. Cloud A1 also has the best performance regarding speed, proximity,
availability, and security. In second place is cloud server A2 located in Paris, and in third place
is cloud server A3 located in Sydney. The results obtained for these alternatives are in line with
their performance values collected for each criterion. Cloud server A4 located in North Virginia
received the last place in all rankings despite having the best performance value in terms of the
cost criterion. This shows that getting the best performance value for a single criterion by an
alternative is insufficient to achieve a good score in a multi-criteria evaluation, especially when
the relevance of this criterion is low, and the performance values for the other, more relevant
criteria are weaker compared to the other alternatives.

Obtained results proved that cloud server A1 is a stable leader among considered alternatives
regarding provided criteria weights. Cloud server A1 scored significantly superior TOPSIS
scores compared to the alternative cloud servers included in this research for all p parameter
values considered, confirming the competitiveness of this alternative. Cloud servers A2 and
A3 scored very close to TOPSIS scores, which allows us to conclude that these alternatives are
similar in terms of advantages like speed, availability, and cost aspects. Cloud server A4 scored
significantly low compared to the other alternatives, allowing this alternative to be considered
the least advantageous.

The following stage was to conduct a sensitivity analysis to estimate the robustness of the
considered cloud servers. For this purpose, different scenarios were generated with a different
distribution of criteria weights. The weight of successive criteria was increased in steps, while
the weights of the other criteria were changed equally accordingly so that the sum of the weights
of all criteria was 1. Simulations were carried out for the three different distance metrics used in
the TOPSIS method: Manhattan, Euclidean, and Chebyshev. Figure 2 visualizes the sensitivity
analysis results performed for the Manhattan distance metric. It can be observed that evaluated
alternatives are not susceptible to weight modification of speed (C1), proximity (C3), availability
(C5), and security (C6). When the significance of response time is low, cloud server A4 is better
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scored than A3. In this situation, the weights of another criterion, namely cost (C4), are higher,
and A4 shows good performance in terms of cost per hour. Thus, it causes its advance in the
described situation. When the weight of cost is increased to 25%, A4 jumps to the third rank.
Increment of cost criterion to 45% affects that A4 climbs to the second rank, and when the
significance of cost is increased to 85%, A4 becomes the ranking leader.
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Fig. 2. Impact of changes in criteria weights on TOPSIS rank shifts for Manhattan metric.

For sensitivity analysis performed for Euclidean distance presented in Figure 3, increment of
cost weight to 25% impacts on advance of A4 to the second position. Further increment of cost
weight causes a jump of A4 to the leader position. Additionally, modifications of other criteria
weights affect shifts of A3 and A4. It proves that this dataset evaluated using TOPSIS with
Euclidean distance is more susceptible to individual criteria value change.
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Fig. 3. Impact of changes in criteria weights on TOPSIS rank shifts for Euclidean metric.

Figure 4 displays the results of sensitivity analysis conducted for the Chebyshev metric.
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Fig. 4. Impact of changes in criteria weights on TOPSIS rank shifts for Chebyshev metric.

Similarly to previous simulations carried out for other distance metrics, it shows the advance of
A4 to the leader position when cost weight is increased. There are also observed shifts among
A2, A4, and A4 when other criteria weights are changed. When weights of criteria in terms of
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which A4 shows poor performances are reduced, it advances ahead of A2 and A3, as demon-
strated for C1, C2, and C3 for the Chebyshev metric. The results of the performed sensitivity
analysis proved that cloud server A1 demonstrates a robust position in terms of performance
values regarding considered criteria assessment. It maintains a stable leader position except
for an enormous increment of cost criterion weight, causing its overtaking by A4 with the best
performance in terms of cost attribute.

4. Conclusions
During the selection of the optimal cloud server, it is essential to consider several attributes,
both those whose values should be as low as possible, i.e., response time, computation time,
proximity, and cost of use, as well as profit criteria such as availability and security. Multi-
criteria methods such as TOPSIS offer a manner of selecting the optimal solution with limited
objectivity. Analysis that considers parameters with different properties and approaches to pre-
fer sustainable solutions, criteria compensation, and sensitivity analysis that considers decision
makers’ varying preferences for criteria weights extend the capabilities of multi-criteria methods
with the ability to identify the most sustainable and robust alternatives.

Since this paper has a preliminary character and presents work in progress, it has several
limitations. Among them is the incorporation of only four cloud servers in the investigation.
Broadening the dataset to include more servers and their attributes is included in future work
directions. Directions for future work also include a more dynamic approach to setting criteria
weights and more sophisticated sensitivity analysis considering criteria weights, such as prob-
abilistic sensitivity analysis or scenario-based analysis, and taking into account the different
priorities and preferences of stakeholders. Another shortcoming is the inclusion of only one
MCDA method in the analysis. Among future work, a comparative analysis considering the
exploration of other MCDA methods is planned, including methods with distance metric-based
algorithms such as CODAS, exploration of other distance metrics with applicability in MCDA
methods, and their influence on assessment results.

Acknowledgements
Publication funded by the state budget under the program of the Minister of Education and Sci-
ence named Perły Nauki, Poland, project number: PN/01/0022/2022, total project value: PLN
165 000,00 (A.B.) and Co-financed by the Minister of Science under the "Regional Excellence
Initiative" Program RID/SP/0046/2024/01 (J.W.).

References
1. Al-Qerem, A., Alauthman, M., Almomani, A., Gupta, B.B.: IoT transaction processing

through cooperative concurrency control on fog–cloud computing environment. Soft
Computing 24, pp. 5695–5711 (2020)

2. Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., Zeng, J.: Q-learning based dynamic task
scheduling for energy-efficient cloud computing. Future Generation Computer Systems
108, pp. 361–371 (2020)

3. Huang, L., Zhou, H., Feng, K., Xie, C.: Quantum random number cloud platform. npj
Quantum Information 7(1), pp. 1–7 (2021)

4. Jain, G., Mahara, T., Tripathi, K.N.: A survey of similarity measures for collaborative
filtering-based recommender system. In: Soft Computing: Theories and Applications:
Proceedings of SoCTA 2018. pp. 343–352. Springer (2020)

5. Jangjou, M., Sohrabi, M.K.: A comprehensive survey on security challenges in different
network layers in cloud computing. Archives of Computational Methods in Engineering
29(6), pp. 3587–3608 (2022)
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