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Gdańsk, Poland jan.cychnerski@pg.edu.pl

Abstract

In computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity,
but its nonlinear nature across organs and lesions complicates machine learning analysis. This
paper introduces an automated method for adaptive HU scale windowing in deep learning-based
CT liver segmentation. We propose a new neural network layer that optimizes HU scale window
parameters during training. Experiments on the Liver Tumor Segmentation Benchmark show
that the learned window parameters often converge to a range encompassing clinically used
windows but wider, suggesting that adjacent data may contain useful information for machine
learning. This layer may enhance model efficiency with just 2 additional parameters.

Keywords: deep neural network layer, computed tomography, liver segmentation, hounsfield
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1. Introduction and related work
Computer-assisted diagnosis (CAD) can help treat diseases such as cancer, where timely diagno-
sis and treatment are crucial. Liver segmentation is used in many CAD systems aiding diagnosis,
surgery planning, radiation therapy, and treatment evaluation [7]. Manual tumor segmentation
is time-consuming and laborious. Automating or semi-automating this process can reduce costs
and improve diagnostic imaging efficiency. The Hounsfield Unit (HU) scale is used in radio-
logical imaging to quantify the radiodensity of tissues. In Computed Tomography (CT) scans,
measured HU values are often mapped to shades of grey, with different densities appearing as
varying intensities on the image. Because of the wide range of HU values in CT scans, only a
specific empirically derived range (window) of HU scale is viewed simultaneously to enhance
the visibility of particular tissues. For example, the radiodensity of liver tissue is around 60
HU [12]. While traditionally ignored due to established human experience, out-of-range values
might contain useful data for deep learning models.

Liver segmentation has been refined through various deep learning techniques, from the
inception of U-net [9] to enhancements such as attention modules [5], semi-supervised learning
[4], and 3D models [11]. In segmentation studies, a static pre-defined HU window is often
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used on images to improve learning efficiency by highlighting relevant tissues. This practice is
common in liver segmentation [3, 5, 6, 8, 10] and other organs like heart [13] and kidneys [2].
Window settings typically align with those used by medical professionals during CT analysis,
but they can vary across studies, even for the same organ, reflecting their approximate nature
[12]. Studies such as [3] and [6] have evaluated the impact of different window ranges on
segmentation outcomes, showing that varying settings can significantly affect performance, with
improvements around 2 percentage points in the DSC metric. These findings suggest benefits
from automated methods to optimize window settings for better segmentation accuracy.

2. Proposed solution
We propose a new layer for deep neural networks called the Adaptive Hounsfield Unit Win-
dow (AHUW). This layer enhances CT image segmentation by automatically adapting the
Hounsfield Unit (HU) window through learning and highlighting its range in the input data.
Unlike standard HU windowing, AHUW emphasizes data within the window without discard-
ing data outside it. AHUW can be added to any deep neural network designed for HU scale
data (N-dimensional 1-channel input), placed between the input layer and the first hidden layer.
During training, backpropagation updates two parameters: window width (WW ) and window
level (WL). AHUW layer transforms the complete HU range of every pixel/voxel x into a nor-
malized interval of [−1, 1], standardizing the input data and emphasizing the values within the
learned HU window. The AHUW employs a two-step computational process. First, it applies a
linear transformation f(x), as defined in Eq. 1, where Wmin and Wmax are the minimum and
maximum values of the HU window. The final step applies a sigmoid function σ(x) to the trans-
formed image, mapping the HU window to a larger interval within the output domain compared
to values outside this window. The proposed neural network architecture using AHUW layer
and example processed CT images are presented in Fig. 1.

f(x) =
2 (x−Wmin)

Wmax −Wmin
−1, Wmin = WL−

WW

2
, Wmax = WL+

WW

2
, AHUW (x) = σ(f(x)) (1)

3. Experiments
We utilized the publicly available Liver Tumor Segmentation Challenge (LiTS) dataset [1], com-
prising 130 CT scans from various clinics. Given the variability in tumor sizes, patients were
grouped into five classes based on the percentage of tumor labels. The dataset was split into
training (64%), validation (16%), and test (20%) subsets, stratified by tumor class. A patient-
wise 5-fold cross-validation method was used, ensuring each patient appeared in only one fold.
Scan slices lacking labels were excluded to streamline training. We evaluated the proposed so-
lution using the Dice Similarity Coefficient (DSC) to compare baseline and modified models.
DSC is a standard metric for evaluating the accuracy of spatial overlap between predicted and
actual labels. The U-Net model [9], chosen for its simplicity and efficiency, served as our base-
line. We used a modified binary DSC loss function, replacing the intersection operation with
multiplication for smoother gradients: loss(P,L) = 1 − 2

∑
i,j(Pi,jLi,j)/

∑
i,j(Pi,j + Li,j),

where P is the prediction matrix, L is the label matrix. The initial learning rate was set to 10−5

for the U-Net model and 10−3 for the AHUW parameters. To improve convergence, learning
rates were reduced by a factor of 0.1 after 3 epochs without a decrease in validation loss.

Experiment A. The first experiment compared the baseline U-Net model (named REF) with
a modified version incorporating the AHUW layer, assessing segmentation performance and the
impact of initial window settings. Results are shown in Table 1. Each row represents a different
5-fold cross-validation. The modified model was trained with 10 different starting HU windows,
some corresponding to common organ windows (indicated in the Name column), across 5-fold
data splits, totaling 55 training runs along with the baseline. The WW and WL columns show
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the initial window width and level, respectively. Final model weights were selected based on the
lowest validation loss, and DSC scores were calculated for both liver and tumor labels, averaged
across 5-fold runs. Results indicate that all adaptive window models, except one (WW6000,
WL2000), outperformed the reference model in average DSC. The best initial window setting
(WW70, WL30) surpassed the reference model’s average DSC by 0.023, a 3% improvement.
On average, 70% of runs with the AHUW performed better than the baseline.

Table 1. Cross-validation DSC in Experiment A

Initial window WW WL Average DSC Std. Dev.

BRAIN 70 30 0.79494925 0.0059
SOFT TISSUE 350 50 0.79240725 0.0127
Custom 1 200 500 0.78809125 0.0103
ABDOMEN 400 40 0.78720000 0.0170
Custom 2 4000 1000 0.78702225 0.0102
LUNG 1600 -600 0.78566825 0.0090
Custom 3 400 1000 0.78458000 0.0085
BONE 2000 500 0.78252675 0.0199
LIVER 160 60 0.78050000 0.0092
REF - - 0.77106000 0.0166
Custom 4 6000 2000 0.76986400 0.0157 Fig. 1. Data flow in U-net with AHUW

Experiment B. Many training runs performed in Experiment A were interrupted by the
early stopping procedure during initial epochs, as validation increased despite improvement in
DSC. This observation suggested that the validation loss selection criterion was suboptimal.
Thus, Experiment B refined the evaluation criteria. Best weight selection used the average DSC
of liver and tumor classes during the validation phase instead of loss value. Moreover, besides
the starting window parameters and Average DSC as previously, the average DSC for specific
labels across folds and final windows parameters of AHUW layers have been recorded. 5-fold
cross-validation results are summarized in Table 2. The improvement is mostly visible in DSC
for the harder tumor label. The initial window setting of (WW70, WL30) was notably effective,
showing a liver DSC comparable to the baseline and a tumor DSC improvement of 0.0139. The
final window parameters were mostly close to common liver window settings (e.g. WW160,
WL60), indicating the layer’s ability to learn proper HU window parameters and aid the further
segmentation process. Final windows were broader than the typical liver WW, suggesting that
adjacent data typically discarded in manual segmentation might contain useful information.

Table 2. Multiclass DSC for cross-validation, and finally obtained HU windows in Experiment B

Initial window DSC DSC Liver DSC Tumor Final Window

Name WW WL Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. WW WL

BRAIN 70 30 0.8068 0.00664 0.9507 0.00177 0.6628 0.01203 248 62
Custom 3 400 1000 0.8054 0.00426 0.9525 0.00125 0.6582 0.00913 480 818
LUNG 1600 -600 0.8039 0.00740 0.9511 0.00381 0.6567 0.01797 890 23
SOFT TISSUE 350 50 0.8016 0.01390 0.9509 0.00236 0.6522 0.02775 361 45
LIVER 160 60 0.8006 0.00846 0.9509 0.00066 0.6502 0.01661 266 63
Custom 2 4000 1000 0.8005 0.00821 0.9503 0.00362 0.6507 0.01318 2994 686
REF - - 0.8000 0.00532 0.9511 0.00137 0.6489 0.00944 - -
Custom 4 6000 2000 0.7997 0.00807 0.9522 0.00181 0.6473 0.01462 5252 1507
Custom 1 200 500 0.7939 0.02201 0.9489 0.00946 0.6389 0.03603 261 345
BONE 2000 500 0.7849 0.02962 0.9497 0.00613 0.6202 0.05345 1153 181
ABDOMEN 400 40 0.7829 0.03321 0.9455 0.01248 0.6202 0.05438 401 37

4. Summary and future work
Our research shows that integrating the proposed Adaptive HU Window Layer enhances learn-
ing efficiency with minimal computational cost. This layer, using just two parameters regardless
of input size, optimizes training dynamics regardless of initial settings. Experiments confirmed
that gradient optimization effectively identifies an HU window for liver segmentation, consis-
tent with clinical standards. Models with the AHUW outperformed those without, showing
improvement in 64% of results, indicating a modest yet noticeable increase in model efficacy.
Future research should test the AHUW on various datasets beyond LiTS and explore its po-
tential in multi-organ segmentation and classification tasks. Additionally, other transformations
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emphasizing the HU window could further improve performance. Another promising area is
to enable multiple instances of AHUW layer in the unimodal and multimodal analysis of CT
images without contrast (NCCT), with contrast (CECT), and angiography (CTA), as they utilize
various ranges of HU scale. Moreover, using three AHUW layers in parallel can act as a middle
layer between 1-channel HU scale input and 3-channel color input for straightforward adoption
of imagenet-pretrained models to CT imaging.
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