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Abstract 

We develop a hybrid approach to forecasting the volatility and risk of financial instruments by 

combining econometric GARCH models with deep learning networks. For the latter, we employ 

Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the 

GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH. Models are 

tested using daily returns on the S&P 500 index and Bitcoin prices. As the main volatility 

estimator, and the target function of our hybrid models, we use the modified Garman-Klass 

estimator. Volatility forecasts resulting from the hybrid models are employed to evaluate the 

assets’ risk using the Value-at-Risk (VaR) and Expected Shortfall (ES). Gains from combining 

the GARCH and GRU approaches are discussed in the contexts of both the volatility and risk 

forecasts. It can be concluded that the hybrid solutions produce more accurate point volatility 

forecasts, although it does not necessarily translate into superior risk forecasts. 

Keywords: neural networks, GRU networks, financial time series, Value-at-Risk, Expected 

Shortfall. 

 

1. Introduction and literature review 

Measuring and predicting volatility and investment risk of financial assets are perennial 

problems of great importance both for scientists and practitioners, with the relevant literature 

abounding in model specifications and quantitative methods designed to address the tasks. 

Currently the most common approach has been developed within the area of financial 

econometrics, where the prices of financial instruments are typically assumed to form some 

conditionally heteroscedastic stochastic processes, the exact specification of which, along with 

their estimation and statistical inference, constitute a key part of the researchers’ endeavours 

(see, e.g., [32]). A basic group of this type of tools for modelling and forecasting volatility (and, 

consequently, risk) are the GARCH models developed by [1] & [30], generalising the ARCH 

specification proposed by [8]. The input information in the GARCH models, driving current 

volatility, comprises primarily the past return rates and their conditional variances. Voluminous 

subsequent research aimed at modifications and extensions of the original GARCH structure, 

also by admitting various types of the conditional distribution. This resulted in a considerable 

diversity of the GARCH class, with EGARCH ([28]), APARCH ([6]), GJR-GARCH ([15]), 

and TGARCH ([35]) being among the most widely recognised. 

A parallel trend in financial time series modelling and forecasting follows the development 

of machine learning tools, particularly artificial neural networks (ANNs). These models, often 

treated as “black boxes”, are regarded as nonlinear and nonparametric techniques in which no 

a priori assumption concerning the mathematical form (equation) of the model is formulated. 

The function mapping input data into output signals (forecasts) is formed at the stage of training 
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the model, implemented on the basis of a learning set including historical quotations. Over 

recent years, both researchers and practitioners have increasingly been using dynamic ANNs 

equipped with the ability to remember and process information from some recent period of 

time. These tools include mainly deep-learning-based recurrent neural networks (RNNs; 

introduced by [19], and further developed by [33]), in particular Long Short-Term Memory 

networks (LSTM; [18]), and also (utilised in the presented research) Gated Recurrent Unit 

(GRU) neural networks ([2]), which constitute simplified modifications of LSTM. 

Quite recently, a new promising research trend has emerged (including also our present 

paper), in which attempts are made to integrate formal tools based on the GARCH methodology 

with currently developed neural models based on deep learning with memorising the dynamics 

of the analysed phenomenon. Research on this type of hybrid models has been undertaken in 

many works. In particular, to cite only the most pertaining to the current paper, Kristjanpoller 

& Minutolo have applied hybrid models (based on feed-forward back-propagation neural 

network and GARCH) to predict the volatility of gold ([22]) and oil prices ([23]). [20] 

developed a hybrid deep learning method combining GARCH with LSTM neural networks and 

applied it to forecasting the volatility of copper price. Finally, in ([25]), a GARCH model was 

incorporated into an LSTM network for improving the prediction of stock volatility. 

To the best of our knowledge, no attempts have been made so far to merge GARCH 

structures with GRU neural networks (particularly, for the purpose of financial modelling). To 

fill this gap, it is the main objective of this paper to introduce a new tool for financial assets 

volatility and risk prediction by combining the two approaches, with the resulting hybrid 

specification referred to as GARCH-GRU, henceforth. Next, using data concerning S&P500 

and Bitcoin, we analyse the predictive effectiveness of the GARCH-GRU models in 

comparison to ‘pure’ GARCH models, mainly to examine the synergistic benefits of the former. 

The focus is not only on the point volatility forecasts, typically analysed in the literature, but 

also on forecasting financial risk, measured by Value at Risk (VaR) and Expected Shortfall 

(ES).  

The remainder of the paper is organised as follows. Section 2 presents the methodological 

framework, with Subsections 2.1 and 2.2 describing a brief theoretical background of existing 

methods concerning GARCH models and GRU networks, respectively. Subsection 2.3 

introduces our proposition of the GARCH-GRU model, along with its parameter settings, 

whereas Subsection 2.4 outlines the ex post evaluation framework of the volatility and VaR 

forecasts. Section 3 is devoted to the empirical analysis, starting with statistical description and 

pre-processing of the data sets under study (Subsection 3.1). Subsections 3.2 and 3.3 cover the 

empirical results and their analyses for S&P500 and Bitcoin, respectively. Finally, Section 4 

concludes. 

2. Methodology 

Below we briefly present the methodological framework underlying our study, and combining 

popular and widely recognised GARCH models (a selection of which is briefly outlined in 

Subsection 2.1) and GRU neural networks (see [2]; Subsection 2.2). The ‘merge’ results in a 

novel GARCH-GRU hybrid specification, presented in Subsection 2.3. We close this section 

with a brief description of the ex post volatility and VaR forecast accuracy measures employed 

in our work (Subsection 2.4). 

2.1 GARCH models  

Let 𝑟𝑡 = 100 ln(𝑃𝑡/𝑃𝑡−1) denotes the logarithmic rate of return on some asset at time t, with 

𝑃𝑡 and 𝑃𝑡−1 standing for the instrument’s prices at time 𝑡 and t−1 respectively. Let us then 

consider a model of the form: 𝑟𝑡 = 𝐸(𝑟𝑡|𝜓𝑡−1) + 휀𝑡, combining the conditional mean of the 

returns (given the past information, 𝜓𝑡−1) and an error term 휀𝑡 defined as:  

휀𝑡 = 𝑧𝑡𝜎𝑡, 
(1) 

 

where random variables 𝑧𝑡~𝑖𝑖𝐷(0, 1) form a sequence of independent and identically 

distributed standardised errors (with zero mean and unit variance), and 𝜎𝑡 = √𝑉𝑎𝑟(𝑟𝑡|𝜓𝑡−1) is 

the return’s conditional standard deviation, usually referred to as the volatility. 
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In our research, for modelling the conditional variance 𝜎𝑡
2, we employ four most commonly 

entertained in the extant literature GARCH specifications: a ‘standard’ GARCH ([1]), the 

Glosten-Jagannathan-Runkle GARCH (GJR-GARCH; [15]), the Exponential GARCH 

(EGARCH; [28]), and the Asymmetric Power ARCH (APARCH; [6]). Below, we briefly 

present their specific volatility equations (a detailed and comprehensive review of univariate 

GARCH model specifications can be found, e.g., in [11] and [31]). 

 

GARCH 

The volatility equation takes the form: 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖

𝑞
𝑖=1 휀𝑡−𝑖

2 + ∑ 𝛽
𝑗
𝜎𝑡−𝑗

2𝑝
𝑗=1 , (2) 

where 𝜎𝑡
2 is the conditional variance at time t, and the parameters are subject to restrictions 

ensuring positive 𝜎𝑡: 𝛼0 > 0, 𝛼𝑖 ≥ 0 for 𝑖 = 1, … , 𝑞, and 𝛽𝑗 ≥ 0 for 𝑗 = 1, … , 𝑝. 

 

GJR-GARCH 

The volatility equation takes the form: 

𝜎𝑡
2 = 𝛼0 + ∑ (𝛼𝑖 + 𝜔𝑖𝐼𝑡−𝑖)휀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽

𝑗
𝜎𝑡−𝑗

2𝑝
𝑗=1 , (3) 

where 𝐼𝑡−𝑖= 1 when 휀𝑡−𝑖 ≥ 0, and 𝐼𝑡−𝑖= 0 otherwise. Additionally, 𝛼0 > 0, 𝛼𝑖 ≥ 0 and 𝜔𝑖 ≥
0 for 𝑖 = 1, … , 𝑞, and 𝛽𝑗 ≥ 0 for 𝑗 = 1, … , 𝑝. 

 

EGARCH 

The volatility equation takes the form: 

ln 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖{𝜃𝑧𝑡−𝑖 + 𝛾[|𝑧𝑡−𝑖| − 𝐸(|𝑧𝑡−𝑖|)]}𝑞

𝑖=1 + ∑ 𝛽𝑗 ln 𝜎𝑡−𝑗
2𝑝

𝑗=1 , (4) 

where 𝛼1 ≡ 1 for the identification of the model. 

 

APARCH 

The volatility equation takes the form: 

𝜎𝑡
𝛿 = 𝛼0 + ∑ 𝛼𝑖[|휀𝑡−𝑖|  −  𝛾

𝑖
휀𝑡−𝑖]

𝛿𝑞
𝑖=1 + ∑ 𝛽

𝑗
𝜎𝑡−𝑗

𝛿𝑝
𝑗=1 , (5) 

where 𝛿 > 0, 𝛼0 > 0, 𝛼𝑖 ≥ 0 and −1 < 𝛾𝑖 < 1 for 𝑖 = 1, … , 𝑞, and 𝛽𝑗 ≥ 0 for 𝑗 = 1, … , 𝑝 

Three types of conditional distributions, most commonly entertained in the literature, are 

used in this study for the standardised error term, 𝑧𝑡: the normal distribution, the symmetric 

Student’s t-distribution and the skewed Student’s t-distribution (see [13]). 

Estimation (through the maximum likelihood approach) and forecasting in the GARCH 

models have been implemented in numerous libraries available in the R programming 

environment, among which the rugarch package (see [13], [14]) appears one of the most 

popular and comprehensive, and is also employed in this work. 

2.2 GRU neural networks 

The GRU neural networks, introduced by Chung et al. in [2], constitute simplified versions of 

more popular LSTM networks. The GRU networks use a single unit to forget the information 

or update the network state, which allows them to achieve similar results to LSTMs, while 

significantly reducing the training time. 

The functions within a GRU network cell can be described by the following equations: 

    𝑑𝑡 = 𝜍𝑔(𝑊𝑑𝑥𝑡 + 𝑈𝑑𝑜𝑡−1 + 𝑏𝑑),    (6) 

         𝑠𝑡 = 𝜍𝑔(𝑊𝑠𝑥𝑡 + 𝑈𝑠𝑜𝑡−1 + 𝑏𝑠),        (7) 

𝑜�̂� = 𝜙𝑜(𝑊𝑜𝑥𝑡  + 𝑈𝑜(𝑠𝑡 ⊙ 𝑜𝑡−1) + 𝑏𝑜),    (8) 

𝑜𝑡 = (1 − 𝑑𝑡) ⊙ 𝑜𝑡−1 + 𝑑𝑡 ⊙ 𝑜�̂�  ,    (9) 
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where xt is the input vector, ot is the output vector, while dt and st are the update gate and the 

reset gate vectors, respectively. The matrices 𝑊 and 𝑈 (subscripted according to pertinent 

equations) as well as the vectors b comprise the net’s parameters, whereas 𝜍𝑔 and 𝜙0 are 

sigmoid and hyperbolic tangent activation functions, respectively. Finally, ⊙ denotes the 

Hadamard product. For a detailed description of the GRU networks and a comparison with 

other types of recurrent networks we refer the reader to [16]. 

2.3 A proposition of a GARCH-GRU model and its parameters settings 

In this paper we propose to combine the above-presented GARCH models (Subsection 2.1) and 

the GRU neural networks (Subsection 2.2). We name the hybrid structure created from this 

conjunction as the GARCH-GRU models. 

The main idea of the approach is the incorporation of the volatility forecasts derived from 

a given GARCH model as an input variable to a GRU network. Additionally, to potentially 

further improve the hybrid model’s performance, the GRU component is fed with two more 

inputs: absolute log returns and additional (out-of-GARCH) volatility estimates obtained by 

means of the Garman & Klass ([12]) estimator modified by Yang & Zhang ([34]) to account for 

the gap between the previous day’s closing and the current day’s opening prices. Specifically, 

the variance estimate (denoted as 𝜎2,𝐺𝐾𝑌𝑍) is given by the formula: 

𝜎2,𝐺𝐾𝑌𝑍 =
1

𝑛
∑ [(ln

𝑂𝑖

𝐶𝑖−1
)

2
+

1

2
(ln

𝐻𝑖

𝐿𝑖
)

2
− (2 ln 2 − 1) (ln

𝐶𝑖

𝑂𝑖
)

2
]𝑛

𝑖=1 , (10) 

where 𝑂𝑖, 𝐻𝑖, 𝐿𝑖 and 𝐶𝑖, respectively, denote the opening, the highest, the lowest and the closing 

price at time 𝑖, and 𝑛 denotes the number of daily log returns used to calculate the estimate (we 

set 𝑛 =  10). Additionally, we scale the estimator to match the magnitude of the volatility 

estimates with the ones retrieved from GARCH models. To that end, the following formula 

proposed by Fiszeder ([9], [10]) is employed: 

𝑆𝑐𝑎𝑙𝑒𝑑 𝜎2,𝐺𝐾𝑌𝑍 =  
𝑎

𝑏
𝜎2,𝐺𝐾𝑌𝑍 , (11) 

𝑎 =
1

𝑇
∑ 𝑟𝑡

2𝑇
𝑡=1  ,  𝑏 =

1

𝑇
∑ 𝜎 𝑡

2,𝐺𝐾𝑌𝑍𝑇
𝑡=1   (12) 

where T denotes the initial sample size used for the estimation of a GARCH model. 

Specific architecture of the GRU component used in this research consists of three GRU-

type layers with 512/256/128 neurons and one single neuron dense layer on the output. Each of 

these GRU layers uses ReLU (Rectified Linear Unit) activation function, a dropout regulariser 

set to 0.3, and l2 kernel regulariser set to 0.00001, which allows to select the best MSE value 

based on the validation set loss from all the epochs. 

For the network optimisation, we use the Adam optimiser ([21]), with the learning rate set 

to 0.0009. The network component is trained the GKYZ volatility estimates at time t + 1, with 

the loss function defined as the mean square error between the volatility estimates and the 

network output (volatility predictions). Datasets feeded into the network are divided into mini-

batches, with the size of 500 data points, while each batch is divided into sequences of 6 days 

based on which a single day prediction is produced. The tuning process is performed by means 

of the KersTuner with Hyperband algorithm ([29]). Finally, the model is trained for 150 epochs, 

with a model checkpoint callback function using the lowest value of the loss that occurred 

during the training.  

2.4  Ex post volatility and VaR forecasts evaluation 

The ex post assessment of the GARCH and GARCH-GRU models’ predictive performance is 

carried out here with respect to the two: point volatility forecasts and risk forecasts. 
The point volatility predictions’ accuracy is measured by three standard forecast error 

metrics: mean squared error (MSE), mean absolute error (MAE), and  heteroscedasticity-

adjusted (HMSE). Differences between the MSEs for some two competing models are tested 

for their statistical significance via the Diebold & Mariano ([5]) test, with a modification 

proposed by Harvey, Leybourne & Newbold ([17]). In our setting, we focus on comparing the 
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MSE obtained for a given GARCH model with the one produced by a corresponding GARCH-

GRU specification. The null hypothesis states that both of the MSE values are equal, while the 

alternative – that the hybrid model is more accurate than the ‘pure’ GARCH structure. Finally, 

the correlation between the conditional variance forecasts (𝜎𝑡+1
2,𝑓

) and corresponding GKYZ 

volatilities (𝜎𝑡+1
2,𝐺𝐾𝑌𝑍

) is assessed by the coefficient of determination from the Mincer & 

Zarnowitz ([27]) regression: 

𝜎𝑡+1
2,𝐺𝐾𝑌𝑍 = 𝛽0 + 𝛽1𝜎𝑡+1

2,𝑓
+ 𝜉𝑡+1, (13) 

with 𝜉𝑡+1 denoting an error term. 

 The second aspect of the models’ predictive evaluation in this paper is risk forecasts 

accuracy. To that end, volatility predictions resulting from GARCH and GARCH-GRU models 

are used to produce long position Value at Risk (VaR) and Expected Shortfall (ES) forecasts: 

𝑉𝑎𝑅𝑡+1(𝛼) = −𝑟𝑡+1
𝑓

− 𝜎𝑡+1
𝑓

𝑞𝛼
𝑧, (14) 

𝐸𝑆𝑡+1(𝛼) = 𝐸(𝑟𝑡+1|𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)) = 𝑟𝑡+1
𝑓

+ 𝜎𝑡+1
𝑓

𝐸(𝑧𝑡|𝑧𝑡 < 𝑞𝛼
𝑧), (15) 

where 𝛼 denotes the tolerance probability level, 𝑟𝑡+1
𝑓

 and 𝜎𝑡+1
𝑓

 are, respectively, the forecasted 

return and volatility at time t+1, and finally, 𝑞𝛼
𝑧 denotes the 𝛼𝑡ℎ-quantile of the distribution 

assumed for 𝑧𝑡 (see [7], [26]). Notice that the return predictions, 𝑟𝑡+1
𝑓

, are generated in our paper 

only through the underlying GARCH model, and thereby are not further processed through the 

hybrid GARCH-GRU structure. This limitation is intended here to ensure that any differences 

between the VaR and ES predictions stemming from GARCH and GARCH-GRU models 

remain attributable solely to the accuracy of the volatility forecasts produced by the two 

approaches. Analysis of potential further gains from using return predictions from the hybrid 

model instead, remains beyond the scope of the current research. 

Backtesting of VaR and ES forecasts is performed by means of standard tools. For the 

former, we use two procedures. First, the Kupiec ([24]) test is employed to examine the 

unconditional coverage property (stated by the null hypothesis), that is the consistency between 

the empirical VaR hit ratio and the assumed tolerance level. Both significantly higher and lower 

number of VaR exceedances (or, violations) cause the null to be rejected. Second, through the 

conditional coverage test by Christoffersen ([3], [4]) test we check whether the VaR hits are 

independent (thus do not occur in clusters) and the empirical VaR hit ratio coincides with the 

assumed tolerance probability. The two statements jointly form the null hypothesis. 

To backtest the Expected Shortfall predictions, we resort to the McNeil and Fray ([26]) test, 

with the null assuming that the mean of the ES exceedances equals zero. The test results are 

reported in two variants: one under the exact distribution of the test statistics, and the other 

using a bootstrapped distribution. The latter accounts for a possible misspecification of the 

underlying distribution of the standardised residuals.  

3. Empirical analysis 

3.1 Data  

Two data sets of daily logarithmic rates of return are analysed in our research, each representing 

quite a distinct type of financial assets: the S&P 500 index (5-day week, quotations over 6 April 

2009 to 31 December 2020) and Bitcoin (BTC/USD; 7-day week, quotations over 5 August 

2013 to 31 December 2020). The time ranges of the data sets ensure an equal number of 2707 

observations in each case. 

For the forecasting evaluation of the models (presented in the following subsection), all the 

data sets are divided in such a manner as to ensure the same amounts of observations for each 

asset at corresponding stages of analysis. Specifically, a rolling window scheme is employed 

for both GARCH and hybrid GARCH-GRU models. The size of the rolling window for the 

GARCH models is set to 504 days (the models are re-estimated upon arrival of each new 

observation). The GARCH component order is fixed to p=q=1 (see Eqs. 2-5) for all the assets 

(as typically done in the empirical literature), while the ARMA component is reduced to AR(1) 

for S&P 500, and only a constant for Bitcoin, with the choices supported by a preliminary 
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analysis employing the Bayesian information criterion (the results left unreported for the sake 

of brevity). 

For the neural network stage, the data is divided into a series of rolling training sets, each 

of 1008 observations, and a series of rolling test sets, each comprising 504 observations. Each 

time, 33% of the training set (336 observations) is used for a validation set.  

The total number of the ex post evaluated predictions obtained from the GARCH and hybrid 

models is 1194, and is the same for each asset (although the corresponding time ranges vary: 7 

April 2016 to 31 December 2020 for S&P 500 and 29 September 2017 to 31 December 2020 

for Bitcoin). Sample sizes were based on initial hyperparameter tuning. 

Empirical results obtained for each of the two assets are discussed below (Subsection 3.2 

and 3.3) in the following fashion. First, we compare the GARCH and GARCH-GRU models in 

terms of MSE, along with testing its values through the Diebold-Mariano test, with low p-values 

favouring the hybrid model (Tables 1 and 4). Then, results for VaR exceedances are presented 

(Tables 2 and 5). Finally, based on the previous, a selection of the best performing models is 

analysed in more detail, both with respect to the overall volatility forecast accuracy and risk 

prediction (Tables 3 and 6), the latter including 1% and 5% Value at Risks as well as 5% 

Expected Shortfall. 

3.2 Results for S&P 500 

Table 1 indicates that the best performing (in terms of MSE) is the EGARCH-GRU model with 

a skewed Student’s t-distribution, although only by a rather narrow margin as compared with 

some other specifications, like GJR-GARCH-GRU with either a symmetric or skewed t-

distribution, and even ‘standard’ GARCH-GRU with a skewed t-distribution. Overall, the 

results presented in Table 1 imply unanimously that combining GARCH models with GRU 

networks significantly enhances the forecast accuracy, with all of the Diebold-Mariano test p-

values remaining below 0.05. 

 
Table 1. Comparison of volatility forecasts in terms of MSE across all models and distributions for S&P 500. 

Metrics / Model G(N) G(N)-GRU G(STD) G(STD)-GRU G(SSTD) G(SSTD)-GRU 

MSE  0.0844 0.0168 0.0646 0.0183 0.0575 0.0159 

DM p-value 0.0379 0.0494 0.0189 

Metrics / Model E(N) E(N)-GRU E(STD) E(STD)-GRU E(SSTD) E(SSTD)-GRU 

MSE  0.1539 0.0167 0.1362 0.0160 0.1350 0.0152 

DM p-value 0.0018 0.0025 0.0046 

Metrics / Model GJR(N) GJR(N)-GRU GJR(STD) GJR(STD)-GRU GJR(SSTD) GJR(SSTD)-GRU 

MSE  0.1388 0.0181 0.1244 0.0153 0.1053 0.0156 

DM p-value 0.0347 0.0395 0.0290 

Metrics / Model AP(N) AP(N)-GRU AP(STD) AP(STD)-GRU AP(SSTD) AP(SSTD)-GRU 

MSE  0.1103 0.0333 0.1015 0.0253 0.0890 0.0221 

DM p-value 0.0237 0.0160 0.0009 

Note: G stands for GARCH, E for EGARCH, GJR for GJR-GARCH, AP for APARCH. N stands for Normal 

distribution, STD for Student's t-distribution, SSTD for skewed Student's t-distribution. DM denotes the Diebold-

Mariano test. The best result according to MSE is given in bold. 

Next, we compare the models in terms of VaR unconditional coverage, with Table 2 

presenting the actual number of VaR exceedances and hit ratios (in percentage terms) for both 

VaR tolerance levels under consideration, i.e. 5% and 1%. The results indicate that the most 

accurate VaR hit coverage is attained by the GJR-GARCH-GRU models with a normal and a 

skewed Student’s t-distribution for the 5% tolerance level, and the APARCH model with a 

skewed Student’s t-distribution for the 1% tolerance (paths of the 5% and 1% VaR forecasts 

along with their violations are displayed in Figure 1). Overall, and contrary to Table 1, the 

results here provide only mixed conclusions as to gains from the hybrid models, since 
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combining GARCH with the GRU networks does not necessarily bring the VaR hit ratios closer 

to the expected 5% and 1% tolerance levels. 

Table 2. Number of VaR exceedances (and VaR hit ratios) across all models for S&P 500. 

VaR / Model  G(N) G(N)-GRU G(STD) G(STD)-GRU G(SSTD) G(SSTD)-GRU 

VaR 5% 69 (5.77%) 62 (5.19%) 79 (6.61%) 72 (6.03%) 74 (6.19%) 63 (5.27%) 

VaR 1% 31 (2.59%) 31 (2.59%) 21 (1.75%) 22 (1.84%) 19 (1.59%) 21 (1.75%) 

VaR / Model  E(N) E(N)-GRU E(STD) E(STD)-GRU E(SSTD) E(SSTD)-GRU 

VaR 5% 78 6.53%) 58 (4.85%) 90 (7.53%) 63 (5.27%) 78 (6.53%) 56 (4.69%) 

VaR 1% 35 (2.93%) 32 (2.68%) 24 (2.01%) 25 (2.09%) 17 (1.42%) 21 (1.75%) 

VaR / Model  GJR(N) GJR(N)-GRU GJR(STD) GJR(STD)-GRU GJR(SSTD) GJR(SSTD)-GRU 

VaR 5% 65 (5.44%) 59 (4.94%) 75 (6.28%) 66 (5.52%) 68 (5.69%) 59 (4.94%) 

VaR 1% 28 (2.34%) 34 (2.84) 20 (1.67%) 26 (2.17%) 18 (1.50%) 22 (1.84%) 

VaR / Model  AP(N) AP(N)-GRU AP(STD) AP(STD)-GRU AP(SSTD) AP(SSTD)-GRU 

VaR 5% 76 (6.36%) 58 (6.70%) 82 (6.86%) 65 (5.44%) 74 (6.19%) 53 (4.43%) 

VaR 1% 34 (2.84%) 32 (2.68%) 22 (1.84%) 24 (2.01%) 16 (1.34%) 22 (1.84%) 

Note: G stands for GARCH, E for EGARCH, GJR for GJR-GARCH, AP for APARCH. N stands for Normal 

distribution, STD for Student's t-distribution, SSTD for skewed Student's t-distribution. Expected number of VaR 

exceedances, corresponding to 5% and 1% tolerance levels, are equal to 59 and 12, respectively. The best outcomes 

are indicated in bold. 

  
Fig. 1. VaR forecasts for S&P 500. 

Further, in Table 3, we analyse in more detail a selection of four models that proved superior 

according to MSE and/or VaR exceedances: EGARCH-GRU with a skewed t-distribution 

(minimising all the three criteria for the volatility point forecasts: MSE, MAE and HMSE), 

GJR-GARCH-GRU with a normal and a skewed t-distribution (both ensuring the ideal VaR hit 

ratio at 5% tolerance; the latter model additionally yielding the highest R2 in the Mincer-

Zarnowitz regression), and APARCH with a skewed t-distribution (featuring the best, although 

not ideal, unconditional VaR coverage at the 1% tolerance level). The results indicate that the 

two GJR-GARCH-GRU models pass the unconditional coverage test for the 5% tolerance level, 

but rather fail the conditional coverage test, thus implying some clustering of the VaR violations 

(as might have already been expected from Figure 1, to some extent). In addition, and to one’s 

dismay, these models also fail the ES backtest. 

On the other hand, the APARCH model with a skewed Student’s t-distribution, preferred 

in terms of the 1% VaR prediction, performs well in all three tests. Nevertheless, the model’s 

performance for the 5% VaR tolerance level is clearly surpassed by the other specifications. 
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Table 3. Detailed comparison of the best performing models for S&P 500. 

Metrics / Model E(SSTD)-GRU GJR(N)-GRU GJR(SSTD)-GRU AP(SSTD) 

MSE  0.0152 0.0181 0.0156 0.0890 

MAE 0.0787 0.0842 0.0813 0.1919 

HMSE 0.0128 0.0142 0.0134 0.0550 

R² 0.9736 0.9563 0.9806 0.8465 

VaR exceedan- 
ces: 5%/1% 56/21 59/34 59/22 74/16 

VaR 
hit ratio: 5%/1% 4.69%/1.75% 4.94%/2.84% 4.94%/1.84% 6.19%/1.34% 

Kupiec  
p-value: 5%/1% 0.6197(F)/0.0173(R) 0.9258(F)/1.6e-07(R) 0.9258(F)/0.0088(R) 0.0667(F)/0.2616(F) 

Christof.  
p-value: 5%/1% 0.0130(R)/0.0010(R) 0.0017(R)/9.9e-09(R) 0.0279(R)/0.0007(R) 0.0555(F)/0.2408(F) 

ES p-value 
bootstr./sample 0.0551(F)/0.0155(R) 4.9e-05(R)/1.0e-06(R) 0.0463(R)/0.0126(R) 0.4351(F)/0.3791(F) 

Note: VaR 5% and VaR 1%  stands for 5% and 1% tolerance level. Expected number of VaR exceedances, 

corresponding to 5% and 1% tolerance levels, are equal to 59 and 12, respectively. F means the test failed to reject 

the H0 at 5% significance level, R means the H0 was rejected.  G stands for GARCH model, E for EGARCH model, 

GJR for GJR-GARCH model, AP for APARCH model. N stands for Normal distribution, STD for Student's t-

distribution, SSTD for skewed Student's t-distribution. R² is the coefficient of determination. The best (across the 

models) outcome according to a given metric is given in bold. 

3.3 Results for Bitcoin 

As indicated by Table 4, the best performing model for Bitcoin (in terms of point volatility 

forecasts) is the conditionally normal APARCH-GRU structure, with four other hybrid 

specifications being close seconds: GARCH-GRU and GJR-GARCH-GRU, with both 

symmetric and skewed t-distributions. Incidentally, the result may imply that simpler GARCH 

specifications, constituting some special cases of APARCH, may require more sophisticated, 

heavy-tailed conditional distributions to offset their simpler volatility structure. 

Overall, and similar to the case of S&P 500, combining GARCH and GRU models largely 

improves the point volatility forecasts. Enhancing a GARCH model with a GRU network results 

in a one- or two-order-of-magnitude drop in MSE, even though in some cases the difference 

appears either statistically insignificant (conditionally normal EGARCH vs. EGARCH-GRU) 

or at least not as statistically significant as one could expect (conditionally t-distributed 

EGARCH vs. EGARCH-GRU, and APARCH vs. APARCH-GRU with a skewed t-

distribution). However surprising or aberrant these results may appear, they remain largely 

attributable to a single erratically high (compared to the target GKYZ estimates) volatility 

forecast obtained from the above-mentioned ‘sheer’ GARCH models, linked to the COVID-19 

pandemic outbreak. Conceivably, this volatility over-prediction is due to additional reverse 

transformations required to calculate the forecast of conditional standard deviation from the 

volatility equation defined inherently either for the logarithm of the variance (as in EGARCH; 

see Eq. 4) or some power transformation thereof (as in APARCH; see Eq. 5). Ultimately, these 

discrepancies between the ‘sheer’ and hybrid EGARCH (and APARCH) volatility forecasts 

lead to an overly high long-run variance estimate underlying the Diebold-Mariano (DM) test, 

which dwindles the test statistics value, thus increasing the p-value. 

Table 5 presents the number and hit ratios of VaR exceedances. To one’s dismay, and 

similar to the S&P 500 case, we notice that despite the earlier results indicating a considerable 

gain from combining GARCH with GRU models for the sake of volatility forecasting, the effect 

does not necessarily translate into superior VaR prediction performance of the hybrid structures. 

For both of the tolerance levels under consideration, it is a ‘sheer’ APARCH model that 

produces VaR estimates with a hit ratio nearest to the expected one: the conditionally normal 

APARCH for the 5% tolerance level, and APARCH with a t-distribution for the 1% tolerance 

(see Figure 2). Overall, as inferred from Table 5, combining GARCH with GRU models may 

lead to either more conservative or more liberal VaR predictions, as compared with the ones 

from the underlying ‘pure’ GARCH structures. 
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Table 4. Comparison of volatility forecasts in terms of MSE across all models and distributions for Bitcoin. 

Metrics / Model G(N) G(N)-GRU G(STD) G(STD)-GRU G(SSTD) G(SSTD)-GRU  

MSE 5.6795 0.4042 5.0206  0.3938 5.0327 0.3937 

DM p-value 2.537e-05 4.399e-16 4.233e-16 

Metrics / Model E(N) E(N)-GRU E(STD) E(STD)-GRU E(SSTD) E(SSTD)-GRU  

MSE 7.4872 0.4406 11.3832 0.4698 62.5108 0.5980 

DM p-value 0.1355 0.006316 1.429e-13 

Metrics / Model GJR(N) GJR(N)-GRU GJR(STD) GJR(STD)-GRU GJR(SSTD) GJR(SSTD)-GRU  

MSE 5.8335 0.4202 5.0074 0.3946 5.0188 0.3982 

DM p-value 5.838e-05 1.844e-15 1.8e-15 

Metrics / Model AP(N) AP(N)-GRU AP(STD) AP(STD)-GRU AP(SSTD) AP(SSTD)-GRU  

MSE 5.8356 0.3818 3.7345 0.4308 12.9127 0.4184 

DM p-value 0.000837 3.167e-08 0.01944 

Note: G stands for GARCH, E for EGARCH, GJR for GJR-GARCH, AP for APARCH. N stands for Normal 

distribution, STD for Student's t-distribution, SSTD for skewed Student's t-distribution. DM denotes the Diebold-

Mariano test. The best result according to MSE is given in bold. 

Table 5. Number of VaR exceedances (and VaR hit ratios) across all models for Bitcoin. 

VaR / Model G(N) G(N)-GRU G(STD) G(STD)-GRU G(SSTD) G(SSTD)-GRU  

VaR 5% 52 (4.35%) 33 (2.76%) 70 (5.86%) 50 (4.18%) 69 (5.77%) 46 (3.85%) 

VaR 1% 23 (1.92%) 14 (1.17%) 16 (1.34%) 13 (1.08%) 16 (1.34%) 14 (1.17%) 

VaR / Model E(N) E(N)-GRU E(STD) E(STD)-GRU E(SSTD) E(SSTD)-GRU  

VaR 5% 51 (4.27%) 32  (2.68%) 63 (5.27%) 81 (6.78%) 64 (5.36%) 94 (7.87%) 

VaR 1% 23 (1.92%) 13 (1.08%) 13 (1.08%) 19 (1.59%) 11 (0.92%) 33 (2.76%) 

VaR / Model GJR(N) GJR(N)-GRU GJR(STD) GJR(STD)-GRU GJR(SSTD) GJR(SSTD)-GRU  

VaR 5% 54 (4.52%) 33 (2.76%) 71 (5.94%) 47 (3.93%) 67 (5.61%) 43  (3.60%) 

VaR 1% 24 (2.01%) 14 (1.17%) 16 (1.34%) 13 (1.08%) 16 (1.34%) 13 (1.08%) 

VaR / Model AP(N) AP(N)-GRU AP(STD) AP(STD)-GRU AP(SSTD) AP(SSTD)-GRU  

VaR 5% 56 (4.69%) 32 (2.68%) 63 (5.27%) 67 (5.61%) 55 (4.60%) 65 (5.44%) 

VaR 1% 23 (1.92%) 14 (1.17%) 12 (1.00%) 14 (1.17%) 11 (0.92%) 18 (1.50%) 

Note: G stands for GARCH, E for EGARCH, GJR for GJR-GARCH, AP for APARCH. N stands for Normal 

distribution, STD for Student's t-distribution, SSTD for skewed Student's t-distribution. Expected number of VaR 

exceedances, corresponding to 5% and 1% tolerance levels, are equal to 59 and 12, respectively. The best outcomes 

are indicated in bold. 

 

Fig. 2. VaR forecasts for Bitcoin. 
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Table 6 presents detailed results for a selection of the best performing models: conditionally 

normal APARCH-GRU (winning in terms of MSE, MAE, HMSE and R2 in the Mincer-

Zarnowitz regression) and two ‘pure’ APARCH models: with either a normal or a symmetric 

t-distribution.  

In general, the discrepancy between the models’ performance in terms of either volatility 

forecasting or VaR and ES prediction is striking. The conditionally normal APARCH model 

combined with a GRU network produces by far superior forecasts of the returns’ volatility, yet 

fails to yield unanimously satisfactory outcomes for the risk prediction. Conversely, it is ‘sheer’ 

APARCH models with a normal and Student’s t-distribution that yield the best VaR and ES 

forecasts for 5% and 1% tolerances, respectively. Nonetheless, both APARCH models leave 

much to be desired as it comes to forecasting the volatility itself. Such a divergence of the 

models’ performance may lead to a conclusion that the GKYZ volatility estimates, employed 

in training the GRU component of the hybrid model structures, are somewhat deficient for the 

follow-up task of risk assessment. Conceivably, this may be the case not only due to a generally 

high volatility of the Bitcoin returns, but also on account of a strikingly high ‘volatility of 

volatility’, numerous and pronounced spikes in the modelled series, interspersing otherwise 

relatively ‘regular’ returns (see Figure 2). 

Table 6. Detailed comparison of the best performing models for Bitcoin. 

Metrics / Model APARCH(N)-GRU APARCH(N) APARCH(STD) 

MSE  0.3818 5.835 3.7345 

MAE 0.3906 1.5928 1.3160 

HMSE 0.0145 0.1024 0.1290 

R² 0.9586 0.3186 0.5928 

VaR exceedances: 5%/1% 32/14 56/23 63/12 

VaR hit ratio: 5%/1% 2.68%/1.17% 4.69%/1.92% 5.36%/1% 

Kupiec p-value: 5%/1% 5.81e-05(R) / 0.5597(F) 0.6197(F) / 0.0043(R) 0.6639(F) / 0.9860(F) 

Christof. p-value: 5%/1% 0.0003(R) / 0.7143(F) 0.6265(F) / 0.0108(R) 0.1548(F) / 0.8850(F) 

ES p-value bootstr./sample 0.0368(R) / 0.0360(R) 0.0118(R) / 0.0097(R) 0.7616(F) / 0.8199(F) 

Note: VaR 5% and VaR 1%  stands for 5% and 1% tolerance level. Expected number of VaR exceedances, 

corresponding to 5% and 1% tolerance levels, are equal to 59 and 12, respectively. F means the test failed to reject 

the H0 at 5% significance level, R means the H0 was rejected.  G stands for GARCH model, E for EGARCH model, 

GJR for GJR-GARCH model, AP for APARCH model. N stands for Normal distribution, STD for Student's t-

distribution, SSTD for skewed Student's t-distribution. R² is a coefficient of determination. The best (across the 

models) outcome according to a given metric is given in bold. 

4. Conclusions 

The main aim of the paper was to propose, develop and evaluate the effectiveness of hybrid 

GARCH-GRU models in forecasting financial volatility and risk, thereby bridging the most 

common, ‘classic’ econometric tools for volatility dynamics (GARCH models) with deep 

machine learning methods. The approach was tested on two financial assets displaying distinct 

volatility dynamics: S&P 500 and Bitcoin. The empirical analysis generally confirmed that the 

introduced hybrid models may prove effective in improving GARCH predictions, particularly 

the volatility forecasts. 

Although no the same single model specification proved the best for each of the analysed 

two assets, it was the hybrid GARCH-GRU models that emerged unanimously superior for the 

point volatility forecasting, winning over ‘standard’ GARCH structures (in terms of MSE). In 

particular, the best volatility forecasts for S&P500 are produced by two EGARCH-GRU models 

(under a skewed and a symmetric t-distribution), while for Bitcoin – by the APARCH-GRU 

model (with a normal distribution). Nonetheless, this general outcome is hardly a surprise, given 

that the main task of the GRU network in the hybrid models was to minimise the MSE loss. 

On the other hand, and somewhat to one’s dismay, the apparent gains from the volatility 

prediction obtained from the hybrid GARCH-GRU structures do not translate unanimously into 
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superior Value at Risk and Expected Shortfall forecasts. From Tables 3 and 6 it can be inferred 

that the choice of a winning specification largely hinges on both the asset at hand as well as 

tolerance level. Using, for brevity, the models’ acronyms used in the tables, the following 

models proved the most valid with respect to the risk assessment at the tolerance levels of 5% 

and 1%: S&P 500: GJR(SSTD)-GRU at the 5% tolerance, and AP(SSTD) at 1%; Bitcoin: 

AP(N) at 5%, and AP(STD) at 1%. 

The above list indicates clearly that hybridising GARCH with GRU models does not 

necessarily yield superior risk forecasts (although, as stated earlier, improves the volatility 

predictions). Moreover, all of the listed specifications differ from the ones that proved the most 

accurate (in terms of MSE) for the volatility forecasting, mentioned in the previous paragraph. 

This, in turn, may actually put into question the very choice of the target function underlying 

the GRU components in the hybrid models advanced in this paper (hinged on the point volatility 

forecast accuracy). Thus it may be necessary to redefine the GRU target function specifically 

for the task of VaR and/or ES prediction. We leave this line of research for future work. 

On the whole, the research findings corroborate the potential and purposefulness of 

combining ‘classic’ econometric models for volatility dynamics with deep machine learning 

approaches for the purpose of improving results produced by the former. The results presented 

in the current paper preclude unanimous conclusions as to the empirical advantages of such 

‘hybridisation’, leaving it largely to a particular financial asset and task at hand. Nevertheless, 

the GARCH-GRU approach developed in this paper appears to systematically and considerably 

enhance volatility predictions, while still leaving some room for improvement with respect to 

risk forecasting. 
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