
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)

On Reasoning About Black-box UDFs by Classifying Their
Performance Characteristics

Michał Bodziony
IBM Poland Software Lab Kraków
Kraków, Poland michal.bodziony@pl.ibm.com

Batosz Ciesielski
Poznan University of Technology
Poznań, Poland bartosz.ciesielski1997@gmail.com

Anna Lehnhardt
Poznan University of Technology
Poznań, Poland anula.le@wp.pl

Robert Wrembel
Poznan University of Technology
Poznań, Poland robert.wrembel@put.poznan.pl

Abstract

User defined functions (UDFs) are frequent components of data integration processes, where
UDFs are often available only as black boxes, i.e., their semantics and performance charac-
teristics are unknown (such functions are further called BBUDFs). This feature prevents from
optimizing the processes. Discovering the semantics of a BBUDF is often impossible due to
high complexity of its code. However, discovering the performance model of a BBUDF seems
to be feasible with the support of machine learning. In this paper, we present a solution for clas-
sifying BBUDFs into performance classes based on their performance characteristics. This way,
if a performance class of a given BBUDF is known, it may allow to reason about some hidden
features of the BBUDF. Our solution is supported by experimental evaluation, which reveals
that our initial approach, in multiple cases, allows to classify BBUDFs to adequate performance
classes.

Keywords: data integration process, user defined function, time series, time series similarity
measure, time series classification

1. Introduction
Data integration (DI) has been an active research field for already six decades [48, 55]. A com-
mon goal of a DI task is to make heterogeneous and typically distributed data available for an
end user in a unified format. Research and development in this field resulted in a few standard
DI architectures, namely: federated, mediated, data warehouse, lambda, data lake, lake house,
polystore, and data mesh, e.g., [9, 11, 14, 18, 46, 51]. In all of these architectures data are trans-
ported from source storage systems into an integrated system by means of an integration layer.
This layer is implemented by a sophisticated software, which runs the so-called DI processes
(a.k.a. extract-transform-load - ETL, data processing pipeline, data processing workflows). A
DI process runs a sequence of tasks (steps), which ingest data from various sources and pre-
process them into formats suitable for analytical and machine learning applications.

For years, the so-called big data (mainly heterogeneous and voluminous) are produced by
various devices and systems, e.g., from simple to complex sensors, medical imaging machin-
ery, agri-robots. Pre-processing and analyzing big data is challenging and it often requires a



BODZIONY ET AL. ON REASONING ABOUT BLACK-BOX UDFS . . .

custom data integration code, called a user defined function (UDF), e.g., [17, 56]. Such a code
may be implemented in any programming language and it is called from a DI engine as an
external program. UDFs are frequently treated as black-boxes, since their internal logic and
performance characteristics are unknown to a DI process designer (typically, only their input
and output parameters are known). Further in this paper such UDFs will be called black-box
UDFs (BBUDFs). As a consequence, optimization means for DI processes with UDFs are very
limited and often impossible.

In order to optimize a DI processes in a cost-based style (e.g., [12], cost models of single
tasks in the process as well as an overall cost model of the whole process must be known.
BBUDFs in a DI process make building such cost models challenging, since the semantics and
performance characteristics of each BBUDF must be discovered. However, discovering the
semantics of BBUDFs is very difficult and often impossible. On the contrary, applying machine
learning (ML) algorithms to discovering their performance models seems to be promising [54].
In the paper we address this research direction.

The plurality of possible operations implemented and their combinations inside a BBUDF
is infinite. Therefore, a natural approach is to start discovering the semantics and performance
models of atomic operations and their basic combinations. Having received promising results
on simple BBUDFs, the approach can be extended towards handling more complex BBUFDs.

Our solution is based on classifying BBUDFs into performance classes, based on perfor-
mance characteristics (in the form of time series) produced by BBUDFs. The characteristics
(typically CPU and RAM) are assigned labels of known performance classes. The known per-
formance classes are created from performance characteristics of white-box DI tasks. By as-
signing an unknown BBUDF to a performance class we are able to reason about the BBUDF in
terms of what operations it may execute and what are its performance characteristics, for exam-
ple w.r.t. a data volume being processed. Our solution is supported by experimental evaluation.
It reveals that in multiple cases the solution allows to correctly assign a performance class label
to a BBUDF, thus it allows to reason about the semantics of the BBUDF.

This paper further provides: (1) the state of the art on black-box opening techniques, in
Section 2, (2) the description of our contribution, in Section 3, (3) the description of our test en-
vironment and data characteristics, in Section 4, (4) the experimental evaluation of our concept,
in Section 5, and (5) the summary and conclusions, in Section 6.

2. Black Box Opening Techniques
The existing solutions to ’opening’ an encapsulated software code can be categorized as: (1) an-
notating, (2) static code analysis, (3) model discovery by means of ML algorithms, (4) efficient
compilation and execution, (5) query reverse engineering, and (6) ’opening’ by experimentation.

The solutions that use annotations assume that a programmer annotates a software with
hints. They allow to: (1) figure out automatically some execution characteristics of the software,
e.g., a cost function, resource consumption, a number of input and output rows, e.g., [40], (2)
execute it in a parallel architecture, e.g., [21, 22], (3) generate an optimized execution plan for
relational database operators, e.g., [16]. The annotations instruct a DI engine how to better
orchestrate tasks in a workflow or how to execute them in parallel.

A static code analysis approach [22] allows to learn features of a Java bytecode. A code
analyzer provides a control flow graph and a structure that for each statement associates variables
used by the statement.

The ML-based solutions analyze performance characteristics (typically, CPU, I/O, and mem-
ory usage) collected during a normal execution of a software or an excessive testing phase, in
order to learn performance models [19, 36, 47, 53]. A complementary research is being done in
the area of learning states of a software. In this field, the solutions are based on the theory of the
final state automata (see for example [50] for an overview).



ISD2024 GDAŃSK, POLAND

Efficient compilation and execution of UDFs in a cluster was addressed in [7]. Paper [41]
shows how to apply lambda functions implemented in C in SQL subqueries, whic are run in
PostgreSQL. The goal of a lambda function is either to pre-materialize results of a table function
or to return a cursor to a result of the table function. When UDF U is used in query Q, it
is called and executed for every record processed by Q, introducing substantial performance
overhead. Methods for decorrelating execution of U from Q were proposed in [37, 44]. They
assume that the code of U is expressed in a procedural language, possibly with embedded SQL
commands. The decorrelation techniques apply similar idea of representing U by means of
an equivalent relational algebra expression and treat the expression as a nested sub-query in
Q. In [6], the authors address UDFs with block operators. A block operator receives as an
input a set of tuple groups and it runs some computations for the groups, returning for each
group an output tuple. Finally, [45] proposes a technique for merging multiple UDFs, whose
code snippets implement the same computations. To this end, the authors developed a formal
language that reflects imperative constructs, including conditional statements and loops. In all
of the aforementioned solutions it is assumed that a source code of a UDF is known.

The works on query reverse engineering, e.g., [25, 49], are the most related to what we
are proposing in this paper. Paper [25] focuses on reverse engineering of project-join SQL
queries. The technique is based on the following concepts: (1) eliminating column ambiguity,
(2) the ranking of possible combinations of projection columns, (3) finding a right sequence of
joins of candidate tables, and (4) validating the results of a constructed query. In [49], reverse
engineering of a select-project-join query is modeled as a classification problem, where possible
selection predicates are represented as a decision tree.

Finally, the idea behind ’opening’ a BBUDF by experimentation is based on analyzing the
dependencies between output data characteristics produced by a given BBUDF in response to
a given input data set of given characteristics. The characteristics that describe the input and
output data include: the number of input and output attributes, the types of input and output
attributes, the number of input and output rows. Based on these characteristics and rules, it
is deduced what type of operation the BBUDF performs. In [4] the authors showed that this
technique can be successfully applicable to only simple BBUDFs (implementing filtering, pro-
jection, filtering+projection), as in general the problem transforms to the Boolean Satisfiability
Problem (SAT) [32] (belonging to the NP-complete class).

Complementary research results on optimizing the execution of UDFs (treated as white
boxes) in databases were published in [38, 43]. It is assumed in these publications that a UDF
is translated either into relational algebraic expressions [38] or it is compiled into a low level
executable code, merged with a compiled SQL code [43] for execution in a DBMS. The solu-
tion proposed in [13] allows to parallelize UDFs in the map-reduce framework, but UDFs must
be implemented from scratch for this framework. In [1] the authors describe the so-called par-
allelization skeletons, which are code templates used for implementing UDFs for parallelized
execution.

In the context of the contribution of this paper, there are three common limitations of all the
outlined approaches. First, none of them addresses the problem of discovering the semantics or
performance classes of BBUDFs. Second, they do no apply ML techniques to build performance
models of BBUDFs. Third, the approaches do not support the classification of BBUDFs based
on their performance models that, in turn, may ease in some cases reasoning about the semantics
of BBUDFs.

3. Our Approach
We base our approach on the following three components, as shown in Figure 1: (1) the repos-
itory of performance characteristics of known UDFs; it includes CPU and RAM usage repre-
sented as time series (TSs), (2) classification algorithms for TSs and similarity measures for TSs.



BODZIONY ET AL. ON REASONING ABOUT BLACK-BOX UDFS . . .

We assume that classes of performance characteristics of known (white-box) UDFs have been
built on TSs obtained from excessive experiments, based on the content of the repository. All
TSs stored in the repository are labeled with performance classes, assigned by means of a clas-
sification algorithm. Notice that to classify TSs a similarity measure is needed (see Section 3.2).
When a BBUDF is made available in the system, its performance characteristics are collected
by means of experiments. Next, the classification algorithm assigns a class to the characteristics
of the BBUDF at hand.

Knowing the performance class of the BBUDF one can get some insights (with a certain
level of probability) on the kind of operations run and performance (for example w.r.t. a data
volume) of the BBUDF by analyzing other (known) UDFs belonging to the same class. More-
over, in some cases, understanding on how to parallelize the BBUDF could also be figured
out. Being able to apply parallelization to a given BBUDF is a step towards its performance
optimization.

CPU and RAM usage 
characteristics of a BBUDF

TS 
classification

repository of CPU and RAM usage 
characteristics of known UDFs

training and testing time series

classified BBUDF

Fig. 1. A schematic illustration of the approach of discovering performance models of BBUDFs
contributed in this paper

In our setting, TSs describe CPU usage and RAM usage by UDFs. TS classification consists
in assigning a class label to a given TS based on the shape of the TS. Notice that the amplitude of
a TS and its length often should not be taken into account by a classification algorithm, since they
depend on the size of a data set processed. For example, filtering applied to a data set consisting
of 1M of rows will last shorter and use less resources than filtering applied to a data set of
10M of rows. However, in both cases the shape of both TSs will expose similar landmark [24]
characteristics. This observation was confirmed by our preliminary experiments. The difference
in amplitude is typically removed by applying normalization. Two normalization techniques
are the most frequently used, namely min-max [19] and z-score [36]. min-max is suggested to
be used when the distribution of values is unknown or is non-normal. For this reason, in our
approach we used min-max.

3.1. TS Classification

The following TS classification algorithms are the most popular, namely: ROCKET and HIVE-
COTE, and kNN.

ROCKET [10] uses random convolutional kernels to transform TSs. These transforms are
next used as classification features. Rocket computes two aggregate features from each kernel
and feature convolution. The number of kernels defaults to 10000, i.e., 20000 features are
generated by default (in our experiments we used the default number of kernels). Next, the
features are ingested by a classification algorithm (linear classification algorithms like ridge
regression or logistic regression are recommended).

HIVE-COTE, in versions 1.0 [27] and 2.0 [34] are ensemble classifiers. Version 2.0 uses
the following component classifiers: Shapelet Transform, an ensemble of ROCKET classifiers,



ISD2024 GDAŃSK, POLAND

Temporal Dictionary Ensemble, and Diverse Representation Canonical Interval Forest. Each
component classifier is trained independently and it produces a probability estimate for each
class. Then the final output is aggregated by combining the probabilities, which are weighted
by an estimate of the quality of the module found on the training data. Since it was shown that
version 2.0 produces very promising classification models [34], in our research we applied this
version.

TS classification was proved to be efficient with the well-known kNN classification algo-
rithm, e.g., [26, 33]. Furthermore, in [31] the authors showed that by applying the DTW sim-
ilarity, the classification accuracy of TS reached approximately 80%. For this reason, in our
approach we also applied kNN combined with DTW (see Section 3.2, further in this paper called
kNN-DTW.

3.2. TS Similarity: DTW

Four the most popular similarity measures for time series include: (1) Euclidean distance, (2)
longest common subsequence [2, 8], (3) landmark similarity [24, 35], and (4) dynamic time
warping (DTW). Because DTW turned out to be the most popular end effective method for
assessing TSs similarity [20, 29, 39, 57], we report its results in this paper. We have also run
experiments with the other distances, but we do not report them here due to a space limit and
because they offered worse results than DTW.

Dynamic time warping (DTW) [3] is used to compute a distance between two TSs, which
reflects how similar these two TSs are. TSs being compared may differ in length and in phase,
i.e., one TS may be shifted in time w.r.t. to the other one. The main idea of DTW is to compute
the distance between similar points (curves) of two TSs. Typically, the Euclidean distance is
computed between the similar points, but other distance measures can be applied, e.g., the Gover
distance [15]. DTW compares the amplitude (the value of Y in the 2-dimensional space) of the
first TS at time t with the amplitude of the second TS at time (t−1 and t+1) or (t−2 and t+2).
This way, similar shapes, but in different phases in both TSs, contribute to a lower distance, thus
a higher similarity. The following fundamental rules define how points in the compared TSs are
related: (1) the begin and end point of TS1 and TS2 must be matched, (2) matching points in
TS1 and their corresponding points in TS2 must be monotonically increasing, and vice versa
(i.e., the lines drawn between matching points must not intersect), (3) matching points in TS1
and their corresponding matching points in TS2 cannot exceed a predefined distance, and vice
versa.

4. Test Data Characteristics and Environment
Test data were collected during excessive experiments that were run in a micro-cluster composed
of 9 physical workstations, running Ubuntu 20.04.2. One node was designated as master and the
remaining eight nodes were designated as workers. All the workstations were equipped with: In-
tel Core 2 Quad CPU Q9650 3GHz, 8GB RAM DDR3-1333MHz, HDD Seagate ST3500418AS
500GB, and network card Intel Corporation 82567LM-3 1Gbit/s.

Five UDFs were tested in the micro-cluster and their CPU and RAM usage characteristics
were collected. The UDFs implemented: filtering, aggregation, filtering-aggregation, filtering-
join, filtering-aggregation-join. The UDFs processed real data on thermal energy consumption
generated by sensors. Data were organized into records, each of which included 12 attributes,
of types: numeric, short character string, and timestamp. Each UDF was processing two distinct
data volumes: 1GB and 2GB. The data were stored in csv files.

Each UDF was run 25 times for the same data volume. For each run, its CPU and RAM
performance characteristics were collected every 1/15 sec. These characteristics were stored in
33600 raw csv files. The 25 measurements for a given UDF were: (1) averaged, (2) min-max



BODZIONY ET AL. ON REASONING ABOUT BLACK-BOX UDFS . . .

normalized, (3) smoothed within 1-second, 2-seconds, and 3-seconds window, and (4) stored in
another set of csv files. Such pre-processed data were input into the classification algorithms.
Examples of CPU usage (in msec) of two UDFs, which implement filtering on two different
attributes on the 2GB data set, smoothed within 1-second window, are shown in Figure 2.

Our preliminary experiments showed that the best classification quality was obtained on
min-max normalized and smoothed data in 1-second window. Therefore, these results are
outlined in this section. Moreover, we run additional experiments where we compared the simi-
larity distances mentioned in Section 3.2. From those experiments the most promising results
were returned by DTW. For this reasons, the experiments outlined in this paper use DTW.

0

50

100

150

200

250

300

350

400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

20
6

21
1

21
6

22
1

22
6

23
1

23
6

24
1

CPU1: filterStoreSalesWhereProfitNegative
CPU2: filterCatalogSalesWhereProfitNegative

Fig. 2. Example CPU usage characteristics (in msec) of two UDFs filtering 2GB data set, on two
different attributes, smoothed within 1-second window

The project reported in this paper is open and available in a GitHub repository, available
at: https://github.com/Put-MasterThesis-TimeSeries-Sim. The project repos-
itory includes: (1) all the raw CPU and RAM usage characteristics (stored in 33600 csv files), (2)
pre-processed files (min-max normalized, min-max normalized and smoothed within 1-second,
2-seconds, and 3-seconds window), (3) Python scripts (notebooks) for data visualization, nor-
malization, smoothing, and computing averages, (4) Python scripts for training classification
algorithms ROCKET and HIVE-COTE-v2, (5) Python scripts for kNN-DTW classification, (6)
Python scripts for assessing TSs similarity measures and classification quality. All the tasks
of data pre-processing, model building, and assessing are fully documented and organized in
sequences of steps in Python notebooks. The repository includes also other experiments not
reported here due to space limit.

5. Experimental Evaluation
The goal of the experimental evaluation was to: (1) evaluate the DTW distance w.r.t. the values
it produces for various similar and dissimilar TSs; (2) evaluate the classification algorithms for
TSs, outlined in Section 3.1, w.r.t. their quality, represented by the F1 measure; (3) evaluate the
classification algorithms for TSs w.r.t. their time performance.

5.1. Results: Distance Values Produced by DTW

The DTW distance (see Section 3.2) was assessed w.r.t. the values it produced for various similar
and dissimilar TSs. To this end, we compared with each other the DTW distances between TSs
produced by five classes of UDFs (see Section 4). For each UDF, their raw results for 1GB and
2GB data sets were aggregated into a single TS. Figure 3 presents heatmaps for CPU and RAM



ISD2024 GDAŃSK, POLAND

usage. Each cell in these heatmaps represents a distance between two classes of UDFs. Notice
that, the lower the distance the more similar two UDFs are. As we can observe in the CPU
heatmap, all the diagonal cells from top-left to bottom-right include the lowest values. It means
that UDFs of the same class, e.g., filtering-filtering have the shortest distances, i.e., they are the
most similar.

CPU RAM

Fig. 3. Heatmaps for CPU and RAM usage characteristics, computed by means of DTW on data
min-max normalized and smoothed within 1-second window

In the RAM heatmap, the same behaviour was confirmed for UDFs implementing: filtering,
filtering-aggregation-join, and filtering-join. We suspect that the RAM usage characteristic for
aggregation has substantially smaller RAM footprint than for filtering, thus the RAM usage
characteristic of filtering dominates the usage of aggregation in filtering-aggregation. Similarly,
the RAM usage of a join dominates the usage of aggregation in filtering-aggregation-join, which
distorts the results involving aggregation.

5.2. Results: Classification Quality

ROCKET and HIVE-COTE are supervised learning algorithms that support multi-variate TSs.
Therefore, they were trained on both the CPU and RAM usage characteristics. The characteris-
tics obtained from running the UDFs on 1GB and 2GB data sets were combined. From such data
sets, 2/3 of rows were randomly selected as training data and 1/3 as testing data, as suggested
for example in [5, 28, 30, 42, 52]. On the contrary, kNN-DTW is an unsupervised learning al-
gorithm - for it in our experiments k={1, 3, 5}. The results presented in this section represent
averages for the three values of k.

As the classification quality we selected F1, which is the commonly used measure. Its values
for the three tested algorithms and five UDFs are shown in Figure 4. As we can observe from the
chart, TSs classification with ROCKET resulted in the highest F1 score for all the tested UDFs
except filtering. For this UDF, HIVE-COTE-v2 offered slightly better classification quality.
From Figure 4 we can also observe that the most difficult operations to classify turned out
to be filtering-aggregation and filtering-aggregation-join. Again, we suspect that the CPU and
RAM usage characteristics by the aggregation component were dominated by those of filtering
and join. The worst results were returned by kNN-DTW and with such low values of F1, the
algorithm is not recommended to be applied to the problem addressed in this paper.



BODZIONY ET AL. ON REASONING ABOUT BLACK-BOX UDFS . . .

0.756

0.81

0.624

0.558

0.854

0.699

0.826

0.601

0.523

0.845

0.616

0.536 0.546

0.459

0.558

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

aggregation filtering filtering-aggregation filtering-aggregation-join filtering-join

F1

ROCKET HIVE-COTE-v2 kNN-DTW

Fig. 4. Values of F1 for ROCKET, HIVE-COTE, and kNN-DTW computed on data min-max nor-
malized and smoothed within 1-second window

5.3. Results: Classification Time Performance

Table 1 shows average processing times and their standard deviations of the tested classification
algorithms, namely ROCKET, HIVE-COTE-v2, and kNN-DTW. Here, by processing time we
mean time spent on computing similarities between TSs and time spent on classifying unknown
TSs. The averages were computed from 10 runs of the algorithms in the setup described in
Section 5.2. As we can observe from the table, the fastest is ROCKET and the slowest is kNN-
DTW. The most time-expensive part of kNN-DTW is the DTW algorithm, which contributes to
such a long processing time of this classification algorithm.

Table 1. Average processing time (from 10 runs) of classification algorithms ROCKET, HIVE-
COTE-v2, and kNN-DTW

AVG process. time [min] STDEV
ROCKET 1.1 0.2

HIVE-COTE-v2 14.1 2.5
kNN-DTW 256.5 22.6

6. Summary and Conclusions
In this paper we addressed the problem of handling black-box UDFs in data integration pro-
cesses, with the final goal of being able to optimize the execution of such processes. BBUDFs
pose a serious challenge, as their semantics is very difficult and often impossible to discover.
To make this problem easier, we proposed to classify performance characteristics of BBUDFs
to known classes of performance models. Based on the classification, one can reason about the
performance and scalability of a given BBUDF for various volumes of data processed. If the
performance model of a BBUDF is known, i.e., it belongs to a given performance class, then
such knowledge increases the means of optimizing a DI process that uses the BBUDF, for exam-
ple by parallelization. Moreover, knowing the semantics of other UDFs belonging to the same
class, one may further reason about a possible functionality implemented by such a BBUDF.

To make our approach working, we used three core components, namely: (1) the repository
of performance characteristics, (2) similarity measures for TSs, and (3) classification algorithms



ISD2024 GDAŃSK, POLAND

for TSs. We evaluated the approach on five different simple UDFs that are the fundamental
building blocks of data integration processes (e.g., [23]). The obtained results showed that three
UDFs were classified at a satisfactory value of the F1 measure, thus we were able to reason about
the performance class and types of operations implemented by these UDFs. Unfortunately,
UDFs that implemented aggregation and aggregation combined with join and filtering were
much more difficult to classify correctly.

Since the problem of discovering performance characteristics and the semantics of BBUDFs
is very difficult, we addressed it by experimenting with basic building blocks of DI processes, to
verify whether our approach would be feasible. The next natural step in our research will focus
on: (1) discovering classes of performance models of more complex code snippets implement-
ing BBUDFs and (2) experimenting with neural networks for building classes of performance
models.

Notice that, the problem of BBUDFs in DI processes can be generalized to building perfor-
mance models of code snippets, which is important in real applications of performance optimiza-
tion, including: (1) designing scalable execution environments (usually parallel); (2) allocating
adequate computing resources for an efficient execution of a code snippet; (3) optimizing exe-
cution plans of DI processes and database queries. The current stage of the world wide research
does not allow yet to fully ’open’ BBUDFs, but we believe that this is a promising research di-
rection. For this reason, the initial work presented in this paper may open new paths in research
on optimization of systems with software components of unknown semantics.

Acknowledgements. The work of Michał Bodziony is related to his employment at IBM Polska
Sp z o.o. Additionally, his work is supported by the Applied Doctorate grant no. DWD/4/24/2020
from the Polish Ministry of Education and Science.

References
[1] Ali, S. M. F., Mey, J., and Thiele, M.: Parallelizing user-defined functions in the ETL

workflow using orchestration style sheets. In: Int. Journal of Applied Mathematics and
Computer Science 29.1 (2019).

[2] Apostolico, A.: “String Editing and Longest Common Subsequences”. In: Handbook of
Formal Languages, Volume 2. Linear Modeling: Background and Application. Springer,
1997.

[3] Berndt, D. J. and Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time
Series. In: Workshop Knowledge Discovery in Databases. AAAI Press, 1994.

[4] Bodziony, M., Krzyzanowski, H., Pieta, L., and Wrembel, R.: On discovering semantics
of user-defined functions in data processing workflows. In: SIGMOD Workshops. ACM,
2021.

[5] Brownlee, J.: Train-Test Split for Evaluating Machine Learning Algorithms. https://
machinelearningmastery.com/train-test-split-for-evaluating-
machine-learning-algorithms/. Accessed Jul, 2023. 2020.

[6] Chen, Q., Wu, R., Hsu, M., and Zhang, B.: Extend core UDF framework for GPU-enabled
analytical query evaluation. In: Int. Database Engineering and Applications Symposium
(IDEAS). 2011.

[7] Crotty, A., Galakatos, A., Dursun, K., Kraska, T., Binnig, C., Cetintemel, U., and Zdonik,
S.: An Architecture for Compiling UDF-Centric Workflows. In: VLDB Endow. 8.12 (2015).

[8] Das, G., Gunopulos, D., and Mannila, H.: Finding Similar Time Series. In: European
Symposioum Principles of Data Mining and Knowledge Discovery. Vol. 1263. LNCS.
Springer, 1997, pp. 88–100.



BODZIONY ET AL. ON REASONING ABOUT BLACK-BOX UDFS . . .

[9] Dehghani, Z.: Data Mesh: Delivering Data-Driven Value at Scale. O’Reilly, 2022.

[10] Dempster, A., Petitjean, F., and Webb, G. I.: ROCKET: exceptionally fast and accu-
rate time series classification using random convolutional kernels. In: Data Mining and
Knowledge Discovery 34.5 (2020).

[11] Errami, S. A., Hajji, H., Kadi, K. A. E., and Badir, H.: Spatial big data architecture:
From Data Warehouses and Data Lakes to the LakeHouse. In: Journal of Parallel and
Distributed Computing 176 (2023).

[12] Forresi, C., Francia, M., Gallinucci, E., and Golfarelli, M.: Cost-based Optimization of
Multistore Query Plans. In: Information Syst. Frontiers 25.5 (2023).

[13] Friedman, E., Pawlowski, P., and Cieslewicz, J.: SQL/MapReduce: A practical approach
to self-describing, polymorphic, and parallelizable user-defined functions. In: VLDB En-
dow. 2.2 (2009).

[14] Gillet, A., Leclercq, É., and Cullot, N.: Lambda+, the Renewal of the Lambda Archi-
tecture: Category Theory to the Rescue. In: Int. Conf. Advanced Information Systems
Engineering (CAiSE). LNCS 12751. Springer, 2021.

[15] Gower, J. C., Roux, N. J. le, and Gardner-Lubbe, S.: The Canonical Analysis of Distance.
In: Journal of Classification 31.1 (2014).

[16] Große, P., May, N., and Lehner, W.: A study of partitioning and parallel UDF execution
with the SAP HANA database. In: Conf. on Scientific and Statistical Database Manage-
ment (SSDBM). 2014.

[17] Grulich, P. M., Zeuch, S., and Markl, V.: Towards Efficient and Secure UDF Execution
with BabelfishLib (Lightning Talk). In: Proc. of VLDB Workshops. Vol. 3462. CEUR-
WS.org, 2023.

[18] Hai, R., Koutras, C., Quix, C., and Jarke, M.: Data Lakes: A Survey of Functions and
Systems. In: IEEE Trans. Knowl. Data Eng. 35.12 (2023).

[19] Hernández, Á. B., Pérez, M. S., Gupta, S., and Muntés-Mulero, V.: Using machine learn-
ing to optimize parallelism in big data applications. In: Future Generation Computer
Systems 86 (2018).

[20] Herrmann, M., Tan, C. W., and Webb, G. I.: Parameterizing the cost function of dynamic
time warping with application to time series classification. In: Data Mining and Knowl-
edge Discovery 37.5 (2023).

[21] Hueske, F., Peters, M., Krettek, A., Ringwald, M., Tzoumas, K., Markl, V., and Freytag,
J.-C.: Peeking into the optimization of data flow programs with mapreduce-style UDFs.
In: Int. Conf. on Data Engineering (ICDE). 2013.

[22] Hueske, F., Peters, M., Sax, M. J., Rheinländer, A., Bergmann, R., Krettek, A., and
Tzoumas, K.: Opening the black boxes in data flow optimization. In: VLDB Endowment
5.11 (2012).

[23] IBM: Product documentation. InfoSphere Information Server v.11.7. https://www.
ibm.com/docs/en/iis/11.7?topic=jobs-processing-data. 2024.

[24] Jagadish, H. V.: Review - Landmarks: a New Model for Similarity-based Pattern Query-
ing in Time Series Databases. In: ACM SIGMOD Digit. Rev. 1 (1999).

[25] Kalashnikov, D. V., Lakshmanan, L. V., and Srivastava, D.: FastQRE: Fast Query Reverse
Engineering. In: SIGMOD. 2018.



ISD2024 GDAŃSK, POLAND

[26] Levchenko, O., Kolev, B., Yagoubi, D. E., Akbarinia, R., Masseglia, F., Palpanas, T.,
Shasha, D. E., and Valduriez, P.: BestNeighbor: efficient evaluation of kNN queries on
large time series databases. In: Knowledge and Information Systems 63.2 (2021), pp. 349–
378.

[27] Lines, J., Taylor, S., and Bagnall, A. J.: HIVE-COTE: The Hierarchical Vote Collective
of Transformation-Based Ensembles for Time Series Classification. In: IEEE Int. Conf.
on Data Mining (ICDM). 2016.

[28] Liu, X., Chang, W., Yu, H., Hsieh, C., and Dhillon, I. S.: Label Disentanglement in
Partition-based Extreme Multilabel Classification. In: Annual Conf. Advances in Neural
Information Processing Systems (NeurIPS). 2021.

[29] Liu, Y., Zhang, Y., Zeng, M., and Zhao, J.: A novel distance measure based on dynamic
time warping to improve time series classification. In: Information Sciences 656 (2024).

[30] Mahankali, A. V. and Woodruff, D. P.: Linear and Kernel Classification in the Stream-
ing Model: Improved Bounds for Heavy Hitters. In: Annual Conf. Advances in Neural
Information Processing Systems (NeurIPS). 2021.

[31] Mahato, V., O’Reilly, M., and Cunningham, P.: A Comparison of k-NN Methods for
Time Series Classification and Regression. In: Irish Conf. on Artificial Intelligence and
Cognitive Science. Vol. 2259. CEUR-WS.org, 2018.

[32] Malik, S. and Zhang, L.: Boolean satisfiability from theoretical hardness to practical suc-
cess. In: Commun. ACM 52.8 (2009).

[33] Martínez, F., Frías, M. P., Charte, F., and Rivera, A. J.: Time Series Forecasting with KNN
in R: the tsfknn Package. In: The R Journal 11.2 (2019).

[34] Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., and Bagnall, A. J.: HIVE-
COTE 2.0: a new meta ensemble for time series classification. In: Machine Learning
110.11 (2021), pp. 3211–3243.

[35] Perng, C., Wang, H., Zhang, S. R., and Jr., D. S. P.: Landmarks: a New Model for
Similarity-based Pattern Querying in Time Series Databases. In: Int. Conf. on Data En-
gineering. IEEE Computer Society, 2000, pp. 33–42.

[36] Pumma, S., Feng, W., Phunchongharn, P., Chapeland, S., and Achalakul, T.: A runtime
estimation framework for ALICE. In: Future Generation Computer Systems 72 (2017).

[37] Ramachandra, K. and Park, K.: BlackMagic: Automatic Inlining of Scalar UDFs into
SQL Queries with Froid. In: VLDB Endow. 12.12 (2019).

[38] Ramachandra, K., Park, K., Emani, K. V., Halverson, A., Galindo-Legaria, C. A., and
Cunningham, C.: Froid: Optimization of Imperative Programs in a Relational Database.
In: VLDB Endow. 11.4 (2017).

[39] Rasines, I., Remazeilles, A., Prada, M., and Cabanes, I.: Minimum Cost Averaging for
Multivariate Time Series Using Constrained Dynamic Time Warping: A Case Study in
Robotics. In: IEEE Access 11 (2023).

[40] Rheinländer, A., Heise, A., Hueske, F., Leser, U., and Naumann, F.: SOFA: An extensible
logical optimizer for UDF-heavy data flows. In: Information Systems 52 (2015).

[41] Schüle, M. E., Huber, J., Kemper, A., and Neumann, T.: Freedom for the SQL-Lambda:
Just-in-Time-Compiling User-Injected Functions in PostgreSQL. In: SSDBM. ACM, 2020.

[42] Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., and Zhang, Y.: TransMIL: Trans-
former based Correlated Multiple Instance Learning for Whole Slide Image Classifica-
tion. In: Annual Conf. Advances in Neural Information Processing Systems (NeurIPS).
2021.



BODZIONY ET AL. ON REASONING ABOUT BLACK-BOX UDFS . . .

[43] Sichert, M. and Neumann, T.: User-Defined Operators: Efficiently Integrating Custom
Algorithms into Modern Databases. In: VLDB Endow. 15.5 (2022).

[44] Simhadri, V., Ramachandra, K., Chaitanya, A., Guravannavar, R., and Sudarshan, S.:
Decorrelation of user defined function invocations in queries. In: Int. Conf. on Data En-
gineering (ICDE). 2014.

[45] Sousa, M., Dillig, I., Vytiniotis, D., Dillig, T., and Gkantsidis, C.: Consolidation of
queries with user-defined functions. In: ACM SIGPLAN PLDI. ACM, 2014.

[46] Tan, R., Chirkova, R., Gadepally, V., and Mattson, T. G.: Enabling query processing
across heterogeneous data models: A survey. In: IEEE Int. Conf. on Big Data. 2017.

[47] Tang, W., Desai, N., Buettner, D., and Lan, Z.: Job scheduling with adjusted runtime esti-
mates on production supercomputers. In: Journal of Parallel and Distributed Computing
73.7 (2013).

[48] Timakum, T., Lee, S., Hu, H., Song, I., and Song, M.: DOLAP: A 25 Year Journey
Through Research Trends and Performance (Invited Paper). In: Int. Workshop on Design,
Optimization, Languages and Analytical Processing of Big Data (DOLAP). Vol. 3653.
CEUR-WS.org, 2024.

[49] Tran, Q. T., Chan, C.-Y., and Parthasarathy, S.: Query Reverse Engineering. In: The VLDB
Journal 23.5 (2014).

[50] Vaandrager, F. W.: Model learning. In: Commun. ACM 60.2 (2017).

[51] Vaisman, A. A. and Zimányi, E.: Data Warehouse Systems - Design and Implementation,
Second Edition. Data-Centric Systems and Applications. Springer, 2022.

[52] Wickramanayake, S., Hsu, W., and Lee, M.: Explanation-based Data Augmentation for
Image Classification. In: Annual Conf. Advances in Neural Information Processing Sys-
tems (NeurIPS). 2021.

[53] Witt, C., Bux, M., Gusew, W., and Leser, U.: Predictive performance modeling for dis-
tributed batch processing using black box monitoring and machine learning. In: Informa-
tion Systems 82 (2019).

[54] Wrembel, R.: Optimizing Data Integration Processes with the Support of Machine Learn-
ing - Is it really possible? In: Int. Workshop on Design, Optimization, Languages and
Analytical Processing of Big Data (DOLAP). Vol. 3653. CEUR Workshop Proceedings.
2024.

[55] Wrembel, R., Abelló, A., and Song, I.: DOLAP data warehouse research over two decades:
Trends and challenges. In: Information Systems 85 (2019).

[56] Yamada, M., Kitagawa, H., Amagasa, T., and Matono, A.: Augmented lineage: trace-
ability of data analysis including complex UDF processing. In: The VLDB Journal 32.5
(2023).

[57] Zhang, Q., Zhang, C., Cui, L., Han, X., Jin, Y., Xiang, G., and Shi, Y.: A method for mea-
suring similarity of time series based on series decomposition and dynamic time warping.
In: Applied Intelligence 53.6 (2023).


