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Abstract

We propose a novel method for fast retrieving of full-disk solar magnetograms obtained by
the Solar Dynamics Observatory (SDO) spacecraft. Due to the high resolution at which these
images are produced, an effective search mechanism is essential for managing this large dataset.
Based on the magnetogram images and later on Magnetic Region Intensity Image, we generate
magnetic field distribution vector. We also use a small fully-connected autoencoder to encode
these features and create a concise Magnetic Field Layer-Circle Segment Solar Hash. This
method significantly reduces the data required to describe solar images, allowing for nearly
real-time retrieval of images similar to the query image. Since HMI (Helioseismic and Magnetic
Imager) images are not labeled, we define similarity based on images produced within a short
timeframe. The efficiency and accuracy of our method have been validated through experimental
results.
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1. Introduction
Studying the Sun is vital for gaining insights into the broader mechanics of our solar system
and the universe. By exploring the Sun’s internal structure and surface phenomena, we can
deepen our understanding of how the Sun produces and distributes energy through nuclear fu-
sion. This knowledge is crucial for predicting and interpreting the Sun’s activities, such as
solar flares, coronal mass ejections, and other space weather events that can impact Earth and
its surrounding space environment.NASA’s Living With a Star (LWS) Program is dedicated to
studying the Sun’s impact on Earth, and the Solar Dynamics Observatory (SDO) plays a piv-
otal role in this initiative. SDO provides comprehensive data on the solar atmosphere across
multiple wavelengths, capturing details at fine spatial and temporal scales. A key instrument
on SDO, the Helioseismic and Magnetic Imager (HMI), is instrumental in examining the so-
lar surface’s oscillations and magnetic fields. The HMI produces several types of solar data,
including dopplergrams, continuum filtergrams, and magnetograms, which are detailed maps
of the photospheric magnetic field. The concept of semantic hashing was first introduced by
Salakhutdinov [7] and has since been applied to generate concise codes that effectively indicate
content similarity in various types of data.

Semantic hashing aims to generate compact vectors that accurately represent the semantic
content of objects. This method allows for the efficient retrieval of similar objects by searching
for comparable hashes, a process that is faster and uses less memory than interacting directly
with the objects. Prior studies have utilized multilayer neural networks to create these hashes.
More recently, the adoption of learned semantic hashes has shown promise in image retrieval
applications, as demonstrated in research such as that by [8].

Initially, it was determined that using hashes generated from full-disk solar images would
be impractical due to the large size and volume of the image collections. Consequently, we
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developed the hand-crafted intermediate descriptors mentioned previously.
A full-disk content-based image retrieval system is detailed in [1], where the authors evalu-

ated eighteen image similarity measures across various image features, resulting in one hundred
and eighty different combinations. Their experiments highlighted which metrics are most effec-
tive for comparing solar images to retrieve or classify different phenomena.

In [4], a general-purpose retrieval engine named Lucene is employed to fetch solar im-
ages. Each image is treated as a document comprising 64 elements (corresponding to the im-
age’s rows), making each image-document distinctive. Wild-card characters are incorporated in
query strings to locate similar solar events. Although the Lucene engine is benchmarked against
distance-based image retrieval methods in [3], no definitive superior method was identified.
Each method presents its own set of pros and cons regarding accuracy, speed, and practical-
ity. Notably, there is a significant trade-off between accuracy and retrieval speed, with several
minutes needed to achieve precise results.

In this paper, we introduce a novel solar semantic hash for solar image retrieval. We use
hand-crafted features (magnetic field layer circle segment histogram) and reduce it by applying
a fully-connected autoencoder. This hash is remarkably compact, consisting of just 30 elements,
yet our experiments confirm its adequacy for accurately capturing the essence of the images.
The images in our dataset are labeled solely by their timestamps. We treat the timestamp as a
similarity metric, and post-training, our algorithm facilitates the retrieval of images based on
visual similarity, independent of timestamp proximity.

2. Proposed Method for Solar Magnetogram Hashing
The first step is to enhance the magnetogram image by clearly marking the magnetic regions, as
depicted in Fig. 1 (left). This enhancement is known as magnetic region detection, conducted
using magnetogram images sourced from the SunPy library [10, 9]. This step is crucial for de-
termining the strength of the magnetic field. As illustrated in Fig. 1, the strength of the magnetic
field intensifies around active regions. We quantify the strength of the magnetic field by using
colour intensities, which are clearly displayed in Fig. 1 (right). Throughout the solar cycle, the

Fig. 1. Magnetic region detection and annotation process. Magnetic regions can be clearly visible.
We can observe the polarities (red and blue) and their intensities (left). A magnification of
magnetic regions (right).

magnetic field undergoes complex changes, including twisting, tangling, and reorganizing. It’s
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important to recognize that magnetic regions (MRs) are closely associated with Coronal Mass
Ejections (CMEs) and solar flares, which significantly impacts Earth. As demonstrated in Fig.
1, magnetic region detection (MRD) helps identify the north (red) and south (blue) polarities of
these regions. CMEs are most likely to occur between these polarities. Moreover, monitoring
and analyzing MRs is crucial for predicting solar flares. The MRD process produces a magnetic
region intensity image (MRI), which is vital for the subsequent steps of the analysis algorithm.

Direct comparison of high-resolution images is inefficient; thus, we segment MRI into sec-
tors, and we crop every sector into circle segments. We obtain the list of magnetic field layer
circle segments and calculate a histogram for each segment. The algorithm is detailed as fol-
lows: Initially, we establish the coordinates of the image center, denoted as cc. Fortunately,
the radius r remains fixed, thanks to the Sun’s consistent positioning within the image. Next,
we determine the slicing angle θ. This value was chosen based on empirical findings from our
research, which indicated that 30° yields the most optimal results. In the next step, we divide
the radius r into several layers for our descriptor, utilizing the radius segment parameter rs. The
value of rs is adjustable, which significantly influences the descriptor’s effectiveness. In Fig.
2, we demonstrate this process by dividing the radius r into four layers to clearly illustrate the
process. However, after thorough research, we found that dividing the radius into 10 segments
yields the most optimal results. Subsequently, we perform a cropping operation on the resulting
sectors as detailed in Alg. 1. To determine the arc points of each slice (sector), aps and ape, we
compute apex = ccx − 1.5 ∗ rs ∗ sin θ, apey = ccy − 1.5 ∗ rs ∗ cos θ. The arc points of the
sector are determined using trigonometric functions sin and cos. These formulas are utilized
to compute the row and column coordinates of two points along the arc. To ensure the arc ex-
tends slightly beyond the circle’s radius, a factor of 1.5 is applied to the calculated coordinates.
The arc points derived from these calculations are then used to crop the relevant slice from the
MRI. The variable cc represents the center of the circle, with ccx and ccy indicating the x and y
coordinates of the center, respectively.

INPUT: MRI - magnetic region intensity image
rs - radius segment
cc - center coordinates of MRI
θ - angle of the slice
Local Variables:
MC - mask circle matrix
MMRI - mask MRI matrix
ape - coordinates of starting point on the arc
OUTPUT: CMRI - cropped slice of MRI
MC := CreateBooleanCircleMatrix(cc, rs)
CMRI := CreatePolygonMatrix([ccx, apsx, apex, ccx],
[ccy, apsy, apey, ccy])
CARI := CombineMasks(MC,CMRI)

Algorithm 1: Algorithm for cropping the MRI slice.

The process of cropping the magnetic region intensity image (MRI) into slices is replicated
for each subsequent layer circle segment (slice). This results in a list of MRI slices, each repre-
senting different magnetic field intensities. In the next step, a magnetic field layer circle segment
histogram (MFLCSH) is created for every slice. This allows us to visualize the distribution of
magnetic field strengths across each segment of the MRI. The histogram maintains a consistent
scale for magnetic field intensities, ranging from [−1000; 1000]. In the final step, all individual
histograms (MFLCSH) are aggregated into a single vector — the Magnetic Field Distribution
Vector (MFDV). The entire methodology, including the segmentation and histogram generation,
is depicted in Fig. 2 and outlined in Alg. 1.

The calculation process for the Magnetic Field Distribution Vector (MFDV) plays a crucial
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Fig. 2. Algorithm steps for calculating the Magnetic Field Distribution Vector.

role in substantially reducing data volume during the encoding stage. The main goal of this
process is to create an intermediate, hand-crafted mathematical representation of magnetogram
images, which is utilized in subsequent steps. Through this approach, we achieve MFDV of 120-
length (12 sectors and 10 layers), representing a significant reduction compared to the full-disc
magnetogram image or even MRI.

Now we use a fully-connected autoencoder (AE) to encode the MFDV. The structure of the
autoencoder model is detailed in Table 1, which should be examined from top to bottom. The
design of the model is simple yet efficient, effectively shortening the hash length while preserv-
ing crucial information about the magnetic regions in the magnetogram. Importantly, only the
encoded segment of the autoencoder’s latent space is utilized for hash creation; the decoding
segment is used exclusively during the training phase. After extensive testing, we determined
that training for 40 epochs strikes the right balance between generalization and the avoidance
of overfitting. Table 1 illustrates the use of a convolutional autoencoder for generating hashes,
where the initial layer serves as the input. A one-dimensional autoencoder was chosen because
MFDV’s are one-dimensional vectors, which simplifies the computational demands. This ap-
proach allows us to efficiently reduce the length of the hash while maintaining crucial informa-
tion about the solar image’s active regions. The mean squared error function was selected as the
loss function, and training the model for 40 epochs proved sufficient to attain the desired level
of generalization without leading to overfitting. Following the training period, each image de-
scriptor was funneled through the autoencoder’s encoding layers, generating a 30-element hash
termed the Magnetic Field Layer-Circle Segment Solar Hash (MFLCSSH), suitable for content-
based retrieval tasks involving solar images. The autoencoder architecture was carefully chosen
to ensure optimal generalization.

In the final stage of our method, we utilize the hashes generated earlier for retrieving solar
images. After the initial phases, we consider that each solar image in our database has an asso-
ciated hash. The retrieval process starts by submitting an image query and comparing the hash
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Table 1. Tabular representation of the fully-connected autoencoder model.

Layer (type) Output Filters Params
(in, out)

Input(InputLayer) [1, 120] 0
Linear_1(Linear) [1, 60] 120, 60 7,260

ReLU_1 [1, 60] 0
Linear_2(Linear) [1, 60] 60, 30 1,830

ReLU_2 [1, 30] 0
Encoded(latent− space) [1, 30]

Linear_4(Linear) [1, 30] 30, 60 1,860
ReLU_4 [1, 60] 0

Linear_5(Linear) [1, 120] 60, 120 7,320
ReLU_5 [1, 120] 0

Decoded(Tanh) [1, 120]

of the query image against the hashes of all images in the dataset. This comparison involves
calculating the distance (d) between the hash of the query image and each hash in the database.
For this purpose, we use the cosine distance measure, which is effective for determining simi-
larity between vectors (refer to [6] for more details). To facilitate this retrieval, it is essential to
maintain a database of solar images that have been processed to generate hashes.

cos(QHj , IHj) =
n∑

j=0

(QHj • IHj)

∥QHj∥ ∥IHj∥
, (1)

where • is a dot product, QHj is the query image hash, and IHj a consecutive image hash.
After calculating the cosine distance, the images in the database are sorted in ascending order
based on their proximity to the query hash. In the concluding step of our proposed method, the
top n images that are nearest to the query are selected and presented to the user. The user must
specify the value of n to execute the query effectively. This process is outlined in pseudo-code
in Alg. 3. Alternatively, image retrieval can also be performed using a threshold for the cosine
distance. In this method, rather than specifying n, the user sets a threshold value, and only
those images whose cosine distance to the query falls below this threshold are retrieved. This
threshold-based approach is supported by our technique, allowing for flexible retrieval options.
However, the method of retrieving the top n closest images is generally more user-friendly and
is the recommended approach. The details of the retrieval process are documented in Alg. 2.

INPUT: ImageHashes, QueryImage, n
OUTPUT: RetrievedImages
foreach ImageHash ∈ ImageHashes do

QueryImageHash = CalculateHash(QueryImage)
D[i] = Cos(QueryImageHash, ImageHash)

end
SortedDistances = SortAscending(D)
RetrievedImages = TakeF irst(n)

Algorithm 2: Image retrieval steps.

3. Experimental Results
In this section, we describe the details of the simulation results and our approach for assessing
unlabeled images using unsupervised learning techniques to encode descriptors, necessitated by
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the absence of labeled data. The lack of labeled data posed challenges in comparing our method
against state-of-the-art techniques. To address this, we leveraged the rotational movement of
the Sun as a natural experiment to identify a group of similar images (SI). We hypothesized
that images captured in close temporal succession would exhibit similar solar active regions,
with only minor positional shifts. The dataset consisted of solar images taken at intervals of 6
minutes. Given the Sun’s rotational dynamics, images captured within such short intervals are
likely to bear resemblance to each other. We adjusted the temporal window for similarity to
refine our analysis. Through testing, we determined that images taken within a 48-hour period
could be deemed similar for our purposes. Consider an example where an image is captured on
2014-06-15 at 00:00:00. Based on our previous assumptions, any image taken 24 hours before
or after this timestamp would be considered similar. We rely solely on timestamps to identify
these images for evaluation. A series of experiments was conducted to evaluate image similarity
using the proposed method. The process for each experiment consisted of Executing an Image
Query: Initiate a query to retrieve a set of images from the database, Comparing Timestamps:
Analyze the timestamps of the retrieved images in comparison to the timestamp of the query
image, and Identifying Similar Images: Determine which images have timestamps within a
48-hour window of the query image’s timestamp, classifying these as similar. Once the set of
similar images (SI) is defined, we can establish performance measures such as precision and
recall, referencing studies like those by [5, 11]. These measures are based on the following sets:
SI - set of similar images, RI - set of retrieved images for query, PRI(TP ) - set of positive
retrieved images (true positive), FPRI(FP ) - false positive retrieved images (false positive),
PNRI(FN) - positive, not retrieved images, FNRI(TN) - false, not retrieved images (TN).
For Content-Based Image Retrieval (CBIR) systems, evaluating performance using precision,
recall, and the F1 score is essential. The results of the performed experiments are outlined in
Table 2. Moreover, they seem to be encouraging, specially the average of F1 score and robust
precision values. Our technique obtained an average precision of 0.919, which outperforms the
0.848 and 0.850 precision levels reported by Banda et al. [3] and Angryk et al. [2], respectively.
The majority of magnetogram images similar to the query were accurately retrieved; however,
magnetograms further from the query were often misclassified as positive but were not retrieved
(PNRI). Notably, this error was significantly lower than in prior studies. The high PNRI rates
are likely due to the Sun’s rotational movement, which can cause magnetic regions to shift or
disappear within a 48-hour window. This dynamic significantly influences the semantic hash and
impacts the query outcomes, resulting in reduced recall values. Our experiments verified these
observations. The simulation environment utilized Python with SunPy and PyTorch libraries,
running on a system equipped with an Intel Core I9-9900k 3.6 GHz processor, 32 GB RAM,
a GeForce RTX 2080 Ti 11 GB graphics card, and Windows Server 2016. Creating hashes for
525,600 images (one year) took roughly 5 hours and 25 minutes, and the learning phase required
about 21 hours. The average retrieval time was 450 ms.

4. Conclusions
Our approach introduced a new semantic hash for retrieving solar magnetograms that are similar
to a given query image. We utilized data from the Solar Dynamics Observatory Helioseismic
and Magnetic Imager, processed with SunPy and PyTorch libraries, to convert the magnetic
regions on the Sun into a vector representation. This method compares vectors of 30-length
rather than full-disk images, significantly reducing computational demands. Additionally, the
incorporation of a fully-connected autoencoder enhances the speed of the process. Evidence of
the effectiveness of our method is provided in Table 1, where it achieved the highest precision
compared to other advanced methods. Besides solar image retrieval, this technique can be also
effective for classification tasks, utilizing magnetograms over Atmospheric Imaging Assembly
images (AIA) of the solar atmosphere across various wavelengths, offering greater resistance to
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Table 2. Experiment results for the proposed algorithm. Due to lack of space, we present only a
part of all queries.

Timestamp RI SI PR
I(

T
P)

FP
R

I(
FP

)

PN
R

I(
FN

)

Prec. Recall F1

2014-01-01 00:00:00 233 241 193 40 48 0.83 0.80 0.81
2014-01-04 20:06:00 439 481 398 41 83 0.91 0.83 0.87
2014-01-07 00:12:00 428 481 396 32 85 0.93 0.82 0.87
2014-01-09 02:18:00 413 481 385 28 96 0.93 0.80 0.86
2014-01-16 22:18:00 446 481 397 49 84 0.89 0.83 0.86
2014-01-23 02:18:00 443 481 400 43 81 0.90 0.83 0.86
2014-01-27 23:24:00 405 481 376 29 105 0.93 0.78 0.85
2014-01-31 05:24:00 396 481 385 11 96 0.97 0.80 0.88
2014-02-08 15:30:00 447 481 406 41 75 0.91 0.84 0.87
2014-02-14 13:30:00 408 481 399 9 82 0.98 0.83 0.90
2014-02-22 08:30:00 398 481 387 11 94 0.97 0.80 0.88
2014-02-27 23:30:00 429 481 388 41 93 0.90 0.81 0.85
2014-03-02 16:36:00 413 481 395 18 86 0.96 0.82 0.88
2014-03-06 02:42:00 400 481 382 18 99 0.95 0.79 0.86
2014-03-09 14:42:00 433 481 396 37 85 0.91 0.82 0.86
2014-03-13 09:42:00 440 481 400 40 81 0.91 0.83 0.87
2014-03-21 02:42:00 448 481 404 44 77 0.90 0.84 0.87
2014-03-27 05:48:00 442 481 394 48 87 0.89 0.82 0.85
2014-03-30 06:48:00 441 481 391 50 90 0.89 0.81 0.85
2014-04-03 00:54:00 445 481 408 37 73 0.92 0.85 0.88
2014-04-04 04:00:00 403 481 388 15 93 0.96 0.81 0.88
2014-04-11 20:00:00 439 481 396 43 85 0.90 0.82 0.86
2014-04-18 09:06:00 399 481 394 5 87 0.99 0.82 0.90
2014-04-23 12:12:00 430 481 388 42 93 0.90 0.81 0.85
2014-04-28 23:18:00 407 481 383 24 98 0.94 0.80 0.86
2014-05-01 07:18:00 439 481 397 42 84 0.90 0.83 0.86
2014-05-05 06:18:00 443 481 398 45 83 0.90 0.83 0.86
2014-05-12 04:18:00 428 481 400 28 81 0.93 0.83 0.88
2014-05-18 21:24:00 399 481 388 11 93 0.97 0.81 0.88
2014-05-21 06:24:00 437 481 401 36 80 0.92 0.83 0.87
2014-05-27 05:24:00 446 481 396 50 85 0.89 0.82 0.85
2014-05-28 13:30:00 409 481 397 12 84 0.97 0.83 0.89
2014-06-03 01:30:00 419 481 371 48 110 0.89 0.77 0.83
2014-06-05 14:30:00 415 481 391 24 90 0.94 0.81 0.87
2014-06-12 21:36:00 430 481 382 48 99 0.89 0.79 0.84
2014-06-14 12:36:00 402 481 388 14 93 0.97 0.81 0.88
2014-06-19 16:42:00 435 481 389 46 92 0.89 0.81 0.85
2014-06-23 20:48:00 424 481 404 20 77 0.95 0.84 0.89
2014-07-02 07:48:00 400 481 385 15 96 0.96 0.80 0.87

Avg. 0.924 0.816 0.865
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noise and making it a dependable option for practical applications.
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