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Abstract

Unsupervised models are becoming increasingly common in business processes. They are ex-
tremely effective in cases where we don’t have a clearly defined decision class or the data con-
tains anomalies that are hard to identify. The problem emerges in the effective processing of
categorical data. Recently, many new approaches have been designed to analyze this data type.
Still, most of them do not address the issue of imbalanced datasets, which is extremely difficult
to catch when dealing with unlabeled data. Moreover, it is sometimes challenging to determine
when abnormal observations represent a small data cluster and when they are already anomalies.
This research analyzes several less popular algorithms that solve this problem and automatically
place abnormal observations into separated clusters. We have shown that such methods are much
better at clustering imbalanced data but also perfectly detect outliers in categorical datasets.
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1. Introduction
Numerous algorithms are accessible for analyzing numerical data and assessing object similar-
ity through mathematical distance [9, 17, 18, 22]. Conversely, practical scenarios frequently
involve qualitative data, encompassing categorical variables, textual elements, or numerical
ranges. Qualitative data examples include in-depth interviews, written documentation, inter-
views, and individual numerical and descriptive data associated with the subject under study.

A good example of the considerable potential of qualitative analysis lies in a medical con-
sultation with a patient who hasn’t documented precise health parameter readings daily but
can describe them using words or ranges. Qualitative data frequently arise in survey inquiries
with multiple-choice responses. To derive insights from such datasets, methods accounting for
individual value frequencies are necessary, like histograms or techniques examining value co-
occurrences. Moreover, when datasets are labeled, there are many methods of inference. With
datasets containing numerous categorical variables, we can accurately forecast decision class be-
havior using supervised methods. While many such methods exist, they may sometimes prove
insufficient, notably when lacking a target variable [35, 19].

We can consider analyzing people infected with a new virus we know little about. Then,
grouping the data by patients’ health parameters or characteristics indicated in medical inter-
views allows for the analysis of the entire group, which has similar characteristics. This greatly
accelerates the implementation of effective treatment and understanding of the nature of the
virus. Qualitative data also appears in many strategies, marketing, or medicine, especially when
we describe the system’s behavior in words. Regarding health parameters, we prefer "low pres-
sure" or "high temperature" rather than giving an exact value. Since health parameters often
change very quickly, it is sometimes better to write them down in words or a range, e.g., body
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temperature ranging from 38.2 to 38.7 degrees Celsius. Standard data clustering methods use
binary encoding of variables into numbers and then use mathematical measures to discover
clusters in the data. This approach possesses several limitations. Firstly, these methods excel
at identifying clusters when dealing with continuous data due to tailored measures of similar-
ity and dissimilarity among objects. Secondly, encoding data into binary format results in the
loss of valuable information regarding the co-occurrence and frequency of categorical values
within the dataset. Thirdly, generating clusters becomes computationally intensive, particularly
when handling datasets with numerous categorical variables, leading to a substantial increase in
time and memory consumption. Furthermore, a significant benefit of unsupervised qualitative
techniques is their inherent capability to segregate outliers into smaller clusters autonomously
during the clustering process. In contrast, employing quantitative methods necessitates prior
outlier detection and removal before modeling. This task becomes particularly arduous when
available anomaly detection methods primarily cater to quantitative rather than qualitative data.

At the data preprocessing stage, the standard task is to make the collection well-balanced.
There are many methods to balance a dataset when we have a decision class. The problem arises
when the set has no target variable, and the data is categorical. In addition, if we have to process
a categorical dataset about whose structure we understand little, it is hard to judge when the
small data clusters generated are due to imbalanced data and when they are outliers. Traditional
data clustering methods can be disrupted by outliers in the set or with natural small clusters in
the data. Developing clustering methods for such cases is very important because, in reality, we
often deal with qualitative data that come from new or one-off processes, and the target variable
is unavailable. In particular, clustering of qualitative data can be applied in medicine, where
readings of health parameters change very quickly, so it is easier to collect data in the form of
ranges or words. Detecting outliers in such cases can help diagnose sick patients and implement
treatment more quickly. Similarly, detecting small data clusters can identify individuals with
unusual but similar symptoms, such as those infected with the same virus.

Therefore, in this research, we decided to test the available methods for clustering qualitative
data in terms of how well they separate outliers from the rest of the set and what effect balancing
the dataset has on the results. The methods we reviewed are hierarchical or partially iterative.
They use standard mathematical measures of the similarity of objects in clusters but evaluate
the cluster based on the categories of qualitative variables found in it. Thus, they spontaneously
isolate observations dissimilar to the rest in small clusters, both if the collection is imbalanced
and these observations form smaller clusters and if they are outliers.

2. Related Work
The predominant focus of research on data clustering algorithms has centered on quantitative
data. Distance and partition methods have emerged as prominent contenders in this domain,
with notable representatives including the well-established K-means [18] and Agglomerative
clustering [22]. Several iterations and adaptations of these methods have been developed over
time. However, in response to the escalating demand for text processing capabilities, recent
years have witnessed the emergence of numerous novel algorithms explicitly tailored for clus-
tering qualitative data domains. Foremost among these is the K-modes algorithm, an adaptation
of the widely utilized K-means algorithm. Renowned for its efficiency and adeptness at iden-
tifying clusters characterized by similar attribute values, the K-modes algorithm has garnered
widespread adoption [16].

Dedicated algorithms tailored for categorical data include ROCK [12] and CACTUS [11].
These methodologies exhibit superior data clustering capabilities and proficiently identify out-
liers compared to many conventional algorithms. However, their notably high computational
complexity demands robust hardware resources, particularly when handling extensive datasets.
Inspired by the dynamic system concept, the ROCK algorithm draws inspiration from the STIRR



ISD2024 GDAŃSK, POLAND

method. The algorithm creates subsets of a dataset (hypergraph) to amalgamate akin objects.
Also, the CLICKS algorithm uses a graph approach. It partitions data into graphs and extracts
maximal cliques from each segment [34]. Maximal cliques represent cohesive groups of data
points sharing analogous categorical attributes.

The challenge of time complexity and the influence of outliers on categorical data clustering
has been tackled by the creators of the Clope algorithm [33] and its adaptations, such as the scal-
able version, SClope [23]. Employing a comparable strategy, the Squeezer algorithm constructs
histograms of unique categories present in clusters [14]. Like the Clope algorithm, it iterates
through dataset objects to associate each with the most compatible cluster regarding shared cat-
egorical values. Another algorithm with an iterative methodology is Coolcat [1], which utilizes
the probability of values pertaining to a cluster. A recent addition to the array of techniques for
clustering qualitative data is the Fair-Multiclustering algorithm [28]. The authors introduce the
concept of "fairness constraints" to ensure each cluster meets specific fairness criteria, such as
demographic balance or proportional representation.

New work on outlier detection in qualitative data has appeared in the last few years. The
available methods deal with data preprocessing, not the modeling process itself. The authors
[32] describe several methods for detecting anomalies in qualitative sets based on categories
of variables. The paper [15] describes a dynamic approach to analyze communication data
extracted from a WebAssembly sandbox to capture application behavior better. The authors of
[24] propose a CRBW method for identifying outliers in categorical data with varying frequency
distributions.

3. Methods under study
We discuss three types of data clustering algorithms: partitioning algorithms (hierarchical ag-
glomerative), iterative algorithms with a predefined number of clusters, and iterative algorithms
governed by an object similarity parameter. The computational complexity of the described al-
gorithms is shown in Table 1. The group of agglomerative hierarchical algorithms includes two
of those studied - ROCK and Fair-Multiclustering.

In the case of iterative algorithms, the user defines the number of clusters to achieve. By far,
the best-known algorithm of this type is K-means. The main disadvantage of the algorithm is
that if there are outliers in the set, they will significantly impact clustering and, therefore, may
strongly push the cluster boundary and accept more objects inside than indicated. An alternative
to the K-means algorithm is a version for categorical data - the K-modes algorithm and Coolcat.

There are also iterative algorithms, in which the user does not decide how many clusters
to achieve but how similar the objects must be to each other to be merged or to the cluster
to be found. These methods start with one single-element cluster. They then iterate over the
entire dataset and match each object to an existing cluster or create a new one-element cluster,
depending on what maximizes the profit function of such an operation (or minimizes the cost).
Finally, they perform several iterations over the entire dataset to move the objects that least fit
into the clusters they are in. The Clope and Squeezer methods discussed belong to this group.

Table 1. Algorithms for clustering qualitative data used in the study (n-size of dataset, m-length of
vector, k-number of clusters, p-number of categories of qualitative variables).

Algorithm Param Type Time complexity
ROCK θ, k hierarchical O(n2 log n)
Clope r iterative O(nmk)

Squeezer θ iterative O(nmk)
Coolcat k iterative O(nmk)

Fair-Multiclustering k hierarchical O(pn log n)
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3.1. Robust Clustering Using Links - ROCK

The ROCK algorithm [25] is a hierarchical clustering algorithm for categorical data. The algo-
rithm is based on the concept of neighbors and links. The neighbors of a point are those points
that are significantly similar to it. The algorithm uses a similarity function between objects and
between clusters. The user defines a threshold for which pairs of points with a similarity func-
tion value greater than or equal to this value are considered neighbors. The number of links
between pairs of points is the number of common neighbors of those points. The greater the
number of links between a pair of points, the more likely they belong to the same cluster. Start-
ing with one-element clusters, the algorithm repeatedly links the two closest clusters until the
desired number of clusters remains or a situation arises where no two clusters can be linked.
The connection of Ci and Cj clusters is called link[Ci, Cj ] and defined in the following form:

link[Ci, Cj ] =
∑

x1∈Ci,x2∈Cj

link(x1, x2), (1)

where link(x1, x2) is the number of points, such that sim[x1, x2] ≥ α for α selected from the
[0, 1] range. A frequently used measure of the sim[x1, x2] probability in the solid clustering
method is the Jaccard index. The goodness measure is given by the equation

g(i, j) =
link[i, j]

(ni + nj)h − nh
i − nh

j

, (2)

where h = 1 + 2f(θ) with f(θ) denoting a dataset-specific function that satisfies the property
that each object belonging to the C cluster has an approximate number of neighbors equal to nh

and (ni+nj)
h is the number of neighbors in the cluster that was created by merging the clusters

Ci and Cj .

3.2. Clope

Clope is based on unique values present in the object. The input of the algorithm is not a
traditional dataset but a set of vectors of any size that store values identifying the object in
any order. The algorithm starts with one single-element cluster consisting of the first object in
the dataset. Each successive record is read and added to a new or existing cluster, depending
on which operation maximizes the Profit function. The algorithm iterates again through the
entire dataset, calculating the Profit of removing a record from its cluster and placing it in
another (existing or new cluster). If moving an object to another cluster increases the Profit
function, the element will be moved. Iterating over all objects again is performed until at least
one element changes its cluster.

To define the Profit function, we need several other definitions. Let t denote the object in
the set X , C denote the set of clusters, W (Ci) the number of unique categories in cluster Ci,
the function | · | denotes the length of vector or power of the set and S(Ci) =

∑
t∈X |t|. The

Profit function is expressed by the formula

Profit(C) =

∑k
i=1

S(Ci)
W (Ci)r

∗ |Ci|∑k
i=1 |Ci|

, (3)

where k is the number of clusters. The r value is a user-selectable parameter. It is a real number
and regulates the similarity level of objects in a common cluster.

The basic assumption of the algorithm is the maximization of the Profit function and
the fact that the better defined the cluster is, the fewer unique values it contains and the more
objects in it identified by these values. An additional advantage is placing objects in one-element
clusters if such action maximizes Profit, so outliers are separated from the rest.
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3.3. Squeezer

The Squeezer algorithm (Algorithm 1) aims to generate compact and well-separated clusters
in multidimensional data by updating the cluster centers iteratively while giving more weight to
points closer to the current center. The construction of a new cluster is assisted by a user-selected
parameter θ. If all cluster similarity values for an element are less than θ, the element is placed
in the new cluster. After going through all the elements in the dataset, the algorithm makes a
few more passes to move between the clusters of objects that match the least. The similarity of
an object to a cluster is expressed by the formula

Sim(C, t) =
1

|C|
∑
p∈t

|tc ∈ C : p ∈ t|, (4)

where t is object that we want to append to the C cluster, tc is object belonging to cluster C,
p is value of object t. The approach helps mitigate the impact of outliers, leading to improved
clustering performance.

Algorithm 1 Squeezer algorithm
input: X-dataset, θ-minimum similarity value output: A set of k clusters
Initialization Place first element in single-element cluster. For the rest of objects t in the dataset, perform:

1. For each cluster calculate Sim(C, t)

2. Select the largest value V of all calculated similarities from previous step

3. If V > θ then place object in the corresponding cluster. Otherwise place object in a new single-element
cluster.

3.4. Coolcat

The Coolcat algorithm (Algorithm 2) is an entropy-based approach for clustering categorical
data. It works by iteratively assigning data points to clusters in a way that minimizes the Shan-
non Entropy within each cluster, where entropy measures the disorder or uncertainty of a set of
categorical values. Entropy value is given by formula

SE(C) = −
∑
p∈P

|p ∈ C|
|C|

log
|p ∈ C|
|C|

, (5)

where P is set of all unique values in cluster C and |C| denotes power of cluster C.

Algorithm 2 Coolcat algorithm
input: X-dataset, k-number of clusters, m - number of objects to be moved in iteration stage output: A
set of k clusters
Initialization

1. For each pair of objects t1, t2 inX calculate Shannon Entropy value

2. Select a pair of records with the highest entropy value. These are the first two clusters

3. Find k − 2 objects with the highest value of SE(C, t) and place them in single- element clusters.

Iteration

1. For each object t and cluster C where t is located, calculate P (C, t)

2. Select m objects with the highest value of P (C, t)

3. For each object from previous step, find the cluster that will reduce the entropy value the most and
move object there.
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At the beginning, it draws points initiating clustering. Then, it iterates through the entire set
and matches the elements to the cluster to minimize the entropy value. At the iteration stage, it
moves objects from cluster to cluster, maximizing the probability value of an object belonging
to a cluster. The probability is expressed by the formula P (C, t) = Πp∈t

|tc∈C:p∈t|
|C| , where t is

object that we want to append to the C cluster, tc is object belonging to cluster C, p is value
of object t. The Coolcat algorithm aims to create clusters with low entropy, indicating high
cohesion within clusters and high separation between clusters. Minimizing entropy effectively
identifies homogeneous groups of categorical data points while maximizing the distinction be-
tween clusters.

3.5. Fair-Multiclustering

Fair-Multiclustering works on the assumption of a protected attribute existing in the dataset,
along with specific proportions between its values. The goal is to divide the entire dataset into
clusters that are both well-defined in terms of object similarities and fair from the perspective
of protected attributes. Homogeneous clusters contain only similar observations, while equi-
table clusters ensure that the proportions of protected attribute values closely match the desired
proportions.

The first step of the algorithm creates as many clusters as there are unique values in the entire
dataset. A single cluster is defined by such a single value. In the next step, the single clusters are
combined to produce as many clusters as there are all combinations of unique values between
attributes. Each resulting cluster will be defined by as many identifiers as there are attributes in
the dataset. Such clusters are called Multiclusters. In practice, most of these combinations
will be empty, that is, no element in the dataset will match a cluster defined in this way. We
then combine pairs of clusters with the highest number of matches. For example, the number
of convergences between clusters defined by the values of AB and AC, respectively, is one -
the value of A is common. The clusters obtained in this method are already optimal, and the
last step of the algorithm is to merge the clusters, which will result in the ratio of protected
attributes in the cluster being close to the desired one. For example, if in the dataset, we have
the variable "eye color" with the values "blue" and "green" in a ratio of 3:2, we expect that
the final clusters will have a similar ratio of these values. This method is useful when specific
objects’ characteristics strongly influence the formation of clusters, while empirically, we can
judge that they should not have an influence. A business example might be a model whose goal
is to separate fraud customers from the rest. In practice, often the people committing financial
fraud are of foreign nationality, but we don’t want the model to overfitting such a pattern.

4. Research
Our research aimed to compare methods for clustering qualitative data regarding the quality of
the clusters and the right-detected outliers in the data. In particular, we focused on seeing which
methods are better candidates for clustering datasets that are poorly balanced against natural
clusters in the data or contain anomalies.

In addition to the custom data clustering methods mentioned earlier, we also tested how
standard K-means, K-modes and agglomerative hierarchical methods behave. For this purpose,
we binary encoded the data into numeric form. These algorithms do not allow to detection of
outliers in the data by themselves, so we applied outlier detection methods for each of them
- Local Outlier Factor [3], Minimum Covariance Determinant [27], Isolation Forest [17] and
DBSCAN [9] - before running clustering.
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Table 2. Datasets used in the research
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s1 1000 5 10 2 s15 1000 20 100 10 agaricus-lepiota [21] 8124 22 116 2
s2 1000 5 10 5 s16 1000 20 400 2 balance-scale [30] 625 4 20 3
s3 1000 5 10 10 s17 1000 20 400 5 breast-cancer[36] 286 9 41 2
s4 1000 5 25 2 s18 1000 20 400 10 car [2] 1728 6 21 4
s5 1000 5 25 5 s19 1000 100 200 2 flare 323 9 22 2
s6 1000 5 25 10 s20 1000 100 200 5 house-votes[6] 435 16 32 2
s7 1000 5 100 2 s21 1000 100 200 10 promoters [13] 106 57 228 2
s8 1000 5 100 5 s22 1000 100 500 2 solar-flare[31] 1066 11 41 2
s9 1000 5 100 10 s23 1000 100 500 5 spect [5] 267 22 44 2

s10 1000 20 40 2 s24 1000 100 500 10 splice[20] 3190 60 287 3
s11 1000 20 40 5 s25 1000 100 2000 2
s12 1000 20 40 10 s26 1000 100 2000 5
s13 1000 20 100 2 s27 1000 100 2000 10
s14 1000 20 100 5

4.1. Datasets

In our research, we used real data and artificially generated collections. Real data includes sets
available from open online sources (Table 2). These are labeled data with qualitative character-
istics. Some of the datasets are well-balanced concerning class, and some retain a large disparity
between classes, so we were able to assess what effect the imbalanced dataset has on the data
clustering results. Sometimes, small-volume classes can be suspected of being outliers in the
data because they contain a very small sample of objects. With the objective variable, we could
assess whether the algorithms cluster the data correctly. Before we started clustering, the target
variable was removed but kept in memory. Some of the analyzed algorithms allow clustering
sets with empty fields, but because of the other methods, we filled in the gaps with the most
common value. For outlier detection analysis, we used sets artificially generated with different
numbers of variables, classes of qualitative variables, and natural clusters in the data. We gener-
ated the collections using the Isotropic Gaussian Mixture Model [26] method, added 2% of the
deserving observations to each set, and subjected the sets to discretization to obtain the expected
variation in terms of categories of variables.

4.2. Input parameters

Since we had sets with a variable target then we could assume that the algorithms should gen-
erate just as many clusters as there are decision classes. On the other hand, if there were more
clusters, but they mainly stored objects belonging to one class, the effect was also what we
expected. We must also take into account that the more clusters, the better the classes will be
distributed in them, and building a large number of clusters is not the goal of the algorithms.
Therefore, we tried to choose the parameters so that the number of resulting clusters would be
the same or close to the number of original classes or not much more. This was not difficult
with the Fair-Multiclustering algorithm because it takes the number of clusters as an input pa-
rameter. The ROCK method also seeks to obtain as many clusters as the input parameter k, but
the number of clusters is also generated by the second parameter θ. We chose this parameter by
trial and error, bearing in mind that the higher the value of the parameter, the lower the required
similarity of objects in the cluster. The higher the parameter, the greater the disparity between
the sizes of the clusters created. If our goal would be to isolate outlier observations from the rest
then the θ parameter should be high. In this case, we aimed to form clusters with counts similar
to those of the original classes.

The Coolcat algorithm also takes the number of expected clusters as input. The second
parameter is m, corresponding to the number of objects least matching their clusters. These
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objects are moved in an iterative step. The value of m must not be too large to avoid com-
pletely changing the clusters obtained in the initial step of the algorithm. It also can’t be too
small because some objects may still be mismatched to the dataset. In our research, we started
with 50% of the dataset and, evaluating the results, we increased or decreased this value. The
expected number of clusters we introduce in the algorithm can produce one large cluster and
several smaller clusters. To avoid this, we chose a strategy of iterating over the range of the k
parameter to select the optimal one. The algorithm for finding the optimal k takes the elements
of the sequence K,K − 1,K + 1,K − 2,K + 2, . . . , 2, 2K − 2, and in the absence of a satis-
factory solution then iterates over the elements of the sequence 2K − 1, 2K, . . . ,K + 20, where
K is the number of natural classes in the dataset. We face a similar problem when looking for
a parameter for the Clope algorithm - sometimes, we get a very large number of small clusters
and a smaller-than-expected number of large clusters. Therefore, we choose a parameter that is
on the elbow of the function of the dependence of Profit on the parameter r. The number of
clusters always increases as the parameter increases, so Profit also increases, but the function
is convex or concave depending on the dataset.

Squeezer is the last algorithm that requires a θ parameter selection strategy. The authors
propose that for each pair from a randomly selected subset of objects, the input parameter was
the average of sim(ti, tj) for each pair of objects ti, tj from the set D. We propose an average
of sim(C, t) values from the first few tens iterations of the algorithm.

4.3. Cluster evaluation metrics

We assessed performance on several well-known measures of cluster quality: Calinski-Harabasz[4],
Davies-Bouldin [7], Rand [25], Dunn [8], Fowlkes-Mallows [10] and Shannon Entropy [29].
Shannon Entropy is interpreted here as a measure of the information stored in a cluster. In this
case, we want a single cluster to contain as little information as possible. When evaluating
clustering measures empirically, we believe that the comparative measure that best captures the
similarity between clustering and natural clustering in the data is Shannon Entropy. For obvi-
ous reasons, we cannot compare clustering with labels in data directly - the resulting clusters
may have been numbered in a different order than the decision class labels, for example, the
two clusters A=[1, 0, 1], B=[0, 1, 0] despite their different numbering are identical. Therefore,
we used adjusted versions of the Rand, Fowlkes-Mallows, and Shannon Entropy measures. Let
C1, C2 be vectors n× 1 representing the cluster numbers assigned to consecutive objects in the
set, for the two culling algorithms A1andA2, respectively. Let k and l be the number of clusters
generated by the A1 and A2 algorithm. The confusion matrix M = (mij) of the pair C1, C2 is
a k × l matrix whose ij-th element is equal to the number of elements in the intersection of the
clusters C1i and C2j , i ∈ {1, ..., k}, j ∈ {1, ..., l} - mij = |C1i ∩ C2j |.

Adjusted Rand Index is given by formula

R(C1, C2) =

∑k
i=1

∑l
j=1

(mij

2

)
− 2

∑k

i=1 (
|C1i|

2 )
∑l

j=1 (
|C2j |

2
)

n(n−1)

1
2(
∑k

i=1

(|C1i|
2

)
+

∑l
j=1

(|C2j |
2

)
)− 2

∑k

i=1 (
|C1i|

2 )
∑l

j=1 (
|C2j |

2
)

n(n−1)

(6)

Fowlkes Mallows Index Assuming that C1 is the vector obtained by clustering, and C2 is the
vector of actual clusters (classes) in the dataset, Shannon’s measure is given by the formula

FM(C1, C2) =
(
∑k

i=1)
∑l

j=1m
2
ij − n√

((
∑k

i=1)(
∑l

j=1mij)2 − n)((
∑l

j=1)(
∑k

i=1mij)2 − n))
(7)
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Shannon Entropy for clusterings is given by formula

SE(C1, C2) = − 1

n

k∑
i=1

pi log pi, pi =

∑l
j=1mij

|C1|
(8)

The Fowlkes-Mallows measure discriminates against situations where the algorithm has gener-
ated more clusters than natural clusters in the dataset, even if each generated cluster is dominated
by objects from one cluster. In practice, clustering often classifies objects differently from su-
pervised methods because it does not generate rules, so a slightly larger number of clusters
than classes of the target variable is acceptable as long as these clusters are well discovered.
Therefore, we evaluate the correctness of clustering mostly based on Shannon Entropy.

4.4. Outlier definition

Since none of the algorithms explicitly define an outlier observation, depending on the specifics
of the algorithm, outliers were selected in two ways: as single-element clusters or as obser-
vations with the lowest probability of belonging to a cluster. The probability of an object t
belonging to a cluster C is expressed by the formula P (t, C) =

∑
ti∈t

|q∈C:qi=ti|
|C| , where q is

object belonging to cluster C. We used this approach to detect deviations in clustering using the
Fair-Multiclustering and Coolcat methods. These two algorithms start with a predefined number
of clusters and aim to reach it, so we could not use the first approach.

The few-element or one-element cluster approach is feasible for the other three methods.
The ROCK algorithm hierarchically divides the clusters, so objects that do not match the rest
can be separated in one-element clusters. Such elements will not be attached to any cluster
at the merge stage. The situation is similar to Clope and Squeezer algorithms, which separate
"cluster spoiling" elements during each iteration. Objects that introduce new information (here,
new values) into clusters are redundant; if the whole process does not create clusters that could
provide them with membership, such objects will end up in separated small clusters, which we
will indicate as outlier clusters. Due to the analysis of specific, relatively small datasets, we
have assumed that the deviation clusters are of size 1 or 2.

5. Experimental results
When analyzing sets without a decision class, it is often difficult to assess whether they are
balanced. For qualitative data, in particular, standard methods fail. There are many methods
for detecting outliers in data at the preprocessing stage, but such methods fail when we do not
know whether the outliers are in the set or whether the set is very imbalanced. The imbalance
of a dataset here refers to the size of decision classes or the size of natural clusters in the data.
Sometimes, it is difficult to assess whether objects different from the rest should form a small
cluster in the data or whether they are already outliers. Therefore, the algorithms we analyzed
workaround this problem by isolating observations belonging to small clusters. Outliers are
located in one- or few-element clusters. The rest of the dataset is decomposed according to the
natural order. If the set is imbalanced, clusters of different sizes will form.

Performing the research, we collected clustering results for each algorithm and each dataset
using pre-selected parameter values. This way, we obtained 50 results for real sets and 135
for artificial sets. We evaluated each result using standard and adjusted measures. In tests
aimed at detecting deviations, we evaluated the results by checking how many real outliers the
algorithms detected. We used standard metrics for evaluating classification (here, classifying an
observation as a deviation or normal observation). When analyzing outliers, we focused mainly
on artificially generated sets because, in the case of real sets, verifying whether observations
classified as deviations deviate from the rest would be a very difficult task and would require
domain knowledge.
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Fig. 1. The number of correctly detected outliers depending on the diversity of the dataset - the
average number for qualitative and quantitative algorithms.

Figure 1 shows the averaged result of well-classified objects as outlier observations. This
is the average number of correctly detected outliers for two sets of algorithms: qualitative and
quantitative. Our observations show that when dealing with qualitative sets of varying values of
variables, qualitative methods are much better at detecting deviations in the data. In contrast,
commonly used methods in deviation detection, such as LOF or Isolation Forest, do not handle
this task well.

Table 3. The value of precision, recall, and f1 classification of outliers for selected datasets.

dataset CLOPE ROCK FAIR-MCLUS Coolcat SQUEEZER IF LOF MCD DBSCAN
PRECISION

synthetic_3 0.80 1.00 0.60 0.80 1.00 0.30 0.00 0.60 0.83
synthetic_7 0.58 0.47 0.20 0.80 1.00 0.00 0.70 0.00 0.54
synthetic_8 0.60 0.40 0.30 0.70 1.00 0.30 0.70 0.00 0.77
synthetic_15 0.91 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00
synthetic_16 1.00 1.00 0.80 1.00 1.00 0.00 1.00 0.30 1.00
synthetic_17 0.77 1.00 0.30 1.00 1.00 0.00 1.00 0.80 0.83
synthetic_24 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00
synthetic_25 1.00 1.00 1.00 1.00 1.00 0.10 1.00 0.00 1.00

RECALL
synthetic_3 0.80 0.90 0.60 0.80 0.80 0.30 0.00 0.60 1.00
synthetic_7 0.70 0.70 0.20 0.80 0.70 0.00 0.70 0.00 0.70
synthetic_8 0.60 0.80 0.30 0.70 0.70 0.30 0.70 0.00 1.00
synthetic_15 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00
synthetic_16 1.00 1.00 0.80 1.00 1.00 0.00 1.00 0.30 1.00
synthetic_17 1.00 1.00 0.30 1.00 1.00 0.00 1.00 0.80 1.00
synthetic_24 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00
synthetic_25 1.00 1.00 1.00 1.00 1.00 0.10 1.00 0.00 1.00

F1 - SCORE
synthetic_3 0.80 0.95 0.60 0.80 0.89 0.30 0.00 0.60 0.91
synthetic_7 0.64 0.56 0.20 0.80 0.82 0.00 0.70 0.00 0.61
synthetic_8 0.60 0.53 0.30 0.70 0.82 0.30 0.70 0.00 0.87
synthetic_15 0.95 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00
synthetic_16 1.00 1.00 0.80 1.00 1.00 0.00 1.00 0.30 1.00
synthetic_17 0.87 1.00 0.30 1.00 1.00 0.00 1.00 0.80 0.91
synthetic_24 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00
synthetic_25 1.00 1.00 1.00 1.00 1.00 0.10 1.00 0.00 1.00

In Table 3 we have shown the precision, recall and f1 measure values for selected datasets.
These are sets with many unique values, for which, in particular, we observed that outliers are
better separated by qualitative methods. The two methods that stand out the most from the others
are Squeezer and Coolcat (they perfectly detect true outliers). The overall analysis showed that,
nevertheless, for datasets with a small number of categorical variables, or when these variables
are not differentiated by value, standard methods, particularly the DBSCAN algorithm, perform
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better in detecting outliers.
In the context of real data, we researched clustering imbalanced data. Table 4 shows the

best results we achieved by clustering the data with the algorithms and the traditional methods:
K-means, K-modes and the agglomerative algorithm. The first three metrics indicate the quality
of clustering in terms of the content of the final clusters, and the next three indicate the similarity
between the natural distribution of objects in the cluster and the distribution obtained after clus-
tering. By natural decomposition, we mean the objects’ membership in the decision class. In
this study, we show that for imbalanced sets, we achieve the best results using qualitative algo-
rithms. Moreover, knowing the correct distribution of objects in clusters for the studied datasets,
we can assess that if we expect to get a lot of data clusters, the Clope and ROCK algorithms (see
the car set in Table 4) can best deal with the imbalanced problem. Both algorithms have great
potential in clustering qualitative data with unusual structures. In contrast, the Clope algorithm
is much faster and allows the exploration of sequential data with non-uniform chain lengths so
that we will pay more attention to it in the following studies.

Table 4. The value of the clustering quality measure and the best method for each dataset (ah -
agglomerative hierarchical).

Unsupervised Supervised

dataset well
balanced Dunn Davies

-Bouldin
Calinski

-Harabasz Shannon Rand Fowlkes
-Mallwows

agaricus-lepiota yes
0,569

(kmodes)
2,239
(ah)

1492
(kmeans)

0,232
(ah)

0,609
(kmodes)

0,815
(kmodes)

balance-scale no
0,707

(squeezer)
0,998

(coolcat)
52

(squeezer)
0,457

(coolcat)
0,075

(clope)
0,654

(coolcat)

breast-cancer partially
0,408

(clope)
2,609
(rock)

40
(kmeans)

0,594
(clope)

0,167
(rock)

0,684
(squeezer)

car no
0,548

(clope)
2,596

(kmeans)
128

(rock)
0,769

(clope)
0,119
(rock)

0,471
(rock)

flare no
0,56

(coolcat)
0,464

(coolcat)
109

(kmeans)
0,199

(coolcat)
0,200

(clope)
0,873

(coolcat)

house-votes yes
0,423
(ah)

1,224
(rock)

263
(kmeans)

0,341
(kmeans)

0,564
(kmeans)

0,788
(rock)

promoters yes
0,791

(squeezer)
3,202
(ah)

3,688
(kmodes)

0,322
(squeezer)

0,565
(kmeans)

0,781
(kmeans)

solar-flare no
0,387

(clope)
2,143

(squeezer)
219

(kmeans)
0,153
(rock)

0,210
(squeezer)

0,933
(clope)

SPECT no
0,556

(coolcat)
0,803

(coolcat)
55

(kmeans)
0,252

(coolcat)
0,152

(fair-mclus)
0,816

(coolcat)

splice partially
0,570
(ah)

6,424
(coolcat)

47
(kmeans)

0,431
(squeezer)

0,576
(kmeans)

0,731
(kmeans)

5.1. Algorithms discussion

Let’s consider the positive and negative features of the analyzed algorithms. The ROCK algo-
rithm seems to be the best approach to clustering qualitative data because it considers the possi-
ble ways to connect clusters. Its significant disadvantage is its high computational complexity.
Clope appears to be a competing algorithm, but the Profit function it operates on analyzes
only the same classes of features of the object we consider as a member of the cluster and the
objects already in it. There is a high probability that natural clustering in the dataset depends
mainly on what values occur together on different object features. In such a situation, the Clope
method will not generate well-formed clusters. Another disadvantage of this method is the need
to store the Profit of each cluster at each stage of the algorithm. Alternatively, we can store its
components and calculate the Profit before and after adding an element each time we consider
enlarging a cluster. Despite the similar working principle, such a problem does not occur in the
Squeezer algorithm. Here, the object’s cluster membership function always oscillates within a
specific narrow numerical range and is standardized - we divide by the number of elements in
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the cluster. Therefore, this value will not increase or decrease as new elements are added to the
cluster. This made introducing an input parameter θ possible, which decides whether the object
should belong to an existing cluster or form a new one-element cluster. The disadvantage of
the algorithm is certainly that it does not perfect the clustering by moving the elements to more
matching clusters. Still, it would be difficult to find a stop condition for this approach. The
newest of the analyzed algorithms, Fair-Multiclustering, aims to reduce the influence of certain
variables on clustering in qualitative data. On the other hand, it requires a specialist to assess
whether a variable is subject to fair distribution.

6. Conclusions and Future Work
In this article, we described several unsupervised methods for clustering qualitative data. We
have developed ways to self-detect deviations during clustering instead of traditionally before
clustering. For qualitative data, there are few effective methods for outlier detection at the data
preprocessing stage. Our research shows that when dealing with real qualitative datasets, us-
ing qualitative methods to cluster them makes sense. Such methods work well when the data
collections are imbalanced or when there are outlier observations. Due to the complex imple-
mentation of many algorithms discussed, we chose smaller datasets for analysis. In the future,
we plan to expand our research to include large qualitative datasets from real-world processes,
particularly amino acid sequence datasets and interviews with choice questions. We evaluated
clustering and outlier detection results using standard measures of cluster quality and classifi-
cation quality. To evaluate the clusters, we had to convert the dataset to binary form. In future
work, we plan to build cluster quality measures better suited to qualitative data using Shannon
entropy, which is discussed in the methods of detecting outliers in clusters - the probability of an
object belonging to a cluster. Another possibility is to evaluate a cluster without analyzing each
element separately but considering its unique variables and analyzing di-grams and tri-grams of
such values.
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