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Abstract

This study implements algorithmic investment strategies based on classical methods and a recur-
rent neural network model, comparing their performance on the S&P 500 Index over 20 years
(2000-2020). Our approach involves dynamic parameter optimization during backtesting using a
rolling training-testing window. Each method’s robustness to parameter changes was tested and
evaluated by performance statistics such as the Information Ratio and Maximum Drawdown.
While most of the presented strategies did not outperform the benchmark Buy&Hold strategy,
combining signals from different methods proved stable, outperforming the Buy&Hold strat-
egy by doubling its returns while maintaining the same level of risk. Classical methods with
a rolling training-testing window were significantly more robust to parameter changes than the
LSTM model.

Keywords: time series forecasting, algorithmic investment strategies, automated trading sys-
tems, long short-term memory model

1. Introduction
The S&P 500 Index is a widely recognized benchmark of the United States stock market, and
forecasting its values remains a topic of interest for investors and financial analysts. Given
investors’ strong focus on risk management, optimizing trading decisions using returns weighted
by risk is crucial, as it enables the maximum revenue potential from strategies. The recent
growth of data mining techniques and related technologies has made it much more approachable
and quicker to analyze large datasets and provide explanations for the results.

The analysis presented in this paper has enabled us to verify the following research hy-
potheses which were based on the current state of the literature review from the most recently
published papers. The first hypothesis posits that the stock market is inefficient because it is
possible to predict price movements based on historical data. The second hypothesis suggests
that the combination of signals generated by different strategies will outperform each strategy
individually. The third hypothesis proposes that classical methods exhibit greater robustness to
changes in parameters compared to recurrent neural networks (RNNs). Lastly, the fourth hy-
pothesis asserts that long short-term memory (LSTM) models predict price movements better
than ARIMA models.
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The main novelty of this paper is the proposition of ensemble methods that combine clas-
sical methods with RNNs in a single investment model, resulting in a diversified set of signals.
This study operates under the assumption that there exists asymmetric information allowing for
the analysis of volatility in the stock market, as well as the prediction of prices within avail-
able historical data, ultimately enabling the outperformance of the Buy&Hold (B&H) strategy.
Therefore, the study encompasses multiple signal-generating methods, including the ARIMA
model, macroeconomic factors, volatility breakout, momentum, and contrarian strategies, mov-
ing average crossover, and the RNN model. Each of these methods generated signals over 20
years, trading on the S&P 500 Index.

2. Literature Review
The application of time series analysis to forecast stock market prices is a topic widely discussed
in scientific literature. Some researchers provide evidence that algorithmic trading brings many
advantages to the market, such as lowering adverse selection, decreasing the amount of price
discovery correlated with trading, and increasing the informativeness of quotes [8]. Others offer
evidence that "algorithmic trading is associated with improved liquidity, improved efficiency,
and elevated volatility" [2]. Additionally, there have been attempts to combine low liquidity and
non-correlated investment strategies across various asset classes, resulting in significantly in-
creased risk-adjusted returns of such combined systems [23]. Such research has been conducted
not only on classical assets like equities, bonds, currencies, or commodities [27], but also on
newly recognized asset classes such as volatility and cryptocurrency [11, 20, 27, 14].

The earliest articles were based on simple methodologies, employing moving averages,
trend trading, and ARIMA class models. James [12] conducted research on the relationship
between monthly future stock prices for a selected set of stocks from the NYSE from 1926 to
1960. The study indicates that combining various averages depending on market volatility would
improve the quality of predictions. Brock et al. [3] verified the efficiency of the autoregressive
model, GARCH-M, and random walk model using DJIA data for the years 1897-1986.

Holmberg et al. [9] utilized the volatility breakout rule to validate investment signals on US
crude oil futures prices from March 30, 1983, to January 26, 2011. Market analysis is crucial
for timely response to crises, as the repercussions of market collapses affect the entire econ-
omy, impacting not only current revenue but also investments, real wages, and unemployment
rates [26]. Numerous measures of early indicators of crises are discussed, including National
Reserves, GDP growth, National Debt, and Unemployment rate [15, 7, 5].

In addition to econometric models like ARIMA, VAR, and GARCH, more attention is be-
ing directed towards neural network applications due to their successes in pattern recognition.
These patterns are also present in time series data such as stock prices. Roondiwala et al. [18]
attempted to predict the returns of the NIFTY 50 index. They trained multivariate LSTM mod-
els using daily open, close, high, and low prices as features. After testing various combinations
of epochs and features, the most accurate model in terms of Root Mean Square Error (RMSE)
(utilized all four features and underwent 500 epochs of model training.

Other research implementing the LSTM model in a scientific approach was conducted by
Chen et al. [4]. They collected data for China stocks and utilized the following specifications: a
sequence length of 30 days, an RMSprop optimizer, and a learning rate of 0.001. Additionally,
Bhandari et al. [1] presented an extensive study on different LSTM-based RNN architectures
and additional inputs for S&P 500 Index forecasting. The authors demonstrated that a model
with a single layer outperforms models with more layers in terms of forecasting accuracy.

Zhang et al. [25] introduced an AT-LSTM model, which combines LSTM with an attention-
based model. The attention-based model introduces a new layer to LSTM to select weights of
importance for each of the outputs generated by a simple LSTM model. The authors presented
results from empirical studies using three indices: Russell 2000, DJIA, and NASDAQ. A slightly
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different approach using the LSTM model was presented by Sang and Di Pierro [21]. Instead
of using prices or returns for predicting stock price movements, the authors utilized well-known
technical analysis trading strategy signals as features. Wang et al. [24] presented another novel
model, the transformer, for predicting stock market indices and compared the results with dif-
ferent deep learning models, including LSTM. The authors provided results indicating that the
transformer model outperforms others in terms of forecasting accuracy.

Previous research has primarily focused on selecting appropriate methods and testing their
profitability without adjusting parameters based on previous results. However, there is a growing
recognition of the potential benefits of merging multiple methodologies or dynamically adjust-
ing model parameters to achieve better outcomes. This approach acknowledges the complexity
of financial markets and the importance of adaptability in response to changing conditions. By
integrating diverse methodologies and continuously refining model parameters, researchers can
enhance the robustness and effectiveness of predictive models in financial analysis.

3. Data and Methodology

3.1. Data description

This study utilizes S&P 500 Index close prices from January 1, 1994, to May 2, 2020, with the
trading period starting from January 1, 2000. The data was sourced from the Yahoo Finance
API. Additionally, the study incorporates a time series consisting of initial jobless claims in
weekly intervals for the same period, downloaded from the Federal Reserve Bank Economic
Dataset (fred.stlouisfed.org).

3.2. Description of used classical methods

Each presented strategy will adhere to the same general rules during the investment process,
encompassing three possible signals: buy, sell, and stop. A buy signal indicates that the strategy
will utilize all available capital to purchase the asset, while a sell signal signifies that the strategy
will allocate all available capital for deposit in the short transaction, which requires a 100%
deposit. A stop signal indicates that the strategy will not maintain any position on the following
day. Additionally, every trade will incur a transactional fee equivalent to 0.05% of the investing
capital.

Except for the ARIMA and LSTM models, each presented strategy will optimize parameters
using a rolling training-testing window. This iterative process consists of the following steps:

1. Select the first 504 days as a training window to estimate the model and calculate indi-
cators. During this period, the strategy generates trades for every combination of tested
parameters.

2. Select the next 504 days as a testing window. During this period, the strategy utilizes every
calculated statistic and signal based on that. The algorithm then calculates a combination
of tested parameters and selects parameters with the best information ratio (IR).

3. Select the next 63 days as a trading period and utilize the selected parameters from step 2
to generate signals for each day.

4. Shift each window by 63 days.

5. Repeat steps 1-4 until the last trading period reaches the end of the time series.

ARIMA

The Autoregressive Integrated Moving Average (ARIMA) model is represented by the following
equation (1):

yt = a1yt−1 + ...+ apyt−p + et + b1et−1 + ...+ bqet−q (1)
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Where p is the number of autoregressive lags, q is the number of error term lags, yt is the value
of the variable at time t and et is the error term at time t.

The detailed procedure for forecasting the future values of the S&P 500 Index is presented
below.

1. Set the training sample as the first 504 days in the dataset.

2. Identify optimal values of p, d, and q from all combinations of p : (0 − 5), d : (0 − 3),
and q : (0− 5).

3. Estimate the model with the chosen p, d, and q using a maximum likelihood method.

4. Forecast one step ahead.

5. If the forecasted value is higher than the last observation plus fees, generate a buy signal.
If the forecasted value is lower than the previous observation minus fees, generate a sell
signal. Otherwise, generate a stop signal.

6. Repeat steps 1-5, moving the training sample one day ahead, until the end of the dataset.

Moving average crossover

Moving average crossover, based on short and long moving averages, has been extensively
studied in the literature [10]. Many researchers have found this method to be profitable and
capable of outperforming the B&H strategy in out-of-sample periods [6, 17]. A simple moving
average is given by the following equation (2):

SMAt(k) =
yt−k+1 + yt−k+2 + ...+ yt

k
=

1

k

t∑
i=t−k+1

yi (2)

Where k is the number of time series values considered.
Considering the findings of previous studies, this research employs a 504-day rolling training-

testing window, as described at the beginning of this section, and optimizes the moving aver-
age crossover method within the following parameters: days for the short moving average:
{5, 10, 15, 20, 25, 30}, days for the long moving average: {50, 100, 150, 175, 200, 225, 250, 300}.
In each iteration, the algorithm explores 48 combinations of parameters, selects the one with the
highest information ratio during the testing period, and utilizes the chosen combination for the
subsequent 63 days.

Momentum and contrarian

The momentum approach operates under the assumption that asset prices follow long-term
trends, while short-term prices tend to randomly fluctuate around zero returns [16, 22]. On
the other hand, the contrarian approach assumes that short-term price trends frequently change
between upward and downward movements.

The first signal-generating system is based on a momentum approach. The algorithm cal-
culates historical returns for each of the following lags {7, 21, 63, 126} on the training window.
Subsequently, on the testing window, it selects weights for each of the historical returns, with
possible weights of 0 or 1.

The second signal-generating system is based on a contrarian approach. The algorithm
calculates historical returns for each of the following lags {1, 2, 5, 10}. Then, on the testing
window, it chooses weights for each of the historical returns, with possible weights of 0 or -1.



ISD2024 GDAŃSK, POLAND

Volatility breakout

The volatility breakout strategy is rooted in the volatility stylized facts. Whenever the current
volatility level surpasses its historical q1 quantile (q1 > 0.5), signifying an impending high
volatility period, the strategy generates a sell signal. Conversely, if the current volatility level
falls below the q2 quantile (q2 < 0.5), indicating a low volatility period, the strategy gener-
ates a buy signal. Otherwise, a stop signal is generated. The key advantage of this method
lies in staying out of the market during periods of mixed volatility and capitalizing on con-
sistent market behavior. Using a rolling training-testing window, the following parameters are
optimized: days for calculating the distribution of volatility {63, 126, 252, 504, 1008}, quantile
level q1 : {0.6, 0.7, 0.8, 0.9}, quantile level q2 : {0.1, 0.2, 0.3, 0.4}.

Macro factor

The S&P 500 Index serves as a measure of the performance of 500 companies with the highest
capitalization from the NYSE and Nasdaq, making it a partial reflection of the condition of
the US economy. In the literature, commonly cited indicators include National Reserves, GDP
growth, National Debt, and the unemployment rate [7, 5]. This study specifically focuses on the
unemployment rate indicator, which can be proxied by Initial Jobless Claims.

Every time initial claims exceed their historical q1 (q1 > 0.5) quantile – economic growth is
expected to decrease and strategy generates a sell signal. However, if the current number of ini-
tial claims is lower than the q2 (q2 < 0.5) quantile – the economic growth is expected to increase,
and the strategy generates a buy signal, otherwise it produces a stop signal. The following pa-
rameters are optimized during rolling training-testing windows: days for calculating the distri-
bution of initial jobless claims {63, 126, 252, 504, 1008}, quantile level q1 : {0.6, 0.7, 0.8, 0.9},
quantile level q2 : {0.1, 0.2, 0.3, 0.4}.

3.3. Recurrent neural network

The simple extension of the neural network that facilitates information flow in a cyclic man-
ner is known as the Recurrent Neural Network (RNN). However, RNNs encounter a significant
challenge with optimization algorithms, particularly gradient descent. Due to their cyclic ar-
chitecture, RNNs often encounter the issue of gradient vanishing, as discussed in [13]. This
phenomenon entails that changes in the weights of past observations diminish exponentially
over time. Consequently, simple RNNs struggle to capture long-term dependencies effectively.

Long short-term memory

Long Short-Term Memory (LSTM) networks are specifically designed to tackle the issue of
gradient vanishing by modifying the architecture of Recurrent Neural Networks (RNNs). While
RNNs utilize a hidden matrix of parameters passed between sequential inputs, LSTM networks
introduce mechanisms to retain and forget information over long sequences. In an RNN, param-
eters in this matrix are optimized to minimize the loss function, and information is transferred
between inputs through the hidden state. Consequently, RNNs may yield different results for
the same input depending on different past contexts, as reflected in the varying weights of the
hidden state.

The training data will be segmented into smaller sequences consisting of the last n days’
values of the S&P 500 Index, with the output being the next day’s value of the index. This setup
is analogous to the simple AR(n) process. To generate signals, this research adopts a rolling
training window of 252 days. The model is trained on this window and then used to predict
values each day on the testing window. After the testing window period concludes, the model
is refitted on the training window, and the process repeats until the final testing window reaches
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the end of the time series.
Generating signals is similar to the ARIMA-based strategy if the predicted value is higher

than the current value plus fees – generate a buy signal. If the predicted value is lower than the
current value plus fees – generate a sell signal, otherwise generate a stop signal.

Hyperparameters

One of the main concerns when using neural networks is the number of hyperparameters and
their optimization problems due to the high complexity of compiling the model. There are two
ways of solving this issue, the first one is to select a training sample and use cross-validation to
select the best hyperparameters on the training sample and use them for the entire testing period.
The second one is to use heuristic methods and literature to select optimal hyperparameters and
for that reason gain time to refit the model several times which enables training on the rolling
window. In this study, a second method was chosen, because to get reliable results using the
first method, the training sample needs to be significantly bigger than the testing sample. To
test this method on the last 20 years, the model should be tested on the last 80 years which
could be time-consuming and market relations could move importantly over such a long period.
For that reason, it is expected to obtain more accurate results specifying hyperparameters at the
start and refit the model during our sample several times. While the generalization of model-
based trading systems might be a problematic issue, our method of training and testing allowed
a robust check of the LSTM-based strategy performance, also testing for generalization across
years. This approach ensured that the models were not only well-tuned but also capable of
maintaining their predictive power over different periods.

The hyperparameters for our LSTM model are chosen using heuristic methods and literature,
but results for combinations of other parameters will be presented in the sensitivity analysis
chapter. Selected hyperparameters are as follows: number of units in hidden layers - 30, length
of a single input (sequence) - 15, activation function for hidden layer - ReLU, loss function -
Mean Squared Error, optimizer - Adam. epochs - 100, dropout rate - 0.2, starting learning rate -
0.01.

3.4. Signal combination

According to portfolio theory, when comparing two portfolios with the same expected returns,
the riskier portfolio will have a higher asset correlation, indicating less diversification. Similarly,
a portfolio of diversified signals generated by various strategies is expected to have lower risk
than individual strategies. In this study, signals from all strategies are combined by aggregating
signals from six classical strategies. Each buy signal is assigned a value of 1, each sell signal a
value of -1, and each stop signal a value of 0. The sum of signals is normalized by dividing by
the number of strategies, which is 6 in this case. If the composite signal is not an integer, it is
treated as a ratio of capital invested in the strategy and held as cash (e.g., a ratio of 3/6 indicates
that 50% of available capital is actively invested in the strategy while the other 50% is held as
cash).

This ensemble method is likely to yield lower annual returns compared to strategies em-
ploying 100% of capital consistently. However, it is expected to significantly reduce risk, as
measured by standard deviation and maximum drawdowns. Consequently, this strategy should
offer higher risk-adjusted returns.

3.5. Performance statistics

Appropriate performance statistics presented in Table 1 were selected based on [19], which
extensively describes the process of creating automated trading systems and the evaluation of
strategies’ performance.
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Table 1. Performance statistics definitions.
Metric Abbreviation Formula Additional Information

Daily Returns r ri :=
pi−pi−1

pt
pt is asset price on day i of backtest

Annualized Compounded Returns aRC aRC := 252 ∗ 1
N

∑N
i=1 rt N is the number of days in the whole backtesting period

Annualized Standard Deviation aSD aSD :=
√
252 ∗

√
1

N−1

∑N
i=1(rt − r)2 r is the average of daily returns

Maximum Drawdown MD MD := min i=1,...,t
t=1,...,N

∑t
j=iRj

Maximum Loss Duration MLD MLD := y−x
252

x, y are days defined in formula MD formula and indicate
days of consecutive local maxima of the equity values

Average Maximum Drawdown AMD AMD = 1
N

∑n
i=1MDyearly

i MDyearly
i is the MD calculated on a one-year period

Information Ratio IR IR := aRC
aSD

allRisk allRisk allRisk = aSD∗MD∗MLD∗AMD
1000

Annual Return Compounded/Maximum Drawdown aRCMD aRCMD := aRC
MD

Annual Return Compounded/Average Maximum Drawdown aRCAMD aRCAMD = aRC
AMD

4. Empirical results

4.1. Classical methods

Based on the analysis of the six classical methods applied to S&P 500 data over the last 20
years, the following observations were made. ARIMA performed exceptionally well during pe-
riods of high volatility and significant downward trends, particularly during the financial crisis
of 2008-2009 and the 2020 COVID crisis. However, it did not consistently outperform the B&H
strategy, achieving an IR of 0.13 compared to 0.16 for B&H. While MA Crossover initially
outperformed the B&H strategy, it underperformed in the latter part of the trading period. It did
not surpass the benchmark throughout the entire period, with an IR of 0.06 compared to 0.16
for B&H. Contrarian strategy demonstrated notable performance during the financial crises of
2008-2009 and 2020 COVID, achieving even higher gains during these periods. It outperformed
the benchmark with an IR of 0.35 compared to 0.16 for B&H. Momentum strategy experienced
a gradual decline in value over the trading period, likely due to transaction costs. Consequently,
it did not surpass the benchmark, yielding an IR of -0.19 compared to 0.16 for B&H. Volatility
breakout designed to reduce risk during uncertain market conditions, aimed to stay out of the
market unless there were strong downward trends or low volatility upward trends. However, it
did not outperform the benchmark, achieving an IR of 0.10 compared to 0.16 for B&H. The
macro factor strategy effectively generated correct buy signals for most of the trading period,
except for the 2020 COVID crisis, where the market panic led to a deviation from its predic-
tions. Despite this, it outperformed the benchmark with an IR of 0.25 compared to 0.16 for
B&H. Overall, while some strategies demonstrated strong performance during specific market
conditions, none consistently outperformed the B&H strategy over the entire trading period.

4.2. LSTM

The LSTM-based strategy exhibited superior performance compared to the B&H strategy, par-
ticularly during periods of market turmoil. Similar to the ARIMA and Contrarian strategies, the
LSTM strategy performed exceptionally well during the 2008-2009 financial crisis. It outper-
formed the benchmark strategy, achieving an IR of 0.27 compared to 0.16 obtained by the B&H
strategy.

4.3. Combination of signals

The final step in implementing the strategies in this research was to combine them into an ensem-
ble system based on a combination of single signals. The results of such an ensemble method
are presented in Figure 1. One of the main advantages of combining various signals is that they
tend to align when the market trend is strong while neutralizing each other during periods of
uncertainty about the market’s future direction. This approach resulted in significantly reduced
risk, despite achieving returns similar to those of the B&H strategy. By using a combination
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Fig. 1. LSTM-based strategy in comparison to benchmarks

of signals, it becomes possible to adjust leverage levels, thereby enabling similar risk levels to
the B&H strategy. Figure 1 depicts the results for the combined strategy with leverage equal to
200%, clearly demonstrating that this leveraged ensemble strategy has outperformed all other
methods.

Table 2 presents statistics in the base case scenario for every strategy and the combination of
them used in this study. The B&H strategy obtained 3.23% for aRC and aSD equal to 19.49%,
resulting in a 0.16 for IR. It also took more than 7 years to achieve a new local maximum
after the 2001 downward trend. The MD was almost 57%. The momentum strategy performed
the worst, achieving -3.87% for aRC with almost the same aSD as the benchmark. On the
other hand, the best-performing strategy was contrarian, with 6.95% aRC and 0.35 IR, which
outperforms the B&H strategy, doubling its results. Despite huge losses for macro factors in the
2020 COVID crisis, this strategy managed to obtain the second-best IR (0.25) and the second-
best allRisk measure (5.5). Volatility breakout strategy statistics perfectly represent the purpose
of risk-averse strategies, obtaining the lowest MD (28.5%) and the lowest aSD, which leads to
the lowest allRisk metric (1.44). There is a positive correlation between the number of days out
of the market and the risk measure, which is obvious because there is no risk of losing capital
when being out of the market. Thus, adding any filtering to the strategy, which will reduce the
number of transactions and investing days, will improve risk statistics. The combined strategy
outperforms every strategy in almost every risk measure, which is a great achievement compared
to diversifying the risk of using only one strategy instead of combined signals. At the same time,
the aRC of the combined strategy is slightly higher than the aRC for the benchmark strategy.
However, the strategy with increased leverage achieved 6.52 aRC compared to 3.23 of B&H
with the same allRisk measure.

5. Sensitivity analysis

5.1. Classical methods

ARIMA has only one optimizable parameter, which was chosen manually—the size of the
rolling training window. Therefore, only this parameter was changed and tested in the sensitiv-
ity analysis. Table 3 presents results for three additional ARIMA models with a rolling training
window equal to 126 days, 504 days, and a hooked training window in which the starting point
remains unchanged, but new data is added to the already selected training window. Except for a
reduced rolling window to 126 days, results are stable with similar risk and return statistics.

As presented in Table 3, the following changes in MA Crossover strategy parameters were
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Table 2. Performance statistics of strategies
Name aRC IR aSD MD AMD MLD allRisk aRCMD aRCAMD Trades Out Signal

BuyHold 3.23 0.16 19.95 56.78 17.34 7.155 15.92 0.05 0.18 1 0
ARIMA 2.06 0.13 15.44 57.74 12.36 11.02 12.14 0.04 0.17 1548 2786

Contrarian 6.95 0.35 19.82 68.38 15.88 10.79 23.31 0.10 0.44 2705 3
Momentum -3.87 -0.19 19.94 79.39 18.67 17.76 52.47 -0.05 -0.21 399 0

MA Crossover 1.25 0.06 19.95 53.26 17.49 11.14 20.70 0.02 0.07 57 0
Macro factor 4.36 0.25 17.21 40.22 13.27 6.00 5.51 0.11 0.33 352 1620

Volatility breakout 0.90 0.11 8.32 28.56 7.62 7.95 1.44 0.03 0.12 1014 3620
Classical methods 1.36 0.15 9.20 26.91 8.05 9.18 1.83 0.05 0.17 3603 561

LSTM 5.14 0.27 19.20 50.00 15.87 7.72 11.76 0.10 0.32 447 566
Combined 3.82 0.54 10.64 27.38 8.83 8.62 2.22 0.14 0.43 3688 98

Combined leverged 6.52 0.31 21.23 50.38 17.32 8.64 16.01 0.13 0.38 3688 98

Note: Performance statistics of every method used in this research.

tested: 126 and 252 testing window days, 126 and 21 trading window days, changed periods:
SMA {5, 10, 15, 20}; LMA {50, 100, 150, 170}. Reducing the size of the testing and trad-
ing window resulted in worse performance. However, extending the trading window to 126
days from the default 63 days improved all measured statistics. The sensitivity analysis results
showed that reducing longer moving averages decreases the performance.

The momentum and contrarian strategy utilized a rolling training-testing window, thus three
parameter changes were tested: testing window length, trading window length, and periods for
calculating momentum returns (only momentum). As presented in Table 3, the contrarian and
momentum strategies are robust to changes in parameters and all performance metrics remain
stable.

The volatility breakout strategy utilized a rolling testing-training window, thus changes were
tested in the testing window size, trading window size, and the number of quantiles (reducing
middle quantiles and leaving {0.1, 0.2, 0.8, 0.9}). Results presented in Table 3 suggest that this
strategy’s performance is highly dependent on manually chosen parameters. Any change signif-
icantly decreases the results. Therefore, the method is not robust and should be reconsidered.

The macro factor strategy also utilized a rolling training-testing window, thus changes were
tested in the testing window size, trading window size, and the number of quantiles used for
optimization (reducing middle quantiles, leaving {0.1, 0.2, 0.8, 0.9}). As presented in Table 3,
this strategy is not sensitive to parameter changes.

5.2. LSTM

The neural networks require defining many hyperparameters before the model optimization pro-
cess. Moreover, the estimation process is highly time-consuming. Thus, the LSTM model strat-
egy in this research did not optimize any of the hyperparameters, and all parameters were chosen
manually before the estimation process using heuristic methods and literature. For that reason,
it is crucial to test all selected settings in sensitivity analysis and check whether the results are
stable.

As presented in Table 4, decreasing/increasing the number of days to 126/504 in the training
window negatively/positively affected performance. However, the increase to 756 & 1008 days
worsened the results significantly, making the LSTM results not robust to this parameter.

Analyzing results presented in Table 4 for sequence, epochs, and dropout we can notice that
the LSTM model is not robust to changes in these parameters, i.e. the change in their values
always affects the performance negatively.

The influence of learning rate on LSTM results is not robust as well but in a different way
(Table 4). It can increase or decrease the performance depending on the exact change.

Three possibilities presented in Table 4 provided similar results, with the worst performing
tanh activation function. LSTM might be robust to changes in the activation function. The
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Table 3. Classical methods sensitivity analysis
Classical methods sensitivity analysis. aRC IR aSD MD AMD MLD allRisk aRCMD aRCAMD Trades Out Signal
BuyHold 3.23 0.16 19.95 56.78 17.34 7.155 15.92 0.05 0.18 1 0
ARIMA 2.06 0.13 15.44 57.74 12.36 11.02 12.14 0.04 0.17 1548 2786
ARIMA 504 training days 1.68 0.10 16.44 68.98 13.79 11.37 17.78 0.02 0.12 1773 2389
ARIMA 126 training days -2.88 -0.19 14.94 67.60 12.20 8.78 10.83 -0.04 -0.24 1005 3393
ARIMA hooked 2.85 0.16 17.88 61.98 14.58 9.03 14.59 0.05 0.19 1999 1822
MA Crossover 1.25 0.06 19.95 53.26 17.49 11.14 20.70 0.02 0.07 57 0
MA Crossover 126 testing days -1.52 -0.08 19.99 68.53 19.27 11.14 29.40 -0.02 -0.08 61 0
MA Crossover 252 testing days 0.99 0.05 19.98 55.16 18.04 9.79 19.46 0.02 0.06 57 0
MA Crossover 21 trading days 0.60 0.03 19.95 53.90 18.22 11.14 21.83 0.01 0.03 59 0
MA Crossover 126 trading days 2.08 0.10 19.95 47.09 16.86 5.61 8.88 0.04 0.12 47 0
MA Crossover changed periods -4.30 -0.22 19.95 76.47 20.90 17.76 56.62 -0.06 -0.21 81 0
Contrarian 6.95 0.35 19.82 68.38 15.88 10.79 23.23 0.10 0.44 2705 3
Contrarian 252 testing days 8.60 0.43 19.82 50.06 14.82 9.11 13.39 0.17 0.58 2737 0
Contrarian 126 testing days 7.06 0.36 19.82 62.19 15.77 10.79 20.98 0.11 0.45 2545 0
Contrarian 21 trading days 7.20 0.36 19.83 67.93 15.80 10.79 22.97 0.11 0.46 2717 0
Contrarian 126 trading days 6.29 0.32 19.83 70.37 16.15 10.79 24.33 0.09 0.39 2695 0
Momentum -3.87 -0.19 19.94 79.39 18.67 17.76 52.47 -0.05 -0.21 399 0
Momentum 252 testing days -2.91 -0.15 19.94 72.61 19.05 20.26 55.87 -0.04 -0.15 383 0
Momentum 126 testing days -3.56 -0.18 19.94 75.99 18.72 20.26 57.46 -0.05 -0.19 388 0
Momentum 21 trading days -1.96 -0.10 19.94 63.25 18.05 20.26 46.11 -0.03 -0.11 362 0
Momentum 126 trading days -1.18 -0.06 19.93 56.39 18.52 9.82 20.44 -0.02 -0.06 353 0
Momentum changed periods -8.95 -0.45 19.93 91.89 20.52 20.29 76.25 -0.10 -0.44 523 0
VB 0.90 0.11 8.32 28.56 7.62 7.95 1.44 0.03 0.12 1014 3620
VB 252 testing days -1.93 -0.17 11.29 52.83 8.35 19.59 9.76 -0.04 -0.23 944 3843
VB 126 testing days -0.79 -0.07 10.47 35.32 8.43 17.54 5.47 -0.02 -0.09 1053 3751
VB 21 trading days 0.29 0.03 8.97 31.19 7.74 10.31 2.23 0.01 0.04 984 3547
VB 126 trading days -0.62 -0.07 8.45 38.30 7.98 18.16 4.69 -0.02 -0.08 1086 3540
VB less quantiles -3.24 -0.26 12.65 62.13 10.64 20.29 16.97 -0.05 -0.30 1015 3819
Macro factor 4.36 0.25 17.21 40.22 13.27 5.99 5.51 0.11 0.33 352 1620
Macro factor 252 testing days 4.02 0.24 17.04 37.75 13.11 5.98 5.04 0.11 0.31 391 1859
Macro factor 126 testing days 4.08 0.25 16.08 43.05 12.24 4.59 3.89 0.10 0.33 394 1841
Macro factor 21 trading days 4.50 0.27 16.80 40.04 12.88 5.93 5.14 0.11 0.35 381 1764
Macro factor 126 trading days 3.70 0.22 17.20 37.92 13.51 5.99 5.28 0.10 0.27 339 1715
Macro factor less quantiles 3.51 0.21 16.39 37.92 13.21 7.06 5.80 0.09 0.26 364 2121

Note: Sensitivity analysis results for all classical methods testing for robustness in changing strategies’ parameters.

reason for this may be that LSTM models already have multiple activation functions in a single
unit, thus adding one more might not have a huge impact on the optimization process.

The two alternative optimizers presented in Table 4 provided almost the same results, but
significantly different from the default ADAM optimizer. The optimization process is crucial
in terms of achieving accurate results. Changes in important parameters like the optimizer can
affect results in every way; hence, the LSTM model is not robust to changes in the optimizer.

There were two alternative loss functions presented in Table 4, namely MAE and logcosh.
The performances of these two options are significantly worse than the default MSE loss func-
tion. Similarly to the optimizer, loss functions are important in optimization processes, and
changing them will alter the result of optimization.

Three alternatives presented in Table 4 performed comparably, and the best-performing set-
ting was 10 units. Results show that a smaller number of units could improve the final outcome.
The LSTM model was not robust to changes in this parameter.

6. Conclusions
Most of the presented strategies were not able to outperform the benchmark B&H strategy;
however, this research introduced a method based on combining signals from different strategies
to diversify the risk of wrong predictions by a single strategy. This method outperformed B&H,
doubling its compounded returns on the same level of risk. The sensitivity analysis showed that a
rolling training-testing window with dynamic optimization of parameters made the performance
robust to changes in any parameters chosen at the beginning of this study. However, LSTM
model results were extremely volatile to changes made for crucial parameters.

At the beginning of this paper, we stated four hypotheses, which were verified during the
empirical part. The first hypothesis stated that the market is inefficient and it is possible to obtain
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Table 4. LSTM sensitivity analysis
Name aRC IR aSD MD AMD MLD allRisk aRCMD aRCAMD Trades Out Signal

BuyHold 3.23 0.16 19.95 56.78 17.34 7.155 15.92 0.05 0.18 1 0
LSTM 5.14 0.27 19.20 50.00 15.87 7.72 11.76 0.10 0.32 447 566

LSTM 126 training days 0.24 0.01 19.41 57.28 16.46 9.77 17.88 0.00 0.02 45 417
LSTM 504 training days 6.26 0.31 19.95 42.96 16.01 6.20 8.51 0.15 0.39 328 159
LSTM 756 training days -6.23 -0.32 19.29 90.29 18.76 17.76 58.02 -0.07 -0.33 103 527

LSTM 1008 training days -5.71 -0.29 19.81 88.40 18.35 17.76 57.05 -0.06 -0.31 221 47
LSTM 20 days sequence 1.00 0.05 19.30 52.43 16.31 8.72 14.39 0.02 0.06 334 495
LSTM 10 days sequence -3.15 -0.16 19.44 78.52 17.91 17.76 48.54 -0.04 -0.18 103 284

LSTM 50 epochs -4.71 -0.24 19.45 85.98 18.65 20.07 62.59 -0.05 -0.25 50 497
LSTM 150 epochs -8.37 -0.43 19.45 90.79 19.56 20.06 69.33 -0.09 -0.43 118 353

LSTM 0.1 dropout rate 0.47 0.02 19.75 62.05 16.60 11.14 22.66 0.01 0.03 66 315
LSTM 0.3 dropout rate -7.97 -0.40 19.72 90.12 20.19 20.07 72.00 -0.08 -0.39 120 214

LSTM 0.05 learning rate -8.55 -0.43 19.89 89.09 20.53 19.32 70.30 -0.10 -0.42 35 7
LSTM 0.001 learning rate 7.43 0.39 19.02 39.19 14.84 5.43 6.00 0.19 0.50 672 920
LSTM 0.005 learning rate -1.29 -0.06 19.54 66.35 17.52 6.21 14.11 -0.02 -0.07 320 614
LSTM 0.0001 learning rate 4.34 0.23 18.54 50.22 14.92 6.25 8.68 0.08 0.29 946 996

LSTM tanh activation 1.66 0.09 19.02 55.23 15.36 7.31 11.79 0.03 0.11 1065 534
LSTM elu activation 5.43 0.29 18.73 52.11 14.85 6.29 9.11 0.10 0.37 1159 542
LSTM selu activation 1.56 0.08 19.39 57.39 17.35 7.75 14.98 0.03 0.09 886 424

LSTM sigmoid activation 6.74 0.35 19.45 52.23 14.24 6.18 8.95 0.13 0.47 691 311
LSTM SGD -1.26 -0.07 18.02 72.11 16.17 11.14 24.26 -0.02 -0.08 922 1363

LSTM AdaDelta -0.62 -0.03 17.54 65.53 16.71 11.13 21.38 -0.01 -0.04 936 1307
LSTM MAE 0.67 0.03 19.87 66.57 16.93 17.54 39.28 0.01 0.04 119 21

LSTM LogCosh -1.62 -0.08 19.64 79.05 18.33 11.14 31.70 -0.02 -0.09 166 286
LSTM 40 units 3.82 0.19 19.70 44.78 15.59 7.18 9.87 0.08 0.24 174 312
LSTM 20 units 6.44 0.33 19.26 58.32 15.10 3.74 6.34 0.11 0.43 395 538
LSTM 10 units 8.53 0.44 19.41 31.97 13.39 3.12 2.59 0.27 0.64 149 302
LSTM 5 units -3.85 -0.22 17.58 76.51 16.92 20.07 45.67 -0.05 -0.23 74 261

Note: Sensitivity analysis results for all LSTM strategies testing for robustness in changing strategies’ parameters.

abnormal returns. As it was presented, the combination of strategies outperformed the market
significantly, and sensitivity analysis showed it could be done consistently. The second hypoth-
esis about the efficiency of signal combination also cannot be rejected because the combination
of signals gave the best results by diversifying the risk of a single strategy. Sensitivity analysis
did not allow the rejection of the third hypothesis as the LSTM model is not robust to changes
in most of the parameters. Finally, the LSTM with selected hyperparameters outperformed the
ARIMA model, as was stated in the fourth hypothesis.
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