
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)

On Developing Data Connectivity Services for Industrial
Applications

Michał Bodziony
IBM Poland Software Lab Kraków
Kraków, Poland michal.bodziony@pl.ibm.com

Robert Wrembel
Poznan University of Technology
Poznań, Poland robert.wrembel@put.poznan.pl

Abstract

Data source connectors are core components of any data integration architecture. Typically, they
are deployed as libraries of connectors. Such deployment exposes some significant drawbacks,
like poor maintainability, limited scalability, limited performance, and challenging security. To
mitigate them, we propose to organize connectors as a library of connectors that is used as
a service (LCaaS). In this paper, we discuss design patterns of the LCaaS that allow to ease
connectors maintenance, enhance data access security, and increase performance.

Keywords: data integration, data source connectors, data connectivity service, data fabric

1. Introduction
Data integration (DI) has been researched since the 1960s, gaining its momentum in the 2000s
in the context of extract-transform-load processes in data warehouse architectures [13, 18]. This
interest keeps growing alongside big data, advanced analytics, and machine learning, e.g., [10,
11]. Various DI architectures have been developed for business applications (see Section 2).
Data source (DS) connectors are integral components of any DI architecture, offering standard-
ized interfaces for data exchange between heterogeneous systems. These connectors, available
as a library of connectors (LC), facilitate access to DS. However, a LC has limitations such as
poor maintainability, scalability, performance, and security, as discussed in [2].

Business applications impose functional and non-functional requirements for DS connec-
tors, which are difficult to meet by a LC. The requirements include: (1) portability, which refers
to the degree to which software components can be migrated between platforms; (2) security,
w.r.t. encryption, authentication, access control, data integrity, and auditing; (3) scalability,
which refers to the ability of an integration layer to offer acceptable throughput for heavy work-
loads; (4) reliability, which refers to the ability of an integration layer to provide correct data;
(5) usability, which reflects how easily an integration layer (connectors) can be deployed and
used; (6) performance, w.r.t. handling large data volumes and/or a large number of user requests
without experiencing a significant decrease in throughput or stability.

From our experience in running business projects on data integration, we conclude that
connectors deployed as a LC often do not fulfill the aforementioned requirements. For this
reason, we opt for building the LC as a service (denoted as LCaaS). The LCaaS allows to apply
multiple design patterns that implement the aforementioned requirements.

This paper includes an extension to our prior work [2], where we addressed design patterns
for security, usability, and some aspects of scalability. From the Design Science Research [4]
point of view the problem identification has already been covered in [2]. This paper covers
design and instantiation, enhanced by their evaluations. the assessment of instantiation is
mostly focused on performance, as performance is the only aspect of the proposed architecture

BODZIONY AND WREMBEL ON DEVELOPING DATA CONNECTIVITY SERVICES . . .

that can be potentially negatively affected. Usually, adding extra hops in data processing in-
troduced by the chain of responsibility degrades some aspects of performance (e.g., latency),
therefore we focused in this paper on evaluating performance impact mostly.

In Tab. 1 we briefly compare: (1) the standard approach to designing a connectivity layer,
i.e., libraries of DS connectors with (2) the approach that was proposed in this paper, i.e., the
Library of Connectors as a Service. Applying the LCaaS approach brings all the benefits of
a service-oriented architecture, including loose coupling, modularity, versioning, availability,
security, and scalability. Most of the proposed patterns and ideas have already been applied in
the architecture of the common connectivity layer of IBM Cloud Pak for Data.

Table 1. Feature comparison of: (1) connectors as a library and (2) the Library of Connectors as a
Service (LCaaS)

DS connectors: feature comparison
Feature as a library LCaaS
Portability limited high
Compatibility limited high
Security risks significant reduced
Supportable complex simplified
Scalability limited high

DS connectors: feature comparison
Feature as a library LCaaS
Re-usability limited high
Maintainability complex simplified
Reliability reduced high
Usability complex simplified
Performance high high

Further in this paper we outline data integration architectures (Section 2), discuss drawbacks
of organizing connectors as LCs (Section 3, present our approach to managing DS connectors
(Sections 4 and 5), and present results of its experimental evaluation (Section 6).

2. Data integration
Over the years the following architectures were used in research and industry in reference to data
integration: a federated system, a mediated system, a data warehouse, a data lake, and recently
developed - a data fabric. Overviews of these DI architectures can be found in [8, 13, 17].

In 80s, virtual data integration architectures were developed, namely federated [3, 6] and
mediated [16]. Both of them share a common feature of storing data only in (DSs), which are
typically heterogeneous and distributed. These data are integrated on demand by a software
layer located between a user and the DSs.

An industry-standard data warehouse architecture [15] is a database optimized for efficiently
storing and retrieving data for analytical queries. Data from distributed and heterogeneous
sources are ingested into a DW by means of data integration processes, commonly known as
ETL processes [1, 13].

Another important approach to a unified access to huge volumes of data is a data lake ar-
chitecture. A data lake (DL) is a large, centralized repository capable of integrating, storing,
and processing data of arbitrary complexities and sizes [8, 12]. DLs are typically built on a dis-
tributed file system (e.g., Hadoop) and can store data in arbitrary formats. DLs are often used in
conjunction with physical data warehouses, where a DL is serving as a repository for raw data
and a DW provides a structured view on the data [7, 9].

Recently a data mesh gains popularity as a data architecture and data governance approach
that promotes the decentralization of data ownership and the establishment of a common lan-
guage for data across an organization [5]. It is based on the idea that data is a shared asset that
should be owned and governed by teams with domain expertise rather than being controlled
by a central data organization. The concept of data mesh is build with the support of multiple
engineering technologies, called a data fabric [14].

All these architectures are complex w.r.t. software and hardware. All of them use DS
connectors deployed as libraries and face problems outlined in Section 3.

ISD2024 GDAŃSK, POLAND

3. DS connectors layer
As mentioned before, a typical approach to implementing connections to DSs (a.k.a. a connec-
tivity layer) in any DI architecture is to maintain a library of connectors. This library is a collec-
tion of software components that are used to connect to and interact with various types of DSs.
A LC typically includes connectors to a variety of different types of DSs. As outlined in Section
1, DI architectures impose some requirements on the connectivity layer. These requirements are
especially important for a solution to follow the principles of micro-services architectures (see
[2]). Libraries of connectors expose some limitations, which are the following.

Limited support for specific DSs: a LC may not include connectors for every possible type
of DS that an organization might need to use. As a consequence, in the same system multiple
libraries must be deployed, which increases the complexity of software dependencies.

Reduced flexibility: by using a LC, an organization may be limited to the capability provided
by connectors in a given library, which in turn can limit the usage of specific features of a DS.

Dependency on third-party software: a LC is typically developed and maintained by third
parties, which means that an organization using a given library is dependent on its developer to
fix any issues or to provide updates and new features.

Performance and scalability: connectors in a LC may not be optimized for every possible
use case, and may not provide the best performance or scalability for a particular application.
As a consequence, a few different implementations (often in different programming languages)
of the same connector may be needed, which again increases the complexity of software depen-
dencies.

Complexity: if a LC is used by multiple applications, the library has to be embedded in
multiple software modules. This leads to complex dependencies between various software com-
ponents, which makes understanding and maintaining the whole architecture difficult.

Dependencies explosion: in a more mature solution, DS connectors depend on other soft-
ware components (e.g., data governance catalog, vault providers, tunneling providers, policies
repositories). In architectures based on micro-services, multiple services access data, where
every service has to embed a LC and, as a consequence, inherits all the dependencies between
other services.

Maintenance costs: since DS connectors have to be patched or upgraded regularly (e.g.,
security patches, new capabilities, licensing), all services that embed these connectors are im-
pacted.

Reduced portability: a LC is usually available in a single programming language, but in
micro-services architectures, services of the same functionality may be written in different lan-
guages. In order to have all the DS types supported by all the services, one would need DS
connectors to be re-implemented for all the languages used by client services. In practice, there
are no standardized ways of implementing a LC for a plurality of programming languages.

4. Library of Connectors as a Service
Architectures based on micro-services have become an industry standard for developing inter-
operable systems. The drawbacks outlined in Section 3 became a motivation for developing
another approach to organize DS connectors. To this end, we propose an architecture that pro-
vides DS connectors as a service - called as the Library of Connectors as a Service (LCaaS), as
shown in Fig. 1.

The LCaaS is composed of the Library of Connectors (LC) and at least two facilitating
components. Connectors from the LC are responsible for mapping native access interfaces
of DSs into a common interface. API Server makes available the common interface to Data
consuming applications. Dispatcher is responsible for forwarding requests to an appropriate
connector. These requests contain data interaction definitions in the format specific to a data

BODZIONY AND WREMBEL ON DEVELOPING DATA CONNECTIVITY SERVICES . . .

source. This way, applications that connect to data sources directly can be easily migrated to the
LCaaS.

D
at

a
co

ns
um

in
g

ap
pl

ic
at

io
n

LCS (Library of Connectors as a Service)

DB2

Library of Connectors

DB2 Teradata BigQuery ...S3

Teradata BigQuery S3

API Server Dispatcher

...

Fig. 1. LCaaS - the Library of Connectors as a Service

In architectures based on micro-services, REST APIs are common, but they are not suitable
for accessing large volumes of data. The proposed LCaaS can be designed to externalize access
to data via one of the common protocols and frameworks, suitable for processing large vol-
umes of data. Implementation technologies typically used to build data-intensive architectures
include: Apache Arrow Flight, gRPC, WebSocket, REST API, Apache Thrift, Apache Avro.

To provide the LCaaS functionality, multiple services can be implemented and they may be
organized as a chain of design patterns. The patterns for security, usability, and some aspects
of scalability were presented in [2], whereas in this paper we discuss patterns for portability,
reliability, and performance (see Section 5).

5. Design patterns

5.1. Combined patterns

Patterns elaborated in [2] can be combined in an overall design, which can serve as a fully-
functional connectivity layer or the foundation for the data fabric. One embodiment of
this pattern is proposed in Fig. 2. It contains the following patterns: the integration with data
governance catalog, integration with vault provider, tunneling, custom drivers, data locality,
policy enforcement, data access monitoring and auditing, and chain of responsibility with by-
passing.

In the proposed pattern design, a data access request is handled in the following steps. (1)
Data Consumer (e.g., an end-user or another service) sends a request to the Enforcement Proxy
service. (2) The Enforcement Proxy service decides if the request can be handled and if any
anonymization is required; then eventually forwards the request to the Monitoring Proxy ser-
vice. (3) Monitoring Proxy collects statistical information about the request, triggers monitoring
of other services, and then forwards the request to LCaaS. (4) LCaaS retrieves connection prop-
erties for the request from Governance Catalog and resolves dynamic credentials with Vault
Provider. If a subject data source is behind a firewall then the LCaaS orders a tunnel to be
configured with Tunneling Service. If the subject data source requires a custom driver then the
request is forwarded to Custom LCaaS. (5) Custom LCaaS decides whether it is more efficient
to forward the requests to Delegate LCaaS, which is close to the data source. (6) Delegate LSC
uses connection properties and credentials to establish the actual connection to the data source
itself. (7) A response from the data source is sent back. To this end, the data source can use
Apache Arrow Flight as its native interface. LCaaS Delegate can decide to transform data (e.g.,
compress), to reduce network traffic. (8) Monitor Proxy can collect various metrics on the per-
formance of the environment. (9) Finally, Enforcement Proxy can transform data based on its
internal policies (e.g., masking, anonymization, encryption).

ISD2024 GDAŃSK, POLAND

Data consumer

2.getData(assetID)

Data consumer

5.getConnProps(assetID)

7.addTunnel()

LCS

Governance catalog

Tunneling service

firewall

8.createTunnel()

6.getCredentials(refID)

Vault provider

Custom LCS

9.getData(cProps)

Egress filtering rules provider

0. setRules()

11.getData(cProps)LCS (delegate)

1.getData(assetID)

Enforcement Proxy

LC
S

in
te

rfa
ce

4. getData(assetID)

Monitoring Proxy
3. instrument(assetID)

Monitoring
Service

Monitoring
data

∞.collectMetrics()

Data
source

10
. g

et
D

at
a(

cP
ro

ps
)

egress proxy

Fig. 2. Multiple patterns combined to offer foundation for the data fabric

5.2. Egress filtering

Egress filtering is a security mechanism that is used to prevent unauthorized or malicious traffic
from leaving a network. It is used to enforce network policies and to prevent sensitive data
from being exfiltrated or leaked outside a network. It may be used to protect against a variety of
security threats, including: malware, spam, phishing, and data leaks. Egress filtering is typically
implemented at a network perimeter and it involves examining an outbound traffic to ensure
that it complies with predefined security policies. This may include for example checking the
destination of the traffic, protocols being used, a content of the traffic. If the traffic does not
meet the specified criteria, it may be blocked or redirected.

In the proposed architecture, egress filtering has to be configured only for a single service,
i.e., the LCaaS (see Fig. 3). All the other services, which are clients of the LCaaS, can have
their output traffic disabled. This way, the management of egress filtering is centralized.

More challenging use cases are exposed by multi-tenant architectures, where a single in-
stance of a software application serves multiple tenants. In such an architecture, each tenant has
its own dedicated pool of resources and data and is isolated from other tenants. This allows mul-
tiple entities to share the same hardware and software, while still maintaining the security and
privacy of their own data. Multi-tenancy is commonly used in cloud computing and software-
as-a-service (SaaS) environments.

Multi-tenancy has several benefits, including among others: reduced costs, increased scal-
ability, and better resource utilization. However, it can also pose some challenges, such as the
need to carefully manage security and privacy, and to eliminate the impact of one tenant on the
performance of others. Multi-tenancy management becomes even more complex when tenants
have different requirements for egress filtering.

The pattern proposed in this paper aims at ensuring that each tenant has its own instance of
the LCaaS, while all the clients of the LCaaS can be still multi-tenants. This way, every tenant
can have its own configuration of egress filtering and this configuration can be enforced at a
network layer.

BODZIONY AND WREMBEL ON DEVELOPING DATA CONNECTIVITY SERVICES . . .

Data consuming
application

data
source

1.getData(assetID)

Data consuming
application

2.getConnProps(assetID)

LCS

Data governance
catalog

Data
source

eg
re

ss
 p

ro
xy

0. setRules()

Egress filtering
rules provider

3. getData(connProps)

Fig. 3. The pattern for isolation and egress filtering for a single-tenant

This pattern offers the following advantages: (1) improved functionality by enabling low-
level egress filtering configuration for each tenant, (2) improved performance by serving a plu-
rality of tenants by the same instance of the LCaaS, in case all of them have the same egress
filtering requirements, and (3) improved security by reducing the surface of potential security
attacks, since access to external DSs is made from one service only.

5.3. Connector-less DSs

DSs connectors typically introduce some performance overhead (e.g., initiating a connection,
transforming data, binding interfaces, translating commands). This can be particularly notice-
able when executing a large number of data access requests.

If connectors are made available as the LCaaS, then they can be provisioned at a DS or a
DS itself can implement the same interfaces as the LCaaS (see Fig. 4). This way, a request
sent to the LCaaS can be routed directly to a given DS and data can be returned directly to the
requesting client without any transformation. Although this sounds like an optimal approach, it
is hard to assume that such level of unification is possible for all the existing DSs. Nevertheless,
the pattern should be taken into consideration for DSs that can be enhanced with the interface.

Data consuming
applicationData consuming

application

Data source

LC
S

in
te

rfa
ce

N
ative interface2.getConnProps(assetID)

3.getData(cProps)
LCS

Data governance
catalog

1.getData(assetID)

Fig. 4. The pattern for connections without a DS connector - a DS implements the same interfaces
as the LCaaS

This pattern offers the following advantages: (1) improved maintainability, since the com-
plexity of a software stack is significantly reduced and (2) improved performance achieved by
reducing: adaptation of interfaces, network traffic, and data transformations.

ISD2024 GDAŃSK, POLAND

6. Evaluation of design patterns
Most of the proposed patterns are suitable for architectures based on micro-services, where it
is common to deploy micro-services as separate processes. The pattern designs assume that
responsibilities are typically distributed across multiple independent services, each of which
offering a specific functionality. Extra-process and inter-process communication introduce some
overhead and resource consumption.

In this section, we present the results of the performance evaluation of the proposed patterns,
focusing on throughput, CPU usage, and memory usage for common types of operations, in
different types of tenancies.

6.1. Experimental environment

Hardware - the experiments were run on a cluster of three physical nodes. Its structure and
hardware parameters are outlined in Fig. 5.

Software - all the experiments were conducted with a high-performance transport layer
Apache Arrow Flight (a cross-language development platform for in-memory data, designed to
efficiently transfer large datasets between systems and across different programming languages).
Both, the data server and proxy server, depicted in Fig. 5 were implemented in Python, based on
the Apache Arrow Flight framework. At this stage of experimentation, Jupiter notebook on the
client side was used to implement a plurality of test scenarios and their automatic re-execution
for statistically significant results. In production, the applications playing the role of clients can
be implemented with many other technologies e.g., Flaskk/Diengo.

 Client node
Intel® Xeon® 8253 2.2GHz
 32GB DDR4, 2.93 GHz

 Proxy node

Intel® Xeon® 8253 2.2GHz
 32GB DDR4, 2.93 GHz

 Data server node

Intel® Xeon® 8253 2.2GHz
 32GB DDR4, 2.93 GHz

(TCP-DS)
store_sales_4GiB.parquet

Flight Server (python)

Flight Proxy Server
(python)

Flight Client
(jupiter notebook)

Batches
Queue(s)

Apache arrow flight

Apache arrow flight

Fig. 5. Delegation pattern overhead - experiment setup

Dataset - all the experiments were processing data from the TPC-DS benchmark (see tpc.org).
In the experiments, data from fact table store_sales were used and transformed into the Parquet
file format (i.e., a columnar storage file format optimized for big data processing and analytics,
designed to efficiently store and query large amounts of structured and semi-structured data).

BODZIONY AND WREMBEL ON DEVELOPING DATA CONNECTIVITY SERVICES . . .

6.2. Costs of passing requests

Most of the proposed design patterns assume that a data access request is delegated from one
service (process) to another. For example, in the case of the combined solution depicted in Fig.
2, a request is passed across a chain of 10 processes (assuming that the tunnel is handled by two
processes). Delegation is applied in the following patterns (see Section 5.1 and [2]): (1) custom
drivers, (2) conflicting drivers co-existence, (3) egress filtering (for multi-tenants, see Section
5.2), (4) data locality, (5) policy enforcement, (6) data access monitoring and auditing, and (7)
chain of responsibility. The goal of this evaluation is to understand what is the performance
consequence of adding an intermediary service for handling requests (delegation).

This experiment assessed the impact of delegation on data unload throughput. Datasets of
different volumes (from 1GB to 32GB) were unloaded in two scenarios: (1) directly from the
Flight Server and (2) indirectly via the Flight Proxy Server, see Fig. 5. The proxy server was
fully transparent, as it just bypassed requests and data to and from the data server node. The
average throughput of unloads, with and without a proxy, was measured and its results are shown
in Fig. 6. As we can observe from the chart, the measured overhead of delegation on throughput
is very small and can be further reduced by buffering in the proxy server. In addition to the
throughput, resource consumption was measured. The proxy server consumes around 80% of a
single core to maintain the throughput levels in the scenario from Fig. 6.

577

588

583 583
581

584

573

577
579

577
578

576

565

570

575

580

585

590

1 2 4 8 16 32

th
ro

ug
hp

ut
 [M

B/
s]

dataset size [GiB]

throughput with proxy throughput without proxy

Fig. 6. Overhead of unloading throughput caused by delegation

The experiments show also that the proxy CPU consumption percentage is the same for
tested data volumes and elapse times of unloads are proportional to data volumes, as visualized
in Fig. 7.

1

2

4

8

16

32

64

1 2 4 8 16 32

tim
e

[s
]

dataset size [GiB]

unload with pro xy unload without proxy

Fig. 7. Data unload elapse time overhead caused by delegation

Dispatching requests is a slightly different pattern than a simple delegation in a chain of

ISD2024 GDAŃSK, POLAND

responsibilities. The dispatcher service decides which is the next service to send the request
to. Dispatching takes place in the following patterns: custom drivers, conflicting drivers co-
existence, and egress filtering. From the performance point of view, the dispatcher service
introduced the same performance overhead as the proxy server, discussed above.

6.3. Memory usage

Data in the Apache Arrow format are organized in batches. Each batch is a list of columns and
each column is an array of values. The arrays have an equal length, which is equal to the number
of records in a batch. The size of batches (expressed in a number of records) has an impact on
the performance both of the Data Server and the Proxy Server. The experiments on the 4GB
TCP-DS dataset revealed that the smallest impact on the CPU consumption introduced by the
proxy server is when a batch size included 65536 records (see Fig. 8).

20.5

10.1

5.9
4.9 4.3 4.4 4.4 4.5

16.5

9.3

6.0 5.1 5.1 5.2 5.2 5.3

0.0

5.0

10.0

15.0

20.0

25.0

4096 8192 16384 32768 65536 131072 262144 524288

un
lo

ad
 ti

m
e

[s
]

block size [rows]

unload time without proxy unload time with proxy

Fig. 8. Proxy CPU consumption vs. a batch size

Each record of the subject table requires 96 bytes of memory. With optimal batch size (65k
records) the size of the batch is 6.2MiB. A simple proxy requires two queues for batches - one
input queue and one output queue. In addition to batches in queues, one batch is needed to
process data between an input and output. Those 5 batches consume 31MiB of memory. The
flight server process itself requires 29.7MiB of memory. The overall consumption of memory
introduced by the proxy server is approximately equal to 50.7MiB.

6.4. Scanning

A proxy server that only passes requests and data would be useless, therefore we run experiments
to get insight into costs of the core operations on data. One of them is the scan of a full dataset.
Scanning can take place in the following patterns: policy enforcement as well as data access
monitoring and auditing.

The experiments were conducted on unloading different datasets of different volumes, but
this time the Proxy Server scanned all the data to search for the maximum value in each column
(the worst scenario). The elapsed time overhead and CPU usage were measured.

Elapsed time overhead introduced by scanning proxy is shown in Fig. 9. It is slightly bigger
as compared to the results from Fig. 7, but it is still two orders of magnitude smaller than
the unloading time. The proxy server consumes slightly more than one core to maintain the
throughput while scanning all records and all columns.

BODZIONY AND WREMBEL ON DEVELOPING DATA CONNECTIVITY SERVICES . . .

1

2

4

8

16

32

64

128

1 2 4 8 16 32
tim

e
[s

]
dataset size [GiB]

unload with pro xy unload without proxy

Fig. 9. Unloading combined with scanning: elapsed time and CPU usage

Table 2. The CPU usage of Apache Arrow Flight server for the multi-tenancy design pattern

server startup time [s] first request time [s] subsequent request time [s]
6.5 3.2 2.6

6.5. Costs of Single-, Multi-, and Mixed-tenancy

Single tenancy and multi-tenancy are two different architectural approaches for designing soft-
ware systems that serve multiple users or tenants.

In the single-tenancy architecture, each user or tenant has a dedicated instance of the soft-
ware application running on the server. Each instance operates independently and is isolated
from other instances. Data, configuration, and resources are dedicated to each tenant. This
approach provides maximum isolation and security between tenants but may require more re-
sources and maintenance effort. A single tenancy may be required for the following patterns:
egress filtering, monitoring proxy, and custom drivers.

In the multi-tenancy architecture, a single instance of a software application serves multiple
users or tenants. Resources, including a database, are shared among multiple tenants. Each ten-
ant data and configuration are logically separated within the shared infrastructure. This approach
allows efficient resource utilization but requires proper isolation and security measures.

In certain situations, a mixed-tenancy (a combination of single- and multi-tenancy) can be
efficient; for example, when the single-tenancy is to ensure custom egress filtering for each user.
In this scenario, some subgroups of users may have the same requirements about egress filtering.
For example, there may exist a group that allows no egress traffic, whereas another group may
allow any egress traffic. Each group with the same egress filtering requirements can be served
in the multi-tenant mode.

Multi-tenancy requires spawning servers dedicated to each account. It implies more resource
consumption. In our evaluation, it was measured how much it costs for LCaaS implemented with
Apache Arrow Flight. The experiments showed that maintaining an idle Apache Arrow Flight
server for each tenant costs as much as 30MiB of memory. Spawning the server on-demand
introduces some latency and CPU cycles spent on startup and warm-up of the server. The CPU
times depicted in Tab. 2 can help to calculate the cost of spawning the server on demand. With
both CPU and memory consumption, one can decide if it is better to maintain up-and-running
service for a long time or spawn them on demand.

ISD2024 GDAŃSK, POLAND

7. By-passing in the chain of responsibility
This technique is applicable to the following patterns: the custom drivers, conflicting drivers
co-existence, egress filtering, data locality, policy enforcement, data access monitoring, and
auditing, as well as the chain of responsibility.

Retrieving data via the Apache Arrow Flight protocol is split into the following two stages:
(1) get_flight_info and (2) do_get, which provides information regarding a single specific data
stream. Streams usually refer to datasets, like a table in a RDBMS or a file in a HDFS or a
stream of events. do_get is in charge of fetching the exposed data streams and sending them to
a client sequentially or in parallel.

In the case of the chain of responsibility pattern, the get_flight_info request from a client
is sent across the chain of servers. Each server implements the same interface but serves a
different purpose. In some cases, selected servers can be skipped. By-passing some servers can
be applied either to both data access methods or only to do_get.

The decision about by-passing the next server Si+1 in a chain can be made by the proceeding
server Si and then both stages can be skipped by Si+1 (i.e., messages are sent directly to server
Si+2). The other situation is that during the processing of get_flight_info, the decision is made
that do_get should be skipped by this node. It is important to stress that most of the elapsed time
and resource consumption is related to do_get, as data are transferred in the second stage.

Our experiments showed that in the case of unloading of 4GiB of the TCP-DS dataset, the
CPU time consumed by the get_flight_info is only 0.055% of the overall elapsed time. The
average CPU times measured experimentally in the environment described in Section 6.1 are as
follows: get_flight_info: 0.000627s (constant), do_get: 1.131731s (4GiB). The time necessary
to handle the preparation request (get_flight_info) is negligible compared to data unloading time
(do_get). Whenever possible, the do_get request should by-pass these nodes that do not have to
process transferred data.

8. Summary
The existing implementations of a connectivity layer have significant limitations. By identifying
these limitations (see Section 3) and by specifying a comprehensive set of requirements for a
connectivity layer taking advantage of novel technologies (see, Section 1) we were able to work
out a set of design patterns for the most common use cases (see Section 5).

Usually, adding extra hops, introduced by the chain of responsibility, degrades some aspects
of performance (e.g., latency) but: (1) this degradation can be reduced by the approach proposed
in Section 7, (2) some patterns can significantly improve performance (e.g., tunneling, data lo-
cality, connector-less data sources, monitoring and tuning). Notice that for analytical workloads,
a throughput is more important than latency.

In this paper, we experimentally proved that the throughput reduction was negligible. By
introducing a record batch buffering in intermediary nodes, the throughput can be even improved
in some cases. Other aspects of performance can be improved by the introduction of workload
management in the connector service itself. This topic is much broader than the scope of this
paper. Data access prioritization, scheduling, throttling, dynamic scaling, and other optimization
means can be developed for the proposed architecture. This way, we believe that the proposed
LCaaS architecture opens new research paths in data integration architectures.

Acknowledgements. The work of Michał Bodziony is related to his employment at IBM Polska
Sp z o.o. Additionally, his work is supported by the Applied Doctorate grant no. DWD/4/24/2020
from the Polish Ministry of Education and Science.

BODZIONY AND WREMBEL ON DEVELOPING DATA CONNECTIVITY SERVICES . . .

References
[1] Berkani, N., Bellatreche, L., and Guittet, L.: ETL Processes in the Era of Variety. In:

Transactions on Large-Scale Data- and Knowledge-Centered Systems 39 (2018).

[2] Bodziony, M. and Wrembel, R.: Data Source Connectors Layer as a Service - Design Pat-
terns. In: Int. Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data (DOLAP). Vol. 3369. CEUR-WS.org, 2023.

[3] Bouguettaya, A., Benatallah, B., and Elmargamid, A.: Interconnecting Heterogeneous
Information Systems. Kluwer Academic Publishers, 1998.

[4] Brocke, J. vom, Hevner, A., and Maedche, A.: Design Science Research. Cases. Springer,
2020.

[5] Dehghani, Z.: Data Mesh: Delivering Data-Driven Value at Scale. O’Reilly, 2022.

[6] Elmagarmid, A., Rusinkiewicz, M., and Sheth, A.: Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufmann Publishers, 1999.

[7] Errami, S. A., Hajji, H., Kadi, K. A. E., and Badir, H.: Spatial big data architecture:
From Data Warehouses and Data Lakes to the LakeHouse. In: Journal of Parallel and
Distributed Computing 176 (2023).

[8] Hai, R., Koutras, C., Quix, C., and Jarke, M.: Data Lakes: A Survey of Functions and
Systems. In: IEEE Trans. Knowl. Data Eng. 35.12 (2023).

[9] Jemmali, R., Abdelhédi, F., and Zurfluh, G.: DLToDW: Transferring Relational and NoSQL
Databases from a Data Lake. In: SN Computer Science 3.5 (2022).

[10] Jovanovic, P., Nadal, S., Romero, O., Abelló, A., and Bilalli, B.: Quarry: A User-centered
Big Data Integration Platform. In: Information Systems Frontiers 23.1 (2021).

[11] Klumpp, M., Severin, B., Lechte, H., Menck, J. H. D., Keil, M., Straub, S. M., Ruiner,
C., Milke, V., Hagemann, V., and Hesenius, M.: Driving Big Data - Integration and Syn-
chronization of Data Sources for Artificial Intelligence Applications with the Example
of Truck Driver Work Stress and Strain Analysis. In: Int. Conf. on Information Systems
(ICIS). 2022.

[12] Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C.: Data Lake Manage-
ment: Challenges and Opportunities. In: VLDB Endowment 12.12 (2019).

[13] Simitsis, A., Skiadopoulos, S., and Vassiliadis, P.: The History, Present, and Future of
ETL Technology. In: Int. Workshop on Design, Optimization, Languages and Analytical
Processing of Big Data (DOLAP). Vol. 3369. CEUR-WS.org, 2023.

[14] Strengholt, P.: Data Management at Scale: Modern Data Architecture with Data Mesh
and Data Fabric. O’Reilly, 2023.

[15] Vaisman, A. A. and Zimányi, E.: Data Warehouse Systems - Design and Implementation.
Data-Centric Systems and Applications, 2nd ed. Springer, 2022.

[16] Wiederhold, G.: Mediators in the Architecture of Future Information Systems. In: Com-
puter 25.3 (1992).

[17] Wrembel, R.: Data Integration, Cleaning, and Deduplication: Research Versus Industrial
Projects. In: Int. Conf. Information Integration and Web Intelligence (iiWAS). Vol. 13635.
LNCS. Springer, 2022.

[18] Wrembel, R., Abelló, A., and Song, I.: DOLAP data warehouse research over two decades:
Trends and challenges. In: Information Systems 85 (2019).

