
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)

On Building an End-to-end Prototype System for Harvesting
Performance Characteristics of Code Snippets

Michał Bodziony
IBM Poland Software Lab Kraków
Kraków, Poland michal.bodziony@pl.ibm.com

Robert Wrembel
Poznan University of Technology
Poznań, Poland robert.wrembel@put.poznan.pl

Oleksii Bulenok
Jagiellonian University
Kraków, Poland a.bulenok@student.uj.edu.pl

Anastasiia Ganusina
Jagiellonian University
Kraków, Poland anka.ganusina@student.uj.edu.pl

Wiktor Prządka
Jagiellonian University
Kraków, Poland wiktor.przadka@student.uj.edu.pl

Adrian Suwała
Jagiellonian University
Kraków, Poland adrian.suwala@student.uj.edu.pl

Abstract

End-to-end solutions for running data engineering experiments and getting insights from them
are gaining more and more interest from research communities. The insights are typically
learned from applying machine learning algorithms on experimental data. In this context, ex-
periments repeatability and open access experimental data become new important trends. In
this paper we propose an end-to-end prototype architecture for collecting and analyzing perfor-
mance characteristics of code snippets. The system was originally built, deployed, and tested
for the problem of building performance models of user defined functions in data integration
processes.

Keywords: performance experiments, architecture design, containerization

1. Introduction
The most recent trends in data engineering are based on excessive performance experiments
and on applying machine learning (ML) techniques on collected experimental data, e.g., [1,
2, 5, 6]. ML algorithms are run for the purpose of getting insights from experimental data
and for building various performance, prediction, and optimization models, e.g., [3, 4]. To
this end, experiments repeatability and open access experimental data become new important
requirement. Moreover, curated experimental data are valuable research assets.

In this paper we contribute an end-to-end experimental prototype architecture for data engi-
neering and data science. The proposed architecture supports the automation of: (1) the process
of data collection, (2) data pre-processing for ML algorithms, (3) building of ML models, and (4)



BODZIONY ET AL. ON BUILDING AN END-TO-END PROTOTYPE SYSTEM . . .

the analysis of results. Our architecture is based on micro-services. It was originally designed
and deployed for building performance models of user defined functions (UDFs) provided as
black-boxes, within data integration processes.

2. The End-to-end Prototype Architecture
The developed prototype architecture to facilitate data harvesting and model training is based on
micro-services, designed as an orchestration of several self-contained services. The architecture
is shown in Figure 1. The main functionality is included in two components: (1) experiment
execution and (2) results analysis. The architecture is build on the software components outlined
in this section. All of them run as micro-services.

Fig. 1. The architecture for harvesting experimental data - components and their interactions

Orchestrator is an entry point to the execution environment. It initiates tasks involving
experiments and analyses, by sending requests to Experiment Leader. Upon receiving a request
to start a task, it utilizes a GitLab API token to retrieve the contents of a configuration file
containing definitions of experiments and analyses. The parameters from a user request are
forwarded to Experiment Leader, including: order ID, link to the configuration file, and GitLab
API token. Orchestrator responds to the client with a task ID and a list of experiment IDs in the
current task.

Experiment Leader manages all runs of experiments and analyses. It operates through ex-
posed endpoints for receiving requests from Orchestrator. Upon receiving a command to start
a task, Experiment Leader retrieves the configuration file from GitLab using a link and a pri-
vate access token received from Orchestrator. The configuration file contains definitions of
experiments and analyses. A special type of experiment called a warm-up is typically executed
before main experiments to perform a system warm-up (e.g., populating caches) on Referenced
Database engine as well as on Execution Engine. Analyses are done by sending for each anal-
ysis a request with data from a configuration file to Result Analyzer. Experiment Leader makes



ISD2024 GDAŃSK, POLAND

available a callback endpoint to receive a notification from Result Analyzer when an analysis is
finished.

Reference Database is used to store data processed by code snippets under test. The database
is implemented in PostgreSQL. During deployment, prepared databases are copied and mounted
as a volume to a container. The system allows to use multiple databases, in which case, each of
them is spawned from the same image as a separate container.

Database Initializer spawns and destroys containers for Reference Databases. Its func-
tionality follows a prototype design pattern, where different configurations of databases used
in experiments are instantiated (generated and loaded) before runtime. The service creates con-
tainers to which copies of databases are mounted as data volumes. Database Initializer manages
the creation and removal of these copies and containers, whenever needed. To facilitate the cre-
ation and deletion of containers, the Docker SDK for Python is used. Additionally, a volume is
attached to manage directories located on the host, pointing to the directory where the original
databases and their copies are located.

Execution Engine plays a key role in running code snippets on the data from Reference
Database. Apache Spark is used as a data processing tool. Prior to executing experiments,
Execution Engine undergoes preparation, i.e., the service receives connection properties and
required database tables for execution. Spark establishes multiple connections to the database
via JDBC, creating temporary views for the tables. Having finished the preparation step, the
execution of a specific code snippet can commence upon receiving a request from Experiment
Leader, along with the code snippet. Dedicated Experiment Leader callback endpoints are used
by Execution Engine to notify when the execution/ preparation is finished.

Resource Monitoring observes system resource usage during the execution of code snippets
in Execution Engine. Collected data are added to a batch and sent as a group of documents to
Analytical Database. When monitoring begins, two threads are created to handle a data flow.
The first one is responsible for gathering data from Docker and adding them to a queue, and the
second thread transforms them and adds timestamps to batches. It also sends batches when their
size reaches a certain threshold.

Result Analyzer is responsible for post-data-gathering tasks. Upon receiving a request from
Experiment Leader, a list of task identifiers supplied in the request is used to determine data to
collect for analysis. Result Analyzer retrieves all measurement data matching these order IDs
and can further limit data analysis to a subset of experiments defined in particular tasks. After
filtering the data, Result Analyzer transforms them from an array of documents delivered by
Analytical Database to a list of records in a CSV file. Following data transformation to the CSV
format, additional pre-processing takes place, as defined in optional settings passed in the body
of a request to start an analysis. Finally, the resulting CSV file is stored in IBM Cloud Object
Storage, and its path is then provided as input to AutoAI for further processing. The returned
training report in JSON format is saved in Analytical Database along with the analysis ID, for
manual inspection.

AutoAI is used to optimize model training and evaluation. It automates the entire pipeline
of model optimization. To efficiently explore the search space of models, AutoAI employs the
RBfOpt algorithm, designed for solving box-constrained mathematical optimization problems
with costly evaluation of an objective function. Feature engineering in AutoAI is automated us-
ing the Cognito engine. AutoAI evaluates generated models using typical metrics, i.e., accuracy,
precision, recall, and F1. All these metrics are compiled into a report returned upon finishing a
run and saved in a Cloud Object Storage bucket.

Analytical Database stores among others data harvested by resource monitoring during ex-
periments, labels, code snippets for executed experiments, and training reports returned by Au-
toAI. MongoDB is used as the analytical database due to its compatibility with documents read
from the Docker Engine and the flexibility of its document-based data model.



BODZIONY ET AL. ON BUILDING AN END-TO-END PROTOTYPE SYSTEM . . .

2.1. The Main Flow

The main flow of the processing is described as an enumerated sequence of 21 stages, providing
a general intuition of how the services act and communicate. The sequence of actions is depicted
in Figure 1.

• (1) Orchestrator receives a request to start an order, along with details concerning the
number and type of repetitions for warm-ups and experiments.

• (2) Orchestrator downloads the configuration file from GitLab.

• (3) Orchestrator loads experiment labels (code snippets) into Analytical Database.

• (4) Orchestrator starts a task by sending a request with the link to the configuration file,
the GitLab API token, order ID, and repetition details to Experiment Leader.

• (5) Experiment Leader loads the configuration file using GitLab API.

• (6) Experiment Leader sends a request to Database Initializer to prepare the database.

• (7) Database Initializer prepares Reference Database.

• (8) Experiment Leader receives notification on the dedicated callback endpoint from
Database Initializer after the database has been prepared. The request contains the con-
nection properties required to establish the connection to the Reference Database.

• (9) Experiment Leader sends a request to Execution Engine to prepare data for the exper-
iment. The request contains connection properties and tables required for the execution
of a code snippet.

• (10) Execution Engine prepares data, establishing connections to Reference Database.

• (11) Experiment Leader receives notification on the dedicated callback endpoint from
Execution Engine after the data were prepared, with the status of the data preparation.

• (12) Experiment Leader sends a request to Resource Monitoring to start monitoring (not
applicable for warm-ups).

• (13) Resource Monitoring monitors resources used by Execution Engine and streams the
collected data into Analytical Database (not applicable for warm-ups).

• (14) Experiment Leader sends a request to Execution Engine to start the execution. The
request includes a code snippet.

• (15) Execution Engine executes the code snippet using Spark SQL.

• (16) Experiment Leader receives notification on the dedicated callback endpoint from
Execution Engine after the execution finished, with the status of the execution.

• (17) Experiment Leader sends a request to Resource Monitoring to stop monitoring (not
applicable for warm-ups).

• (18) Steps 6-17 are repeated for each experiment.

• (19) Experiment Leader sends a request to Result Analyzer to start the analysis.

• (20) Result Analyzer analyzes the collected data.

• (21) Experiment Leader receives a notification on the callback URL from Result Analyzer
after its analysis was finished, with the status of the analysis.



ISD2024 GDAŃSK, POLAND

2.2. Deployment and Evaluation

Both Docker and Docker Compose are used to simplify the deployment of the entire architec-
ture. Each service runs in a separate container. Docker Compose facilitates the injection of envi-
ronment variables into each component. The use of IBM AutoAI requires a properly configured
Watson Studio and Machine Learning service instance in IBM Cloud, along with credentials
providing both read and write access to a Cloud Object Storage bucket. Additionally, cloud
pre-processing requires an SQL Cloud Query instance.

The proposed architecture was deployed to run experiments on UDFs, to collect their perfor-
mance characteristics (CPU, RAM, I/O). Based on these characteristics, performance models of
UDFs were built by means of ML algorithms. The experiments were conducted on a server with
12 CPU cores and 31.27 GiB of RAM, under Ubuntu 18.04.5. The Docker Engine in version
19.03.6 with 1.40 API version was running on the server.

3. Conclusions
The data harvesting environment proposed in this paper allows collecting performance data and
creating models in a mostly automated way, with all settings grouped in a single configuration
file. Additional work, mainly in the space of database generation and management, would allow
this environment to be scaled and effectively used in a larger scope as part of a bigger cluster.
The experiments show that building performance models of UDFs, using ML can be done, with
acceptable accuracy. To this end, methods for multi-class classification are suitable. In our work
we used ML automation tool IBM AutoAI, which allowed to build performance models without
any manual model selection or tuning.

Acknowledgements. The work of Michał Bodziony is related to his employment at IBM Polska
Sp z o.o. Additionally, his work is supported by the Applied Doctorate grant no. DWD/4/24/2020
from the Polish Ministry of Education and Science.

References
[1] Baeza-Yates, R.: The Limitations of Data, Machine Learning and Us. In: Int. Conf. on

Management of Data (SIGMOD/PODS). ACM, 2024.

[2] Cong, G., Yang, J., and Zhao, Y.: Machine Learning for Databases: Foundations, Paradigms,
and Open problems. In: Int. Conf. on Management of Data (SIGMOD/PODS). ACM, 2024.

[3] Kraska, T., Li, T., Madden, S., Markakis, M., Ngom, A., Wu, Z., and Yu, G. X.: Check Out
the Big Brain on BRAD: Simplifying Cloud Data Processing with Learned Automated
Data Meshes. In: Proc. VLDB Endowment 16.11 (2023).

[4] Njoku, U. F., Abelló, A., Bilalli, B., and Bontempi, G.: Finding Relevant Information in
Big Datasets with ML. In: Int. Conf. on Extending Database Technology (EDBT). 2024,
pp. 846–849.

[5] Tarvo, A., Sweeney, P. F., Mitchell, N., Rajan, V. T., Arnold, M., and Baldini, I.: CanaryAd-
visor: a statistical-based tool for canary testing (demo). In: Int. Symposium on Software
Testing and Analysis (ISSTA). ACM, 2015.

[6] Wrembel, R.: Optimizing Data Integration Processes with the Support of Machine Learn-
ing - Is it really possible? In: Int. Workshop on Design, Optimization, Languages and
Analytical Processing of Big Data (DOLAP). Vol. 3653. CEUR Workshop Proceedings.
2024.


