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Abstract

In this paper, we address the problem of preparing data for training detectors to identify trans-
parent objects in light microscopy images. To this end, we propose using blends of reference
images and monitoring background, instead of time-consuming labelling of monitoring data.
This approach allowed us to avoid the need to involve a palynologist in the preparation of the
training data while also ensuring 100% correct ground-truth labels. The statistical analysis of
the deep learning results confirms that the results obtained for blends only are more stable, and
in some cases surpass the results obtained for the training set with some labelled monitoring
data added to reference images and monitoring background.
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1. Introduction
Pollen-related allergies are a serious problem, as estimates suggest that one in four people suffer
from them. The costs associated with treatment and missed workdays caused by severe aller-
gic reactions can reach 150 billion euros per year [5]. Palynoecological studies indicate that
pollen grains in urban areas and polluted industrial regions can change their structure and even
exacerbate allergic reactions [23].

Most of springtime allergies are caused by tree pollen [1]. To forecast pollen counts, pollen
monitoring is performed worldwide, and pollen concentration is calculated. This monitoring
is based on counting pollen grains under a microscope in material acquired from pollen traps,
which aspire air with various particles. Hirst-type pollen traps, commonly used in pollen mon-
itoring, aspire 10 liters of air per minute, thus mimicking human breathing [10]. The material
collected in the trap contains pollen grains, but also dust, fungal spores, and other particles that
fall on the adhesive tape passing in the slit of the trap. This material is then analyzed under an
optical microscope by a palynologist, i.e. a specialist in pollen research.
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Fig. 1. The procedure of performing pollen monitoring by a palynologist. It consists of capturing
airborne biological particles, sample preparation, and counting.

In Central and Eastern Europe, the pollen grains of Alnus (alder), Betula (birch), and
Corylus (hazel) are common allergy triggers. These pollen grains are very similar in shape and
size, making them extremely difficult to distinguish. Furthermore, their pollen seasons partially
overlap, so the pollen grains of these taxa can be found together in the analyzed material, which
may contain numerous pollen grains, even more than 1000 grains per taxon daily, as is the case
with Alnus and Betula. This is why we decided to address the problem of automated counting
of pollen grains from monitoring images for these taxa.

Palynologists classify each grain in the monitoring samples, and count grains for all taxa. If
it is not possible to recognize the taxon, because it is unknown to the palynologist, damaged, or
overlaps with other objects, it is classified as V aria. The expected outcome of pollen monitoring
is the number of pollen grains counted per taxon; the exact location of each pollen grain is less
important. The data acquisition procedure in pollen monitoring is shown in Fig. 1.

A manual counting of pollen grains for each taxon is a tedious and time-consuming task,
thus researchers and companies undertake an effort to automate this task [4], [11]. Nevertheless,
manual counting is still a common and reliable procedure [21], and even when deep learning is
applied to facilitate pollen counting, the participation of palynologists may be necessary [3]. For
example, the authors in [3] present a web-based application for pollen count for Mediterranean
taxa, based on deep learning using YOLOv7 (they followed the success of our works based on
YOLO [13, 14]), but human review is applied in this approach to check whether semi-automated
labelling is correct. The authors of [12] used automatically generated, commercially-labelled
data, and additionally used manual corrections to the pollen taxa, as well as a manually created
test set of bounding boxes and pollen taxa. In [7], the authors based their work on a set of slides
prepared in the laboratory, where each slide contains grains of only one pollen type, to avoid
problems with class labelling (this approach was also used in our previous works [13, 14]). In
[18], the problem of artificial intelligence-based classification of pollen grains is addressed, but
for pollen that can be found in honey-based products.

1.1. Problem statement

Automatic counting of pollen grains for each target taxon is not an easy task. Although it is not
necessary to determine the exact location of each pollen grain, the algorithm must be trained
on labelled data. To avoid time-consuming manual labelling by palynologists, reference images
with pollen grains of one taxon only can be used in training, see Fig. 2a. As we can see, this
image has a uniform background and pollen grains of round shape, for which the marking of
the bounding boxes does not require a palynologist’s skills. However, monitoring images have a
much more complex background, see Fig. 2b, and they can also contain other round objects, e.g.
air bubbles, see Fig. 2d. Additionally, monitoring images may contain pollen grains of various
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Fig. 2. Images used in our experiments: a) reference image, Betula pollen grains; b) monitoring
image without pollen (i.e. monitoring background, dust only); c) monitoring image, Betula (5
pollen grains) and Alnus (the grain marked with an arrow); d) monitoring image, air bubbles
and Betula pollen grains

taxa, see Fig. 2c. As we can see, pollen grains of various taxa are similar. We should also keep in
mind that pollen grains are 3-dimensional and semitransparent objects, so they can look different
depending on their position and microscope focus. In our work, we assume that counted pollen
grains are in focus, as we obtain images provided this way from palynologists, but the problem
of out-of-focus images is also addressed in automated pollen monitoring research [6].

In our previous research [14, 15], we first worked with reference images only, using deep
neural networks, and then also with monitoring images, manually labelled. In this work, we
would like to take the next step towards automation, namely avoiding the costly manual labelling
of monitoring data. To this end, we decided to experiment with blends of reference images and
monitoring background images, to check if such images can replace labelled monitoring images.
This can save palynologists the work of preparing data to obtain ground truth for automatic
counting via deep neural networks and prevent errors in labelling.

2. Materials and methods
Our data include images of pollen grains of Alnus, Betula, and Corylus, both from reference
samples and monitoring images. In addition, some of the monitoring images do not contain
pollen grains, and these images were used as a monitoring background. We used similar data in
our previous works [14, 15], but the data in these works included images in two different scales,
namely 400x and 600x magnification. In this work, all images are on the same scale, with
400x magnification. Therefore, the data are more uniform, but also with fewer details available.
Additionally, we removed less saturated images of Alnus pollen grains, thus obtaining even
more uniform data.
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a)  b) c)

Fig. 3. Sample images obtained via blending a reference image and an image of the monitoring
background without pollen: a) blend consisting of 50% of the reference image value and 50%
of the background value in each pixel, b) blend consisting of 25% of the reference image value
and 75% of the background value in each pixel, c) blend with minimum of the reference and
background image value in each pixel

2.1. Blending methods

Images can be merged in various ways. For instance, objects (e.g. pollen grains) from one
image can be cut out and put in front of another image (e.g. background). Another option is to
use blends, where the pixel values of a combined image are calculated as combinations of the
corresponding pixel values of the input images. Since pollen grains are transparent, we decided
to use this approach and prepare blends of images to be used in the training and validation of
detectors. In this way, we simulate the overlap of transparent pollen grains (taken from reference
images with a clean background) with dirt and other objects from the monitoring background.
Blending is performed in RGB (red, green, blue). We prepared the following blends:

• 50% of the reference image value and 50% of the background image value in each pixel,

• 25% of the reference image value and 75% of the background image value in each pixel,

• minimum of the reference and background image value in each pixel.

Each blended image was obtained as a result of blending one reference image and one ran-
domly selected monitoring background image. Therefore, we can rely on the labelling available
for the reference images. In this way, we can train detectors even without using labelled moni-
toring data in training.

The sample images obtained by blending are shown in Fig. 3. Summing increases the
lightness, and since the background in both reference and monitoring images is light gray, i.e.
of high RGB values, we decided to use blends with a lower proportion of reference images with
pollen grains (besides standard blends with 50%/50% proportion), as this way pollen grains are
more noticeable in blends.

2.2. Train, Validation, and Test Sets

Our training data contain reference images with clean and uniform backgrounds, and pollen rep-
resenting only one taxon in one picture. As we could see in Fig. 2, such data are very different
from monitoring images, which must be manually labelled to obtain ground-truth data. Fur-
thermore, monitoring images may contain many small rounded objects similar to target classes
(i.e. pollen grains of Alnus, Betula, and Corylus), including air bubbles. This is why we
decided to investigate whether it is possible to train detectors without labelled monitoring data
and whether the obtained results will be comparable. Therefore, we prepared several sets of
data for the training and validation of the detectors (see Tab. 1), while our test data contain only
monitoring images. Our training and validation datasets are described below.
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Table 1. Number of images and pollen grains in train, validation, and test sets. Background represents images without pollen, monitoring represents images with pollen
(ref , mon, bg, bub, bln50, bln25, min - reference, monitoring, background, bubbled images, and blends 50/50, 25/75 and minimum, respectively)

Set Data for: Images Pollen grains of:
with without

Training pollen pollen Alnus Betula Corylus

RefBgTrain reference + background 244 ref 32 bg 370 312 316

RefBgMonTrain reference + background + monitoring 256 = 244 ref + 12 mon 32 bg 388 328 336

RefBgBlnTrain reference + background + blends 280 = 244 ref + 12 bln50 + 12 bln25

+ 12 min
32 bg 415 363 382

BgBlnBubTrain all blends + background + background
with air bubbles

732 = 244 bln50 + 244 bln25 + 244 min 47 = 32 bg + 15 bub 1110 936 948

Validation

RefBgV al reference + background 66 ref 7 bg 100 96 59

RefBgMonV al reference + background + monitoring 69 = 66 ref + 3 mon 7 bg 103 96 61

BlnBgV al all blends + background 198 = 66 bln50 + 66 bln25 + 66 min 7 bg 300 288 177

Testing

MonTest Monitoring images 110 0 53 215 55
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The RefBgBlnTrain set contains 36 blends, added to the set of 244 reference and 32 back-
ground images. These blends were obtained using our 3 blending methods for 12 reference
images and 12 monitoring background images not used earlier in training or validation. The
BgBlnBubTrain set contains the same 32 background images as before, and blends obtained
using our 3 blending methods for each reference image and a randomly selected background
image from the RefBgTrain set, plus 15 background images with air bubbles (not used be-
fore). The BlnBgV al set contains background images and blends created using reference and
background images from the RefBgV al set.

The results obtained for training the detectors using the RefBgTrain set will constitute
the baseline. We did not prepare any training set with reference images only, as they are too
different from the monitoring data, but we added the monitoring background without pollen, as
such images do not need labelling of the target pollen grains.

To compare the results obtained with and without using monitoring images, we also used
some monitoring images in training and validation, namely 12 in training and 3 in validation,
together with 244 reference images and 32 background images (less than 5% of training data).
This is because we had very few labelled monitoring images, and saved most of them for tests,
thus expecting lower, but reliable results.

The monitoring images used in training included pollen grains of Alnus, Corylus, and
Betula. A random selection of monitoring images for validation ended with the selection of
only Alnus and Corylus pollen grains; Betula pollen was represented by reference images
and blends only. In the test set, the Betula class is the most represented one (up to 12 grains in
one image), because it is most commonly found in pollen traps in its pollen season. At the same
time, there were no more than 7 grains of Corylus in one image and 4 of Alnus.

Monitoring data were used in only one training set, without blends, as our goal was to
investigate whether costly monitoring data could be replaced by blends.

2.3. Object Detection in Images

Object detection in images generally uses one-stage and two-stage methods; more stages can
also be used. All methods aim to find the location of objects of interest and classify them into
predefined classes. Two-stage methods determine regions of interest (RoI) in the first stage and
then classify objects in each RoI in the second stage. One-stage methods are usually faster. A
simplified approach has also been recently used, without hand-designed processing [2].

Deep neural networks are commonly used for object detection in images. One-stage meth-
ods include such methods as YOLO (You Only Look Once, [22]), or RetinaNet [17]. YOLO
uses a fully convolutional neural network (CNN) to predict the bounding boxes and class proba-
bilities of objects in images. RetinaNet uses a unified (single) network composed of a backbone
network and two task-specific subnetworks. The two-stage approach includes R-CNN meth-
ods, i.e. Regions with CNN features [9]. A simplified approach called DEtection TRansformers
(DETR) [2] uses a transformer encoder-decoder architecture; DETR-based models achieve good
performance in object detection tasks.

Models used in object detection within images are often evaluated on publicly available
datasets. The Common Object in Context COCO [16] is widely used as benchmark data in
object detection tasks in images [20], and models pre-trained on these data are also available.

In our work, we decided to use YOLOv8 as an object detection model, since we used YOLO
(earlier versions) in our previous work, and recently popular transformer architectures are much
slower to train; they are computationally more intensive. We used YOLOv8 models pre-trained
on COCO as a starting point for further training, following the transfer-learning approach.
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2.4. Evaluation measures

Various measures can be used to evaluate results, including general measures such as precision
and recall, but measures dedicated to object detection in images are more frequently used. These
measures are often calculated on the basis of the bounding boxes of the objects. For example,
the box mAP@.5 (mean Average Precision) measure is calculated based on the predicted and
ground-truth bounding boxes of the detected objects. First, Intersection over Union (IoU) is cal-
culated as the overlap between the predicted and true bounding boxes, and then IoU≥0.5 means
that it is a hit, otherwise it is a fail. Therefore, box mAP@.5 represents mean average precision
with bounding boxes with IoU≥0.5 classified as positives. Average precision is calculated as an
area under the precision-recall curve for each class separately.

Measures based on higher IoU levels can also be used if a precise location of the object of
interest is important. In our case, the location of the detected object is not important, thus a
standard box mAP@.5 measure is used. Additionally, we used average precision calculated for
each class separately.

3. Experiments and Results
In our experiments, we used Ultralytics YOLOv8.0.122 [22] and NVIDIA GeForce RTX 3060 to
obtain pollen grain detectors for microscope images acquired from pollen monitoring. YOLOv8
training was performed for 3 different random seed values, namely 3, 4, and 5, for each training
data set. Each model was trained for 500 epochs, to check how the detection results change for
consecutive epochs. We selected the best model (indicated by the best results for the validation
set used) from these 500 epochs, but the results for the last model are also shown for comparison.
We present results using the box mAP@.5 measure, most commonly used for the evaluation of
object detection in images. The results of our experiments on the test set are presented in Tab.
2. It should be noted that these results are calculated as the average of per-class results, thus
the results for each class equally contribute to the box mAP@.5 measure, no matter how many
objects are in each class.

The construction of the training and validation set that allows obtaining the best results for
the test set is a challenging task. However, the results presented in Tab. 2 show that we can
obtain better results than the baseline using the proposed sets, but usually not with the model
from the last epoch of the detector training. Therefore, the use of validation sets to select the
best model among all epochs of training is a better solution than taking the last model. Various
validation sets indicate different models as the best ones.

We selected 3 models (detectors) for more detailed analysis, namely:

Model 1 - the model obtained for RefBgTrain used as a train set and RefBgV al as a
validation set, i.e. with simple and similar train and validation sets, containing reference
images and background without manually labelled pollen grains from monitoring data
(baseline);

Model 2 - the model obtained for RefBgMonTrain used as a train set and RefBgMonV al

as a validation set, i.e. with manually labelled monitoring data (costly to obtain, but nec-
essary when ground-truth pollen monitoring data are needed);

Model 3 - the model obtained for BgBlnBubTrain used as a train set and BlnBgV al used
as a validation set; this is our best model, which contains blended images and monitoring
background.

We selected these models to compare the proposed blend-based approach, represented by
Model 3, with both the baseline model (Model 1) and the model obtained using manually la-
belled monitoring data (Model 2). In our previous work, we found that the addition of monitor-
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Table 2. Box mAP@.5 obtained for the test set MonTest in our experiments. The best results
are shown in bold. The results corresponding to the models selected for further analysis are
underlined.

Box mAP@.5 for: RefBgV al RefBgMonV al BlnBgV al Last model

RefBgTrain (baseline) 61.90% 61.90% 63.23% 60.10%
RefBgMonTrain 60.27% 62.70% 61.07% 49.10%
RefBgBlnTrain 61.13% 60.10% 63.57% 63.47%
BgBlnBubTrain 67.07% 63.63% 68.03% 65.97%
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Fig. 4. Average precision results for the selected models for each class.

ing data to reference images in training improves the detection results significantly [15]. How-
ever, a specialist is needed to label pollen grains in the monitoring data. This choice of models
and the comparative analysis of their results allow investigation of whether manually labelled
monitoring data can be replaced with blends of the reference data and monitoring background
without decreasing the detection quality.

Fig. 4 shows per-class average precision for these three models (with bounding boxes with
IoU≥0.5 classified as positives, see Section 2.3). As we can see, the best results are obtained for
Betula, which is the largest class in our test data that comes from pollen monitoring. Therefore,
Betula pollen is best recognized, and since Betula produces the most allergenic tree pollen in
North, Central, and Eastern Europe, we can conclude that our models allow good detection of
the most important allergen.

3.1. Statistical analysis

To compare statistically the quality of the selected models, we performed the tests also for the
subsets of the test set. We divided the test set into 23 subsets, with each subset containing pollen
of all taxa (although no image contained all taxa). Therefore, the precision of the obtained
bounding boxes can be calculated for each class in each subset. Since we have 3 models, and
each model was trained 3 times (using 3 seeds), we obtained:

23(subsets)× 3(models)× 3(seeds) = 207 values for each taxon.
The distribution of average precision for each taxon within each model was significantly

different from the normal distribution. Therefore, the statistical comparison of selected models



ISD2024 GDAŃSK, POLAND

Table 3. Statistics for average precision for each taxon for the selected models.

Model taxon Mean Minimum Maximum Std.Dev.

Alnus 0 .566 0 .000 0 .995 0 .343
Model 1 Betula 0 .657 0 .000 0 .995 0 .368

Corylus 0 .570 0 .000 0 .995 0 .378
Alnus 0 .685 0 .000 0 .995 0 .303

Model 2 Betula 0 .617 0 .000 0 .995 0 .319
Corylus 0 .742 0 .000 0 .995 0 .264
Alnus 0 .623 0 .000 0 .995 0 .292

Model 3 Betula 0 .646 0 .000 0 .995 0 .383
Corylus 0 .793 0 .332 0 .995 0 .222
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Fig. 5. The box plots of the average precision values for each taxon.

was made using the non-parametric test for repeated measurements, based on the relative treat-
ment effects (RTE). RTE is an estimated probability that a randomly chosen observation from
the whole dataset results in a smaller value than a randomly chosen observation from the studied
group. Thus, the higher the RTE values for a given group of results, the better the results of this
group compared to the other groups.

Each test subset was used as input for each model version (built with seeds 3, 4, and 5) of
our detectors, i.e., of Model 1, Model 2, and Model 3. Therefore, we used LD-F2 design for
experiments with two sub-plot factors [19], treating our 3 models (3 levels) and their versions
obtained via the training with 3 seeds (3 levels) as the first and second sub-plot factor variables,
respectively. We tested the null hypothesis H0 that the observations from the studied groups
have the same distribution, against the alternative one (H1) that the distributions of observations
from different groups are not equal. In addition, we applied multiple comparisons with the
Holm-Bonferroni adjustment to the p-value [8], which allows controlling Type I error inflation.

The descriptive characteristics are presented in Tab. 3. The best results were obtained for
Model 3 for the Corylus class, with an average precision of almost 0.8; this result also had the
smallest dispersion and the smallest standard deviation. The lowest average precision (0.566)
was obtained for Model 1 and the Alnus class. The box plots presented in Fig. 5 show the
distribution of these results across the studied models.
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Table 4. The results of the ANOVA-type test for average precision of the investigated taxa and
models. Versions represent model versions obtained for three seeds (3,4, and 5).

Statistic df p-value

Model 1.305 1.935 0.271
Average precision for Alnus Version 1.414 1.894 0.243

Model:Version 1.945 2.894 0.122

Model 0.630 1.693 0.507
Average precision for Betula Version 0.467 1.419 0.561

Model:Version 3.681 3.265 0.0093**

Model 4.983 1.745 0.0096**
Average precision for Corylus Version 4.248 1.815 0.017*

Model:Version 2.228 3.077 0.081
* significance level α = 0.05, ** significance level α = 0.01

Table 5. Multiple comparisons of box AP for Corylus distribution between the studied models
with Holm-Bonferroni adjustment (padj).

Comparison p-value padj

Model1 – Model2 0.002** 0.006**
Model1 – Model3 0.005** 0.0098**
Model2 – Model3 0.432 0.432
** significance level α = 0.01

ANOVA-type statistic was used to verify the hypothesis of the equality of the distribution
of the average precision values obtained for each taxon for the studied models and their three
training versions (for three seeds). The results are presented in Tab. 4. As we can see, there are
no significant differences between the distributions of the average precision values for Alnus
and Betula for the studied models. For Alnus and Corylus we cannot reject the null hypoth-
esis of the equality of the distributions of the average precision values for the Model:Version
interactions.

We conclude that the distribution of the average precision values for Corylus significantly
differs for the studied models. It is therefore worth investigating which models show significant
differences in the distributions of the average precision values. These comparisons are shown in
Tab. 5. As we can see, there are no significant differences between Model 2 and Model 3. This
is a very satisfactory conclusion, as the preparation of the data for Model 3 does not require the
manual labelling by a specialist.

We also tested the significance of differences in the distribution of the average precision val-
ues for the Betula taxon between the training versions for each model. We found that there are
significant differences between these versions for Model 2 (p-value=0.006), whereas Model 1
and Model 3 are more stable (p-value=0.142, and 0.845 respectively), i.e. there are no significant
differences between different versions of these two models.

4. Summary and Conclusions
In this paper, we addressed the problem of preparing data sets for training detectors for pollen
monitoring. Manual pollen grain counting is a tedious task, performed by specialists, as is the
labelling of ground-truth data. Moreover, manual labelling of monitoring data may produce
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errors. This is why we suggest using image augmentation in the form of the blends of reference
images and monitoring background, which does not require labelling by a palynologist. The
goal of this work was to investigate whether the use of blends instead of a small set of manually
labelled monitoring data does not deteriorate or even improves the obtained detection results.

We cannot compare our results with other works (and it was not our main goal) because
other published results were calculated for different data sets, but we are aware that the results
obtained for taxa with less similar pollen grains are usually higher.

We prepared several versions of train and validation sets, and analyzed the results. No
statistically significant differences were found between the model trained on blended images
(Model 3) and the model trained with a small number of labelled monitoring images added to
the train set (Model 2). These detectors give statistically better results than the baseline model.
Additionally, the results obtained for Model 3 are significantly more stable than the results for
the other studied models, thus we can recommend Model 3 as the most preferable one in the
pollen grain detection task.

Furthermore, we note that Betula pollen grains were the easiest to detect for the detectors
investigated. This is a good result, as Betula pollen causes most spring allergic reactions to tree
pollen.

In our previous work, we used train data enriched with less saturated images for Alnus,
thus the train set was less uniform, and we obtained even better results [15]. Additionally, two
different magnification scales were used, i.e. 600x and 400x, whereas our data represented
400x magnification only, with the 600x magnified images re-scaled to 400x magnification. This
supports the conclusion that the more diverse and detailed the data, the better the results.

In future work, we intend to explore other blending methods as well. We also plan to use
DETR-based detectors, as it is another promising approach to detecting objects in images, and
continue our work towards automated counting of the detected pollen grains.
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