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Abstract

Practical hands-on exercises for trainees in information technologies and information systems
provide tools needed to develop, operate, and test cloud-based infrastructures. Exercises, fre-
quently carried out in simulated settings, offer a practical approach to highlight the significance
of skills related to structured decision-making and detailed configuration in the command line.
Therefore, the paper proposes a unique data analysis solution that encompasses safe sandbox-
ing and examines user-provided command-line data throughout the exercises. The development
of the solution focuses on command-line input parsing, tokenization, and structured analysis,
providing a viewpoint on the knowledge level in simulated scenarios. The work provides in-
sight into structured command-line data analysis and the complexities of command execution.
The prototype is based on modular Bourne-Again Shell and Python modules and asynchronous
data collection. The paper contributes to the educational processes by improving training per-
formance assessment techniques and offering insights into the exemplified field of penetration
testing of information systems.

Keywords: educational system design, hands-on exercises, performance evaluation, data-driven
assessment, command-line

1. Introduction
A rapidly evolving cybersecurity domain impacts a vast sector of information technologies (IT)
and information systems (IS). IT specialists take measures to keep systems resilient against cy-
ber incidents and various threats. IS specialists require skills to design, develop, and support
systems and processes that involve the cybersecurity dimension. Thus, comprehensive training
of IT and IS specialists is crucial. As cyber threats become more sophisticated, robust train-
ing, which encompasses self-learning, instructing others, and continuous skill development,
becomes vital. Hands-on exercises bridge the gap between theoretical concepts and their appli-
cation in real-world scenarios, offering a dynamic and interactive method of education.

Training activities range from academic education to training programs to enhance cyberse-
curity awareness, influence user behaviour, and develop a culture of cybersecurity [2]. Efficient
training must be relevant, current, and tailored to the needs of participants, creating simulations
for these situations to provide an environment where they can improve their skills. This learning
is indispensable for grasping cybersecurity’s intricate and changing nature, putting theoretical
knowledge to the test in diverse circumstances.

Training exercises focusing on command-line proficiency are crucial in developing a more
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advanced skill set [13]. They allow learners to apply academic knowledge in various simulated
scenarios that closely resemble actual cyber-threat landscapes [19]. Such hands-on experiences
are invaluable in comprehending the complexities of cybersecurity, where learners are chal-
lenged to adapt and apply their expertise. IT and IS specialists must employ command-line
skills to perform system penetration testing, mitigate vulnerabilities, or tune-up system config-
uration. The role of assessment modules in training and educational programmes is critical [4].
Additionally, employing IT and AI-ready tools provides a structured approach to understanding
learning outcomes, identifying areas for improvement, and tailoring future training to tackle ex-
isting and evolving challenges [8]. The data from cybersecurity exercises offers rich insights for
learners and educators, enabling feedback that enhances the learning experience [9].

The contribution of this paper is to establish novel methods to analyse command-line-based
user activity to identify user experience levels and assess competences during training without
prior knowledge and pre-testing. Specifically, the novelty is focused on formalisation, evalua-
tion criteria, and metrics to derive trainee expertise. This work outlines the method from un-
derstanding the command line structure to developing the solution and its operational methods,
aiming to create a prototype for analysis and transform data into insights. The paper discusses
hands-on cybersecurity exercises, command-line interface complexities, the design of the data
analysis tool, its technical implementation, and the results gathered from testing with the openly
available data set.

The rest of the paper is structured as follows. Section 2 sets the research background, and
Section 3 provides problem setting. The design of the proposed solution is covered in Section 4.
Section 5 presents the experimental setup of the proof of concept implementation. Section 6
provides experimentation results and discusses assessment viewpoints. Section 7 concludes the
paper, outlines limitations and reviews the future work.

2. Background
Penetration testing [17], as a part of the cybersecurity area, assists organisations in security
compliance and includes finding vulnerabilities and their mitigation. Typically, professionals
advance their skills to tackle cyber threats, mirroring real-world challenges, during intensive
hands-on training sessions called cyber defence exercises (CDX). CDXs offer technical, hands-
on experience in active defence against simulated incidents, testing participants’ technical ex-
pertise and response agility [10]. Participants engage in CDX roles across different teams in a
cyber range environment, simulating real-world IT infrastructures to prepare for a spectrum of
cybersecurity challenges, such as crisis situations during cyber incident handling [12].

The command-line interface (CLI) plays a pivotal role [11] in exercises, demanding specific
command inputs and a deep understanding of systems for tasks like network configuration and
penetration testing. CLI’s efficiency, especially for experienced users, is explored by Voronkov,
Martucci, and Lindskog [15], highlighting its preference among system administrators for cer-
tain tasks over graphical user interfaces (GUIs). CLI allows for scripting and command piping,
enhancing task performance efficiency and requiring fewer system resources, making it ideal for
high-performance computing environments. Moreover, CLI-based training in cybersecurity is
instrumental in improving problem-solving skills and adaptability. CLI command learning can
also be specialised in the use of one or more commands, e.g. for learning the git tool or net-
working scenarios [3]. Švábenský et al. [20] demonstrate how hands-on exercises that require
quick and innovative thinking enhance professionals’ analytical capabilities. Although the CLI
may present a steep learning curve for beginners, its precision, flexibility, and efficiency are un-
matched for IT professionals, developers, and system administrators, making it an essential tool
for complex tasks or automating repetitive ones in computing environments. This hands-on ex-
perience with the CLI significantly enhances the learning process, preparing students for future
developments in this technical area and allowing educators to adjust their teaching strategies for



ISD2024 GDAŃSK, POLAND

improved training effectiveness [7, 19].
Maennel [9] covers the application of learning analytics in cybersecurity training, focusing

on cybersecurity exercises to enhance learning effectiveness. Learning analytics and learning
metrics provide evidence of the learning process and learning improvements. Online cyberse-
curity exercises are a powerful tool to teach cybersecurity content, but it has a challenge related
to the individual assessment [6].

Analysis of CLI artefacts includes string tokenization and context analyses. Trizna [14]
introduces the Shell Language Preprocessing (SLP) library, which focuses on the tokenization
and encoding of Unix and Linux Shell commands. It outlines the limitations of traditional NLP
methods in this context and proposes alternative encoding strategies such as label, one-hot, and
TF-IDF encodings, implemented through bashlex and additional syntactic logic for complex
command syntax handling. Analysis of command similarities [5] enables pattern recognition
and its application to attribute actions to the adversary. Structured features of the Shell command
can be used to identify malicious commands [1].

Quantitative and qualitative data analyses of CLI can identify the efficacy of command-line
tool usage in cybersecurity training simulations. Švábenský et al. [19] focused on the frequency
and types of commands employed by trainees, with a particular emphasis on tools like nmap,
ls, and cd. The study further explored terminal command usage, identifying common errors and
misconceptions among trainees. However, they did not analyse the variability of commands in
terms of parameter or option usage.

As users may track their progress over time, see trends in their errors, and modify their learn-
ing tactics accordingly, error analysis of this kind encourages self-improvement and independent
learning in a self-learning environment. The relationship between user error and cognition is ex-
amined by Wu et al. [16]. In order to create more user-friendly user interfaces and instructional
materials, it is imperative that user errors must be understood from a cognitive point of view, as
the study highlights. It also highlights that distinct user groups, such as novice, ordinary, and
expert, show differing error rates.

This paper presents a solution for analysing user activities at the command structure level
in the CLI environment to ensure individual assessment in online training. Analysis of correct
and erroneous commands and result aggregation in the group context enables evaluation of the
individual performance for the defined tasks.

3. Problem Setting
The most common interface for security developers and operators to work with is the feature-
rich CLI. Therefore, a systematic approach to freely executed sequences of CLI commands and
the ability to analyse the richness and correctness of the command is essential. The assessment
of trainee actions in a CLI-based environment requires specialised tools to be involved.

The CLI operates through a sequence of crafted steps. It begins with tokenization, where the
input command is dissected into smaller tokens. Parsing is the next stage, where these tokens
are checked against the CLI’s grammar rules. In Shell, data can be read from the file, string,
or user’s terminal. After the CLI breaks down the command into smaller parts (tokenization)
and checks them (parsing), it runs the command based on this perception. The CLI system-
atically handles inputs, particularly those commands that are complex, involving several steps
or require certain conditions to be met before they can run. Shell processes can be redirected
to streams. After execution, Shell processes the exit status of the command, which determines
whether the command was successful or if an error occurred. By breaking down commands to
their fundamental components and interpreting their syntax, the CLI gains an ability to analyse
command structures and usage patterns. This depth of analysis is valuable for both educators
and practitioners, offering deeper insights into the nuances of command-line interactions.

Lexical analysis breaks down an input into words and phrases, known as tokens. Each token
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carries a specific meaning. Technically, tokens surround everything from the commands them-
selves to various options and arguments. The role of the tokenizer is to categorise each segment
of the command accordingly. Tokenization can be represented using the formal constructs.

Each command is a string s ∈ S composed of a sequence of characters s = ⟨c1c2c3 . . . cn⟩,
where each ci ∈ CH represents a character in the command, and set S denotes a set of strings.
The tokenization function tf maps the string s ∈ S to a sequence of tokens T = ⟨t|∀t ∈
S ∧ ∃s′ = ⊔t : s′ = s⟩ ⊂ S. A token set is a subset of a string set, and concatenation of tokens
can make the original string s.

Meta-characters play a crucial role in the tokenization and influence command parsing pro-
cess. A set of meta-characters, M ⊂ CH , includes delimiters such as a pipe, ampersand,
semicolon, relational operators, parentheses, spaces, tabs, and newlines. The presence of the
meta-characters in the command string s determines the boundaries of each token. Each token
t ∈ T is classified based on its composition. A word is a token without any characters from M
and not enclosed in quotes. An operator contains at least one character from M and is unquoted.
Operators are categorised into control and redirection types, denoted as C and R, respectively.
Set C includes control operators such as a newline, a vertical pipe, and parentheses. Set R
includes redirection operators such as ‘<<’.

Let us consider a complex Nmap command represented as a string s = “nmap -p 80,443
--open -sV example.com”. The tokenizer identifies nmap as the foundational command token.
Then, it separates the options -p, --open, and -sV, alongside with 80,443 and example.com as
arguments. The tokenization function tf applied to the command string s returns a token se-
quence, T=⟨"nmap", "-p", "80,443", "--open", "-sV", "domain-example.com"⟩. Fig. 1 illustrates
the tokenization result and context information. As illustrated in this example, the tokenization

nmap -p 80,443 --open -sV example.com

Command:
nmap

Option:
-p

Argument:
80,443

Option:
--open

Argument:
example.com

Option:
-sV

Fig. 1. Tokenization of the Nmap command

successfully breaks down the command into individual components. However, these compo-
nents, or tokens, lack meaning when isolated. Only within the correct context that the meaning
of each token can become clear. For instance, the token -p in isolation is ambiguous, because its
purpose is only clarified when considered in conjunction with the base nmap command, where
it specifies the ports to scan. Similarly, the token 80, 443 is a basic string of characters un-
til it is understood as the argument for the -p option, specifying the port range for the nmap
command. The tokenization phase, while essential for parsing the command, does not bring se-
mantic comprehension. This is derived from the following stages, where the syntactic structure
is interpreted, and the command is executed.

Parsing, in the context of command analysis, refers to the process of analysing a sequence of
tokens to discern their syntactical and hierarchical relationships within the command structure.
It is about making sense of how different parts of a command fit together to form a coherent
instruction, which when executed produces wanted results. The primary goal of parsing would
be to derive the syntactic structure of the command. This includes identifying the command
name, its options, arguments, and how they are logically connected.

When analysing the command line, familiarising with different delimiters used in CLI are
important, the role of flags as boolean options to indicate true or false states, and the significance
of the --help flag in providing detailed command information. Additionally, the CLI conventions
to represent required and optional parameters, handle arguments that accept multiple values, and
the syntax for mutually exclusive arguments are vital for comprehensive syntax analysis. In the
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context of Shell command line processing, the parsing function, denoted as P , transforms a
sequence of tokens into a structured representation of the command.

Here, each token ti ∈ T represents a distinct element of the original command. The func-
tion P meticulously maps these tokens to their corresponding roles in the command structure.
The CommandName is the first token t1, while OptionsList and ArgumentsList are formu-
lated from subsequent tokens based on their syntactical and contextual properties. Addition-
ally, special tokens indicating pipes and redirections are categorized into RedirectionOperator
and ControlOperator, respectively. Pipes and Redirections, integral to command execution flow,
are identified by specific Meta-characters. These elements, besides the first element, can have
variable order and presence in the command structure, reflecting the flexible nature of Shell
command syntax. This mapping ensures that the sequence and hierarchical relationship of the
tokens are preserved, leading to an accurate interpretation of the command as a whole unit.
Options in a Shell command, signified by ‘-‘ or ‘--‘, are often paired with their subsequent Ar-
guments. Arguments are tokens that do not qualify as Options or Meta-characters. The mapping
function Foa is defined to identify these pairs (see Eq. 1.) Applying Foa to the command tokens,
option-argument pairs are constructed, Pairs = {(ti, Foa(ti)) | ti ∈ Options}.

Foa(ti) =

{
ti+1 if ti+1 /∈ Options
∅ otherwise

(1)

In the case of specific commands like nmap, where the last token often represents the target
of the scan, a modified option-argument mapping function Fnmap

oa is defined as presented in
Eq. 2. Applying Fnmap

oa to nmap command tokens, it identifies both option-argument pairs and
standalone arguments: Pairsnmap = {(ti, Fnmap

oa (ti)) | ti ∈ Options} and StandaloneArgument =
tm if tm ̸∈ Pairsnmap.

Fnmap
oa (ti) =

{
ti+1 if ti+1 /∈ Options ∧ i+ 1 < m

∅ if i+ 1 = m ∨ ti+1 ∈ Options
(2)

Let us consider the previous nmap command to illustrate this parsing method. Applying
the parsing function P , the following structure can be obtained: CommandName is nmap,
Options = {“-p”, “–open”, “-sV”}, Pairsnmap = {(“-p”, “80,443”), (“--open”, ∅), (“-sV”, ∅)}
example.com is a StandaloneArgument, and Pipes and Redirections are empty sets.

Statistical methods can be used to analyse the frequency and patterns of command usage
(Command Structure Analysis; CSA.) For instance, using a counter to count the occurrences,
can provide specific patterns like Command-Option or Command-Argument-Option. A high fre-
quency of Command-Argument-Option might indicate a preference for commands with specific
configurations, suggesting a user’s skill level or the complexity of tasks they are performing.
A CSA function sf maps each sequence of tokens T to a command structure cs ∈ CS, where
CS is the set of all the possible command structures. A command structure can be defined as
a sequence of token types representing the syntactic structure of a command. Each command
structure cs is a sequence of elements cs = ⟨t1, t2, t3, . . . , tm⟩ where each ti corresponds to a
type of token (such as Command, Option, Argument, etc.). The frequency of each command
structure cs in the dataset is calculated using the function F (cs), defined as the sum of oc-
currences of cs for each command string s ∈ S: F (cs) =

∑
s∈S [sf(tf(s)) = cs]. Here,

[sf(tf(s)) = cs] this function checks whether the structure identified by sf(tf(s)) is equal to
a particular command structure cs and if they are the same, the function returns 1, otherwise,
it returns a 0. The formula counts how many times each unique command structure appears
in the dataset. The unique command structure function usf maps each tokenized command
to its unique structural pattern. The frequency function Fucs counts the occurrences of each
unique command structure within the dataset. This analysis provides insights into the complex-
ity and variety of command usage, highlighting common patterns or unusual combinations in
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command structures for individual commands. By identifying the most frequently used options
and arguments, it can be defined, which features of a command are most valued or required by
users in specific exercises. The analysis of metacharacters usage suggests the users’ proficiency
and sophistication level in command-line operations. Frequent use of complex metacharacters
could indicate a high level of user expertise. Additionally, this analysis could aid in uncovering
patterns or anomalies in command usage. Unusually high or low usage of certain options or
arguments might suggest either a lack of awareness about these features or their irrelevance to
the users’ needs. In security-sensitive environments, these anomalous patterns could also be an
indication of misuse, potentially flagging security concerns.

For any given command s, the function cef (tf (s)) provides the frequency distribution of
elements in s, therefore, linking a tokenized command to its element frequencies. To be able
to extend this analysis across all commands in the dataset, a frequency function Fall is defined:
Fall (e) =

∑
s∈S n where (e, n) ∈ cef (tf (s)). This general function aggregates the frequencies

of each element e across the entire dataset, which then provides a comprehensive insights into
user interactions with command-line elements. Such an analysis is valuable for understanding
user behaviour patterns, preferences in particular command usage. The average complexity K
for a set of commands by the user can be calculated as follows: K̄ = 1

M

∑n
i=1miK(ci), where

ci is a command from the set of all certain command structures, K(ci) is a command complexity
(based on the number of elements in a command), mi is a count of ci occurrences, and M is a
total number of command usages. The complexity variation V , which measures the spread of

these complexities, is the standard deviation of complexity: V =
√

1
M

∑n
i=1mi(K(ci)− K̄)2.

In a command line, error analysis is essential for identifying common mistakes users make.
In order to provide insights into user behaviour, this analysis can focus on classifying and eval-
uating the success or failure of instructions that are executed in the command-line environment.
Examination of unsuccessful commands, stemming from syntax errors, improper command us-
age, or a lack of understanding of the purpose of command functions, might reveal error patterns.
This data is essential for creating more focused teaching materials that could address prevalent
areas of misunderstanding.

4. Solution Design and Architecture
We propose the information system design to support cybersecurity-related education and data-
driven assessment of the trainee, either an IT or IS specialist. The proposed solution is a hetero-
geneous environment (see Fig. 2). As an actor, a Course instructor, seen on the far right, designs

Analytics componentTraining
group

Training
environment

Trainee 1

Trainee 2

Sandbox 1

Sandbox 2

Data
cleaning

Collected data

Analysis

Cleaned data

Ensures data anonymity

Initiates

Views generated results

Course
instructor

Generate
results

Data analysis
tool

Performance
reportTrainee n

Sandbox n

Sends command-
line data

Creates a training assignment

View generated results

Training task

Performs task

Performs task

Performs task

Fig. 2. Information system solution design

a Training task that requires the execution of CLI commands. The Trainee, seen on the left side
of the diagram within the Training group, performs the task in an individual training Sandbox
that is a part of the Training environment. There, the data is collected and sent to the Analytics
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component. Once CLI-based data is collected, the instructor proceeds to the next steps. Within
the Analytics component section, the Course instructor begins with anonymisation to ensure the
private data is not disclosed, for example, private keys and possible plain-text passwords, i.e.,
performs Data cleaning. Then, the instructor launches the Analysis process. The final processes
of the data analysis tool apply the predefined metrics on the collected and cleaned CLI data and
generate trainee performance results, seen in a figure as a Performance report, in a structured
format that can be used to examine results within the group context. The trainee and instructor
can view the generated results.

The execution architecture of the solution (see Fig. 3) uses dual virtual machine config-
uration to separate and manage two fundamental processes, CLI usage pattern extraction and
Shell command execution, in the Data analysis tool of the Analytics component. The Main
Virtual Machine, seen on the left side of the figure, running as a Linux host, is responsible for
data handling tasks, i.e., accepting and organising collected data. The main scripts of the com-
ponent Command-line Data Tool orchestrate the entire process. They control the intake and
parsing of data (see Command-line Data) and manage workflows to save and retrieve patterns
(see database Commands), check command correctness, execute analytical tasks, and save the
analysis results (see Generated Results). The Sandbox Virtual Machine, seen on the right side
of the figure, is employed for error checking in the usage pattern extraction process. It enables
the execution of commands in an isolated environment and returns the execution output to the
main machine. Ideally, the sandbox is Kali or Parrot Linux OS distribution equipped with core
utils and penetration and security testing tools.

<<device>>
Sandbox Virtual Machine

<<device>>
The Main Virtual Machine

<< OS >>
Linux Host

<< OS >>
Linux Machine (Isolated and Equipped

with Exercise Tools for Command
Error Analysis)

Return Command
Output and Status

<<shell environment>>
(Command Execution)

Initiate SSH
Connection

Authenticate and
Establish a Secure

Channel

Execute Specified
Command

Save Data

<<database>>
Commands

<<component>>
Command-line

Data Tool

<<artifact>>
Command-line Data

Intake
 Data

Insert Pattern

Retrieve Command Pattern

<<artifact>>
Generated Results

Fig. 3. Execution architecture of the solution’s analytics component

Fig. 4 presents the relational model of the database component and illustrates the tokenized
CLI command data insertion. Table CommandSequences stores an original CLI command. The
output of its execution in the sandbox is recorded in CommandExecutionLog. Table Comman-
dElements records the order of options and arguments. Each command and its options and
arguments are stored in dedicated tables (see tables at the right). Therefore, before inserting
new arguments and options, the system checks already saved elements. This design enables
analysis of the options and arguments among all commands within the trainee group.

Fig. 5 presents the flow of the error-checking logic and command pattern extraction for an
individual trainee. Firstly, the command is checked for the base exception. Configuration files
define command types to skip, e.g., Python script execution. If such a command is detected, the
system raises a base exception. Then, the tool sanitises the commands from the outbound file or
network operations, such as switching IP addresses to localhost for scanning tools, and checks
if it is already in the database (found in the logs of other trainees or previously detected in the
log of this trainee). If the command is not in the database, the error-checking module sends it to
the sandbox for execution. The performance report counts the trainee’s errors explicitly.

The main virtual machine’s isolation from the execution environment mitigates risks of sys-
tem compromise, ensuring the integrity and security of the central processing machine. The
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CommandId CommandText

1 nmap

OptionId OptionText

1 -p

2 --open

3 -sV

ArgumentId ArgumentText

1 80,443

2 example.com

ElementId SequenceId CommandId ArgumentId OptionId MetaCharId ElementOrder

(auto) 1 1 NULL NULL NULL 1
(auto) 1 NULL NULL 1 NULL 2
(auto) 1 NULL 1 NULL NULL 3

(auto) 1 NULL NULL 2 NULL 4

(auto) 1 NULL NULL 3 NULL 5

(auto) 1 NULL 2 NULL NULL 6

ExecutionId SequenceId ExitStatus ErrorMessage IsValid System

1 1 (exit_code) (error_msg) (is_valid) VM

SequenceId Description

1 nmap -p 80,443 --open -sV example.com

nmap -p 80,443 --open -sV example.com

Token: nmap, Type: Command, Order: 1
Token: -p, Type: Option, Order: 2
Token: 80,443, Type: Argument, Order: 3
Token: --open, Type: Option, Order: 4
Token: -sV, Type: Option, Order: 5
Token: example.com, Type: Argument, Order: 6

Tokenized
command

Full
command

exit_code,  erorr_msg,  is_validExecution
output

CommandExecutionLog

CommandElements

CommandSequences

Commands

Arguments

Options

Fig. 4. Relational model and data insertion example

Command Ingestion

Check for Base Exception

Yes No
Is

Exception? Sanitize Command Check Command in
Database

No Command
Exists?

Insert Command with
Status in Database

Execute Command in VM

Yes

Is Command
Error?

Yes

Return as Error

No

Fig. 5. The flowchart of the error-checking logic



ISD2024 GDAŃSK, POLAND

sandbox virtual machine serves as a controlled testing ground. It replicates or closely resembles
the trainee’s operating environment, ensuring that Shell commands are executed in conditions
equivalent to their original setting.

5. Experimental Setup
The sandbox prototype was implemented as a proof of concept for the proposed solution. The
prototype reflects the execution architecture (see Fig. 3) of the solution for the experimental
setup. OpenNebula IaaS with KVM hypervisor was used to create two virtual machines. The
Main Virtual Machine, built using a Debian OS template, had the developed tool installed with
the corresponding SQLite3 database and the downloaded dataset. The tool comprised Bash and
Python scripts. Bash scripts orchestrated the flow of the tool. They performed remote Bash
execution, while Python scripts performed data loading, tokenization, parsing, and the analysis
part. The Sandbox Virtual Machine was used as a separate environment to execute sanitised
CLI commands over SSH connection for error analysis. Therefore, the machine was equipped
with main exercise tools to test these commands and return their output to the central machine
analysis tool.

We used the open dataset [18] to execute the simulated experiments to test our analytical
components. The dataset consists of 13,446 Shell commands from 175 individuals participating
in cybersecurity training. The dataset contains several subsets associated with different tasks.
We selected the “Junior Hacker Adaptive” subset for experimentation because it contained the
most significant number of participants and commands. It included 58 participants who executed
12–148 commands to familiarise themselves with the environment, scan the network, connect
to the server, find and retrieve the required file, and crack its password.

The dataset offers realistic content of user interactions in a cybersecurity learning context.
The data was gathered during actual training activities using a transparent, open-source logging
system, accurately showing command-line operations typical in cybersecurity, such as penetra-
tion testing. The dataset includes a variety of commands used in Bash, ZSH, and Metasploit
shells, all stored in a JSON format, making it a valuable tool for diverse research activities.
Each sandbox file is formatted using newline delimited JSON.

The provided JSON files represent recorded user actions in a cybersecurity training environ-
ment. Each entry in each dataset file includes attributes like cmd_type, indicating the nature
of the command executed (e.g., Bash command), and pool_id and sandbox_id, which are
identifiers for the specific training environment. The timestamp_str attribute timestamps
each action, allowing for temporal analysis of user activities. The hostname and username
fields provide context on the system and user account from which the trainee executed the com-
mands, and the fields are vital to follow access levels and system interactions. The cmd at-
tribute records the exact command executed, offering insights into the user’s primary focus and
command-line efficiency. Additionally, the wd (working directory) and ip (IP address) fields
provide further context, revealing the user’s navigation patterns and network interactions.

Some participants performed tasks with long breaks, sometimes lasting days. The long
breaks, more extended than 1800 seconds, were subtracted from the total task duration time to
get a more concentrated view of time. Thus, the duration of task solving included only shorter
breaks as part of the training process. In the configuration file of the prototypes’ error-checking
module, the base exception list included the execution of specific console-based commands
that open environments or require user input to operate or stop the processes, i.e. interactive
commands such as terminal editors (vim), password changing (passwd) or device availability
utilities (ping), and Bash or Python scripts, as such data is not logged and cannot be processed
or analysed.
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6. Results and Discussion
The experiments were executed on the open dataset to demonstrate the proof of concept that
it can perform lexical and syntax analysis of the logged CLI calls, produce structured output,
and generate visual reports as performance indicators of an individual (or several individuals)
in the context of the group results. The compiled insightful diagrams revealed key patterns
and improvement areas based on the commands the trainees executed. This interpretation of
the results is based exclusively on the data from a single dataset, without prior knowledge of
the trainees and their level of expertise. Consequently, trainee performance during this training
session determines the evaluation. In each figure of this paper, visual markers are used to dis-
tinguish particular trainees to illustrate and track individual performance indicators: diamonds
represent User 1, and squares represent User 2. These markers visually represent how these
participants interact with the task and tools compared to the average team performance. The
figures also show the distribution of individual results within a team. Fig. 6a plots the number
of CLI commands against the number of errors, allowing the accuracy of command usage to be
assessed within the average group performance. It highlights that higher command usage does
not necessarily lead to more errors, indicating the participants’ learning curve. For example,
User 1 executed almost the same number of commands as User 2 but experienced much more
errors. Both users executed fewer commands than the average of executions within a group.

(a) CLI command count vs. command error
count

(b) Task duration vs. error count vs. unique
command count

Fig. 6. Error count alignment with execution duration and CLI command count

Fig. 6b aligns the task duration with error counts and unique command counts to gain per-
spective on the performance of the unique tool usage based on task completion time and its
correlation with command line inaccuracy. It demonstrates that longer duration does not neces-
sarily correlate with error frequency, as a bigger part of participants with longer task execution
time managed to stay below average error count. For example, User 1 worked on the task longer
than User 2, using fewer unique commands but experiencing more errors. Another important
observation is the relationship between unique command usage and errors. Sessions with a
higher variety of commands did not always lead to more errors. This suggests that proficiency
in command usage and familiarity with tools can significantly impact performance outcomes.

Fig. 7a highlights the usage of the Nmap tool, charting the count, complexity, and variation
of command structures. This view can help indicate the trainee’s familiarity with the specific tool



ISD2024 GDAŃSK, POLAND

(a) Nmap command usage analysis (b) Nmap option usage

Fig. 7. Analysis of Nmap command usage

and how well the trainee can use it with minimal effort to complete the average group indicators.
The figure orders the users according to the command count. High command complexity among
certain users suggests a more advanced level, and their moderate complexity variation means
consistency in their command execution (see equations in Sec. 3.) High command complexity
variations might indicate experimental approaches. Beginners with consistently low complexity
scores and minimal variations indicate less experience; this could also reflect a more cautious
approach to command usage, potentially avoiding errors. Fig. 7a indicates complexities and
overall tool usage alongside the application of specific Nmap options presented in Fig. 7b. This
view demonstrates the main trends of tool functionality usage. In this case, it shows the most
used and underutilised Nmap features. For example, User 1 used parameters applied by many
peers. In contrast, User 2 used some parameters that were not common within a group.

Fig. 6–7 work as a tool for the instructor to indicate the skill level of the particular trainee
in the assessment process. Based on the figures, User 1 struggled with command execution, as
seen by a high error rate in the CLI command analysis. The trainee executed 40 commands,
but 22 errors indicate a substantial error rate of 55%. This result suggests a lack of familiarity
with the commands and the system. The frequent usage of the --help option in Nmap and
the most common option usage further supports the hypothesis that User 1 is in a learning
phase, potentially lacking knowledge of some commands. In contrast, User 2 displayed superior
command execution skills, executing 48 commands with no errors, indicating high proficiency
and confidence in handling hands-on tasks. Using Nmap with complex options like -A for
aggressive scanning and -sV for service version detection showcases a strategic and thorough
approach. These options are critical for in-depth system analysis, showing that User 2 can
handle these commands effectively without errors.

Overall, this detailed analysis not only highlights the varying skill levels and areas for im-
provement among the participants but also shows the importance of personalised and group
training programs, which could tackle arising issues and enhance training efficiency. In ad-
dition, certain users can be identified as potentially taking on more complex tasks to further
engage in more challenging activities, while others might need more basic training to get to a
certain level.
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7. Conclusions, Limitations, and Future Work
The professional development of IT and IS specialists includes training using hands-on exer-
cises. However, the training process should be part of the educational system that employs
tools for semi-automated and AI-ready assessment and evaluation of performance proficiency.
The proof of concept, implemented according to the design of the analytics component of the
proposed solution and executed with an open dataset, demonstrated individual performance as-
sessment based on command execution patterns, frequency of errors, and task duration. The
performance report offered insights into the trainee’s confidence and familiarity with tasks. Di-
verse command structures, from basic Command-Argument to complex sequences, suggested
varying technical skill levels among participants. The community of educators benefits from
the designed solution for the formative assessment of the trainee, getting the report of command
usage patterns, and aligning individual performance with a group and command usage patterns
detected within the group. Therefore, it could work as a tool to increase training efficiency,
ensure transparency, and shape training plans.

There are potential limitations of this study. Firstly, using one specific dataset to gain in-
sights into student performance could cover only part of the diverse possibilities of command
usage. Then, the interpretation of the results may yield different insights depending on the type
of exercise conducted and the competence of the course instructor. Furthermore, the data did
not include the background information, e.g., what engagement elements the exercise included
or if the system provided hints. Technical limitations could also pose challenges; for example,
different CLI environments may require different parsing of command elements to identify their
exact meaning within the command structure correctly. Finally, the proposed method identifies
syntax errors but cannot detect logical ones.

Future improvements could enhance the tool’s resilience, safety, and flexibility. More accu-
rate identification and sanitisation of complex data types, advancing error detection, and accom-
modating different command execution environments would be crucial for a broader application
spectrum. Additionally, incorporating AI tools for refined data pattern recognition, anomaly
detection, and user behaviour forecasting could significantly enrich the tool’s analytical capa-
bilities. These advancements elevate the tool’s utility in more complex scenarios and provide
deeper, AI-driven insights into cybersecurity training and education.
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