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Abstract

The Node.js ecosystem features a large number of backend application frameworks with diverse
performance-related characteristics. Since performance is a critical factor for modern-world
applications, they need to be carefully examined. This paper analyses performance of vari-
ous frameworks and investigates changes in performance characteristics under sustained load,
grounded in the analysis of runtime environment internals. Results indicate significant dif-
ferences in application throughput obtained by various Node.js frameworks with a particular
characteristic shared between all of them, yet absent in baseline SUTs implemented in other
programming languages.
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1. Introduction
Node.js is a cross-platform, MIT-licensed JavaScript runtime environment that enables JavaScript
execution outside of a web browser. It is commonly used for server-side scripting and running
backend applications. Since its 2009 release, Node.js’ popularity has soared: the Stack Over-
flow Annual Developer Survey identified Node.js as the most popular technology in its category
since 2017.

Node.js’s popularity resulted in the emergence of a vast ecosystem of third party modules
available via its package manager, npm. As of March 2024, it hosted over 2.7 million modules,
surpassing the combined offerings of Maven Central (Java), Nuget (.NET), Packagist (PHP),
and Python Package Index. On the wave of Node.js’ popularity, several derivative backend
frameworks have been developed. They exploit various features offered by the parent runtime,
offering diverse performance and various functionalities, including request routing, user authen-
tication, or error handling.

While differences between Node.js and other technologies were thoroughly examined, little
is known about differences between various Node.js-based frameworks. Therefore, there is a
need to conduct a multi-dimensional comparison of such frameworks, to identify their strengths
and weaknesses in various scenarios. In this paper we compare performance of applications built
using various Node.js-based frameworks, and investigate changes in their performance charac-
teristics over time under sustained load. We also discuss how the underlying implementation
and optimization techniques of Node.js could explain the observed irregularities in results.

The remainder of the paper is structured as follows. In Sec. 2 we discuss the architectural
and functional details of the Node.js runtime environment. Then, Sec. 3 presents literature
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review. Sec. 4 outlines the experimental design, and Sec. 5 presents and discusses the outcomes,
followed by analysis of the threats to validity in Sec. 6, and conclusions in Sec. 7.

2. Background
Certain aspect of Node.js internal implementation may be relevant to the performance charac-
teristics of applications executed in that runtime environment. This section aims to describe
selected details of the Node.js’s architecture, focusing on the event loop concurrency model,
hidden classes, inline caching and selective machine code generation.

2.1. Event Loop Concurrency Model

Traditional web server implementations use a thread-per-connection model, in which the main
thread listens for incoming connections, and each connection is off-loaded to a separate, se-
quential thread for processing. While this approach simplifies development, such model may
not scale well under load, as each active connection requires a separate thread to be managed by
the operating system.

The event loop concurrency model addresses the shortcomings of the thread-per-connection
model. Instead of spawning a separate thread per connection, this model awaits for changes
across all connections and processes them in a single thread. This requires a different set of
OS-level primitives for I/O multiplexing, such as epoll in Linux, kqueue in MacOS or I/O
Completion ports in Windows.

Using epoll, a server can replace all connection threads with a single thread. Any op-
eration that would otherwise be a blocking call (such as a database query) is executed asyn-
chronously and once it is completed, its results are processed sequentially in an event loop
iteration. In Node.js, the event loop implementation is provided by Libuv, a C library that ab-
stracts platform-specific asynchronous I/O operations, reducing OS-specific branching within
Node.js source code [8].

2.2. The V8 JavaScript engine

The V8 JavaScript engine is embedded in Node.js as its largest dependency. It consists of
numerous modules working towards parsing, executing, and optimizing the JavaScript that is
provided to it as an input by the process in which the V8 is embedded. The incoming source code
is first parsed in order to produce an abstract syntax tree, which is later translated into bytecode
by the Ignition module. During bytecode execution, various metrics are being collected, based
on which the V8 might decide to optimize a particular unit of code using the Turbofan module.

2.3. Hidden classes

In statically typed languages objects have a predefined structure, allowing property access through
fixed memory offsets, leading to efficient operations. In contrast, JavaScript, being dynamically
typed, allows properties to be dynamically added or removed, necessitating the use of hashmaps
for object implementation. This approach, however, incurs performance and memory overheads
due to dynamic property lookups.

To mitigate these inefficiencies, the V8 JavaScript engine utilizes a concept called hidden
classes. Despite the name, hidden classes are not related to traditional object-oriented program-
ming classes; instead, they provide a structure to JavaScript objects that mimics the fixed layout
of objects in statically typed languages. Hidden classes store the memory offsets of properties,
enabling quicker access similar to that in statically typed environments.



ISD2024 GDAŃSK, POLAND

2.4. Inline caching

Usage of hidden classes in the V8 JavaScript engine enables implementation of an optimization
technique called inline caching. It is based on an observation that subsequent invocations a
given function tend to have repeating object shapes in the call arguments. If such pattern is
detected, the compiler/interpreter can cache results of expensive operations, the value of which
is known to be the same for every object with a given hidden class, i.e., determining the offset
of a particular property.

Inline caching in V8 operates by tracking all instances in the executed Ignition bytecode in
which an object’s properties are accessed. Each Object Access Site is associated with an entry in
the IC Vector, which records hidden classes observed at these sites for specific functions. When
objects with the same hidden class are repeatedly passed to a function, the relevant IC slot
becomes monomorphic, storing a cached property offset. This allows the engine to bypass full
property lookups during subsequent operations, provided that hidden class of the input matches
the one recorded in the IC slot.

2.5. Selective machine code generation with Turbofan

Turbofan, the optimizing compiler for the V8 JavaScript engine, selectively translates Ignition
bytecode into optimized machine code. This process is informed by type feedback and run-
time profiling, which helps to identify performance bottlenecks by monitoring code execution
intervals.

JavaScript’s versatility allows for the same syntax to support multiple operations, such as the
plus (+) operator functioning for both arithmetic and string concatenation, resulting in perfor-
mance costs due to runtime type checks. Turbofan uses type feedback to speculatively optimize
functions, generating machine code that anticipates specific object types. If actual parameter
types differ from these expectations, the optimized code is discarded, reverting to Ignition byte-
code through de-optimization.

3. Related work

3.1. Performance of Node.js-related applications

Since its release Node.js has become a viable alternative to traditional web development tech-
nologies, offering competitive performance and scalability [13], [1], [2]. Over the years, due
to newly added optimisations end extensions, it remained among the most popular solutions for
serving dynamic content on the web.

On the other hand, little is known about the relative comparison of various Node.js-based
frameworks. Their authors and developers sometimes report results of experiments carried out
against systems under test (SUTs) implemented in competing frameworks, but such experiments
usually involve only a single, simple load testing scenario with a static HTTP response returned
by a single endpoint and only report the average number of requests per second, without mea-
suring changes in performance characteristics over the duration of the load test.

3.2. Tools and metrics

Among testing tools, Apache JMeter remains the most commonly used utility, outperforming
other popular utilities [20]. LoadRunner is another tool used for facilitating load testing experi-
ments [3, 10, 23, 7, 17].

One of metrics used in performance studies is response time (also known as request latency).
Usually mean or median values are considered [14], [18], [17], accompanied by tail values [9],
[21], [6]. Some studies also mention the average number of completed requests per second
(RPS) as a less complex metric [14], [12], [19]. Other popular metrics refer to CPU, memory
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and bandwidth [7], [17].

3.3. Testing environment

Different settings are in use and none is preferred. Several works advocate for conducting end-
to-end load tests in a public cloud environments [14], e.g., Microsoft Azure VMs [12], which
are more representative for real-life scenarios. Another popular setup relies on two locally con-
nected machines: one for load generation and another for running the SUT [5], [11], [17, 4], but
variations are also in use, e.g., peer-to-peer load testing with multiple load generation machines
targeting a single SUT machine [15], [9] or with VMs deployed on a single computer [22], [19].
Finally, both the load driver and SUT application are also deployed on the same machine [7],
[23].

4. Approach

4.1. Research questions and hypotheses

With a large ecosystem of Node.js backend frameworks available for developers to choose from,
we aim to compare the performance characteristics of applications built using such dependencies
in various testing scenarios. Furthermore, given that optimization techniques discussed in Sec. 2
are being deployed incrementally over the executed JavaScript program lifespan, we conjecture
that Node.js server-side applications improve their performance over time under sustained load.
Specifically, we aim at answering following questions:
RQ1 What are the performance differences among applications developed using various Node.js
backend frameworks in different scenarios?
RQ2 Do Node.js backend applications improve their performance characteristics over time un-
der sustained load?

To provide the answers, we present an empirical study that involves a load test of appli-
cations developed using various Node.js-based frameworks, and running a number of typical
execution scenarios. We also discuss how various optimizations offered by the frameworks
contribute to the observed result.

4.2. Experimental setup

For comparing the performance of frameworks we used a synthetic benchmarking model. In-
stead of creating real-world applications with simulated workload that mimics actual users’
behaviour, individual functions of the SUT are tested in isolation, which helps to identify the
impact of each factor. Based on that, we designed five testing scenarios that have been used in
the study:

• Static JSON – responding with a static JSON payload (measuring framework’s perfor-
mance in the area of request routing, response writing and JSON serialization).

• Fibonacci – responding with a recursively-computed value of the 23rd element of the
Fibonacci sequence (simulating a CPU-intensive request).

• Redis – retrieving a single key from a local Redis instance over a TCP connection and
sending it back to the client to simulate asynchronous I/O workload.

• Error – reading a parameter from the request path and performing a division by zero if
the parameter value is 1 (resulting in HTTP response with code 500; testing framework-
specific exception handling).

• Validation – checking if the request query string contains two keys (integer and a string
with a minimum length of 5; testing framework’s built-in request validation features).
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Table 1. Frameworks selected for the study

Framework #forks #stars Keywords URL at GitHub

Flask (Python) 15.9K 66.2K microframework, extensibility /pallets/flask

Feathers 736 16.9K SOA, AOP, opinionated /feathersjs/feathers
NestJS (Express) 7.4K 64.1K Spring, AngularJS /nestjs/nest
Express 13.6K 63.7K minimal, robust, flexible /expressjs/express
AdonisJS 0.6K 15.4K all-in-one, MVC, custom HTTP /adonisjs/core
Hapi 1.3K 14.5K security, simplicity, stability /hapijs/hapi
Fastify 2.2K 30.5K performance /fastify/fastify

Gin (Go) 7.8K 75.3K performance, extensibility /gin-gonic/gin

4.3. Evaluated frameworks

Due to a large variety of Node.js frameworks, we employed three generic criteria to select sub-
jects: (1) popularity, measured via the number of GitHub stars and npm package downloads, (2)
versatility – general-purpose frameworks were preferred over domain-specific ones, (3) avail-
ability of documentation and other resources useful in development of SUT applications. The
frameworks are presented in Table 1.

For each framework we developed a dedicated SUT application. Furthermore, to put the col-
lected performance metrics into perspective, we developed also two additional SUT applications
exposing the same HTTP API: one in the Go programming language (using Gin framework) and
another one in Python (Flask framework), which will serve for a reference.

4.4. Tooling

To prevent a potential bottlenecking effect, a preliminary experiment was performed compar-
ing JMeter’s metrics with those obtained via WRK 1 – another popular, low-overhead HTTP
benchmarking utility. Across 5 testing scenarios, WRK has outperformed JMeter in terms of
the number of generated requests per second, with the largest gap of 134% observed in the static
JSON scenario (Go/Gin SUT), which was a strong indication of bottlenecking.

However, due to WRK’s inability to collect raw request logs (it only presents request la-
tencies in a histogram), we decided to develop a purpose-built, custom load testing tool called
Gocannon2. It was written in Go, as the use of goroutines allowed for a relatively easy devel-
opment of multi-threading features while relying on efficient, epoll-based I/O features delivered
by the underlying runtime.

4.5. Testing procedure

The entire testing procedure was automated using a bash script. Each of the SUT applications
(7 Node.js programs, 1 compiled Go binary and 1 Python project) was a subject to five testing
scenarios. To reduce bias, each test was repeated 10 times, and we report the average value.
To minimize network-related inconsistencies, all components (Gocannon, the SUT and a Redis
database instance) were running in the same machine.

Additional measures were undertaken to ensure constant hardware performance over the
entire duration of the load test. These included disabling Intel Turbo Boost, Enhanced Intel
SpeedStep Technology and frequency scaling via Linux cpupower package (to ensure a con-
stant CPU clock of 4 GHz). To confirm that the Redis instance is not becoming a bottleneck,
a benchmark was conducted using the redis-benchmark utility, which showed that without in-
struction pipelining, the system was able to sustain 130k key lookups per second.

1https://github.com/wg/wrk
2https://github.com/kffl/gocannon
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Table 2. Mean number of requests per second by framework and load testing scenario

Framework Static JSON Fibonacci Redis Validation Error

Flask (Python) 2 159.78 148.79 1 954.79 2 047.19 1 655.90

Feathers 3 158.17 1 469.11 3 506.55 3 056.99 2 571.10
NestJS (Express) 5 303.64 1 788.35 5 843.45 4 342.29 2 384.03
Express 5 850.01 1 858.43 6 264.94 4 284.94 5 388.53
AdonisJS 19 395.50 2 533.78 17 051.89 9 820.35 6 292.51
Hapi 21 782.20 2 566.75 21 731.95 15 945.76 9 314.06
NestJS (Fastify) 22 597.08 2 432.39 22 348.36 15 721.51 4 110.02
Fastify 25 737.06 2 571.89 22 976.41 23 539.39 11 484.62

Gin (Go) 42 039.97 5 743.55 29 731.90 34 242.94 1 521.76

5. Results and discussion

5.1. Comparison of Node.js backend application frameworks performance

Results showing the number of requests per second handled are presented in Table 2. The
reported time is a mean value of 10 runs, as designed in Sec. 4. Additionally, the results are
presented in Fig. 1.
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Fig. 1. Mean number of completed requests per second by framework and load testing scenario

Based on that, we provide an answer to RQ1. Details and possible explanations for the observed
results are further discussed in Sec. 5.2.

The examined application frameworks could be grouped into two categories with respect to
their performance. The first one includes Express, NestJS, and Feathers, which showed lower
performance metrics compared to other SUTs. The added complexity of NestJS and Feathers,
which are built atop of Express, further reduced their performance. The second group, with
AdonisJS, Hapi, NestJS, and Fastify, displayed superior performance in all scenarios.

Despite JavaScript’s dynamic typing, top-performing Node.js SUTs maintained robust per-
formance, even against Go-based applications. Notably, Fastify was just 23% less efficient than
Gin in a Redis scenario, managing 22,976 requests per second compared to Gin’s 29,731. Con-
versely, Python’s Flask lagged significantly, performing worst in four out of five tests.
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5.2. Framework performance in different scenarios

In testing scenarios, the Go/Gin backend excelled in static JSON load tests, handling over 42,000
requests per second. However, in CPU-intensive Fibonacci load tests, performance differences
among Node.js frameworks narrowed. All frameworks performed similarly, with the slowest
(AdonisJS) achieving results within 5% of the fastest (Fastify). Python’s Flask struggled in these
scenarios, serving requests at a rate 10 times slower than the slowest Node.js framework using
Feathers. In contrast, Go’s Gin served 120% more requests than the fastest Node.js framework
in Fibonacci tests, highlighting Go’s efficiency as a compiled, statically-typed language.

The Redis test, which involved asynchronous I/O operations, showed that slower Node.js
frameworks (Express, Feathers, and NestJS with Express) performed better than in static JSON
tests, indicating a correlation between these scenarios.

In the querystring validation test, Fastify’s schema validation (based on ajv) was the most
efficient among Node.js backend frameworks. While Hapi and NestJS (using joi and class-
validator respectively) produced comparable results, NestJS’s validation outperformed Adon-
isJS significantly, with AdonisJS serving just over half the requests compared to its performance
in the static JSON test. This suggests a substantial overhead in AdonisJS’s validation process.

In the error handling load tests, Express.js showed minimal overhead, with an 8% drop in
requests per second, compared to the static JSON test. However, NestJS exhibited significant
performance drops in this scenario, regardless of whether it used Fastify or Express, pointing to
the impact of its exception filters.

An interesting finding is that the SUT implemented in Go with the Gin framework served
the fewest requests per second in the error test, despite outperforming in other four load test-
ing scenarios. This could be linked to Go’s unique error handling approach, which involves
returning errors rather than throwing them, and the possibility of a panic that disrupts function
execution. Gin uses recover() in its middleware to handle panics and log errors, potentially
slowing performance. To explore this, a modified Go SUT with a simpler recovery middleware
that omits error log tracing was tested, showing no significant overhead from the panic/recover
mechanism itself. This test result suggests the initial performance dip was mainly due to the
resource-heavy process of iterating over stack frames accessed via the runtime library in or-
der to log stack traces in Gin’s error handling.

5.3. Changes in application performance over time under sustained load
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Fig. 2. Performance metrics of the Go (Gin) SUT in selected testing scenarios

To explore changes in application performance under sustained load, the request latency during
load tests was analyzed. For the Go/Gin SUT, as shown in Fig. 2, the request latency remained
consistent across various load testing scenarios, indicating stable throughput without significant
fluctuations. The Python/Flast baseline SUT implementation exhibits similar (stable) behaviour
under load to that of the Go backend application, albeit with a considerable performance gap.



KUFFEL AND WALTER PERFORMANCE OF NODE.JS BACKEND APPLICATION FRAMEWORKS .̇ . .

0 1 2 3 4 5
Load test duration (s)

0

20

40

60

80

100

Re
qu

es
t l

at
en

cy
 (m

s)

Python (Flask): median latency in each 250ms interval
by testing scenario

Static JSON
Redis
Query validation
Error

Fig. 3. Median response time over load test duration of the Python/Flask SUT in four load testing
scenarios
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Fig. 4. Median request latency over the Static JSON/Redis load test duration by Node.js framework

Unlike SUTs implemented in Go and Python, Node.js frameworks displayed a decrease
in request latency over time in load tests, particularly in the Redis scenario as presented in
Fig. 4. High-performance Node.js frameworks (Fastify, Hapi, and NestJS with Fastify adapter)
stabilized their latency after about 750 milliseconds, while frameworks based on Express.js
required around 2.5 seconds to achieve stable latency, as seen in both Redis and static JSON
load tests. A similar trend can be observed in the results of static JSON load testing scenario.
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Fig. 5. Median request latency over the error/validation load test duration by Node.js framework

During the error handling tests, Fastify’s performance was consistent with other scenarios, main-
taining low latency, while NestJS, using its exception filters, exhibited a noticeable latency in-
crease, especially with the Express.js dependency. This led to slower stabilization of median
request latency compared to other Node.js frameworks like Hapi and Fastify, as shown in Fig. 5.
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Express.js demonstrated a faster stabilization at around 1.5 seconds, quicker than in other scenar-
ios. Concluding, the tendency for the median request latency to drop over the first few seconds
of the test was observed in every scenario executed against every Node.js SUT.

The time it takes for median request latency to reach a stable value since the beginning of
the test is correlated with the overall SUT performance in the load test. As depicted in Fig. 6, the
lower the final median request latency obtained in latter time-frame of the load test, the sooner
that the observed flattening occurs. Same is true for the 75th, 90th and 99th percentile values.

The performance of Node.js backend applications tends to improve over time under load,
confirming our initial conjecture and providing an answer to RQ2. This behavior is particularly
relevant in high-throughput environments where applications are scaled horizontally behind load
balancers using algorithms like Round-Robin or Least-Connections [16]. Since newly added
instances may initially perform less effectively, the Least-Connections method, which routes
traffic to the least busy instance, is recommended to prevent overloading these new instances.

Regarding load testing, since Node.js applications show decreasing request latency until a
stable point is reached, we advise conducting prolonged load tests. This approach helps account
for the initial warm-up phase, providing a more accurate measure of the throughput.

The study highlights significant performance disparities among Node.js frameworks. Ex-
press.js, despite its popularity, shows poor performance relative to newer frameworks with less
overhead. This impacts frameworks like NestJS and Feathers that rely on Express.js, resulting in
lower performance metrics. Conversely, frameworks such as Fastify, Hapi, and AdonisJS exhibit
robust load resistance, comparable even to Go-based applications. Notably, NestJS, when con-
figured to use Fastify instead of Express, nearly matches the performance of standalone Fastify
setups, despite its robust functionality. This demonstrates the potential for significant perfor-
mance gains through strategic framework selection. AdonisJS also shows strong performance
by avoiding reliance on Express.js and using a custom HTTP server.

6. Threats to validity
Conclusion validity: Concerns arise from using a custom-developed HTTP benchmarking tool
over established software like JMeter, performance of which was found inadequate for our
needs. Low-overhead alternatives could not capture performance changes over time, crucial
for testing our hypothesis. We mitigated thhe risks by calibrating our tool, Gocannon, against
established benchmarks like WRK.

Internal validity: Improvements in Node.js performance might not solely be due to V8 en-
gine optimizations. To test this, additional SUTs in Go and Python were implemented and
showed no similar performance anomalies, confirming the influence of V8’s Turbofan optimiza-
tions on Node.js performance.

External validity: To generalize results beyond the experimental settings, various load test-
ing scenarios were executed. Since all of the examined frameworks improved their performance
metrics over the first seconds of the load test in every scenario, we conjecture that such perfor-
mance anomaly is inherent to Node.js backend applications.

Construct validity: While aiming for realistic backend simulation, synthetic benchmarking
was chosen to eliminate confounding factors, following framework best practices and utiliz-
ing recommended libraries. This approach, while potentially limiting real-world applicability,
ensured controlled testing environments as outlined in Sec. 4.

7. Conclusions
In this study we examined a number of JavaScript frameworks in several testing scenarios, to
evaluate their performance under load.

The contributions of the paper are two-fold. First, the results show that the performance of
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Node.js backend applications improve over time under sustained load. The subject SUTs ex-
hibited such tendency in every load testing scenario included in the experiment. The fact that
such performance anomalies were not observed in baseline Python and Go SUT implementa-
tions strongly indicates that the observed peculiarity is, as previously hypothesised, caused by
Node.js runtime optimization techniques used by the V8 JavaScript engine. Secondly, we also
contribute a tool that solves several issues of synthetic benchmarks with measuring changes of
performance in time.

Based on the observations reported in this work, we formulate the following practical rec-
ommendations for Node.js backend application developers:

• If achieving low request latency and high throughput is a strict requirement, then Fastify,
Hapi, AdonisJS or NestJS should be preferred over Express.js.

• For NestJS-based applications, we advise to use a Fastify adapter instead of the default
Express HTTP server implementation.

• We also advise to use least-connections load balancing algorithm instead of round-robin
when deploying them behind a load balancer in an effort to prevent newly-spawned in-
stances from becoming overloaded.

• We also recommend to avoid using Node.js for latency-critical applications for which
delivering consistent performance throughout the entire process lifetime without allowing
for any warm-up period under reduced load after application startup is critical.

In the future, this study could be extended by incorporating real-world applications with
simulated load modelled after actual user behaviour.
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Fig. 6. Median, 75th, 90th and 99th latency percentiles of requests completed by Fastify, AdonisJS
and Express.js SUTs by load testing scenario


