
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)

A Use Case Grammar for Requirements Specification

Marinos Georgiades

University of Tartu

Tartu, Estonia marinos.georgiades@ut.ee

Abstract

This paper proposes a use case grammar for the specification of functional requirements.

The proposed grammar is defined in EBNF, tested in ANTLR and provides syntactic and

semantic rules for writing use case specifications in semi-formal natural language. Such

formalization not only helps to make the expression of requirements more disciplined,

understandable, well-structured and validated, but it also makes easier their conversion

into diagrammatic notations, such as use case and sequence diagrams. It also helps in

reducing the time to identify and specify requirements, in diminishing redundancies,

inconsistencies and omissions, and, generally, in producing better requirements.

Keywords: use case modeling, requirements formalization, use case grammar, software

engineering, requirements engineering

1. Introduction

Use case modeling is a popular way of describing functional requirements, in the field of

software engineering. One reason for its popularity is that a well-written use case is relatively

easy to read, since it is written in natural language following a scenario style. However, easy-

to-read does not also mean easy-to-write. The most common mistakes in writing use cases are

related, on the one hand, to the omission of information, such as omitted use case actions,

subjects of sentences, and related use cases (e.g., extending or included ones), and, on the

other hand, to the use of redundant information such as assumptions about the user interface

design, duplicate actions, and actions with technical or out-of-scope details. Table 1 depicts

examples of such mistakes:

Table 1. Bad and good examples of use case writing for use case "Create prescription”.

Bad specification Good specification

… …

3. Input name.

}
3. Patient inputs personal information (name,

address, ID). 4. Input address.

5. Input ID.

 4. System validates patient information.

6. Select medicines and quantities.

→ 5. Doctor selects medicines and quantities.
[Extension point. UC Receive advice]

7. Click button to submit prescription. → 6. Doctor submits prescription.

 7. System validates medicine availability and

quantity.

8. Connect to database and save prescription form. → 8. System saves prescription.

- Steps 3,4 and 5 on the left column make redundant use of action “input”.

- The subjects/primary actors were wrongly omitted from the steps on the left column.
- Step 6, left column: extending use case “Receive advice” was wrongly omitted.

- Step 7, left column: interface details should be omitted at Requirements level; to be defined at

Design level (e.g., “Doctor submits prescription by using button/stylus/voice).

- Step 8 on the left column wrongly goes into technical, low-level details.

- Validation steps were wrongly omitted on the left column; they have been included correctly in the

right column (steps 4 and 7)

mailto:marinos.georgiades@ut.ee

GEORGIADES A USE CASE GRAMMAR FOR REQUIREMENTS SPECIFICATION

Existing use case driven analysis (UCDA) approaches often result in poorly defined

use case models for the following reasons: (i) lack of semantic and syntactic preciseness

for identifying the main elements of the use case model, such as use cases, actors, basic

and alternative flow actions, pre- and post- conditions, and relationships [1]; (ii) use of

free natural language (NL) to define the use case specifications, which leads to

ambiguities and inconsistencies, conflicts with domain terminology and implementation

details (jargon-contaminated use cases) which make the specifications difficult to be

maintained and also understood by customers. El-Attar and Miller [2] recognize that

these problems produce low quality information systems (ISs); (iii) limited support of

dedicated software tools, which makes UCDA a time-consuming and error-prone

activity. The lack of a formal semantics hinders the use of automated tools for use case

modelling, refinement, verification and transformation, since informal NL is inherently

complex, vague and ambiguous.

This paper presents a grammar that provides syntactic and semantic rules for writing

use case specifications in semi-formal natural language. The proposed grammar utilizes

fundamental information system elements, such as the functions for creating, altering,

storing, presenting and transmitting information, and, therefore, it can be applied in the IS

domain. The presented grammar is written in extended Backus–Naur form (EBNF);

expressing the use case model in EBNF allows to formally prove key properties, such as

well-formedness and closure, and, hence, help validate the semantics. Furthermore, the

proposed grammar has been developed with Another Tool for Language Recognition

(ANTLR), which is a parser and translator generator tool that lets one define language

grammars in EBNF-like syntax as well as running concrete examples of the defined

grammar and isolating any mistakes. To sum up, such a grammar not only helps to make

expression of use case-based requirements more disciplined, understandable and

organized, but it also makes easier their conversion into diagrammatic notations, such as

use case and sequence diagrams.

The rest of this paper is structured as follows: Section 2 summarizes related work,

Section 3 elaborates on the proposed grammar, and Section 4 presents conclusions and

future goals.

2. Related Work

A number of structured techniques for the description of use cases have been proposed.

In Eriksson et al.’s work [3], a tabular representation is used, and in Leite et al.’s [4], a

structured natural language is presented for use case description. These structured

representations provide a generic formalization of the use case (UC) specification

template, hence not a clear formalism of the use case specification elements, and

especially the basic and alternative flow actions. Osaki et al. [5] provide some textual

statements representing actor and system behavior, however, in addition to the lack of

action types included in their work as well as of other use case elements, the proposed

actions are not placed in any order or sequence, and they also lack the well-formedness of

a grammar with syntactical and semantic rules. Moreover, some formal techniques such

as formal grammars [6], statecharts [7, 8] and scenario trees [8] were introduced for the

description of use cases or their scenarios. Although such formal representations facilitate

formal analysis, they are difficult for analysts and users to understand and use.

Savi et al. [9, 10] have developed a grammar in BNF that covers only three types of

actions; these actions are “Actor (user) prepares data for system operation execution”,

“Actor call system to execute system operation”, and “System returns results of system

operation execution”. In addition to the lack of action types included in their grammar,

user actions are placed as a separate group from system actions within their use case

specification, contrary to the grammar proposed in this paper that it associates a use case

with a specific action block, and according to the type of the action block (Create, Alter,

Erase, Read), specific user and system actions, combined in a specific sequence, are used

to form the main flow of the use case. Golbaz et al. [11] also propose a use case grammar

 ISD2024 GDAŃSK, POLAND

which is defined in XML, but their work lacks covering any specific types of actions.

However, their XML grammar and the fact that they use XSLT to transform their use

cases from a concrete syntax expressed in semi-formal language to that of a natural

language-like form provide useful insights for future work related to the grammar

proposed in this paper.

Jacobson [12] has also suggested the following well-known combination of use case

actions:

• The primary actor sends request and data to the system

• The system validates the request and the data

• The system alters its internal state

• The system responds to the actor with the result.

This is a generic approach, lacking, on the one hand, the well-formedness of a grammar

with syntactical and semantic rules, and, on the other hand, of additional and more

specific user and system actions together with the rest of the elements of a use case

specification, all defined under a use case grammar.

3. The proposed grammar

The proposed EBNF-based grammar has been developed with the Another Tool for

Language Recognition (ANTLR) parser generator. ANTLR is a parser and translator

generator tool that lets one define language grammars in EBNF-like syntax. In particular,

this work has used ANTLRWorks, which is a grammar development GUI environment

for ANTLR grammars. It combines a grammar-aware editor with an interpreter for rapid

prototyping and a language-agnostic debugger for isolating grammar errors [13]. The

following paragraphs elaborate on the abstract syntax of the most important rules of the

proposed grammar as well as on the concrete syntax of several rules. Section 3 concludes

with a complete concrete syntax for the use case Create Prescription.

 The proposed grammar starts with defining the root parser rule UseCaseSpecification

(Table 2). It defines the main elements of a use case specification including the use case

identification through the parser rule useCase, the use case description through the parser rule

description, the primary and secondary actors through the parser rule actors, preconditions

and postconditions through the parser rules preconditions and postconditions, respectively, the

main flow through the parser rule mainFlow, and the exceptions through the parser rule

exceptions.

Table 2. Abstract syntax of the useCaseSpecification parser rule
useCaseSpecification

 : useCase

 description

 preConditions

 actors

 mainFlow

 exceptions

 postConditions ;

The useCase parser rule defines a use case with a unique identifier and a use case name

(Table 3). Ιn EBNF, the question mark symbol denotes optional behavior that may happen

only once, so the use of the unique identifier is optional.

Table 3. Abstract syntax of the useCase parser rule
useCase

 : ucID? ucName

 ;

ucID

 : 'UC' INTEGER ;

Each use case is related to one domain concept, namely the Information Object (IO), and it

GEORGIADES A USE CASE GRAMMAR FOR REQUIREMENTS SPECIFICATION

also falls under a use case type; these two (IO, type) make up the use case name which is

defined by the parser rule below (Table 4).

Table 4. Abstract syntax of the ucName parser rule.

ucName

 : ucType io ;

Note: The parser rules ucType and io are presented in Tables 6 and 5, respectively.

According to Georgiades and Andreou [14]:

An information object (IO) is a digital representation of a tangible or intangible

entity—described by a set of attributes—which the users need to manage

through creating, modifying, reading, and erasing its instances, and be notified

by the messages each instance (IOi) can trigger1. [p. 269]

Information objects are distinguished into the following categories: business role (as a type

of animate [supertype] entity, e.g., doctor), inanimate entity (e.g., car), procedure (e.g.,

translation), document (e.g., book), event (e.g., appointment), site (e.g., country, hospital),

and state (e.g., disease). This distinction makes easier the identification and organization of

the basic elements of an information system and their association with use case elements (e.g.,

business roles[people]→actors, ucType+IO[function]→use case), their relationships, and the

identification of the attributes of an IO, which (viz. the attributes) have to be processed by use

cases. It is worth noting that by specifying the type of an IO, the analyst will be able to

identify its attributes more easily (more information on this is out of the scope of this paper).

Table 5 below presents the abstract syntax of the parser rule io for the Information Object.

Table 5. Abstract syntax of the io parser rule
io

 : ioName ioType?

 ;

ioName

 : CAPITALIZED_NOUN | 'Authentication'

 ;

ioType

 : 'type' '"' IO_TYPE '"'

 ;

Where

IO_TYPE : 'business role' | 'inanimate'| 'procedure'| 'document'| 'event'| 'site'|

'state';

CAPITALIZED_NOUN : ('A'..'Z') ('a'..'z'|'A'..'Z'|'_')*;

Note: Concrete syntax examples of the io parser rule could be “Prescription” and

“Examination”, or “Prescription type document” and “Examination type procedure”.

The parser rule ucType (Table 6) indicates the types of functions which are applicable to

an information object. ucType use cases follow the nine use case patterns proposed by

Georgiades and Andreou [14], namely (a) Create information object (IO), (b) Correct IO, (c)

Alter IO state, which leads to the more specialized patterns Cancel IO, Archive IO, and

Complete IO, (d) Erase IO (e) Read IO, (f) Read IO intra-report | inter-report, (g) Read

supporting information, (h) Notify, and (i) Authorize. It is worth noting that as ucType use

cases are applied to electronic information following the abovementioned nine patterns,

strong verbs of the domain vocabulary, such as “enroll” and “register”, should be examined if

they can be transformed to information objects in the form of their corresponding nouns. For

example, “enroll” derives the noun “enrolment”, and “register” derives the noun

“registration”. As a result, a use case titled “Enroll in Seminar” by conventional approaches

(e.g., [15]), leads to the use of the IOs Enrolment and Seminar, under the proposed grammar,

as well as to the use of the relevant ucType use cases for each IO. For example, for the IO

1 An IO is conceived and processed at an abstraction level, while an IOi is conceived and processed at a factual level; instances of

the same IO differ only in the values of their attributes.

 ISD2024 GDAŃSK, POLAND

Enrolment, there are the use cases Create Enrolment, Correct Enrolment, Cancel Enrolment,

Archive Enrolment, Complete Enrolment, etc., and for the IO Seminar, there are the use cases

Create Seminar, Correct Seminar, Cancel Seminar, Archive Seminar, Complete Seminar, etc.

Table 6. Abstract syntax of the ucType parser rule
ucType

 : 'create' | 'creates' | alter | read | 'erase' | 'erases' | notify

 ;

alter

 : 'correct' | 'corrects' | alter_expanded

 ;

alter_expanded

 : 'cancel' | 'cancels' | 'archive' | 'archives' | 'complete' |

'completes' | VERB

 ;

read

 : 'read' | ('read' 'report' 'about') | 'reads' | ('reads' 'report'

'about')

 ;

notify

 : ('send' | 'sends') 'Notification' ('about' 'the' ('creation' |

'altering' | 'reading' | 'erasing'))? 'of'

 ;

Table 7 below shows the abstract parser rule description and its concrete syntax for

the use case Create Prescription.

Table 7. Abstract and a concrete syntax of the description parser rule
description

 : 'Description' ':' primaryActor ucName '.' (((secondaryActor) ('and'

secondaryActor)*) (('provides' 'or' 'verifies') | ('provide' 'or' 'verify'))

'relevant' 'information.')? (secondaryActor ('and' secondaryActor)* ('is an intended

recipient' | 'are intended recipients') 'of' io '.')?

Description: Doctor creates Prescription. Patient and Medical_system provide or verify

relevant information. Pharmacist is an intended recipient of Prescription.

Actors are defined through the actors parser rule, as depicted below (Table 8).

Specifically, the rule allows the definition of one primary actor and zero or more secondary

actors.

Table 8. Abstract syntax of the actors parser rule

actors

 : 'Actors' ':' primaryActor (',' secondaryActor)*

 ;

Primary actors fall into three categories, and secondary actors fall into two categories, as

defined by the rules in Table 9 below.

The Section 3.2 complete concrete syntax of the use case Create Prescription presents the

concrete syntax of the actors doctor, patient and pharmacist, based on the corresponding

abstract rules depicted in Tables 8 and 9. For clarification purposes, the same concrete syntax

is depicted here, too:

Actors: Doctor (type: creator), Patient (type: accompaniment), Pharmacist (type:

intended recipient)

To identify the actors involved in each use case, the functional roles provided by

Georgiades and Andreou [16] are utilized. Indicatively, a Create use case involves the

functional roles creator, accompaniment, intended recipient, and notifiee. The creator is

played by a primary actor, while the accompaniment, intended recipient and notifiee are

played by secondary actors. The creator is responsible for setting (or confirming) the values

of a number of particular attributes (required and optional) of an IOi (e.g., Doctor is the

GEORGIADES A USE CASE GRAMMAR FOR REQUIREMENTS SPECIFICATION

creator of prescriptions in the UC Create Prescription). The accompaniment participates in

close association with the creator to help in the creation of an instance of the IO (e.g., Patient

provides to the Doctor information about his/her physical condition/pain so that an

examination is created through the UC Create Examination. Another accompaniment in this

use case could be the Nurse that provides help during the examination, including the

completion of the relevant examination form. The intended recipient (IR) takes action after

being notified about the creation of an IOi. The action to be taken needs to fulfil the purpose

of having/using the IO, and the fulfilment is achieved by creating or altering instances of

other related IOs. For example, in the UC Create Prescription, Pharmacist is one IR of the

Prescription IO, because after the creation of a Prescription IOi, the pharmacist will fulfil the

purpose of having/using the prescription (the purpose is to provide medicines to the patient)

by altering the relevant Medicine IOi (since the medicine handed to the patient must be

removed electronically from the system, by reducing its quantity).

Table 9. Abstract syntax of the primary and secondary actors parser rules

primaryActor

 : actorName paType?

 ;

actorName

 : CAPITALIZED_NOUN

 ;

paType

 : '(' 'type:' PA_TYPE ')'

 ;

secondaryActor

 : actorName saType?

 ;

saType

 : '(' 'type:' SA_TYPE ')'

 ;

Where

PA_TYPE : 'creator' | 'alterer' | 'experiencer';

SA_TYPE : 'accompaniment' | 'intended recipient' | 'notifiee';

CAPITALIZED_NOUN : ('A'..'Z') ('a'..'z'|'A'..'Z'|'_')*;

 To derive the actors from their functional roles, specific questions need to be made. The

following are indicative question patterns for identifying (i) the creator: Who should create an

<IO> ? Who has the responsibility for the creation of a(n) <IO>?; and (ii) the

accompaniment: Who should assist the <Creator> to create an <IO>? How does the

<Accompaniment> help the <Creator> during the creation of an <IO>?

Additionally, the collaboration between a primary actor and an accompaniment can derive

both include and extend relationships, where extending or included use cases are invoked by

their base use cases and involve the accompaniments. These use cases are called

complementary. For example, during the creation of a prescription, the doctor may need to

ask for the assistance of another doctor/counsellor or of a medical database system, in order,

for example, to choose between two medicines for the treatment of a patient. In this case the

counsellor and the medical system are accompaniments that provide feedback, and the use

cases Read Counsellor and Read Medical System Report extend the behaviour of the use case

Create Prescription.

Moreover, the use of the intended recipient helps in identifying preconditions by checking

if the primary actor of one use case is an IR in another related (preceding, specifically) use

case. For example, the primary actor of UC Create Examination is Doctor; Doctor is also an

IR in the latter use case, as a doctor will be notified about the creation of an examination and

take some action by creating or altering instances of another IO, that is, Prescription;

therefore, in this example, a precondition of the UC Create Prescription is “Examination is in

Complete state (from the related [preceding] use case Create Examination).”

 ISD2024 GDAŃSK, POLAND

Another type of precondition refers to the primary actor (e.g., the Creator) that initiates the

use case. Normally, the system must check that the primary actor is authenticated or

authorized to initiate the use case. For example, for the UC Create Prescription, “Doctor is

authorized” is a precondition. The abstract syntax of preconditions is depicted in Table 10

below. Similarly, the abstract syntax of postconditions is depicted in Table 11.

Table 10. Abstract syntax of the preConditions parser rule
preConditions

 : 'Pre-conditions' ':' (INTEGER '.' precondition)*

 ;

precondition

 : statePre | authe_pre | autho_pre | other_pre

 ;

statePre

 : io 'is at' state 'state' '.' 'Triggered by' useCase (',' useCase)* '.'

//useCase is an essentially preceding use case which causes the initiation of the

state.

 ;

state

 : 'Cancelled' | 'Pending' | 'Complete' | SMALL_NOUN

 ;

authe_pre

 : primaryActor 'is authenticated' '.'

 ;

autho_pre

 : primaryActor 'is authorized' '.'

 ;

other_pre

 : IDENT

 ;

SMALL_NOUN : ('a'..'z') ('a'..'z'|'_')*;

Table 11. Abstract syntax of the postConditions parser rule

postConditions

 : 'Post-conditions' ':' (INTEGER '.' postCondition)*

 ;

postCondition

 : io 'is at' state 'state' '.'

;

3.1. Main Flow

The main flow parser rule mainFlow defines the actual execution of the use case. It includes

one of the action blocks actionBlockCreate, actionBlockAlter, actionBlockErase and

actionBlockRead. Below (Table 12) is the abstract syntax of the main flow parser rule.

Table 12. Abstract syntax of the mainFlow parser rule

mainFlow

 : 'Main' 'Flow' ':' actionBlockCreate | actionBlockAlter |

actionBlockRead | actionBlockErase

 ;

Moreover, use case actions are divided into two main types: (i) user actions which are

performed by the users, and these are: input, request, submit, and confirm; (ii) system actions

which are performed by the system, and these are: validate, save, prompt, notify, and

calculate. All these actions extend the ones provided by Georgiades and Andreou [14]. Their

corresponding parser rules will be presented further below in this paper.

Additionally, according to the type of the action block (Create, Alter, etc.), there is a

difference on what user and system actions are used as well as their sequence. Below (Table

13) is the sequence of the actions of the actionBlockCreate.

GEORGIADES A USE CASE GRAMMAR FOR REQUIREMENTS SPECIFICATION

Table 13. Abstract syntax of actionBlockCreate

actionBlockCreate

 : initialUA

 validateAuthorization?

 (presentCreateSA extended_by? Includes?)

 (inputUA extended_by* validate_inputSA?)+

 submitUA

 validateSA

 saveSA

 (notifySA includes?)? ;

The parser rule actionBlockCreate starts with an initial user action, that is, a request to

create a new information object (Table 14). Table 15 depicts a concrete syntax validated in

ANTLR.

Table 14. Abstract syntax of the parser rule initialUA

initialUA : ‘UA’ INTEGER ‘.’ primaryActor ‘requests to’ ucName ‘.’;

Note: For actionBlockCreate, the ucType (part of ucName) value is “Create”.

Table 15. A concrete syntax of the parser rule initialUA

UA 1. Doctor requests to create Prescription.

The parser rule validateAuthorization (mentioned in Table 13) refers to a system action

that will check if the actor is logged in and authorized to create this information object. As

previously mentioned, in EBNF the question mark symbol denotes optional behavior that may

happen only once. Subsequently, the parser rule presentCreateSA involves another system

action, that is, the system will prompt the user, with a form, to complete the latter and, thus,

create an instance of the IO. The abstract syntax of this rule is depicted in Table 16, while a

concrete syntax is presented in Table 17.

Table 16. Abstract syntax of the parser rule for prompting a user to fill a form and create an IOi

presentCreateSA : 'SA' INTEGER '.' 'The system prompts' primaryActor 'to

 input the required and optional attribute values of the' io '.' ;

Table 17. A concrete syntax of the parser rule for presenting a form to create an IOi

SA 2. The system prompts Doctor to input the required and optional attribute values of

the Prescription.

The parser rule extended_by (in Tables 13 & 18) denotes that the Create IO use case is

extended by another use case (or more – denoted by a succeeding asterisk). In such a case, the

phrase “Extension point.” must be written on the right of the action that triggers the extension,

followed by the ID and name of the extending use case. Similarly, the parser rule Includes (in

Tables 13 & 18) denotes that the Create IO use case includes another use case (or more). The

full example presented in section 3.2 includes the concrete syntax for invoking two extending

use cases and one included use case. The paragraph below expands more on the extended_by

rule.

Table 18. Abstract syntax of the parser rules “extend” and “include” relationships.

extended_by

 : '[' 'Extension point.' useCase ']'

 ;

includes

 : '[' 'via' useCase ']' ;

Following, the parser rule inputUA (in Table 19) refers to the user’s action of inputting

data to the form for the creation of the IOi. inputUA is followed by the optional rule

extended_by* as depicted in the main flow of the Create action block in Table 13, which

denotes that inputting data could be extended by zero or more other use cases that provide

 ISD2024 GDAŃSK, POLAND

supporting information, such as reports and documents; such supporting use cases could

trigger the involvement of secondary actors. For example, for the UC Create Prescription, for

the action Input medicine, the doctor might need guidance by a medical guide or a medical

counsellor, hence UC Create Prescription is extended by UC Read Counsellor Report; the

same action is also extended by the use case Read Examination Report (see the complete,

concrete example in section 3.2). inputUA is also followed by the optional rule

validate_inputSA? denoting that inputting data could be validated. System action 4 “The

System validates PatientID of Prescription.” of the full concrete example is such a validation

action. It is noteworthy to mention that in EBNF, the plus sign (+), appearing in Table 13

regarding inputUA, indicates "one or more occurrences."

Table 19. Abstract syntax of the parser rule for inputting form data

inputUA

 : 'UA' INTEGER '.' primaryActor 'input' | 'inputs'

 ioAttribute '.' (secondaryActor ('provides' | 'verifies') 'this information'

'.')? ;

ioAttribute determines the value added to the form for an attribute of the IOi. If there are

more than one attribute values to be added, then an iteration of this addition will take place as

depicted in Table 19 and in the example of section 3.2. Table 20 below presents the abstract

syntax of the IO attribute.

Table 20. Abstract syntax of the parser rule for naming an attribute

ioAttribute

 : CAPITALIZED_NOUN 'of' io

 ;

CAPITALIZED_NOUN : ('A'..'Z') ('a'..'z'|'A'..'Z'|'_')*;

 The submitUA user action parser rule, which follows, denotes that the user submits the

form, while the next rule validateSA defines a system action denoting that the system checks

the values of the attributes, and if everything is correct, it saves the new information object

instance through the parser rule SaveSA (Tables 13, 21 and concrete example of section 3.2).

Table 21. Abstract syntax of the parser rules for submitting, validating and saving the form data

submitUA : 'UA' INTEGER '.' primaryActor 'submits the form of the' io '.' ;

validateSA : 'SA' INTEGER '.' 'The' 'System validates the attributes of the

 submitted form. ;

saveSA : 'SA' INTEGER '.' 'The System saves the form' '.' ;

Furthermore, the system, through the parser rule notifySA (Tables 22 and 13), notifies the

primary actor and any interested secondary actors about the creation of the information

object. Step 10 of the example of section 3.2 below presents a concrete syntax of notifySA.

Table 22. Abstract syntax of the parser rule for notifying other actors about the creation of the IO

notifySA : 'SA' INTEGER '.' 'The System' notify io 'to the following' actors '.';

notify

 : ('send' | 'sends') 'Notification' ('about' 'the' ('creation' |

'altering' | 'reading' | 'erasing'))? 'of'

 ;

Finally, the parser rule exceptions (Table 23) currently covers the case of incorrect input

values. This parser rule will be expanded in the future to cover more cases of alternate and

exception scenarios, especially regarding validation checks and errors.

Table 23. Abstract syntax of the parser rule exceptions.

exceptions

 : 'Exceptions' ':' (INTEGER '.' INTEGER '.' (INTEGER '.')? exception)*

 ;

exception

 : ioAttribute 'is_incorrect' ':' 'Invalid' 'input' '.' ;

GEORGIADES A USE CASE GRAMMAR FOR REQUIREMENTS SPECIFICATION

3.2. Example

Below is the concrete syntax of the use case Create Prescription developed and validated in

ANTLR, based on the abstract syntax described in this paper.

UC 1 create Prescription =

Description: Doctor creates Prescription. Patient and Medical_system provide or verify relevant

information. Pharmacist is an Intended Recipient of Prescription.

Pre-conditions: 1. Examination is at Complete state. Triggered by UC 11 create Examination.

 2. Doctor is authorized.

Actors: Doctor (type: creator), Patient (type: accompaniment), Pharmacist (type: intended recipient)

Main Flow: UA 1. Doctor requests to create Prescription.

 SA 2. The system prompts Doctor to input the required and optional attribute

values of Prescription.

 UA 3. Doctor inputs PatientID of Prescription.

SA 4. The System validates PatientID of Prescription.

UA 5. Doctor inputs Medicine1 of Prescription. [Extension point. UC 12 Read

Examination report] [Extension point: UC 22 Read Counsellor Report]

UA 6. Doctor inputs Medicine2 of Prescription. [Extension point. UC 12 Read

Examination report] [Extension point: UC 22 Read Counsellor Report]

 UA 7. Doctor submits the form of Prescription.

 SA 8. The System validates the attributes of the submitted form.

 SA 9. The System saves the form.

 SA 10. The System sends Notification about the creation of Prescription to the

following Actors: Doctor, Patient, Pharmacist. [via UC 15 send Notification of Prescription]

Exceptions: 4.1. PatientID of Prescription is_incorrect: Invalid input.

 8.5.1. Medicine1 of Prescription is_incorrect: Invalid input.

 8.6.1. Medicine2 of Prescription is_incorrect: Invalid input

Post-conditions: 1. Prescription is at Pending state.

4. Conclusions and future work

This paper presented a grammar for the formalization of the use case model. The

proposed grammar, which has been defined in EBNF, and developed and tested in

ANTLR, provides syntactic and semantic rules for writing use case specifications in

semi-formal natural language. Use cases can be written in ANTLR, in the form of

concrete syntax, and are validated against the already defined abstract syntax, which has

been described in this paper. One of the main aspects of this grammar is that it associates

a use case with a specific action block, and according to the type of the action block

(Create, Alter, Erase, Read), specific user and system actions, in a specific sequence, are

used to form the main flow of the use case. Conclusively, the proposed grammar, within

its powerful development and testing environment, helps to make expression of use case-

based requirements more disciplined, understandable, well-formed, correct and complete,

and it also makes easier their conversion into diagrammatic notations.

Future work will involve the extension of the presented grammar with transformation

rules in order to automatically create use case and sequence diagrams. Furthermore, other

platforms or languages will be explored for the representation and transformation of the

proposed grammar, such as XML and XSLT. Also, XQuery could be used for querying

and processing use case data, in order to come to useful conclusions, especially about

metrics such as the number of actors and use cases of a project, or the average number of

actions or steps regarding various projects. When these measurements are taken on a

regular basis, they can be used for project estimation purposes. Additional future work

will involve the expansion of the existing rules for the alternate and exception scenarios

to cover more cases, especially regarding validation checks and errors. One more aspect

that will be investigated is the enhancement of the proposed grammar with further rules

or features that will allow the enrichment of the use case specifications (especially their

scenarios) with supplementary details (e.g., about user interface or data model elements)

important for the implementation of the use cases. Finally, future work will deal with

 ISD2024 GDAŃSK, POLAND

utilizing and testing the proposed grammar in several real-world projects, and the

resulting use cases will be evaluated for correctness, completeness and consistency.

References

1. Sinnig, D., Chalin, P., Khendek, F.: LTS semantics for use case models. ACM

Symposium on Applied Computing (2009)

2. El-Attar, M., Miller, J.: Matching Antipatterns to Improve the Quality of Use Case

Models. In: Proceeding of the 14th IEEE International Requirements Engineering

Conference (RE'06), pp.99-108 (2006)

3. Eriksson, M., Börstler, K., Borg, K.: Marrying Features and Use Cases for Product Line

Requirements Modeling of Embedded Systems. In: Proceedings of the Fourth Conference

on Software Engineering Research and Practice (SERPS'04), Sweden, pp.73-82 (2004)

4. Leite, J., Rossi, G., Balaguer, M., Kaplan, G., Hadad, G., Oliveros, A.: Enhancing a

Requirements Baseline with Scenarios. In Proceedings of Requirements Engineering,

Annapolis, USA (1997)

5. Osaki, T., Kobayashi, A., Kato, T.: Writing Use-Case with a Minimal Set of Words. In

Proceedings of the 5th IEEE/ACIS International Conference on Computer and

Information Science, pp. 393–398, (2006)

6. Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., Chen, C.: Formal approach to

Scenario Analysis, IEEE Software, 11(2), 33-41 (1994)

7. Glinz, M.: An Integrated Formal Model of Scenarios Based on Statecharts. In

Proceedings of 5th European Software Engineering Conference, Sitges, Spain, Springer

(Lecture Notes in Computer Science 989), pp. 254-271 (1995)

8. Seybold, C., Meier, S., Glinz, M.: Scenario-driven modeling and validation of

requirements models. In: 5th ICSE International Workshop on Scenarios and State

Machines: Models, Algorithms and Tools, Shanghai, pp. 83-89 (2006)

9. Savic, D., Antovic, I., Vlajic, S., Stanojevic, V., Milic, M.: Language for Use Case

Specification. In: IEEE 34th Software Engineering Workshop, Limerick, Ireland, pp. 19-

26 (2011) doi: 10.1109/SEW.2011.9.

10. Savic, D., Vlajic, S., Lazarevic, S., Antović, I., Stanojevic, V., Milic, M., Silva, A.R.: Use

Case Specification Using the SILABREQ Domain Specific Language. Comput.

Informatics 34, 877-910 (2015)

11. Golbaz, M., Hasheminasab, A., Daneshpour, N.: An XML Definition Language to

Support Use Case-Based Requirements Engineering. Proceeding of the International

Multiconference of Engineers and Computer Scientists (IMECS 2008), Vol. 1 (2008)

12. Jacobson, I., Christerson, M., Johnsson, P., Overgaard, G.: Object-Oriented Software

Engineering: A Use Case Driven Approach. Addison-Wesley, Wokingham, England

(1992)

13. ANTLRWorks: The ANTLR GUI Development Environment,

https://www.antlr3.org/works/, Accessed February 2, 2024

14. Georgiades, M., Andreou, A.: Patterns for Use Case Context and Content. In: Favaro, J.,

Morisio, M. (eds) Safe and Secure Software Reuse. ICSR 2013. Lecture Notes in

Computer Science, vol 7925, Springer, Berlin, Heidelberg (2013)

https://doi.org/10.1007/978-3-642-38977-1_18

15. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley. ISBN: 0201702258 (2000)

16. Georgiades, M., Andreou, A.: Formalizing and Automating Use Case Model

Development. The Open Software Engineering Journal 6, 21-40 (2012)

