
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)

A Machine Learning Approach for Estimating Overtime

Allocation in Software Development Projects

Hammed Adeleye Mojeed

Department of Computer System Architecture,

Faculty of Electronics, Telecommunication and

Informatics, Gdansk University of Technology

Gdansk, Poland hammed.mojeed@pg.edu.pl

Rafal Szlapczynski

Department of Applied Computer Science, Institute

of Ocean Engineering and Ship

Technology, Gdansk University of Technology

Gdansk, Poland rafal.szlapczynski@pg.edu.pl

Abstract

Overtime planning in software projects has traditionally been approached with search-based multi-

objective optimization algorithms. However, the explicit solutions produced by these algorithms

often lack applicability and acceptance in the software industry due to their disregard for project

managers' intuitive knowledge. This study presents a machine learning model that learns the

preferred overtime allocation patterns from solutions annotated by project managers and applied to

four publicly available software development projects. The model was trained using 1092 instances

of annotated solutions gathered from software houses, and the Random Forest Regression (RFR)

algorithm was used to estimate the PMs’ preference. The evaluation results using MAE, RMSE,

and R2 revealed that RFR exhibits excellent predictive power in this domain with minimal error.

RFR also outperformed the baseline regression models in all the performance measures. The

proposed machine learning approach provides a reliable and effective tool for estimating project

managers' preferences for overtime plans.

Keywords: Software Overtime Planning, Software Project Planning, Machine Learning,

Random Forest Regression.

1. Introduction

Planning a software project is a complex and highly dynamic task characterized by

uncertainties and the risk of overrun in duration and cost. Although PMs are provided with

automated project planning tools, software development teams still suffer from unplanned

overtime as the only option when the project encounters “mission creep” or an excessive

change in requirements [4]. This issue of unplanned overtime has been a persistent

challenge in the software industry, leading to negative impacts on developers [6], [14] and

the quality of the software they build [3]. These findings have drawn researchers’ attention

to more proactive overtime planning, which is the focus of our research.

The current approach modeled software overtime allocation as a multi-objective

optimization problem considering its effects on project duration, cost, overrun risk, and

quality [2, 3], [8], leading to a new field called Software Overtime Planning (SOP). The

first search-based optimization formulation of SOP was introduced by Ferrucci et al. [3].

Subsequent studies have extended their work with multi-objective evolutionary algorithms

[2], [12] and multi-objective memetic algorithms [8] to produce optimal overtime plans.

Ferruci et al. [3] applied NSGA-IIv, a variant of NSGA-II specifically designed for

overtime scheduling, to find the optimal overtime allocations. Similarly, Sarro et al. [12]

applied Adaptivevsc, a variant of NSGA-II that efficiently combines the crossover operator

used in [3] and adaptive genetic operators to produce a dynamic strategy for selecting

genetic operators as optimization progresses. Using the same NSGA-II, De Barros and De

Araujo [2] incorporated the already-established effect of overtime on software quality into

mailto:hammed.mojeed@pg.edu.pl
mailto:rafal.szlapczynski@pg.edu.pl

MOJEED AND SZLAPCZYNSKI A MACHINE LEARNING APPROACH FOR ESTIMATING...

SOP formulation by simulating the defects introduced by developers during overtime as

they affect project cost and duration. Mojeed et al. [8] introduced a memetic approach to

SOP using the same experimental setting and datasets as in [2] and a multi-objective

shuffled frog-leaping algorithm (MOSFLA) as the search method.

These existing studies in SOP have produced quality solutions for Project Managers

(PMs) to allocate overtime better. However, these explicit solutions were generated

without the input of PMs, which has affected their acceptance by the PMs. Studies revealed

that PMs favor their intuitive judgments for the initial overtime allocation solutions[9],

[12]. To address this problem, this study presents a machine-learning approach to solving

the SOP problem by building an estimation model that learns from real-world PM

annotations. To our knowledge, this is the first time a machine-learning approach has been

applied to SOP. The specific contributions of this work are collecting annotated software

overtime planning solutions data by PMs from the industry and developing a Random

Forest Regression (RFR) model based on the collected data to estimate the PM's preference

for overtime allocation.

2. Methodology

Building a machine learning model for software development overtime planning requires

project managers to annotate real-world software project schedule datasets. To do this, six

real-world software project data collected by [2] were obtained from

https://github.com/luizaraujojr/GECCO2016. ACAD manages university students in a

portal, including registrations, classes, and teacher records. PSOA manages users’

authorization and authentication from enterprise systems. WEBAMHS controls the air

traffic routing system for airlines. WEBMET manages meteorological information in a

database. The dataset (provided in XML) specifies the project's tasks, function points (FP)

sizes, and dependencies, as presented in Table 1.

Table 1. Properties of the obtained Software Projects Datasets

Project No of Activities No of Dependencies Function

points

ACAD 40 39 185

WEBMET 44 33 225

WEBAMHS 60 45 381

PSOA 72 84 290

The Work Packages (WP) based features of the software projects were extracted.

Given the size of a WP in FP, its expected duration, described in Equation 1, is estimated

using a mean productivity value of 27.8 FP/developer-month as recommended by [5] for

IT projects and previously used in existing studies in software overtime planning [2].

𝐷𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑤𝑝𝑖) = 30 (
𝑒𝑓𝑓𝑜𝑟𝑡(𝑤𝑝𝑖)

27.8
) (1)

Since a project schedule has to be built before producing overtime allocation plans for

the software projects, the widely used Critical Path (CP) method [2, 3, 8, 12] was adopted

to build schedules for the projects and estimate the shortest possible duration to complete

them. The extracted information based on WPs in the project data is shown in Table 2.

Table 2. Extracted Properties of the pre-processed Software Projects Dataset

Project No of

WPs

No of WP`s

Dependencies

Function

points

Shortest Possible

Duration (days)

ACAD 10 9 185 181

WEBMET 11 17 225 243

WEBAMHS 15 20 381 413

PSOA 18 34 290 316

https://github.com/luizaraujojr/GECCO2016

ISD2024 GDAŃSK, POLAND

2.1. Overtime Allocation

An overtime plan modeled as a finite set of N (the number of WPs in the project) integer

values in the interval [0, 4], representing the number of daily overtime hours assigned to

each WP, is adopted in this work. The overtime plan allocation is evaluated based on the

three objectives: total overtime hours, cost due to overtime, and code quality. Their

mathematical definition, as adopted, can be found in our previous work [9].

For each project, several overtime planning solutions satisfying the defined objectives

were generated using the multi-objective random search from the JMetal MOEA

framework library. The random search was used to explore the search space more

extensively and avoid exploiting a particular region of the space since our goal is to

generate as many feasible solutions as possible to train a machine learning model.

Generated solutions were constrained to accommodate the three well-known overtime

management strategies: Critical Path Management (CPM), Margarine (MAR), and Second

Half (SH).

2.2. Solution Annotation and ML Model Building

Since the ML approach requires a labeled dataset to train models, the generated overtime

allocation solutions were prepared in CSV format and presented to PMs along with the

extracted characteristics of the software projects for annotation. 20 software project

managers with experience in overtime allocation were recruited to evaluate the overtime

plans based on their expertise. The project managers give numeric evaluation scores

between 1 and 100 to each solution instance, adapted from [13] to estimate their preference.

Table 3. Description of the final datasets from the software projects

Project instances

(solutions)

Features

(Tasks)

% MAR %CPM %SH %Random

ACAD 282 10 68 71 73 70

WEBMET 269 11 63 68 71 67

WEBAMHS 275 15 69 70 72 64

PSOA 266 18 65 63 70 68

The annotations received were further processed to remove outliers by computing the

deviation of the values from the mean. This step is necessary to remove the bias in the

estimation as the PM evaluations are characterized mainly by subjective judgment. The

final score is the mean of the closest annotation values representing experts’ majority

agreement. From the four software projects obtained, 1092 cleaned annotated solutions

were produced, as described in Table 3.

Random Forest Regression (RFR), a supervised learning model that uses an ensemble

learning method to build a regression model[1, 15], was used in this work. RFR creates

several decision trees (DT) during training time and delivers the output of the average

prediction of all the DTs. RFR was chosen for the study due to its ability to handle non-

linear relationships in data effectively. Moreover, RFR has been successfully applied to

solve software engineering problems such as effort estimation[10]. The parameter settings

n_estimator=150, min_samples_split=0.03, max_features=Log2(n-features), and

max_depth=10 were used following the recommendation of Probst [11]. Its performance

on the dataset was evaluated using MAE, RMSE, and R2.

3. Results and Discussion

The RFR model was implemented using the WEKA classifier library in Java. The dataset

for each project is split into 80% training and 20% test set. The algorithm was trained and

validated using the 10-fold cross-validation approach. It has been proven experimentally

to produce minimal and unbiased test error rates with low variance [7]. Performance

evaluation results of RFR on the annotated dataset are presented in Table 4.

Concerning MAE, RFR produced good results with minimal average error. The best

result was recorded in the WEBMET project with an average error of 7.85, and the least

MOJEED AND SZLAPCZYNSKI A MACHINE LEARNING APPROACH FOR ESTIMATING...

results were obtained in WEBAMHS with an average error of 10.40. Regarding RMSE, a

similar pattern of results was obtained, with the best performance recorded in the

WEBMET project and the least in WEBAMHS. Considering the R2 scores, RFR

performed considerably well in estimating the PM’s satisfaction with the overtime

allocation, producing a maximum value of 0.89 in the WEBMET project. The RFR model

can predict PM satisfaction with an average of 0.82% accuracy.

Table 4. RFR Performance Results

Project MAE RMSE R2

ACAD 8.81 12.49 0.84

WEBMET 7.85 11.56 0.89

WEBAMHS 10.40 13.12 0.78

PSOA 9.64 12.86 0.80

Average 9.18 12.51 0.82

Concerning the model's scalability, it was observed that as the project size (measured

in WP size and FP) increases, the RFR performance decreases, as indicated by the trendline

in Figures 2 and 3. This might be due to the existence of tasks with high developer efforts

in large projects. These kinds of tasks are difficult to allocate overtime and contribute

heavily to the final overtime of the project. Also, observing the shape of the curves, it is

clear that FP models the relationship between RFR performance and project size better

than WP.

Fig. 2. Performance of RFR based on the WP size Fig. 3. R2 Performance of RFR based on FP

Table 5 compares the model’s performance with SLR, MLR, and SVR. It can be

observed in Table 5 that the proposed RFR outperformed all the baseline regression models

in RMSE and R2 across all the projects with an average improvement of 11.99% and

30.04% in performance, respectively. In MAE, RFR gave better results in three of the

projects except in ACAD, where SVR slightly outperformed RFR. These results indicated

the effectiveness of the RFR model in estimating PM preference.

Table 5. Comparison between RFR and baseline Regression models

Projects
MAE RMSE R2

RFR SLR MLR SVR RFR SLR MLR SVR RFR SLR MLR SVR

ACAD 8.91 10.62 9.54 8.24 12.49 15.04 13.56 13.00 0.84 0.58 0.65 0.71

WEBMET 7.85 11.89 8.26 9.43 11.56 14.25 12.07 12.56 0.89 0.60 0.69 0.74

WEBAMHS 10.26 12.63 11.87 10.95 13.12 16.24 15.04 14.82 0.78 0.52 0.60 0.68

PSOA 9.64 11.45 10.45 10.08 12.86 15.98 14.24 13.98 0.80 0.55 0.63 0.70

With its promising results, the proposed model can be applied to software projects of

similar or closely related characteristics. Estimating the effort and size of software projects

using analogy is well-established in the literature and can be extended to overtime

estimation. Overtime plans can be randomly generated for new and similar projects based

ACAD

WEBME
T

WEBAM
HS

PSOA

0,75

0,8

0,85

0,9

10 12 14 16 18 20

R
2

WP Size

ACAD

WEBMET

PSOA WEBAM
HS

0,75

0,8

0,85

0,9

150 250 350 450

R
2

FP

ISD2024 GDAŃSK, POLAND

on the industry overtime allocation strategies. Then, each solution is tested using the built

model to predict the PM’s satisfaction with the solutions.

4. Conclusion

This study developed a machine learning model based on RFR that learns the overtime

allocation patterns preferred by PMs in planning software projects. Performance evaluation

results show the suitability and predictive effectiveness of RFR in estimating overtime

plans for software development projects. The study also confirmed the superiority of RFR

to the baseline regression models in estimation accuracy and error rate. Our approach has

produced a simplified method for solving the SOP problem using machine learning.

References

1. Alsariera, Y.A., Balogun, A.O., Adeyemo, V.E., Tarawneh, O.H., Mojeed, H.A.:

Intelligent Tree-Based Ensemble Approaches for Phishing Website Detection. J. Eng.

Sci. Technol. 17 (1), 563–582 (2022)

2. DeO Barros, M., De Araujo, L.A.O.: Learning overtime dynamics through

multiobjective optimization. In: GECCO 2016 - Proceedings of the 2016 Genetic and

Evolutionary Computation Conference. pp. 1061–1068. ACM, Inc (2016)

3. Ferrucci, F., Harman, M., Ren, J., Sarro, F.: Not going to take this anymore: Multi-

objective overtime planning for software engineering projects. In: 2013 35th

International Conference on Software Engineering (ICSE). pp. 462–471. (2013)

4. Ferrucci, F., Harman, M., Sarro, F.: Search-Based Software Project Management. In:

Ruhe, G. and Wohlin, C. (eds.) Software Project Management in a Changing World. pp.

373–399. Springer (2014)

5. Jones, C.: Software assessments, benchmarks, and best practices. Addison-Wesley

Longman Publishing Co., Inc. (2000)

6. Kleppa, E., Sanne, B., Tell, G.S.: Working Overtime is Associated With Anxiety and

Depression: The Hordaland Health Study. J. Occup. Environ. Med. 50 (6), 658–666

(2008)

7. Kuhn, M., Johnson, K., others: Applied predictive modeling. Springer (2013)

8. Mojeed, H.A., Bajeh, A.O., Balogun, A.O., Adeleke, H.O.: Memetic approach for multi-

objective overtime planning in software engineering projects. J. Eng. Sci. Technol. 14

(6), 3213–3233 (2019)

9. Mojeed, H.A., Szlapczynski, R.: Machine Learning Assisted Interactive Multi-

objectives Optimization Framework: A Proposed Formulation and Method

for Overtime Planning in Software Development Projects. Lect. Notes Comput. Sci.

14125 LNAI 415–426 (2023)

10. Priya Varshini, A.G., Anitha Kumari, K., Varadarajan, V.: Estimating software

development efforts using a random forest-based stacked ensemble approach. Electron.

10 (10), (2021)

11. Probst, P.: Hyperparameters, tuning and meta-learning for random forest and other

machine learning algorithms. (2019)

12. Sarro, F., Ferrucci, F., Harman, M., Manna, A., Ren, J.: Adaptive multi-objective

evolutionary algorithms for overtime planning in software projects. IEEE Trans. Softw.

Eng. 43 (10), 898–917 (2017)

13. Simons, C.L., Smith, J., White, P.: Interactive ant colony optimization (iACO) for early

lifecycle software design. Swarm Intell. 8 (2), 139–157 (2014)

14. Swenson, D.X.: A Systems Model of Overtime Effects on Software Development Team

Performance. The College of St. Scholastica (2014)

15. Usman-Hamza, F.E., Balogun, A.O., Nasiru, S.K., Capretz, L.F., Mojeed, H.A., Salihu,

S.A., Akintola, A.G., Mabayoje, M.A., Awotunde, J.B.: Empirical analysis of tree-based

classification models for customer churn prediction. Sci. African. 23, e02054 (2024)

