
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)  

An Objectified Entropy-based Software Metric for Assessing the 

Maturity of Use Case Diagrams 

Stanisław Jerzy Niepostyn 

School of Computer Science & Technologies, 

University of Economics and Human Sciences 

in Warsaw, Okopowa str. 59, 01-043 Warsaw, 

Poland j.niepostyn@vizja.pl 
 

Wiktor Bohdan Daszczuk 

Institute of Computer Science, Warsaw 

University of Technology, Nowowiejska str. 

15/19, 00-665 Warsaw, Poland wiktor.daszczuk@pw.edu.pl 
 

 

Abstract 

Various metrics exist for evaluating UML diagrams, including entropy-based ones like 

ours, which assess information content. They allow for judging certain features of the 

design that depend on the information content. This paper proposes the FBS24 use case 

diagram measure, which should ensure that the software architecture design consists of 

mature UML diagrams. Detecting an inappropriate (immature, unfinished) Use Case 

Diagram before the software development phase can stall the entire software development 

process until a mature UCD is developed. Currently, no indicators (metrics) show the 

maturity (or lack of applicability) of diagrams. Moreover, in most such software metrics, 

weights are selected arbitrarily, which leads to numerous anomalies. We show how to 

construct the measure most resistant to such anomalies. We also show how to check the 

correctness and usefulness of the constructed measure. As our measure is objective, it is 

suitable for remote work of distributed teams building IT systems. 

Keywords: FBS, software project metric, entropy, normalized entropy, use cases. 

 

1. Introduction 

UML is the standard for software design, leading to measures for evaluating projects, like 

labor intensity and maintenance ease. The Abran procedure for these measures [1] 

involves creating a meta-project, applying it, and assessing industrial use, but lacks 

details on tuning metrics. The e-CMDA algorithm [2] systematically builds UML 

diagrams from context to implementation view using information content measures. 

In this paper, we propose the FBS24 (24 - the year of publication) use case diagram 

measure to ensure that the software architecture design consists of mature UML 

diagrams. To our best knowledge, currently there are no indicators (metrics) showing the 

maturity (or lack of applicability) of UML diagrams. 

Our approach calculates entropy for functionality (F), behavior (B), and structure (S) 

in UML diagrams, called the FBS measure (FBS16 – from the year of publication). This 

measure qualitatively assesses project consistency and completeness based on entropy 

values: 1 (no information) or <1 (information present). Using the proposed FBS24, the 

detection of inappropriate (immature, unfinished) Use Case Diagram (UCD) before the 

software development phase can prevent the entire software development process from 

being stalled until a mature UCD is developed. 

By maturity, we mean a sufficiently large information content of the diagram, 

understood as the number of elements and connections between them. We do not have a 

recipe for a minimum maturity level, which the designer must determine. However, we 

provide a way to compare the maturity of a specific diagram with the designer's pattern. 

mailto:email.address@domain.com
mailto:email.address@domain.com


NIEPOSTYN AND DASZCZUK  AN OBJECTIFIED ENTROPY-BASED SOFTWARE METRIC… 

Maturity is a concept that the reader probably cannot find in the literature. We believe 

that this notion is useful and sound. 

The entropy formula for software architecture, presented in [3], defines the FBS16 

metric. The work [2] provides a precise formula for this metric, with UML element 

weights chosen subjectively based on the authors experience. Weights range from 0 (no 

influence) to 3 (strong influence) on the software architecture dimension.  

However, when assessing industrial diagrams using the FBS metric constructed in 

this way, it turns out that FBS16 metric anomalies occur for such selected weights of 

UML diagram element kinds. The higher value of the FBS metric for the diagram 

containing more elements can result from the difference in concentration, i.e., 

predominance of elements of one or two kinds. 

The proposed FBS24 metric offers a method to objectively determine weights in the 

functionality dimension of use case diagrams, improving accuracy and resistance to 

anomalies when evaluating normalized entropy, regardless of UML element count. 

While adjusting weights and verifying the FBS24 metric, it turned out that: it 
helps assess UML diagrams against project standards, distinguishing business, system 

and implementation views; it identifies inadequate or immature diagrams, such as those 

overloaded with unnecessary information or unfinished. These properties, confirmed by 

calculations and observations, highlight the advantages of the FBS24 metric. 

 

2. Related work 

Software metrics, dating back to the 1970s, aimed to gauge software quality, workload, 

and complexity in the IT industry. Despite standards like COSMIC and IFPUG, most 

lack the foundation to become widely recognized.  

Software architecture metrics have gained prominence over source code metrics due 

to their ability to optimize and evaluate IT systems before code creation. Despite the 

usefulness of source code metrics like lines of code and cyclomatic complexity, they 

cannot adequately assess system consistency, completeness, or labor consumption. 

Quantitative models often focus on class diagrams, which are crucial in object-

oriented software development. In the late 1990s, Marchesi [4] introduced metrics for 

class and use case diagrams, while Genero [5] later expanded these metrics to assess 

software architecture completeness. However, these metrics primarily counted element 

occurrences or connections, limiting their ability to gauge software architecture. 

The Multi-Attribute Decision Matrix [6] was among the earliest metrics to estimate 

software complexity based on information content (entropy). Following this, metrics like 

AICC [7] (Average Information Content Classification) and CDE [8] (Class Design 

Entropy) emerged, calculating complexity for structured and object-oriented code, 

respectively. Notably, while initially proposed for source code, these metrics were later 

applied to evaluate UML diagrams. It is worth noting that, to our best knowledge, there is 

currently no work related to the assessment of the maturity of UCDs, which makes 

FBS24 a unique software metric. 

 

3. FBS24 elaboration rules (based on the Abran procedure) 

3.1. The overview of the FBS metric 

The accuracy of the metric relies on coefficients linked to specific element kinds, 

determined by methods described in standards like the Cosmic method [1], IFPUG 

method [9], or Use Case function points [10], which have limitations: subjective 

specialist input introduces subjectivity; tailored to individual projects, hindering 

comparison between projects, levels, or versions. 

We aim to standardize UML element weights to create a metric ensuring project 

independence and comparability across systems. Our approach uses the new FBS24 

metric to assess diagram maturity and design quality. The two observed anomalies are: 

entropy=1 having one element of every used kind; growth of entropy with the increase of 

the number of elements, due to concentration difference. 



ISD2024 GDAŃSK, POLAND 

We will show how to choose weights for element kinds to create an objective, robust 

FBS24 metric, reducing both anomalies. This metric will assess UCD maturity and allow 

project comparisons.  

3.2. Calculation of the FBS24 metric 

We apply the FBS24 metric to assess the maturity of UCDs, not entire projects. Each 

element kind is weighted between 0 and 3. Most UCD elements only affect the 

description of functionality (e.g., Use Case), but there are elements such as Actor that can 

also describe the structure of the IT system (e.g., the organizational structure of the 

system). This was taken into account in our calculations, which confirm that UCD 

describes the system architecture only as a dimension of functionality. 

The formula to calculate the FBS24 metric, based on normalized entropy, is identical 

to that of FBS16: 

 𝑬𝒋 =
−𝟏

𝒍𝒏(𝒎)
∑ �̇�𝒊𝒋 ∙ 𝒍 𝒏(�̇�𝒊𝒋)
𝒎
𝒊=𝟏  (1) 

where m is the number of UML element kinds in the model, pij is the normalized value of 

the element i in the selected dimension j (j{Functionality, Behavior, Structure}). In 

addition, we assume that for 0·ln(0), the value is set to 0, and the FBS entropy is set to 1. 

Thus: 𝑭𝑩𝑺 = (𝑬𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍𝒊𝒕𝒚, 𝑬𝒃𝒆𝒉𝒂𝒗𝒊𝒐𝒓, 𝑬𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆), where Ej is given by formula 

(1). FBS16 metric calculation in 3 steps is provided in [2]. 

Normalized entropy, ranging from 0 to 1 and non-additive, aids for a value of 1, 

indicating no information. However, it may not always decrease with more elements, 

leading to higher FBS metric values in some cases. To achieve a valuable FBS metric, we 

aim to minimize undesirable cases by carefully selecting UML element weights.  

3.3. Building diagram series and calculation of FBS16 metrics 

Artificially constructed UML use case diagrams, grouped into series:  the Uc series 

consists of a single actor and an increasing number of UCs (Use Cases) and associations; 

the UcA series consists of one UC and an increasing number of actors and associations; 

the UcZ series consists of one actor, one association and a growing number of UCs and 

relationships between UCs; the Diag series are diagrams composed of all types of UML. 

Figure 1 shows four diagram series, each focusing on specific UML element kinds, 

helping to identify optimal weights by minimizing incorrect calculations. The optimal set, 

shown in red, has the fewest errors (non-monotonicity). 

  
Fig. 1. FBS16 metric values for UML use case diagrams depending on the number of elements (left), and the zoom 

in area 0-0.1 (right). 

 

4. Implementation of the FBS24 

Abran selected coefficients for their equations without specifying a procedure, validating 

the metric on a subset of diagrams from system documentation and benchmark models. 

We present a method for objectively selecting FBS24 weights, enhancing resistance to 

undesirable cases. 

We plot all weight cases dependency of FBS.F on the number of elements in Figure 

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 5 10 15

Uc(1,1,1,1)
UcA(1,1,1,1)
UcZ(1,1,1,1)
Diag(1,1,1,1)
Uc(3,1,1,1)
UcA(3,1,1,1)
UcZ(3,1,1,1)
Diag(3,1,1,1)
Uc(3,1,2,1)
UcA(3,1,2,1)
UcZ(3,1,2,1)
Diag(3,1,2,1)
Uc(3,2,2,1)
UcA(3,2,2,1)
UcZ(3,2,2,1)
Diag(3,2,2,1)

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0,1

0 5 10 15



NIEPOSTYN AND DASZCZUK  AN OBJECTIFIED ENTROPY-BASED SOFTWARE METRIC… 

1, showing overall monotonicity. The first step ends with selecting a set of weights 

whose series group is strictly monotonic, does not face a false lack of information, and 

presents the fastest drop of value as the number of elements increases (this allows for 

more clear detection of immature diagrams). 

As the preparation for the verification, we defined the needed FBS values for mature 

diagrams. Our experience in designing IT systems shows that: 

• mature Business UCDs have from 24 to 55 elements, with a small number of 

DirectedRelationship elements (→0), immature have fewer than 20 elements, 

• mature System UCDs have from 15 to 80 elements and have more UC elements 

than Actors elements, immature have fewer than 15 elements or have more Actors 

elements than UCs, 

• mature Implementation UCDs have from 20 to 100 elements and more UC 

elements than Actors elements, immature have fewer than 20 elements or have 

more Actors elements than UCs. 

Our assumptions align closely with FBS24 metric calculations in industrial diagrams. 

However, analysis reveals more diagram types than anticipated, stemming from practices 

in system design. The FBS24 metric excels in measuring diagram maturity, effective for 

business, system, and implementation diagrams.  

4.1. Metric validation on industrial diagrams 

The final validation of the FBS24 metric was performed using use case diagrams 

collected from various IT projects of complex IT systems over the years 2005-2019 - 

over 2,000 UML diagrams in 18 project repositories as EAP files created in the 

Enterprise Architect tool by Sparx.  

It is worth mentioning that actor diagrams, lacking use cases but featuring actors and 

connections, were evaluated differently. Their high concentration of actors and 

connections resulted in lower FBS24 values compared to standard UC diagrams, blurring 

the boundary between mature and immature actor diagrams. 

We prepared the plot of the industrial cases, showing the dependency between an 

FBS.F and a number of elements of a diagram. We grouped the diagrams according to 

their structure (Actors diagram / general UC diagram) and design level. The extreme 

lines in the plot, between which almost all others fall, are Diag and Uc series obtained in 

step 1. 

 
Fig. 2. FBS24 metric values of studied industrial UML UCDs. The abbreviations hidden if letter or two 

letters are: B-business, S-system, I-implementation, SI-internal, A-actor. The last letter denotes: m-mature, i-

immature. 

Some diagrams exhibit FBS24 metric values beyond the range defined by the Diag 

and Uc series. These diagrams are deemed immature, indicating deficiencies in their 

construction or usefulness for the project. Comparing their metric values to those of other 

series helps identify such outliers. Figure 2 shows the thresholds between mature and 

immature diagrams: for business UCDs 0.4; for system UCDs 0.495; for implementation 

UCDs 0.423; for internal UCDs have 0.425. For business Actors diagrams there is not 

0,000

0,200

0,400

0,600

0,800

1,000

0 20 40 60 80 100

FB
S 

en
tr

o
p

y-
b

as
e

d

UML elements
count

UML use case diagram entropy

Diag-II step
Uc-II step
BUCD-i
BUCD-m
SUCD-i
SUCD-m
SIUCD-i
SIUCD-m
IUCD-i
IUCD-m
AUCD-i
AUCD-m

Diagram 
series



ISD2024 GDAŃSK, POLAND 

enough data: the threshold is between 0.14 and 0.2. 

 

5. Conclusions 

The article introduces entropy-based metrics to evaluate UML diagram information 

content, especially functionality, focusing on the new FBS24 metric. It quantitatively 

measures information content to ensure the software architecture design consists of 

mature UML diagrams. Detecting an inappropriate (immature, unfinished) UCD before 

the software development phase can stall the entire software development process until a 

mature UCD is developed. Currently, there are no indicators (metrics) showing the 

maturity (or lack of applicability) of UML diagrams. A weight adjustment procedure 

ensures metric independence, reducing false lack of information and non-monotony 

effects. The metric evaluates diagram maturity across design levels, validated in real-

world projects, identifying immature diagrams despite initial assumptions. Some 

observed phenomena are discussed. 

• Lack of information is desirable for structure and behavior dimensions, resulting 

in a value of 1 regardless of UCD size. 

• UCDs with only one kind of elements (UC or UCA) have no information. 

• Some UCDs show increased FBS metric values with more elements, indicating 

reduced information content. 

• High concentration in UCDs with few element kinds and occurrences can identify 

incomplete or unusable diagrams. 

• While the FBS metric generally decreases with more elements, cases of non-

monotonicity suggest that information content impacts the metric more than 

element count. 

The proposed metric, focusing on element kind concentration, has broader applications 

such as diagram classification (e.g., business view, system view, implementation view) 

and actor diagram identification. Our future work will extend this methodology to other 

metric dimensions: behavior and structure. Once completed, we aim to develop a plugin 

for the Enterprise Architect framework to measure diagram information content and draw 

conclusions from its values and comparisons across diagrams. 

 

References 

1.  Abran, A.: Software Metrics and Software Metrology; Wiley-IEEE Press, ISBN 

9780470597200 (2010) 

2.  Niepostyn, S.J.: Entropy-Based Consistent Model Driven Architecture. In Proceedings of 

the Photonics Applications in Astronomy, Communications, Industry, and High Energy 

Physics Experiments, Wilga, Poland, Romaniuk, R.S., Ed.; SPIE, pp. 1–10 (2016) 

3.  Niepostyn, S.J., Daszczuk, W.B.: Entropy as a Measure of Consistency in Software 

Architecture. Entropy 25, 328, doi:10.3390/e25020328 (2023) 

4.  Marchesi, M.: OOA Metrics for the Unified Modeling Language. In Proceedings of the 

Second Euromicro Conference on Software Maintenance and Reengineering, Florence, 

Italy, 11 March 1998; IEEE, pp. 67–73 (1998) 

5.  Genero, M., Piattini, M., Calero, C.: Metrics for Software Conceptual Models; World 

Scientific, ISBN 978-1-86094-497-0 (2005) 

6.  Hwang, C.-L., Lin, M.-J.: Group Decision Making under Multiple Criteria; Lecture Notes 

in Economics and Mathematical Systems; Springer Berlin Heidelberg: Berlin, Heidelberg, 

Vol. 281; ISBN 978-3-540-17177-5 (1987) 

7.  Harrison, W.: An Entropy-Based Measure of Software Complexity. IEEE Trans. Softw. 

Eng. 18, 1025–1029, doi:10.1109/32.177371 (1992) 

8.  Bansiya, J., Davis, C., Etzkorn, L.: An Entropy-Based Complexity Measure for Object-

Oriented Designs. Theory Pract. Object Syst. 1999, 5, 111–118, (1999) 

9.  ISO IFPUG Functional Size Measurement Method (2009) 

10.  Karner, G.: Resource Estimation for Objectory Projects. Object. Syst. SF AB (1993) 


