
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)

An Analysis of the Performance of Lightweight CNNs in the Context
of Object Detection on Mobile Phones

Jakub Łęcki
Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Poland s175494@student.pg.edu.pl

Marek Hering
Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Poland s175729@student.pg.edu.pl

Maciej Jabłoński
Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Poland s175591@student.pg.edu.pl

Aleksandra Karpus
Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Poland alekarpu@pg.edu.pl

Abstract

Convolutional Neural Networks (CNNs) are widely used in computer vision, which is now in-
creasingly used in mobile phones. The problem is that smartphones do not have much process-
ing power. Initially, CNNs focused solely on increasing accuracy. High-end computing devices
are most often used in this type of research. The most popular application of lightweight CNN
object detection is real-time image processing, which can be found in devices such as cameras
and autonomous vehicles. Therefore, there is a need to optimize CNNs for use on mobile de-
vices. This paper presents the comparision of latency and mAP of 22 lightweight CNN models
from the MobileNet and EfficientDet families measured on 7 mobile phones.

Keywords: lightweight CNNs, object detection, mobile phones, smartphones, mobile devices.

1. Introduction
Computer Vision (CV) strives to make computers perceive visual information like humans. One
key task is object detection, where a computer identifies and labels objects in images using
Convolutional Neural Networks (CNNs)[3, 2]. CNNs excel in image analysis by executing
complex matrix operations.Thus, CV problems have been solved by high-performance devices.

On the other side, the idea of the Internet of Things assumes the presence of network com-
munication in most everyday objects [12]. These may be devices such as TVs or speakers, but
also thermostats and refrigerators. To sustain device functionality, it is necessary to use network
and computing modules of miniature size. Reduced device sizes limit computing power, neces-
sitating simplified Neural Network (NN) structures tailored for mobile devices [4]. Lightweight
CNNs (LCNNs) like MobileNet, EfficientDet, Pelee, and ThunderNet are designed for swift
inference in applications like autonomous cars, drones, and smartphone cameras [4].

The use of computer vision on mobile devices is now widely researched [4, 10, 14, 1, 15,
9, 16]. The aim of this work was to investigate the performance of LCNN models on various
mobile phones and to answer the following research questions.
(RQ1) Which of the LCNN models achieves the highest performance on mobile phones?
(RQ2) What impact does the used computing unit have on the performance of a given model?



ŁĘCKI ET AL. AN ANALYSIS OF THE PERFORMANCE OF LIGHTWEIGHT CNNS . . .

(RQ3) What impact does quantization optimization have on the performance of LCNNs?
We address these questions in the following sections.

2. Related Work
The MobileNet series stands out among CNN architectures for mobile devices. Versions by
Howard et al. [6, 11, 5] are noteworthy, evaluated using the COCO 2017 dataset for device-
independent MAdd operation comparisons. While this metric aids theoretical model evaluation,
real performance may vary based on device hardware and software.

EfficientDet by Tan et al.[13] is another architecture that is worth attention. For compari-
son of different models, the authors use the FLOPs parameter, the AP metric as a measure of
effectiveness, and the inference time on a desktop computer’s graphics card as delay in ms.

Ignatov et al. [7] extensively reviewed Android devices for AI capabilities, testing over
10,000 devices across 9 image processing tasks. They highlighted the advantage of TensorFlow
Lite for standardized inferences on various smartphones. Luo et al. [8] compared mobile tech-
nologies like PyTorch, Caffe2, and TensorFlow Lite based on efficiency and inference time of
CNN models. They tests concluded that the models behave differently on different devices,
making it difficult to compare the performance of individual models, but it was found that Ten-
sorFlow Lite allows for the fastest model initialization by using the optimal data format.

The aforesaid works showed the dominance of MobileNet and EfficientDet, prompting our
comparison of these architectures. We opted for measuring real performance through inference
time in ms rather than focusing on parameters or operations. In contrast to high-powered GPU
setups in EfficientDet’s work, we conducted our experiments on mobile phones. Utilizing the
TensorFlow Lite framework aligns with its proven advantages in the literature cited [7, 8].

3. Experiments
In order to evaluate the performance of LCNNs, we examined the influence of factors such as
platform, CNN model and computation unit on the accuracy and inference time. We used 7
smartphones whose abbreviated specification is shared online1.

We performed experiments on MS Coco(Microsoft Common Objects in Context) which is a
dataset commonly used in computer vision problems. This collection consists of 328,000 digital
images depicting common objects (e.g. a person or a car) in everyday situations. A set of fifty
selected photos from the COCO 2017 test set was prepared for the study.

3.1. CNN Models

For the experiment, trained CNN models are crucial. Ensuring alignment with authors’ results,
the following assumptions were considered to minimize discrepancies: A. models are prepared
for object detection; B. it is not possible to train models or fine-tune them; C. the tested models
recognize the same set of classes and were trained on the same data set; D. models are available
in tflite format or can be converted to this format; E. models can be run in TensorFlow 2.
Consequently, we chose models distributed by Google in the TensorFlow Models Repository2

and on the TensorFlow Hub platform3. We encountered some difficulties in using some of
these models, including incompatibility between TensorFlow 1 and TensorFlow 2, wrong model
format or the need for train a model from scratch. Table 14 collects test models.

1https://mostwiedzy.pl/pl/aleksandra-karpus,72346-1/lcnn-resources
2https://github.com/tensorflow/models
3https://tfhub.dev/s?deployment-format=lite&module-type=

image-object-detection&tf-version=tf2
4Explanation of features and model designations: ed - network from the EfficientDet family; mn - network from the MobileNet

family; _quant - models that have been fully quantized to fixed-point representation; _no_optimization - models converted without



ISD2024 GDAŃSK, POLAND

Table 1. Summary of all models used in the experiment

Model Size Resolution
ed-lite0_default 4.34 MB 320× 320
ed-lite0_quant 4.34 MB 320× 320
ed-lite1_default 5.79 MB 384× 384
ed-lite2_default 7.20 MB 448× 448
ed-lite3_default 11.39 MB 512× 512
ed-lite3x_default 13.32 MB 640× 640
ed-lite4_default 19.88 MB 640× 640
mn-v1-300x300_default 26.02 MB 300× 300
mn-v1-fpn-640x640_default 30.88 MB 640× 640
mn-v1-fpn-640x640_no_optimization 118.85 MB 640× 640
mn-v1-fpn-640x640_quant 31.0 MB 640× 640
mn-v2-320x320_default 6.34 MB 320× 320
mn-v2-320x320_no_optimization 23.15 MB 320× 320
mn-v2-320x320_quant 6.42 MB 320× 320
mn-v2-fpnlite-320x320_default 3.51 MB 320× 320
mn-v2-fpnlite-320x320_no_optimization 11.22 MB 320× 320
mn-v2-fpnlite-320x320_quant 3.69 MB 320× 320
mn-v2-fpnlite-640x640_default 4.10 MB 640× 640
mn-v2-fpnlite-640x640_no_optimization 11.81 MB 640× 640
mn-v2-fpnlite-640x640_quant 4.28 MB 640× 640
mn-v3-large_default 12.42 MB 320× 320
mn-v3-small_default 6.86 MB 320× 320

Diverse model sources lead to varied parameters, limiting comprehensive coefficient impact
assessment on LCNN performance. Additionally, the low availability of fully quantized models
reduces the generalization possibilities of the results of this type of networks.

3.2. Test Software

To assess LCNN model performance on mobile devices, we developed a Kotlin application5

enabling testing on CPU and GPU. Images were initially scaled to match the model’s input
layer size. To prevent device overheating and result degradation, we conducted single inference
time measurements on a prepared image set. Latency was evaluated through the TensorFlow
Lite API’s inference function across all test set images, repeated for each model. Test results,
including latency and detected object details, were stored in device memory for accuracy calcu-
lation later. Using ADB, the application was installed on smartphones with device optimizations
before testing commenced.

4. Results and Discussion
Final latency results for each LCNN model on tested smartphones were derived from the median
of all inference times. Accuracy was measured using a script for computing mAP6. Findings
are displayed in Figure 1. Latency results exhibit a significant variation. The average inference
time value is very high compared to the performance expected from the tflite models, and the
standard deviation indicates large differences in the delay introduced by different models or
devices. Results primarily fall within the 0ms to 744ms range, with only a few instances showing
considerable delays. Figure 1 highlights that the model has a greater impact on both latency and
accuracy results compared to the device. Some models like MobileNet v1-fpn or EfficientDet

using optimization (saving weights in floating-point format); _default models imply the use of dynamic range quantization, also
called default optimization; fpn and fpnlite means usage of a feature pyramid or a lightweight version of it; efficientdet-lite0 is the
model on which the rest of the EfficientDet models are based.

5Models and code are available at https://gitlab.com/mobile_cnn_detection_analize_pg
6https://github.com/Cartucho/mAP



ŁĘCKI ET AL. AN ANALYSIS OF THE PERFORMANCE OF LIGHTWEIGHT CNNS . . .

Fig. 1. Median latencies in ms (top) and mAP effectiveness (bottom) for all tests performed.

versions exhibit notably higher latencies. Models using FPN experience reduced accuracy on
GPU execution, possibly due to discrepancies in rounding rules. The OnePlus 9 smartphone
delivers superior results among tested devices due to its robust CPU and GPU capabilities.

Addressing RQ1, the efficiency comparison among tested architectures remains inconclu-
sive. Different applications may benefit from distinct approaches: MobileNet emphasizes mini-
mal inference time with acceptable mAP values, whereas EfficientDet prioritizes mAP with the
lowest possible inference time. Replying to RQ2, quantized models outperform unquantized
ones on CPUs, but GPU inference results vary unpredictably. Models with fixed-point weights
showcased diverse outcomes when tested on GPUs. Answering RQ3, even devices without ad-
vanced graphics processors are able to obtain satisfactory results on some of the tested models
thanks to optimization through quantization.

In summary, there are many ways to adapt lightweight CNNs to suit different needs. For ap-
plications in real-time systems where model accuracy is less important, MobileNet architecture
networks are a much better choice. In turn, the EfficientDet architecture will work very well in
systems where longer delays are acceptable, e.g. in static photo analysis.

5. Conclussions and Future Work
The study aimed to compare performance of 22 LCNN models from EfficientDet and MobileNet
families on 7 mobile devices. Models ready for testing were prepared, on which various types
of optimizations were made.

EfficientDet prioritized accuracy, while MobileNet focused on low inference time. Optimal
model selection varies based on the application. Quantization optimization enables satisfactory
results even on devices without advanced GPUs. Quantized models outperform unquantized
ones on CPUs. Predicting quantized model inference on GPUs is challenging, with fixed-point
weight models showing diverse GPU outcomes.

The work represents a small part of the LCNNs on mobile devices topic. Testing more
devices can improve result applicability.



ISD2024 GDAŃSK, POLAND

References
[1] Casanova, C., Franco, A., Lumini, A., and Maio, D.: SmartVisionApp: A framework for

computer vision applications on mobile devices. In: Expert Systems with Applications
40.15 (2013), pp. 5884–5894.

[2] Cherapanamjeri, J. and Rao, B. N. K.: Neural Networks based Object Detection Tech-
niques in Computer Vision. In: 2022 4th Int. Conf. on Inventive Research in Computing
Applications (ICIRCA). 2022, pp. 1092–1099.

[3] Garcia-Rodriguez, J.: Advancements in Computer Vision and Image Processing. IGI
Global, 2018, pp. 1–322.

[4] Glegoła, W., Karpus, A., and Przybyłek, A.: MobileNet family tailored for Raspberry Pi.
In: Procedia Computer Science 192 (2021). Knowledge-Based and Intelligent Informa-
tion & Engineering Systems: Proc. of the 25th Int. Conf. KES2021, pp. 2249–2258.

[5] Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y.,
Pang, R., Vasudevan, V., Le, Q. V., and Adam, H.: Searching for MobileNetV3. In: CoRR
abs/1905.02244 (2019). arXiv: 1905.02244.

[6] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H.: MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. In: CoRR abs/1704.04861 (2017). arXiv: 1704.04861.

[7] Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hartley, T., and Gool, L. V.:
AI Benchmark: Running Deep Neural Networks on Android Smartphones. In: CoRR
abs/1810.01109 (2018). arXiv: 1810.01109.

[8] Luo, C., He, X., Zhan, J., Wang, L., Gao, W., and Dai, J.: Comparison and Benchmarking
of AI Models and Frameworks on Mobile Devices. In: CoRR abs/2005.05085 (2020).
arXiv: 2005.05085.

[9] Munir, M., Avery, W., and Marculescu, R.: MobileViG: Graph-Based Sparse Attention for
Mobile Vision Applications. In: 2023 IEEE/CVF Conf. on Computer Vision and Pattern
Recognition Workshops (CVPRW). 2023, pp. 2211–2219.

[10] Saleh, M. A., Ameen, Z. S., Altrjman, C., and Al-Turjman, F.: Computer-Vision-Based
Statue Detection with Gaussian Smoothing Filter and EfficientDet. In: Sustainability
14.18 (2022). URL: https://www.mdpi.com/2071-1050/14/18/11413.

[11] Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L.: Inverted Residuals
and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmenta-
tion. In: CoRR abs/1801.04381 (2018). arXiv: 1801.04381.

[12] Srinivasan, C., Rajesh, B., Saikalyan, P., Premsagar, K., and Yadav, E. S.: A review on
the different types of internet of things (IoT). English. In: Journal of Advanced Research
in Dynamical and Control Systems 11.1 (2019), pp. 154–158.

[13] Tan, M., Pang, R., and Le, Q. V.: EfficientDet: Scalable and Efficient Object Detection.
In: CoRR abs/1911.09070 (2019). arXiv: 1911.09070.

[14] Wan, Y., Liu, M., Li, G., and Dong, F.: CoCV: Heterogeneous Processors Collaboration
Mechanism for End-to-End Execution of Intelligent Computer Vision Tasks on Mobile
Devices. In: 2023 IEEE 29th Int. Conf. on Parallel and Distributed Systems (ICPADS).
2023, pp. 2507–2514.

[15] Wcisło, N., Szczepanik, M., and Jóźwiak, I.: Computer Diagnosis of Color Vision De-
ficiencies Using a Mobile Device. In: Intelligent and Safe Computer Systems in Control
and Diagnostics. Ed. by Kowalczuk, Z. Springer Cham, 2023, pp. 63–70.

[16] Wu, N., Lin, F. X., Qian, F., and Han, B.: Hybrid mobile vision for emerging applications.
In: Proc. of the 23rd Annual Int. Workshop on Mobile Computing Systems and Applica-
tions. HotMobile ’22. Tempe, Arizona: ACM, 2022, pp. 61–67.


