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Abstract 

The research involved creating synthetic samples to enrich the training set and improve 

classification performance. Data generation was a key element of the biometrics gait 

system based on wearable sensors. The aim of the study was to investigate which 

parameters of the Long short-term memory–Mixture Density Networks (LSTM–MDN) 

models would provide the greatest increase in recognition metrics. Validation was 

conducted for normalized and non-normalized data for a large 100-person dataset. In the 

first case, the use of synthetic data from VAE-type generative models increased the  

F1-score from 0.754 to 0.776, while for proposed architectures increased metrics to 

0.789. For normalized data, VAE-based models worsened recognition performance. 

Whereas the proposed model increased the F1-score from a baseline of 0.928 to 0.966. 

The conducted experiments indicate that generating synthetic data based on MDN models 

is more profitable in the cases of distribution shift between training and testing set. 
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1. Introduction 

Recently, solutions implementing the issue of generating synthetic samples have become 

more and more popular. Commercial text-to-image solutions, such as  

Midjournay, can be considered familiar even to people who are not familiar with the 

details of generative models. In this study, a generative model was implemented to 

multiply the training set with synthetic samples. We investigated the effect of the number 

of artificially generated samples on the performance of the CNN classifier. Generating 

synthetic samples in such a context is extremely sophisticated due to the need to 

generalize the input data while maintaining certain specific features which are 

characteristic to a subject. This article presents basic research on the use of generative 

models, with particular emphasis on LSTM-MDN models in the context of multiplying 

training data in a gait biometrics system. 

As part of the work carried out, a system for identifying people based on gait was 

developed, operating on the basis of wearable sensors such as accelerometer and 

gyroscope. Particularly noteworthy is the fact that very small sets were used to train the 

models (about 30 training samples per participant), and the biometrics experiment itself 
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was validated in cross-day validation (where training and validation of the biometrics 

system is carried out on two separate days). In this configuration, there is a distribution 

shift between the training and test sets. Finally, it should be noted that enriching training 

sets with artificially generated samples has been successfully adapted to HAR (Human 

Activity Recognition) applications [1, 2]. 

Behavioral biometrics, despite the numerous problems associated with high sample 

variability, has several important advantages. First of all, it is very difficult to intentionally 

forge a sample and gain unauthorized access. In addition, this type of biometrics does not 

require active interaction with additional devices such as fingerprint factors. Typically, 

verification of the participant can be carried out without their active participation. In our 

opinion, these features mean that this type of behavioral biometrics should be further 

developed and it explains our interest in this field of science. 

2. Literature Review 

This work is a continuation of series of publications on the use of LSTM-MDN models to 

enrich the training set with synthetic samples and the impact of this approach on the 

effectiveness of the gait biometrics system in cross-day validation scenarios. At the 

beginning, it should be noted that models of this type have been successfully used to 

generate handwriting samples [3] or generate accelerometer signals for HAR purposes 

[4]. Models of this type may provide some alternative to generative models based on 

autoencoders in the form of timeVAE [5] or RHVAE approaches [6]. 

Publication [7] presents pilot results on data production using generative models for the 

author's data corpus. The study was conducted using MLP and probabilistic module (the 

number of modeled distributions was M = 1). The usefulness of the created samples was 

compared with the data created by autoencoders such VAE type model. The experiments 

were conducted with the use of non normalized data. In contrast, in [8], the LSTM-MDN 

model was implemented and used as a generative model. In this case, data generation was 

again performed using a single normal distribution with non normalized data. The 

experiments were carried out using three corpora for multi-day validation, including the first 

author's corpus and two sets created using mobile phones. These corpora were taken under 

different environmental conditions, the authors laboratory corpus (100 subjects), SIGNET 

semi-polygonized corpus (28 subjects) and Boston daily life scenario (29 subjects). Both 

papers [7,8] ignored the influence of the number of modeled normal distributions, the 

influence of the data normalization aspect and the number of synthetic samples created, 

 In the work [9], We developed a biometric gait system using motion sensors embedded 

in a mobile phone. Involved dataset had a unique feature in availability of three motion 

tracking session. In the performed study training set was built with the samples collected 

during two tracking sessions. The work verified the feasibility of using data generation for 

normal distributions M in range〈1,4〉and different numbers of generated samples. The 

study was conducted only for non-normalized data, and the biggest drawback was the use of a 

small data corpus of only 13 individuals. 

 The present work is a natural continuation of earlier studies [7, 8, 9], with no significant 

shortcomings mentioned in them. It openly compares the results for non normalised and 

normalised data. Results are presented for a varying number of synthetically generated 

samples as well as the number of modeled data distributions. And, most importantly, the 

experiments were conducted on a large, 100-member corpus of data, where the learning and 

test sets were collected on two separate days. 

3. Methodology of the Research 

3.1. Dataset 

The study used an original corpus of movements collected by the authors as part of their 

previous work. The dataset included gait recordings of people who participated in two 

motion tracking sessions on two independent days. Such a data acquisition session 

enabled cross-day validation (training includes data collected on one day, with validation 

of a sample from day two). This approach is closest to the everyday life scenario. The 

experiment involved the participation of 100 individuals affiliated with the university 
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academic community, including students and academic staff members. Demographic 

data: age in years (M = 32.18, SD = 8.73); height in meters (M = 1.73, SD = 0.11). 

Exclusion criteria: healthy; no past or current injuries. Data collection took place in a 

laboratory conditions. Participants performed 20 walking trials on a hard ceramic surface 

over a distance of 3 meters. Two devices were involved in the data acquisition process: 

Perception Neuron 32 [11] motion capture system and Kinect v 2.0 depth camera [12]. 

First device was composed of a dedicated suit with 17 Inertial Measurements Unit 

(IMU). Each included a three-axis accelerometer and a gyroscope. It should be clarified 

that processing the data from the depth camera signal is not the subject of this work.  

Despite the availability of numerous IMU sensor set, it was decided to use data from 

a single sensor located in the upper part of the right thigh. This location is similar to the 

location of the motion sensor built into a mobile phone and located in the right pants 

pocket. Our pilot studies showed that the use of all available sensors provides very good 

identification scores. However, such a system would be completely unimplementable in 

real-world applications.  

3.2. Data preprocessing  

Preliminary preprocessing includes aspects such as: segmentation of gait cycles, 

interpolation to a fixed length, conversion between coordinate systems, frequency 

filtering, and optional data normalization. The data segmentation process aims at 

isolating the so-called gait cycles, i.e. the period between the moment when the right leg 

hits the ground. Even though the experiment used a single sensor located in the right 

thigh area, the use of accelerometer signals allows for satisfactory detection of impacts. 

The segmentation algorithm is described in detail in [12], and allowed us to extract 3376 

and 3321 gait samples for the first and second day, respectively. The next step is to 

interpolate the data to a fixed length of 128 frames. A constant sample duration is a 

requirement of the classifier. Sensors such as accelerometer and gyroscope measure 

quantities in the local reference frame of the sensor, which means that the indications 

depend on the mounting method. Due to the fact that the experiment participants moved 

along a constant straight path and the knowledge of the orientation of the sensor and the 

location of the experiment [13], it was possible to use signal transformation for the so-

called global frame of reference. Performing this processing minimizes the impact of the 

sensors inclination/montage on their measurements values. 

The measurement data was then subjected to low-pass frequency filtering with a 3rd 

order Butterworth filter, with a cut-off frequency of 6 Hz. This approach is common in 

the literature [14]. The final but optional preprocessing step was min-max normalization 

in range 〈-1,+1〉. This form of data processing is intended to enhance the process of 

classifier training. Figure 1 shows an example of the data collected for a single study 

subject. Classification process involved data from a triaxial accelerometer and gyroscope, 

therefore the figure has six sub-chart. The green color shows the data collected during the 

first day, and the red color shows the data collected during the second day. 

 
Fig. 1. Gait samples of the selected participant constituting after preprocessing. 
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3.3. Synthetic data generation 

In the training process 100 instances of generative models (number of subjects in the 

dataset) were created for each type of generative model. We trained each of these models 

using the measurement data of a selected experiment participant. In the inference process, 

each instance was able to generate the desired number of samples in the form of a 6 x 128 

array. In the proposed solution, the model learned the gait characteristics of the selected 

participant. The work verified the impact of the number of generated synthetic samples 

on the effectiveness of the biometrics system. It was decided to verify the number of {15, 

30, 60, 120, 240} samples, which constituted {30.8, 47.1, 64.0, 78.0, 87.7}% of the 

content of the training sets, respectively. This was performed independently of the used 

generative model type. For the timeVAE and RHVAE models, off-the-shelf 

implementations were used. For the LSTM-MDN models, a hand-prepared 

implementation in Python was used. The open source solution in this case was largely 

concerned with the generation of 1D or 2D data, which, in the case of 6-dimensional 

data, limited its applicability. 

The present work was a continuation of our research into the possibility of using 

LSTM-MDN networks to generate synthetic samples. In particular, a large aspect was 

concerned to the exploration of the number of distribution models and the number of 

synthetic data produced on the performacnce of the biometric system. The research was 

carried out separately for non-normalised and normalised input data . 

It should be noted that the LSTM component was used as a regressor dedicated to 

time series processing, whereas the use of a probabilistic component provided a non-

deterministic inference and data generation process. At each step t of the given time 

series, the Mixture Density Network component has the ability to model M distributions.  

The input data of the target decision module of the biometrics system consisted of a 

fixed-length time series of 128 samples. Therefore, in this approach, the input of the 

LSTM-MDN network was provided with the frame number in a given gait sample. The 

output of the architecture were parameters defining the independent normal distribution 

of the three-axis accelerometer and gyroscope. The output vector yt includes the weights 

πj, the vector of mean values μj, and the standard deviation vector 𝜎j of each of the M 

modelled normal distributions (1) [3]. 

 

 yt = { πt 
j, μt 

j, 𝜎t 
j }M

j = 1 (1) 

 

The LSTM-MDN model will model 13×M output values for each moment of time t. Due to 

the simultaneous modelling of 6 channels, 6×M standard deviations, 6×M mean values, and 

M component weights will be available for each of the M-modelled distributions. In the 

process of optimizing network weights, the ADAM algorithm is used to minimize the cost 

function: 

 

 L(x) = ∑T
t = 1 - log( ∑ jπt 

j/(2 π σ1 σ2 σ3 σ4 σ5 σ6) exp(-Z/2)), (2) 

 

where the Z parameter is described by equation (3): 

 

 Z=∑6
ax = 1 (x ax -μ ax)2/σ ax

 2 (3) 

 

Figure 2 shows an example of modelled gyroscope Y-axis readings (also visible in 

Figure 1) by two instances of the LSTM-MDN network differing in the number of 

modelled normal distributions M. The graphic consists of two main sections, for each of 

them a modelled mean value with standard deviation. Individual distributions differ in 

drawing color. Below there is a smaller graph of the modelled component weights. 

In the graphic shown, it can be seen that the network has correctly learned to model 

normal distributions. However, by observing the probability plots, some redundancy in 

the model can also be seen. There are parts of the data whose occurrence is impossible to 
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observer. For example, for the parameter M = 4, in the final part of the gait cycle from 

about step 110 to step 128, the second (orange) and third (green) normal distributions are 

virtually impossible to select. The probability of drawing them is zero. 

 
Fig. 2. Modeling of measurement data by the LSTM-MDN network for a) one B) four distributions.  

The LSTM-MDN model is not able to directly generate new synthetic samples by 

inference. This is because it models the parameters of distributions. The following 

pseudo-code extract describes the data generation process based on Gaussian sampling 

using the generated parameters of the normal distributions First of all, the generation 

process requires specifying for which participant the data are to be generated (P), how 

many samples will be produced (AUG_NUM), how many normal distributions (M) are to 

be modelled, the type of standard deviation gain (STD_GAIN), and finally normalisation 

(NORM) parameter. It is worth noting that at each step t, a random selection of the 

currently selected normal distribution (k) is preformed. The actual sampling then takes 

place with its involvement. The optionally generated data is subjected to an inverse 

transformation (the case without data normalisation) and mandatory frequency filtering. 

 
Gait sample generation procedure: 

Select: P an ID of selected participant 

Select: AUG_NUM a number of generated samples 

Select: M a number of modeled normal distribution 

Select: STD_GAIN a standard deviation gain 

Select: NORM a flag that indicate if normalise data 

 

Begin 

participant_data_block=[] 

for sample:=0 to AUG_NUM do: 

 sample_data_block=[] 

 for t:=0 to 128 do: 

  mu,std,weight=request_from_pretrained_model(P,M) 

  std=std*STD_GAIN 

  for j in M do: 

   k =draw_distribution(weight) 

   data_block=gaussian_sampling(mu[k],std[k]) 

   if not NORM then: 

    data_block==inverse_transform(data_block,min_max_scaler,P) 

    sample_data_block.append(data_block) 

   

 for selected_ax to 6 step 1 do: 

  selected_ax_block=sample_data_block[selected_ax] 

  filtered_ax_block=filter(selected_ax_block) 

  sample_data_block.update(selected_ax,filtered_ax_block) 

 participant_data_block.append(sample_data_block) 

end 

3.4. Data classification procedure 

The decision-making module was based on an artificial convolutional neural network 

receiving, as its input, segmented gait samples, the so-called gait cycles. The biometrics 

system implemented the issue of identification, and it is used to predict one of 100 labels 

specifying the identification number of the experiment participant. 

A CNN neural network with an attention mechanism was used as a classifier [6]. This 

type of model has achieved very good results in previous work [7,8]. Segmented 

measurement readings of a three-axis accelerometer and a three-axis gyroscope (6 

channels in total) interpolated to a fixed length of 128 were used as input data. Typical 

cross-entropy was used as the cost function, and the ADAM algorithm was used to 
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optimize the network weights. A constant learning rate of 0.01 and a number of 200 

learning epochs were used. The details of the network architecture are presented 

graphically in Figure 3. 
 

 
Fig. 3. CNN with attention mechanism network architecture. 

4. Results 

The results of the developed biometrics systems were validated using 20-time repeated 

simple validation. Each experiment was reproduced many times to minimize the 

influence of the randomness of the initial network weights. The research was carried out 

in two basic options - without normalisation and with normalisation of the input data. 

The study was conducted in the baseline case (without synthetic samples) and with 

data generated by the LSTM-MDN as well as timeVAE and RHVAE models. For the 

first model, the number of modelled distributions is M ={1, 2, 3, 4}. As part of the 

conducted research, the effect of the amount of data generated on the effectiveness of the 

decision model was examined in the cases of {15, 30, 60, 120, 240} synthetic samples 

per participant. In addition, for each of the LSTM-MDN` models, the possibility of 

increasing the variance in the range {1, 4, 8, 16, 32} was verified.  

 
Fig. 4. F1-score measure of biometrics systems for: A) non normalised and B) normalized input data 

Figure 4 presents the results of the F1-score measure in the form of a heatplot 

visualization, where the numerical value corresponds to the median result. The graph has 

two subgraphs for non-normalised A) and normalised data B). In each of them there is a 

total number of 7 subplots. The first row contains a visualization of the baseline case 
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without synthetic samples. The next two rows contains four graphs that show the results 

for data generation using MDN models differing in the number of modelled normal 

distributions. MDN models have the ability to gain variance after training, so these charts 

have an additional five rows. It should be noted that the variance amplification takes 

place before frequency filtering, which means that amplification, e.g. 32, will not actually 

generate 32 greater variance. Last row presents the results of using the timeVAE and 

RHVAE models. 

Several relationships can be observed in Figure 4 A): In the baseline case (without 

synthetic samples), a metric of 0.754 F1-score was achieved; typically, the best results 

are observed with the number of 60 and 120 generated samples; the timeVAE model 

enabled to increase the F1-score to 0.776 and the RH-VAE model to 0.766; MDN models 

allow achieving good results mainly when a single normal distribution is modeled 

(maximum value 0.789), or in M = 2 case (maximum value 0.766); the greatest observed 

increase in metrics is visible for M = 1, when the variance gain is equal to 8;the use of 

MDN models in M = {3, 4} normal distributions cases only worsens the results of the 

biometrics system. 

Figure 4 B), shows that for the normalised data, the F1 score for the baseline is 

significantly higher ( 0.928) compared to the non-normalised data (0.754).The illustration 

provides evidence for the following conclusions: Synthetic sample generation using 

timeVAE and RHVAE models only causes degradation of biometrics system metrics; In 

the M = 1 normal distributions case, the maximum change in effectiveness is observed 

maximum F1-score is equal to 0.966, whereas in M = 2 normal distributions cases is 

lower - 0.957. The maximum increase to the level of 0.966 is observed for M = 1 normal 

distributions, with a sixteen gain in variance. 

 

4. Conclusions and Future Works 

As part of the work, a biometric gait system was built and validated using an original 

data corpus of 100 subjects. Measurement data from the accelerometer and gyroscope of 

a sensor located in the area of the right thigh were used as the source of input data. The 

evaluation of the developed solution was carried out in a cross-over configuration in 

which training and test samples were collected on different days. The main focus of the 

work concerned the use of synthetic samples generated by timeVAE, RHVAE, and 

LSTM-MDN models to enrich the training set and consequently improve the 

generalization properties of the decision module. 

For non-normalized data, the use of models from the autoencoder group allowed to 

achieve very good results: 0.776 F1-score for timeVAE and 0.766 for RHVAE, 

respectively. While in the case of normalized data, these models allowed to generate 

samples that only reduced the metrics of the biometrics system (0.919 F1-score for 

timeVAE and 0.918 for RHVAE, respectively).In the case of LSTM-MDN models, the 

system efficiency increased from 0.754 to 0.789 F1-score for the case of unnormalized 

data (Figure 4 A) and from 0.928 to 0.966 F1-score for normalized data (Figure 4 B). 

Models of this type can be considered the most profitable. 

The carried out experiments showed that the use of synthetic samples can have a 

positive impact on gait biometrics system metrics. At the same time, it was shown that in 

the case of unnormalized data, an increase in effectiveness was observed from 0.764 to 

0.789 of the F1-score measure, with the base effectiveness of normalized data being 

0.928. The experiments performed (Figure 4) indicate that synthetic data can improve the 

effectiveness of models, but it cannot replace pre-processing elements. The addition of 

synthetic samples should be the last element of work in the process of developing a 

biometrics system. 

Despite the fact that synthetic samples based on LSTM-MDN models have achieved 

promising results in this study, some shortcomings of the developed approach can also be 

noticed. First of all, in the case of modeling more than one normal distribution, in each 

step t there is a random selection of the current distribution. In the next step, a sample is 

generated using Gaussian sampling. For 128 gait samples, this would force a maximum 



SAWICKI ET AL.                                                                  GENERATION OF SYNTHETIC DATA FOR BEHAVIORAL GAIT BIOMETRICS 

of 127 possible 'jumps' between the modelled distributions. This approach results in a 

wide variety of data being generated, which in the case of behavioral biometrics is not 

necessarily an advantage. Our further ideas in this area will be to develop an aggregation 

approach with a limited number of draws of distributions. The last element that would be 

worth extending is the comparison of effectiveness in the case of using samples produced 

by the generative model and those obtained by perturbing existing samples, i.e. the issue 

of data augmentation. 
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