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Abstract 

The reconstruction of a pipe organ involves determining the blowing pressure. The lack 

of information about the pressure value may even result in irreversible damage to the 

pipes, as the adjustment of the sound parameters that depend on the pressure requires 

changing the physical structure of the pipes. In this paper, we provide a methodology for 

determining the blowing pressure in a pipe organ, and present a formula describing the air 

pressure in the pipe foot, depending only on the height of the pipe’s cut-up and the 

fundamental frequency. We apply machine learning to determine the blowing pressure, 

based on the parameters of only a percentage of pipes. We found that the height of the 

cut-up and the fundamental frequency allow determining the blowing pressure. The more 

pipes, the higher the accuracy, but even 10% of pipes can be sufficient.  
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1. Introduction 

Fire can destroy valuable works, as happened in Notre Dame de Paris. The historical pipe 

organ in St. Elizabeth's Church in Wrocław burned completely, and rebuilding it took 

years. The data for the reconstruction were obtained by analyzing historical sources and 

other preserved instruments built by the same organbuilder. However, such data are not 

always available; sometimes the instrument must be restored from its picture only. 

A pipe organ has a fixed relative air pressure, i.e. pressure in the windchest relative to 

the respective atmospheric pressure of the environment. It is most often measured in 

millimeters of water gauge (mm H2O). Relative pressure is a permanent attribute of the 

organ because all the pipes of the organ are adjusted to the appropriate pressure value, 

which affects the basic sound parameters of the pipes.  

The value of air pressure in the pipe organ is essential not only during its construction 

but also in the reconstruction process. It is usually impossible to determine its value 

based on the preserved elements of the wind pressure system. In such a case, it is 

necessary to change the structure of the (usually antique) pipes, e.g., by cutting them or 

deforming the pipe’s mouth. Thus, incorrect selection of the pressure by the organbuilder 

may result in the destruction of the instrument due to irreversible damage to the pipes. 

In this work, we investigate the determination of blowing pressure to protect the 

reconstructed instruments and facilitate the reconstruction work of organbuilders. This is 

important because many damaged instruments require reconstruction, e.g., in the case of 

fire or warfare. So far, there are no methods to reproduce the pressure value used in a 

damaged pipe organ, based on the pipes alone.  
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2. Methodology 

The purpose of this study is to create a model that, after receiving selected pipe attributes 

at the input, will indicate the blowing pressure at the output. To train a model that works 

in various situations, a sufficiently large set of input data is needed. Since the pressure 

value for pipe organs does not vary much and is usually in the range of 50-100 mm of 

water gauge, data from four instruments with different blowing pressures were used.  

We generated one million input datasets, where each input dataset simulates one 

damaged instrument. Each dataset contains data from one instrument only, representing 

the percentage of randomly selected pipes from all pipes available in this instrument. 

Creating all possible subsets of k pipes within a single instrument with n pipes would 

require generating all possible variations without repetition 𝑉𝑛
𝑘. Usually, in a pipe organ, 

n >> 1000. For example, if 50% of the pipes remain (k=500, n=1000), we would need 

about 3.3·101433 variations, and with 10% of the instrument remaining (k=100, n=1000), 

about 6·10297 variations. Therefore, we have not conducted this research on all possible 

subsets, as such inputs are extreme big data. It is technically difficult to train a model on 

all variations due to the time required and/or memory limitations. On the other hand, 

there is no need to train the model on all possible subsets, thus we limited training to one 

million input datasets.  

 

2.1. Solutions to Key Issues Encountered 

Creating a million instruments to be used as input data causes problems. The first one is 

to ensure the uniqueness of randomly generated instruments, as obtaining unique sets of 

pipes within one instrument ensures that after dividing these data into randomly chosen 

train and test sets there is no overlap between them, and no train data are used in tests. 

This research uses a pseudo-random number generator to draw pipes to be included in 

datasets. To avoid, on the one hand, the generator falling into periodicity and, on the 

other hand, possible repetitions of pipe sets, a mechanism of indexing pipes in sets was 

implemented, ensuring the uniqueness of pipe sets. 

We encountered various technical problems when developing our software. To speed 

up the calculations, each regressor we used has been rewritten to a multi-threaded 

version, using the Executor class and Lambda expressions in Java. Unfortunately, 

regressors from the Weka library in multi-threaded training require synchronization of 

model threads and the input data, which significantly increases the training time. 

Additionally, we had to deal with the RAM usage problem, to avoid program stopping 

because of running out of memory with the increase of the number of pipe sets. 

Therefore, RAM monitoring and memory cleaning via manual control of the garbage 

collector were used.  

 

2.2. Programming Language and Libraries  

We chose Java language for its memory management. Firstly, we needed a statically 

typed language (with variable types assigned before using them), to accurately reserve 

the space for variables and optimize memory usage. Secondly, we needed a mechanism 

of immutable objects which ensures that the object remains permanent after its creation, 

to achieve secure and efficient memory management. In addition, Java provides efficient 

support for multithreading, which allows parallel execution of different tasks. 

The Application Programming Interface (API) of the Weka library, version 3.9.6, was 

used in the software development process. We chose the Weka platform due to its 

constantly updated API and a large collection of implemented machine learning (ML) 

methods. All regression algorithms implemented in Weka were tested, in various 

configurations and with various hyperparameter settings, to obtain the best solution.  

Additionally, we used the Deeplearning4j library, version 1.0.0-M2.1, and the Nd4j 

sub-module, which allows loading, executing, and retraining TensorFlow models. We 
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used several popular artificial neural network (ANN) models for regression problems, in 

various hyperparameter configurations. The results obtained using these models were 

compared with the results obtained using ML algorithms from the Weka library, see 

Section 4. 

 

3. Our Data 

Based on our previous research, we use four input attributes, the values of which were 

different for each pipe: cut-up height, airflow velocity, fundamental frequency, and air 

pressure in the pipe’s foot. The input data used to train and test models represent either 

measured or calculated values. The output value is the blowing pressure, measured in 

millimeters of water gauge; this value is predicted using ML and deep learning. Our data 

describe 186 pipes representing 20 voices from four complete instruments. The blowing 

pressure is constant per instrument. In the case of incomplete instruments, when bellows 

and a significant percentage of pipes are missing, it is difficult to determine the blowing 

pressure, and the trial-and-error method may lead to the destruction of historical pipes. 

The first (measured) attribute is the height h of the pipe mouth’s cut-up, in 

millimeters, see Figure 1. The values of this attribute were taken from data provided in 

The Diapason [2, 3, 4, 5, 6], a journal devoted to organ and church music. 

 

Fig. 1. Construction of a flue pipe with the height of the cut-up h indicated 

 

The second (calculated) input attribute is the fundamental frequency of the pipe’s 

sound. We used a musical interval to calculate the third attribute, which is the ratio of 

frequencies, constant and equal to √2
12

 for consecutive semitones in the twelve-tone 

equal-tempered scale, and tuned relative to a standard pitch A (440 Hz).  

The third (calculated) input attribute is the velocity v of the airflow in a pipe, in 

meters per second. A constant value of the Strouhal number St = 0.2 was assumed for the 

calculations, as we found in our previous work [11] that it is approximately stable for 

labial pipes. The airflow velocity v in a flue pipe is calculated as 

 

 𝑣 =  𝐹0 ∙ ℎ/𝑆𝑡  (1) 

 

where F0 is the fundamental frequency of the pipe’s sound (Hz). In addition, we assume 

that the pipe was properly voiced, which means that the pipe sounds as intended (without 

beats). To achieve proper voicing, the edge tone produced in the cut-up must be of the 

same frequency as the resonator.  

 The fourth (calculated) input attribute is the air pressure in the pipe’s foot pp. This 

value differs from the blowing pressure and varies between pipes. We used the following 

formula to determine the pressure pp in the foot of a flue pipe, which depends on the pipe 

mouth’s cut-up height h, and the fundamental frequency of the pipe’s sound F0: 

 

 7.25 ⋅ √𝑝𝑝
1.401 − 𝑝𝑝 + 4.38 ⋅ 𝐹0

2 ⋅ ℎ2 = 0 (2) 

 

This parameter uses both the second and the third parameter, in a non-linear equation. 
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The pressure calculated using Eq. (2) does not take into account losses in the airflow and 

indicates an absolute pressure. To determine the value of relative pressure, used in 

blowing pressure measurement, the ambient pressure must be subtracted from the 

calculated pressure pp, and the units converted to millimeters of water gauge. 

Solving Eq. (2) is not trivial, but can be done numerically or graphically. Based on 

the graphical solution, we can find that Eq. (2) has a unique solution, but this is an 

inaccurate method. In this work, we used the Newton-Raphson (tangent) method as an 

iterative numerical method for finding the zeros of functions in a given range. 

 

4. Results 

We compared all trained models using the following evaluation metrics [7]: Pearson's 

correlation coefficient (r), mean absolute error (MAE), root-mean-square error (RMSE), 

relative absolute error (RAE), root relative square error (RRSE), mean absolute 

percentage error (MAPE), and the accuracy of model predictions (ACC), calculated as a 

percentage ratio of number of predictions such that |yi - xi| ≤ 3 (where xi is an actual value 

and yi is the predicted value), to the total number of predictions. We used this ACC 

measure because the admissible error in the blowing pressure is ≤ 3 mm H2O. It is caused 

by the measurement error made by the organbuilder, and the differences in the height of 

various components of the wind system relative to the ground.  

The most important metric in the assessment was the ACC. The models that 

performed best were the Random Forest (RF) and the Multilayer Perceptron (MLP). 

Table 1 presents evaluation results for the best three models, for four percentages of the 

pipes drawn into the pipe set (simulating the remained pipes in an instrument), namely: 

75%, 50%, 30%, and 10% of the full set of pipes. 

 
Table 1. The evaluation of the top three ML algorithms for training on 75%, 50%, 30%, and 10% of all pipes 

 
Remaining 

pipes 
Rate Model r MAE RMSE 

RAE 

[%] 

RRSE  

[%] 

MAPE 

[%] 

ACC 

[%] 

75% 

1 Random Forest 0.9748 0.8026 1.8425 13.3937 22.3954 1.04 96 

2 Multilayer Perceptron 0.6917 4.4587 9.3577 74.4061 113.7408 5.01 79 

3 Perceptron 0.5401 4.9927 8.3555 83.3173 101.5594 5.23 74 

50% 

1 Random Forest 0.9500 0.9240 2.4315 15.4078 31.0516 1.27 93 

2 Multilayer Perceptron 0.8185 4.5038 8.5188 78.3698 108.6010 5.06 84 

3 SMOreg 0.5442 3.3364 6.9143 55.6211 88.2979 4.07 72 

30% 

1 Random Forest 0.8643 2.0476 4.1983 33.2862 50.2947 2.62 85 

2 Multilayer Perceptron 0.6269 4.8913 8.5585 78.7294 101.8898 5.41 83 

3 Recurrent Neural Network 0.4389 4.5010 8.4934 72.7459 98.9981 5.49 68 

10% 

1 Multilayer Perceptron 0.4712 4.4961 8.1038 73.3760 100.0896 5.10 84 

2 SMOreg 0.0861 4.4882 9.2748 71.1717 111.8923 4.99 76 

3 Convolutional Neural Network 0.1247 4.5639 9.6412 73.9562 113.2431 5.12 75 

 

The training was repeated several times (up to 50 repetitions for RF) and similar values 

of evaluation measures were obtained, which confirms the repeatability of the results. We 

built a RF with 200 decision trees with a maximum depth of 5 and the number of 

attributes to randomly investigate set to 4, but even a RF with only 10 trees yielded good 

results, thus we present results for this small RF, which are even better than for 200 trees.  

In addition, we analyzed the importance of individual input attributes in our best RF 

model. The most important one is the cut-up height (58.48%) and the second one is the 

fundamental frequency (25.56%), which is consistent with organ building knowledge. 

 

5. Related Research and Discussion 

The air pressure in the foot of the pipe depends mainly on the blowing pressure, but also 

on the geometric dimensions of the foot hole and the flue. [9] experimentally confirmed 

the relationship between the air pressure in the foot of the pipe and the size of the foot 

hole. [1] measured the pressure in the foot of the pipe using a pressure sensor. Pipes with 

similar geometrical features, used in their research, had pressure values similar to the 
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values in our work, which confirms the correctness of the calculated pressure values. 

The influence of changing the blowing pressure on the sound generated by pipes is 

well-known. The change of the blowing pressure changes the amplitude of the generated 

sound, its pitch and timbre. [10] confirmed the increase in sound frequency with 

increasing blowing pressure and vice versa. With the decrease in blowing pressure, the 

sound becomes darker and duller. If pressure increases, a discontinuity of pressure at the 

mouth is observed, caused by the centrifugal force of the curvilinear flow. 

A fixed value of blowing pressure allows for a strong and clear sound. The blowing 

pressure cannot change significantly, and if the pressure is too high, overblowing, typical 

of wind instruments, occurs. [8] also describes the feedback cycle operating regime for 

pipe blowing, which includes cut-up, blowing pressure, and the flue width. Therefore, 

tuned pipes are adjusted to a limited blowing pressure range. 

 

6. Conclusions 

The issue of restoring pressure in a pipe organ has been so far an unsolvable problem. In 

most cases, the restored organs are incomplete, with bellows and a high percentage of 

pipes missing. The proposed solution based on ML and ANN models yields high 

accuracy and confirms the possibility of determining the blowing pressure. Our 

methodology is currently the only alternative to the trial-and-error method, that may 

destroy the historical pipes, as there is no method to calculate the blowing pressure.  

Eq. (2) in this work proposes a formula describing the air pressure in the labial pipe’s 

foot depending only on its fundamental frequency and cut-up height, with no other 

variables. We also confirmed the relationship between flue pipe attributes and blowing 

pressure. We found that the height of the cut-up is the most important feature. 

Fundamental frequency is also important, as it affects the proper voicing of a pipe. These 

two attributes suffice to determine the blowing pressure (the others can be calculated), 

and their importance is confirmed in RF.  
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