
32ND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2024 GDAŃSK, POLAND)

Symmetry Kernel for Graph Classification

Yannick Kuhar
University of Ljubljana; Faculty of Computer and Information Science
Ljubljana, Slovenia yannick.kuhar@fri.uni-lj.si

Uroš Čibej
University of Ljubljana; Faculty of Computer and Information Science
Ljubljana, Slovenia uros.cibej@fri.uni-lj.si

Abstract

This paper presents a novel way to conduct machine learning analysis on graphs and empirically
evaluates it. We can not perform such analysis on non-fixed length feature vectors, so first, we
must find a way to represent graphs as such. We propose a graph kernel based on graph auto-
morphisms, also known as graph symmetries. We then empirically evaluate the classification
accuracy of three machine learning algorithms, SVM, Random Forest, and AdaBoost, using this
novel graph kernel against two existing graph kernels and a naive baseline. The models reach
a higher classification accuracy on some datasets using our Symmetry kernels than the graphlet
kernel and Weisfeiler-Lehman kernel despite our kernel constructing far smaller feature vectors
than the existing approaches.

Keywords: graph symmetries, graph kernels, graph classification, machine learning

1. Introduction
Machine learning on complex data structures has become a popular area of research. In many
domains, such as chemistry, bioinformatics, social network analysis, and computer vision, data
naturally appears as graphs [1]. To conduct machine learning analysis on data not represented
as fixed-length feature vectors, we must first find a way to describe them as such. One way to
do this is by using graph kernels. They are functions that map graphs to vectors and use them
to measure the similarity between graphs. Researchers have proposed various graph kernels [1].
Some utilize subgraph structure as the basis of the mapping, while others use random walks.
Recently, researchers have explored graph kernels based on embeddings created by graph neural
networks [2].

The Weisfeiler-Lehman [3] kernel has proven to be successful in practice. It and many other
kernels have one drawback, which we highlighted in this study. They construct sizable feature
vectors, which can cause computational difficulties, storage problems, and lengthy machine-
learning model training times. Our Symmetry kernel is designed to build smaller feature vectors
to bypass these problems altogether. In recent years, many contributions have been made to the
field of graph kernels. One proposed four hypergraph kernels, exploiting the native multi-scale
organization of complex networks [16]. Another defined a kernel based on features constructed
by a graph autoencoder framework [17]. Graph kernels have also been successfully used to
detect malware [18].

Symmetries naturally appear in structures such as graphs and have been successfully utilized
in the domain of graph compression [4]. In this paper, we combine them with a subgraph
counting approach [10] used in bioinformatics to describe a graph’s local structure to create a
novel graph kernel. Our starting point is the Graphlet kernel [9]. It computes the distribution
of all smaller graphlets in a larger graph. Those graphs, however, exhibit symmetries. We take
the distribution of all graphlets and calculate the distribution of symmetries. The distribution



KUHAR AND ČIBEJ SYMMETRY KERNEL FOR GRAPH CLASSIFICATION

of all symmetries is the feature vector of the graph. Finally, our kernel uses all such vectors
to calculate a gram matrix. With it, we train several models using SVM, Random Forest, and
AdaBoost. To evaluate our kernel empirically, we calculate the classification accuracy of our
models using twelve biochemical datasets.

This paper is structured into five sections. In the second section, we present all preliminaries.
The third section describes our graph kernel in detail. In the fourth section, we present our
results; in the final section, we give our concluding remarks.

2. Preliminaries
This section defines graph symmetries, formalizes the concept of graph kernels, and describes
relevant machine-learning methods.

2.1. Graphs symmetries

A graph is defined as G = (V,E), where V (G) is the set of vertices and E(G) is the set of edges.
We assume simple graphs with no isolated vertices. Graph symmetries are a synonym for graph
automorphisms. Their standard representation is a permutation of the vertex set, i.e., a bijective
function π : V (G) → V (G) that preserves connectivity ((u, v) ∈ E(G) ⇒ (π(u), π(v)) ∈
E(G)). All such permutations form a permutation group Aut(G) [4], an example is shown in
Table 1.

Table 1. On the left is a simple directed graph G with four vertices and four arcs. All permutations
of Aut(G) are written in standard cycle notation on the right.

G Aut(G)

0 1

23

()
(13)
(02)

(02)(13)

Graph symmetries have been successfully used in graph compression [4], but in this study,
we will explore their use to construct machine learning features.

2.2. Machine learning on graphs

Researchers split the field of Machine learning on graphs into three sub-fields, depending on
what kind of labels we are predicting:

• Vertex classification: feature vectors represent graph vertices in this space, and machine
learning models predict a vertex-level property. For example, we wish to predict the
document type in a citation network.

• Edge classification: feature vectors usually combine two vertex feature vectors. Machine
learning models here predict whether an edge will be formed between two vertices. For
example, we want to know which social network users will be friends.

• Graph classification: feature vectors represent entire graphs. Typically, they are designed
by either incorporating statistical properties of graphs or combining all vertex embed-
dings. Machine learning models predict some graph properties. For example, graphs
represent molecules, and we wish to know if a molecule helps combat a specific disease.

This paper will focus on graph classification.



ISD2024 GDAŃSK, POLAND

2.3. Graph Kernels

A graph kernel k(G,G′) is a function that measures the similarity between graphs G and G′.
The function must be:

• symmetric i.e. k(G,G′) = k(G′, G) and

• positive semi-definite [5].

Typically, they are defined as:

kg(G,G′) = ϕ(G)⊤ϕ(G′),

where ϕ(G) maps graphs to fixed-length feature vectors. When designing a kernel, the main
question is how we define such a mapping. Over the years, researchers have proposed many
graph kernels based on different properties. Some kernels use shortest paths [6] or random
walks [7], others use limited-sized subgraphs and subtrees [8]. In recent years, graph neural
networks [2] have become a popular tool for graph analysis but are out of scope for this paper.

From these various kernels, we have selected two to use in our experiments.

Graphlet Kernel

The graphlet kernel (GK) is a tool used to compare graphs by counting smaller subgraphs
(graphlets), usually limited to k vertices for k ∈ {3, 4, 5} [9]. Let

G = {graphlet(1), graphlet(2), . . . , graphlet(Nk)}

be the set of graphlets of size k. First, we must define a vector fG of length Nk. The i-th
component of vector fG is the count of graphlet graphlet(i) ∈ G that occurs in the input graph
G. The authors then normalize the count vector fG to account for different input graph sizes.

To compute this kernel exactly is too expensive on large graphs. To solve this issue, the au-
thors resort to sampling. The graphlet distribution is then calculated over the sampled subgraphs
in hopes that this distribution approximates the real one. The result is an efficient graph kernel
that can be used for comprehensive graph analysis.

Weisfeiler-Lehman Kernel

This graph kernel is based on the 1-dimensional Weisfeiler-Lehman (WL) isomorphism test [3],
also known as the "naive node refinement." Each node starts with an initial label or color. The
idea of this algorithm is to assign new labels to each node in the following way:

• it collects the labels of all neighboring vertices,

• stores them into a sorted set (this includes the label of the target vertex),

• compresses the label set into a new label and

• assigns it to the target vertex.

The algorithm terminates if the newly created sets of two input graphs G and G′ are not the
same i.e. graphs G and G′ are not isomorphic or the number of iterations h is reached. The
feature vector constructed by this kernel is a vector that counts how many times a color has
appeared during the color refinement process. Given graph classification tasks, the WL kernel
proved competitive regarding runtime and classification accuracy [3].



KUHAR AND ČIBEJ SYMMETRY KERNEL FOR GRAPH CLASSIFICATION

2.4. Machine learning algorithms

In our experiments, we used three well-known machine-learning algorithms:

• Support vector machine (SVM) is a classifier that builds a decision boundary (linear or
not linear) between classes [11]. It is known as a well-performing, out-of-the-box model.

• Random forest is an ensemble classifier that trains a more significant number of decision
trees. The main purpose of an ensemble approach is to combat the high variance of
decision trees [13].

• AdaBoost is also an ensemble classifier of typically 500 − 1000 weaker classifiers [12]
such as decision trees. When the algorithm trains the first classifier, it assigns weights to
the data points based on their results. Misclassified data has increased (boosted) weights.
The data point will likely be included in the next classifier’s test set based on these
weights. This approach yields a successful classifier.

3. Symmetry Kernel
This section defines a novel graph kernel based on the concepts of graph symmetries and the
graphlet kernel.

In bioinformatics, the graphlet distribution has been a successful tool for network analy-
sis [10]. As mentioned, the graphlet kernel uses all possible graphlets with k ∈ {3, 4, 5} ver-
tices. All such graphlets exhibit symmetries. We construct the graph features by first computing
the graphlet distribution of an input graph G. We compute the Aut(g) for each graphlet g in the
graphlet distribution and then construct the feature vectors based on the distribution of symme-
tries. For example, consider graphs H and H ′ shown in Figure 1, their graphlet distributions
are:

ϕgraphlet(H) = (8, 2, 6, 0, 1, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0) and

ϕgraphlet(H
′) = (16, 2, 16, 4, 1, 6, 0, 0, 10, 2, 0, 4, 8, 2, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The i-th component of each of the above vectors corresponds to the i-th graphlet. In all
graphlets with k ∈ {3, 4, 5} vertices there exist seven lengths of symmetries:
(2), (2)(2), (2)(3), (3), (3)(2), (4) and (5). The distributions on our test graphs are then:

ϕsymmetries(H) = (24, 11, 0, 0, 0, 2, 0) and

ϕsymmetries(H
′) = (60, 45, 0, 8, 0, 2, 8).

To account for different sizes of graphs, we will run experiments on a normalized variant of
this kernel.

3.1. Efficient graphlet counting

To calculate the distributions explained in Section 3 in a reasonable time, we used the efficient
Orca [10] graphlet counting algorithm. It aims to calculate the number of times some vertex x
appears in each orbit Oi across all graphlets with k ∈ {3, 4, 5} vertices in graph G by building
and solving a system of equations.

The right sides of the equations contain graph properties. The left sides of the equations are
relations between orbit counts oi. The key observation that makes this approach possible is that
if some vertex x is in a k-vertex graphlet, it is also in a (k− 1)-vertex graphlet. The authors use
this observation in reverse. For example, every 4-vertex graphlet can be constructed by adding



ISD2024 GDAŃSK, POLAND

1 2

34

5

6

1

2 3

4 5

6

7

8

Fig. 1. Example graphs H and H ′.

a vertex to a 3-vertex graphlet. They then find the relations between orbits by enumerating all
3-vertex graphlets that touch some vertex x and count all extensions while considering that all
summations must consider symmetries.

This strategy is sound when counting orbits of graphlets with k ∈ {4} vertices. The authors
constructed a list of equations by adding vertices to 3-vertex and observing the results. This
approach is not practical for 5-vertex graphlets as it would yield a large number of equations
that are not linearly independent; therefore, a different approach is necessary. For each orbit, the
authors chose some vertex y. They then observed how the corresponding graphlet’s orbits and
the vertex of interest x behaved if they added edges between y and other vertices in the graphlet.

In all experiments, Orca has proven to be the fastest algorithm compared to the existing
approaches and will be used to calculate the graphlet distribution by our kernel.

4. Results
This section briefly describes the datasets we used and our machine-learning evaluation pipeline.
It will also present our results.

4.1. Data

The datasets AIDS, Mutagenicity, NCI1, NCI109, BZR, COX2, DHFR, MUTAG, and PTC
are graphs created from small molecules. The vertices of these graphs represent the atoms,
and the edges represent chemical bonds [1]. The binary classification task on these datasets
is to predict specific properties of these molecules’ toxicity and activity against aids or cancer.
PROTEINS_full, on the other hand, is a set of graphs derived from bioinformatics [1].

We used these datasets because they have become the standard for evaluating graph ker-
nels [1, 3, 9].

4.2. Experimental setting

We tested our symmetric kernel against the graphlet kernel, counting all graphlets with up to 5
vertices and the WL subtree kernel with four iterations, using vertex histogram as its basis.

We use SVM, Random forest, and Adaboost machine learning algorithms. First, we split
each dataset according to the standard 70:30 split. Then, we fine-tune each model’s parame-
ters using grid search Cross-validation. We fine-tune the regularization parameter, the internal
kernel type, and the kernel coefficient for SVM. For Random forest, we fine-tune the number
of decision trees and the function that measures the split quality. For Adaboost, we fine-tuned



KUHAR AND ČIBEJ SYMMETRY KERNEL FOR GRAPH CLASSIFICATION

Table 2. The datasets used in our experiments alongside some of their properties. N is the number
of graphs in a dataset. Classes shows the number of properties we predict, and the Largest
class is the percentage of the most common class. Lastly, |V (G)| and |E(G)| are the average
number of vertices and edges, respectively.

Name N Classes Largest class |V(G)| |E(G)|
AIDS 2000 2 0.8000 15.69 16.20

Mutagenicity 4337 2 0.5536 30.32 30.77
NCI1 4110 2 0.5005 29.87 32.30

NCI109 4127 2 0.5038 29.68 32.13
PROTEINS_full 1113 2 0.5957 39.06 72.82

BZR 405 2 0.7816 35.75 38.36
COX2 467 2 0.7816 41.22 43.45
DHFR 756 2 0.6098 42.43 44.54

MUTAG 188 2 0.6648 17.93 19.79
PTC_FM 349 2 0.5926 14.11 14.48
PTC_FR 351 2 0.6553 14.56 15.00

PTC_MM 336 2 0.6161 13.97 14.32

the number of estimators and the learning rate. Lastly, we train 30 models with each algorithm,
each trained on a bootstrapped training set sample. All reported results are the means of the
evaluated models.

We will evaluate the quality of all models with classification accuracy (CA), which is the
percentage of all true positive and true negative classifications in the test set.

4.3. Analysis

Table 3. The dimensionality of the feature vectors constructed by each kernel used in our experi-
ments.

Name Symmetry Kernel Graphlet Kernel WL Kernel
AIDS 7 29 28961

Mutagenicity 7 29 60896
NCI1 7 29 71738

NCI109 7 29 72766
PROTEINS_full 7 29 94873

BZR 7 29 6774
COX2 7 29 5316
DHFR 7 29 8669

MUTAG 7 29 1982
PTC_FM 7 29 5786
PTC_FR 7 29 5979

PTC_MM 7 29 5495

In this subsection, we will compare the CAs of all resulting models. All results are shown
as a heatmap in Figure 2. The CA of each method on each dataset is shown as a colored cell
according to the intensity scale.

All models, using all three kernels, performed well on the AIDS dataset. Their accuracy
was close to 100%. On the other hand, all models performed poorly on the three PTC datasets
and COX2. Their CA was close to the majority classifier. Only AdaBoost outperformed the



ISD2024 GDAŃSK, POLAND

Fig. 2. Classification accuracies achieved by our three classifiers on each graph kernel we tested.

MC on COX2, creating comparable models using all kernels. On Mutagenicity, NCI1, NCI109,
PROTEINS_full, and DHFR SK reached similar results to GK but performed worse than the WL
kernel. Similarly, for BZR, except here, SK performed better, sometimes reaching comparable
performances to the WL kernel. SK performed best on the MUTAG dataset, outperforming GK
and the WL kernel.

Regarding feature vector dimensionality, SK constructed feature vectors far smaller than the
existing approaches, as seen in Table 3. SK and GK construct constant-size feature vectors as
input graph size increases. However, The WL kernel constructs larger feature vectors as the size
of input graphs increases. One notable observation regarding dimensionality is that SK performs
comparatively to GK and the WL kernel despite constructing far smaller feature vectors.

5. Conclusion
In this paper, we proposed a novel graph kernel based on graph automorphisms (symmetries)
and tested it on 12 graph datasets using three well-known machine-learning algorithms. We
compared their classification accuracy using our novel graph kernel SK to the accuracy reached
using GK, the WL kernel, and the majority classifier.

The main benefit of our kernel is that it reaches a performance comparable to GK on ten
of the twelve datasets while constructing feature vectors of smaller dimensionality, as shown in
Table 3. In some cases, it is comparable, and in two cases, it is better than the state-of-the-art WL
kernel, which constructs vectors with much higher dimensionality. The ratios between kernel
performances repeat themselves regardless of the machine learning model used to evaluate them.

The kernel we presented is based on vertex symmetries, but there are two other types of
symmetries we have not explored. We could define a graph kernel based on edge symmetries
in the domain of undirected graphs and arc symmetries in the domain of directed graphs. Once



KUHAR AND ČIBEJ SYMMETRY KERNEL FOR GRAPH CLASSIFICATION

we have those, we can compare their performance against SK, GK, the WL kernel, and graph
neural networks. We could use more shallow machine learning models and deep ones to make
the comparison more comprehensive.

Another direction worth exploring would be the extension of GK with the Jesse Algo-
rithm [15]. Currently, GK is limited to graphlets with k ∈ {3, 4, 5} vertices. Jesse would
allow us to go beyond this limit.

References
1. Kriege, N.M., Johansson, F.D., Morris C.: A survey on graph kernels. Applied Network

Science 5(1), 1-42 (2020)
2. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional net-

works. arXiv preprint arXiv:1609.02907 (2016)
3. Shervashidze, N., et al. "Weisfeiler-Lehman graph kernels." Journal of Machine Learn-

ing Research 12(9) (2011)
4. Čibej, U., Mihelič, J.: Graph automorphisms for compression. Open Computer Science

11(1), 51-59 (2021), https://doi.org/10.1515/comp-2020-0186
5. Vishwanathan, S., Vichy, N., et al.: Graph kernels Journal of Machine Learning Re-

search 11, 1201-1242 (2010)
6. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Fifth IEEE inter-

national conference on data mining (ICDM’05), IEEE (2005)
7. Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: Proceedings

of the first international workshop on mining graphs, trees, and sequences (2003)
8. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining.

In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining (2004)

9. Shervashidze, N., et al.: Efficient graphlet kernels for large graph comparison. Artificial
intelligence and statistics. PMLR (2009)

10. Hočevar, T., Demšar, J.: A combinatorial approach to graphlet counting. Bioinformatics
30(4), 559-565 (2014)

11. Huang, S., et al.: Applications of support vector machine (SVM) learning in cancer
genomics. Cancer genomics & proteomics 15(1), 41-51 (2018)

12. Hastie, T., et al.: Multi-class adaboost. Statistics and its Interface 2(3), 349-360, (2009)
13. Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference on

document analysis and recognition. Vol. 1, IEEE (1995)
14. Morris, C., et al.: Tudataset: A collection of benchmark datasets for learning with

graphs. arXiv preprint arXiv:2007.08663 (2020)
15. Melckenbeeck, I., et al.: Efficiently counting all orbits of graphlets of any order in a

graph using autogenerated equations. Bioinformatics 34(8), 1372-1380 (2018)
16. Martino, A., Rizzi, A.: (Hyper) graph kernels over simplicial complexes. Entropy

22(10), 1155 (2020)
17. Hou, Z., et al.: Graphmae: Self-supervised masked graph autoencoders. In: Proceedings

of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(2022)

18. Nafiiev, A., Rodionov, A.: Malware Detection System Based on Static and Dynamic
Analysis Using Machine Learning. Theoretical and Applied Cybersecurity 5(2) (2023)


